GNU Linux-libre 4.9.284-gnu1
[releases.git] / drivers / bluetooth / hci_intel.c
1 /*
2  *
3  *  Bluetooth HCI UART driver for Intel devices
4  *
5  *  Copyright (C) 2015  Intel Corporation
6  *
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
36
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39
40 #include "hci_uart.h"
41 #include "btintel.h"
42
43 #define STATE_BOOTLOADER        0
44 #define STATE_DOWNLOADING       1
45 #define STATE_FIRMWARE_LOADED   2
46 #define STATE_FIRMWARE_FAILED   3
47 #define STATE_BOOTING           4
48 #define STATE_LPM_ENABLED       5
49 #define STATE_TX_ACTIVE         6
50 #define STATE_SUSPENDED         7
51 #define STATE_LPM_TRANSACTION   8
52
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
57
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
61
62 #define LPM_SUSPEND_DELAY_MS 1000
63
64 struct hci_lpm_pkt {
65         __u8 opcode;
66         __u8 dlen;
67         __u8 data[0];
68 } __packed;
69
70 struct intel_device {
71         struct list_head list;
72         struct platform_device *pdev;
73         struct gpio_desc *reset;
74         struct hci_uart *hu;
75         struct mutex hu_lock;
76         int irq;
77 };
78
79 static LIST_HEAD(intel_device_list);
80 static DEFINE_MUTEX(intel_device_list_lock);
81
82 struct intel_data {
83         struct sk_buff *rx_skb;
84         struct sk_buff_head txq;
85         struct work_struct busy_work;
86         struct hci_uart *hu;
87         unsigned long flags;
88 };
89
90 static u8 intel_convert_speed(unsigned int speed)
91 {
92         switch (speed) {
93         case 9600:
94                 return 0x00;
95         case 19200:
96                 return 0x01;
97         case 38400:
98                 return 0x02;
99         case 57600:
100                 return 0x03;
101         case 115200:
102                 return 0x04;
103         case 230400:
104                 return 0x05;
105         case 460800:
106                 return 0x06;
107         case 921600:
108                 return 0x07;
109         case 1843200:
110                 return 0x08;
111         case 3250000:
112                 return 0x09;
113         case 2000000:
114                 return 0x0a;
115         case 3000000:
116                 return 0x0b;
117         default:
118                 return 0xff;
119         }
120 }
121
122 static int intel_wait_booting(struct hci_uart *hu)
123 {
124         struct intel_data *intel = hu->priv;
125         int err;
126
127         err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128                                   TASK_INTERRUPTIBLE,
129                                   msecs_to_jiffies(1000));
130
131         if (err == -EINTR) {
132                 bt_dev_err(hu->hdev, "Device boot interrupted");
133                 return -EINTR;
134         }
135
136         if (err) {
137                 bt_dev_err(hu->hdev, "Device boot timeout");
138                 return -ETIMEDOUT;
139         }
140
141         return err;
142 }
143
144 #ifdef CONFIG_PM
145 static int intel_wait_lpm_transaction(struct hci_uart *hu)
146 {
147         struct intel_data *intel = hu->priv;
148         int err;
149
150         err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151                                   TASK_INTERRUPTIBLE,
152                                   msecs_to_jiffies(1000));
153
154         if (err == -EINTR) {
155                 bt_dev_err(hu->hdev, "LPM transaction interrupted");
156                 return -EINTR;
157         }
158
159         if (err) {
160                 bt_dev_err(hu->hdev, "LPM transaction timeout");
161                 return -ETIMEDOUT;
162         }
163
164         return err;
165 }
166
167 static int intel_lpm_suspend(struct hci_uart *hu)
168 {
169         static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170         struct intel_data *intel = hu->priv;
171         struct sk_buff *skb;
172
173         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174             test_bit(STATE_SUSPENDED, &intel->flags))
175                 return 0;
176
177         if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178                 return -EAGAIN;
179
180         bt_dev_dbg(hu->hdev, "Suspending");
181
182         skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183         if (!skb) {
184                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185                 return -ENOMEM;
186         }
187
188         memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
189         hci_skb_pkt_type(skb) = HCI_LPM_PKT;
190
191         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
192
193         /* LPM flow is a priority, enqueue packet at list head */
194         skb_queue_head(&intel->txq, skb);
195         hci_uart_tx_wakeup(hu);
196
197         intel_wait_lpm_transaction(hu);
