GNU Linux-libre 6.8.7-gnu
[releases.git] / drivers / char / hpet.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel & MS High Precision Event Timer Implementation.
4  *
5  * Copyright (C) 2003 Intel Corporation
6  *      Venki Pallipadi
7  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
8  *      Bob Picco <robert.picco@hp.com>
9  */
10
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/miscdevice.h>
15 #include <linux/major.h>
16 #include <linux/ioport.h>
17 #include <linux/fcntl.h>
18 #include <linux/init.h>
19 #include <linux/io-64-nonatomic-lo-hi.h>
20 #include <linux/poll.h>
21 #include <linux/mm.h>
22 #include <linux/proc_fs.h>
23 #include <linux/spinlock.h>
24 #include <linux/sysctl.h>
25 #include <linux/wait.h>
26 #include <linux/sched/signal.h>
27 #include <linux/bcd.h>
28 #include <linux/seq_file.h>
29 #include <linux/bitops.h>
30 #include <linux/compat.h>
31 #include <linux/clocksource.h>
32 #include <linux/uaccess.h>
33 #include <linux/slab.h>
34 #include <linux/io.h>
35 #include <linux/acpi.h>
36 #include <linux/hpet.h>
37 #include <asm/current.h>
38 #include <asm/irq.h>
39 #include <asm/div64.h>
40
41 /*
42  * The High Precision Event Timer driver.
43  * This driver is closely modelled after the rtc.c driver.
44  * See HPET spec revision 1.
45  */
46 #define HPET_USER_FREQ  (64)
47 #define HPET_DRIFT      (500)
48
49 #define HPET_RANGE_SIZE         1024    /* from HPET spec */
50
51
52 /* WARNING -- don't get confused.  These macros are never used
53  * to write the (single) counter, and rarely to read it.
54  * They're badly named; to fix, someday.
55  */
56 #if BITS_PER_LONG == 64
57 #define write_counter(V, MC)    writeq(V, MC)
58 #define read_counter(MC)        readq(MC)
59 #else
60 #define write_counter(V, MC)    writel(V, MC)
61 #define read_counter(MC)        readl(MC)
62 #endif
63
64 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
65 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
66
67 /* A lock for concurrent access by app and isr hpet activity. */
68 static DEFINE_SPINLOCK(hpet_lock);
69
70 #define HPET_DEV_NAME   (7)
71
72 struct hpet_dev {
73         struct hpets *hd_hpets;
74         struct hpet __iomem *hd_hpet;
75         struct hpet_timer __iomem *hd_timer;
76         unsigned long hd_ireqfreq;
77         unsigned long hd_irqdata;
78         wait_queue_head_t hd_waitqueue;
79         struct fasync_struct *hd_async_queue;
80         unsigned int hd_flags;
81         unsigned int hd_irq;
82         unsigned int hd_hdwirq;
83         char hd_name[HPET_DEV_NAME];
84 };
85
86 struct hpets {
87         struct hpets *hp_next;
88         struct hpet __iomem *hp_hpet;
89         unsigned long hp_hpet_phys;
90         struct clocksource *hp_clocksource;
91         unsigned long long hp_tick_freq;
92         unsigned long hp_delta;
93         unsigned int hp_ntimer;
94         unsigned int hp_which;
95         struct hpet_dev hp_dev[] __counted_by(hp_ntimer);
96 };
97
98 static struct hpets *hpets;
99
100 #define HPET_OPEN               0x0001
101 #define HPET_IE                 0x0002  /* interrupt enabled */
102 #define HPET_PERIODIC           0x0004
103 #define HPET_SHARED_IRQ         0x0008
104
105 static irqreturn_t hpet_interrupt(int irq, void *data)
106 {
107         struct hpet_dev *devp;
108         unsigned long isr;
109
110         devp = data;
111         isr = 1 << (devp - devp->hd_hpets->hp_dev);
112
113         if ((devp->hd_flags & HPET_SHARED_IRQ) &&
114             !(isr & readl(&devp->hd_hpet->hpet_isr)))
115                 return IRQ_NONE;
116
117         spin_lock(&hpet_lock);
118         devp->hd_irqdata++;
119
120         /*
121          * For non-periodic timers, increment the accumulator.
