GNU Linux-libre 5.10.217-gnu1
[releases.git] / drivers / bluetooth / hci_qca.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38
39 #include "hci_uart.h"
40 #include "btqca.h"
41
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND       0xFE
44 #define HCI_IBS_WAKE_IND        0xFD
45 #define HCI_IBS_WAKE_ACK        0xFC
46 #define HCI_MAX_IBS_SIZE        10
47
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS     100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS    200
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS     2000
51 #define CMD_TRANS_TIMEOUT_MS            100
52 #define MEMDUMP_TIMEOUT_MS              8000
53 #define IBS_DISABLE_SSR_TIMEOUT_MS \
54         (MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
55 #define FW_DOWNLOAD_TIMEOUT_MS          3000
56
57 /* susclk rate */
58 #define SUSCLK_RATE_32KHZ       32768
59
60 /* Controller debug log header */
61 #define QCA_DEBUG_HANDLE        0x2EDC
62
63 /* max retry count when init fails */
64 #define MAX_INIT_RETRIES 3
65
66 /* Controller dump header */
67 #define QCA_SSR_DUMP_HANDLE             0x0108
68 #define QCA_DUMP_PACKET_SIZE            255
69 #define QCA_LAST_SEQUENCE_NUM           0xFFFF
70 #define QCA_CRASHBYTE_PACKET_LEN        1096
71 #define QCA_MEMDUMP_BYTE                0xFB
72
73 enum qca_flags {
74         QCA_IBS_DISABLED,
75         QCA_DROP_VENDOR_EVENT,
76         QCA_SUSPENDING,
77         QCA_MEMDUMP_COLLECTION,
78         QCA_HW_ERROR_EVENT,
79         QCA_SSR_TRIGGERED,
80         QCA_BT_OFF,
81         QCA_ROM_FW,
82         QCA_DEBUGFS_CREATED,
83 };
84
85 enum qca_capabilities {
86         QCA_CAP_WIDEBAND_SPEECH = BIT(0),
87         QCA_CAP_VALID_LE_STATES = BIT(1),
88 };
89
90 /* HCI_IBS transmit side sleep protocol states */
91 enum tx_ibs_states {
92         HCI_IBS_TX_ASLEEP,
93         HCI_IBS_TX_WAKING,
94         HCI_IBS_TX_AWAKE,
95 };
96
97 /* HCI_IBS receive side sleep protocol states */
98 enum rx_states {
99         HCI_IBS_RX_ASLEEP,
100         HCI_IBS_RX_AWAKE,
101 };
102
103 /* HCI_IBS transmit and receive side clock state vote */
104 enum hci_ibs_clock_state_vote {
105         HCI_IBS_VOTE_STATS_UPDATE,
106         HCI_IBS_TX_VOTE_CLOCK_ON,
107         HCI_IBS_TX_VOTE_CLOCK_OFF,
108         HCI_IBS_RX_VOTE_CLOCK_ON,
109         HCI_IBS_RX_VOTE_CLOCK_OFF,
110 };
111
112 /* Controller memory dump states */
113 enum qca_memdump_states {
114         QCA_MEMDUMP_IDLE,
115         QCA_MEMDUMP_COLLECTING,
116         QCA_MEMDUMP_COLLECTED,
117         QCA_MEMDUMP_TIMEOUT,
118 };
119
120 struct qca_memdump_data {
121         char *memdump_buf_head;
122         char *memdump_buf_tail;
123         u32 current_seq_no;
124         u32 received_dump;
125         u32 ram_dump_size;
126 };
127
128 struct qca_memdump_event_hdr {
129         __u8    evt;
130         __u8    plen;
131         __u16   opcode;
132         __u16   seq_no;
133         __u8    reserved;
134 } __packed;
135
136
137 struct qca_dump_size {
138         u32 dump_size;
139 } __packed;
140
141 struct qca_data {
142         struct hci_uart *hu;
143         struct sk_buff *rx_skb;
144         struct sk_buff_head txq;
145         struct sk_buff_head tx_wait_q;  /* HCI_IBS wait queue   */
146         struct sk_buff_head rx_memdump_q;       /* Memdump wait queue   */
147         spinlock_t hci_ibs_lock;        /* HCI_IBS state lock   */
148         u8 tx_ibs_state;        /* HCI_IBS transmit side power state*/
149         u8 rx_ibs_state;        /* HCI_IBS receive side power state */
150         bool tx_vote;           /* Clock must be on for TX */
151         bool rx_vote;           /* Clock must be on for RX */
152         struct timer_list tx_idle_timer;
153         u32 tx_idle_delay;
154         struct timer_list wake_retrans_timer;
155         u32 wake_retrans;
156         struct workqueue_struct *workqueue;
157         struct work_struct ws_awake_rx;
158         struct work_struct ws_awake_device;
159         struct work_struct ws_rx_vote_off;
160         struct work_struct ws_tx_vote_off;
161         struct work_struct ctrl_memdump_evt;
162         struct delayed_work ctrl_memdump_timeout;
163         struct qca_memdump_data *qca_memdump;
164         unsigned long flags;
165         struct completion drop_ev_comp;
166         wait_queue_head_t suspend_wait_q;
167         enum qca_memdump_states memdump_state;
168         struct mutex hci_memdump_lock;
169
170         /* For debugging purpose */
171         u64 ibs_sent_wacks;
172         u64 ibs_sent_slps;
173         u64 ibs_sent_wakes;
174         u64 ibs_recv_wacks;
175         u64 ibs_recv_slps;
176         u64 ibs_recv_wakes;
177         u64 vote_last_jif;
178         u32 vote_on_ms;
179         u32 vote_off_ms;
180         u64 tx_votes_on;
181         u64 rx_votes_on;
182         u64 tx_votes_off;
183         u64 rx_votes_off;
184         u64 votes_on;
185         u64 votes_off;
186 };
187
188 enum qca_speed_type {
189         QCA_INIT_SPEED = 1,
190         QCA_OPER_SPEED
191 };
192
193 /*
194  * Voltage regulator information required for configuring the
195  * QCA Bluetooth chipset
196  */
197 struct qca_vreg {
198         const char *name;
199         unsigned int load_uA;
200 };
201
202 struct qca_device_data {
203         enum qca_btsoc_type soc_type;
204         struct qca_vreg *vregs;
205         size_t num_vregs;
206         uint32_t capabilities;
207 };
208
209 /*
210  * Platform data for the QCA Bluetooth power driver.
211  */
212 struct qca_power {
213         struct device *dev;
214         struct regulator_bulk_data *vreg_bulk;
215         int num_vregs;
216         bool vregs_on;
217 };
218
219 struct qca_serdev {
220         struct hci_uart  serdev_hu;
221         struct gpio_desc *bt_en;
222         struct clk       *susclk;
223         enum qca_btsoc_type btsoc_type;
224         struct qca_power *bt_power;
225         u32 init_speed;
226         u32 oper_speed;
227         const char *firmware_name;
228 };
229
230 static int qca_regulator_enable(struct qca_serdev *qcadev);
231 static void qca_regulator_disable(struct qca_serdev *qcadev);
232 static void qca_power_shutdown(struct hci_uart *hu);
233 static int qca_power_off(struct hci_dev *hdev);
234 static void qca_controller_memdump(struct work_struct *work);
235
236 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
237 {
238         enum qca_btsoc_type soc_type;
239
240         if (hu->serdev) {
241                 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
242
243                 soc_type = qsd->btsoc_type;
244         } else {
245                 soc_type = QCA_ROME;
246         }
247
248         return soc_type;
249 }
250
251 static const char *qca_get_firmware_name(struct hci_uart *hu)
252 {
253         if (hu->serdev) {
254                 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
255
256                 return qsd->firmware_name;
257         } else {
258                 return NULL;
259         }
260 }
261
262 static void __serial_clock_on(struct tty_struct *tty)
263 {
264         /* TODO: Some chipset requires to enable UART clock on client
265          * side to save power consumption or manual work is required.
266          * Please put your code to control UART clock here if needed
267          */
268 }
269
270 static void __serial_clock_off(struct tty_struct *tty)
271 {
272         /* TODO: Some chipset requires to disable UART clock on client
273          * side to save power consumption or manual work is required.
