GNU Linux-libre 5.10.217-gnu1
[releases.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG       /* Activate rbd_assert() calls */
53
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62         unsigned int counter;
63
64         counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65         if (counter <= (unsigned int)INT_MAX)
66                 return (int)counter;
67
68         atomic_dec(v);
69
70         return -EINVAL;
71 }
72
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76         int counter;
77
78         counter = atomic_dec_return(v);
79         if (counter >= 0)
80                 return counter;
81
82         atomic_inc(v);
83
84         return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR            256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN        16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN   \
96                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME      "-"
101
102 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX    64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX  64
109
110 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
111 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING            (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2          (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK      (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP          (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF           (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN        (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL           (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS          (1ULL<<8)
123
124 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
125                                  RBD_FEATURE_STRIPINGV2 |       \
126                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
127                                  RBD_FEATURE_OBJECT_MAP |       \
128                                  RBD_FEATURE_FAST_DIFF |        \
129                                  RBD_FEATURE_DEEP_FLATTEN |     \
130                                  RBD_FEATURE_DATA_POOL |        \
131                                  RBD_FEATURE_OPERATIONS)
132
133 /* Features supported by this (client software) implementation. */
134
135 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
136
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN            32
142
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147         /* These six fields never change for a given rbd image */
148         char *object_prefix;
149         __u8 obj_order;
150         u64 stripe_unit;
151         u64 stripe_count;
152         s64 data_pool_id;
153         u64 features;           /* Might be changeable someday? */
154
155         /* The remaining fields need to be updated occasionally */
156         u64 image_size;
157         struct ceph_snap_context *snapc;
158         char *snap_names;       /* format 1 only */
159         u64 *snap_sizes;        /* format 1 only */
160 };
161
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188         u64             pool_id;
189         const char      *pool_name;
190         const char      *pool_ns;       /* NULL if default, never "" */
191
192         const char      *image_id;
193         const char      *image_name;
194
195         u64             snap_id;
196         const char      *snap_name;
197
198         struct kref     kref;
199 };
200
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205         struct ceph_client      *client;
206         struct kref             kref;
207         struct list_head        node;
208 };
209
210 struct pending_result {
211         int                     result;         /* first nonzero result */
212         int                     num_pending;
213 };
214
215 struct rbd_img_request;
216
217 enum obj_request_type {
218         OBJ_REQUEST_NODATA = 1,
219         OBJ_REQUEST_BIO,        /* pointer into provided bio (list) */
220         OBJ_REQUEST_BVECS,      /* pointer into provided bio_vec array */
221         OBJ_REQUEST_OWN_BVECS,  /* private bio_vec array, doesn't own pages */
222 };
223
224 enum obj_operation_type {
225         OBJ_OP_READ = 1,
226         OBJ_OP_WRITE,
227         OBJ_OP_DISCARD,
228         OBJ_OP_ZEROOUT,
229 };
230
231 #define RBD_OBJ_FLAG_DELETION                   (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED             (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS               (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST                  (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT       (1U << 4)
236
237 enum rbd_obj_read_state {
238         RBD_OBJ_READ_START = 1,
239         RBD_OBJ_READ_OBJECT,
240         RBD_OBJ_READ_PARENT,
241 };
242
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269         RBD_OBJ_WRITE_START = 1,
270         RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271         RBD_OBJ_WRITE_OBJECT,
272         __RBD_OBJ_WRITE_COPYUP,
273         RBD_OBJ_WRITE_COPYUP,
274         RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276
277 enum rbd_obj_copyup_state {
278         RBD_OBJ_COPYUP_START = 1,
279         RBD_OBJ_COPYUP_READ_PARENT,
280         __RBD_OBJ_COPYUP_OBJECT_MAPS,
281         RBD_OBJ_COPYUP_OBJECT_MAPS,
282         __RBD_OBJ_COPYUP_WRITE_OBJECT,
283         RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285
286 struct rbd_obj_request {
287         struct ceph_object_extent ex;
288         unsigned int            flags;  /* RBD_OBJ_FLAG_* */
289         union {
290                 enum rbd_obj_read_state  read_state;    /* for reads */
291                 enum rbd_obj_write_state write_state;   /* for writes */
292         };
293
294         struct rbd_img_request  *img_request;
295         struct ceph_file_extent *img_extents;
296         u32                     num_img_extents;
297
298         union {
299                 struct ceph_bio_iter    bio_pos;
300                 struct {
301                         struct ceph_bvec_iter   bvec_pos;
302                         u32                     bvec_count;
303                         u32                     bvec_idx;
304                 };
305         };
306
307         enum rbd_obj_copyup_state copyup_state;
308         struct bio_vec          *copyup_bvecs;
309         u32                     copyup_bvec_count;
310
311         struct list_head        osd_reqs;       /* w/ r_private_item */
312
313         struct mutex            state_mutex;
314         struct pending_result   pending;
315         struct kref             kref;
316 };
317
318 enum img_req_flags {
319         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
320         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
321 };
322
323 enum rbd_img_state {
324         RBD_IMG_START = 1,
325         RBD_IMG_EXCLUSIVE_LOCK,
326         __RBD_IMG_OBJECT_REQUESTS,
327         RBD_IMG_OBJECT_REQUESTS,
328 };
329
330 struct rbd_img_request {
331         struct rbd_device       *rbd_dev;
332         enum obj_operation_type op_type;
333         enum obj_request_type   data_type;
334         unsigned long           flags;
335         enum rbd_img_state      state;
336         union {
337                 u64                     snap_id;        /* for reads */
338                 struct ceph_snap_context *snapc;        /* for writes */
339         };
340         struct rbd_obj_request  *obj_request;   /* obj req initiator */
341
342         struct list_head        lock_item;
343         struct list_head        object_extents; /* obj_req.ex structs */
344
345         struct mutex            state_mutex;
346         struct pending_result   pending;
347         struct work_struct      work;
348         int                     work_result;
349 };
350
351 #define for_each_obj_request(ireq, oreq) \
352         list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354         list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356 enum rbd_watch_state {
357         RBD_WATCH_STATE_UNREGISTERED,
358         RBD_WATCH_STATE_REGISTERED,
359         RBD_WATCH_STATE_ERROR,
360 };
361
362 enum rbd_lock_state {
363         RBD_LOCK_STATE_UNLOCKED,
364         RBD_LOCK_STATE_LOCKED,
365         RBD_LOCK_STATE_RELEASING,
366 };
367
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370         u64 gid;
371         u64 handle;
372 };
373
374 struct rbd_mapping {
375         u64                     size;
376 };
377
378 /*
379  * a single device
380  */
381 struct rbd_device {
382         int                     dev_id;         /* blkdev unique id */
383
384         int                     major;          /* blkdev assigned major */
385         int                     minor;
386         struct gendisk          *disk;          /* blkdev's gendisk and rq */
387
388         u32                     image_format;   /* Either 1 or 2 */
389         struct rbd_client       *rbd_client;
390
391         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393         spinlock_t              lock;           /* queue, flags, open_count */
394
395         struct rbd_image_header header;
396         unsigned long           flags;          /* possibly lock protected */
397         struct rbd_spec         *spec;
398         struct rbd_options      *opts;
399         char                    *config_info;   /* add{,_single_major} string */
400
401         struct ceph_object_id   header_oid;
402         struct ceph_object_locator header_oloc;
403
404         struct ceph_file_layout layout;         /* used for all rbd requests */
405
406         struct mutex            watch_mutex;
407         enum rbd_watch_state    watch_state;
408         struct ceph_osd_linger_request *watch_handle;
409         u64                     watch_cookie;
410         struct delayed_work     watch_dwork;
411
412         struct rw_semaphore     lock_rwsem;
413         enum rbd_lock_state     lock_state;
414         char                    lock_cookie[32];
415         struct rbd_client_id    owner_cid;
416         struct work_struct      acquired_lock_work;
417         struct work_struct      released_lock_work;
418         struct delayed_work     lock_dwork;
419         struct work_struct      unlock_work;
420         spinlock_t              lock_lists_lock;
421         struct list_head        acquiring_list;
422         struct list_head        running_list;
423         struct completion       acquire_wait;
424         int                     acquire_err;
425         struct completion       releasing_wait;
426
427         spinlock_t              object_map_lock;
428         u8                      *object_map;
429         u64                     object_map_size;        /* in objects */
430         u64                     object_map_flags;
431
432         struct workqueue_struct *task_wq;
433
434         struct rbd_spec         *parent_spec;
435         u64                     parent_overlap;
436         atomic_t                parent_ref;
437         struct rbd_device       *parent;
438
439         /* Block layer tags. */
440         struct blk_mq_tag_set   tag_set;
441
442         /* protects updating the header */
443         struct rw_semaphore     header_rwsem;
444
445         struct rbd_mapping      mapping;
446
447         struct list_head        node;
448
449         /* sysfs related */
450         struct device           dev;
451         unsigned long           open_count;     /* protected by lock */
452 };
453
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460         RBD_DEV_FLAG_EXISTS,    /* rbd_dev_device_setup() ran */
461         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
462         RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464
465 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
466
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470 static LIST_HEAD(rbd_client_list);              /* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473 /* Slab caches for frequently-allocated structures */
474
475 static struct kmem_cache        *rbd_img_request_cache;
476 static struct kmem_cache        *rbd_obj_request_cache;
477
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480
481 static struct workqueue_struct *rbd_wq;
482
483 static struct ceph_snap_context rbd_empty_snapc = {
484         .nref = REFCOUNT_INIT(1),
485 };
486
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496                             size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498                                       size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500                                          size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507
508 static int minor_to_rbd_dev_id(int minor)
509 {
510         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515         return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520         return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525         lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533         bool is_lock_owner;
534
535         down_read(&rbd_dev->lock_rwsem);
536         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537         up_read(&rbd_dev->lock_rwsem);
538         return is_lock_owner;
539 }
540
541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543         return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551
552 static struct attribute *rbd_bus_attrs[] = {
553         &bus_attr_add.attr,
554         &bus_attr_remove.attr,
555         &bus_attr_add_single_major.attr,
556         &bus_attr_remove_single_major.attr,
557         &bus_attr_supported_features.attr,
558         NULL,
559 };
560
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562                                   struct attribute *attr, int index)
563 {
564         if (!single_major &&
565             (attr == &bus_attr_add_single_major.attr ||
566              attr == &bus_attr_remove_single_major.attr))
567                 return 0;
568
569         return attr->mode;
570 }
571
572 static const struct attribute_group rbd_bus_group = {
573         .attrs = rbd_bus_attrs,
574         .is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577
578 static struct bus_type rbd_bus_type = {
579         .name           = "rbd",
580         .bus_groups     = rbd_bus_groups,
581 };
582
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586
587 static struct device rbd_root_dev = {
588         .init_name =    "rbd",
589         .release =      rbd_root_dev_release,
590 };
591
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595         struct va_format vaf;
596         va_list args;
597
598         va_start(args, fmt);
599         vaf.fmt = fmt;
600         vaf.va = &args;
601
602         if (!rbd_dev)
603                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604         else if (rbd_dev->disk)
605                 printk(KERN_WARNING "%s: %s: %pV\n",
606                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607         else if (rbd_dev->spec && rbd_dev->spec->image_name)
608                 printk(KERN_WARNING "%s: image %s: %pV\n",
609                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610         else if (rbd_dev->spec && rbd_dev->spec->image_id)
611                 printk(KERN_WARNING "%s: id %s: %pV\n",
612                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613         else    /* punt */
614                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615                         RBD_DRV_NAME, rbd_dev, &vaf);
616         va_end(args);
617 }
618
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)                                                \
621                 if (unlikely(!(expr))) {                                \
622                         printk(KERN_ERR "\nAssertion failure in %s() "  \
623                                                 "at line %d:\n\n"       \
624                                         "\trbd_assert(%s);\n\n",        \
625                                         __func__, __LINE__, #expr);     \
626                         BUG();                                          \
627                 }
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)      ((void) 0)
630 #endif /* !RBD_DEBUG */
631
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
636                                      struct rbd_image_header *header);
637 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
638                                         u64 snap_id);
639 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
640                                 u8 *order, u64 *snap_size);
641 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
642
643 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
644 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
645
646 /*
647  * Return true if nothing else is pending.
648  */
649 static bool pending_result_dec(struct pending_result *pending, int *result)
650 {
651         rbd_assert(pending->num_pending > 0);
652
653         if (*result && !pending->result)
654                 pending->result = *result;
655         if (--pending->num_pending)
656                 return false;
657
658         *result = pending->result;
659         return true;
660 }
661
662 static int rbd_open(struct block_device *bdev, fmode_t mode)
663 {
664         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
665         bool removing = false;
666
667         spin_lock_irq(&rbd_dev->lock);
668         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
669                 removing = true;
670         else
671                 rbd_dev->open_count++;
672         spin_unlock_irq(&rbd_dev->lock);
673         if (removing)
674                 return -ENOENT;
675
676         (void) get_device(&rbd_dev->dev);
677
678         return 0;
679 }
680
681 static void rbd_release(struct gendisk *disk, fmode_t mode)
682 {
683         struct rbd_device *rbd_dev = disk->private_data;
684         unsigned long open_count_before;
685
686         spin_lock_irq(&rbd_dev->lock);
687         open_count_before = rbd_dev->open_count--;
688         spin_unlock_irq(&rbd_dev->lock);
689         rbd_assert(open_count_before > 0);
690
691         put_device(&rbd_dev->dev);
692 }
693
694 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
695 {
696         int ro;
697
698         if (get_user(ro, (int __user *)arg))
699                 return -EFAULT;
700
701         /*
702          * Both images mapped read-only and snapshots can't be marked
703          * read-write.
704          */
705         if (!ro) {
706                 if (rbd_is_ro(rbd_dev))
707                         return -EROFS;
708
709                 rbd_assert(!rbd_is_snap(rbd_dev));
710         }
711
712         /* Let blkdev_roset() handle it */
713         return -ENOTTY;
714 }
715
716 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
717                         unsigned int cmd, unsigned long arg)
718 {
719         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
720         int ret;
721
722         switch (cmd) {
723         case BLKROSET:
724                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
725                 break;
726         default:
727                 ret = -ENOTTY;
728         }
729
730         return ret;
731 }
732
733 #ifdef CONFIG_COMPAT
734 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
735                                 unsigned int cmd, unsigned long arg)
736 {
737         return rbd_ioctl(bdev, mode, cmd, arg);
738 }
739 #endif /* CONFIG_COMPAT */
740
741 static const struct block_device_operations rbd_bd_ops = {
742         .owner                  = THIS_MODULE,
743         .open                   = rbd_open,
744         .release                = rbd_release,
745         .ioctl                  = rbd_ioctl,
746 #ifdef CONFIG_COMPAT
747         .compat_ioctl           = rbd_compat_ioctl,
748 #endif
749 };
750
751 /*
752  * Initialize an rbd client instance.  Success or not, this function
753  * consumes ceph_opts.  Caller holds client_mutex.
754  */
755 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
756 {
757         struct rbd_client *rbdc;
758         int ret = -ENOMEM;
759
760         dout("%s:\n", __func__);
761         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
762         if (!rbdc)
763                 goto out_opt;
764
765         kref_init(&rbdc->kref);
766         INIT_LIST_HEAD(&rbdc->node);
767
768         rbdc->client = ceph_create_client(ceph_opts, rbdc);
769         if (IS_ERR(rbdc->client))
770                 goto out_rbdc;
771         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
772
773         ret = ceph_open_session(rbdc->client);
774         if (ret < 0)
775                 goto out_client;
776
777         spin_lock(&rbd_client_list_lock);
778         list_add_tail(&rbdc->node, &rbd_client_list);
779         spin_unlock(&rbd_client_list_lock);
780
781         dout("%s: rbdc %p\n", __func__, rbdc);
782
783         return rbdc;
784 out_client:
785         ceph_destroy_client(rbdc->client);
786 out_rbdc:
787         kfree(rbdc);
788 out_opt:
789         if (ceph_opts)
790                 ceph_destroy_options(ceph_opts);
791         dout("%s: error %d\n", __func__, ret);
792
793         return ERR_PTR(ret);
794 }
795
796 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
797 {
798         kref_get(&rbdc->kref);
799
800         return rbdc;
801 }
802
803 /*
804  * Find a ceph client with specific addr and configuration.  If
805  * found, bump its reference count.
806  */
807 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
808 {
809         struct rbd_client *client_node;
810         bool found = false;
811
812         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
813                 return NULL;
814
815         spin_lock(&rbd_client_list_lock);
816         list_for_each_entry(client_node, &rbd_client_list, node) {
817                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
818                         __rbd_get_client(client_node);
819
820                         found = true;
821                         break;
822                 }
823         }
824         spin_unlock(&rbd_client_list_lock);
825
826         return found ? client_node : NULL;
827 }
828
829 /*
830  * (Per device) rbd map options
831  */
832 enum {
833         Opt_queue_depth,
834         Opt_alloc_size,
835         Opt_lock_timeout,
836         /* int args above */
837         Opt_pool_ns,
838         Opt_compression_hint,
839         /* string args above */
840         Opt_read_only,
841         Opt_read_write,
842         Opt_lock_on_read,
843         Opt_exclusive,
844         Opt_notrim,
845 };
846
847 enum {
848         Opt_compression_hint_none,
849         Opt_compression_hint_compressible,
850         Opt_compression_hint_incompressible,
851 };
852
853 static const struct constant_table rbd_param_compression_hint[] = {
854         {"none",                Opt_compression_hint_none},
855         {"compressible",        Opt_compression_hint_compressible},
856         {"incompressible",      Opt_compression_hint_incompressible},
857         {}
858 };
859
860 static const struct fs_parameter_spec rbd_parameters[] = {
861         fsparam_u32     ("alloc_size",                  Opt_alloc_size),
862         fsparam_enum    ("compression_hint",            Opt_compression_hint,
863                          rbd_param_compression_hint),
864         fsparam_flag    ("exclusive",                   Opt_exclusive),
865         fsparam_flag    ("lock_on_read",                Opt_lock_on_read),
866         fsparam_u32     ("lock_timeout",                Opt_lock_timeout),
867         fsparam_flag    ("notrim",                      Opt_notrim),
868         fsparam_string  ("_pool_ns",                    Opt_pool_ns),
869         fsparam_u32     ("queue_depth",                 Opt_queue_depth),
870         fsparam_flag    ("read_only",                   Opt_read_only),
871         fsparam_flag    ("read_write",                  Opt_read_write),
872         fsparam_flag    ("ro",                          Opt_read_only),
873         fsparam_flag    ("rw",                          Opt_read_write),
874         {}
875 };
876
877 struct rbd_options {
878         int     queue_depth;
879         int     alloc_size;
880         unsigned long   lock_timeout;
881         bool    read_only;
882         bool    lock_on_read;
883         bool    exclusive;
884         bool    trim;
885
886         u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
887 };
888
889 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
890 #define RBD_ALLOC_SIZE_DEFAULT  (64 * 1024)
891 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
892 #define RBD_READ_ONLY_DEFAULT   false
893 #define RBD_LOCK_ON_READ_DEFAULT false
894 #define RBD_EXCLUSIVE_DEFAULT   false
895 #define RBD_TRIM_DEFAULT        true
896
897 struct rbd_parse_opts_ctx {
898         struct rbd_spec         *spec;
899         struct ceph_options     *copts;
900         struct rbd_options      *opts;
901 };
902
903 static char* obj_op_name(enum obj_operation_type op_type)
904 {
905         switch (op_type) {
906         case OBJ_OP_READ:
907                 return "read";
908         case OBJ_OP_WRITE:
909                 return "write";
910         case OBJ_OP_DISCARD:
911                 return "discard";
912         case OBJ_OP_ZEROOUT:
913                 return "zeroout";
914         default:
915                 return "???";
916         }
917 }
918
919 /*
920  * Destroy ceph client
921  *
922  * Caller must hold rbd_client_list_lock.
923  */
924 static void rbd_client_release(struct kref *kref)
925 {
926         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
927
928         dout("%s: rbdc %p\n", __func__, rbdc);
929         spin_lock(&rbd_client_list_lock);
930         list_del(&rbdc->node);
931         spin_unlock(&rbd_client_list_lock);
932
933         ceph_destroy_client(rbdc->client);
934         kfree(rbdc);
935 }
936
937 /*
938  * Drop reference to ceph client node. If it's not referenced anymore, release
939  * it.
940  */
941 static void rbd_put_client(struct rbd_client *rbdc)
942 {
943         if (rbdc)
944                 kref_put(&rbdc->kref, rbd_client_release);
945 }
946
947 /*
948  * Get a ceph client with specific addr and configuration, if one does
949  * not exist create it.  Either way, ceph_opts is consumed by this
950  * function.
951  */
952 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
953 {
954         struct rbd_client *rbdc;
955         int ret;
956
957         mutex_lock(&client_mutex);
958         rbdc = rbd_client_find(ceph_opts);
959         if (rbdc) {
960                 ceph_destroy_options(ceph_opts);
961
962                 /*
963                  * Using an existing client.  Make sure ->pg_pools is up to
964                  * date before we look up the pool id in do_rbd_add().
965                  */
966                 ret = ceph_wait_for_latest_osdmap(rbdc->client,
967                                         rbdc->client->options->mount_timeout);
968                 if (ret) {
969                         rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
970                         rbd_put_client(rbdc);
971                         rbdc = ERR_PTR(ret);
972                 }
973         } else {
974                 rbdc = rbd_client_create(ceph_opts);
975         }
976         mutex_unlock(&client_mutex);
977
978         return rbdc;
979 }
980
981 static bool rbd_image_format_valid(u32 image_format)
982 {
983         return image_format == 1 || image_format == 2;
984 }
985
986 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
987 {
988         size_t size;
989         u32 snap_count;
990
991         /* The header has to start with the magic rbd header text */
992         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
993                 return false;
994
995         /* The bio layer requires at least sector-sized I/O */
996
997         if (ondisk->options.order < SECTOR_SHIFT)
998                 return false;
999
1000         /* If we use u64 in a few spots we may be able to loosen this */
1001
1002         if (ondisk->options.order > 8 * sizeof (int) - 1)
1003                 return false;
1004
1005         /*
1006          * The size of a snapshot header has to fit in a size_t, and
1007          * that limits the number of snapshots.
1008          */
1009         snap_count = le32_to_cpu(ondisk->snap_count);
1010         size = SIZE_MAX - sizeof (struct ceph_snap_context);
1011         if (snap_count > size / sizeof (__le64))
1012                 return false;
1013
1014         /*
1015          * Not only that, but the size of the entire the snapshot
1016          * header must also be representable in a size_t.
1017          */
1018         size -= snap_count * sizeof (__le64);
1019         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1020                 return false;
1021
1022         return true;
1023 }
1024
1025 /*
1026  * returns the size of an object in the image
1027  */
1028 static u32 rbd_obj_bytes(struct rbd_image_header *header)
1029 {
1030         return 1U << header->obj_order;
1031 }
1032
1033 static void rbd_init_layout(struct rbd_device *rbd_dev)
1034 {
1035         if (rbd_dev->header.stripe_unit == 0 ||
1036             rbd_dev->header.stripe_count == 0) {
1037                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1038                 rbd_dev->header.stripe_count = 1;
1039         }
1040
1041         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1042         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1043         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1044         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1045                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1046         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1047 }
1048
1049 static void rbd_image_header_cleanup(struct rbd_image_header *header)
1050 {
1051         kfree(header->object_prefix);
1052         ceph_put_snap_context(header->snapc);
1053         kfree(header->snap_sizes);
1054         kfree(header->snap_names);
1055
1056         memset(header, 0, sizeof(*header));
1057 }
1058
1059 /*
1060  * Fill an rbd image header with information from the given format 1
1061  * on-disk header.
1062  */
1063 static int rbd_header_from_disk(struct rbd_image_header *header,
1064                                 struct rbd_image_header_ondisk *ondisk,
1065                                 bool first_time)
1066 {
1067         struct ceph_snap_context *snapc;
1068         char *object_prefix = NULL;
1069         char *snap_names = NULL;
1070         u64 *snap_sizes = NULL;
1071         u32 snap_count;
1072         int ret = -ENOMEM;
1073         u32 i;
1074
1075         /* Allocate this now to avoid having to handle failure below */
1076
1077         if (first_time) {
1078                 object_prefix = kstrndup(ondisk->object_prefix,
1079                                          sizeof(ondisk->object_prefix),
1080                                          GFP_KERNEL);
1081                 if (!object_prefix)
1082                         return -ENOMEM;
1083         }
1084
1085         /* Allocate the snapshot context and fill it in */
1086
1087         snap_count = le32_to_cpu(ondisk->snap_count);
1088         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1089         if (!snapc)
1090                 goto out_err;
1091         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1092         if (snap_count) {
1093                 struct rbd_image_snap_ondisk *snaps;
1094                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1095
1096                 /* We'll keep a copy of the snapshot names... */
1097
1098                 if (snap_names_len > (u64)SIZE_MAX)
1099                         goto out_2big;
1100                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1101                 if (!snap_names)
1102                         goto out_err;
1103
1104                 /* ...as well as the array of their sizes. */
1105                 snap_sizes = kmalloc_array(snap_count,
1106                                            sizeof(*header->snap_sizes),
1107                                            GFP_KERNEL);
1108                 if (!snap_sizes)
1109                         goto out_err;
1110
1111                 /*
1112                  * Copy the names, and fill in each snapshot's id
1113                  * and size.
1114                  *
1115                  * Note that rbd_dev_v1_header_info() guarantees the
1116                  * ondisk buffer we're working with has
1117                  * snap_names_len bytes beyond the end of the
1118                  * snapshot id array, this memcpy() is safe.