198         /* Even in case of failure, continue and test the suspended flag */
199
200         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
201
202         if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203                 bt_dev_err(hu->hdev, "Device suspend error");
204                 return -EINVAL;
205         }
206
207         bt_dev_dbg(hu->hdev, "Suspended");
208
209         hci_uart_set_flow_control(hu, true);
210
211         return 0;
212 }
213
214 static int intel_lpm_resume(struct hci_uart *hu)
215 {
216         struct intel_data *intel = hu->priv;
217         struct sk_buff *skb;
218
219         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220             !test_bit(STATE_SUSPENDED, &intel->flags))
221                 return 0;
222
223         bt_dev_dbg(hu->hdev, "Resuming");
224
225         hci_uart_set_flow_control(hu, false);
226
227         skb = bt_skb_alloc(0, GFP_KERNEL);
228         if (!skb) {
229                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230                 return -ENOMEM;
231         }
232
233         hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
234
235         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
236
237         /* LPM flow is a priority, enqueue packet at list head */
238         skb_queue_head(&intel->txq, skb);
239         hci_uart_tx_wakeup(hu);
240
241         intel_wait_lpm_transaction(hu);
242         /* Even in case of failure, continue and test the suspended flag */
243
244         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
245
246         if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247                 bt_dev_err(hu->hdev, "Device resume error");
248                 return -EINVAL;
249         }
250
251         bt_dev_dbg(hu->hdev, "Resumed");
252
253         return 0;
254 }
255 #endif /* CONFIG_PM */
256
257 static int intel_lpm_host_wake(struct hci_uart *hu)
258 {
259         static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260         struct intel_data *intel = hu->priv;
261         struct sk_buff *skb;
262
263         hci_uart_set_flow_control(hu, false);
264
265         clear_bit(STATE_SUSPENDED, &intel->flags);
266
267         skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268         if (!skb) {
269                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270                 return -ENOMEM;
271         }
272
273         memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
274                sizeof(lpm_resume_ack));
275         hci_skb_pkt_type(skb) = HCI_LPM_PKT;
276
277         /* LPM flow is a priority, enqueue packet at list head */
278         skb_queue_head(&intel->txq, skb);
279         hci_uart_tx_wakeup(hu);
280
281         bt_dev_dbg(hu->hdev, "Resumed by controller");
282
283         return 0;
284 }
285
286 static irqreturn_t intel_irq(int irq, void *dev_id)
287 {
288         struct intel_device *idev = dev_id;
289
290         dev_info(&idev->pdev->dev, "hci_intel irq\n");
291
292         mutex_lock(&idev->hu_lock);
293         if (idev->hu)
294                 intel_lpm_host_wake(idev->hu);
295         mutex_unlock(&idev->hu_lock);
296
297         /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
298         pm_runtime_get(&idev->pdev->dev);
299         pm_runtime_mark_last_busy(&idev->pdev->dev);
300         pm_runtime_put_autosuspend(&idev->pdev->dev);
301
302         return IRQ_HANDLED;
303 }
304
305 static int intel_set_power(struct hci_uart *hu, bool powered)
306 {
307         struct list_head *p;
308         int err = -ENODEV;
309
310         if (!hu->tty->dev)
311                 return err;
312
313         mutex_lock(&intel_device_list_lock);
314
315         list_for_each(p, &intel_device_list) {
316                 struct intel_device *idev = list_entry(p, struct intel_device,
317                                                        list);
318
319                 /* tty device and pdev device should share the same parent
320                  * which is the UART port.
321                  */
322                 if (hu->tty->dev->parent != idev->pdev->dev.parent)
323                         continue;
324
325                 if (!idev->reset) {
326                         err = -ENOTSUPP;
327                         break;
328                 }
329
330                 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
331                         hu, dev_name(&idev->pdev->dev), powered);
332
333                 gpiod_set_value(idev->reset, powered);
334
335                 /* Provide to idev a hu reference which is used to run LPM
336                  * transactions (lpm suspend/resume) from PM callbacks.
337                  * hu needs to be protected against concurrent removing during
338                  * these PM ops.