274          * Please put your code to control UART clock off here if needed
275          */
276 }
277
278 /* serial_clock_vote needs to be called with the ibs lock held */
279 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
280 {
281         struct qca_data *qca = hu->priv;
282         unsigned int diff;
283
284         bool old_vote = (qca->tx_vote | qca->rx_vote);
285         bool new_vote;
286
287         switch (vote) {
288         case HCI_IBS_VOTE_STATS_UPDATE:
289                 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
290
291                 if (old_vote)
292                         qca->vote_off_ms += diff;
293                 else
294                         qca->vote_on_ms += diff;
295                 return;
296
297         case HCI_IBS_TX_VOTE_CLOCK_ON:
298                 qca->tx_vote = true;
299                 qca->tx_votes_on++;
300                 break;
301
302         case HCI_IBS_RX_VOTE_CLOCK_ON:
303                 qca->rx_vote = true;
304                 qca->rx_votes_on++;
305                 break;
306
307         case HCI_IBS_TX_VOTE_CLOCK_OFF:
308                 qca->tx_vote = false;
309                 qca->tx_votes_off++;
310                 break;
311
312         case HCI_IBS_RX_VOTE_CLOCK_OFF:
313                 qca->rx_vote = false;
314                 qca->rx_votes_off++;
315                 break;
316
317         default:
318                 BT_ERR("Voting irregularity");
319                 return;
320         }
321
322         new_vote = qca->rx_vote | qca->tx_vote;
323
324         if (new_vote != old_vote) {
325                 if (new_vote)
326                         __serial_clock_on(hu->tty);
327                 else
328                         __serial_clock_off(hu->tty);
329
330                 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
331                        vote ? "true" : "false");
332
333                 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
334
335                 if (new_vote) {
336                         qca->votes_on++;
337                         qca->vote_off_ms += diff;
338                 } else {
339                         qca->votes_off++;
340                         qca->vote_on_ms += diff;
341                 }
342                 qca->vote_last_jif = jiffies;
343         }
344 }
345
346 /* Builds and sends an HCI_IBS command packet.
347  * These are very simple packets with only 1 cmd byte.
348  */
349 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
350 {
351         int err = 0;
352         struct sk_buff *skb = NULL;
353         struct qca_data *qca = hu->priv;
354
355         BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
356
357         skb = bt_skb_alloc(1, GFP_ATOMIC);
358         if (!skb) {
359                 BT_ERR("Failed to allocate memory for HCI_IBS packet");
360                 return -ENOMEM;
361         }
362
363         /* Assign HCI_IBS type */
364         skb_put_u8(skb, cmd);
365
366         skb_queue_tail(&qca->txq, skb);
367
368         return err;
369 }
370
371 static void qca_wq_awake_device(struct work_struct *work)
372 {
373         struct qca_data *qca = container_of(work, struct qca_data,
374                                             ws_awake_device);
375         struct hci_uart *hu = qca->hu;
376         unsigned long retrans_delay;
377         unsigned long flags;
378
379         BT_DBG("hu %p wq awake device", hu);
380
381         /* Vote for serial clock */
382         serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
383
384         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
385
386         /* Send wake indication to device */
387         if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
388                 BT_ERR("Failed to send WAKE to device");
389
390         qca->ibs_sent_wakes++;
391
392         /* Start retransmit timer */
393         retrans_delay = msecs_to_jiffies(qca->wake_retrans);
394         mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
395
396         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
397
398         /* Actually send the packets */
399         hci_uart_tx_wakeup(hu);
400 }
401
402 static void qca_wq_awake_rx(struct work_struct *work)
403 {
404         struct qca_data *qca = container_of(work, struct qca_data,
405                                             ws_awake_rx);
406         struct hci_uart *hu = qca->hu;
407         unsigned long flags;
408
409         BT_DBG("hu %p wq awake rx", hu);
410
411         serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
412
413         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
414         qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
415
416         /* Always acknowledge device wake up,
417          * sending IBS message doesn't count as TX ON.
418          */
419         if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
420                 BT_ERR("Failed to acknowledge device wake up");
421
422         qca->ibs_sent_wacks++;
423
424         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
425
426         /* Actually send the packets */
427         hci_uart_tx_wakeup(hu);
428 }
429
430 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
431 {
432         struct qca_data *qca = container_of(work, struct qca_data,
433                                             ws_rx_vote_off);
434         struct hci_uart *hu = qca->hu;
435
436         BT_DBG("hu %p rx clock vote off", hu);
437
438         serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
439 }
440
441 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
442 {
443         struct qca_data *qca = container_of(work, struct qca_data,
444                                             ws_tx_vote_off);
445         struct hci_uart *hu = qca->hu;
446
447         BT_DBG("hu %p tx clock vote off", hu);
448
449         /* Run HCI tx handling unlocked */
450         hci_uart_tx_wakeup(hu);
451
452         /* Now that message queued to tty driver, vote for tty clocks off.
453          * It is up to the tty driver to pend the clocks off until tx done.
454          */
455         serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
456 }
457
458 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
459 {
460         struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
461         struct hci_uart *hu = qca->hu;
462         unsigned long flags;
463
464         BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
465
466         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
467                                  flags, SINGLE_DEPTH_NESTING);
468
469         switch (qca->tx_ibs_state) {
470         case HCI_IBS_TX_AWAKE:
471                 /* TX_IDLE, go to SLEEP */
472                 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
473                         BT_ERR("Failed to send SLEEP to device");
474                         break;
475                 }
476                 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
477                 qca->ibs_sent_slps++;
478                 queue_work(qca->workqueue, &qca->ws_tx_vote_off);
479                 break;
480
481         case HCI_IBS_TX_ASLEEP:
482         case HCI_IBS_TX_WAKING:
483         default:
484                 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
485                 break;
486         }
487
488         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
489 }
490
491 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
492 {
493         struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
494         struct hci_uart *hu = qca->hu;
495         unsigned long flags, retrans_delay;
496         bool retransmit = false;
497
498         BT_DBG("hu %p wake retransmit timeout in %d state",
499                 hu, qca->tx_ibs_state);
500
501         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
502                                  flags, SINGLE_DEPTH_NESTING);
503
504         /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
505         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
506                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
507                 return;
508         }
509
510         switch (qca->tx_ibs_state) {
511         case HCI_IBS_TX_WAKING:
512                 /* No WAKE_ACK, retransmit WAKE */
513                 retransmit = true;
514                 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
515                         BT_ERR("Failed to acknowledge device wake up");
516                         break;
517                 }
518                 qca->ibs_sent_wakes++;
519                 retrans_delay = msecs_to_jiffies(qca->wake_retrans);
520                 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
521                 break;
522
523         case HCI_IBS_TX_ASLEEP:
524         case HCI_IBS_TX_AWAKE:
525         default:
526                 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
527                 break;
528         }
529
530         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
531
532         if (retransmit)
533                 hci_uart_tx_wakeup(hu);
534 }
535
536
537 static void qca_controller_memdump_timeout(struct work_struct *work)
538 {
539         struct qca_data *qca = container_of(work, struct qca_data,
540                                         ctrl_memdump_timeout.work);
541         struct hci_uart *hu = qca->hu;
542
543         mutex_lock(&qca->hci_memdump_lock);
544         if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
545                 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
546                 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
547                         /* Inject hw error event to reset the device
548                          * and driver.