1119                  */
1120                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1121                 snaps = ondisk->snaps;
1122                 for (i = 0; i < snap_count; i++) {
1123                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1124                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1125                 }
1126         }
1127
1128         /* We won't fail any more, fill in the header */
1129
1130         if (first_time) {
1131                 header->object_prefix = object_prefix;
1132                 header->obj_order = ondisk->options.order;
1133         }
1134
1135         /* The remaining fields always get updated (when we refresh) */
1136
1137         header->image_size = le64_to_cpu(ondisk->image_size);
1138         header->snapc = snapc;
1139         header->snap_names = snap_names;
1140         header->snap_sizes = snap_sizes;
1141
1142         return 0;
1143 out_2big:
1144         ret = -EIO;
1145 out_err:
1146         kfree(snap_sizes);
1147         kfree(snap_names);
1148         ceph_put_snap_context(snapc);
1149         kfree(object_prefix);
1150
1151         return ret;
1152 }
1153
1154 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1155 {
1156         const char *snap_name;
1157
1158         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1159
1160         /* Skip over names until we find the one we are looking for */
1161
1162         snap_name = rbd_dev->header.snap_names;
1163         while (which--)
1164                 snap_name += strlen(snap_name) + 1;
1165
1166         return kstrdup(snap_name, GFP_KERNEL);
1167 }
1168
1169 /*
1170  * Snapshot id comparison function for use with qsort()/bsearch().
1171  * Note that result is for snapshots in *descending* order.
1172  */
1173 static int snapid_compare_reverse(const void *s1, const void *s2)
1174 {
1175         u64 snap_id1 = *(u64 *)s1;
1176         u64 snap_id2 = *(u64 *)s2;
1177
1178         if (snap_id1 < snap_id2)
1179                 return 1;
1180         return snap_id1 == snap_id2 ? 0 : -1;
1181 }
1182
1183 /*
1184  * Search a snapshot context to see if the given snapshot id is
1185  * present.
1186  *
1187  * Returns the position of the snapshot id in the array if it's found,
1188  * or BAD_SNAP_INDEX otherwise.
1189  *
1190  * Note: The snapshot array is in kept sorted (by the osd) in
1191  * reverse order, highest snapshot id first.
1192  */
1193 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1194 {
1195         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1196         u64 *found;
1197
1198         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1199                                 sizeof (snap_id), snapid_compare_reverse);
1200
1201         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1202 }
1203
1204 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1205                                         u64 snap_id)
1206 {
1207         u32 which;
1208         const char *snap_name;
1209
1210         which = rbd_dev_snap_index(rbd_dev, snap_id);
1211         if (which == BAD_SNAP_INDEX)
1212                 return ERR_PTR(-ENOENT);
1213
1214         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1215         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1216 }
1217
1218 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1219 {
1220         if (snap_id == CEPH_NOSNAP)
1221                 return RBD_SNAP_HEAD_NAME;
1222
1223         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1224         if (rbd_dev->image_format == 1)
1225                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1226
1227         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1228 }
1229
1230 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1231                                 u64 *snap_size)
1232 {
1233         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1234         if (snap_id == CEPH_NOSNAP) {
1235                 *snap_size = rbd_dev->header.image_size;
1236         } else if (rbd_dev->image_format == 1) {
1237                 u32 which;
1238
1239                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1240                 if (which == BAD_SNAP_INDEX)
1241                         return -ENOENT;
1242
1243                 *snap_size = rbd_dev->header.snap_sizes[which];
1244         } else {
1245                 u64 size = 0;
1246                 int ret;
1247
1248                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1249                 if (ret)
1250                         return ret;
1251
1252                 *snap_size = size;
1253         }
1254         return 0;
1255 }
1256
1257 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1258 {
1259         u64 snap_id = rbd_dev->spec->snap_id;
1260         u64 size = 0;
1261         int ret;
1262
1263         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1264         if (ret)
1265                 return ret;
1266
1267         rbd_dev->mapping.size = size;
1268         return 0;
1269 }
1270
1271 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1272 {
1273         rbd_dev->mapping.size = 0;
1274 }
1275
1276 static void zero_bvec(struct bio_vec *bv)
1277 {
1278         void *buf;
1279         unsigned long flags;
1280
1281         buf = bvec_kmap_irq(bv, &flags);
1282         memset(buf, 0, bv->bv_len);
1283         flush_dcache_page(bv->bv_page);
1284         bvec_kunmap_irq(buf, &flags);
1285 }
1286
1287 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1288 {
1289         struct ceph_bio_iter it = *bio_pos;
1290
1291         ceph_bio_iter_advance(&it, off);
1292         ceph_bio_iter_advance_step(&it, bytes, ({
1293                 zero_bvec(&bv);
1294         }));
1295 }
1296
1297 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1298 {
1299         struct ceph_bvec_iter it = *bvec_pos;
1300
1301         ceph_bvec_iter_advance(&it, off);
1302         ceph_bvec_iter_advance_step(&it, bytes, ({
1303                 zero_bvec(&bv);
1304         }));
1305 }
1306
1307 /*
1308  * Zero a range in @obj_req data buffer defined by a bio (list) or
1309  * (private) bio_vec array.
1310  *
1311  * @off is relative to the start of the data buffer.
1312  */
1313 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1314                                u32 bytes)
1315 {
1316         dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1317
1318         switch (obj_req->img_request->data_type) {
1319         case OBJ_REQUEST_BIO:
1320                 zero_bios(&obj_req->bio_pos, off, bytes);
1321                 break;
1322         case OBJ_REQUEST_BVECS:
1323         case OBJ_REQUEST_OWN_BVECS:
1324                 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1325                 break;
1326         default:
1327                 BUG();
1328         }
1329 }
1330
1331 static void rbd_obj_request_destroy(struct kref *kref);
1332 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1333 {
1334         rbd_assert(obj_request != NULL);
1335         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1336                 kref_read(&obj_request->kref));
1337         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1338 }
1339
1340 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1341                                         struct rbd_obj_request *obj_request)
1342 {
1343         rbd_assert(obj_request->img_request == NULL);
1344
1345         /* Image request now owns object's original reference */
1346         obj_request->img_request = img_request;
1347         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1348 }
1349
1350 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1351                                         struct rbd_obj_request *obj_request)
1352 {
1353         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1354         list_del(&obj_request->ex.oe_item);
1355         rbd_assert(obj_request->img_request == img_request);
1356         rbd_obj_request_put(obj_request);
1357 }
1358
1359 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1360 {
1361         struct rbd_obj_request *obj_req = osd_req->r_priv;
1362
1363         dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1364              __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1365              obj_req->ex.oe_off, obj_req->ex.oe_len);
1366         ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1367 }
1368
1369 /*
1370  * The default/initial value for all image request flags is 0.  Each
1371  * is conditionally set to 1 at image request initialization time
1372  * and currently never change thereafter.
1373  */
1374 static void img_request_layered_set(struct rbd_img_request *img_request)
1375 {
1376         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1377 }
1378
1379 static bool img_request_layered_test(struct rbd_img_request *img_request)
1380 {
1381         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1382 }
1383
1384 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1385 {
1386         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1387
1388         return !obj_req->ex.oe_off &&
1389                obj_req->ex.oe_len == rbd_dev->layout.object_size;
1390 }
1391
1392 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1393 {
1394         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1395
1396         return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1397                                         rbd_dev->layout.object_size;
1398 }
1399
1400 /*
1401  * Must be called after rbd_obj_calc_img_extents().
1402  */
1403 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1404 {
1405         rbd_assert(obj_req->img_request->snapc);
1406
1407         if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1408                 dout("%s %p objno %llu discard\n", __func__, obj_req,
1409                      obj_req->ex.oe_objno);
1410                 return;
1411         }
1412
1413         if (!obj_req->num_img_extents) {
1414                 dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1415                      obj_req->ex.oe_objno);
1416                 return;
1417         }
1418
1419         if (rbd_obj_is_entire(obj_req) &&
1420             !obj_req->img_request->snapc->num_snaps) {
1421                 dout("%s %p objno %llu entire\n", __func__, obj_req,
1422                      obj_req->ex.oe_objno);
1423                 return;
1424         }
1425
1426         obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1427 }
1428
1429 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1430 {
1431         return ceph_file_extents_bytes(obj_req->img_extents,
1432                                        obj_req->num_img_extents);
1433 }
1434
1435 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1436 {
1437         switch (img_req->op_type) {
1438         case OBJ_OP_READ:
1439                 return false;
1440         case OBJ_OP_WRITE:
1441         case OBJ_OP_DISCARD:
1442         case OBJ_OP_ZEROOUT:
1443                 return true;
1444         default:
1445                 BUG();
1446         }
1447 }
1448
1449 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1450 {
1451         struct rbd_obj_request *obj_req = osd_req->r_priv;
1452         int result;
1453
1454         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1455              osd_req->r_result, obj_req);
1456
1457         /*
1458          * Writes aren't allowed to return a data payload.  In some
1459          * guarded write cases (e.g. stat + zero on an empty object)
1460          * a stat response makes it through, but we don't care.
1461          */
1462         if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1463                 result = 0;
1464         else
1465                 result = osd_req->r_result;
1466
1467         rbd_obj_handle_request(obj_req, result);
1468 }
1469
1470 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1471 {
1472         struct rbd_obj_request *obj_request = osd_req->r_priv;
1473         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1474         struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1475
1476         osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1477         osd_req->r_snapid = obj_request->img_request->snap_id;
1478 }
1479
1480 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1481 {
1482         struct rbd_obj_request *obj_request = osd_req->r_priv;
1483
1484         osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1485         ktime_get_real_ts64(&osd_req->r_mtime);
1486         osd_req->r_data_offset = obj_request->ex.oe_off;
1487 }
1488
1489 static struct ceph_osd_request *
1490 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1491                           struct ceph_snap_context *snapc, int num_ops)
1492 {
1493         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1494         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1495         struct ceph_osd_request *req;
1496         const char *name_format = rbd_dev->image_format == 1 ?
1497                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1498         int ret;
1499
1500         req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1501         if (!req)
1502                 return ERR_PTR(-ENOMEM);
1503
1504         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1505         req->r_callback = rbd_osd_req_callback;
1506         req->r_priv = obj_req;
1507
1508         /*
1509          * Data objects may be stored in a separate pool, but always in
1510          * the same namespace in that pool as the header in its pool.
1511          */
1512         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1513         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1514
1515         ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1516                                rbd_dev->header.object_prefix,
1517                                obj_req->ex.oe_objno);
1518         if (ret)
1519                 return ERR_PTR(ret);
1520
1521         return req;
1522 }
1523
1524 static struct ceph_osd_request *
1525 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1526 {
1527         rbd_assert(obj_req->img_request->snapc);
1528         return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1529                                          num_ops);
1530 }
1531
1532 static struct rbd_obj_request *rbd_obj_request_create(void)
1533 {
1534         struct rbd_obj_request *obj_request;
1535
1536         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1537         if (!obj_request)
1538                 return NULL;
1539
1540         ceph_object_extent_init(&obj_request->ex);
1541         INIT_LIST_HEAD(&obj_request->osd_reqs);
1542         mutex_init(&obj_request->state_mutex);
1543         kref_init(&obj_request->kref);
1544
1545         dout("%s %p\n", __func__, obj_request);
1546         return obj_request;
1547 }
1548
1549 static void rbd_obj_request_destroy(struct kref *kref)
1550 {
1551         struct rbd_obj_request *obj_request;
1552         struct ceph_osd_request *osd_req;
1553         u32 i;
1554
1555         obj_request = container_of(kref, struct rbd_obj_request, kref);
1556
1557         dout("%s: obj %p\n", __func__, obj_request);
1558
1559         while (!list_empty(&obj_request->osd_reqs)) {
1560                 osd_req = list_first_entry(&obj_request->osd_reqs,
1561                                     struct ceph_osd_request, r_private_item);
1562                 list_del_init(&osd_req->r_private_item);
1563                 ceph_osdc_put_request(osd_req);
1564         }
1565
1566         switch (obj_request->img_request->data_type) {
1567         case OBJ_REQUEST_NODATA:
1568         case OBJ_REQUEST_BIO:
1569         case OBJ_REQUEST_BVECS:
1570                 break;          /* Nothing to do */
1571         case OBJ_REQUEST_OWN_BVECS:
1572                 kfree(obj_request->bvec_pos.bvecs);
1573                 break;
1574         default:
1575                 BUG();
1576         }
1577
1578         kfree(obj_request->img_extents);
1579         if (obj_request->copyup_bvecs) {
1580                 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1581                         if (obj_request->copyup_bvecs[i].bv_page)
1582                                 __free_page(obj_request->copyup_bvecs[i].bv_page);
1583                 }
1584                 kfree(obj_request->copyup_bvecs);
1585         }
1586
1587         kmem_cache_free(rbd_obj_request_cache, obj_request);
1588 }
1589
1590 /* It's OK to call this for a device with no parent */
1591
1592 static void rbd_spec_put(struct rbd_spec *spec);
1593 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1594 {
1595         rbd_dev_remove_parent(rbd_dev);
1596         rbd_spec_put(rbd_dev->parent_spec);
1597         rbd_dev->parent_spec = NULL;
1598         rbd_dev->parent_overlap = 0;
1599 }
1600
1601 /*
1602  * Parent image reference counting is used to determine when an
1603  * image's parent fields can be safely torn down--after there are no
1604  * more in-flight requests to the parent image.  When the last
1605  * reference is dropped, cleaning them up is safe.
1606  */
1607 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1608 {
1609         int counter;
1610
1611         if (!rbd_dev->parent_spec)
1612                 return;
1613
1614         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1615         if (counter > 0)
1616                 return;
1617
1618         /* Last reference; clean up parent data structures */
1619
1620         if (!counter)
1621                 rbd_dev_unparent(rbd_dev);
1622         else
1623                 rbd_warn(rbd_dev, "parent reference underflow");
1624 }
1625
1626 /*
1627  * If an image has a non-zero parent overlap, get a reference to its
1628  * parent.
1629  *
1630  * Returns true if the rbd device has a parent with a non-zero
1631  * overlap and a reference for it was successfully taken, or
1632  * false otherwise.
1633  */
1634 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1635 {
1636         int counter = 0;
1637
1638         if (!rbd_dev->parent_spec)
1639                 return false;
1640
1641         if (rbd_dev->parent_overlap)
1642                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1643
1644         if (counter < 0)
1645                 rbd_warn(rbd_dev, "parent reference overflow");
1646
1647         return counter > 0;
1648 }
1649
1650 static void rbd_img_request_init(struct rbd_img_request *img_request,
1651                                  struct rbd_device *rbd_dev,
1652                                  enum obj_operation_type op_type)
1653 {
1654         memset(img_request, 0, sizeof(*img_request));
1655
1656         img_request->rbd_dev = rbd_dev;
1657         img_request->op_type = op_type;
1658
1659         INIT_LIST_HEAD(&img_request->lock_item);
1660         INIT_LIST_HEAD(&img_request->object_extents);
1661         mutex_init(&img_request->state_mutex);
1662 }
1663
1664 /*
1665  * Only snap_id is captured here, for reads.  For writes, snapshot
1666  * context is captured in rbd_img_object_requests() after exclusive
1667  * lock is ensured to be held.
1668  */
1669 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1670 {
1671         struct rbd_device *rbd_dev = img_req->rbd_dev;
1672
1673         lockdep_assert_held(&rbd_dev->header_rwsem);
1674
1675         if (!rbd_img_is_write(img_req))
1676                 img_req->snap_id = rbd_dev->spec->snap_id;
1677
1678         if (rbd_dev_parent_get(rbd_dev))
1679                 img_request_layered_set(img_req);
1680 }
1681
1682 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1683 {
1684         struct rbd_obj_request *obj_request;
1685         struct rbd_obj_request *next_obj_request;
1686
1687         dout("%s: img %p\n", __func__, img_request);
1688
1689         WARN_ON(!list_empty(&img_request->lock_item));
1690         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1691                 rbd_img_obj_request_del(img_request, obj_request);
1692
1693         if (img_request_layered_test(img_request))
1694                 rbd_dev_parent_put(img_request->rbd_dev);
1695
1696         if (rbd_img_is_write(img_request))
1697                 ceph_put_snap_context(img_request->snapc);
1698
1699         if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1700                 kmem_cache_free(rbd_img_request_cache, img_request);
1701 }
1702
1703 #define BITS_PER_OBJ    2
1704 #define OBJS_PER_BYTE   (BITS_PER_BYTE / BITS_PER_OBJ)
1705 #define OBJ_MASK        ((1 << BITS_PER_OBJ) - 1)
1706
1707 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1708                                    u64 *index, u8 *shift)
1709 {
1710         u32 off;
1711
1712         rbd_assert(objno < rbd_dev->object_map_size);
1713         *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1714         *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1715 }
1716
1717 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1718 {
1719         u64 index;
1720         u8 shift;
1721
1722         lockdep_assert_held(&rbd_dev->object_map_lock);
1723         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1724         return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1725 }
1726
1727 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1728 {
1729         u64 index;
1730         u8 shift;
1731         u8 *p;
1732
1733         lockdep_assert_held(&rbd_dev->object_map_lock);
1734         rbd_assert(!(val & ~OBJ_MASK));
1735
1736         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1737         p = &rbd_dev->object_map[index];
1738         *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1739 }
1740
1741 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1742 {
1743         u8 state;
1744
1745         spin_lock(&rbd_dev->object_map_lock);
1746         state = __rbd_object_map_get(rbd_dev, objno);
1747         spin_unlock(&rbd_dev->object_map_lock);
1748         return state;
1749 }
1750
1751 static bool use_object_map(struct rbd_device *rbd_dev)
1752 {
1753         /*
1754          * An image mapped read-only can't use the object map -- it isn't
1755          * loaded because the header lock isn't acquired.  Someone else can
1756          * write to the image and update the object map behind our back.
1757          *
1758          * A snapshot can't be written to, so using the object map is always
1759          * safe.
1760          */
1761         if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1762                 return false;
1763
1764         return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1765                 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1766 }
1767
1768 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1769 {
1770         u8 state;
1771
1772         /* fall back to default logic if object map is disabled or invalid */
1773         if (!use_object_map(rbd_dev))
1774                 return true;
1775
1776         state = rbd_object_map_get(rbd_dev, objno);
1777         return state != OBJECT_NONEXISTENT;
1778 }
1779
1780 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1781                                 struct ceph_object_id *oid)
1782 {
1783         if (snap_id == CEPH_NOSNAP)
1784                 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1785                                 rbd_dev->spec->image_id);
1786         else
1787                 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1788                                 rbd_dev->spec->image_id, snap_id);
1789 }
1790
1791 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1792 {
1793         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1794         CEPH_DEFINE_OID_ONSTACK(oid);
1795         u8 lock_type;
1796         char *lock_tag;
1797         struct ceph_locker *lockers;
1798         u32 num_lockers;
1799         bool broke_lock = false;
1800         int ret;
1801
1802         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1803
1804 again:
1805         ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1806                             CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1807         if (ret != -EBUSY || broke_lock) {
1808                 if (ret == -EEXIST)
1809                         ret = 0; /* already locked by myself */
1810                 if (ret)
1811                         rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1812                 return ret;
1813         }
1814
1815         ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1816                                  RBD_LOCK_NAME, &lock_type, &lock_tag,
1817                                  &lockers, &num_lockers);
1818         if (ret) {
1819                 if (ret == -ENOENT)
1820                         goto again;
1821
1822                 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1823                 return ret;
1824         }
1825
1826         kfree(lock_tag);
1827         if (num_lockers == 0)
1828                 goto again;
1829
1830         rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1831                  ENTITY_NAME(lockers[0].id.name));
1832
1833         ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1834                                   RBD_LOCK_NAME, lockers[0].id.cookie,
1835                                   &lockers[0].id.name);
1836         ceph_free_lockers(lockers, num_lockers);
1837         if (ret) {
1838                 if (ret == -ENOENT)
1839                         goto again;
1840
1841                 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1842                 return ret;
1843         }
1844
1845         broke_lock = true;
1846         goto again;
1847 }
1848
1849 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1850 {
1851         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1852         CEPH_DEFINE_OID_ONSTACK(oid);
1853         int ret;
1854
1855         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1856
1857         ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1858                               "");
1859         if (ret && ret != -ENOENT)
1860                 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1861 }
1862
1863 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1864 {
1865         u8 struct_v;
1866         u32 struct_len;
1867         u32 header_len;
1868         void *header_end;
1869         int ret;
1870
1871         ceph_decode_32_safe(p, end, header_len, e_inval);
1872         header_end = *p + header_len;
1873
1874         ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1875                                   &struct_len);
1876         if (ret)
1877                 return ret;
1878
1879         ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1880
1881         *p = header_end;
1882         return 0;
1883
1884 e_inval:
1885         return -EINVAL;
1886 }
1887
1888 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1889 {
1890         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1891         CEPH_DEFINE_OID_ONSTACK(oid);
1892         struct page **pages;
1893         void *p, *end;
1894         size_t reply_len;
1895         u64 num_objects;
1896         u64 object_map_bytes;
1897         u64 object_map_size;
1898         int num_pages;
1899         int ret;
1900
1901         rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1902
1903         num_objects = ceph_get_num_objects(&rbd_dev->layout,
1904                                            rbd_dev->mapping.size);
1905         object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1906                                             BITS_PER_BYTE);
1907         num_pages = calc_pages_for(0, object_map_bytes) + 1;
1908         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1909         if (IS_ERR(pages))
1910                 return PTR_ERR(pages);
1911
1912         reply_len = num_pages * PAGE_SIZE;
1913         rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1914         ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1915                              "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1916                              NULL, 0, pages, &reply_len);
1917         if (ret)
1918                 goto out;
1919
1920         p = page_address(pages[0]);
1921         end = p + min(reply_len, (size_t)PAGE_SIZE);
1922         ret = decode_object_map_header(&p, end, &object_map_size);
1923         if (ret)
1924                 goto out;
1925
1926         if (object_map_size != num_objects) {
1927                 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1928                          object_map_size, num_objects);
1929                 ret = -EINVAL;
1930                 goto out;
1931         }
1932
1933         if (offset_in_page(p) + object_map_bytes > reply_len) {
1934                 ret = -EINVAL;
1935                 goto out;
1936         }
1937
1938         rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1939         if (!rbd_dev->object_map) {
1940                 ret = -ENOMEM;
1941                 goto out;
1942         }
1943
1944         rbd_dev->object_map_size = object_map_size;
1945         ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1946                                    offset_in_page(p), object_map_bytes);
1947
1948 out:
1949         ceph_release_page_vector(pages, num_pages);
1950         return ret;
1951 }
1952
1953 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1954 {
1955         kvfree(rbd_dev->object_map);
1956         rbd_dev->object_map = NULL;
1957         rbd_dev->object_map_size = 0;
1958 }
1959
1960 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1961 {
1962         int ret;
1963
1964         ret = __rbd_object_map_load(rbd_dev);
1965         if (ret)
1966                 return ret;
1967
1968         ret = rbd_dev_v2_get_flags(rbd_dev);
1969         if (ret) {
1970                 rbd_object_map_free(rbd_dev);
1971                 return ret;
1972         }
1973
1974         if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1975                 rbd_warn(rbd_dev, "object map is invalid");
1976
1977         return 0;
1978 }
1979
1980 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1981 {
1982         int ret;
1983
1984         ret = rbd_object_map_lock(rbd_dev);
1985         if (ret)
1986                 return ret;
1987
1988         ret = rbd_object_map_load(rbd_dev);
1989         if (ret) {
1990                 rbd_object_map_unlock(rbd_dev);
1991                 return ret;
1992         }
1993
1994         return 0;
1995 }
1996
1997 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1998 {
1999         rbd_object_map_free(rbd_dev);
2000         rbd_object_map_unlock(rbd_dev);
2001 }
2002
2003 /*
2004  * This function needs snap_id (or more precisely just something to
2005  * distinguish between HEAD and snapshot object maps), new_state and
2006  * current_state that were passed to rbd_object_map_update().
2007  *
2008  * To avoid allocating and stashing a context we piggyback on the OSD
2009  * request.  A HEAD update has two ops (assert_locked).  For new_state
2010  * and current_state we decode our own object_map_update op, encoded in
2011  * rbd_cls_object_map_update().
2012  */
2013 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
2014                                         struct ceph_osd_request *osd_req)
2015 {
2016         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2017         struct ceph_osd_data *osd_data;
2018         u64 objno;
2019         u8 state, new_state, current_state;
2020         bool has_current_state;
2021         void *p;
2022
2023         if (osd_req->r_result)
2024                 return osd_req->r_result;
2025
2026         /*
2027          * Nothing to do for a snapshot object map.
2028          */
2029         if (osd_req->r_num_ops == 1)
2030                 return 0;
2031
2032         /*
2033          * Update in-memory HEAD object map.