339                  */
340                 mutex_lock(&idev->hu_lock);
341                 idev->hu = powered ? hu : NULL;
342                 mutex_unlock(&idev->hu_lock);
343
344                 if (idev->irq < 0)
345                         break;
346
347                 if (powered && device_can_wakeup(&idev->pdev->dev)) {
348                         err = devm_request_threaded_irq(&idev->pdev->dev,
349                                                         idev->irq, NULL,
350                                                         intel_irq,
351                                                         IRQF_ONESHOT,
352                                                         "bt-host-wake", idev);
353                         if (err) {
354                                 BT_ERR("hu %p, unable to allocate irq-%d",
355                                        hu, idev->irq);
356                                 break;
357                         }
358
359                         device_wakeup_enable(&idev->pdev->dev);
360
361                         pm_runtime_set_active(&idev->pdev->dev);
362                         pm_runtime_use_autosuspend(&idev->pdev->dev);
363                         pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
364                                                          LPM_SUSPEND_DELAY_MS);
365                         pm_runtime_enable(&idev->pdev->dev);
366                 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
367                         devm_free_irq(&idev->pdev->dev, idev->irq, idev);
368                         device_wakeup_disable(&idev->pdev->dev);
369
370                         pm_runtime_disable(&idev->pdev->dev);
371                 }
372         }
373
374         mutex_unlock(&intel_device_list_lock);
375
376         return err;
377 }
378
379 static void intel_busy_work(struct work_struct *work)
380 {
381         struct list_head *p;
382         struct intel_data *intel = container_of(work, struct intel_data,
383                                                 busy_work);
384
385         if (!intel->hu->tty->dev)
386                 return;
387
388         /* Link is busy, delay the suspend */
389         mutex_lock(&intel_device_list_lock);
390         list_for_each(p, &intel_device_list) {
391                 struct intel_device *idev = list_entry(p, struct intel_device,
392                                                        list);
393
394                 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
395                         pm_runtime_get(&idev->pdev->dev);
396                         pm_runtime_mark_last_busy(&idev->pdev->dev);
397                         pm_runtime_put_autosuspend(&idev->pdev->dev);
398                         break;
399                 }
400         }
401         mutex_unlock(&intel_device_list_lock);
402 }
403
404 static int intel_open(struct hci_uart *hu)
405 {
406         struct intel_data *intel;
407
408         BT_DBG("hu %p", hu);
409
410         if (!hci_uart_has_flow_control(hu))
411                 return -EOPNOTSUPP;
412
413         intel = kzalloc(sizeof(*intel), GFP_KERNEL);
414         if (!intel)
415                 return -ENOMEM;
416
417         skb_queue_head_init(&intel->txq);
418         INIT_WORK(&intel->busy_work, intel_busy_work);
419
420         intel->hu = hu;
421
422         hu->priv = intel;
423
424         if (!intel_set_power(hu, true))
425                 set_bit(STATE_BOOTING, &intel->flags);
426
427         return 0;
428 }
429
430 static int intel_close(struct hci_uart *hu)
431 {
432         struct intel_data *intel = hu->priv;
433
434         BT_DBG("hu %p", hu);
435
436         cancel_work_sync(&intel->busy_work);
437
438         intel_set_power(hu, false);
439
440         skb_queue_purge(&intel->txq);
441         kfree_skb(intel->rx_skb);
442         kfree(intel);
443
444         hu->priv = NULL;
445         return 0;
446 }
447
448 static int intel_flush(struct hci_uart *hu)
449 {
450         struct intel_data *intel = hu->priv;
451
452         BT_DBG("hu %p", hu);
453
454         skb_queue_purge(&intel->txq);
455
456         return 0;
457 }
458
459 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
460 {
461         struct sk_buff *skb;
462         struct hci_event_hdr *hdr;
463         struct hci_ev_cmd_complete *evt;
464
465         skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
466         if (!skb)
467                 return -ENOMEM;
468
469         hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
470         hdr->evt = HCI_EV_CMD_COMPLETE;
471         hdr->plen = sizeof(*evt) + 1;
472
473         evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
474         evt->ncmd = 0x01;
475         evt->opcode = cpu_to_le16(opcode);
476
477         *skb_put(skb, 1) = 0x00;
478
479         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
480
481         return hci_recv_frame(hdev, skb);
482 }
483
484 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
485 {
486         struct intel_data *intel = hu->priv;
487         struct hci_dev *hdev = hu->hdev;
488         u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
489         struct sk_buff *skb;
490         int err;
491
492         /* This can be the first command sent to the chip, check
493          * that the controller is ready.
494          */
495         err = intel_wait_booting(hu);
496
497         clear_bit(STATE_BOOTING, &intel->flags);
498
499         /* In case of timeout, try to continue anyway */
500         if (err && err != -ETIMEDOUT)
501                 return err;
502
503         bt_dev_info(hdev, "Change controller speed to %d", speed);
504
505         speed_cmd[3] = intel_convert_speed(speed);
506         if (speed_cmd[3] == 0xff) {
507                 bt_dev_err(hdev, "Unsupported speed");
508                 return -EINVAL;
509         }
510
511         /* Device will not accept speed change if Intel version has not been
512          * previously requested.