549                          */
550                         hci_reset_dev(hu->hdev);
551                 }
552         }
553
554         mutex_unlock(&qca->hci_memdump_lock);
555 }
556
557
558 /* Initialize protocol */
559 static int qca_open(struct hci_uart *hu)
560 {
561         struct qca_serdev *qcadev;
562         struct qca_data *qca;
563
564         BT_DBG("hu %p qca_open", hu);
565
566         if (!hci_uart_has_flow_control(hu))
567                 return -EOPNOTSUPP;
568
569         qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
570         if (!qca)
571                 return -ENOMEM;
572
573         skb_queue_head_init(&qca->txq);
574         skb_queue_head_init(&qca->tx_wait_q);
575         skb_queue_head_init(&qca->rx_memdump_q);
576         spin_lock_init(&qca->hci_ibs_lock);
577         mutex_init(&qca->hci_memdump_lock);
578         qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
579         if (!qca->workqueue) {
580                 BT_ERR("QCA Workqueue not initialized properly");
581                 kfree(qca);
582                 return -ENOMEM;
583         }
584
585         INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
586         INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
587         INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
588         INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
589         INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
590         INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
591                           qca_controller_memdump_timeout);
592         init_waitqueue_head(&qca->suspend_wait_q);
593
594         qca->hu = hu;
595         init_completion(&qca->drop_ev_comp);
596
597         /* Assume we start with both sides asleep -- extra wakes OK */
598         qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
599         qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
600
601         qca->vote_last_jif = jiffies;
602
603         hu->priv = qca;
604
605         if (hu->serdev) {
606                 qcadev = serdev_device_get_drvdata(hu->serdev);
607
608                 if (qca_is_wcn399x(qcadev->btsoc_type))
609                         hu->init_speed = qcadev->init_speed;
610
611                 if (qcadev->oper_speed)
612                         hu->oper_speed = qcadev->oper_speed;
613         }
614
615         timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
616         qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
617
618         timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
619         qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
620
621         BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
622                qca->tx_idle_delay, qca->wake_retrans);
623
624         return 0;
625 }
626
627 static void qca_debugfs_init(struct hci_dev *hdev)
628 {
629         struct hci_uart *hu = hci_get_drvdata(hdev);
630         struct qca_data *qca = hu->priv;
631         struct dentry *ibs_dir;
632         umode_t mode;
633
634         if (!hdev->debugfs)
635                 return;
636
637         if (test_and_set_bit(QCA_DEBUGFS_CREATED, &qca->flags))
638                 return;
639
640         ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
641
642         /* read only */
643         mode = S_IRUGO;
644         debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
645         debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
646         debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
647                            &qca->ibs_sent_slps);
648         debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
649                            &qca->ibs_sent_wakes);
650         debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
651                            &qca->ibs_sent_wacks);
652         debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
653                            &qca->ibs_recv_slps);
654         debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
655                            &qca->ibs_recv_wakes);
656         debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
657                            &qca->ibs_recv_wacks);
658         debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
659         debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
660         debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
661         debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
662         debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
663         debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
664         debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
665         debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
666         debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
667         debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
668
669         /* read/write */
670         mode = S_IRUGO | S_IWUSR;
671         debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
672         debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
673                            &qca->tx_idle_delay);
674 }
675
676 /* Flush protocol data */
677 static int qca_flush(struct hci_uart *hu)
678 {
679         struct qca_data *qca = hu->priv;
680
681         BT_DBG("hu %p qca flush", hu);
682
683         skb_queue_purge(&qca->tx_wait_q);
684         skb_queue_purge(&qca->txq);
685
686         return 0;
687 }
688
689 /* Close protocol */
690 static int qca_close(struct hci_uart *hu)
691 {
692         struct qca_data *qca = hu->priv;
693
694         BT_DBG("hu %p qca close", hu);
695
696         serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
697
698         skb_queue_purge(&qca->tx_wait_q);
699         skb_queue_purge(&qca->txq);
700         skb_queue_purge(&qca->rx_memdump_q);
701         destroy_workqueue(qca->workqueue);
702         del_timer_sync(&qca->tx_idle_timer);
703         del_timer_sync(&qca->wake_retrans_timer);
704         qca->hu = NULL;
705
706         kfree_skb(qca->rx_skb);
707
708         hu->priv = NULL;
709
710         kfree(qca);
711
712         return 0;
713 }
714
715 /* Called upon a wake-up-indication from the device.
716  */
717 static void device_want_to_wakeup(struct hci_uart *hu)
718 {
719         unsigned long flags;
720         struct qca_data *qca = hu->priv;
721
722         BT_DBG("hu %p want to wake up", hu);
723
724         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
725
726         qca->ibs_recv_wakes++;
727
728         /* Don't wake the rx up when suspending. */
729         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
730                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
731                 return;
732         }
733
734         switch (qca->rx_ibs_state) {
735         case HCI_IBS_RX_ASLEEP:
736                 /* Make sure clock is on - we may have turned clock off since
737                  * receiving the wake up indicator awake rx clock.
738                  */
739                 queue_work(qca->workqueue, &qca->ws_awake_rx);
740                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
741                 return;
742
743         case HCI_IBS_RX_AWAKE:
744                 /* Always acknowledge device wake up,
745                  * sending IBS message doesn't count as TX ON.
746                  */
747                 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
748                         BT_ERR("Failed to acknowledge device wake up");
749                         break;
750                 }
751                 qca->ibs_sent_wacks++;
752                 break;
753
754         default:
755                 /* Any other state is illegal */
756                 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
757                        qca->rx_ibs_state);
758                 break;
759         }
760
761         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
762
763         /* Actually send the packets */
764         hci_uart_tx_wakeup(hu);
765 }
766
767 /* Called upon a sleep-indication from the device.
768  */
769 static void device_want_to_sleep(struct hci_uart *hu)
770 {
771         unsigned long flags;
772         struct qca_data *qca = hu->priv;
773
774         BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
775
776         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
777
778         qca->ibs_recv_slps++;
779
780         switch (qca->rx_ibs_state) {
781         case HCI_IBS_RX_AWAKE:
782                 /* Update state */
783                 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
784                 /* Vote off rx clock under workqueue */
785                 queue_work(qca->workqueue, &qca->ws_rx_vote_off);
786                 break;
787
788         case HCI_IBS_RX_ASLEEP:
789                 break;
790
791         default:
792                 /* Any other state is illegal */
793                 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
794                        qca->rx_ibs_state);
795                 break;
796         }
797
798         wake_up_interruptible(&qca->suspend_wait_q);
799
800         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
801 }
802
803 /* Called upon wake-up-acknowledgement from the device
804  */
805 static void device_woke_up(struct hci_uart *hu)
806 {
807         unsigned long flags, idle_delay;
808         struct qca_data *qca = hu->priv;
809         struct sk_buff *skb = NULL;
810
811         BT_DBG("hu %p woke up", hu);
812
813         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
814
815         qca->ibs_recv_wacks++;
816
817         /* Don't react to the wake-up-acknowledgment when suspending. */
818         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
819                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
820                 return;
821         }
822
823         switch (qca->tx_ibs_state) {
824         case HCI_IBS_TX_AWAKE:
825                 /* Expect one if we send 2 WAKEs */
826                 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
827                        qca->tx_ibs_state);
828                 break;
829
830         case HCI_IBS_TX_WAKING:
831                 /* Send pending packets */
832                 while ((skb = skb_dequeue(&qca->tx_wait_q)))
833                         skb_queue_tail(&qca->txq, skb);
834
835                 /* Switch timers and change state to HCI_IBS_TX_AWAKE */
836                 del_timer(&qca->wake_retrans_timer);
837                 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
838                 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
839                 qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
840                 break;
841
842         case HCI_IBS_TX_ASLEEP:
843         default:
844                 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
845                        qca->tx_ibs_state);
846                 break;
847         }
848
849         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
850
851         /* Actually send the packets */
852         hci_uart_tx_wakeup(hu);
853 }
854
855 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
856  * two simultaneous tasklets.
857  */
858 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
859 {
860         unsigned long flags = 0, idle_delay;
861         struct qca_data *qca = hu->priv;
862
863         BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
864                qca->tx_ibs_state);
865
866         if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
867                 /* As SSR is in progress, ignore the packets */
868                 bt_dev_dbg(hu->hdev, "SSR is in progress");
869                 kfree_skb(skb);
870                 return 0;
871         }
872
873         /* Prepend skb with frame type */
874         memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
875
876         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
877
878         /* Don't go to sleep in middle of patch download or
879          * Out-Of-Band(GPIOs control) sleep is selected.
880          * Don't wake the device up when suspending.
881          */
882         if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
883             test_bit(QCA_SUSPENDING, &qca->flags)) {
884                 skb_queue_tail(&qca->txq, skb);
885                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
886                 return 0;
887         }
888
889         /* Act according to current state */
890         switch (qca->tx_ibs_state) {
891         case HCI_IBS_TX_AWAKE:
892                 BT_DBG("Device awake, sending normally");
893                 skb_queue_tail(&qca->txq, skb);
894                 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
895                 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
896                 break;
897
898         case HCI_IBS_TX_ASLEEP:
899                 BT_DBG("Device asleep, waking up and queueing packet");
900                 /* Save packet for later */
901                 skb_queue_tail(&qca->tx_wait_q, skb);
902
903                 qca->tx_ibs_state = HCI_IBS_TX_WAKING;
904                 /* Schedule a work queue to wake up device */
905                 queue_work(qca->workqueue, &qca->ws_awake_device);
906                 break;
907
908         case HCI_IBS_TX_WAKING:
909                 BT_DBG("Device waking up, queueing packet");
910                 /* Transient state; just keep packet for later */
911                 skb_queue_tail(&qca->tx_wait_q, skb);
912                 break;
913
914         default:
915                 BT_ERR("Illegal tx state: %d (losing packet)",
916                        qca->tx_ibs_state);
917                 dev_kfree_skb_irq(skb);
918                 break;
919         }
920
921         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
922
923         return 0;
924 }
925
926 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
927 {
928         struct hci_uart *hu = hci_get_drvdata(hdev);
929
930         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
931
932         device_want_to_sleep(hu);
933
934         kfree_skb(skb);
935         return 0;
936 }
937
938 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
939 {
940         struct hci_uart *hu = hci_get_drvdata(hdev);
941
942         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
943
944         device_want_to_wakeup(hu);
945
946         kfree_skb(skb);
947         return 0;
948 }
949
950 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
951 {
952         struct hci_uart *hu = hci_get_drvdata(hdev);
953
954         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
955
956         device_woke_up(hu);
957
958         kfree_skb(skb);
959         return 0;
960 }
961
962 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
963 {
964         /* We receive debug logs from chip as an ACL packets.