2034          */
2035         rbd_assert(osd_req->r_num_ops == 2);
2036         osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
2037         rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
2038
2039         p = page_address(osd_data->pages[0]);
2040         objno = ceph_decode_64(&p);
2041         rbd_assert(objno == obj_req->ex.oe_objno);
2042         rbd_assert(ceph_decode_64(&p) == objno + 1);
2043         new_state = ceph_decode_8(&p);
2044         has_current_state = ceph_decode_8(&p);
2045         if (has_current_state)
2046                 current_state = ceph_decode_8(&p);
2047
2048         spin_lock(&rbd_dev->object_map_lock);
2049         state = __rbd_object_map_get(rbd_dev, objno);
2050         if (!has_current_state || current_state == state ||
2051             (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
2052                 __rbd_object_map_set(rbd_dev, objno, new_state);
2053         spin_unlock(&rbd_dev->object_map_lock);
2054
2055         return 0;
2056 }
2057
2058 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2059 {
2060         struct rbd_obj_request *obj_req = osd_req->r_priv;
2061         int result;
2062
2063         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2064              osd_req->r_result, obj_req);
2065
2066         result = rbd_object_map_update_finish(obj_req, osd_req);
2067         rbd_obj_handle_request(obj_req, result);
2068 }
2069
2070 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2071 {
2072         u8 state = rbd_object_map_get(rbd_dev, objno);
2073
2074         if (state == new_state ||
2075             (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2076             (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2077                 return false;
2078
2079         return true;
2080 }
2081
2082 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2083                                      int which, u64 objno, u8 new_state,
2084                                      const u8 *current_state)
2085 {
2086         struct page **pages;
2087         void *p, *start;
2088         int ret;
2089
2090         ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2091         if (ret)
2092                 return ret;
2093
2094         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2095         if (IS_ERR(pages))
2096                 return PTR_ERR(pages);
2097
2098         p = start = page_address(pages[0]);
2099         ceph_encode_64(&p, objno);
2100         ceph_encode_64(&p, objno + 1);
2101         ceph_encode_8(&p, new_state);
2102         if (current_state) {
2103                 ceph_encode_8(&p, 1);
2104                 ceph_encode_8(&p, *current_state);
2105         } else {
2106                 ceph_encode_8(&p, 0);
2107         }
2108
2109         osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2110                                           false, true);
2111         return 0;
2112 }
2113
2114 /*
2115  * Return:
2116  *   0 - object map update sent
2117  *   1 - object map update isn't needed
2118  *  <0 - error
2119  */
2120 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2121                                  u8 new_state, const u8 *current_state)
2122 {
2123         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2124         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2125         struct ceph_osd_request *req;
2126         int num_ops = 1;
2127         int which = 0;
2128         int ret;
2129
2130         if (snap_id == CEPH_NOSNAP) {
2131                 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2132                         return 1;
2133
2134                 num_ops++; /* assert_locked */
2135         }
2136
2137         req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2138         if (!req)
2139                 return -ENOMEM;
2140
2141         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2142         req->r_callback = rbd_object_map_callback;
2143         req->r_priv = obj_req;
2144
2145         rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2146         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2147         req->r_flags = CEPH_OSD_FLAG_WRITE;
2148         ktime_get_real_ts64(&req->r_mtime);
2149
2150         if (snap_id == CEPH_NOSNAP) {
2151                 /*
2152                  * Protect against possible race conditions during lock
2153                  * ownership transitions.
2154                  */
2155                 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2156                                              CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2157                 if (ret)
2158                         return ret;
2159         }
2160
2161         ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2162                                         new_state, current_state);
2163         if (ret)
2164                 return ret;
2165
2166         ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2167         if (ret)
2168                 return ret;
2169
2170         ceph_osdc_start_request(osdc, req, false);
2171         return 0;
2172 }
2173
2174 static void prune_extents(struct ceph_file_extent *img_extents,
2175                           u32 *num_img_extents, u64 overlap)
2176 {
2177         u32 cnt = *num_img_extents;
2178
2179         /* drop extents completely beyond the overlap */
2180         while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2181                 cnt--;
2182
2183         if (cnt) {
2184                 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2185
2186                 /* trim final overlapping extent */
2187                 if (ex->fe_off + ex->fe_len > overlap)
2188                         ex->fe_len = overlap - ex->fe_off;
2189         }
2190
2191         *num_img_extents = cnt;
2192 }
2193
2194 /*
2195  * Determine the byte range(s) covered by either just the object extent
2196  * or the entire object in the parent image.
2197  */
2198 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2199                                     bool entire)
2200 {
2201         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2202         int ret;
2203
2204         if (!rbd_dev->parent_overlap)
2205                 return 0;
2206
2207         ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2208                                   entire ? 0 : obj_req->ex.oe_off,
2209                                   entire ? rbd_dev->layout.object_size :
2210                                                         obj_req->ex.oe_len,
2211                                   &obj_req->img_extents,
2212                                   &obj_req->num_img_extents);
2213         if (ret)
2214                 return ret;
2215
2216         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2217                       rbd_dev->parent_overlap);
2218         return 0;
2219 }
2220
2221 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2222 {
2223         struct rbd_obj_request *obj_req = osd_req->r_priv;
2224
2225         switch (obj_req->img_request->data_type) {
2226         case OBJ_REQUEST_BIO:
2227                 osd_req_op_extent_osd_data_bio(osd_req, which,
2228                                                &obj_req->bio_pos,
2229                                                obj_req->ex.oe_len);
2230                 break;
2231         case OBJ_REQUEST_BVECS:
2232         case OBJ_REQUEST_OWN_BVECS:
2233                 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2234                                                         obj_req->ex.oe_len);
2235                 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2236                 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2237                                                     &obj_req->bvec_pos);
2238                 break;
2239         default:
2240                 BUG();
2241         }
2242 }
2243
2244 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2245 {
2246         struct page **pages;
2247
2248         /*
2249          * The response data for a STAT call consists of:
2250          *     le64 length;
2251          *     struct {
2252          *         le32 tv_sec;
2253          *         le32 tv_nsec;
2254          *     } mtime;
2255          */
2256         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2257         if (IS_ERR(pages))
2258                 return PTR_ERR(pages);
2259
2260         osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2261         osd_req_op_raw_data_in_pages(osd_req, which, pages,
2262                                      8 + sizeof(struct ceph_timespec),
2263                                      0, false, true);
2264         return 0;
2265 }
2266
2267 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2268                                 u32 bytes)
2269 {
2270         struct rbd_obj_request *obj_req = osd_req->r_priv;
2271         int ret;
2272
2273         ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2274         if (ret)
2275                 return ret;
2276
2277         osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2278                                           obj_req->copyup_bvec_count, bytes);
2279         return 0;
2280 }
2281
2282 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2283 {
2284         obj_req->read_state = RBD_OBJ_READ_START;
2285         return 0;
2286 }
2287
2288 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2289                                       int which)
2290 {
2291         struct rbd_obj_request *obj_req = osd_req->r_priv;
2292         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2293         u16 opcode;
2294
2295         if (!use_object_map(rbd_dev) ||
2296             !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2297                 osd_req_op_alloc_hint_init(osd_req, which++,
2298                                            rbd_dev->layout.object_size,
2299                                            rbd_dev->layout.object_size,
2300                                            rbd_dev->opts->alloc_hint_flags);
2301         }
2302
2303         if (rbd_obj_is_entire(obj_req))
2304                 opcode = CEPH_OSD_OP_WRITEFULL;
2305         else
2306                 opcode = CEPH_OSD_OP_WRITE;
2307
2308         osd_req_op_extent_init(osd_req, which, opcode,
2309                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2310         rbd_osd_setup_data(osd_req, which);
2311 }
2312
2313 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2314 {
2315         int ret;
2316
2317         /* reverse map the entire object onto the parent */
2318         ret = rbd_obj_calc_img_extents(obj_req, true);
2319         if (ret)
2320                 return ret;
2321
2322         obj_req->write_state = RBD_OBJ_WRITE_START;
2323         return 0;
2324 }
2325
2326 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2327 {
2328         return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2329                                           CEPH_OSD_OP_ZERO;
2330 }
2331
2332 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2333                                         int which)
2334 {
2335         struct rbd_obj_request *obj_req = osd_req->r_priv;
2336
2337         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2338                 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2339                 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2340         } else {
2341                 osd_req_op_extent_init(osd_req, which,
2342                                        truncate_or_zero_opcode(obj_req),
2343                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2344                                        0, 0);
2345         }
2346 }
2347
2348 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2349 {
2350         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2351         u64 off, next_off;
2352         int ret;
2353
2354         /*
2355          * Align the range to alloc_size boundary and punt on discards
2356          * that are too small to free up any space.
2357          *
2358          * alloc_size == object_size && is_tail() is a special case for
2359          * filestore with filestore_punch_hole = false, needed to allow
2360          * truncate (in addition to delete).
2361          */
2362         if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2363             !rbd_obj_is_tail(obj_req)) {
2364                 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2365                 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2366                                       rbd_dev->opts->alloc_size);
2367                 if (off >= next_off)
2368                         return 1;
2369
2370                 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2371                      obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2372                      off, next_off - off);
2373                 obj_req->ex.oe_off = off;
2374                 obj_req->ex.oe_len = next_off - off;
2375         }
2376
2377         /* reverse map the entire object onto the parent */
2378         ret = rbd_obj_calc_img_extents(obj_req, true);
2379         if (ret)
2380                 return ret;
2381
2382         obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2383         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2384                 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2385
2386         obj_req->write_state = RBD_OBJ_WRITE_START;
2387         return 0;
2388 }
2389
2390 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2391                                         int which)
2392 {
2393         struct rbd_obj_request *obj_req = osd_req->r_priv;
2394         u16 opcode;
2395
2396         if (rbd_obj_is_entire(obj_req)) {
2397                 if (obj_req->num_img_extents) {
2398                         if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2399                                 osd_req_op_init(osd_req, which++,
2400                                                 CEPH_OSD_OP_CREATE, 0);
2401                         opcode = CEPH_OSD_OP_TRUNCATE;
2402                 } else {
2403                         rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2404                         osd_req_op_init(osd_req, which++,
2405                                         CEPH_OSD_OP_DELETE, 0);
2406                         opcode = 0;
2407                 }
2408         } else {
2409                 opcode = truncate_or_zero_opcode(obj_req);
2410         }
2411
2412         if (opcode)
2413                 osd_req_op_extent_init(osd_req, which, opcode,
2414                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2415                                        0, 0);
2416 }
2417
2418 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2419 {
2420         int ret;
2421
2422         /* reverse map the entire object onto the parent */
2423         ret = rbd_obj_calc_img_extents(obj_req, true);
2424         if (ret)
2425                 return ret;
2426
2427         if (!obj_req->num_img_extents) {
2428                 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2429                 if (rbd_obj_is_entire(obj_req))
2430                         obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2431         }
2432
2433         obj_req->write_state = RBD_OBJ_WRITE_START;
2434         return 0;
2435 }
2436
2437 static int count_write_ops(struct rbd_obj_request *obj_req)
2438 {
2439         struct rbd_img_request *img_req = obj_req->img_request;
2440
2441         switch (img_req->op_type) {
2442         case OBJ_OP_WRITE:
2443                 if (!use_object_map(img_req->rbd_dev) ||
2444                     !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2445                         return 2; /* setallochint + write/writefull */
2446
2447                 return 1; /* write/writefull */
2448         case OBJ_OP_DISCARD:
2449                 return 1; /* delete/truncate/zero */
2450         case OBJ_OP_ZEROOUT:
2451                 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2452                     !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2453                         return 2; /* create + truncate */
2454
2455                 return 1; /* delete/truncate/zero */
2456         default:
2457                 BUG();
2458         }
2459 }
2460
2461 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2462                                     int which)
2463 {
2464         struct rbd_obj_request *obj_req = osd_req->r_priv;
2465
2466         switch (obj_req->img_request->op_type) {
2467         case OBJ_OP_WRITE:
2468                 __rbd_osd_setup_write_ops(osd_req, which);
2469                 break;
2470         case OBJ_OP_DISCARD:
2471                 __rbd_osd_setup_discard_ops(osd_req, which);
2472                 break;
2473         case OBJ_OP_ZEROOUT:
2474                 __rbd_osd_setup_zeroout_ops(osd_req, which);
2475                 break;
2476         default:
2477                 BUG();
2478         }
2479 }
2480
2481 /*
2482  * Prune the list of object requests (adjust offset and/or length, drop
2483  * redundant requests).  Prepare object request state machines and image
2484  * request state machine for execution.
2485  */
2486 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2487 {
2488         struct rbd_obj_request *obj_req, *next_obj_req;
2489         int ret;
2490
2491         for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2492                 switch (img_req->op_type) {
2493                 case OBJ_OP_READ:
2494                         ret = rbd_obj_init_read(obj_req);
2495                         break;
2496                 case OBJ_OP_WRITE:
2497                         ret = rbd_obj_init_write(obj_req);
2498                         break;
2499                 case OBJ_OP_DISCARD:
2500                         ret = rbd_obj_init_discard(obj_req);
2501                         break;
2502                 case OBJ_OP_ZEROOUT:
2503                         ret = rbd_obj_init_zeroout(obj_req);
2504                         break;
2505                 default:
2506                         BUG();
2507                 }
2508                 if (ret < 0)
2509                         return ret;
2510                 if (ret > 0) {
2511                         rbd_img_obj_request_del(img_req, obj_req);
2512                         continue;
2513                 }
2514         }
2515
2516         img_req->state = RBD_IMG_START;
2517         return 0;
2518 }
2519
2520 union rbd_img_fill_iter {
2521         struct ceph_bio_iter    bio_iter;
2522         struct ceph_bvec_iter   bvec_iter;
2523 };
2524
2525 struct rbd_img_fill_ctx {
2526         enum obj_request_type   pos_type;
2527         union rbd_img_fill_iter *pos;
2528         union rbd_img_fill_iter iter;
2529         ceph_object_extent_fn_t set_pos_fn;
2530         ceph_object_extent_fn_t count_fn;
2531         ceph_object_extent_fn_t copy_fn;
2532 };
2533
2534 static struct ceph_object_extent *alloc_object_extent(void *arg)
2535 {
2536         struct rbd_img_request *img_req = arg;
2537         struct rbd_obj_request *obj_req;
2538
2539         obj_req = rbd_obj_request_create();
2540         if (!obj_req)
2541                 return NULL;
2542
2543         rbd_img_obj_request_add(img_req, obj_req);
2544         return &obj_req->ex;
2545 }
2546
2547 /*
2548  * While su != os && sc == 1 is technically not fancy (it's the same
2549  * layout as su == os && sc == 1), we can't use the nocopy path for it
2550  * because ->set_pos_fn() should be called only once per object.
2551  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2552  * treat su != os && sc == 1 as fancy.
2553  */
2554 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2555 {
2556         return l->stripe_unit != l->object_size;
2557 }
2558
2559 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2560                                        struct ceph_file_extent *img_extents,
2561                                        u32 num_img_extents,
2562                                        struct rbd_img_fill_ctx *fctx)
2563 {
2564         u32 i;
2565         int ret;
2566
2567         img_req->data_type = fctx->pos_type;
2568
2569         /*
2570          * Create object requests and set each object request's starting
2571          * position in the provided bio (list) or bio_vec array.
2572          */
2573         fctx->iter = *fctx->pos;
2574         for (i = 0; i < num_img_extents; i++) {
2575                 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2576                                            img_extents[i].fe_off,
2577                                            img_extents[i].fe_len,
2578                                            &img_req->object_extents,
2579                                            alloc_object_extent, img_req,
2580                                            fctx->set_pos_fn, &fctx->iter);
2581                 if (ret)
2582                         return ret;
2583         }
2584
2585         return __rbd_img_fill_request(img_req);
2586 }
2587
2588 /*
2589  * Map a list of image extents to a list of object extents, create the
2590  * corresponding object requests (normally each to a different object,
2591  * but not always) and add them to @img_req.  For each object request,
2592  * set up its data descriptor to point to the corresponding chunk(s) of
2593  * @fctx->pos data buffer.
2594  *
2595  * Because ceph_file_to_extents() will merge adjacent object extents
2596  * together, each object request's data descriptor may point to multiple
2597  * different chunks of @fctx->pos data buffer.
2598  *
2599  * @fctx->pos data buffer is assumed to be large enough.
2600  */
2601 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2602                                 struct ceph_file_extent *img_extents,
2603                                 u32 num_img_extents,
2604                                 struct rbd_img_fill_ctx *fctx)
2605 {
2606         struct rbd_device *rbd_dev = img_req->rbd_dev;
2607         struct rbd_obj_request *obj_req;
2608         u32 i;
2609         int ret;
2610
2611         if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2612             !rbd_layout_is_fancy(&rbd_dev->layout))
2613                 return rbd_img_fill_request_nocopy(img_req, img_extents,
2614                                                    num_img_extents, fctx);
2615
2616         img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2617
2618         /*
2619          * Create object requests and determine ->bvec_count for each object
2620          * request.  Note that ->bvec_count sum over all object requests may
2621          * be greater than the number of bio_vecs in the provided bio (list)
2622          * or bio_vec array because when mapped, those bio_vecs can straddle
2623          * stripe unit boundaries.
2624          */
2625         fctx->iter = *fctx->pos;
2626         for (i = 0; i < num_img_extents; i++) {
2627                 ret = ceph_file_to_extents(&rbd_dev->layout,
2628                                            img_extents[i].fe_off,
2629                                            img_extents[i].fe_len,
2630                                            &img_req->object_extents,
2631                                            alloc_object_extent, img_req,
2632                                            fctx->count_fn, &fctx->iter);
2633                 if (ret)
2634                         return ret;
2635         }
2636
2637         for_each_obj_request(img_req, obj_req) {
2638                 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2639                                               sizeof(*obj_req->bvec_pos.bvecs),
2640                                               GFP_NOIO);
2641                 if (!obj_req->bvec_pos.bvecs)
2642                         return -ENOMEM;
2643         }
2644
2645         /*
2646          * Fill in each object request's private bio_vec array, splitting and
2647          * rearranging the provided bio_vecs in stripe unit chunks as needed.
2648          */
2649         fctx->iter = *fctx->pos;
2650         for (i = 0; i < num_img_extents; i++) {
2651                 ret = ceph_iterate_extents(&rbd_dev->layout,
2652                                            img_extents[i].fe_off,
2653                                            img_extents[i].fe_len,
2654                                            &img_req->object_extents,
2655                                            fctx->copy_fn, &fctx->iter);
2656                 if (ret)
2657                         return ret;
2658         }
2659
2660         return __rbd_img_fill_request(img_req);
2661 }
2662
2663 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2664                                u64 off, u64 len)
2665 {
2666         struct ceph_file_extent ex = { off, len };
2667         union rbd_img_fill_iter dummy = {};
2668         struct rbd_img_fill_ctx fctx = {
2669                 .pos_type = OBJ_REQUEST_NODATA,
2670                 .pos = &dummy,
2671         };
2672
2673         return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2674 }
2675
2676 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2677 {
2678         struct rbd_obj_request *obj_req =
2679             container_of(ex, struct rbd_obj_request, ex);
2680         struct ceph_bio_iter *it = arg;
2681
2682         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2683         obj_req->bio_pos = *it;
2684         ceph_bio_iter_advance(it, bytes);
2685 }
2686
2687 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2688 {
2689         struct rbd_obj_request *obj_req =
2690             container_of(ex, struct rbd_obj_request, ex);
2691         struct ceph_bio_iter *it = arg;
2692
2693         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2694         ceph_bio_iter_advance_step(it, bytes, ({
2695                 obj_req->bvec_count++;
2696         }));
2697
2698 }
2699
2700 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2701 {
2702         struct rbd_obj_request *obj_req =
2703             container_of(ex, struct rbd_obj_request, ex);
2704         struct ceph_bio_iter *it = arg;
2705
2706         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2707         ceph_bio_iter_advance_step(it, bytes, ({
2708                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2709                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2710         }));
2711 }
2712
2713 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2714                                    struct ceph_file_extent *img_extents,
2715                                    u32 num_img_extents,
2716                                    struct ceph_bio_iter *bio_pos)
2717 {
2718         struct rbd_img_fill_ctx fctx = {
2719                 .pos_type = OBJ_REQUEST_BIO,
2720                 .pos = (union rbd_img_fill_iter *)bio_pos,
2721                 .set_pos_fn = set_bio_pos,
2722                 .count_fn = count_bio_bvecs,
2723                 .copy_fn = copy_bio_bvecs,
2724         };
2725
2726         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2727                                     &fctx);
2728 }
2729
2730 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2731                                  u64 off, u64 len, struct bio *bio)
2732 {
2733         struct ceph_file_extent ex = { off, len };
2734         struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2735
2736         return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2737 }
2738
2739 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2740 {
2741         struct rbd_obj_request *obj_req =
2742             container_of(ex, struct rbd_obj_request, ex);
2743         struct ceph_bvec_iter *it = arg;
2744
2745         obj_req->bvec_pos = *it;
2746         ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2747         ceph_bvec_iter_advance(it, bytes);
2748 }
2749
2750 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2751 {
2752         struct rbd_obj_request *obj_req =
2753             container_of(ex, struct rbd_obj_request, ex);
2754         struct ceph_bvec_iter *it = arg;
2755
2756         ceph_bvec_iter_advance_step(it, bytes, ({
2757                 obj_req->bvec_count++;
2758         }));
2759 }
2760
2761 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2762 {
2763         struct rbd_obj_request *obj_req =
2764             container_of(ex, struct rbd_obj_request, ex);
2765         struct ceph_bvec_iter *it = arg;
2766
2767         ceph_bvec_iter_advance_step(it, bytes, ({
2768                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2769                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2770         }));
2771 }
2772
2773 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2774                                      struct ceph_file_extent *img_extents,
2775                                      u32 num_img_extents,
2776                                      struct ceph_bvec_iter *bvec_pos)
2777 {
2778         struct rbd_img_fill_ctx fctx = {
2779                 .pos_type = OBJ_REQUEST_BVECS,
2780                 .pos = (union rbd_img_fill_iter *)bvec_pos,
2781                 .set_pos_fn = set_bvec_pos,
2782                 .count_fn = count_bvecs,
2783                 .copy_fn = copy_bvecs,
2784         };
2785
2786         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2787                                     &fctx);
2788 }
2789
2790 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2791                                    struct ceph_file_extent *img_extents,
2792                                    u32 num_img_extents,
2793                                    struct bio_vec *bvecs)
2794 {
2795         struct ceph_bvec_iter it = {
2796                 .bvecs = bvecs,
2797                 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2798                                                              num_img_extents) },
2799         };
2800
2801         return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2802                                          &it);
2803 }
2804
2805 static void rbd_img_handle_request_work(struct work_struct *work)
2806 {
2807         struct rbd_img_request *img_req =
2808             container_of(work, struct rbd_img_request, work);
2809
2810         rbd_img_handle_request(img_req, img_req->work_result);
2811 }
2812
2813 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2814 {
2815         INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2816         img_req->work_result = result;
2817         queue_work(rbd_wq, &img_req->work);
2818 }
2819
2820 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2821 {
2822         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2823
2824         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2825                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2826                 return true;
2827         }
2828
2829         dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2830              obj_req->ex.oe_objno);
2831         return false;
2832 }
2833
2834 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2835 {
2836         struct ceph_osd_request *osd_req;
2837         int ret;
2838
2839         osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2840         if (IS_ERR(osd_req))
2841                 return PTR_ERR(osd_req);
2842
2843         osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2844                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2845         rbd_osd_setup_data(osd_req, 0);
2846         rbd_osd_format_read(osd_req);
2847
2848         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2849         if (ret)
2850                 return ret;
2851
2852         rbd_osd_submit(osd_req);
2853         return 0;
2854 }
2855
2856 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2857 {
2858         struct rbd_img_request *img_req = obj_req->img_request;
2859         struct rbd_device *parent = img_req->rbd_dev->parent;
2860         struct rbd_img_request *child_img_req;
2861         int ret;
2862
2863         child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2864         if (!child_img_req)
2865                 return -ENOMEM;
2866
2867         rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2868         __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2869         child_img_req->obj_request = obj_req;
2870
2871         down_read(&parent->header_rwsem);
2872         rbd_img_capture_header(child_img_req);
2873         up_read(&parent->header_rwsem);
2874
2875         dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2876              obj_req);
2877
2878         if (!rbd_img_is_write(img_req)) {
2879                 switch (img_req->data_type) {
2880                 case OBJ_REQUEST_BIO:
2881                         ret = __rbd_img_fill_from_bio(child_img_req,
2882                                                       obj_req->img_extents,
2883                                                       obj_req->num_img_extents,
2884                                                       &obj_req->bio_pos);
2885                         break;
2886                 case OBJ_REQUEST_BVECS:
2887                 case OBJ_REQUEST_OWN_BVECS:
2888                         ret = __rbd_img_fill_from_bvecs(child_img_req,
2889                                                       obj_req->img_extents,
2890                                                       obj_req->num_img_extents,
2891                                                       &obj_req->bvec_pos);
2892                         break;
2893                 default:
2894                         BUG();
2895                 }
2896         } else {
2897                 ret = rbd_img_fill_from_bvecs(child_img_req,
2898                                               obj_req->img_extents,
2899                                               obj_req->num_img_extents,
2900                                               obj_req->copyup_bvecs);
2901         }
2902         if (ret) {
2903                 rbd_img_request_destroy(child_img_req);
2904                 return ret;
2905         }
2906
2907         /* avoid parent chain recursion */
2908         rbd_img_schedule(child_img_req, 0);
2909         return 0;
2910 }
2911
2912 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2913 {
2914         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2915         int ret;
2916
2917 again:
2918         switch (obj_req->read_state) {
2919         case RBD_OBJ_READ_START:
2920                 rbd_assert(!*result);
2921
2922                 if (!rbd_obj_may_exist(obj_req)) {
2923                         *result = -ENOENT;
2924                         obj_req->read_state = RBD_OBJ_READ_OBJECT;
2925                         goto again;
2926                 }
2927
2928                 ret = rbd_obj_read_object(obj_req);
2929                 if (ret) {
2930                         *result = ret;
2931                         return true;
2932                 }
2933                 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2934                 return false;
2935         case RBD_OBJ_READ_OBJECT:
2936                 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2937                         /* reverse map this object extent onto the parent */
2938                         ret = rbd_obj_calc_img_extents(obj_req, false);
2939                         if (ret) {
2940                                 *result = ret;
2941                                 return true;
2942                         }
2943                         if (obj_req->num_img_extents) {
2944                                 ret = rbd_obj_read_from_parent(obj_req);
2945                                 if (ret) {
2946                                         *result = ret;
2947                                         return true;
2948                                 }
2949                                 obj_req->read_state = RBD_OBJ_READ_PARENT;
2950                                 return false;
2951                         }
2952                 }
2953
2954                 /*
2955                  * -ENOENT means a hole in the image -- zero-fill the entire
2956                  * length of the request.  A short read also implies zero-fill
2957                  * to the end of the request.