122          * This has the effect of treating non-periodic like periodic.
123          */
124         if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
125                 unsigned long t, mc, base, k;
126                 struct hpet __iomem *hpet = devp->hd_hpet;
127                 struct hpets *hpetp = devp->hd_hpets;
128
129                 t = devp->hd_ireqfreq;
130                 read_counter(&devp->hd_timer->hpet_compare);
131                 mc = read_counter(&hpet->hpet_mc);
132                 /* The time for the next interrupt would logically be t + m,
133                  * however, if we are very unlucky and the interrupt is delayed
134                  * for longer than t then we will completely miss the next
135                  * interrupt if we set t + m and an application will hang.
136                  * Therefore we need to make a more complex computation assuming
137                  * that there exists a k for which the following is true:
138                  * k * t + base < mc + delta
139                  * (k + 1) * t + base > mc + delta
140                  * where t is the interval in hpet ticks for the given freq,
141                  * base is the theoretical start value 0 < base < t,
142                  * mc is the main counter value at the time of the interrupt,
143                  * delta is the time it takes to write the a value to the
144                  * comparator.
145                  * k may then be computed as (mc - base + delta) / t .
146                  */
147                 base = mc % t;
148                 k = (mc - base + hpetp->hp_delta) / t;
149                 write_counter(t * (k + 1) + base,
150                               &devp->hd_timer->hpet_compare);
151         }
152
153         if (devp->hd_flags & HPET_SHARED_IRQ)
154                 writel(isr, &devp->hd_hpet->hpet_isr);
155         spin_unlock(&hpet_lock);
156
157         wake_up_interruptible(&devp->hd_waitqueue);
158
159         kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
160
161         return IRQ_HANDLED;
162 }
163
164 static void hpet_timer_set_irq(struct hpet_dev *devp)
165 {
166         unsigned long v;
167         int irq, gsi;
168         struct hpet_timer __iomem *timer;
169
170         spin_lock_irq(&hpet_lock);
171         if (devp->hd_hdwirq) {
172                 spin_unlock_irq(&hpet_lock);
173                 return;
174         }
175
176         timer = devp->hd_timer;
177
178         /* we prefer level triggered mode */
179         v = readl(&timer->hpet_config);
180         if (!(v & Tn_INT_TYPE_CNF_MASK)) {
181                 v |= Tn_INT_TYPE_CNF_MASK;
182                 writel(v, &timer->hpet_config);
183         }
184         spin_unlock_irq(&hpet_lock);
185
186         v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
187                                  Tn_INT_ROUTE_CAP_SHIFT;
188
189         /*
190          * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
191          * legacy device. In IO APIC mode, we skip all the legacy IRQS.