513          */
514         skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
515         if (IS_ERR(skb)) {
516                 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
517                            PTR_ERR(skb));
518                 return PTR_ERR(skb);
519         }
520         kfree_skb(skb);
521
522         skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
523         if (!skb) {
524                 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
525                 return -ENOMEM;
526         }
527
528         memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
529         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
530
531         hci_uart_set_flow_control(hu, true);
532
533         skb_queue_tail(&intel->txq, skb);
534         hci_uart_tx_wakeup(hu);
535
536         /* wait 100ms to change baudrate on controller side */
537         msleep(100);
538
539         hci_uart_set_baudrate(hu, speed);
540         hci_uart_set_flow_control(hu, false);
541
542         return 0;
543 }
544
545 static int intel_setup(struct hci_uart *hu)
546 {
547         static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
548                                           0x00, 0x08, 0x04, 0x00 };
549         struct intel_data *intel = hu->priv;
550         struct hci_dev *hdev = hu->hdev;
551         struct sk_buff *skb;
552         struct intel_version ver;
553         struct intel_boot_params *params;
554         struct list_head *p;
555         const struct firmware *fw;
556         const u8 *fw_ptr;
557         char fwname[64];
558         u32 frag_len;
559         ktime_t calltime, delta, rettime;
560         unsigned long long duration;
561         unsigned int init_speed, oper_speed;
562         int speed_change = 0;
563         int err;
564
565         bt_dev_dbg(hdev, "start intel_setup");
566
567         hu->hdev->set_diag = btintel_set_diag;
568         hu->hdev->set_bdaddr = btintel_set_bdaddr;
569
570         calltime = ktime_get();
571
572         if (hu->init_speed)
573                 init_speed = hu->init_speed;
574         else
575                 init_speed = hu->proto->init_speed;
576
577         if (hu->oper_speed)
578                 oper_speed = hu->oper_speed;
579         else
580                 oper_speed = hu->proto->oper_speed;
581
582         if (oper_speed && init_speed && oper_speed != init_speed)
583                 speed_change = 1;
584
585         /* Check that the controller is ready */
586         err = intel_wait_booting(hu);
587
588         clear_bit(STATE_BOOTING, &intel->flags);
589
590         /* In case of timeout, try to continue anyway */
591         if (err && err != -ETIMEDOUT)
592                 return err;
593
594         set_bit(STATE_BOOTLOADER, &intel->flags);
595
596         /* Read the Intel version information to determine if the device
597          * is in bootloader mode or if it already has operational firmware
598          * loaded.
599          */
600          err = btintel_read_version(hdev, &ver);
601          if (err)
602                 return err;
603
604         /* The hardware platform number has a fixed value of 0x37 and
605          * for now only accept this single value.
606          */
607         if (ver.hw_platform != 0x37) {
608                 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
609                            ver.hw_platform);
610                 return -EINVAL;
611         }
612
613         /* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
614          * supported by this firmware loading method. This check has been
615          * put in place to ensure correct forward compatibility options
616          * when newer hardware variants come along.
617          */
618         if (ver.hw_variant != 0x0b) {
619                 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
620                            ver.hw_variant);
621                 return -EINVAL;
622         }
623
624         btintel_version_info(hdev, &ver);
625
626         /* The firmware variant determines if the device is in bootloader
627          * mode or is running operational firmware. The value 0x06 identifies
628          * the bootloader and the value 0x23 identifies the operational
629          * firmware.
630          *
631          * When the operational firmware is already present, then only
632          * the check for valid Bluetooth device address is needed. This
633          * determines if the device will be added as configured or
634          * unconfigured controller.
635          *
636          * It is not possible to use the Secure Boot Parameters in this
637          * case since that command is only available in bootloader mode.
638          */
639         if (ver.fw_variant == 0x23) {
640                 clear_bit(STATE_BOOTLOADER, &intel->flags);
641                 btintel_check_bdaddr(hdev);
642                 return 0;
643         }
644
645         /* If the device is not in bootloader mode, then the only possible
646          * choice is to return an error and abort the device initialization.
647          */
648         if (ver.fw_variant != 0x06) {
649                 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
650                            ver.fw_variant);
651                 return -ENODEV;
652         }
653
654         /* Read the secure boot parameters to identify the operating
655          * details of the bootloader.
656          */
657         skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT);
658         if (IS_ERR(skb)) {
659                 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
660                            PTR_ERR(skb));
661                 return PTR_ERR(skb);
662         }
663
664         if (skb->len != sizeof(*params)) {
665                 bt_dev_err(hdev, "Intel boot parameters size mismatch");
666                 kfree_skb(skb);
667                 return -EILSEQ;
668         }
669
670         params = (struct intel_boot_params *)skb->data;
671         if (params->status) {
672                 bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
673                            params->status);
674                 err = -bt_to_errno(params->status);
675                 kfree_skb(skb);
676                 return err;
677         }
678
679         bt_dev_info(hdev, "Device revision is %u",
680                     le16_to_cpu(params->dev_revid));
681
682         bt_dev_info(hdev, "Secure boot is %s",
683                     params->secure_boot ? "enabled" : "disabled");
684
685         bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
686                 params->min_fw_build_nn, params->min_fw_build_cw,
687                 2000 + params->min_fw_build_yy);
688
689         /* It is required that every single firmware fragment is acknowledged
690          * with a command complete event. If the boot parameters indicate
691          * that this bootloader does not send them, then abort the setup.