2958                  */
2959                 if (*result == -ENOENT) {
2960                         rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2961                         *result = 0;
2962                 } else if (*result >= 0) {
2963                         if (*result < obj_req->ex.oe_len)
2964                                 rbd_obj_zero_range(obj_req, *result,
2965                                                 obj_req->ex.oe_len - *result);
2966                         else
2967                                 rbd_assert(*result == obj_req->ex.oe_len);
2968                         *result = 0;
2969                 }
2970                 return true;
2971         case RBD_OBJ_READ_PARENT:
2972                 /*
2973                  * The parent image is read only up to the overlap -- zero-fill
2974                  * from the overlap to the end of the request.
2975                  */
2976                 if (!*result) {
2977                         u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2978
2979                         if (obj_overlap < obj_req->ex.oe_len)
2980                                 rbd_obj_zero_range(obj_req, obj_overlap,
2981                                             obj_req->ex.oe_len - obj_overlap);
2982                 }
2983                 return true;
2984         default:
2985                 BUG();
2986         }
2987 }
2988
2989 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2990 {
2991         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2992
2993         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2994                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2995
2996         if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2997             (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2998                 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2999                 return true;
3000         }
3001
3002         return false;
3003 }
3004
3005 /*
3006  * Return:
3007  *   0 - object map update sent
3008  *   1 - object map update isn't needed
3009  *  <0 - error
3010  */
3011 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
3012 {
3013         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3014         u8 new_state;
3015
3016         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3017                 return 1;
3018
3019         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3020                 new_state = OBJECT_PENDING;
3021         else
3022                 new_state = OBJECT_EXISTS;
3023
3024         return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
3025 }
3026
3027 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
3028 {
3029         struct ceph_osd_request *osd_req;
3030         int num_ops = count_write_ops(obj_req);
3031         int which = 0;
3032         int ret;
3033
3034         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
3035                 num_ops++; /* stat */
3036
3037         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3038         if (IS_ERR(osd_req))
3039                 return PTR_ERR(osd_req);
3040
3041         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3042                 ret = rbd_osd_setup_stat(osd_req, which++);
3043                 if (ret)
3044                         return ret;
3045         }
3046
3047         rbd_osd_setup_write_ops(osd_req, which);
3048         rbd_osd_format_write(osd_req);
3049
3050         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3051         if (ret)
3052                 return ret;
3053
3054         rbd_osd_submit(osd_req);
3055         return 0;
3056 }
3057
3058 /*
3059  * copyup_bvecs pages are never highmem pages
3060  */
3061 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3062 {
3063         struct ceph_bvec_iter it = {
3064                 .bvecs = bvecs,
3065                 .iter = { .bi_size = bytes },
3066         };
3067
3068         ceph_bvec_iter_advance_step(&it, bytes, ({
3069                 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3070                                bv.bv_len))
3071                         return false;
3072         }));
3073         return true;
3074 }
3075
3076 #define MODS_ONLY       U32_MAX
3077
3078 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3079                                       u32 bytes)
3080 {
3081         struct ceph_osd_request *osd_req;
3082         int ret;
3083
3084         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3085         rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3086
3087         osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3088         if (IS_ERR(osd_req))
3089                 return PTR_ERR(osd_req);
3090
3091         ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3092         if (ret)
3093                 return ret;
3094
3095         rbd_osd_format_write(osd_req);
3096
3097         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3098         if (ret)
3099                 return ret;
3100
3101         rbd_osd_submit(osd_req);
3102         return 0;
3103 }
3104
3105 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3106                                         u32 bytes)
3107 {
3108         struct ceph_osd_request *osd_req;
3109         int num_ops = count_write_ops(obj_req);
3110         int which = 0;
3111         int ret;
3112
3113         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3114
3115         if (bytes != MODS_ONLY)
3116                 num_ops++; /* copyup */
3117
3118         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3119         if (IS_ERR(osd_req))
3120                 return PTR_ERR(osd_req);
3121
3122         if (bytes != MODS_ONLY) {
3123                 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3124                 if (ret)
3125                         return ret;
3126         }
3127
3128         rbd_osd_setup_write_ops(osd_req, which);
3129         rbd_osd_format_write(osd_req);
3130
3131         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3132         if (ret)
3133                 return ret;
3134
3135         rbd_osd_submit(osd_req);
3136         return 0;
3137 }
3138
3139 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3140 {
3141         u32 i;
3142
3143         rbd_assert(!obj_req->copyup_bvecs);
3144         obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3145         obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3146                                         sizeof(*obj_req->copyup_bvecs),
3147                                         GFP_NOIO);
3148         if (!obj_req->copyup_bvecs)
3149                 return -ENOMEM;
3150
3151         for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3152                 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3153
3154                 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3155                 if (!obj_req->copyup_bvecs[i].bv_page)
3156                         return -ENOMEM;
3157
3158                 obj_req->copyup_bvecs[i].bv_offset = 0;
3159                 obj_req->copyup_bvecs[i].bv_len = len;
3160                 obj_overlap -= len;
3161         }
3162
3163         rbd_assert(!obj_overlap);
3164         return 0;
3165 }
3166
3167 /*
3168  * The target object doesn't exist.  Read the data for the entire
3169  * target object up to the overlap point (if any) from the parent,
3170  * so we can use it for a copyup.
3171  */
3172 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3173 {
3174         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3175         int ret;
3176
3177         rbd_assert(obj_req->num_img_extents);
3178         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3179                       rbd_dev->parent_overlap);
3180         if (!obj_req->num_img_extents) {
3181                 /*
3182                  * The overlap has become 0 (most likely because the
3183                  * image has been flattened).  Re-submit the original write
3184                  * request -- pass MODS_ONLY since the copyup isn't needed
3185                  * anymore.
3186                  */
3187                 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3188         }
3189
3190         ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3191         if (ret)
3192                 return ret;
3193
3194         return rbd_obj_read_from_parent(obj_req);
3195 }
3196
3197 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3198 {
3199         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3200         struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3201         u8 new_state;
3202         u32 i;
3203         int ret;
3204
3205         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3206
3207         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3208                 return;
3209
3210         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3211                 return;
3212
3213         for (i = 0; i < snapc->num_snaps; i++) {
3214                 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3215                     i + 1 < snapc->num_snaps)
3216                         new_state = OBJECT_EXISTS_CLEAN;
3217                 else
3218                         new_state = OBJECT_EXISTS;
3219
3220                 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3221                                             new_state, NULL);
3222                 if (ret < 0) {
3223                         obj_req->pending.result = ret;
3224                         return;
3225                 }
3226
3227                 rbd_assert(!ret);
3228                 obj_req->pending.num_pending++;
3229         }
3230 }
3231
3232 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3233 {
3234         u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3235         int ret;
3236
3237         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3238
3239         /*
3240          * Only send non-zero copyup data to save some I/O and network
3241          * bandwidth -- zero copyup data is equivalent to the object not
3242          * existing.
3243          */
3244         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3245                 bytes = 0;
3246
3247         if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3248                 /*
3249                  * Send a copyup request with an empty snapshot context to
3250                  * deep-copyup the object through all existing snapshots.
3251                  * A second request with the current snapshot context will be
3252                  * sent for the actual modification.
3253                  */
3254                 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3255                 if (ret) {
3256                         obj_req->pending.result = ret;
3257                         return;
3258                 }
3259
3260                 obj_req->pending.num_pending++;
3261                 bytes = MODS_ONLY;
3262         }
3263
3264         ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3265         if (ret) {
3266                 obj_req->pending.result = ret;
3267                 return;
3268         }
3269
3270         obj_req->pending.num_pending++;
3271 }
3272
3273 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3274 {
3275         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3276         int ret;
3277
3278 again:
3279         switch (obj_req->copyup_state) {
3280         case RBD_OBJ_COPYUP_START:
3281                 rbd_assert(!*result);
3282
3283                 ret = rbd_obj_copyup_read_parent(obj_req);
3284                 if (ret) {
3285                         *result = ret;
3286                         return true;
3287                 }
3288                 if (obj_req->num_img_extents)
3289                         obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3290                 else
3291                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3292                 return false;
3293         case RBD_OBJ_COPYUP_READ_PARENT:
3294                 if (*result)
3295                         return true;
3296
3297                 if (is_zero_bvecs(obj_req->copyup_bvecs,
3298                                   rbd_obj_img_extents_bytes(obj_req))) {
3299                         dout("%s %p detected zeros\n", __func__, obj_req);
3300                         obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3301                 }
3302
3303                 rbd_obj_copyup_object_maps(obj_req);
3304                 if (!obj_req->pending.num_pending) {
3305                         *result = obj_req->pending.result;
3306                         obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3307                         goto again;
3308                 }
3309                 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3310                 return false;
3311         case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3312                 if (!pending_result_dec(&obj_req->pending, result))
3313                         return false;
3314                 fallthrough;
3315         case RBD_OBJ_COPYUP_OBJECT_MAPS:
3316                 if (*result) {
3317                         rbd_warn(rbd_dev, "snap object map update failed: %d",
3318                                  *result);
3319                         return true;
3320                 }
3321
3322                 rbd_obj_copyup_write_object(obj_req);
3323                 if (!obj_req->pending.num_pending) {
3324                         *result = obj_req->pending.result;
3325                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3326                         goto again;
3327                 }
3328                 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3329                 return false;
3330         case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3331                 if (!pending_result_dec(&obj_req->pending, result))
3332                         return false;
3333                 fallthrough;
3334         case RBD_OBJ_COPYUP_WRITE_OBJECT:
3335                 return true;
3336         default:
3337                 BUG();
3338         }
3339 }
3340
3341 /*
3342  * Return:
3343  *   0 - object map update sent
3344  *   1 - object map update isn't needed
3345  *  <0 - error
3346  */
3347 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3348 {
3349         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3350         u8 current_state = OBJECT_PENDING;
3351
3352         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3353                 return 1;
3354
3355         if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3356                 return 1;
3357
3358         return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3359                                      &current_state);
3360 }
3361
3362 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3363 {
3364         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3365         int ret;
3366
3367 again:
3368         switch (obj_req->write_state) {
3369         case RBD_OBJ_WRITE_START:
3370                 rbd_assert(!*result);
3371
3372                 rbd_obj_set_copyup_enabled(obj_req);
3373                 if (rbd_obj_write_is_noop(obj_req))
3374                         return true;
3375
3376                 ret = rbd_obj_write_pre_object_map(obj_req);
3377                 if (ret < 0) {
3378                         *result = ret;
3379                         return true;
3380                 }
3381                 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3382                 if (ret > 0)
3383                         goto again;
3384                 return false;
3385         case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3386                 if (*result) {
3387                         rbd_warn(rbd_dev, "pre object map update failed: %d",
3388                                  *result);
3389                         return true;
3390                 }
3391                 ret = rbd_obj_write_object(obj_req);
3392                 if (ret) {
3393                         *result = ret;
3394                         return true;
3395                 }
3396                 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3397                 return false;
3398         case RBD_OBJ_WRITE_OBJECT:
3399                 if (*result == -ENOENT) {
3400                         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3401                                 *result = 0;
3402                                 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3403                                 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3404                                 goto again;
3405                         }
3406                         /*
3407                          * On a non-existent object:
3408                          *   delete - -ENOENT, truncate/zero - 0
3409                          */
3410                         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3411                                 *result = 0;
3412                 }
3413                 if (*result)
3414                         return true;
3415
3416                 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3417                 goto again;
3418         case __RBD_OBJ_WRITE_COPYUP:
3419                 if (!rbd_obj_advance_copyup(obj_req, result))
3420                         return false;
3421                 fallthrough;
3422         case RBD_OBJ_WRITE_COPYUP:
3423                 if (*result) {
3424                         rbd_warn(rbd_dev, "copyup failed: %d", *result);
3425                         return true;
3426                 }
3427                 ret = rbd_obj_write_post_object_map(obj_req);
3428                 if (ret < 0) {
3429                         *result = ret;
3430                         return true;
3431                 }
3432                 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3433                 if (ret > 0)
3434                         goto again;
3435                 return false;
3436         case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3437                 if (*result)
3438                         rbd_warn(rbd_dev, "post object map update failed: %d",
3439                                  *result);
3440                 return true;
3441         default:
3442                 BUG();
3443         }
3444 }
3445
3446 /*
3447  * Return true if @obj_req is completed.
3448  */
3449 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3450                                      int *result)
3451 {
3452         struct rbd_img_request *img_req = obj_req->img_request;
3453         struct rbd_device *rbd_dev = img_req->rbd_dev;
3454         bool done;
3455
3456         mutex_lock(&obj_req->state_mutex);
3457         if (!rbd_img_is_write(img_req))
3458                 done = rbd_obj_advance_read(obj_req, result);
3459         else
3460                 done = rbd_obj_advance_write(obj_req, result);
3461         mutex_unlock(&obj_req->state_mutex);
3462
3463         if (done && *result) {
3464                 rbd_assert(*result < 0);
3465                 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3466                          obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3467                          obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3468         }
3469         return done;
3470 }
3471
3472 /*
3473  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3474  * recursion.
3475  */
3476 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3477 {
3478         if (__rbd_obj_handle_request(obj_req, &result))
3479                 rbd_img_handle_request(obj_req->img_request, result);
3480 }
3481
3482 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3483 {
3484         struct rbd_device *rbd_dev = img_req->rbd_dev;
3485
3486         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3487                 return false;
3488
3489         if (rbd_is_ro(rbd_dev))
3490                 return false;
3491
3492         rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3493         if (rbd_dev->opts->lock_on_read ||
3494             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3495                 return true;
3496
3497         return rbd_img_is_write(img_req);
3498 }
3499
3500 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3501 {
3502         struct rbd_device *rbd_dev = img_req->rbd_dev;
3503         bool locked;
3504
3505         lockdep_assert_held(&rbd_dev->lock_rwsem);
3506         locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3507         spin_lock(&rbd_dev->lock_lists_lock);
3508         rbd_assert(list_empty(&img_req->lock_item));
3509         if (!locked)
3510                 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3511         else
3512                 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3513         spin_unlock(&rbd_dev->lock_lists_lock);
3514         return locked;
3515 }
3516
3517 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3518 {
3519         struct rbd_device *rbd_dev = img_req->rbd_dev;
3520         bool need_wakeup = false;
3521
3522         lockdep_assert_held(&rbd_dev->lock_rwsem);
3523         spin_lock(&rbd_dev->lock_lists_lock);
3524         if (!list_empty(&img_req->lock_item)) {
3525                 list_del_init(&img_req->lock_item);
3526                 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3527                                list_empty(&rbd_dev->running_list));
3528         }
3529         spin_unlock(&rbd_dev->lock_lists_lock);
3530         if (need_wakeup)
3531                 complete(&rbd_dev->releasing_wait);
3532 }
3533
3534 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3535 {
3536         struct rbd_device *rbd_dev = img_req->rbd_dev;
3537
3538         if (!need_exclusive_lock(img_req))
3539                 return 1;
3540
3541         if (rbd_lock_add_request(img_req))
3542                 return 1;
3543
3544         if (rbd_dev->opts->exclusive) {
3545                 WARN_ON(1); /* lock got released? */
3546                 return -EROFS;
3547         }
3548
3549         /*
3550          * Note the use of mod_delayed_work() in rbd_acquire_lock()
3551          * and cancel_delayed_work() in wake_lock_waiters().
3552          */
3553         dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3554         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3555         return 0;
3556 }
3557
3558 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3559 {
3560         struct rbd_device *rbd_dev = img_req->rbd_dev;
3561         struct rbd_obj_request *obj_req;
3562
3563         rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3564         rbd_assert(!need_exclusive_lock(img_req) ||
3565                    __rbd_is_lock_owner(rbd_dev));
3566
3567         if (rbd_img_is_write(img_req)) {
3568                 rbd_assert(!img_req->snapc);
3569                 down_read(&rbd_dev->header_rwsem);
3570                 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3571                 up_read(&rbd_dev->header_rwsem);
3572         }
3573
3574         for_each_obj_request(img_req, obj_req) {
3575                 int result = 0;
3576
3577                 if (__rbd_obj_handle_request(obj_req, &result)) {
3578                         if (result) {
3579                                 img_req->pending.result = result;
3580                                 return;
3581                         }
3582                 } else {
3583                         img_req->pending.num_pending++;
3584                 }
3585         }
3586 }
3587
3588 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3589 {
3590         int ret;
3591
3592 again:
3593         switch (img_req->state) {
3594         case RBD_IMG_START:
3595                 rbd_assert(!*result);
3596
3597                 ret = rbd_img_exclusive_lock(img_req);
3598                 if (ret < 0) {
3599                         *result = ret;
3600                         return true;
3601                 }
3602                 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3603                 if (ret > 0)
3604                         goto again;
3605                 return false;
3606         case RBD_IMG_EXCLUSIVE_LOCK:
3607                 if (*result)
3608                         return true;
3609
3610                 rbd_img_object_requests(img_req);
3611                 if (!img_req->pending.num_pending) {
3612                         *result = img_req->pending.result;
3613                         img_req->state = RBD_IMG_OBJECT_REQUESTS;
3614                         goto again;
3615                 }
3616                 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3617                 return false;
3618         case __RBD_IMG_OBJECT_REQUESTS:
3619                 if (!pending_result_dec(&img_req->pending, result))
3620                         return false;
3621                 fallthrough;
3622         case RBD_IMG_OBJECT_REQUESTS:
3623                 return true;
3624         default:
3625                 BUG();
3626         }
3627 }
3628
3629 /*
3630  * Return true if @img_req is completed.
3631  */
3632 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3633                                      int *result)
3634 {
3635         struct rbd_device *rbd_dev = img_req->rbd_dev;
3636         bool done;
3637
3638         if (need_exclusive_lock(img_req)) {
3639                 down_read(&rbd_dev->lock_rwsem);
3640                 mutex_lock(&img_req->state_mutex);
3641                 done = rbd_img_advance(img_req, result);
3642                 if (done)
3643                         rbd_lock_del_request(img_req);
3644                 mutex_unlock(&img_req->state_mutex);
3645                 up_read(&rbd_dev->lock_rwsem);
3646         } else {
3647                 mutex_lock(&img_req->state_mutex);
3648                 done = rbd_img_advance(img_req, result);
3649                 mutex_unlock(&img_req->state_mutex);
3650         }
3651
3652         if (done && *result) {
3653                 rbd_assert(*result < 0);
3654                 rbd_warn(rbd_dev, "%s%s result %d",
3655                       test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3656                       obj_op_name(img_req->op_type), *result);
3657         }
3658         return done;
3659 }
3660
3661 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3662 {
3663 again:
3664         if (!__rbd_img_handle_request(img_req, &result))
3665                 return;
3666
3667         if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3668                 struct rbd_obj_request *obj_req = img_req->obj_request;
3669
3670                 rbd_img_request_destroy(img_req);
3671                 if (__rbd_obj_handle_request(obj_req, &result)) {
3672                         img_req = obj_req->img_request;
3673                         goto again;
3674                 }
3675         } else {
3676                 struct request *rq = blk_mq_rq_from_pdu(img_req);
3677
3678                 rbd_img_request_destroy(img_req);
3679                 blk_mq_end_request(rq, errno_to_blk_status(result));
3680         }
3681 }
3682
3683 static const struct rbd_client_id rbd_empty_cid;
3684
3685 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3686                           const struct rbd_client_id *rhs)
3687 {
3688         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3689 }
3690
3691 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3692 {
3693         struct rbd_client_id cid;
3694
3695         mutex_lock(&rbd_dev->watch_mutex);
3696         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3697         cid.handle = rbd_dev->watch_cookie;
3698         mutex_unlock(&rbd_dev->watch_mutex);
3699         return cid;
3700 }
3701
3702 /*
3703  * lock_rwsem must be held for write
3704  */
3705 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3706                               const struct rbd_client_id *cid)
3707 {
3708         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3709              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3710              cid->gid, cid->handle);
3711         rbd_dev->owner_cid = *cid; /* struct */
3712 }
3713
3714 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3715 {
3716         mutex_lock(&rbd_dev->watch_mutex);
3717         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3718         mutex_unlock(&rbd_dev->watch_mutex);
3719 }
3720
3721 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3722 {
3723         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3724
3725         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3726         strcpy(rbd_dev->lock_cookie, cookie);
3727         rbd_set_owner_cid(rbd_dev, &cid);
3728         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3729 }
3730
3731 /*
3732  * lock_rwsem must be held for write
3733  */
3734 static int rbd_lock(struct rbd_device *rbd_dev)
3735 {
3736         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3737         char cookie[32];
3738         int ret;
3739
3740         WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3741                 rbd_dev->lock_cookie[0] != '\0');
3742
3743         format_lock_cookie(rbd_dev, cookie);
3744         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3745                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3746                             RBD_LOCK_TAG, "", 0);
3747         if (ret && ret != -EEXIST)
3748                 return ret;
3749
3750         __rbd_lock(rbd_dev, cookie);
3751         return 0;
3752 }
3753
3754 /*
3755  * lock_rwsem must be held for write
3756  */
3757 static void rbd_unlock(struct rbd_device *rbd_dev)
3758 {
3759         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3760         int ret;
3761
3762         WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3763                 rbd_dev->lock_cookie[0] == '\0');
3764
3765         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3766                               RBD_LOCK_NAME, rbd_dev->lock_cookie);
3767         if (ret && ret != -ENOENT)
3768                 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3769
3770         /* treat errors as the image is unlocked */
3771         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3772         rbd_dev->lock_cookie[0] = '\0';
3773         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3774         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3775 }
3776
3777 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3778                                 enum rbd_notify_op notify_op,
3779                                 struct page ***preply_pages,
3780                                 size_t *preply_len)
3781 {
3782         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3783         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3784         char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3785         int buf_size = sizeof(buf);
3786         void *p = buf;
3787
3788         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3789
3790         /* encode *LockPayload NotifyMessage (op + ClientId) */
3791         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3792         ceph_encode_32(&p, notify_op);
3793         ceph_encode_64(&p, cid.gid);
3794         ceph_encode_64(&p, cid.handle);
3795
3796         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3797                                 &rbd_dev->header_oloc, buf, buf_size,
3798                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3799 }
3800
3801 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3802                                enum rbd_notify_op notify_op)
3803 {
3804         __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3805 }
3806
3807 static void rbd_notify_acquired_lock(struct work_struct *work)
3808 {
3809         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3810                                                   acquired_lock_work);
3811
3812         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3813 }
3814
3815 static void rbd_notify_released_lock(struct work_struct *work)
3816 {
3817         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3818                                                   released_lock_work);
3819
3820         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3821 }
3822
3823 static int rbd_request_lock(struct rbd_device *rbd_dev)
3824 {
3825         struct page **reply_pages;
3826         size_t reply_len;
3827         bool lock_owner_responded = false;
3828         int ret;
3829
3830         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3831
3832         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3833                                    &reply_pages, &reply_len);
3834         if (ret && ret != -ETIMEDOUT) {
3835                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3836                 goto out;
3837         }
3838
3839         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3840                 void *p = page_address(reply_pages[0]);
3841                 void *const end = p + reply_len;
3842                 u32 n;
3843
3844                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3845                 while (n--) {
3846                         u8 struct_v;
3847                         u32 len;
3848
3849                         ceph_decode_need(&p, end, 8 + 8, e_inval);
3850                         p += 8 + 8; /* skip gid and cookie */
3851
3852                         ceph_decode_32_safe(&p, end, len, e_inval);
3853                         if (!len)
3854                                 continue;
3855
3856                         if (lock_owner_responded) {
3857                                 rbd_warn(rbd_dev,
3858                                          "duplicate lock owners detected");
3859                                 ret = -EIO;
3860                                 goto out;
3861                         }
3862
3863                         lock_owner_responded = true;
3864                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3865                                                   &struct_v, &len);
3866                         if (ret) {
3867                                 rbd_warn(rbd_dev,
3868                                          "failed to decode ResponseMessage: %d",
3869                                          ret);
3870                                 goto e_inval;
3871                         }
3872
3873                         ret = ceph_decode_32(&p);
3874                 }
3875         }
3876
3877         if (!lock_owner_responded) {
3878                 rbd_warn(rbd_dev, "no lock owners detected");
3879                 ret = -ETIMEDOUT;
3880         }
3881
3882 out:
3883         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3884         return ret;
3885
3886 e_inval:
3887         ret = -EINVAL;
3888         goto out;
3889 }
3890
3891 /*
3892  * Either image request state machine(s) or rbd_add_acquire_lock()
3893  * (i.e. "rbd map").