965          * Instead of sending the data to ACL to decode the
966          * received data, we are pushing them to the above layers
967          * as a diagnostic packet.
968          */
969         if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
970                 return hci_recv_diag(hdev, skb);
971
972         return hci_recv_frame(hdev, skb);
973 }
974
975 static void qca_controller_memdump(struct work_struct *work)
976 {
977         struct qca_data *qca = container_of(work, struct qca_data,
978                                             ctrl_memdump_evt);
979         struct hci_uart *hu = qca->hu;
980         struct sk_buff *skb;
981         struct qca_memdump_event_hdr *cmd_hdr;
982         struct qca_memdump_data *qca_memdump = qca->qca_memdump;
983         struct qca_dump_size *dump;
984         char *memdump_buf;
985         char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
986         u16 seq_no;
987         u32 dump_size;
988         u32 rx_size;
989         enum qca_btsoc_type soc_type = qca_soc_type(hu);
990
991         while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
992
993                 mutex_lock(&qca->hci_memdump_lock);
994                 /* Skip processing the received packets if timeout detected
995                  * or memdump collection completed.
996                  */
997                 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
998                     qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
999                         mutex_unlock(&qca->hci_memdump_lock);
1000                         return;
1001                 }
1002
1003                 if (!qca_memdump) {
1004                         qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
1005                                               GFP_ATOMIC);
1006                         if (!qca_memdump) {
1007                                 mutex_unlock(&qca->hci_memdump_lock);
1008                                 return;
1009                         }
1010
1011                         qca->qca_memdump = qca_memdump;
1012                 }
1013
1014                 qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1015                 cmd_hdr = (void *) skb->data;
1016                 seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1017                 skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1018
1019                 if (!seq_no) {
1020
1021                         /* This is the first frame of memdump packet from
1022                          * the controller, Disable IBS to recevie dump
1023                          * with out any interruption, ideally time required for
1024                          * the controller to send the dump is 8 seconds. let us
1025                          * start timer to handle this asynchronous activity.
1026                          */
1027                         set_bit(QCA_IBS_DISABLED, &qca->flags);
1028                         set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1029                         dump = (void *) skb->data;
1030                         dump_size = __le32_to_cpu(dump->dump_size);
1031                         if (!(dump_size)) {
1032                                 bt_dev_err(hu->hdev, "Rx invalid memdump size");
1033                                 kfree(qca_memdump);
1034                                 kfree_skb(skb);
1035                                 qca->qca_memdump = NULL;
1036                                 mutex_unlock(&qca->hci_memdump_lock);
1037                                 return;
1038                         }
1039
1040                         bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1041                                     dump_size);
1042                         queue_delayed_work(qca->workqueue,
1043                                            &qca->ctrl_memdump_timeout,
1044                                            msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)
1045                                           );
1046
1047                         skb_pull(skb, sizeof(dump_size));
1048                         memdump_buf = vmalloc(dump_size);
1049                         qca_memdump->ram_dump_size = dump_size;
1050                         qca_memdump->memdump_buf_head = memdump_buf;
1051                         qca_memdump->memdump_buf_tail = memdump_buf;
1052                 }
1053
1054                 memdump_buf = qca_memdump->memdump_buf_tail;
1055
1056                 /* If sequence no 0 is missed then there is no point in
1057                  * accepting the other sequences.
1058                  */
1059                 if (!memdump_buf) {
1060                         bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1061                         kfree(qca_memdump);
1062                         kfree_skb(skb);
1063                         qca->qca_memdump = NULL;
1064                         mutex_unlock(&qca->hci_memdump_lock);
1065                         return;
1066                 }
1067
1068                 /* There could be chance of missing some packets from
1069                  * the controller. In such cases let us store the dummy
1070                  * packets in the buffer.
1071                  */
1072                 /* For QCA6390, controller does not lost packets but
1073                  * sequence number field of packat sometimes has error
1074                  * bits, so skip this checking for missing packet.
1075                  */
1076                 while ((seq_no > qca_memdump->current_seq_no + 1) &&
1077                        (soc_type != QCA_QCA6390) &&
1078                        seq_no != QCA_LAST_SEQUENCE_NUM) {
1079                         bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1080                                    qca_memdump->current_seq_no);
1081                         rx_size = qca_memdump->received_dump;
1082                         rx_size += QCA_DUMP_PACKET_SIZE;
1083                         if (rx_size > qca_memdump->ram_dump_size) {
1084                                 bt_dev_err(hu->hdev,
1085                                            "QCA memdump received %d, no space for missed packet",
1086                                            qca_memdump->received_dump);
1087                                 break;
1088                         }
1089                         memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
1090                         memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
1091                         qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1092                         qca_memdump->current_seq_no++;
1093                 }
1094
1095                 rx_size = qca_memdump->received_dump + skb->len;
1096                 if (rx_size <= qca_memdump->ram_dump_size) {
1097                         if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1098                             (seq_no != qca_memdump->current_seq_no))
1099                                 bt_dev_err(hu->hdev,
1100                                            "QCA memdump unexpected packet %d",
1101                                            seq_no);
1102                         bt_dev_dbg(hu->hdev,
1103                                    "QCA memdump packet %d with length %d",
1104                                    seq_no, skb->len);
1105                         memcpy(memdump_buf, (unsigned char *)skb->data,
1106                                skb->len);
1107                         memdump_buf = memdump_buf + skb->len;
1108                         qca_memdump->memdump_buf_tail = memdump_buf;
1109                         qca_memdump->current_seq_no = seq_no + 1;
1110                         qca_memdump->received_dump += skb->len;
1111                 } else {
1112                         bt_dev_err(hu->hdev,
1113                                    "QCA memdump received %d, no space for packet %d",
1114                                    qca_memdump->received_dump, seq_no);
1115                 }
1116                 qca->qca_memdump = qca_memdump;
1117                 kfree_skb(skb);
1118                 if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1119                         bt_dev_info(hu->hdev,
1120                                     "QCA memdump Done, received %d, total %d",
1121                                     qca_memdump->received_dump,
1122                                     qca_memdump->ram_dump_size);
1123                         memdump_buf = qca_memdump->memdump_buf_head;
1124                         dev_coredumpv(&hu->serdev->dev, memdump_buf,
1125                                       qca_memdump->received_dump, GFP_KERNEL);
1126                         cancel_delayed_work(&qca->ctrl_memdump_timeout);
1127                         kfree(qca->qca_memdump);
1128                         qca->qca_memdump = NULL;
1129                         qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1130                         clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1131                 }
1132
1133                 mutex_unlock(&qca->hci_memdump_lock);
1134         }
1135
1136 }
1137
1138 static int qca_controller_memdump_event(struct hci_dev *hdev,
1139                                         struct sk_buff *skb)
1140 {
1141         struct hci_uart *hu = hci_get_drvdata(hdev);
1142         struct qca_data *qca = hu->priv;
1143
1144         set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1145         skb_queue_tail(&qca->rx_memdump_q, skb);
1146         queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1147
1148         return 0;
1149 }
1150
1151 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1152 {
1153         struct hci_uart *hu = hci_get_drvdata(hdev);
1154         struct qca_data *qca = hu->priv;
1155
1156         if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1157                 struct hci_event_hdr *hdr = (void *)skb->data;
1158
1159                 /* For the WCN3990 the vendor command for a baudrate change
1160                  * isn't sent as synchronous HCI command, because the
1161                  * controller sends the corresponding vendor event with the
1162                  * new baudrate. The event is received and properly decoded
1163                  * after changing the baudrate of the host port. It needs to
1164                  * be dropped, otherwise it can be misinterpreted as
1165                  * response to a later firmware download command (also a
1166                  * vendor command).
1167                  */
1168
1169                 if (hdr->evt == HCI_EV_VENDOR)
1170                         complete(&qca->drop_ev_comp);
1171
1172                 kfree_skb(skb);
1173
1174                 return 0;
1175         }
1176         /* We receive chip memory dump as an event packet, With a dedicated
1177          * handler followed by a hardware error event. When this event is
1178          * received we store dump into a file before closing hci. This
1179          * dump will help in triaging the issues.