692          */
693         if (params->limited_cce != 0x00) {
694                 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
695                            params->limited_cce);
696                 kfree_skb(skb);
697                 return -EINVAL;
698         }
699
700         /* If the OTP has no valid Bluetooth device address, then there will
701          * also be no valid address for the operational firmware.
702          */
703         if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
704                 bt_dev_info(hdev, "No device address configured");
705                 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
706         }
707
708         /* With this Intel bootloader only the hardware variant and device
709          * revision information are used to select the right firmware.
710          *
711          * Currently this bootloader support is limited to hardware variant
712          * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
713          */
714         snprintf(fwname, sizeof(fwname), "/*(DEBLOBBED)*/",
715                  le16_to_cpu(params->dev_revid));
716
717         err = reject_firmware(&fw, fwname, &hdev->dev);
718         if (err < 0) {
719                 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
720                            err);
721                 kfree_skb(skb);
722                 return err;
723         }
724
725         bt_dev_info(hdev, "Found device firmware: %s", fwname);
726
727         /* Save the DDC file name for later */
728         snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc",
729                  le16_to_cpu(params->dev_revid));
730
731         kfree_skb(skb);
732
733         if (fw->size < 644) {
734                 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
735                            fw->size);
736                 err = -EBADF;
737                 goto done;
738         }
739
740         set_bit(STATE_DOWNLOADING, &intel->flags);
741
742         /* Start the firmware download transaction with the Init fragment
743          * represented by the 128 bytes of CSS header.
744          */
745         err = btintel_secure_send(hdev, 0x00, 128, fw->data);
746         if (err < 0) {
747                 bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
748                 goto done;
749         }
750
751         /* Send the 256 bytes of public key information from the firmware
752          * as the PKey fragment.
753          */
754         err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
755         if (err < 0) {
756                 bt_dev_err(hdev, "Failed to send firmware public key (%d)",
757                            err);
758                 goto done;
759         }
760
761         /* Send the 256 bytes of signature information from the firmware
762          * as the Sign fragment.
763          */
764         err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
765         if (err < 0) {
766                 bt_dev_err(hdev, "Failed to send firmware signature (%d)",
767                            err);
768                 goto done;
769         }
770
771         fw_ptr = fw->data + 644;
772         frag_len = 0;
773
774         while (fw_ptr - fw->data < fw->size) {
775                 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
776
777                 frag_len += sizeof(*cmd) + cmd->plen;
778
779                 bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
780                            fw->size);
781
782                 /* The parameter length of the secure send command requires
783                  * a 4 byte alignment. It happens so that the firmware file
784                  * contains proper Intel_NOP commands to align the fragments
785                  * as needed.
786                  *
787                  * Send set of commands with 4 byte alignment from the
788                  * firmware data buffer as a single Data fragement.
789                  */
790                 if (frag_len % 4)
791                         continue;
792
793                 /* Send each command from the firmware data buffer as
794                  * a single Data fragment.
795                  */
796                 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
797                 if (err < 0) {
798                         bt_dev_err(hdev, "Failed to send firmware data (%d)",
799                                    err);
800                         goto done;
801                 }
802
803                 fw_ptr += frag_len;
804                 frag_len = 0;
805         }
806
807         set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
808
809         bt_dev_info(hdev, "Waiting for firmware download to complete");
810
811         /* Before switching the device into operational mode and with that
812          * booting the loaded firmware, wait for the bootloader notification
813          * that all fragments have been successfully received.
814          *
815          * When the event processing receives the notification, then the
816          * STATE_DOWNLOADING flag will be cleared.
817          *
818          * The firmware loading should not take longer than 5 seconds
819          * and thus just timeout if that happens and fail the setup
820          * of this device.