3894  */
3895 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3896 {
3897         struct rbd_img_request *img_req;
3898
3899         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3900         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3901
3902         cancel_delayed_work(&rbd_dev->lock_dwork);
3903         if (!completion_done(&rbd_dev->acquire_wait)) {
3904                 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3905                            list_empty(&rbd_dev->running_list));
3906                 rbd_dev->acquire_err = result;
3907                 complete_all(&rbd_dev->acquire_wait);
3908                 return;
3909         }
3910
3911         while (!list_empty(&rbd_dev->acquiring_list)) {
3912                 img_req = list_first_entry(&rbd_dev->acquiring_list,
3913                                            struct rbd_img_request, lock_item);
3914                 mutex_lock(&img_req->state_mutex);
3915                 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3916                 if (!result)
3917                         list_move_tail(&img_req->lock_item,
3918                                        &rbd_dev->running_list);
3919                 else
3920                         list_del_init(&img_req->lock_item);
3921                 rbd_img_schedule(img_req, result);
3922                 mutex_unlock(&img_req->state_mutex);
3923         }
3924 }
3925
3926 static bool locker_equal(const struct ceph_locker *lhs,
3927                          const struct ceph_locker *rhs)
3928 {
3929         return lhs->id.name.type == rhs->id.name.type &&
3930                lhs->id.name.num == rhs->id.name.num &&
3931                !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3932                ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3933 }
3934
3935 static void free_locker(struct ceph_locker *locker)
3936 {
3937         if (locker)
3938                 ceph_free_lockers(locker, 1);
3939 }
3940
3941 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3942 {
3943         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3944         struct ceph_locker *lockers;
3945         u32 num_lockers;
3946         u8 lock_type;
3947         char *lock_tag;
3948         int ret;
3949
3950         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3951
3952         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3953                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3954                                  &lock_type, &lock_tag, &lockers, &num_lockers);
3955         if (ret) {
3956                 rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3957                 return ERR_PTR(ret);
3958         }
3959
3960         if (num_lockers == 0) {
3961                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3962                 lockers = NULL;
3963                 goto out;
3964         }
3965
3966         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3967                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3968                          lock_tag);
3969                 goto err_busy;
3970         }
3971
3972         if (lock_type == CEPH_CLS_LOCK_SHARED) {
3973                 rbd_warn(rbd_dev, "shared lock type detected");
3974                 goto err_busy;
3975         }
3976
3977         WARN_ON(num_lockers != 1);
3978         if (strncmp(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3979                     strlen(RBD_LOCK_COOKIE_PREFIX))) {
3980                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3981                          lockers[0].id.cookie);
3982                 goto err_busy;
3983         }
3984
3985 out:
3986         kfree(lock_tag);
3987         return lockers;
3988
3989 err_busy:
3990         kfree(lock_tag);
3991         ceph_free_lockers(lockers, num_lockers);
3992         return ERR_PTR(-EBUSY);
3993 }
3994
3995 static int find_watcher(struct rbd_device *rbd_dev,
3996                         const struct ceph_locker *locker)
3997 {
3998         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3999         struct ceph_watch_item *watchers;
4000         u32 num_watchers;
4001         u64 cookie;
4002         int i;
4003         int ret;
4004
4005         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
4006                                       &rbd_dev->header_oloc, &watchers,
4007                                       &num_watchers);
4008         if (ret) {
4009                 rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
4010                 return ret;
4011         }
4012
4013         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
4014         for (i = 0; i < num_watchers; i++) {
4015                 /*
4016                  * Ignore addr->type while comparing.  This mimics
4017                  * entity_addr_t::get_legacy_str() + strcmp().
4018                  */
4019                 if (ceph_addr_equal_no_type(&watchers[i].addr,
4020                                             &locker->info.addr) &&
4021                     watchers[i].cookie == cookie) {
4022                         struct rbd_client_id cid = {
4023                                 .gid = le64_to_cpu(watchers[i].name.num),
4024                                 .handle = cookie,
4025                         };
4026
4027                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
4028                              rbd_dev, cid.gid, cid.handle);
4029                         rbd_set_owner_cid(rbd_dev, &cid);
4030                         ret = 1;
4031                         goto out;
4032                 }
4033         }
4034
4035         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
4036         ret = 0;
4037 out:
4038         kfree(watchers);
4039         return ret;
4040 }
4041
4042 /*
4043  * lock_rwsem must be held for write
4044  */
4045 static int rbd_try_lock(struct rbd_device *rbd_dev)
4046 {
4047         struct ceph_client *client = rbd_dev->rbd_client->client;
4048         struct ceph_locker *locker, *refreshed_locker;
4049         int ret;
4050
4051         for (;;) {
4052                 locker = refreshed_locker = NULL;
4053
4054                 ret = rbd_lock(rbd_dev);
4055                 if (!ret)
4056                         goto out;
4057                 if (ret != -EBUSY) {
4058                         rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4059                         goto out;
4060                 }
4061
4062                 /* determine if the current lock holder is still alive */
4063                 locker = get_lock_owner_info(rbd_dev);
4064                 if (IS_ERR(locker)) {
4065                         ret = PTR_ERR(locker);
4066                         locker = NULL;
4067                         goto out;
4068                 }
4069                 if (!locker)
4070                         goto again;
4071
4072                 ret = find_watcher(rbd_dev, locker);
4073                 if (ret)
4074                         goto out; /* request lock or error */
4075
4076                 refreshed_locker = get_lock_owner_info(rbd_dev);
4077                 if (IS_ERR(refreshed_locker)) {
4078                         ret = PTR_ERR(refreshed_locker);
4079                         refreshed_locker = NULL;
4080                         goto out;
4081                 }
4082                 if (!refreshed_locker ||
4083                     !locker_equal(locker, refreshed_locker))
4084                         goto again;
4085
4086                 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4087                          ENTITY_NAME(locker->id.name));
4088
4089                 ret = ceph_monc_blocklist_add(&client->monc,
4090                                               &locker->info.addr);
4091                 if (ret) {
4092                         rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4093                                  ENTITY_NAME(locker->id.name), ret);
4094                         goto out;
4095                 }
4096
4097                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4098                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
4099                                           locker->id.cookie, &locker->id.name);
4100                 if (ret && ret != -ENOENT) {
4101                         rbd_warn(rbd_dev, "failed to break header lock: %d",
4102                                  ret);
4103                         goto out;
4104                 }
4105
4106 again:
4107                 free_locker(refreshed_locker);
4108                 free_locker(locker);
4109         }
4110
4111 out:
4112         free_locker(refreshed_locker);
4113         free_locker(locker);
4114         return ret;
4115 }
4116
4117 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4118 {
4119         int ret;
4120
4121         ret = rbd_dev_refresh(rbd_dev);
4122         if (ret)
4123                 return ret;
4124
4125         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4126                 ret = rbd_object_map_open(rbd_dev);
4127                 if (ret)
4128                         return ret;
4129         }
4130
4131         return 0;
4132 }
4133
4134 /*
4135  * Return:
4136  *   0 - lock acquired
4137  *   1 - caller should call rbd_request_lock()
4138  *  <0 - error
4139  */
4140 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4141 {
4142         int ret;
4143
4144         down_read(&rbd_dev->lock_rwsem);
4145         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4146              rbd_dev->lock_state);
4147         if (__rbd_is_lock_owner(rbd_dev)) {
4148                 up_read(&rbd_dev->lock_rwsem);
4149                 return 0;
4150         }
4151
4152         up_read(&rbd_dev->lock_rwsem);
4153         down_write(&rbd_dev->lock_rwsem);
4154         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4155              rbd_dev->lock_state);
4156         if (__rbd_is_lock_owner(rbd_dev)) {
4157                 up_write(&rbd_dev->lock_rwsem);
4158                 return 0;
4159         }
4160
4161         ret = rbd_try_lock(rbd_dev);
4162         if (ret < 0) {
4163                 rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4164                 goto out;
4165         }
4166         if (ret > 0) {
4167                 up_write(&rbd_dev->lock_rwsem);
4168                 return ret;
4169         }
4170
4171         rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4172         rbd_assert(list_empty(&rbd_dev->running_list));
4173
4174         ret = rbd_post_acquire_action(rbd_dev);
4175         if (ret) {
4176                 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4177                 /*
4178                  * Can't stay in RBD_LOCK_STATE_LOCKED because
4179                  * rbd_lock_add_request() would let the request through,
4180                  * assuming that e.g. object map is locked and loaded.
4181                  */
4182                 rbd_unlock(rbd_dev);
4183         }
4184
4185 out:
4186         wake_lock_waiters(rbd_dev, ret);
4187         up_write(&rbd_dev->lock_rwsem);
4188         return ret;
4189 }
4190
4191 static void rbd_acquire_lock(struct work_struct *work)
4192 {
4193         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4194                                             struct rbd_device, lock_dwork);
4195         int ret;
4196
4197         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4198 again:
4199         ret = rbd_try_acquire_lock(rbd_dev);
4200         if (ret <= 0) {
4201                 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4202                 return;
4203         }
4204
4205         ret = rbd_request_lock(rbd_dev);
4206         if (ret == -ETIMEDOUT) {
4207                 goto again; /* treat this as a dead client */
4208         } else if (ret == -EROFS) {
4209                 rbd_warn(rbd_dev, "peer will not release lock");
4210                 down_write(&rbd_dev->lock_rwsem);
4211                 wake_lock_waiters(rbd_dev, ret);
4212                 up_write(&rbd_dev->lock_rwsem);
4213         } else if (ret < 0) {
4214                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4215                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4216                                  RBD_RETRY_DELAY);
4217         } else {
4218                 /*
4219                  * lock owner acked, but resend if we don't see them
4220                  * release the lock
4221                  */
4222                 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4223                      rbd_dev);
4224                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4225                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4226         }
4227 }
4228
4229 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4230 {
4231         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4232         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4233
4234         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4235                 return false;
4236
4237         /*
4238          * Ensure that all in-flight IO is flushed.
4239          */
4240         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4241         rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4242         if (list_empty(&rbd_dev->running_list))
4243                 return true;
4244
4245         up_write(&rbd_dev->lock_rwsem);
4246         wait_for_completion(&rbd_dev->releasing_wait);
4247
4248         down_write(&rbd_dev->lock_rwsem);
4249         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4250                 return false;
4251
4252         rbd_assert(list_empty(&rbd_dev->running_list));
4253         return true;
4254 }
4255
4256 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4257 {
4258         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4259                 rbd_object_map_close(rbd_dev);
4260 }
4261
4262 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4263 {
4264         rbd_assert(list_empty(&rbd_dev->running_list));
4265
4266         rbd_pre_release_action(rbd_dev);
4267         rbd_unlock(rbd_dev);
4268 }
4269
4270 /*
4271  * lock_rwsem must be held for write
4272  */
4273 static void rbd_release_lock(struct rbd_device *rbd_dev)
4274 {
4275         if (!rbd_quiesce_lock(rbd_dev))
4276                 return;
4277
4278         __rbd_release_lock(rbd_dev);
4279
4280         /*
4281          * Give others a chance to grab the lock - we would re-acquire
4282          * almost immediately if we got new IO while draining the running
4283          * list otherwise.  We need to ack our own notifications, so this
4284          * lock_dwork will be requeued from rbd_handle_released_lock() by
4285          * way of maybe_kick_acquire().
4286          */
4287         cancel_delayed_work(&rbd_dev->lock_dwork);
4288 }
4289
4290 static void rbd_release_lock_work(struct work_struct *work)
4291 {
4292         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4293                                                   unlock_work);
4294
4295         down_write(&rbd_dev->lock_rwsem);
4296         rbd_release_lock(rbd_dev);
4297         up_write(&rbd_dev->lock_rwsem);
4298 }
4299
4300 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4301 {
4302         bool have_requests;
4303
4304         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4305         if (__rbd_is_lock_owner(rbd_dev))
4306                 return;
4307
4308         spin_lock(&rbd_dev->lock_lists_lock);
4309         have_requests = !list_empty(&rbd_dev->acquiring_list);
4310         spin_unlock(&rbd_dev->lock_lists_lock);
4311         if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4312                 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4313                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4314         }
4315 }
4316
4317 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4318                                      void **p)
4319 {
4320         struct rbd_client_id cid = { 0 };
4321
4322         if (struct_v >= 2) {
4323                 cid.gid = ceph_decode_64(p);
4324                 cid.handle = ceph_decode_64(p);
4325         }
4326
4327         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4328              cid.handle);
4329         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4330                 down_write(&rbd_dev->lock_rwsem);
4331                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4332                         dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4333                              __func__, rbd_dev, cid.gid, cid.handle);
4334                 } else {
4335                         rbd_set_owner_cid(rbd_dev, &cid);
4336                 }
4337                 downgrade_write(&rbd_dev->lock_rwsem);
4338         } else {
4339                 down_read(&rbd_dev->lock_rwsem);
4340         }
4341
4342         maybe_kick_acquire(rbd_dev);
4343         up_read(&rbd_dev->lock_rwsem);
4344 }
4345
4346 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4347                                      void **p)
4348 {
4349         struct rbd_client_id cid = { 0 };
4350
4351         if (struct_v >= 2) {
4352                 cid.gid = ceph_decode_64(p);
4353                 cid.handle = ceph_decode_64(p);
4354         }
4355
4356         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4357              cid.handle);
4358         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4359                 down_write(&rbd_dev->lock_rwsem);
4360                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4361                         dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4362                              __func__, rbd_dev, cid.gid, cid.handle,
4363                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4364                 } else {
4365                         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4366                 }
4367                 downgrade_write(&rbd_dev->lock_rwsem);
4368         } else {
4369                 down_read(&rbd_dev->lock_rwsem);
4370         }
4371
4372         maybe_kick_acquire(rbd_dev);
4373         up_read(&rbd_dev->lock_rwsem);
4374 }
4375
4376 /*
4377  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4378  * ResponseMessage is needed.
4379  */
4380 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4381                                    void **p)
4382 {
4383         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4384         struct rbd_client_id cid = { 0 };
4385         int result = 1;
4386
4387         if (struct_v >= 2) {
4388                 cid.gid = ceph_decode_64(p);
4389                 cid.handle = ceph_decode_64(p);
4390         }
4391
4392         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4393              cid.handle);
4394         if (rbd_cid_equal(&cid, &my_cid))
4395                 return result;
4396
4397         down_read(&rbd_dev->lock_rwsem);
4398         if (__rbd_is_lock_owner(rbd_dev)) {
4399                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4400                     rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4401                         goto out_unlock;
4402
4403                 /*
4404                  * encode ResponseMessage(0) so the peer can detect
4405                  * a missing owner
4406                  */
4407                 result = 0;
4408
4409                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4410                         if (!rbd_dev->opts->exclusive) {
4411                                 dout("%s rbd_dev %p queueing unlock_work\n",
4412                                      __func__, rbd_dev);
4413                                 queue_work(rbd_dev->task_wq,
4414                                            &rbd_dev->unlock_work);
4415                         } else {
4416                                 /* refuse to release the lock */
4417                                 result = -EROFS;
4418                         }
4419                 }
4420         }
4421
4422 out_unlock:
4423         up_read(&rbd_dev->lock_rwsem);
4424         return result;
4425 }
4426
4427 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4428                                      u64 notify_id, u64 cookie, s32 *result)
4429 {
4430         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4431         char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4432         int buf_size = sizeof(buf);
4433         int ret;
4434
4435         if (result) {
4436                 void *p = buf;
4437
4438                 /* encode ResponseMessage */
4439                 ceph_start_encoding(&p, 1, 1,
4440                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
4441                 ceph_encode_32(&p, *result);
4442         } else {
4443                 buf_size = 0;
4444         }
4445
4446         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4447                                    &rbd_dev->header_oloc, notify_id, cookie,
4448                                    buf, buf_size);
4449         if (ret)
4450                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4451 }
4452
4453 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4454                                    u64 cookie)
4455 {
4456         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4457         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4458 }
4459
4460 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4461                                           u64 notify_id, u64 cookie, s32 result)
4462 {
4463         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4464         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4465 }
4466
4467 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4468                          u64 notifier_id, void *data, size_t data_len)
4469 {
4470         struct rbd_device *rbd_dev = arg;
4471         void *p = data;
4472         void *const end = p + data_len;
4473         u8 struct_v = 0;
4474         u32 len;
4475         u32 notify_op;
4476         int ret;
4477
4478         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4479              __func__, rbd_dev, cookie, notify_id, data_len);
4480         if (data_len) {
4481                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4482                                           &struct_v, &len);
4483                 if (ret) {
4484                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4485                                  ret);
4486                         return;
4487                 }
4488
4489                 notify_op = ceph_decode_32(&p);
4490         } else {
4491                 /* legacy notification for header updates */
4492                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4493                 len = 0;
4494         }
4495
4496         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4497         switch (notify_op) {
4498         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4499                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4500                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4501                 break;
4502         case RBD_NOTIFY_OP_RELEASED_LOCK:
4503                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4504                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4505                 break;
4506         case RBD_NOTIFY_OP_REQUEST_LOCK:
4507                 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4508                 if (ret <= 0)
4509                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4510                                                       cookie, ret);
4511                 else
4512                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4513                 break;
4514         case RBD_NOTIFY_OP_HEADER_UPDATE:
4515                 ret = rbd_dev_refresh(rbd_dev);
4516                 if (ret)
4517                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
4518
4519                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4520                 break;
4521         default:
4522                 if (rbd_is_lock_owner(rbd_dev))
4523                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4524                                                       cookie, -EOPNOTSUPP);
4525                 else
4526                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4527                 break;
4528         }
4529 }
4530
4531 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4532
4533 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4534 {
4535         struct rbd_device *rbd_dev = arg;
4536
4537         rbd_warn(rbd_dev, "encountered watch error: %d", err);
4538
4539         down_write(&rbd_dev->lock_rwsem);
4540         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4541         up_write(&rbd_dev->lock_rwsem);
4542
4543         mutex_lock(&rbd_dev->watch_mutex);
4544         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4545                 __rbd_unregister_watch(rbd_dev);
4546                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4547
4548                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4549         }
4550         mutex_unlock(&rbd_dev->watch_mutex);
4551 }
4552
4553 /*
4554  * watch_mutex must be locked
4555  */
4556 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4557 {
4558         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4559         struct ceph_osd_linger_request *handle;
4560
4561         rbd_assert(!rbd_dev->watch_handle);
4562         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4563
4564         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4565                                  &rbd_dev->header_oloc, rbd_watch_cb,
4566                                  rbd_watch_errcb, rbd_dev);
4567         if (IS_ERR(handle))
4568                 return PTR_ERR(handle);
4569
4570         rbd_dev->watch_handle = handle;
4571         return 0;
4572 }
4573
4574 /*
4575  * watch_mutex must be locked
4576  */
4577 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4578 {
4579         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4580         int ret;
4581
4582         rbd_assert(rbd_dev->watch_handle);
4583         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4584
4585         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4586         if (ret)
4587                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4588
4589         rbd_dev->watch_handle = NULL;
4590 }
4591
4592 static int rbd_register_watch(struct rbd_device *rbd_dev)
4593 {
4594         int ret;
4595
4596         mutex_lock(&rbd_dev->watch_mutex);
4597         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4598         ret = __rbd_register_watch(rbd_dev);
4599         if (ret)
4600                 goto out;
4601
4602         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4603         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4604
4605 out:
4606         mutex_unlock(&rbd_dev->watch_mutex);
4607         return ret;
4608 }
4609
4610 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4611 {
4612         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4613
4614         cancel_work_sync(&rbd_dev->acquired_lock_work);
4615         cancel_work_sync(&rbd_dev->released_lock_work);
4616         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4617         cancel_work_sync(&rbd_dev->unlock_work);
4618 }
4619
4620 /*
4621  * header_rwsem must not be held to avoid a deadlock with
4622  * rbd_dev_refresh() when flushing notifies.
4623  */
4624 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4625 {
4626         cancel_tasks_sync(rbd_dev);
4627
4628         mutex_lock(&rbd_dev->watch_mutex);
4629         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4630                 __rbd_unregister_watch(rbd_dev);
4631         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4632         mutex_unlock(&rbd_dev->watch_mutex);
4633
4634         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4635         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4636 }
4637
4638 /*
4639  * lock_rwsem must be held for write
4640  */
4641 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4642 {
4643         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4644         char cookie[32];
4645         int ret;
4646
4647         if (!rbd_quiesce_lock(rbd_dev))
4648                 return;
4649
4650         format_lock_cookie(rbd_dev, cookie);
4651         ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4652                                   &rbd_dev->header_oloc, RBD_LOCK_NAME,
4653                                   CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4654                                   RBD_LOCK_TAG, cookie);
4655         if (ret) {
4656                 if (ret != -EOPNOTSUPP)
4657                         rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4658                                  ret);
4659
4660                 /*
4661                  * Lock cookie cannot be updated on older OSDs, so do
4662                  * a manual release and queue an acquire.
4663                  */
4664                 __rbd_release_lock(rbd_dev);
4665                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4666         } else {
4667                 __rbd_lock(rbd_dev, cookie);
4668                 wake_lock_waiters(rbd_dev, 0);
4669         }
4670 }
4671
4672 static void rbd_reregister_watch(struct work_struct *work)
4673 {
4674         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4675                                             struct rbd_device, watch_dwork);
4676         int ret;
4677
4678         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4679
4680         mutex_lock(&rbd_dev->watch_mutex);
4681         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4682                 mutex_unlock(&rbd_dev->watch_mutex);
4683                 return;
4684         }
4685
4686         ret = __rbd_register_watch(rbd_dev);
4687         if (ret) {
4688                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4689                 if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4690                         queue_delayed_work(rbd_dev->task_wq,
4691                                            &rbd_dev->watch_dwork,
4692                                            RBD_RETRY_DELAY);
4693                         mutex_unlock(&rbd_dev->watch_mutex);
4694                         return;
4695                 }
4696
4697                 mutex_unlock(&rbd_dev->watch_mutex);
4698                 down_write(&rbd_dev->lock_rwsem);
4699                 wake_lock_waiters(rbd_dev, ret);
4700                 up_write(&rbd_dev->lock_rwsem);
4701                 return;
4702         }
4703
4704         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4705         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4706         mutex_unlock(&rbd_dev->watch_mutex);
4707
4708         down_write(&rbd_dev->lock_rwsem);
4709         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4710                 rbd_reacquire_lock(rbd_dev);
4711         up_write(&rbd_dev->lock_rwsem);
4712
4713         ret = rbd_dev_refresh(rbd_dev);
4714         if (ret)
4715                 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4716 }
4717
4718 /*
4719  * Synchronous osd object method call.  Returns the number of bytes
4720  * returned in the outbound buffer, or a negative error code.
4721  */
4722 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4723                              struct ceph_object_id *oid,
4724                              struct ceph_object_locator *oloc,
4725                              const char *method_name,
4726                              const void *outbound,
4727                              size_t outbound_size,
4728                              void *inbound,
4729                              size_t inbound_size)
4730 {
4731         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4732         struct page *req_page = NULL;
4733         struct page *reply_page;
4734         int ret;
4735
4736         /*
4737          * Method calls are ultimately read operations.  The result
4738          * should placed into the inbound buffer provided.  They
4739          * also supply outbound data--parameters for the object
4740          * method.  Currently if this is present it will be a
4741          * snapshot id.
4742          */
4743         if (outbound) {
4744                 if (outbound_size > PAGE_SIZE)
4745                         return -E2BIG;
4746
4747                 req_page = alloc_page(GFP_KERNEL);
4748                 if (!req_page)
4749                         return -ENOMEM;
4750
4751                 memcpy(page_address(req_page), outbound, outbound_size);
4752         }
4753
4754         reply_page = alloc_page(GFP_KERNEL);
4755         if (!reply_page) {
4756                 if (req_page)
4757                         __free_page(req_page);
4758                 return -ENOMEM;
4759         }
4760
4761         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4762                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
4763                              &reply_page, &inbound_size);
4764         if (!ret) {
4765                 memcpy(inbound, page_address(reply_page), inbound_size);
4766                 ret = inbound_size;
4767         }
4768
4769         if (req_page)
4770                 __free_page(req_page);
4771         __free_page(reply_page);
4772         return ret;
4773 }
4774
4775 static void rbd_queue_workfn(struct work_struct *work)
4776 {
4777         struct rbd_img_request *img_request =
4778             container_of(work, struct rbd_img_request, work);
4779         struct rbd_device *rbd_dev = img_request->rbd_dev;
4780         enum obj_operation_type op_type = img_request->op_type;
4781         struct request *rq = blk_mq_rq_from_pdu(img_request);
4782         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4783         u64 length = blk_rq_bytes(rq);
4784         u64 mapping_size;
4785         int result;
4786
4787         /* Ignore/skip any zero-length requests */
4788         if (!length) {
4789                 dout("%s: zero-length request\n", __func__);
4790                 result = 0;
4791                 goto err_img_request;
4792         }
4793
4794         blk_mq_start_request(rq);
4795
4796         down_read(&rbd_dev->header_rwsem);
4797         mapping_size = rbd_dev->mapping.size;
4798         rbd_img_capture_header(img_request);
4799         up_read(&rbd_dev->header_rwsem);
4800
4801         if (offset + length > mapping_size) {
4802                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4803                          length, mapping_size);
4804                 result = -EIO;
4805                 goto err_img_request;
4806         }
4807
4808         dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4809              img_request, obj_op_name(op_type), offset, length);
4810
4811         if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4812                 result = rbd_img_fill_nodata(img_request, offset, length);
4813         else
4814                 result = rbd_img_fill_from_bio(img_request, offset, length,
4815                                                rq->bio);
4816         if (result)
4817                 goto err_img_request;
4818
4819         rbd_img_handle_request(img_request, 0);
4820         return;
4821
4822 err_img_request:
4823         rbd_img_request_destroy(img_request);
4824         if (result)
4825                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4826                          obj_op_name(op_type), length, offset, result);
4827         blk_mq_end_request(rq, errno_to_blk_status(result));
4828 }
4829
4830 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4831                 const struct blk_mq_queue_data *bd)
4832 {
4833         struct rbd_device *rbd_dev = hctx->queue->queuedata;
4834         struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4835         enum obj_operation_type op_type;
4836
4837         switch (req_op(bd->rq)) {
4838         case REQ_OP_DISCARD:
4839                 op_type = OBJ_OP_DISCARD;
4840                 break;
4841         case REQ_OP_WRITE_ZEROES:
4842                 op_type = OBJ_OP_ZEROOUT;
4843                 break;
4844         case REQ_OP_WRITE:
4845                 op_type = OBJ_OP_WRITE;
4846                 break;
4847         case REQ_OP_READ:
4848                 op_type = OBJ_OP_READ;
4849                 break;
4850         default:
4851                 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4852                 return BLK_STS_IOERR;
4853         }
4854
4855         rbd_img_request_init(img_req, rbd_dev, op_type);
4856
4857         if (rbd_img_is_write(img_req)) {
4858                 if (rbd_is_ro(rbd_dev)) {
4859                         rbd_warn(rbd_dev, "%s on read-only mapping",
4860                                  obj_op_name(img_req->op_type));
4861                         return BLK_STS_IOERR;
4862                 }
4863                 rbd_assert(!rbd_is_snap(rbd_dev));
4864         }
4865
4866         INIT_WORK(&img_req->work, rbd_queue_workfn);
4867         queue_work(rbd_wq, &img_req->work);
4868         return BLK_STS_OK;
4869 }
4870
4871 static void rbd_free_disk(struct rbd_device *rbd_dev)
4872 {
4873         blk_cleanup_queue(rbd_dev->disk->queue);
4874         blk_mq_free_tag_set(&rbd_dev->tag_set);
4875         put_disk(rbd_dev->disk);
4876         rbd_dev->disk = NULL;
4877 }
4878
4879 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4880                              struct ceph_object_id *oid,
4881                              struct ceph_object_locator *oloc,
4882                              void *buf, int buf_len)
4883
4884 {
4885         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4886         struct ceph_osd_request *req;
4887         struct page **pages;
4888         int num_pages = calc_pages_for(0, buf_len);
4889         int ret;
4890
4891         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4892         if (!req)
4893                 return -ENOMEM;
4894
4895         ceph_oid_copy(&req->r_base_oid, oid);
4896         ceph_oloc_copy(&req->r_base_oloc, oloc);
4897         req->r_flags = CEPH_OSD_FLAG_READ;
4898
4899         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4900         if (IS_ERR(pages)) {
4901                 ret = PTR_ERR(pages);
4902                 goto out_req;
4903         }
4904
4905         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4906         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4907                                          true);
4908
4909         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4910         if (ret)
4911                 goto out_req;
4912
4913         ceph_osdc_start_request(osdc, req, false);
4914         ret = ceph_osdc_wait_request(osdc, req);
4915         if (ret >= 0)
4916                 ceph_copy_from_page_vector(pages, buf, 0, ret);
4917
4918 out_req:
4919         ceph_osdc_put_request(req);
4920         return ret;
4921 }
4922
4923 /*
4924  * Read the complete header for the given rbd device.  On successful
4925  * return, the rbd_dev->header field will contain up-to-date
4926  * information about the image.