1180          */
1181         if ((skb->data[0] == HCI_VENDOR_PKT) &&
1182             (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1183                 return qca_controller_memdump_event(hdev, skb);
1184
1185         return hci_recv_frame(hdev, skb);
1186 }
1187
1188 #define QCA_IBS_SLEEP_IND_EVENT \
1189         .type = HCI_IBS_SLEEP_IND, \
1190         .hlen = 0, \
1191         .loff = 0, \
1192         .lsize = 0, \
1193         .maxlen = HCI_MAX_IBS_SIZE
1194
1195 #define QCA_IBS_WAKE_IND_EVENT \
1196         .type = HCI_IBS_WAKE_IND, \
1197         .hlen = 0, \
1198         .loff = 0, \
1199         .lsize = 0, \
1200         .maxlen = HCI_MAX_IBS_SIZE
1201
1202 #define QCA_IBS_WAKE_ACK_EVENT \
1203         .type = HCI_IBS_WAKE_ACK, \
1204         .hlen = 0, \
1205         .loff = 0, \
1206         .lsize = 0, \
1207         .maxlen = HCI_MAX_IBS_SIZE
1208
1209 static const struct h4_recv_pkt qca_recv_pkts[] = {
1210         { H4_RECV_ACL,             .recv = qca_recv_acl_data },
1211         { H4_RECV_SCO,             .recv = hci_recv_frame    },
1212         { H4_RECV_EVENT,           .recv = qca_recv_event    },
1213         { QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1214         { QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1215         { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1216 };
1217
1218 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1219 {
1220         struct qca_data *qca = hu->priv;
1221
1222         if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1223                 return -EUNATCH;
1224
1225         qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1226                                   qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1227         if (IS_ERR(qca->rx_skb)) {
1228                 int err = PTR_ERR(qca->rx_skb);
1229                 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1230                 qca->rx_skb = NULL;
1231                 return err;
1232         }
1233
1234         return count;
1235 }
1236
1237 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1238 {
1239         struct qca_data *qca = hu->priv;
1240
1241         return skb_dequeue(&qca->txq);
1242 }
1243
1244 static uint8_t qca_get_baudrate_value(int speed)
1245 {
1246         switch (speed) {
1247         case 9600:
1248                 return QCA_BAUDRATE_9600;
1249         case 19200:
1250                 return QCA_BAUDRATE_19200;
1251         case 38400:
1252                 return QCA_BAUDRATE_38400;
1253         case 57600:
1254                 return QCA_BAUDRATE_57600;
1255         case 115200:
1256                 return QCA_BAUDRATE_115200;
1257         case 230400:
1258                 return QCA_BAUDRATE_230400;
1259         case 460800:
1260                 return QCA_BAUDRATE_460800;
1261         case 500000:
1262                 return QCA_BAUDRATE_500000;
1263         case 921600:
1264                 return QCA_BAUDRATE_921600;
1265         case 1000000:
1266                 return QCA_BAUDRATE_1000000;
1267         case 2000000:
1268                 return QCA_BAUDRATE_2000000;
1269         case 3000000:
1270                 return QCA_BAUDRATE_3000000;
1271         case 3200000:
1272                 return QCA_BAUDRATE_3200000;
1273         case 3500000:
1274                 return QCA_BAUDRATE_3500000;
1275         default:
1276                 return QCA_BAUDRATE_115200;
1277         }
1278 }
1279
1280 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1281 {
1282         struct hci_uart *hu = hci_get_drvdata(hdev);
1283         struct qca_data *qca = hu->priv;
1284         struct sk_buff *skb;
1285         u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1286
1287         if (baudrate > QCA_BAUDRATE_3200000)
1288                 return -EINVAL;
1289
1290         cmd[4] = baudrate;
1291
1292         skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1293         if (!skb) {
1294                 bt_dev_err(hdev, "Failed to allocate baudrate packet");
1295                 return -ENOMEM;
1296         }
1297
1298         /* Assign commands to change baudrate and packet type. */
1299         skb_put_data(skb, cmd, sizeof(cmd));
1300         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1301
1302         skb_queue_tail(&qca->txq, skb);
1303         hci_uart_tx_wakeup(hu);
1304
1305         /* Wait for the baudrate change request to be sent */
1306
1307         while (!skb_queue_empty(&qca->txq))
1308                 usleep_range(100, 200);
1309
1310         if (hu->serdev)
1311                 serdev_device_wait_until_sent(hu->serdev,
1312                       msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1313
1314         /* Give the controller time to process the request */
1315         if (qca_is_wcn399x(qca_soc_type(hu)))
1316                 msleep(10);
1317         else
1318                 msleep(300);
1319
1320         return 0;
1321 }
1322
1323 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1324 {
1325         if (hu->serdev)
1326                 serdev_device_set_baudrate(hu->serdev, speed);
1327         else
1328                 hci_uart_set_baudrate(hu, speed);
1329 }
1330
1331 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1332 {
1333         int ret;
1334         int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1335         u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1336
1337         /* These power pulses are single byte command which are sent
1338          * at required baudrate to wcn3990. On wcn3990, we have an external
1339          * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1340          * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1341          * and also we use the same power inputs to turn on and off for
1342          * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1343          * we send a power on pulse at 115200 bps. This algorithm will help to
1344          * save power. Disabling hardware flow control is mandatory while
1345          * sending power pulses to SoC.
1346          */
1347         bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1348
1349         serdev_device_write_flush(hu->serdev);
1350         hci_uart_set_flow_control(hu, true);
1351         ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1352         if (ret < 0) {
1353                 bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1354                 return ret;
1355         }
1356
1357         serdev_device_wait_until_sent(hu->serdev, timeout);
1358         hci_uart_set_flow_control(hu, false);
1359
1360         /* Give to controller time to boot/shutdown */
1361         if (on)
1362                 msleep(100);
1363         else
1364                 msleep(10);
1365
1366         return 0;
1367 }
1368
1369 static unsigned int qca_get_speed(struct hci_uart *hu,
1370                                   enum qca_speed_type speed_type)
1371 {
1372         unsigned int speed = 0;
1373
1374         if (speed_type == QCA_INIT_SPEED) {
1375                 if (hu->init_speed)
1376                         speed = hu->init_speed;
1377                 else if (hu->proto->init_speed)
1378                         speed = hu->proto->init_speed;
1379         } else {
1380                 if (hu->oper_speed)
1381                         speed = hu->oper_speed;
1382                 else if (hu->proto->oper_speed)
1383                         speed = hu->proto->oper_speed;
1384         }
1385
1386         return speed;
1387 }
1388
1389 static int qca_check_speeds(struct hci_uart *hu)
1390 {
1391         if (qca_is_wcn399x(qca_soc_type(hu))) {
1392                 if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1393                     !qca_get_speed(hu, QCA_OPER_SPEED))
1394                         return -EINVAL;
1395         } else {
1396                 if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1397                     !qca_get_speed(hu, QCA_OPER_SPEED))
1398                         return -EINVAL;
1399         }
1400
1401         return 0;
1402 }
1403
1404 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1405 {
1406         unsigned int speed, qca_baudrate;
1407         struct qca_data *qca = hu->priv;
1408         int ret = 0;
1409
1410         if (speed_type == QCA_INIT_SPEED) {
1411                 speed = qca_get_speed(hu, QCA_INIT_SPEED);
1412                 if (speed)
1413                         host_set_baudrate(hu, speed);
1414         } else {
1415                 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1416
1417                 speed = qca_get_speed(hu, QCA_OPER_SPEED);
1418                 if (!speed)
1419                         return 0;
1420
1421                 /* Disable flow control for wcn3990 to deassert RTS while
1422                  * changing the baudrate of chip and host.
1423                  */
1424                 if (qca_is_wcn399x(soc_type))
1425                         hci_uart_set_flow_control(hu, true);
1426
1427                 if (soc_type == QCA_WCN3990) {
1428                         reinit_completion(&qca->drop_ev_comp);
1429                         set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1430                 }
1431
1432                 qca_baudrate = qca_get_baudrate_value(speed);
1433                 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1434                 ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1435                 if (ret)
1436                         goto error;
1437
1438                 host_set_baudrate(hu, speed);
1439
1440 error:
1441                 if (qca_is_wcn399x(soc_type))
1442                         hci_uart_set_flow_control(hu, false);
1443
1444                 if (soc_type == QCA_WCN3990) {
1445                         /* Wait for the controller to send the vendor event
1446                          * for the baudrate change command.
1447                          */
1448                         if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1449                                                  msecs_to_jiffies(100))) {
1450                                 bt_dev_err(hu->hdev,
1451                                            "Failed to change controller baudrate\n");
1452                                 ret = -ETIMEDOUT;
1453                         }
1454
1455                         clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1456                 }
1457         }
1458
1459         return ret;
1460 }
1461
1462 static int qca_send_crashbuffer(struct hci_uart *hu)
1463 {
1464         struct qca_data *qca = hu->priv;
1465         struct sk_buff *skb;
1466
1467         skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1468         if (!skb) {
1469                 bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1470                 return -ENOMEM;
1471         }
1472
1473         /* We forcefully crash the controller, by sending 0xfb byte for
1474          * 1024 times. We also might have chance of losing data, To be
1475          * on safer side we send 1096 bytes to the SoC.