821          */
822         err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
823                                   TASK_INTERRUPTIBLE,
824                                   msecs_to_jiffies(5000));
825         if (err == -EINTR) {
826                 bt_dev_err(hdev, "Firmware loading interrupted");
827                 err = -EINTR;
828                 goto done;
829         }
830
831         if (err) {
832                 bt_dev_err(hdev, "Firmware loading timeout");
833                 err = -ETIMEDOUT;
834                 goto done;
835         }
836
837         if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
838                 bt_dev_err(hdev, "Firmware loading failed");
839                 err = -ENOEXEC;
840                 goto done;
841         }
842
843         rettime = ktime_get();
844         delta = ktime_sub(rettime, calltime);
845         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
846
847         bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
848
849 done:
850         release_firmware(fw);
851
852         if (err < 0)
853                 return err;
854
855         /* We need to restore the default speed before Intel reset */
856         if (speed_change) {
857                 err = intel_set_baudrate(hu, init_speed);
858                 if (err)
859                         return err;
860         }
861
862         calltime = ktime_get();
863
864         set_bit(STATE_BOOTING, &intel->flags);
865
866         skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
867                              HCI_CMD_TIMEOUT);
868         if (IS_ERR(skb))
869                 return PTR_ERR(skb);
870
871         kfree_skb(skb);
872
873         /* The bootloader will not indicate when the device is ready. This
874          * is done by the operational firmware sending bootup notification.
875          *
876          * Booting into operational firmware should not take longer than
877          * 1 second. However if that happens, then just fail the setup
878          * since something went wrong.
879          */
880         bt_dev_info(hdev, "Waiting for device to boot");
881
882         err = intel_wait_booting(hu);
883         if (err)
884                 return err;
885
886         clear_bit(STATE_BOOTING, &intel->flags);
887
888         rettime = ktime_get();
889         delta = ktime_sub(rettime, calltime);
890         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
891
892         bt_dev_info(hdev, "Device booted in %llu usecs", duration);
893
894         /* Enable LPM if matching pdev with wakeup enabled, set TX active
895          * until further LPM TX notification.
896          */
897         mutex_lock(&intel_device_list_lock);
898         list_for_each(p, &intel_device_list) {
899                 struct intel_device *dev = list_entry(p, struct intel_device,
900                                                       list);
901                 if (!hu->tty->dev)
902                         break;
903                 if (hu->tty->dev->parent == dev->pdev->dev.parent) {
904                         if (device_may_wakeup(&dev->pdev->dev)) {
905                                 set_bit(STATE_LPM_ENABLED, &intel->flags);
906                                 set_bit(STATE_TX_ACTIVE, &intel->flags);
907                         }
908                         break;
909                 }
910         }
911         mutex_unlock(&intel_device_list_lock);
912
913         /* Ignore errors, device can work without DDC parameters */
914         btintel_load_ddc_config(hdev, fwname);
915
916         skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
917         if (IS_ERR(skb))
918                 return PTR_ERR(skb);
919         kfree_skb(skb);
920
921         if (speed_change) {
922                 err = intel_set_baudrate(hu, oper_speed);
923                 if (err)
924                         return err;
925         }
926
927         bt_dev_info(hdev, "Setup complete");
928
929         clear_bit(STATE_BOOTLOADER, &intel->flags);
930
931         return 0;
932 }
933
934 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
935 {
936         struct hci_uart *hu = hci_get_drvdata(hdev);
937         struct intel_data *intel = hu->priv;
938         struct hci_event_hdr *hdr;
939
940         if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
941             !test_bit(STATE_BOOTING, &intel->flags))
942                 goto recv;
943
944         hdr = (void *)skb->data;
945
946         /* When the firmware loading completes the device sends
947          * out a vendor specific event indicating the result of
948          * the firmware loading.
949          */
950         if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
951             skb->data[2] == 0x06) {
952                 if (skb->data[3] != 0x00)
953                         set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
954
955                 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
956                     test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
957                         smp_mb__after_atomic();
958                         wake_up_bit(&intel->flags, STATE_DOWNLOADING);
959                 }
960
961         /* When switching to the operational firmware the device
962          * sends a vendor specific event indicating that the bootup
963          * completed.