4927  */
4928 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev,
4929                                   struct rbd_image_header *header,
4930                                   bool first_time)
4931 {
4932         struct rbd_image_header_ondisk *ondisk = NULL;
4933         u32 snap_count = 0;
4934         u64 names_size = 0;
4935         u32 want_count;
4936         int ret;
4937
4938         /*
4939          * The complete header will include an array of its 64-bit
4940          * snapshot ids, followed by the names of those snapshots as
4941          * a contiguous block of NUL-terminated strings.  Note that
4942          * the number of snapshots could change by the time we read
4943          * it in, in which case we re-read it.
4944          */
4945         do {
4946                 size_t size;
4947
4948                 kfree(ondisk);
4949
4950                 size = sizeof (*ondisk);
4951                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4952                 size += names_size;
4953                 ondisk = kmalloc(size, GFP_KERNEL);
4954                 if (!ondisk)
4955                         return -ENOMEM;
4956
4957                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4958                                         &rbd_dev->header_oloc, ondisk, size);
4959                 if (ret < 0)
4960                         goto out;
4961                 if ((size_t)ret < size) {
4962                         ret = -ENXIO;
4963                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4964                                 size, ret);
4965                         goto out;
4966                 }
4967                 if (!rbd_dev_ondisk_valid(ondisk)) {
4968                         ret = -ENXIO;
4969                         rbd_warn(rbd_dev, "invalid header");
4970                         goto out;
4971                 }
4972
4973                 names_size = le64_to_cpu(ondisk->snap_names_len);
4974                 want_count = snap_count;
4975                 snap_count = le32_to_cpu(ondisk->snap_count);
4976         } while (snap_count != want_count);
4977
4978         ret = rbd_header_from_disk(header, ondisk, first_time);
4979 out:
4980         kfree(ondisk);
4981
4982         return ret;
4983 }
4984
4985 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4986 {
4987         sector_t size;
4988
4989         /*
4990          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4991          * try to update its size.  If REMOVING is set, updating size
4992          * is just useless work since the device can't be opened.
4993          */
4994         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4995             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4996                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4997                 dout("setting size to %llu sectors", (unsigned long long)size);
4998                 set_capacity(rbd_dev->disk, size);
4999                 revalidate_disk_size(rbd_dev->disk, true);
5000         }
5001 }
5002
5003 static const struct blk_mq_ops rbd_mq_ops = {
5004         .queue_rq       = rbd_queue_rq,
5005 };
5006
5007 static int rbd_init_disk(struct rbd_device *rbd_dev)
5008 {
5009         struct gendisk *disk;
5010         struct request_queue *q;
5011         unsigned int objset_bytes =
5012             rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
5013         int err;
5014
5015         /* create gendisk info */
5016         disk = alloc_disk(single_major ?
5017                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
5018                           RBD_MINORS_PER_MAJOR);
5019         if (!disk)
5020                 return -ENOMEM;
5021
5022         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
5023                  rbd_dev->dev_id);
5024         disk->major = rbd_dev->major;
5025         disk->first_minor = rbd_dev->minor;
5026         if (single_major)
5027                 disk->flags |= GENHD_FL_EXT_DEVT;
5028         disk->fops = &rbd_bd_ops;
5029         disk->private_data = rbd_dev;
5030
5031         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
5032         rbd_dev->tag_set.ops = &rbd_mq_ops;
5033         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
5034         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
5035         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
5036         rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
5037         rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
5038
5039         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
5040         if (err)
5041                 goto out_disk;
5042
5043         q = blk_mq_init_queue(&rbd_dev->tag_set);
5044         if (IS_ERR(q)) {
5045                 err = PTR_ERR(q);
5046                 goto out_tag_set;
5047         }
5048
5049         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5050         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5051
5052         blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
5053         q->limits.max_sectors = queue_max_hw_sectors(q);
5054         blk_queue_max_segments(q, USHRT_MAX);
5055         blk_queue_max_segment_size(q, UINT_MAX);
5056         blk_queue_io_min(q, rbd_dev->opts->alloc_size);
5057         blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5058
5059         if (rbd_dev->opts->trim) {
5060                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5061                 q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5062                 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5063                 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5064         }
5065
5066         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5067                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
5068
5069         /*
5070          * disk_release() expects a queue ref from add_disk() and will
5071          * put it.  Hold an extra ref until add_disk() is called.
5072          */
5073         WARN_ON(!blk_get_queue(q));
5074         disk->queue = q;
5075         q->queuedata = rbd_dev;
5076
5077         rbd_dev->disk = disk;
5078
5079         return 0;
5080 out_tag_set:
5081         blk_mq_free_tag_set(&rbd_dev->tag_set);
5082 out_disk:
5083         put_disk(disk);
5084         return err;
5085 }
5086
5087 /*
5088   sysfs
5089 */
5090
5091 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5092 {
5093         return container_of(dev, struct rbd_device, dev);
5094 }
5095
5096 static ssize_t rbd_size_show(struct device *dev,
5097                              struct device_attribute *attr, char *buf)
5098 {
5099         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5100
5101         return sprintf(buf, "%llu\n",
5102                 (unsigned long long)rbd_dev->mapping.size);
5103 }
5104
5105 static ssize_t rbd_features_show(struct device *dev,
5106                              struct device_attribute *attr, char *buf)
5107 {
5108         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5109
5110         return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5111 }
5112
5113 static ssize_t rbd_major_show(struct device *dev,
5114                               struct device_attribute *attr, char *buf)
5115 {
5116         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5117
5118         if (rbd_dev->major)
5119                 return sprintf(buf, "%d\n", rbd_dev->major);
5120
5121         return sprintf(buf, "(none)\n");
5122 }
5123
5124 static ssize_t rbd_minor_show(struct device *dev,
5125                               struct device_attribute *attr, char *buf)
5126 {
5127         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5128
5129         return sprintf(buf, "%d\n", rbd_dev->minor);
5130 }
5131
5132 static ssize_t rbd_client_addr_show(struct device *dev,
5133                                     struct device_attribute *attr, char *buf)
5134 {
5135         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5136         struct ceph_entity_addr *client_addr =
5137             ceph_client_addr(rbd_dev->rbd_client->client);
5138
5139         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5140                        le32_to_cpu(client_addr->nonce));
5141 }
5142
5143 static ssize_t rbd_client_id_show(struct device *dev,
5144                                   struct device_attribute *attr, char *buf)
5145 {
5146         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5147
5148         return sprintf(buf, "client%lld\n",
5149                        ceph_client_gid(rbd_dev->rbd_client->client));
5150 }
5151
5152 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5153                                      struct device_attribute *attr, char *buf)
5154 {
5155         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5156
5157         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5158 }
5159
5160 static ssize_t rbd_config_info_show(struct device *dev,
5161                                     struct device_attribute *attr, char *buf)
5162 {
5163         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5164
5165         if (!capable(CAP_SYS_ADMIN))
5166                 return -EPERM;
5167
5168         return sprintf(buf, "%s\n", rbd_dev->config_info);
5169 }
5170
5171 static ssize_t rbd_pool_show(struct device *dev,
5172                              struct device_attribute *attr, char *buf)
5173 {
5174         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5175
5176         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5177 }
5178
5179 static ssize_t rbd_pool_id_show(struct device *dev,
5180                              struct device_attribute *attr, char *buf)
5181 {
5182         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5183
5184         return sprintf(buf, "%llu\n",
5185                         (unsigned long long) rbd_dev->spec->pool_id);
5186 }
5187
5188 static ssize_t rbd_pool_ns_show(struct device *dev,
5189                                 struct device_attribute *attr, char *buf)
5190 {
5191         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5192
5193         return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5194 }
5195
5196 static ssize_t rbd_name_show(struct device *dev,
5197                              struct device_attribute *attr, char *buf)
5198 {
5199         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5200
5201         if (rbd_dev->spec->image_name)
5202                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5203
5204         return sprintf(buf, "(unknown)\n");
5205 }
5206
5207 static ssize_t rbd_image_id_show(struct device *dev,
5208                              struct device_attribute *attr, char *buf)
5209 {
5210         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5211
5212         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5213 }
5214
5215 /*
5216  * Shows the name of the currently-mapped snapshot (or
5217  * RBD_SNAP_HEAD_NAME for the base image).
5218  */
5219 static ssize_t rbd_snap_show(struct device *dev,
5220                              struct device_attribute *attr,
5221                              char *buf)
5222 {
5223         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5224
5225         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5226 }
5227
5228 static ssize_t rbd_snap_id_show(struct device *dev,
5229                                 struct device_attribute *attr, char *buf)
5230 {
5231         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5232
5233         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5234 }
5235
5236 /*
5237  * For a v2 image, shows the chain of parent images, separated by empty
5238  * lines.  For v1 images or if there is no parent, shows "(no parent
5239  * image)".
5240  */
5241 static ssize_t rbd_parent_show(struct device *dev,
5242                                struct device_attribute *attr,
5243                                char *buf)
5244 {
5245         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5246         ssize_t count = 0;
5247
5248         if (!rbd_dev->parent)
5249                 return sprintf(buf, "(no parent image)\n");
5250
5251         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5252                 struct rbd_spec *spec = rbd_dev->parent_spec;
5253
5254                 count += sprintf(&buf[count], "%s"
5255                             "pool_id %llu\npool_name %s\n"
5256                             "pool_ns %s\n"
5257                             "image_id %s\nimage_name %s\n"
5258                             "snap_id %llu\nsnap_name %s\n"
5259                             "overlap %llu\n",
5260                             !count ? "" : "\n", /* first? */
5261                             spec->pool_id, spec->pool_name,
5262                             spec->pool_ns ?: "",
5263                             spec->image_id, spec->image_name ?: "(unknown)",
5264                             spec->snap_id, spec->snap_name,
5265                             rbd_dev->parent_overlap);
5266         }
5267
5268         return count;
5269 }
5270
5271 static ssize_t rbd_image_refresh(struct device *dev,
5272                                  struct device_attribute *attr,
5273                                  const char *buf,
5274                                  size_t size)
5275 {
5276         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5277         int ret;
5278
5279         if (!capable(CAP_SYS_ADMIN))
5280                 return -EPERM;
5281
5282         ret = rbd_dev_refresh(rbd_dev);
5283         if (ret)
5284                 return ret;
5285
5286         return size;
5287 }
5288
5289 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5290 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5291 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5292 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5293 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5294 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5295 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5296 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5297 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5298 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5299 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5300 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5301 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5302 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5303 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5304 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5305 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5306
5307 static struct attribute *rbd_attrs[] = {
5308         &dev_attr_size.attr,
5309         &dev_attr_features.attr,
5310         &dev_attr_major.attr,
5311         &dev_attr_minor.attr,
5312         &dev_attr_client_addr.attr,
5313         &dev_attr_client_id.attr,
5314         &dev_attr_cluster_fsid.attr,
5315         &dev_attr_config_info.attr,
5316         &dev_attr_pool.attr,
5317         &dev_attr_pool_id.attr,
5318         &dev_attr_pool_ns.attr,
5319         &dev_attr_name.attr,
5320         &dev_attr_image_id.attr,
5321         &dev_attr_current_snap.attr,
5322         &dev_attr_snap_id.attr,
5323         &dev_attr_parent.attr,
5324         &dev_attr_refresh.attr,
5325         NULL
5326 };
5327
5328 static struct attribute_group rbd_attr_group = {
5329         .attrs = rbd_attrs,
5330 };
5331
5332 static const struct attribute_group *rbd_attr_groups[] = {
5333         &rbd_attr_group,
5334         NULL
5335 };
5336
5337 static void rbd_dev_release(struct device *dev);
5338
5339 static const struct device_type rbd_device_type = {
5340         .name           = "rbd",
5341         .groups         = rbd_attr_groups,
5342         .release        = rbd_dev_release,
5343 };
5344
5345 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5346 {
5347         kref_get(&spec->kref);
5348
5349         return spec;
5350 }
5351
5352 static void rbd_spec_free(struct kref *kref);
5353 static void rbd_spec_put(struct rbd_spec *spec)
5354 {
5355         if (spec)
5356                 kref_put(&spec->kref, rbd_spec_free);
5357 }
5358
5359 static struct rbd_spec *rbd_spec_alloc(void)
5360 {
5361         struct rbd_spec *spec;
5362
5363         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5364         if (!spec)
5365                 return NULL;
5366
5367         spec->pool_id = CEPH_NOPOOL;
5368         spec->snap_id = CEPH_NOSNAP;
5369         kref_init(&spec->kref);
5370
5371         return spec;
5372 }
5373
5374 static void rbd_spec_free(struct kref *kref)
5375 {
5376         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5377
5378         kfree(spec->pool_name);
5379         kfree(spec->pool_ns);
5380         kfree(spec->image_id);
5381         kfree(spec->image_name);
5382         kfree(spec->snap_name);
5383         kfree(spec);
5384 }
5385
5386 static void rbd_dev_free(struct rbd_device *rbd_dev)
5387 {
5388         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5389         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5390
5391         ceph_oid_destroy(&rbd_dev->header_oid);
5392         ceph_oloc_destroy(&rbd_dev->header_oloc);
5393         kfree(rbd_dev->config_info);
5394
5395         rbd_put_client(rbd_dev->rbd_client);
5396         rbd_spec_put(rbd_dev->spec);
5397         kfree(rbd_dev->opts);
5398         kfree(rbd_dev);
5399 }
5400
5401 static void rbd_dev_release(struct device *dev)
5402 {
5403         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5404         bool need_put = !!rbd_dev->opts;
5405
5406         if (need_put) {
5407                 destroy_workqueue(rbd_dev->task_wq);
5408                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5409         }
5410
5411         rbd_dev_free(rbd_dev);
5412
5413         /*
5414          * This is racy, but way better than putting module outside of
5415          * the release callback.  The race window is pretty small, so
5416          * doing something similar to dm (dm-builtin.c) is overkill.
5417          */
5418         if (need_put)
5419                 module_put(THIS_MODULE);
5420 }
5421
5422 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5423 {
5424         struct rbd_device *rbd_dev;
5425
5426         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5427         if (!rbd_dev)
5428                 return NULL;
5429
5430         spin_lock_init(&rbd_dev->lock);
5431         INIT_LIST_HEAD(&rbd_dev->node);
5432         init_rwsem(&rbd_dev->header_rwsem);
5433
5434         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5435         ceph_oid_init(&rbd_dev->header_oid);
5436         rbd_dev->header_oloc.pool = spec->pool_id;
5437         if (spec->pool_ns) {
5438                 WARN_ON(!*spec->pool_ns);
5439                 rbd_dev->header_oloc.pool_ns =
5440                     ceph_find_or_create_string(spec->pool_ns,
5441                                                strlen(spec->pool_ns));
5442         }
5443
5444         mutex_init(&rbd_dev->watch_mutex);
5445         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5446         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5447
5448         init_rwsem(&rbd_dev->lock_rwsem);
5449         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5450         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5451         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5452         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5453         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5454         spin_lock_init(&rbd_dev->lock_lists_lock);
5455         INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5456         INIT_LIST_HEAD(&rbd_dev->running_list);
5457         init_completion(&rbd_dev->acquire_wait);
5458         init_completion(&rbd_dev->releasing_wait);
5459
5460         spin_lock_init(&rbd_dev->object_map_lock);
5461
5462         rbd_dev->dev.bus = &rbd_bus_type;
5463         rbd_dev->dev.type = &rbd_device_type;
5464         rbd_dev->dev.parent = &rbd_root_dev;
5465         device_initialize(&rbd_dev->dev);
5466
5467         return rbd_dev;
5468 }
5469
5470 /*
5471  * Create a mapping rbd_dev.
5472  */
5473 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5474                                          struct rbd_spec *spec,
5475                                          struct rbd_options *opts)
5476 {
5477         struct rbd_device *rbd_dev;
5478
5479         rbd_dev = __rbd_dev_create(spec);
5480         if (!rbd_dev)
5481                 return NULL;
5482
5483         /* get an id and fill in device name */
5484         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5485                                          minor_to_rbd_dev_id(1 << MINORBITS),
5486                                          GFP_KERNEL);
5487         if (rbd_dev->dev_id < 0)
5488                 goto fail_rbd_dev;
5489
5490         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5491         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5492                                                    rbd_dev->name);
5493         if (!rbd_dev->task_wq)
5494                 goto fail_dev_id;
5495
5496         /* we have a ref from do_rbd_add() */
5497         __module_get(THIS_MODULE);
5498
5499         rbd_dev->rbd_client = rbdc;
5500         rbd_dev->spec = spec;
5501         rbd_dev->opts = opts;
5502
5503         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5504         return rbd_dev;
5505
5506 fail_dev_id:
5507         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5508 fail_rbd_dev:
5509         rbd_dev_free(rbd_dev);
5510         return NULL;
5511 }
5512
5513 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5514 {
5515         if (rbd_dev)
5516                 put_device(&rbd_dev->dev);
5517 }
5518
5519 /*
5520  * Get the size and object order for an image snapshot, or if
5521  * snap_id is CEPH_NOSNAP, gets this information for the base
5522  * image.
5523  */
5524 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5525                                 u8 *order, u64 *snap_size)
5526 {
5527         __le64 snapid = cpu_to_le64(snap_id);
5528         int ret;
5529         struct {
5530                 u8 order;
5531                 __le64 size;
5532         } __attribute__ ((packed)) size_buf = { 0 };
5533
5534         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5535                                   &rbd_dev->header_oloc, "get_size",
5536                                   &snapid, sizeof(snapid),
5537                                   &size_buf, sizeof(size_buf));
5538         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5539         if (ret < 0)
5540                 return ret;
5541         if (ret < sizeof (size_buf))
5542                 return -ERANGE;
5543
5544         if (order) {
5545                 *order = size_buf.order;
5546                 dout("  order %u", (unsigned int)*order);
5547         }
5548         *snap_size = le64_to_cpu(size_buf.size);
5549
5550         dout("  snap_id 0x%016llx snap_size = %llu\n",
5551                 (unsigned long long)snap_id,
5552                 (unsigned long long)*snap_size);
5553
5554         return 0;
5555 }
5556
5557 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev,
5558                                     char **pobject_prefix)
5559 {
5560         size_t size;
5561         void *reply_buf;
5562         char *object_prefix;
5563         int ret;
5564         void *p;
5565
5566         /* Response will be an encoded string, which includes a length */
5567         size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5568         reply_buf = kzalloc(size, GFP_KERNEL);
5569         if (!reply_buf)
5570                 return -ENOMEM;
5571
5572         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5573                                   &rbd_dev->header_oloc, "get_object_prefix",
5574                                   NULL, 0, reply_buf, size);
5575         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5576         if (ret < 0)
5577                 goto out;
5578
5579         p = reply_buf;
5580         object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL,
5581                                                     GFP_NOIO);
5582         if (IS_ERR(object_prefix)) {
5583                 ret = PTR_ERR(object_prefix);
5584                 goto out;
5585         }
5586         ret = 0;
5587
5588         *pobject_prefix = object_prefix;
5589         dout("  object_prefix = %s\n", object_prefix);
5590 out:
5591         kfree(reply_buf);
5592
5593         return ret;
5594 }
5595
5596 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5597                                      bool read_only, u64 *snap_features)
5598 {
5599         struct {
5600                 __le64 snap_id;
5601                 u8 read_only;
5602         } features_in;
5603         struct {
5604                 __le64 features;
5605                 __le64 incompat;
5606         } __attribute__ ((packed)) features_buf = { 0 };
5607         u64 unsup;
5608         int ret;
5609
5610         features_in.snap_id = cpu_to_le64(snap_id);
5611         features_in.read_only = read_only;
5612
5613         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5614                                   &rbd_dev->header_oloc, "get_features",
5615                                   &features_in, sizeof(features_in),
5616                                   &features_buf, sizeof(features_buf));
5617         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5618         if (ret < 0)
5619                 return ret;
5620         if (ret < sizeof (features_buf))
5621                 return -ERANGE;
5622
5623         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5624         if (unsup) {
5625                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5626                          unsup);
5627                 return -ENXIO;
5628         }
5629
5630         *snap_features = le64_to_cpu(features_buf.features);
5631
5632         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5633                 (unsigned long long)snap_id,
5634                 (unsigned long long)*snap_features,
5635                 (unsigned long long)le64_to_cpu(features_buf.incompat));
5636
5637         return 0;
5638 }
5639
5640 /*
5641  * These are generic image flags, but since they are used only for
5642  * object map, store them in rbd_dev->object_map_flags.
5643  *
5644  * For the same reason, this function is called only on object map
5645  * (re)load and not on header refresh.
5646  */
5647 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5648 {
5649         __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5650         __le64 flags;
5651         int ret;
5652
5653         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5654                                   &rbd_dev->header_oloc, "get_flags",
5655                                   &snapid, sizeof(snapid),
5656                                   &flags, sizeof(flags));
5657         if (ret < 0)
5658                 return ret;
5659         if (ret < sizeof(flags))
5660                 return -EBADMSG;
5661
5662         rbd_dev->object_map_flags = le64_to_cpu(flags);
5663         return 0;
5664 }
5665
5666 struct parent_image_info {
5667         u64             pool_id;
5668         const char      *pool_ns;
5669         const char      *image_id;
5670         u64             snap_id;
5671
5672         bool            has_overlap;
5673         u64             overlap;
5674 };
5675
5676 static void rbd_parent_info_cleanup(struct parent_image_info *pii)
5677 {
5678         kfree(pii->pool_ns);
5679         kfree(pii->image_id);
5680
5681         memset(pii, 0, sizeof(*pii));
5682 }
5683
5684 /*
5685  * The caller is responsible for @pii.
5686  */
5687 static int decode_parent_image_spec(void **p, void *end,
5688                                     struct parent_image_info *pii)
5689 {
5690         u8 struct_v;
5691         u32 struct_len;
5692         int ret;
5693
5694         ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5695                                   &struct_v, &struct_len);
5696         if (ret)
5697                 return ret;
5698
5699         ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5700         pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5701         if (IS_ERR(pii->pool_ns)) {
5702                 ret = PTR_ERR(pii->pool_ns);
5703                 pii->pool_ns = NULL;
5704                 return ret;
5705         }
5706         pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5707         if (IS_ERR(pii->image_id)) {
5708                 ret = PTR_ERR(pii->image_id);
5709                 pii->image_id = NULL;
5710                 return ret;
5711         }
5712         ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5713         return 0;
5714
5715 e_inval:
5716         return -EINVAL;
5717 }
5718
5719 static int __get_parent_info(struct rbd_device *rbd_dev,
5720                              struct page *req_page,
5721                              struct page *reply_page,
5722                              struct parent_image_info *pii)
5723 {
5724         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5725         size_t reply_len = PAGE_SIZE;
5726         void *p, *end;
5727         int ret;
5728
5729         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5730                              "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5731                              req_page, sizeof(u64), &reply_page, &reply_len);
5732         if (ret)
5733                 return ret == -EOPNOTSUPP ? 1 : ret;
5734
5735         p = page_address(reply_page);
5736         end = p + reply_len;
5737         ret = decode_parent_image_spec(&p, end, pii);
5738         if (ret)
5739                 return ret;
5740
5741         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5742                              "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5743                              req_page, sizeof(u64), &reply_page, &reply_len);
5744         if (ret)
5745                 return ret;
5746
5747         p = page_address(reply_page);
5748         end = p + reply_len;
5749         ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5750         if (pii->has_overlap)
5751                 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5752
5753         dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5754              __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5755              pii->has_overlap, pii->overlap);
5756         return 0;
5757
5758 e_inval:
5759         return -EINVAL;
5760 }
5761
5762 /*
5763  * The caller is responsible for @pii.
