GNU Linux-libre 4.4.283-gnu1
[releases.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG       /* Activate rbd_assert() calls */
51
52 /*
53  * Increment the given counter and return its updated value.
54  * If the counter is already 0 it will not be incremented.
55  * If the counter is already at its maximum value returns
56  * -EINVAL without updating it.
57  */
58 static int atomic_inc_return_safe(atomic_t *v)
59 {
60         unsigned int counter;
61
62         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
63         if (counter <= (unsigned int)INT_MAX)
64                 return (int)counter;
65
66         atomic_dec(v);
67
68         return -EINVAL;
69 }
70
71 /* Decrement the counter.  Return the resulting value, or -EINVAL */
72 static int atomic_dec_return_safe(atomic_t *v)
73 {
74         int counter;
75
76         counter = atomic_dec_return(v);
77         if (counter >= 0)
78                 return counter;
79
80         atomic_inc(v);
81
82         return -EINVAL;
83 }
84
85 #define RBD_DRV_NAME "rbd"
86
87 #define RBD_MINORS_PER_MAJOR            256
88 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
89
90 #define RBD_MAX_PARENT_CHAIN_LEN        16
91
92 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
93 #define RBD_MAX_SNAP_NAME_LEN   \
94                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
95
96 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
97
98 #define RBD_SNAP_HEAD_NAME      "-"
99
100 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
101
102 /* This allows a single page to hold an image name sent by OSD */
103 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
104 #define RBD_IMAGE_ID_LEN_MAX    64
105
106 #define RBD_OBJ_PREFIX_LEN_MAX  64
107
108 /* Feature bits */
109
110 #define RBD_FEATURE_LAYERING    (1<<0)
111 #define RBD_FEATURE_STRIPINGV2  (1<<1)
112 #define RBD_FEATURES_ALL \
113             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
114
115 /* Features supported by this (client software) implementation. */
116
117 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
118
119 /*
120  * An RBD device name will be "rbd#", where the "rbd" comes from
121  * RBD_DRV_NAME above, and # is a unique integer identifier.
122  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
123  * enough to hold all possible device names.
124  */
125 #define DEV_NAME_LEN            32
126 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
127
128 /*
129  * block device image metadata (in-memory version)
130  */
131 struct rbd_image_header {
132         /* These six fields never change for a given rbd image */
133         char *object_prefix;
134         __u8 obj_order;
135         __u8 crypt_type;
136         __u8 comp_type;
137         u64 stripe_unit;
138         u64 stripe_count;
139         u64 features;           /* Might be changeable someday? */
140
141         /* The remaining fields need to be updated occasionally */
142         u64 image_size;
143         struct ceph_snap_context *snapc;
144         char *snap_names;       /* format 1 only */
145         u64 *snap_sizes;        /* format 1 only */
146 };
147
148 /*
149  * An rbd image specification.
150  *
151  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
152  * identify an image.  Each rbd_dev structure includes a pointer to
153  * an rbd_spec structure that encapsulates this identity.
154  *
155  * Each of the id's in an rbd_spec has an associated name.  For a
156  * user-mapped image, the names are supplied and the id's associated
157  * with them are looked up.  For a layered image, a parent image is
158  * defined by the tuple, and the names are looked up.
159  *
160  * An rbd_dev structure contains a parent_spec pointer which is
161  * non-null if the image it represents is a child in a layered
162  * image.  This pointer will refer to the rbd_spec structure used
163  * by the parent rbd_dev for its own identity (i.e., the structure
164  * is shared between the parent and child).
165  *
166  * Since these structures are populated once, during the discovery
167  * phase of image construction, they are effectively immutable so
168  * we make no effort to synchronize access to them.
169  *
170  * Note that code herein does not assume the image name is known (it
171  * could be a null pointer).
172  */
173 struct rbd_spec {
174         u64             pool_id;
175         const char      *pool_name;
176
177         const char      *image_id;
178         const char      *image_name;
179
180         u64             snap_id;
181         const char      *snap_name;
182
183         struct kref     kref;
184 };
185
186 /*
187  * an instance of the client.  multiple devices may share an rbd client.