1476          */
1477         memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1478                QCA_CRASHBYTE_PACKET_LEN);
1479         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1480         bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1481         skb_queue_tail(&qca->txq, skb);
1482         hci_uart_tx_wakeup(hu);
1483
1484         return 0;
1485 }
1486
1487 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1488 {
1489         struct hci_uart *hu = hci_get_drvdata(hdev);
1490         struct qca_data *qca = hu->priv;
1491
1492         wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1493                             TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1494
1495         clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1496 }
1497
1498 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1499 {
1500         struct hci_uart *hu = hci_get_drvdata(hdev);
1501         struct qca_data *qca = hu->priv;
1502
1503         set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1504         set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1505         bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1506
1507         if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1508                 /* If hardware error event received for other than QCA
1509                  * soc memory dump event, then we need to crash the SOC
1510                  * and wait here for 8 seconds to get the dump packets.
1511                  * This will block main thread to be on hold until we
1512                  * collect dump.
1513                  */
1514                 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1515                 qca_send_crashbuffer(hu);
1516                 qca_wait_for_dump_collection(hdev);
1517         } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1518                 /* Let us wait here until memory dump collected or
1519                  * memory dump timer expired.
1520                  */
1521                 bt_dev_info(hdev, "waiting for dump to complete");
1522                 qca_wait_for_dump_collection(hdev);
1523         }
1524
1525         mutex_lock(&qca->hci_memdump_lock);
1526         if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1527                 bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1528                 if (qca->qca_memdump) {
1529                         vfree(qca->qca_memdump->memdump_buf_head);
1530                         kfree(qca->qca_memdump);
1531                         qca->qca_memdump = NULL;
1532                 }
1533                 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1534                 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1535         }
1536         mutex_unlock(&qca->hci_memdump_lock);
1537
1538         if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1539             qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1540                 cancel_work_sync(&qca->ctrl_memdump_evt);
1541                 skb_queue_purge(&qca->rx_memdump_q);
1542         }
1543
1544         clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1545 }
1546
1547 static void qca_cmd_timeout(struct hci_dev *hdev)
1548 {
1549         struct hci_uart *hu = hci_get_drvdata(hdev);
1550         struct qca_data *qca = hu->priv;
1551
1552         set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1553         if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1554                 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1555                 qca_send_crashbuffer(hu);
1556                 qca_wait_for_dump_collection(hdev);
1557         } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1558                 /* Let us wait here until memory dump collected or
1559                  * memory dump timer expired.
1560                  */
1561                 bt_dev_info(hdev, "waiting for dump to complete");
1562                 qca_wait_for_dump_collection(hdev);
1563         }
1564
1565         mutex_lock(&qca->hci_memdump_lock);
1566         if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1567                 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1568                 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1569                         /* Inject hw error event to reset the device
1570                          * and driver.
1571                          */
1572                         hci_reset_dev(hu->hdev);
1573                 }
1574         }
1575         mutex_unlock(&qca->hci_memdump_lock);
1576 }
1577
1578 static int qca_wcn3990_init(struct hci_uart *hu)
1579 {
1580         struct qca_serdev *qcadev;
1581         int ret;
1582
1583         /* Check for vregs status, may be hci down has turned
1584          * off the voltage regulator.
1585          */
1586         qcadev = serdev_device_get_drvdata(hu->serdev);
1587         if (!qcadev->bt_power->vregs_on) {
1588                 serdev_device_close(hu->serdev);
1589                 ret = qca_regulator_enable(qcadev);
1590                 if (ret)
1591                         return ret;
1592
1593                 ret = serdev_device_open(hu->serdev);
1594                 if (ret) {
1595                         bt_dev_err(hu->hdev, "failed to open port");
1596                         return ret;
1597                 }
1598         }
1599
1600         /* Forcefully enable wcn3990 to enter in to boot mode. */
1601         host_set_baudrate(hu, 2400);
1602         ret = qca_send_power_pulse(hu, false);
1603         if (ret)
1604                 return ret;
1605
1606         qca_set_speed(hu, QCA_INIT_SPEED);
1607         ret = qca_send_power_pulse(hu, true);
1608         if (ret)
1609                 return ret;
1610
1611         /* Now the device is in ready state to communicate with host.
1612          * To sync host with device we need to reopen port.
1613          * Without this, we will have RTS and CTS synchronization
1614          * issues.
1615          */
1616         serdev_device_close(hu->serdev);
1617         ret = serdev_device_open(hu->serdev);
1618         if (ret) {
1619                 bt_dev_err(hu->hdev, "failed to open port");
1620                 return ret;
1621         }
1622
1623         hci_uart_set_flow_control(hu, false);
1624
1625         return 0;
1626 }
1627
1628 static int qca_power_on(struct hci_dev *hdev)
1629 {
1630         struct hci_uart *hu = hci_get_drvdata(hdev);
1631         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1632         struct qca_serdev *qcadev;
1633         struct qca_data *qca = hu->priv;
1634         int ret = 0;
1635
1636         /* Non-serdev device usually is powered by external power
1637          * and don't need additional action in driver for power on
1638          */
1639         if (!hu->serdev)
1640                 return 0;
1641
1642         if (qca_is_wcn399x(soc_type)) {
1643                 ret = qca_wcn3990_init(hu);
1644         } else {
1645                 qcadev = serdev_device_get_drvdata(hu->serdev);
1646                 if (qcadev->bt_en) {
1647                         gpiod_set_value_cansleep(qcadev->bt_en, 1);
1648                         /* Controller needs time to bootup. */
1649                         msleep(150);
1650                 }
1651         }
1652
1653         clear_bit(QCA_BT_OFF, &qca->flags);
1654         return ret;
1655 }
1656
1657 static int qca_setup(struct hci_uart *hu)
1658 {
1659         struct hci_dev *hdev = hu->hdev;
1660         struct qca_data *qca = hu->priv;
1661         unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1662         unsigned int retries = 0;
1663         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1664         const char *firmware_name = qca_get_firmware_name(hu);
1665         int ret;
1666         int soc_ver = 0;
1667
1668         ret = qca_check_speeds(hu);
1669         if (ret)
1670                 return ret;
1671
1672         clear_bit(QCA_ROM_FW, &qca->flags);
1673         /* Patch downloading has to be done without IBS mode */
1674         set_bit(QCA_IBS_DISABLED, &qca->flags);
1675
1676         /* Enable controller to do both LE scan and BR/EDR inquiry
1677          * simultaneously.
1678          */
1679         set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1680
1681         bt_dev_info(hdev, "setting up %s",
1682                 qca_is_wcn399x(soc_type) ? "wcn399x" : "ROME/QCA6390");
1683
1684         qca->memdump_state = QCA_MEMDUMP_IDLE;
1685
1686 retry:
1687         ret = qca_power_on(hdev);
1688         if (ret)
1689                 return ret;
1690
1691         clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1692
1693         if (qca_is_wcn399x(soc_type)) {
1694                 set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1695
1696                 ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1697                 if (ret)
1698                         return ret;
1699         } else {
1700                 qca_set_speed(hu, QCA_INIT_SPEED);
1701         }
1702
1703         /* Setup user speed if needed */
1704         speed = qca_get_speed(hu, QCA_OPER_SPEED);
1705         if (speed) {
1706                 ret = qca_set_speed(hu, QCA_OPER_SPEED);
1707                 if (ret)
1708                         return ret;
1709
1710                 qca_baudrate = qca_get_baudrate_value(speed);
1711         }
1712
1713         if (!qca_is_wcn399x(soc_type)) {
1714                 /* Get QCA version information */
1715                 ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1716                 if (ret)
1717                         return ret;
1718         }
1719
1720         bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver);
1721         /* Setup patch / NVM configurations */
1722         ret = qca_uart_setup(hdev, qca_baudrate, soc_type, soc_ver,
1723                         firmware_name);
1724         if (!ret) {
1725                 clear_bit(QCA_IBS_DISABLED, &qca->flags);
1726                 qca_debugfs_init(hdev);
1727                 hu->hdev->hw_error = qca_hw_error;
1728                 hu->hdev->cmd_timeout = qca_cmd_timeout;
1729         } else if (ret == -ENOENT) {
1730                 /* No patch/nvm-config found, run with original fw/config */
1731                 set_bit(QCA_ROM_FW, &qca->flags);
1732                 ret = 0;
1733         } else if (ret == -EAGAIN) {
1734                 /*
1735                  * Userspace firmware loader will return -EAGAIN in case no
1736                  * patch/nvm-config is found, so run with original fw/config.