192          */
193         if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
194                 v &= ~0xf3df;
195         else
196                 v &= ~0xffff;
197
198         for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
199                 if (irq >= nr_irqs) {
200                         irq = HPET_MAX_IRQ;
201                         break;
202                 }
203
204                 gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
205                                         ACPI_ACTIVE_LOW);
206                 if (gsi > 0)
207                         break;
208
209                 /* FIXME: Setup interrupt source table */
210         }
211
212         if (irq < HPET_MAX_IRQ) {
213                 spin_lock_irq(&hpet_lock);
214                 v = readl(&timer->hpet_config);
215                 v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
216                 writel(v, &timer->hpet_config);
217                 devp->hd_hdwirq = gsi;
218                 spin_unlock_irq(&hpet_lock);
219         }
220         return;
221 }
222
223 static int hpet_open(struct inode *inode, struct file *file)
224 {
225         struct hpet_dev *devp;
226         struct hpets *hpetp;
227         int i;
228
229         if (file->f_mode & FMODE_WRITE)
230                 return -EINVAL;
231
232         mutex_lock(&hpet_mutex);
233         spin_lock_irq(&hpet_lock);
234
235         for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
236                 for (i = 0; i < hpetp->hp_ntimer; i++)
237                         if (hpetp->hp_dev[i].hd_flags & HPET_OPEN) {
238                                 continue;
239                         } else {
240                                 devp = &hpetp->hp_dev[i];
241                                 break;
242                         }
243
244         if (!devp) {
245                 spin_unlock_irq(&hpet_lock);
246                 mutex_unlock(&hpet_mutex);
247                 return -EBUSY;
248         }
249
250         file->private_data = devp;
251         devp->hd_irqdata = 0;
252         devp->hd_flags |= HPET_OPEN;
253         spin_unlock_irq(&hpet_lock);
254         mutex_unlock(&hpet_mutex);
255
256         hpet_timer_set_irq(devp);
257
258         return 0;
259 }
260
261 static ssize_t
262 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
263 {
264         DECLARE_WAITQUEUE(wait, current);
265         unsigned long data;
266         ssize_t retval;
267         struct hpet_dev *devp;
268
269         devp = file->private_data;
270         if (!devp->hd_ireqfreq)
271                 return -EIO;
272
273         if (count < sizeof(unsigned long))
274                 return -EINVAL;
275
276         add_wait_queue(&devp->hd_waitqueue, &wait);
277
278         for ( ; ; ) {
279                 set_current_state(TASK_INTERRUPTIBLE);
280
281                 spin_lock_irq(&hpet_lock);
282                 data = devp->hd_irqdata;
283                 devp->hd_irqdata = 0;
284                 spin_unlock_irq(&hpet_lock);
285
286                 if (data) {
287                         break;
288                 } else if (file->f_flags & O_NONBLOCK) {
289                         retval = -EAGAIN;
290                         goto out;
291                 } else if (signal_pending(current)) {
292                         retval = -ERESTARTSYS;
293                         goto out;
294                 }
295                 schedule();
296         }
297
298         retval = put_user(data, (unsigned long __user *)buf);
299         if (!retval)
300                 retval = sizeof(unsigned long);
301 out:
302         __set_current_state(TASK_RUNNING);
303         remove_wait_queue(&devp->hd_waitqueue, &wait);
304
305         return retval;
306 }
307
308 static __poll_t hpet_poll(struct file *file, poll_table * wait)
309 {
310         unsigned long v;
311         struct hpet_dev *devp;
312
313         devp = file->private_data;
314
315         if (!devp->hd_ireqfreq)
316                 return 0;
317
318         poll_wait(file, &devp->hd_waitqueue, wait);
319
320         spin_lock_irq(&hpet_lock);
321         v = devp->hd_irqdata;
322         spin_unlock_irq(&hpet_lock);
323
324         if (v != 0)
325                 return EPOLLIN | EPOLLRDNORM;
326
327         return 0;
328 }
329
330 #ifdef CONFIG_HPET_MMAP
331 #ifdef CONFIG_HPET_MMAP_DEFAULT
332 static int hpet_mmap_enabled = 1;
333 #else
334 static int hpet_mmap_enabled = 0;
335 #endif
336
337 static __init int hpet_mmap_enable(char *str)
338 {
339         get_option(&str, &hpet_mmap_enabled);
340         pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
341         return 1;
342 }
343 __setup("hpet_mmap=", hpet_mmap_enable);
344
345 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
346 {
347         struct hpet_dev *devp;
348         unsigned long addr;
349
350         if (!hpet_mmap_enabled)
351                 return -EACCES;
352
353         devp = file->private_data;
354         addr = devp->hd_hpets->hp_hpet_phys;
355