964          */
965         } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
966                    skb->data[2] == 0x02) {
967                 if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
968                         smp_mb__after_atomic();
969                         wake_up_bit(&intel->flags, STATE_BOOTING);
970                 }
971         }
972 recv:
973         return hci_recv_frame(hdev, skb);
974 }
975
976 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
977 {
978         struct hci_uart *hu = hci_get_drvdata(hdev);
979         struct intel_data *intel = hu->priv;
980
981         bt_dev_dbg(hdev, "TX idle notification (%d)", value);
982
983         if (value) {
984                 set_bit(STATE_TX_ACTIVE, &intel->flags);
985                 schedule_work(&intel->busy_work);
986         } else {
987                 clear_bit(STATE_TX_ACTIVE, &intel->flags);
988         }
989 }
990
991 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
992 {
993         struct hci_lpm_pkt *lpm = (void *)skb->data;
994         struct hci_uart *hu = hci_get_drvdata(hdev);
995         struct intel_data *intel = hu->priv;
996
997         switch (lpm->opcode) {
998         case LPM_OP_TX_NOTIFY:
999                 if (lpm->dlen < 1) {
1000                         bt_dev_err(hu->hdev, "Invalid LPM notification packet");
1001                         break;
1002                 }
1003                 intel_recv_lpm_notify(hdev, lpm->data[0]);
1004                 break;
1005         case LPM_OP_SUSPEND_ACK:
1006                 set_bit(STATE_SUSPENDED, &intel->flags);
1007                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1008                         smp_mb__after_atomic();
1009                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1010                 }
1011                 break;
1012         case LPM_OP_RESUME_ACK:
1013                 clear_bit(STATE_SUSPENDED, &intel->flags);
1014                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1015                         smp_mb__after_atomic();
1016                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1017                 }
1018                 break;
1019         default:
1020                 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1021                 break;
1022         }
1023
1024         kfree_skb(skb);
1025
1026         return 0;
1027 }
1028
1029 #define INTEL_RECV_LPM \
1030         .type = HCI_LPM_PKT, \
1031         .hlen = HCI_LPM_HDR_SIZE, \
1032         .loff = 1, \
1033         .lsize = 1, \
1034         .maxlen = HCI_LPM_MAX_SIZE
1035
1036 static const struct h4_recv_pkt intel_recv_pkts[] = {
1037         { H4_RECV_ACL,    .recv = hci_recv_frame   },
1038         { H4_RECV_SCO,    .recv = hci_recv_frame   },
1039         { H4_RECV_EVENT,  .recv = intel_recv_event },
1040         { INTEL_RECV_LPM, .recv = intel_recv_lpm   },
1041 };
1042
1043 static int intel_recv(struct hci_uart *hu, const void *data, int count)
1044 {
1045         struct intel_data *intel = hu->priv;
1046
1047         if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1048                 return -EUNATCH;
1049
1050         intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1051                                     intel_recv_pkts,
1052                                     ARRAY_SIZE(intel_recv_pkts));
1053         if (IS_ERR(intel->rx_skb)) {
1054                 int err = PTR_ERR(intel->rx_skb);
1055                 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1056                 intel->rx_skb = NULL;
1057                 return err;
1058         }
1059
1060         return count;
1061 }
1062
1063 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1064 {
1065         struct intel_data *intel = hu->priv;
1066         struct list_head *p;
1067
1068         BT_DBG("hu %p skb %p", hu, skb);
1069
1070         if (!hu->tty->dev)
1071                 goto out_enqueue;
1072
1073         /* Be sure our controller is resumed and potential LPM transaction
1074          * completed before enqueuing any packet.
1075          */
1076         mutex_lock(&intel_device_list_lock);
1077         list_for_each(p, &intel_device_list) {
1078                 struct intel_device *idev = list_entry(p, struct intel_device,
1079                                                        list);
1080
1081                 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1082                         pm_runtime_get_sync(&idev->pdev->dev);
1083                         pm_runtime_mark_last_busy(&idev->pdev->dev);
1084                         pm_runtime_put_autosuspend(&idev->pdev->dev);
1085                         break;
1086                 }
1087         }
1088         mutex_unlock(&intel_device_list_lock);
1089 out_enqueue:
1090         skb_queue_tail(&intel->txq, skb);
1091
1092         return 0;
1093 }
1094
1095 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1096 {
1097         struct intel_data *intel = hu->priv;
1098         struct sk_buff *skb;
1099
1100         skb = skb_dequeue(&intel->txq);
1101         if (!skb)
1102                 return skb;
1103
1104         if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1105             (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1106                 struct hci_command_hdr *cmd = (void *)skb->data;
1107                 __u16 opcode = le16_to_cpu(cmd->opcode);
1108
1109                 /* When the 0xfc01 command is issued to boot into
1110                  * the operational firmware, it will actually not
1111                  * send a command complete event. To keep the flow
1112                  * control working inject that event here.