1737                  */
1738                 set_bit(QCA_ROM_FW, &qca->flags);
1739                 ret = 0;
1740         } else {
1741                 if (retries < MAX_INIT_RETRIES) {
1742                         qca_power_shutdown(hu);
1743                         if (hu->serdev) {
1744                                 serdev_device_close(hu->serdev);
1745                                 ret = serdev_device_open(hu->serdev);
1746                                 if (ret) {
1747                                         bt_dev_err(hdev, "failed to open port");
1748                                         return ret;
1749                                 }
1750                         }
1751                         retries++;
1752                         goto retry;
1753                 }
1754         }
1755
1756         /* Setup bdaddr */
1757         if (soc_type == QCA_ROME)
1758                 hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1759         else
1760                 hu->hdev->set_bdaddr = qca_set_bdaddr;
1761
1762         return ret;
1763 }
1764
1765 static const struct hci_uart_proto qca_proto = {
1766         .id             = HCI_UART_QCA,
1767         .name           = "QCA",
1768         .manufacturer   = 29,
1769         .init_speed     = 115200,
1770         .oper_speed     = 3000000,
1771         .open           = qca_open,
1772         .close          = qca_close,
1773         .flush          = qca_flush,
1774         .setup          = qca_setup,
1775         .recv           = qca_recv,
1776         .enqueue        = qca_enqueue,
1777         .dequeue        = qca_dequeue,
1778 };
1779
1780 static const struct qca_device_data qca_soc_data_wcn3990 = {
1781         .soc_type = QCA_WCN3990,
1782         .vregs = (struct qca_vreg []) {
1783                 { "vddio", 15000  },
1784                 { "vddxo", 80000  },
1785                 { "vddrf", 300000 },
1786                 { "vddch0", 450000 },
1787         },
1788         .num_vregs = 4,
1789 };
1790
1791 static const struct qca_device_data qca_soc_data_wcn3991 = {
1792         .soc_type = QCA_WCN3991,
1793         .vregs = (struct qca_vreg []) {
1794                 { "vddio", 15000  },
1795                 { "vddxo", 80000  },
1796                 { "vddrf", 300000 },
1797                 { "vddch0", 450000 },
1798         },
1799         .num_vregs = 4,
1800         .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1801 };
1802
1803 static const struct qca_device_data qca_soc_data_wcn3998 = {
1804         .soc_type = QCA_WCN3998,
1805         .vregs = (struct qca_vreg []) {
1806                 { "vddio", 10000  },
1807                 { "vddxo", 80000  },
1808                 { "vddrf", 300000 },
1809                 { "vddch0", 450000 },
1810         },
1811         .num_vregs = 4,
1812 };
1813
1814 static const struct qca_device_data qca_soc_data_qca6390 = {
1815         .soc_type = QCA_QCA6390,
1816         .num_vregs = 0,
1817         .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1818 };
1819
1820 static void qca_power_shutdown(struct hci_uart *hu)
1821 {
1822         struct qca_serdev *qcadev;
1823         struct qca_data *qca = hu->priv;
1824         unsigned long flags;
1825         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1826
1827         /* From this point we go into power off state. But serial port is
1828          * still open, stop queueing the IBS data and flush all the buffered
1829          * data in skb's.
1830          */
1831         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1832         set_bit(QCA_IBS_DISABLED, &qca->flags);
1833         qca_flush(hu);
1834         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1835
1836         /* Non-serdev device usually is powered by external power
1837          * and don't need additional action in driver for power down
1838          */
1839         if (!hu->serdev)
1840                 return;
1841
1842         qcadev = serdev_device_get_drvdata(hu->serdev);
1843
1844         if (qca_is_wcn399x(soc_type)) {
1845                 host_set_baudrate(hu, 2400);
1846                 qca_send_power_pulse(hu, false);
1847                 qca_regulator_disable(qcadev);
1848         } else if (qcadev->bt_en) {
1849                 gpiod_set_value_cansleep(qcadev->bt_en, 0);
1850         }
1851
1852         set_bit(QCA_BT_OFF, &qca->flags);
1853 }
1854
1855 static int qca_power_off(struct hci_dev *hdev)
1856 {
1857         struct hci_uart *hu = hci_get_drvdata(hdev);
1858         struct qca_data *qca = hu->priv;
1859         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1860
1861         hu->hdev->hw_error = NULL;
1862         hu->hdev->cmd_timeout = NULL;
1863
1864         del_timer_sync(&qca->wake_retrans_timer);
1865         del_timer_sync(&qca->tx_idle_timer);
1866
1867         /* Stop sending shutdown command if soc crashes. */
1868         if (soc_type != QCA_ROME
1869                 && qca->memdump_state == QCA_MEMDUMP_IDLE) {
1870                 qca_send_pre_shutdown_cmd(hdev);
1871                 usleep_range(8000, 10000);
1872         }
1873
1874         qca_power_shutdown(hu);
1875         return 0;
1876 }
1877
1878 static int qca_regulator_enable(struct qca_serdev *qcadev)
1879 {
1880         struct qca_power *power = qcadev->bt_power;
1881         int ret;
1882
1883         /* Already enabled */
1884         if (power->vregs_on)
1885                 return 0;
1886
1887         BT_DBG("enabling %d regulators)", power->num_vregs);
1888
1889         ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
1890         if (ret)
1891                 return ret;
1892
1893         power->vregs_on = true;
1894
1895         ret = clk_prepare_enable(qcadev->susclk);
1896         if (ret)
1897                 qca_regulator_disable(qcadev);
1898
1899         return ret;
1900 }
1901
1902 static void qca_regulator_disable(struct qca_serdev *qcadev)
1903 {
1904         struct qca_power *power;
1905
1906         if (!qcadev)
1907                 return;
1908
1909         power = qcadev->bt_power;
1910
1911         /* Already disabled? */
1912         if (!power->vregs_on)
1913                 return;
1914
1915         regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
1916         power->vregs_on = false;
1917
1918         clk_disable_unprepare(qcadev->susclk);
1919 }
1920
1921 static int qca_init_regulators(struct qca_power *qca,
1922                                 const struct qca_vreg *vregs, size_t num_vregs)
1923 {
1924         struct regulator_bulk_data *bulk;
1925         int ret;
1926         int i;
1927
1928         bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
1929         if (!bulk)
1930                 return -ENOMEM;
1931
1932         for (i = 0; i < num_vregs; i++)
1933                 bulk[i].supply = vregs[i].name;
1934
1935         ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
1936         if (ret < 0)
1937                 return ret;
1938
1939         for (i = 0; i < num_vregs; i++) {
1940                 ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
1941                 if (ret)
1942                         return ret;
1943         }
1944
1945         qca->vreg_bulk = bulk;
1946         qca->num_vregs = num_vregs;
1947
1948         return 0;
1949 }
1950
1951 static int qca_serdev_probe(struct serdev_device *serdev)
1952 {
1953         struct qca_serdev *qcadev;
1954         struct hci_dev *hdev;
1955         const struct qca_device_data *data;
1956         int err;
1957         bool power_ctrl_enabled = true;
1958
1959         qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
1960         if (!qcadev)
1961                 return -ENOMEM;
1962
1963         qcadev->serdev_hu.serdev = serdev;
1964         data = device_get_match_data(&serdev->dev);
1965         serdev_device_set_drvdata(serdev, qcadev);
1966         device_property_read_string(&serdev->dev, "firmware-name",
1967                                          &qcadev->firmware_name);
1968         device_property_read_u32(&serdev->dev, "max-speed",
1969                                  &qcadev->oper_speed);
1970         if (!qcadev->oper_speed)
1971                 BT_DBG("UART will pick default operating speed");
1972
1973         if (data && qca_is_wcn399x(data->soc_type)) {
1974                 qcadev->btsoc_type = data->soc_type;
1975                 qcadev->bt_power = devm_kzalloc(&serdev->dev,
1976                                                 sizeof(struct qca_power),
1977                                                 GFP_KERNEL);
1978                 if (!qcadev->bt_power)
1979                         return -ENOMEM;
1980
1981                 qcadev->bt_power->dev = &serdev->dev;
1982                 err = qca_init_regulators(qcadev->bt_power, data->vregs,
1983                                           data->num_vregs);
1984                 if (err) {
1985                         BT_ERR("Failed to init regulators:%d", err);
1986                         return err;
1987                 }
1988
1989                 qcadev->bt_power->vregs_on = false;
1990
1991                 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1992                 if (IS_ERR(qcadev->susclk)) {
1993                         dev_err(&serdev->dev, "failed to acquire clk\n");
1994                         return PTR_ERR(qcadev->susclk);
1995                 }
1996
1997                 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
1998                 if (err) {
1999                         BT_ERR("wcn3990 serdev registration failed");
2000                         return err;
2001                 }
2002         } else {
2003                 if (data)
2004                         qcadev->btsoc_type = data->soc_type;
2005                 else
2006                         qcadev->btsoc_type = QCA_ROME;
2007
2008                 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2009                                                GPIOD_OUT_LOW);
2010                 if (IS_ERR_OR_NULL(qcadev->bt_en)) {
2011                         dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
2012                         power_ctrl_enabled = false;
2013                 }
2014
2015                 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2016                 if (IS_ERR(qcadev->susclk)) {
2017                         dev_warn(&serdev->dev, "failed to acquire clk\n");
2018                         return PTR_ERR(qcadev->susclk);
2019                 }
2020                 err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2021                 if (err)
2022                         return err;
2023
2024                 err = clk_prepare_enable(qcadev->susclk);
2025                 if (err)
2026                         return err;
2027
2028                 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2029                 if (err) {
2030                         BT_ERR("Rome serdev registration failed");
2031                         clk_disable_unprepare(qcadev->susclk);
2032                         return err;
2033                 }
2034         }
2035
2036         hdev = qcadev->serdev_hu.hdev;
2037
2038         if (power_ctrl_enabled) {
2039                 set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2040                 hdev->shutdown = qca_power_off;
2041         }
2042
2043         if (data) {
2044                 /* Wideband speech support must be set per driver since it can't
2045                  * be queried via hci. Same with the valid le states quirk.