356         if (addr & (PAGE_SIZE - 1))
357                 return -ENOSYS;
358
359         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
360         return vm_iomap_memory(vma, addr, PAGE_SIZE);
361 }
362 #else
363 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
364 {
365         return -ENOSYS;
366 }
367 #endif
368
369 static int hpet_fasync(int fd, struct file *file, int on)
370 {
371         struct hpet_dev *devp;
372
373         devp = file->private_data;
374
375         if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
376                 return 0;
377         else
378                 return -EIO;
379 }
380
381 static int hpet_release(struct inode *inode, struct file *file)
382 {
383         struct hpet_dev *devp;
384         struct hpet_timer __iomem *timer;
385         int irq = 0;
386
387         devp = file->private_data;
388         timer = devp->hd_timer;
389
390         spin_lock_irq(&hpet_lock);
391
392         writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
393                &timer->hpet_config);
394
395         irq = devp->hd_irq;
396         devp->hd_irq = 0;
397
398         devp->hd_ireqfreq = 0;
399
400         if (devp->hd_flags & HPET_PERIODIC
401             && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
402                 unsigned long v;
403
404                 v = readq(&timer->hpet_config);
405                 v ^= Tn_TYPE_CNF_MASK;
406                 writeq(v, &timer->hpet_config);
407         }
408
409         devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
410         spin_unlock_irq(&hpet_lock);
411
412         if (irq)
413                 free_irq(irq, devp);
414
415         file->private_data = NULL;
416         return 0;
417 }
418
419 static int hpet_ioctl_ieon(struct hpet_dev *devp)
420 {
421         struct hpet_timer __iomem *timer;
422         struct hpet __iomem *hpet;
423         struct hpets *hpetp;
424         int irq;
425         unsigned long g, v, t, m;
426         unsigned long flags, isr;
427
428         timer = devp->hd_timer;
429         hpet = devp->hd_hpet;
430         hpetp = devp->hd_hpets;
431
432         if (!devp->hd_ireqfreq)
433                 return -EIO;
434
435         spin_lock_irq(&hpet_lock);
436
437         if (devp->hd_flags & HPET_IE) {
438                 spin_unlock_irq(&hpet_lock);
439                 return -EBUSY;
440         }
441
442         devp->hd_flags |= HPET_IE;
443
444         if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
445                 devp->hd_flags |= HPET_SHARED_IRQ;
446         spin_unlock_irq(&hpet_lock);
447
448         irq = devp->hd_hdwirq;
449
450         if (irq) {
451                 unsigned long irq_flags;
452
453                 if (devp->hd_flags & HPET_SHARED_IRQ) {
454                         /*
455                          * To prevent the interrupt handler from seeing an
456                          * unwanted interrupt status bit, program the timer
457                          * so that it will not fire in the near future ...
458                          */
459                         writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
460                                &timer->hpet_config);
461                         write_counter(read_counter(&hpet->hpet_mc),
462                                       &timer->hpet_compare);
463                         /* ... and clear any left-over status. */
464                         isr = 1 << (devp - devp->hd_hpets->hp_dev);
465                         writel(isr, &hpet->hpet_isr);
466                 }
467
468                 sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
469                 irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
470                 if (request_irq(irq, hpet_interrupt, irq_flags,
471                                 devp->hd_name, (void *)devp)) {
472                         printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
473                         irq = 0;
474                 }
475         }
476
477         if (irq == 0) {
478                 spin_lock_irq(&hpet_lock);
479                 devp->hd_flags ^= HPET_IE;
480                 spin_unlock_irq(&hpet_lock);
481                 return -EIO;
482         }
483
484         devp->hd_irq = irq;
485         t = devp->hd_ireqfreq;
486         v = readq(&timer->hpet_config);
487
488         /* 64-bit comparators are not yet supported through the ioctls,
489          * so force this into 32-bit mode if it supports both modes
490          */
491         g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
492
493         if (devp->hd_flags & HPET_PERIODIC) {
494                 g |= Tn_TYPE_CNF_MASK;
495                 v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
496                 writeq(v, &timer->hpet_config);
497                 local_irq_save(flags);
498
499                 /*
500                  * NOTE: First we modify the hidden accumulator
501                  * register supported by periodic-capable comparators.