1113                  */
1114                 if (opcode == 0xfc01)
1115                         inject_cmd_complete(hu->hdev, opcode);
1116         }
1117
1118         /* Prepend skb with frame type */
1119         memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1120
1121         return skb;
1122 }
1123
1124 static const struct hci_uart_proto intel_proto = {
1125         .id             = HCI_UART_INTEL,
1126         .name           = "Intel",
1127         .manufacturer   = 2,
1128         .init_speed     = 115200,
1129         .oper_speed     = 3000000,
1130         .open           = intel_open,
1131         .close          = intel_close,
1132         .flush          = intel_flush,
1133         .setup          = intel_setup,
1134         .set_baudrate   = intel_set_baudrate,
1135         .recv           = intel_recv,
1136         .enqueue        = intel_enqueue,
1137         .dequeue        = intel_dequeue,
1138 };
1139
1140 #ifdef CONFIG_ACPI
1141 static const struct acpi_device_id intel_acpi_match[] = {
1142         { "INT33E1", 0 },
1143         { },
1144 };
1145 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1146 #endif
1147
1148 #ifdef CONFIG_PM
1149 static int intel_suspend_device(struct device *dev)
1150 {
1151         struct intel_device *idev = dev_get_drvdata(dev);
1152
1153         mutex_lock(&idev->hu_lock);
1154         if (idev->hu)
1155                 intel_lpm_suspend(idev->hu);
1156         mutex_unlock(&idev->hu_lock);
1157
1158         return 0;
1159 }
1160
1161 static int intel_resume_device(struct device *dev)
1162 {
1163         struct intel_device *idev = dev_get_drvdata(dev);
1164
1165         mutex_lock(&idev->hu_lock);
1166         if (idev->hu)
1167                 intel_lpm_resume(idev->hu);
1168         mutex_unlock(&idev->hu_lock);
1169
1170         return 0;
1171 }
1172 #endif
1173
1174 #ifdef CONFIG_PM_SLEEP
1175 static int intel_suspend(struct device *dev)
1176 {
1177         struct intel_device *idev = dev_get_drvdata(dev);
1178
1179         if (device_may_wakeup(dev))
1180                 enable_irq_wake(idev->irq);
1181
1182         return intel_suspend_device(dev);
1183 }
1184
1185 static int intel_resume(struct device *dev)
1186 {
1187         struct intel_device *idev = dev_get_drvdata(dev);
1188
1189         if (device_may_wakeup(dev))
1190                 disable_irq_wake(idev->irq);
1191
1192         return intel_resume_device(dev);
1193 }
1194 #endif
1195
1196 static const struct dev_pm_ops intel_pm_ops = {
1197         SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1198         SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1199 };
1200
1201 static int intel_probe(struct platform_device *pdev)
1202 {
1203         struct intel_device *idev;
1204
1205         idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1206         if (!idev)
1207                 return -ENOMEM;
1208
1209         mutex_init(&idev->hu_lock);
1210
1211         idev->pdev = pdev;
1212
1213         idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1214         if (IS_ERR(idev->reset)) {
1215                 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1216                 return PTR_ERR(idev->reset);
1217         }
1218
1219         idev->irq = platform_get_irq(pdev, 0);
1220         if (idev->irq < 0) {
1221                 struct gpio_desc *host_wake;
1222
1223                 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1224
1225                 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1226                 if (IS_ERR(host_wake)) {
1227                         dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1228                         goto no_irq;
1229                 }
1230
1231                 idev->irq = gpiod_to_irq(host_wake);
1232                 if (idev->irq < 0) {
1233                         dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1234                         goto no_irq;
1235                 }
1236         }
1237
1238         /* Only enable wake-up/irq when controller is powered */
1239         device_set_wakeup_capable(&pdev->dev, true);
1240         device_wakeup_disable(&pdev->dev);
1241
1242 no_irq:
1243         platform_set_drvdata(pdev, idev);
1244
1245         /* Place this instance on the device list */
1246         mutex_lock(&intel_device_list_lock);
1247         list_add_tail(&idev->list, &intel_device_list);
1248         mutex_unlock(&intel_device_list_lock);
1249
1250         dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1251                  desc_to_gpio(idev->reset), idev->irq);
1252
1253         return 0;
1254 }
1255
1256 static int intel_remove(struct platform_device *pdev)
1257 {
1258         struct intel_device *idev = platform_get_drvdata(pdev);
1259
1260         device_wakeup_disable(&pdev->dev);
1261
1262         mutex_lock(&intel_device_list_lock);
1263         list_del(&idev->list);
1264         mutex_unlock(&intel_device_list_lock);
1265
1266         dev_info(&pdev->dev, "unregistered.\n");
1267
1268         return 0;
1269 }
1270
1271 static struct platform_driver intel_driver = {
1272         .probe = intel_probe,
1273         .remove = intel_remove,
1274         .driver = {
1275                 .name = "hci_intel",
1276                 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1277                 .pm = &intel_pm_ops,
1278         },
1279 };
1280
1281 int __init intel_init(void)
1282 {
1283         platform_driver_register(&intel_driver);
1284
1285         return hci_uart_register_proto(&intel_proto);
1286 }
1287
1288 int __exit intel_deinit(void)
1289 {
1290         platform_driver_unregister(&intel_driver);
1291
1292         return hci_uart_unregister_proto(&intel_proto);
1293 }