2046                  */
2047                 if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2048                         set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2049                                 &hdev->quirks);
2050
2051                 if (data->capabilities & QCA_CAP_VALID_LE_STATES)
2052                         set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2053         }
2054
2055         return 0;
2056 }
2057
2058 static void qca_serdev_remove(struct serdev_device *serdev)
2059 {
2060         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2061         struct qca_power *power = qcadev->bt_power;
2062
2063         if (qca_is_wcn399x(qcadev->btsoc_type) && power->vregs_on)
2064                 qca_power_shutdown(&qcadev->serdev_hu);
2065         else if (qcadev->susclk)
2066                 clk_disable_unprepare(qcadev->susclk);
2067
2068         hci_uart_unregister_device(&qcadev->serdev_hu);
2069 }
2070
2071 static void qca_serdev_shutdown(struct device *dev)
2072 {
2073         int ret;
2074         int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2075         struct serdev_device *serdev = to_serdev_device(dev);
2076         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2077         struct hci_uart *hu = &qcadev->serdev_hu;
2078         struct hci_dev *hdev = hu->hdev;
2079         struct qca_data *qca = hu->priv;
2080         const u8 ibs_wake_cmd[] = { 0xFD };
2081         const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2082
2083         if (qcadev->btsoc_type == QCA_QCA6390) {
2084                 if (test_bit(QCA_BT_OFF, &qca->flags) ||
2085                     !test_bit(HCI_RUNNING, &hdev->flags))
2086                         return;
2087
2088                 serdev_device_write_flush(serdev);
2089                 ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2090                                               sizeof(ibs_wake_cmd));
2091                 if (ret < 0) {
2092                         BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2093                         return;
2094                 }
2095                 serdev_device_wait_until_sent(serdev, timeout);
2096                 usleep_range(8000, 10000);
2097
2098                 serdev_device_write_flush(serdev);
2099                 ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2100                                               sizeof(edl_reset_soc_cmd));
2101                 if (ret < 0) {
2102                         BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2103                         return;
2104                 }
2105                 serdev_device_wait_until_sent(serdev, timeout);
2106                 usleep_range(8000, 10000);
2107         }
2108 }
2109
2110 static int __maybe_unused qca_suspend(struct device *dev)
2111 {
2112         struct serdev_device *serdev = to_serdev_device(dev);
2113         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2114         struct hci_uart *hu = &qcadev->serdev_hu;
2115         struct qca_data *qca = hu->priv;
2116         unsigned long flags;
2117         bool tx_pending = false;
2118         int ret = 0;
2119         u8 cmd;
2120         u32 wait_timeout = 0;
2121
2122         set_bit(QCA_SUSPENDING, &qca->flags);
2123
2124         /* if BT SoC is running with default firmware then it does not
2125          * support in-band sleep
2126          */
2127         if (test_bit(QCA_ROM_FW, &qca->flags))
2128                 return 0;
2129
2130         /* During SSR after memory dump collection, controller will be
2131          * powered off and then powered on.If controller is powered off
2132          * during SSR then we should wait until SSR is completed.
2133          */
2134         if (test_bit(QCA_BT_OFF, &qca->flags) &&
2135             !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2136                 return 0;
2137
2138         if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2139             test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2140                 wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2141                                         IBS_DISABLE_SSR_TIMEOUT_MS :
2142                                         FW_DOWNLOAD_TIMEOUT_MS;
2143
2144                 /* QCA_IBS_DISABLED flag is set to true, During FW download
2145                  * and during memory dump collection. It is reset to false,
2146                  * After FW download complete.
2147                  */
2148                 wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2149                             TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2150
2151                 if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2152                         bt_dev_err(hu->hdev, "SSR or FW download time out");
2153                         ret = -ETIMEDOUT;
2154                         goto error;
2155                 }
2156         }
2157
2158         cancel_work_sync(&qca->ws_awake_device);
2159         cancel_work_sync(&qca->ws_awake_rx);
2160
2161         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2162                                  flags, SINGLE_DEPTH_NESTING);
2163
2164         switch (qca->tx_ibs_state) {
2165         case HCI_IBS_TX_WAKING:
2166                 del_timer(&qca->wake_retrans_timer);
2167                 fallthrough;
2168         case HCI_IBS_TX_AWAKE:
2169                 del_timer(&qca->tx_idle_timer);
2170
2171                 serdev_device_write_flush(hu->serdev);
2172                 cmd = HCI_IBS_SLEEP_IND;
2173                 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2174
2175                 if (ret < 0) {
2176                         BT_ERR("Failed to send SLEEP to device");
2177                         break;
2178                 }
2179
2180                 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2181                 qca->ibs_sent_slps++;
2182                 tx_pending = true;
2183                 break;
2184
2185         case HCI_IBS_TX_ASLEEP:
2186                 break;
2187
2188         default:
2189                 BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2190                 ret = -EINVAL;
2191                 break;
2192         }
2193
2194         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2195
2196         if (ret < 0)
2197                 goto error;
2198
2199         if (tx_pending) {
2200                 serdev_device_wait_until_sent(hu->serdev,
2201                                               msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2202                 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2203         }
2204
2205         /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2206          * to sleep, so that the packet does not wake the system later.
2207          */
2208         ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2209                         qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2210                         msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2211         if (ret == 0) {
2212                 ret = -ETIMEDOUT;
2213                 goto error;
2214         }
2215
2216         return 0;
2217
2218 error:
2219         clear_bit(QCA_SUSPENDING, &qca->flags);
2220
2221         return ret;
2222 }
2223
2224 static int __maybe_unused qca_resume(struct device *dev)
2225 {
2226         struct serdev_device *serdev = to_serdev_device(dev);
2227         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2228         struct hci_uart *hu = &qcadev->serdev_hu;
2229         struct qca_data *qca = hu->priv;
2230
2231         clear_bit(QCA_SUSPENDING, &qca->flags);
2232
2233         return 0;
2234 }
2235
2236 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2237
2238 #ifdef CONFIG_OF
2239 static const struct of_device_id qca_bluetooth_of_match[] = {
2240         { .compatible = "qcom,qca6174-bt" },
2241         { .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2242         { .compatible = "qcom,qca9377-bt" },
2243         { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2244         { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2245         { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2246         { /* sentinel */ }
2247 };
2248 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2249 #endif
2250
2251 #ifdef CONFIG_ACPI
2252 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2253         { "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2254         { "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2255         { "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2256         { "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2257         { },
2258 };
2259 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2260 #endif
2261
2262
2263 static struct serdev_device_driver qca_serdev_driver = {
2264         .probe = qca_serdev_probe,
2265         .remove = qca_serdev_remove,
2266         .driver = {
2267                 .name = "hci_uart_qca",
2268                 .of_match_table = of_match_ptr(qca_bluetooth_of_match),
2269                 .acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2270                 .shutdown = qca_serdev_shutdown,
2271                 .pm = &qca_pm_ops,
2272         },
2273 };
2274
2275 int __init qca_init(void)
2276 {
2277         serdev_device_driver_register(&qca_serdev_driver);
2278
2279         return hci_uart_register_proto(&qca_proto);
2280 }
2281
2282 int __exit qca_deinit(void)
2283 {
2284         serdev_device_driver_unregister(&qca_serdev_driver);
2285
2286         return hci_uart_unregister_proto(&qca_proto);
2287 }