502                  * We never want to modify the (single) counter; that
503                  * would affect all the comparators. The value written
504                  * is the counter value when the first interrupt is due.
505                  */
506                 m = read_counter(&hpet->hpet_mc);
507                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
508                 /*
509                  * Then we modify the comparator, indicating the period
510                  * for subsequent interrupt.
511                  */
512                 write_counter(t, &timer->hpet_compare);
513         } else {
514                 local_irq_save(flags);
515                 m = read_counter(&hpet->hpet_mc);
516                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
517         }
518
519         if (devp->hd_flags & HPET_SHARED_IRQ) {
520                 isr = 1 << (devp - devp->hd_hpets->hp_dev);
521                 writel(isr, &hpet->hpet_isr);
522         }
523         writeq(g, &timer->hpet_config);
524         local_irq_restore(flags);
525
526         return 0;
527 }
528
529 /* converts Hz to number of timer ticks */
530 static inline unsigned long hpet_time_div(struct hpets *hpets,
531                                           unsigned long dis)
532 {
533         unsigned long long m;
534
535         m = hpets->hp_tick_freq + (dis >> 1);
536         return div64_ul(m, dis);
537 }
538
539 static int
540 hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
541                   struct hpet_info *info)
542 {
543         struct hpet_timer __iomem *timer;
544         struct hpets *hpetp;
545         int err;
546         unsigned long v;
547
548         switch (cmd) {
549         case HPET_IE_OFF:
550         case HPET_INFO:
551         case HPET_EPI:
552         case HPET_DPI:
553         case HPET_IRQFREQ:
554                 timer = devp->hd_timer;
555                 hpetp = devp->hd_hpets;
556                 break;
557         case HPET_IE_ON:
558                 return hpet_ioctl_ieon(devp);
559         default:
560                 return -EINVAL;
561         }
562
563         err = 0;
564
565         switch (cmd) {
566         case HPET_IE_OFF:
567                 if ((devp->hd_flags & HPET_IE) == 0)
568                         break;
569                 v = readq(&timer->hpet_config);
570                 v &= ~Tn_INT_ENB_CNF_MASK;
571                 writeq(v, &timer->hpet_config);
572                 if (devp->hd_irq) {
573                         free_irq(devp->hd_irq, devp);
574                         devp->hd_irq = 0;
575                 }
576                 devp->hd_flags ^= HPET_IE;
577                 break;
578         case HPET_INFO:
579                 {
580                         memset(info, 0, sizeof(*info));
581                         if (devp->hd_ireqfreq)
582                                 info->hi_ireqfreq =
583                                         hpet_time_div(hpetp, devp->hd_ireqfreq);
584                         info->hi_flags =
585                             readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
586                         info->hi_hpet = hpetp->hp_which;
587                         info->hi_timer = devp - hpetp->hp_dev;
588                         break;
589                 }
590         case HPET_EPI:
591                 v = readq(&timer->hpet_config);
592                 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
593                         err = -ENXIO;
594                         break;
595                 }
596                 devp->hd_flags |= HPET_PERIODIC;
597                 break;
598         case HPET_DPI:
599                 v = readq(&timer->hpet_config);
600                 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
601                         err = -ENXIO;
602                         break;
603                 }
604                 if (devp->hd_flags & HPET_PERIODIC &&
605                     readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
606                         v = readq(&timer->hpet_config);
607                         v ^= Tn_TYPE_CNF_MASK;
608                         writeq(v, &timer->hpet_config);
609                 }
610                 devp->hd_flags &= ~HPET_PERIODIC;
611                 break;
612         case HPET_IRQFREQ:
613                 if ((arg > hpet_max_freq) &&
614                     !capable(CAP_SYS_RESOURCE)) {
615                         err = -EACCES;