5764  */
5765 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5766                                     struct page *req_page,
5767                                     struct page *reply_page,
5768                                     struct parent_image_info *pii)
5769 {
5770         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5771         size_t reply_len = PAGE_SIZE;
5772         void *p, *end;
5773         int ret;
5774
5775         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5776                              "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5777                              req_page, sizeof(u64), &reply_page, &reply_len);
5778         if (ret)
5779                 return ret;
5780
5781         p = page_address(reply_page);
5782         end = p + reply_len;
5783         ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5784         pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5785         if (IS_ERR(pii->image_id)) {
5786                 ret = PTR_ERR(pii->image_id);
5787                 pii->image_id = NULL;
5788                 return ret;
5789         }
5790         ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5791         pii->has_overlap = true;
5792         ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5793
5794         dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5795              __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5796              pii->has_overlap, pii->overlap);
5797         return 0;
5798
5799 e_inval:
5800         return -EINVAL;
5801 }
5802
5803 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev,
5804                                   struct parent_image_info *pii)
5805 {
5806         struct page *req_page, *reply_page;
5807         void *p;
5808         int ret;
5809
5810         req_page = alloc_page(GFP_KERNEL);
5811         if (!req_page)
5812                 return -ENOMEM;
5813
5814         reply_page = alloc_page(GFP_KERNEL);
5815         if (!reply_page) {
5816                 __free_page(req_page);
5817                 return -ENOMEM;
5818         }
5819
5820         p = page_address(req_page);
5821         ceph_encode_64(&p, rbd_dev->spec->snap_id);
5822         ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5823         if (ret > 0)
5824                 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5825                                                pii);
5826
5827         __free_page(req_page);
5828         __free_page(reply_page);
5829         return ret;
5830 }
5831
5832 static int rbd_dev_setup_parent(struct rbd_device *rbd_dev)
5833 {
5834         struct rbd_spec *parent_spec;
5835         struct parent_image_info pii = { 0 };
5836         int ret;
5837
5838         parent_spec = rbd_spec_alloc();
5839         if (!parent_spec)
5840                 return -ENOMEM;
5841
5842         ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
5843         if (ret)
5844                 goto out_err;
5845
5846         if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap)
5847                 goto out;       /* No parent?  No problem. */
5848
5849         /* The ceph file layout needs to fit pool id in 32 bits */
5850
5851         ret = -EIO;
5852         if (pii.pool_id > (u64)U32_MAX) {
5853                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5854                         (unsigned long long)pii.pool_id, U32_MAX);
5855                 goto out_err;
5856         }
5857
5858         /*
5859          * The parent won't change except when the clone is flattened,
5860          * so we only need to record the parent image spec once.
5861          */
5862         parent_spec->pool_id = pii.pool_id;
5863         if (pii.pool_ns && *pii.pool_ns) {
5864                 parent_spec->pool_ns = pii.pool_ns;
5865                 pii.pool_ns = NULL;
5866         }
5867         parent_spec->image_id = pii.image_id;
5868         pii.image_id = NULL;
5869         parent_spec->snap_id = pii.snap_id;
5870
5871         rbd_assert(!rbd_dev->parent_spec);
5872         rbd_dev->parent_spec = parent_spec;
5873         parent_spec = NULL;     /* rbd_dev now owns this */
5874
5875         /*
5876          * Record the parent overlap.  If it's zero, issue a warning as
5877          * we will proceed as if there is no parent.
5878          */
5879         if (!pii.overlap)
5880                 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5881         rbd_dev->parent_overlap = pii.overlap;
5882
5883 out:
5884         ret = 0;
5885 out_err:
5886         rbd_parent_info_cleanup(&pii);
5887         rbd_spec_put(parent_spec);
5888         return ret;
5889 }
5890
5891 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev,
5892                                     u64 *stripe_unit, u64 *stripe_count)
5893 {
5894         struct {
5895                 __le64 stripe_unit;
5896                 __le64 stripe_count;
5897         } __attribute__ ((packed)) striping_info_buf = { 0 };
5898         size_t size = sizeof (striping_info_buf);
5899         int ret;
5900
5901         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5902                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
5903                                 NULL, 0, &striping_info_buf, size);
5904         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5905         if (ret < 0)
5906                 return ret;
5907         if (ret < size)
5908                 return -ERANGE;
5909
5910         *stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit);
5911         *stripe_count = le64_to_cpu(striping_info_buf.stripe_count);
5912         dout("  stripe_unit = %llu stripe_count = %llu\n", *stripe_unit,
5913              *stripe_count);
5914
5915         return 0;
5916 }
5917
5918 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id)
5919 {
5920         __le64 data_pool_buf;
5921         int ret;
5922
5923         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5924                                   &rbd_dev->header_oloc, "get_data_pool",
5925                                   NULL, 0, &data_pool_buf,
5926                                   sizeof(data_pool_buf));
5927         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5928         if (ret < 0)
5929                 return ret;
5930         if (ret < sizeof(data_pool_buf))
5931                 return -EBADMSG;
5932
5933         *data_pool_id = le64_to_cpu(data_pool_buf);
5934         dout("  data_pool_id = %lld\n", *data_pool_id);
5935         WARN_ON(*data_pool_id == CEPH_NOPOOL);
5936
5937         return 0;
5938 }
5939
5940 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5941 {
5942         CEPH_DEFINE_OID_ONSTACK(oid);
5943         size_t image_id_size;
5944         char *image_id;
5945         void *p;
5946         void *end;
5947         size_t size;
5948         void *reply_buf = NULL;
5949         size_t len = 0;
5950         char *image_name = NULL;
5951         int ret;
5952
5953         rbd_assert(!rbd_dev->spec->image_name);
5954
5955         len = strlen(rbd_dev->spec->image_id);
5956         image_id_size = sizeof (__le32) + len;
5957         image_id = kmalloc(image_id_size, GFP_KERNEL);
5958         if (!image_id)
5959                 return NULL;
5960
5961         p = image_id;
5962         end = image_id + image_id_size;
5963         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5964
5965         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5966         reply_buf = kmalloc(size, GFP_KERNEL);
5967         if (!reply_buf)
5968                 goto out;
5969
5970         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5971         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5972                                   "dir_get_name", image_id, image_id_size,
5973                                   reply_buf, size);
5974         if (ret < 0)
5975                 goto out;
5976         p = reply_buf;
5977         end = reply_buf + ret;
5978
5979         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5980         if (IS_ERR(image_name))
5981                 image_name = NULL;
5982         else
5983                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5984 out:
5985         kfree(reply_buf);
5986         kfree(image_id);
5987
5988         return image_name;
5989 }
5990
5991 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5992 {
5993         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5994         const char *snap_name;
5995         u32 which = 0;
5996
5997         /* Skip over names until we find the one we are looking for */
5998
5999         snap_name = rbd_dev->header.snap_names;
6000         while (which < snapc->num_snaps) {
6001                 if (!strcmp(name, snap_name))
6002                         return snapc->snaps[which];
6003                 snap_name += strlen(snap_name) + 1;
6004                 which++;
6005         }
6006         return CEPH_NOSNAP;
6007 }
6008
6009 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6010 {
6011         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
6012         u32 which;
6013         bool found = false;
6014         u64 snap_id;
6015
6016         for (which = 0; !found && which < snapc->num_snaps; which++) {
6017                 const char *snap_name;
6018
6019                 snap_id = snapc->snaps[which];
6020                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
6021                 if (IS_ERR(snap_name)) {
6022                         /* ignore no-longer existing snapshots */
6023                         if (PTR_ERR(snap_name) == -ENOENT)
6024                                 continue;
6025                         else
6026                                 break;
6027                 }
6028                 found = !strcmp(name, snap_name);
6029                 kfree(snap_name);
6030         }
6031         return found ? snap_id : CEPH_NOSNAP;
6032 }
6033
6034 /*
6035  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
6036  * no snapshot by that name is found, or if an error occurs.
6037  */
6038 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6039 {
6040         if (rbd_dev->image_format == 1)
6041                 return rbd_v1_snap_id_by_name(rbd_dev, name);
6042
6043         return rbd_v2_snap_id_by_name(rbd_dev, name);
6044 }
6045
6046 /*
6047  * An image being mapped will have everything but the snap id.
6048  */
6049 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6050 {
6051         struct rbd_spec *spec = rbd_dev->spec;
6052
6053         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6054         rbd_assert(spec->image_id && spec->image_name);
6055         rbd_assert(spec->snap_name);
6056
6057         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6058                 u64 snap_id;
6059
6060                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6061                 if (snap_id == CEPH_NOSNAP)
6062                         return -ENOENT;
6063
6064                 spec->snap_id = snap_id;
6065         } else {
6066                 spec->snap_id = CEPH_NOSNAP;
6067         }
6068
6069         return 0;
6070 }
6071
6072 /*
6073  * A parent image will have all ids but none of the names.
6074  *
6075  * All names in an rbd spec are dynamically allocated.  It's OK if we
6076  * can't figure out the name for an image id.
6077  */
6078 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6079 {
6080         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6081         struct rbd_spec *spec = rbd_dev->spec;
6082         const char *pool_name;
6083         const char *image_name;
6084         const char *snap_name;
6085         int ret;
6086
6087         rbd_assert(spec->pool_id != CEPH_NOPOOL);
6088         rbd_assert(spec->image_id);
6089         rbd_assert(spec->snap_id != CEPH_NOSNAP);
6090
6091         /* Get the pool name; we have to make our own copy of this */
6092
6093         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6094         if (!pool_name) {
6095                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6096                 return -EIO;
6097         }
6098         pool_name = kstrdup(pool_name, GFP_KERNEL);
6099         if (!pool_name)
6100                 return -ENOMEM;
6101
6102         /* Fetch the image name; tolerate failure here */
6103
6104         image_name = rbd_dev_image_name(rbd_dev);
6105         if (!image_name)
6106                 rbd_warn(rbd_dev, "unable to get image name");
6107
6108         /* Fetch the snapshot name */
6109
6110         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6111         if (IS_ERR(snap_name)) {
6112                 ret = PTR_ERR(snap_name);
6113                 goto out_err;
6114         }
6115
6116         spec->pool_name = pool_name;
6117         spec->image_name = image_name;
6118         spec->snap_name = snap_name;
6119
6120         return 0;
6121
6122 out_err:
6123         kfree(image_name);
6124         kfree(pool_name);
6125         return ret;
6126 }
6127
6128 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev,
6129                                    struct ceph_snap_context **psnapc)
6130 {
6131         size_t size;
6132         int ret;
6133         void *reply_buf;
6134         void *p;
6135         void *end;
6136         u64 seq;
6137         u32 snap_count;
6138         struct ceph_snap_context *snapc;
6139         u32 i;
6140
6141         /*
6142          * We'll need room for the seq value (maximum snapshot id),
6143          * snapshot count, and array of that many snapshot ids.
6144          * For now we have a fixed upper limit on the number we're
6145          * prepared to receive.
6146          */
6147         size = sizeof (__le64) + sizeof (__le32) +
6148                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
6149         reply_buf = kzalloc(size, GFP_KERNEL);
6150         if (!reply_buf)
6151                 return -ENOMEM;
6152
6153         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6154                                   &rbd_dev->header_oloc, "get_snapcontext",
6155                                   NULL, 0, reply_buf, size);
6156         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6157         if (ret < 0)
6158                 goto out;
6159
6160         p = reply_buf;
6161         end = reply_buf + ret;
6162         ret = -ERANGE;
6163         ceph_decode_64_safe(&p, end, seq, out);
6164         ceph_decode_32_safe(&p, end, snap_count, out);
6165
6166         /*
6167          * Make sure the reported number of snapshot ids wouldn't go
6168          * beyond the end of our buffer.  But before checking that,
6169          * make sure the computed size of the snapshot context we
6170          * allocate is representable in a size_t.
6171          */
6172         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6173                                  / sizeof (u64)) {
6174                 ret = -EINVAL;
6175                 goto out;
6176         }
6177         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6178                 goto out;
6179         ret = 0;
6180
6181         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6182         if (!snapc) {
6183                 ret = -ENOMEM;
6184                 goto out;
6185         }
6186         snapc->seq = seq;
6187         for (i = 0; i < snap_count; i++)
6188                 snapc->snaps[i] = ceph_decode_64(&p);
6189
6190         *psnapc = snapc;
6191         dout("  snap context seq = %llu, snap_count = %u\n",
6192                 (unsigned long long)seq, (unsigned int)snap_count);
6193 out:
6194         kfree(reply_buf);
6195
6196         return ret;
6197 }
6198
6199 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6200                                         u64 snap_id)
6201 {
6202         size_t size;
6203         void *reply_buf;
6204         __le64 snapid;
6205         int ret;
6206         void *p;
6207         void *end;
6208         char *snap_name;
6209
6210         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6211         reply_buf = kmalloc(size, GFP_KERNEL);
6212         if (!reply_buf)
6213                 return ERR_PTR(-ENOMEM);
6214
6215         snapid = cpu_to_le64(snap_id);
6216         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6217                                   &rbd_dev->header_oloc, "get_snapshot_name",
6218                                   &snapid, sizeof(snapid), reply_buf, size);
6219         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6220         if (ret < 0) {
6221                 snap_name = ERR_PTR(ret);
6222                 goto out;
6223         }
6224
6225         p = reply_buf;
6226         end = reply_buf + ret;
6227         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6228         if (IS_ERR(snap_name))
6229                 goto out;
6230
6231         dout("  snap_id 0x%016llx snap_name = %s\n",
6232                 (unsigned long long)snap_id, snap_name);
6233 out:
6234         kfree(reply_buf);
6235
6236         return snap_name;
6237 }
6238
6239 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev,
6240                                   struct rbd_image_header *header,
6241                                   bool first_time)
6242 {
6243         int ret;
6244
6245         ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
6246                                     first_time ? &header->obj_order : NULL,
6247                                     &header->image_size);
6248         if (ret)
6249                 return ret;
6250
6251         if (first_time) {
6252                 ret = rbd_dev_v2_header_onetime(rbd_dev, header);
6253                 if (ret)
6254                         return ret;
6255         }
6256
6257         ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc);
6258         if (ret)
6259                 return ret;
6260
6261         return 0;
6262 }
6263
6264 static int rbd_dev_header_info(struct rbd_device *rbd_dev,
6265                                struct rbd_image_header *header,
6266                                bool first_time)
6267 {
6268         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6269         rbd_assert(!header->object_prefix && !header->snapc);
6270
6271         if (rbd_dev->image_format == 1)
6272                 return rbd_dev_v1_header_info(rbd_dev, header, first_time);
6273
6274         return rbd_dev_v2_header_info(rbd_dev, header, first_time);
6275 }
6276
6277 /*
6278  * Skips over white space at *buf, and updates *buf to point to the
6279  * first found non-space character (if any). Returns the length of
6280  * the token (string of non-white space characters) found.  Note
6281  * that *buf must be terminated with '\0'.
6282  */
6283 static inline size_t next_token(const char **buf)
6284 {
6285         /*
6286         * These are the characters that produce nonzero for
6287         * isspace() in the "C" and "POSIX" locales.
6288         */
6289         const char *spaces = " \f\n\r\t\v";
6290
6291         *buf += strspn(*buf, spaces);   /* Find start of token */
6292
6293         return strcspn(*buf, spaces);   /* Return token length */
6294 }
6295
6296 /*
6297  * Finds the next token in *buf, dynamically allocates a buffer big
6298  * enough to hold a copy of it, and copies the token into the new
6299  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6300  * that a duplicate buffer is created even for a zero-length token.
6301  *
6302  * Returns a pointer to the newly-allocated duplicate, or a null
6303  * pointer if memory for the duplicate was not available.  If
6304  * the lenp argument is a non-null pointer, the length of the token
6305  * (not including the '\0') is returned in *lenp.
6306  *
6307  * If successful, the *buf pointer will be updated to point beyond
6308  * the end of the found token.
6309  *
6310  * Note: uses GFP_KERNEL for allocation.
6311  */
6312 static inline char *dup_token(const char **buf, size_t *lenp)
6313 {
6314         char *dup;
6315         size_t len;
6316
6317         len = next_token(buf);
6318         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6319         if (!dup)
6320                 return NULL;
6321         *(dup + len) = '\0';
6322         *buf += len;
6323
6324         if (lenp)
6325                 *lenp = len;
6326
6327         return dup;
6328 }
6329
6330 static int rbd_parse_param(struct fs_parameter *param,
6331                             struct rbd_parse_opts_ctx *pctx)
6332 {
6333         struct rbd_options *opt = pctx->opts;
6334         struct fs_parse_result result;
6335         struct p_log log = {.prefix = "rbd"};
6336         int token, ret;
6337
6338         ret = ceph_parse_param(param, pctx->copts, NULL);
6339         if (ret != -ENOPARAM)
6340                 return ret;
6341
6342         token = __fs_parse(&log, rbd_parameters, param, &result);
6343         dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6344         if (token < 0) {
6345                 if (token == -ENOPARAM)
6346                         return inval_plog(&log, "Unknown parameter '%s'",
6347                                           param->key);
6348                 return token;
6349         }
6350
6351         switch (token) {
6352         case Opt_queue_depth:
6353                 if (result.uint_32 < 1)
6354                         goto out_of_range;
6355                 opt->queue_depth = result.uint_32;
6356                 break;
6357         case Opt_alloc_size:
6358                 if (result.uint_32 < SECTOR_SIZE)
6359                         goto out_of_range;
6360                 if (!is_power_of_2(result.uint_32))
6361                         return inval_plog(&log, "alloc_size must be a power of 2");
6362                 opt->alloc_size = result.uint_32;
6363                 break;
6364         case Opt_lock_timeout:
6365                 /* 0 is "wait forever" (i.e. infinite timeout) */
6366                 if (result.uint_32 > INT_MAX / 1000)
6367                         goto out_of_range;
6368                 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6369                 break;
6370         case Opt_pool_ns:
6371                 kfree(pctx->spec->pool_ns);
6372                 pctx->spec->pool_ns = param->string;
6373                 param->string = NULL;
6374                 break;
6375         case Opt_compression_hint:
6376                 switch (result.uint_32) {
6377                 case Opt_compression_hint_none:
6378                         opt->alloc_hint_flags &=
6379                             ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6380                               CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6381                         break;
6382                 case Opt_compression_hint_compressible:
6383                         opt->alloc_hint_flags |=
6384                             CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6385                         opt->alloc_hint_flags &=
6386                             ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6387                         break;
6388                 case Opt_compression_hint_incompressible:
6389                         opt->alloc_hint_flags |=
6390                             CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6391                         opt->alloc_hint_flags &=
6392                             ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6393                         break;
6394                 default:
6395                         BUG();
6396                 }
6397                 break;
6398         case Opt_read_only:
6399                 opt->read_only = true;
6400                 break;
6401         case Opt_read_write:
6402                 opt->read_only = false;
6403                 break;
6404         case Opt_lock_on_read:
6405                 opt->lock_on_read = true;
6406                 break;
6407         case Opt_exclusive:
6408                 opt->exclusive = true;
6409                 break;
6410         case Opt_notrim:
6411                 opt->trim = false;
6412                 break;
6413         default:
6414                 BUG();
6415         }
6416
6417         return 0;
6418
6419 out_of_range:
6420         return inval_plog(&log, "%s out of range", param->key);
6421 }
6422
6423 /*
6424  * This duplicates most of generic_parse_monolithic(), untying it from
6425  * fs_context and skipping standard superblock and security options.
6426  */
6427 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6428 {
6429         char *key;
6430         int ret = 0;
6431
6432         dout("%s '%s'\n", __func__, options);
6433         while ((key = strsep(&options, ",")) != NULL) {
6434                 if (*key) {
6435                         struct fs_parameter param = {
6436                                 .key    = key,
6437                                 .type   = fs_value_is_flag,
6438                         };
6439                         char *value = strchr(key, '=');
6440                         size_t v_len = 0;
6441
6442                         if (value) {
6443                                 if (value == key)
6444                                         continue;
6445                                 *value++ = 0;
6446                                 v_len = strlen(value);
6447                                 param.string = kmemdup_nul(value, v_len,
6448                                                            GFP_KERNEL);
6449                                 if (!param.string)
6450                                         return -ENOMEM;
6451                                 param.type = fs_value_is_string;
6452                         }
6453                         param.size = v_len;
6454
6455                         ret = rbd_parse_param(&param, pctx);
6456                         kfree(param.string);
6457                         if (ret)
6458                                 break;
6459                 }
6460         }
6461
6462         return ret;
6463 }
6464
6465 /*
6466  * Parse the options provided for an "rbd add" (i.e., rbd image
6467  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6468  * and the data written is passed here via a NUL-terminated buffer.
6469  * Returns 0 if successful or an error code otherwise.
6470  *
6471  * The information extracted from these options is recorded in
6472  * the other parameters which return dynamically-allocated
6473  * structures:
6474  *  ceph_opts
6475  *      The address of a pointer that will refer to a ceph options
6476  *      structure.  Caller must release the returned pointer using
6477  *      ceph_destroy_options() when it is no longer needed.
6478  *  rbd_opts
6479  *      Address of an rbd options pointer.  Fully initialized by
6480  *      this function; caller must release with kfree().
6481  *  spec
6482  *      Address of an rbd image specification pointer.  Fully
6483  *      initialized by this function based on parsed options.
6484  *      Caller must release with rbd_spec_put().
6485  *
6486  * The options passed take this form:
6487  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6488  * where:
6489  *  <mon_addrs>
6490  *      A comma-separated list of one or more monitor addresses.
6491  *      A monitor address is an ip address, optionally followed
6492  *      by a port number (separated by a colon).
6493  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6494  *  <options>
6495  *      A comma-separated list of ceph and/or rbd options.
6496  *  <pool_name>
6497  *      The name of the rados pool containing the rbd image.
6498  *  <image_name>
6499  *      The name of the image in that pool to map.
6500  *  <snap_id>
6501  *      An optional snapshot id.  If provided, the mapping will
6502  *      present data from the image at the time that snapshot was
6503  *      created.  The image head is used if no snapshot id is
6504  *      provided.  Snapshot mappings are always read-only.
6505  */
6506 static int rbd_add_parse_args(const char *buf,
6507                                 struct ceph_options **ceph_opts,
6508                                 struct rbd_options **opts,
6509                                 struct rbd_spec **rbd_spec)
6510 {
6511         size_t len;
6512         char *options;
6513         const char *mon_addrs;
6514         char *snap_name;
6515         size_t mon_addrs_size;
6516         struct rbd_parse_opts_ctx pctx = { 0 };
6517         int ret;
6518
6519         /* The first four tokens are required */
6520
6521         len = next_token(&buf);
6522         if (!len) {
6523                 rbd_warn(NULL, "no monitor address(es) provided");
6524                 return -EINVAL;
6525         }
6526         mon_addrs = buf;
6527         mon_addrs_size = len;
6528         buf += len;
6529
6530         ret = -EINVAL;
6531         options = dup_token(&buf, NULL);
6532         if (!options)
6533                 return -ENOMEM;
6534         if (!*options) {
6535                 rbd_warn(NULL, "no options provided");
6536                 goto out_err;
6537         }
6538
6539         pctx.spec = rbd_spec_alloc();
6540         if (!pctx.spec)
6541                 goto out_mem;
6542
6543         pctx.spec->pool_name = dup_token(&buf, NULL);
6544         if (!pctx.spec->pool_name)
6545                 goto out_mem;
6546         if (!*pctx.spec->pool_name) {
6547                 rbd_warn(NULL, "no pool name provided");
6548                 goto out_err;
6549         }
6550
6551         pctx.spec->image_name = dup_token(&buf, NULL);
6552         if (!pctx.spec->image_name)
6553                 goto out_mem;
6554         if (!*pctx.spec->image_name) {
6555                 rbd_warn(NULL, "no image name provided");
6556                 goto out_err;
6557         }
6558
6559         /*
6560          * Snapshot name is optional; default is to use "-"
6561          * (indicating the head/no snapshot).
6562          */
6563         len = next_token(&buf);
6564         if (!len) {
6565                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6566                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6567         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6568                 ret = -ENAMETOOLONG;
6569                 goto out_err;
6570         }
6571         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6572         if (!snap_name)
6573                 goto out_mem;
6574         *(snap_name + len) = '\0';
6575         pctx.spec->snap_name = snap_name;
6576
6577         pctx.copts = ceph_alloc_options();
6578         if (!pctx.copts)
6579                 goto out_mem;
6580
6581         /* Initialize all rbd options to the defaults */
6582
6583         pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6584         if (!pctx.opts)
6585                 goto out_mem;
6586
6587         pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6588         pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6589         pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6590         pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6591         pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6592         pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6593         pctx.opts->trim = RBD_TRIM_DEFAULT;
6594
6595         ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6596         if (ret)
6597                 goto out_err;
6598
6599         ret = rbd_parse_options(options, &pctx);
6600         if (ret)
6601                 goto out_err;
6602
6603         *ceph_opts = pctx.copts;
6604         *opts = pctx.opts;
6605         *rbd_spec = pctx.spec;
6606         kfree(options);
6607         return 0;
6608
6609 out_mem:
6610         ret = -ENOMEM;
6611 out_err:
6612         kfree(pctx.opts);
6613         ceph_destroy_options(pctx.copts);
6614         rbd_spec_put(pctx.spec);
6615         kfree(options);
6616         return ret;
6617 }
6618
6619 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6620 {
6621         down_write(&rbd_dev->lock_rwsem);
6622         if (__rbd_is_lock_owner(rbd_dev))
6623                 __rbd_release_lock(rbd_dev);
6624         up_write(&rbd_dev->lock_rwsem);
6625 }
6626
6627 /*
6628  * If the wait is interrupted, an error is returned even if the lock
6629  * was successfully acquired.  rbd_dev_image_unlock() will release it
6630  * if needed.
6631  */
6632 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6633 {
6634         long ret;
6635
6636         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6637                 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6638                         return 0;
6639
6640                 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6641                 return -EINVAL;
6642         }
6643
6644         if (rbd_is_ro(rbd_dev))
6645                 return 0;
6646
6647         rbd_assert(!rbd_is_lock_owner(rbd_dev));
6648         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6649         ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6650                             ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6651         if (ret > 0) {
6652                 ret = rbd_dev->acquire_err;
6653         } else {
6654                 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6655                 if (!ret)
6656                         ret = -ETIMEDOUT;
6657
6658                 rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6659         }
6660         if (ret)
6661                 return ret;
6662
6663         /*
6664          * The lock may have been released by now, unless automatic lock
6665          * transitions are disabled.
6666          */
6667         rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6668         return 0;
6669 }
6670
6671 /*
6672  * An rbd format 2 image has a unique identifier, distinct from the
6673  * name given to it by the user.  Internally, that identifier is
6674  * what's used to specify the names of objects related to the image.