616                         break;
617                 }
618
619                 if (!arg) {
620                         err = -EINVAL;
621                         break;
622                 }
623
624                 devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
625         }
626
627         return err;
628 }
629
630 static long
631 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
632 {
633         struct hpet_info info;
634         int err;
635
636         mutex_lock(&hpet_mutex);
637         err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
638         mutex_unlock(&hpet_mutex);
639
640         if ((cmd == HPET_INFO) && !err &&
641             (copy_to_user((void __user *)arg, &info, sizeof(info))))
642                 err = -EFAULT;
643
644         return err;
645 }
646
647 #ifdef CONFIG_COMPAT
648 struct compat_hpet_info {
649         compat_ulong_t hi_ireqfreq;     /* Hz */
650         compat_ulong_t hi_flags;        /* information */
651         unsigned short hi_hpet;
652         unsigned short hi_timer;
653 };
654
655 static long
656 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
657 {
658         struct hpet_info info;
659         int err;
660
661         mutex_lock(&hpet_mutex);
662         err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
663         mutex_unlock(&hpet_mutex);
664
665         if ((cmd == HPET_INFO) && !err) {
666                 struct compat_hpet_info __user *u = compat_ptr(arg);
667                 if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
668                     put_user(info.hi_flags, &u->hi_flags) ||
669                     put_user(info.hi_hpet, &u->hi_hpet) ||
670                     put_user(info.hi_timer, &u->hi_timer))
671                         err = -EFAULT;
672         }
673
674         return err;
675 }
676 #endif
677
678 static const struct file_operations hpet_fops = {
679         .owner = THIS_MODULE,
680         .llseek = no_llseek,
681         .read = hpet_read,
682         .poll = hpet_poll,
683         .unlocked_ioctl = hpet_ioctl,
684 #ifdef CONFIG_COMPAT
685         .compat_ioctl = hpet_compat_ioctl,
686 #endif
687         .open = hpet_open,
688         .release = hpet_release,
689         .fasync = hpet_fasync,
690         .mmap = hpet_mmap,
691 };
692
693 static int hpet_is_known(struct hpet_data *hdp)
694 {
695         struct hpets *hpetp;
696
697         for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
698                 if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
699                         return 1;
700
701         return 0;
702 }
703
704 static struct ctl_table hpet_table[] = {
705         {
706          .procname = "max-user-freq",
707          .data = &hpet_max_freq,
708          .maxlen = sizeof(int),
709          .mode = 0644,
710          .proc_handler = proc_dointvec,
711          },
712 };
713
714 static struct ctl_table_header *sysctl_header;
715
716 /*
717  * Adjustment for when arming the timer with
718  * initial conditions.  That is, main counter
719  * ticks expired before interrupts are enabled.
720  */
721 #define TICK_CALIBRATE  (1000UL)
722
723 static unsigned long __hpet_calibrate(struct hpets *hpetp)
724 {
725         struct hpet_timer __iomem *timer = NULL;
726         unsigned long t, m, count, i, flags, start;
727         struct hpet_dev *devp;
728         int j;
729         struct hpet __iomem *hpet;
730
731         for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
732                 if ((devp->hd_flags & HPET_OPEN) == 0) {
733                         timer = devp->hd_timer;
734                         break;
735                 }
736
737         if (!timer)
738                 return 0;
739
740         hpet = hpetp->hp_hpet;
741         t = read_counter(&timer->hpet_compare);
742
743         i = 0;
744         count = hpet_time_div(hpetp, TICK_CALIBRATE);
745
746         local_irq_save(flags);
747
748         start = read_counter(&hpet->hpet_mc);
749
750         do {
751                 m = read_counter(&hpet->hpet_mc);
752                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
753         } while (i++, (m - start) < count);
754
755         local_irq_restore(flags);
756
757         return (m - start) / i;
758 }
759
760 static unsigned long hpet_calibrate(struct hpets *hpetp)
761 {
762         unsigned long ret = ~0UL;
763         unsigned long tmp;
764
765         /*
766          * Try to calibrate until return value becomes stable small value.
767          * If SMI interruption occurs in calibration loop, the return value
768          * will be big. This avoids its impact.
769          */
770         for ( ; ; ) {
771                 tmp = __hpet_calibrate(hpetp);
772                 if (ret <= tmp)
773                         break;
774                 ret = tmp;
775         }
776
777         return ret;
778 }
779
780 int hpet_alloc(struct hpet_data *hdp)
781 {
782         u64 cap, mcfg;
783         struct hpet_dev *devp;
784         u32 i, ntimer;
785         struct hpets *hpetp;
786         struct hpet __iomem *hpet;
787         static struct hpets *last;
788         unsigned long period;
789         unsigned long long temp;
790         u32 remainder;
791
792         /*
793          * hpet_alloc can be called by platform dependent code.
794          * If platform dependent code has allocated the hpet that
795          * ACPI has also reported, then we catch it here.
796          */
797         if (hpet_is_known(hdp)) {
798                 printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
799                         __func__);
800                 return 0;
801         }
802
803         hpetp = kzalloc(struct_size(hpetp, hp_dev, hdp->hd_nirqs),
804                         GFP_KERNEL);
805
806         if (!hpetp)
807                 return -ENOMEM;
808
809         hpetp->hp_which = hpet_nhpet++;
810         hpetp->hp_hpet = hdp->hd_address;
811         hpetp->hp_hpet_phys = hdp->hd_phys_address;
812
813         hpetp->hp_ntimer = hdp->hd_nirqs;
814
815         for (i = 0; i < hdp->hd_nirqs; i++)
816                 hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
817
818         hpet = hpetp->hp_hpet;
819
820         cap = readq(&hpet->hpet_cap);
821
822         ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
823
824         if (hpetp->hp_ntimer != ntimer) {
825                 printk(KERN_WARNING "hpet: number irqs doesn't agree"
826                        " with number of timers\n");
827                 kfree(hpetp);
828                 return -ENODEV;
829         }
830
831         if (last)
832                 last->hp_next = hpetp;
833         else
834                 hpets = hpetp;
835
836         last = hpetp;
837
838         period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
839                 HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
840         temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
841         temp += period >> 1; /* round */
842         do_div(temp, period);
843         hpetp->hp_tick_freq = temp; /* ticks per second */
844
845         printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
846                 hpetp->hp_which, hdp->hd_phys_address,
847                 hpetp->hp_ntimer > 1 ? "s" : "");
848         for (i = 0; i < hpetp->hp_ntimer; i++)
849                 printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
850         printk(KERN_CONT "\n");
851
852         temp = hpetp->hp_tick_freq;
853         remainder = do_div(temp, 1000000);
854         printk(KERN_INFO
855                 "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
856                 hpetp->hp_which, hpetp->hp_ntimer,
857                 cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
858                 (unsigned) temp, remainder);
859
860         mcfg = readq(&hpet->hpet_config);
861         if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
862                 write_counter(0L, &hpet->hpet_mc);
863                 mcfg |= HPET_ENABLE_CNF_MASK;
864                 writeq(mcfg, &hpet->hpet_config);
865         }
866
867         for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
868                 struct hpet_timer __iomem *timer;
869
870                 timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
871
872                 devp->hd_hpets = hpetp;
873                 devp->hd_hpet = hpet;
874                 devp->hd_timer = timer;
875
876                 /*
877                  * If the timer was reserved by platform code,
878                  * then make timer unavailable for opens.