6675  *
6676  * A special "rbd id" object is used to map an rbd image name to its
6677  * id.  If that object doesn't exist, then there is no v2 rbd image
6678  * with the supplied name.
6679  *
6680  * This function will record the given rbd_dev's image_id field if
6681  * it can be determined, and in that case will return 0.  If any
6682  * errors occur a negative errno will be returned and the rbd_dev's
6683  * image_id field will be unchanged (and should be NULL).
6684  */
6685 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6686 {
6687         int ret;
6688         size_t size;
6689         CEPH_DEFINE_OID_ONSTACK(oid);
6690         void *response;
6691         char *image_id;
6692
6693         /*
6694          * When probing a parent image, the image id is already
6695          * known (and the image name likely is not).  There's no
6696          * need to fetch the image id again in this case.  We
6697          * do still need to set the image format though.
6698          */
6699         if (rbd_dev->spec->image_id) {
6700                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6701
6702                 return 0;
6703         }
6704
6705         /*
6706          * First, see if the format 2 image id file exists, and if
6707          * so, get the image's persistent id from it.
6708          */
6709         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6710                                rbd_dev->spec->image_name);
6711         if (ret)
6712                 return ret;
6713
6714         dout("rbd id object name is %s\n", oid.name);
6715
6716         /* Response will be an encoded string, which includes a length */
6717         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6718         response = kzalloc(size, GFP_NOIO);
6719         if (!response) {
6720                 ret = -ENOMEM;
6721                 goto out;
6722         }
6723
6724         /* If it doesn't exist we'll assume it's a format 1 image */
6725
6726         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6727                                   "get_id", NULL, 0,
6728                                   response, size);
6729         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6730         if (ret == -ENOENT) {
6731                 image_id = kstrdup("", GFP_KERNEL);
6732                 ret = image_id ? 0 : -ENOMEM;
6733                 if (!ret)
6734                         rbd_dev->image_format = 1;
6735         } else if (ret >= 0) {
6736                 void *p = response;
6737
6738                 image_id = ceph_extract_encoded_string(&p, p + ret,
6739                                                 NULL, GFP_NOIO);
6740                 ret = PTR_ERR_OR_ZERO(image_id);
6741                 if (!ret)
6742                         rbd_dev->image_format = 2;
6743         }
6744
6745         if (!ret) {
6746                 rbd_dev->spec->image_id = image_id;
6747                 dout("image_id is %s\n", image_id);
6748         }
6749 out:
6750         kfree(response);
6751         ceph_oid_destroy(&oid);
6752         return ret;
6753 }
6754
6755 /*
6756  * Undo whatever state changes are made by v1 or v2 header info
6757  * call.
6758  */
6759 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6760 {
6761         rbd_dev_parent_put(rbd_dev);
6762         rbd_object_map_free(rbd_dev);
6763         rbd_dev_mapping_clear(rbd_dev);
6764
6765         /* Free dynamic fields from the header, then zero it out */
6766
6767         rbd_image_header_cleanup(&rbd_dev->header);
6768 }
6769
6770 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
6771                                      struct rbd_image_header *header)
6772 {
6773         int ret;
6774
6775         ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix);
6776         if (ret)
6777                 return ret;
6778
6779         /*
6780          * Get the and check features for the image.  Currently the
6781          * features are assumed to never change.
6782          */
6783         ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
6784                                         rbd_is_ro(rbd_dev), &header->features);
6785         if (ret)
6786                 return ret;
6787
6788         /* If the image supports fancy striping, get its parameters */
6789
6790         if (header->features & RBD_FEATURE_STRIPINGV2) {
6791                 ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit,
6792                                                &header->stripe_count);
6793                 if (ret)
6794                         return ret;
6795         }
6796
6797         if (header->features & RBD_FEATURE_DATA_POOL) {
6798                 ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id);
6799                 if (ret)
6800                         return ret;
6801         }
6802
6803         return 0;
6804 }
6805
6806 /*
6807  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6808  * rbd_dev_image_probe() recursion depth, which means it's also the
6809  * length of the already discovered part of the parent chain.
6810  */
6811 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6812 {
6813         struct rbd_device *parent = NULL;
6814         int ret;
6815
6816         if (!rbd_dev->parent_spec)
6817                 return 0;
6818
6819         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6820                 pr_info("parent chain is too long (%d)\n", depth);
6821                 ret = -EINVAL;
6822                 goto out_err;
6823         }
6824
6825         parent = __rbd_dev_create(rbd_dev->parent_spec);
6826         if (!parent) {
6827                 ret = -ENOMEM;
6828                 goto out_err;
6829         }
6830
6831         /*
6832          * Images related by parent/child relationships always share
6833          * rbd_client and spec/parent_spec, so bump their refcounts.
6834          */
6835         parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6836         parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6837
6838         __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6839
6840         ret = rbd_dev_image_probe(parent, depth);
6841         if (ret < 0)
6842                 goto out_err;
6843
6844         rbd_dev->parent = parent;
6845         atomic_set(&rbd_dev->parent_ref, 1);
6846         return 0;
6847
6848 out_err:
6849         rbd_dev_unparent(rbd_dev);
6850         rbd_dev_destroy(parent);
6851         return ret;
6852 }
6853
6854 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6855 {
6856         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6857         rbd_free_disk(rbd_dev);
6858         if (!single_major)
6859                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6860 }
6861
6862 /*
6863  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6864  * upon return.
6865  */
6866 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6867 {
6868         int ret;
6869
6870         /* Record our major and minor device numbers. */
6871
6872         if (!single_major) {
6873                 ret = register_blkdev(0, rbd_dev->name);
6874                 if (ret < 0)
6875                         goto err_out_unlock;
6876
6877                 rbd_dev->major = ret;
6878                 rbd_dev->minor = 0;
6879         } else {
6880                 rbd_dev->major = rbd_major;
6881                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6882         }
6883
6884         /* Set up the blkdev mapping. */
6885
6886         ret = rbd_init_disk(rbd_dev);
6887         if (ret)
6888                 goto err_out_blkdev;
6889
6890         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6891         set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6892
6893         ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6894         if (ret)
6895                 goto err_out_disk;
6896
6897         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6898         up_write(&rbd_dev->header_rwsem);
6899         return 0;
6900
6901 err_out_disk:
6902         rbd_free_disk(rbd_dev);
6903 err_out_blkdev:
6904         if (!single_major)
6905                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6906 err_out_unlock:
6907         up_write(&rbd_dev->header_rwsem);
6908         return ret;
6909 }
6910
6911 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6912 {
6913         struct rbd_spec *spec = rbd_dev->spec;
6914         int ret;
6915
6916         /* Record the header object name for this rbd image. */
6917
6918         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6919         if (rbd_dev->image_format == 1)
6920                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6921                                        spec->image_name, RBD_SUFFIX);
6922         else
6923                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6924                                        RBD_HEADER_PREFIX, spec->image_id);
6925
6926         return ret;
6927 }
6928
6929 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6930 {
6931         if (!is_snap) {
6932                 pr_info("image %s/%s%s%s does not exist\n",
6933                         rbd_dev->spec->pool_name,
6934                         rbd_dev->spec->pool_ns ?: "",
6935                         rbd_dev->spec->pool_ns ? "/" : "",
6936                         rbd_dev->spec->image_name);
6937         } else {
6938                 pr_info("snap %s/%s%s%s@%s does not exist\n",
6939                         rbd_dev->spec->pool_name,
6940                         rbd_dev->spec->pool_ns ?: "",
6941                         rbd_dev->spec->pool_ns ? "/" : "",
6942                         rbd_dev->spec->image_name,
6943                         rbd_dev->spec->snap_name);
6944         }
6945 }
6946
6947 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6948 {
6949         if (!rbd_is_ro(rbd_dev))
6950                 rbd_unregister_watch(rbd_dev);
6951
6952         rbd_dev_unprobe(rbd_dev);
6953         rbd_dev->image_format = 0;
6954         kfree(rbd_dev->spec->image_id);
6955         rbd_dev->spec->image_id = NULL;
6956 }
6957
6958 /*
6959  * Probe for the existence of the header object for the given rbd
6960  * device.  If this image is the one being mapped (i.e., not a
6961  * parent), initiate a watch on its header object before using that
6962  * object to get detailed information about the rbd image.
6963  *
6964  * On success, returns with header_rwsem held for write if called
6965  * with @depth == 0.
6966  */
6967 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6968 {
6969         bool need_watch = !rbd_is_ro(rbd_dev);
6970         int ret;
6971
6972         /*
6973          * Get the id from the image id object.  Unless there's an
6974          * error, rbd_dev->spec->image_id will be filled in with
6975          * a dynamically-allocated string, and rbd_dev->image_format
6976          * will be set to either 1 or 2.
6977          */
6978         ret = rbd_dev_image_id(rbd_dev);
6979         if (ret)
6980                 return ret;
6981
6982         ret = rbd_dev_header_name(rbd_dev);
6983         if (ret)
6984                 goto err_out_format;
6985
6986         if (need_watch) {
6987                 ret = rbd_register_watch(rbd_dev);
6988                 if (ret) {
6989                         if (ret == -ENOENT)
6990                                 rbd_print_dne(rbd_dev, false);
6991                         goto err_out_format;
6992                 }
6993         }
6994
6995         if (!depth)
6996                 down_write(&rbd_dev->header_rwsem);
6997
6998         ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true);
6999         if (ret) {
7000                 if (ret == -ENOENT && !need_watch)
7001                         rbd_print_dne(rbd_dev, false);
7002                 goto err_out_probe;
7003         }
7004
7005         rbd_init_layout(rbd_dev);
7006
7007         /*
7008          * If this image is the one being mapped, we have pool name and
7009          * id, image name and id, and snap name - need to fill snap id.
7010          * Otherwise this is a parent image, identified by pool, image
7011          * and snap ids - need to fill in names for those ids.
7012          */
7013         if (!depth)
7014                 ret = rbd_spec_fill_snap_id(rbd_dev);
7015         else
7016                 ret = rbd_spec_fill_names(rbd_dev);
7017         if (ret) {
7018                 if (ret == -ENOENT)
7019                         rbd_print_dne(rbd_dev, true);
7020                 goto err_out_probe;
7021         }
7022
7023         ret = rbd_dev_mapping_set(rbd_dev);
7024         if (ret)
7025                 goto err_out_probe;
7026
7027         if (rbd_is_snap(rbd_dev) &&
7028             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
7029                 ret = rbd_object_map_load(rbd_dev);
7030                 if (ret)
7031                         goto err_out_probe;
7032         }
7033
7034         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7035                 ret = rbd_dev_setup_parent(rbd_dev);
7036                 if (ret)
7037                         goto err_out_probe;
7038         }
7039
7040         ret = rbd_dev_probe_parent(rbd_dev, depth);
7041         if (ret)
7042                 goto err_out_probe;
7043
7044         dout("discovered format %u image, header name is %s\n",
7045                 rbd_dev->image_format, rbd_dev->header_oid.name);
7046         return 0;
7047
7048 err_out_probe:
7049         if (!depth)
7050                 up_write(&rbd_dev->header_rwsem);
7051         if (need_watch)
7052                 rbd_unregister_watch(rbd_dev);
7053         rbd_dev_unprobe(rbd_dev);
7054 err_out_format:
7055         rbd_dev->image_format = 0;
7056         kfree(rbd_dev->spec->image_id);
7057         rbd_dev->spec->image_id = NULL;
7058         return ret;
7059 }
7060
7061 static void rbd_dev_update_header(struct rbd_device *rbd_dev,
7062                                   struct rbd_image_header *header)
7063 {
7064         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
7065         rbd_assert(rbd_dev->header.object_prefix); /* !first_time */
7066
7067         if (rbd_dev->header.image_size != header->image_size) {
7068                 rbd_dev->header.image_size = header->image_size;
7069
7070                 if (!rbd_is_snap(rbd_dev)) {
7071                         rbd_dev->mapping.size = header->image_size;
7072                         rbd_dev_update_size(rbd_dev);
7073                 }
7074         }
7075
7076         ceph_put_snap_context(rbd_dev->header.snapc);
7077         rbd_dev->header.snapc = header->snapc;
7078         header->snapc = NULL;
7079
7080         if (rbd_dev->image_format == 1) {
7081                 kfree(rbd_dev->header.snap_names);
7082                 rbd_dev->header.snap_names = header->snap_names;
7083                 header->snap_names = NULL;
7084
7085                 kfree(rbd_dev->header.snap_sizes);
7086                 rbd_dev->header.snap_sizes = header->snap_sizes;
7087                 header->snap_sizes = NULL;
7088         }
7089 }
7090
7091 static void rbd_dev_update_parent(struct rbd_device *rbd_dev,
7092                                   struct parent_image_info *pii)
7093 {
7094         if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) {
7095                 /*
7096                  * Either the parent never existed, or we have
7097                  * record of it but the image got flattened so it no
7098                  * longer has a parent.  When the parent of a
7099                  * layered image disappears we immediately set the
7100                  * overlap to 0.  The effect of this is that all new
7101                  * requests will be treated as if the image had no
7102                  * parent.
7103                  *
7104                  * If !pii.has_overlap, the parent image spec is not
7105                  * applicable.  It's there to avoid duplication in each
7106                  * snapshot record.
7107                  */
7108                 if (rbd_dev->parent_overlap) {
7109                         rbd_dev->parent_overlap = 0;
7110                         rbd_dev_parent_put(rbd_dev);
7111                         pr_info("%s: clone has been flattened\n",
7112                                 rbd_dev->disk->disk_name);
7113                 }
7114         } else {
7115                 rbd_assert(rbd_dev->parent_spec);
7116
7117                 /*
7118                  * Update the parent overlap.  If it became zero, issue
7119                  * a warning as we will proceed as if there is no parent.
7120                  */
7121                 if (!pii->overlap && rbd_dev->parent_overlap)
7122                         rbd_warn(rbd_dev,
7123                                  "clone has become standalone (overlap 0)");
7124                 rbd_dev->parent_overlap = pii->overlap;
7125         }
7126 }
7127
7128 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7129 {
7130         struct rbd_image_header header = { 0 };
7131         struct parent_image_info pii = { 0 };
7132         int ret;
7133
7134         dout("%s rbd_dev %p\n", __func__, rbd_dev);
7135
7136         ret = rbd_dev_header_info(rbd_dev, &header, false);
7137         if (ret)
7138                 goto out;
7139
7140         /*
7141          * If there is a parent, see if it has disappeared due to the
7142          * mapped image getting flattened.
7143          */
7144         if (rbd_dev->parent) {
7145                 ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
7146                 if (ret)
7147                         goto out;
7148         }
7149
7150         down_write(&rbd_dev->header_rwsem);
7151         rbd_dev_update_header(rbd_dev, &header);
7152         if (rbd_dev->parent)
7153                 rbd_dev_update_parent(rbd_dev, &pii);
7154         up_write(&rbd_dev->header_rwsem);
7155
7156 out:
7157         rbd_parent_info_cleanup(&pii);
7158         rbd_image_header_cleanup(&header);
7159         return ret;
7160 }
7161
7162 static ssize_t do_rbd_add(struct bus_type *bus,
7163                           const char *buf,
7164                           size_t count)
7165 {
7166         struct rbd_device *rbd_dev = NULL;
7167         struct ceph_options *ceph_opts = NULL;
7168         struct rbd_options *rbd_opts = NULL;
7169         struct rbd_spec *spec = NULL;
7170         struct rbd_client *rbdc;
7171         int rc;
7172
7173         if (!capable(CAP_SYS_ADMIN))
7174                 return -EPERM;
7175
7176         if (!try_module_get(THIS_MODULE))
7177                 return -ENODEV;
7178
7179         /* parse add command */
7180         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7181         if (rc < 0)
7182                 goto out;
7183
7184         rbdc = rbd_get_client(ceph_opts);
7185         if (IS_ERR(rbdc)) {
7186                 rc = PTR_ERR(rbdc);
7187                 goto err_out_args;
7188         }
7189
7190         /* pick the pool */
7191         rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7192         if (rc < 0) {
7193                 if (rc == -ENOENT)
7194                         pr_info("pool %s does not exist\n", spec->pool_name);
7195                 goto err_out_client;
7196         }
7197         spec->pool_id = (u64)rc;
7198
7199         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7200         if (!rbd_dev) {
7201                 rc = -ENOMEM;
7202                 goto err_out_client;
7203         }
7204         rbdc = NULL;            /* rbd_dev now owns this */
7205         spec = NULL;            /* rbd_dev now owns this */
7206         rbd_opts = NULL;        /* rbd_dev now owns this */
7207
7208         /* if we are mapping a snapshot it will be a read-only mapping */
7209         if (rbd_dev->opts->read_only ||
7210             strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7211                 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7212
7213         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7214         if (!rbd_dev->config_info) {
7215                 rc = -ENOMEM;
7216                 goto err_out_rbd_dev;
7217         }
7218
7219         rc = rbd_dev_image_probe(rbd_dev, 0);
7220         if (rc < 0)
7221                 goto err_out_rbd_dev;
7222
7223         if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7224                 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7225                          rbd_dev->layout.object_size);
7226                 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7227         }
7228
7229         rc = rbd_dev_device_setup(rbd_dev);
7230         if (rc)
7231                 goto err_out_image_probe;
7232
7233         rc = rbd_add_acquire_lock(rbd_dev);
7234         if (rc)
7235                 goto err_out_image_lock;
7236
7237         /* Everything's ready.  Announce the disk to the world. */
7238
7239         rc = device_add(&rbd_dev->dev);
7240         if (rc)
7241                 goto err_out_image_lock;
7242
7243         device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7244         /* see rbd_init_disk() */
7245         blk_put_queue(rbd_dev->disk->queue);
7246
7247         spin_lock(&rbd_dev_list_lock);
7248         list_add_tail(&rbd_dev->node, &rbd_dev_list);
7249         spin_unlock(&rbd_dev_list_lock);
7250
7251         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7252                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7253                 rbd_dev->header.features);
7254         rc = count;
7255 out:
7256         module_put(THIS_MODULE);
7257         return rc;
7258
7259 err_out_image_lock:
7260         rbd_dev_image_unlock(rbd_dev);
7261         rbd_dev_device_release(rbd_dev);
7262 err_out_image_probe:
7263         rbd_dev_image_release(rbd_dev);
7264 err_out_rbd_dev:
7265         rbd_dev_destroy(rbd_dev);
7266 err_out_client:
7267         rbd_put_client(rbdc);
7268 err_out_args:
7269         rbd_spec_put(spec);
7270         kfree(rbd_opts);
7271         goto out;
7272 }
7273
7274 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7275 {
7276         if (single_major)
7277                 return -EINVAL;
7278
7279         return do_rbd_add(bus, buf, count);
7280 }
7281
7282 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7283                                       size_t count)
7284 {
7285         return do_rbd_add(bus, buf, count);
7286 }
7287
7288 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7289 {
7290         while (rbd_dev->parent) {
7291                 struct rbd_device *first = rbd_dev;
7292                 struct rbd_device *second = first->parent;
7293                 struct rbd_device *third;
7294
7295                 /*
7296                  * Follow to the parent with no grandparent and
7297                  * remove it.
7298                  */
7299                 while (second && (third = second->parent)) {
7300                         first = second;
7301                         second = third;
7302                 }
7303                 rbd_assert(second);
7304                 rbd_dev_image_release(second);
7305                 rbd_dev_destroy(second);
7306                 first->parent = NULL;
7307                 first->parent_overlap = 0;
7308
7309                 rbd_assert(first->parent_spec);
7310                 rbd_spec_put(first->parent_spec);
7311                 first->parent_spec = NULL;
7312         }
7313 }
7314
7315 static ssize_t do_rbd_remove(struct bus_type *bus,
7316                              const char *buf,
7317                              size_t count)
7318 {
7319         struct rbd_device *rbd_dev = NULL;
7320         struct list_head *tmp;
7321         int dev_id;
7322         char opt_buf[6];
7323         bool force = false;
7324         int ret;
7325
7326         if (!capable(CAP_SYS_ADMIN))
7327                 return -EPERM;
7328
7329         dev_id = -1;
7330         opt_buf[0] = '\0';
7331         sscanf(buf, "%d %5s", &dev_id, opt_buf);
7332         if (dev_id < 0) {
7333                 pr_err("dev_id out of range\n");
7334                 return -EINVAL;
7335         }
7336         if (opt_buf[0] != '\0') {
7337                 if (!strcmp(opt_buf, "force")) {
7338                         force = true;
7339                 } else {
7340                         pr_err("bad remove option at '%s'\n", opt_buf);
7341                         return -EINVAL;
7342                 }
7343         }
7344
7345         ret = -ENOENT;
7346         spin_lock(&rbd_dev_list_lock);
7347         list_for_each(tmp, &rbd_dev_list) {
7348                 rbd_dev = list_entry(tmp, struct rbd_device, node);
7349                 if (rbd_dev->dev_id == dev_id) {
7350                         ret = 0;
7351                         break;
7352                 }
7353         }
7354         if (!ret) {
7355                 spin_lock_irq(&rbd_dev->lock);
7356                 if (rbd_dev->open_count && !force)
7357                         ret = -EBUSY;
7358                 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7359                                           &rbd_dev->flags))
7360                         ret = -EINPROGRESS;
7361                 spin_unlock_irq(&rbd_dev->lock);
7362         }
7363         spin_unlock(&rbd_dev_list_lock);
7364         if (ret)
7365                 return ret;
7366
7367         if (force) {
7368                 /*
7369                  * Prevent new IO from being queued and wait for existing
7370                  * IO to complete/fail.
7371                  */
7372                 blk_mq_freeze_queue(rbd_dev->disk->queue);
7373                 blk_set_queue_dying(rbd_dev->disk->queue);
7374         }
7375
7376         del_gendisk(rbd_dev->disk);
7377         spin_lock(&rbd_dev_list_lock);
7378         list_del_init(&rbd_dev->node);
7379         spin_unlock(&rbd_dev_list_lock);
7380         device_del(&rbd_dev->dev);
7381
7382         rbd_dev_image_unlock(rbd_dev);
7383         rbd_dev_device_release(rbd_dev);
7384         rbd_dev_image_release(rbd_dev);
7385         rbd_dev_destroy(rbd_dev);
7386         return count;
7387 }
7388
7389 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7390 {
7391         if (single_major)
7392                 return -EINVAL;
7393
7394         return do_rbd_remove(bus, buf, count);
7395 }
7396
7397 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7398                                          size_t count)
7399 {
7400         return do_rbd_remove(bus, buf, count);
7401 }
7402
7403 /*
7404  * create control files in sysfs
7405  * /sys/bus/rbd/...
7406  */
7407 static int __init rbd_sysfs_init(void)
7408 {
7409         int ret;
7410
7411         ret = device_register(&rbd_root_dev);
7412         if (ret < 0)
7413                 return ret;
7414
7415         ret = bus_register(&rbd_bus_type);
7416         if (ret < 0)
7417                 device_unregister(&rbd_root_dev);
7418
7419         return ret;
7420 }
7421
7422 static void __exit rbd_sysfs_cleanup(void)
7423 {
7424         bus_unregister(&rbd_bus_type);
7425         device_unregister(&rbd_root_dev);
7426 }
7427
7428 static int __init rbd_slab_init(void)
7429 {
7430         rbd_assert(!rbd_img_request_cache);
7431         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7432         if (!rbd_img_request_cache)
7433                 return -ENOMEM;
7434
7435         rbd_assert(!rbd_obj_request_cache);
7436         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7437         if (!rbd_obj_request_cache)
7438                 goto out_err;
7439
7440         return 0;
7441
7442 out_err:
7443         kmem_cache_destroy(rbd_img_request_cache);
7444         rbd_img_request_cache = NULL;
7445         return -ENOMEM;
7446 }
7447
7448 static void rbd_slab_exit(void)
7449 {
7450         rbd_assert(rbd_obj_request_cache);
7451         kmem_cache_destroy(rbd_obj_request_cache);
7452         rbd_obj_request_cache = NULL;
7453
7454         rbd_assert(rbd_img_request_cache);
7455         kmem_cache_destroy(rbd_img_request_cache);
7456         rbd_img_request_cache = NULL;
7457 }
7458
7459 static int __init rbd_init(void)
7460 {
7461         int rc;
7462
7463         if (!libceph_compatible(NULL)) {
7464                 rbd_warn(NULL, "libceph incompatibility (quitting)");
7465                 return -EINVAL;
7466         }
7467
7468         rc = rbd_slab_init();
7469         if (rc)
7470                 return rc;
7471
7472         /*
7473          * The number of active work items is limited by the number of
7474          * rbd devices * queue depth, so leave @max_active at default.
7475          */
7476         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7477         if (!rbd_wq) {
7478                 rc = -ENOMEM;
7479                 goto err_out_slab;
7480         }
7481
7482         if (single_major) {
7483                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7484                 if (rbd_major < 0) {
7485                         rc = rbd_major;
7486                         goto err_out_wq;
7487                 }
7488         }
7489
7490         rc = rbd_sysfs_init();
7491         if (rc)
7492                 goto err_out_blkdev;
7493
7494         if (single_major)
7495                 pr_info("loaded (major %d)\n", rbd_major);
7496         else
7497                 pr_info("loaded\n");
7498
7499         return 0;
7500
7501 err_out_blkdev:
7502         if (single_major)
7503                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7504 err_out_wq:
7505         destroy_workqueue(rbd_wq);
7506 err_out_slab:
7507         rbd_slab_exit();
7508         return rc;
7509 }
7510
7511 static void __exit rbd_exit(void)
7512 {
7513         ida_destroy(&rbd_dev_id_ida);
7514         rbd_sysfs_cleanup();
7515         if (single_major)
7516                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7517         destroy_workqueue(rbd_wq);
7518         rbd_slab_exit();
7519 }
7520
7521 module_init(rbd_init);
7522 module_exit(rbd_exit);
7523
7524 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7525 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7526 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7527 /* following authorship retained from original osdblk.c */
7528 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7529
7530 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7531 MODULE_LICENSE("GPL");