879                  */
880                 if (hdp->hd_state & (1 << i)) {
881                         devp->hd_flags = HPET_OPEN;
882                         continue;
883                 }
884
885                 init_waitqueue_head(&devp->hd_waitqueue);
886         }
887
888         hpetp->hp_delta = hpet_calibrate(hpetp);
889
890         return 0;
891 }
892
893 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
894 {
895         struct hpet_data *hdp;
896         acpi_status status;
897         struct acpi_resource_address64 addr;
898
899         hdp = data;
900
901         status = acpi_resource_to_address64(res, &addr);
902
903         if (ACPI_SUCCESS(status)) {
904                 hdp->hd_phys_address = addr.address.minimum;
905                 hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
906                 if (!hdp->hd_address)
907                         return AE_ERROR;
908
909                 if (hpet_is_known(hdp)) {
910                         iounmap(hdp->hd_address);
911                         return AE_ALREADY_EXISTS;
912                 }
913         } else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
914                 struct acpi_resource_fixed_memory32 *fixmem32;
915
916                 fixmem32 = &res->data.fixed_memory32;
917
918                 hdp->hd_phys_address = fixmem32->address;
919                 hdp->hd_address = ioremap(fixmem32->address,
920                                                 HPET_RANGE_SIZE);
921                 if (!hdp->hd_address)
922                         return AE_ERROR;
923
924                 if (hpet_is_known(hdp)) {
925                         iounmap(hdp->hd_address);
926                         return AE_ALREADY_EXISTS;
927                 }
928         } else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
929                 struct acpi_resource_extended_irq *irqp;
930                 int i, irq;
931
932                 irqp = &res->data.extended_irq;
933
934                 for (i = 0; i < irqp->interrupt_count; i++) {
935                         if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
936                                 break;
937
938                         irq = acpi_register_gsi(NULL, irqp->interrupts[i],
939                                                 irqp->triggering,
940                                                 irqp->polarity);
941                         if (irq < 0)
942                                 return AE_ERROR;
943
944                         hdp->hd_irq[hdp->hd_nirqs] = irq;
945                         hdp->hd_nirqs++;
946                 }
947         }
948
949         return AE_OK;
950 }
951
952 static int hpet_acpi_add(struct acpi_device *device)
953 {
954         acpi_status result;
955         struct hpet_data data;
956
957         memset(&data, 0, sizeof(data));
958
959         result =
960             acpi_walk_resources(device->handle, METHOD_NAME__CRS,
961                                 hpet_resources, &data);
962
963         if (ACPI_FAILURE(result))
964                 return -ENODEV;
965
966         if (!data.hd_address || !data.hd_nirqs) {
967                 if (data.hd_address)
968                         iounmap(data.hd_address);
969                 printk("%s: no address or irqs in _CRS\n", __func__);
970                 return -ENODEV;
971         }
972
973         return hpet_alloc(&data);
974 }
975
976 static const struct acpi_device_id hpet_device_ids[] = {
977         {"PNP0103", 0},
978         {"", 0},
979 };
980
981 static struct acpi_driver hpet_acpi_driver = {
982         .name = "hpet",
983         .ids = hpet_device_ids,
984         .ops = {
985                 .add = hpet_acpi_add,
986                 },
987 };
988
989 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
990
991 static int __init hpet_init(void)
992 {
993         int result;
994
995         result = misc_register(&hpet_misc);
996         if (result < 0)
997                 return -ENODEV;
998
999         sysctl_header = register_sysctl("dev/hpet", hpet_table);
1000
1001         result = acpi_bus_register_driver(&hpet_acpi_driver);
1002         if (result < 0) {
1003                 if (sysctl_header)
1004                         unregister_sysctl_table(sysctl_header);
1005                 misc_deregister(&hpet_misc);
1006                 return result;
1007         }
1008
1009         return 0;
1010 }
1011 device_initcall(hpet_init);
1012
1013 /*
1014 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1015 MODULE_LICENSE("GPL");
1016 */