188  */
189 struct rbd_client {
190         struct ceph_client      *client;
191         struct kref             kref;
192         struct list_head        node;
193 };
194
195 struct rbd_img_request;
196 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
197
198 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
199
200 struct rbd_obj_request;
201 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
202
203 enum obj_request_type {
204         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
205 };
206
207 enum obj_operation_type {
208         OBJ_OP_WRITE,
209         OBJ_OP_READ,
210         OBJ_OP_DISCARD,
211 };
212
213 enum obj_req_flags {
214         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
215         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
216         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
217         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
218 };
219
220 struct rbd_obj_request {
221         const char              *object_name;
222         u64                     offset;         /* object start byte */
223         u64                     length;         /* bytes from offset */
224         unsigned long           flags;
225
226         /*
227          * An object request associated with an image will have its
228          * img_data flag set; a standalone object request will not.
229          *
230          * A standalone object request will have which == BAD_WHICH
231          * and a null obj_request pointer.
232          *
233          * An object request initiated in support of a layered image
234          * object (to check for its existence before a write) will
235          * have which == BAD_WHICH and a non-null obj_request pointer.
236          *
237          * Finally, an object request for rbd image data will have
238          * which != BAD_WHICH, and will have a non-null img_request
239          * pointer.  The value of which will be in the range
240          * 0..(img_request->obj_request_count-1).
241          */
242         union {
243                 struct rbd_obj_request  *obj_request;   /* STAT op */
244                 struct {
245                         struct rbd_img_request  *img_request;
246                         u64                     img_offset;
247                         /* links for img_request->obj_requests list */
248                         struct list_head        links;
249                 };
250         };
251         u32                     which;          /* posn image request list */
252
253         enum obj_request_type   type;
254         union {
255                 struct bio      *bio_list;
256                 struct {
257                         struct page     **pages;
258                         u32             page_count;
259                 };
260         };
261         struct page             **copyup_pages;
262         u32                     copyup_page_count;
263
264         struct ceph_osd_request *osd_req;
265
266         u64                     xferred;        /* bytes transferred */
267         int                     result;
268
269         rbd_obj_callback_t      callback;
270         struct completion       completion;
271
272         struct kref             kref;
273 };
274
275 enum img_req_flags {
276         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
277         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
278         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
279         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
280 };
281
282 struct rbd_img_request {
283         struct rbd_device       *rbd_dev;
284         u64                     offset; /* starting image byte offset */
285         u64                     length; /* byte count from offset */
286         unsigned long           flags;
287         union {
288                 u64                     snap_id;        /* for reads */
289                 struct ceph_snap_context *snapc;        /* for writes */
290         };
291         union {
292                 struct request          *rq;            /* block request */
293                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
294         };
295         struct page             **copyup_pages;
296         u32                     copyup_page_count;
297         spinlock_t              completion_lock;/* protects next_completion */
298         u32                     next_completion;
299         rbd_img_callback_t      callback;
300         u64                     xferred;/* aggregate bytes transferred */
301         int                     result; /* first nonzero obj_request result */
302
303         u32                     obj_request_count;
304         struct list_head        obj_requests;   /* rbd_obj_request structs */
305
306         struct kref             kref;
307 };
308
309 #define for_each_obj_request(ireq, oreq) \
310         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_from(ireq, oreq) \
312         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
313 #define for_each_obj_request_safe(ireq, oreq, n) \
314         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
315
316 struct rbd_mapping {
317         u64                     size;
318         u64                     features;
319         bool                    read_only;
320 };
321
322 /*
323  * a single device
324  */
325 struct rbd_device {
326         int                     dev_id;         /* blkdev unique id */
327
328         int                     major;          /* blkdev assigned major */
329         int                     minor;
330         struct gendisk          *disk;          /* blkdev's gendisk and rq */
331
332         u32                     image_format;   /* Either 1 or 2 */
333         struct rbd_client       *rbd_client;
334
335         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
336
337         spinlock_t              lock;           /* queue, flags, open_count */
338
339         struct rbd_image_header header;
340         unsigned long           flags;          /* possibly lock protected */
341         struct rbd_spec         *spec;
342         struct rbd_options      *opts;
343
344         char                    *header_name;
345
346         struct ceph_file_layout layout;
347
348         struct ceph_osd_event   *watch_event;
349         struct rbd_obj_request  *watch_request;
350
351         struct rbd_spec         *parent_spec;
352         u64                     parent_overlap;
353         atomic_t                parent_ref;
354         struct rbd_device       *parent;
355
356         /* Block layer tags. */
357         struct blk_mq_tag_set   tag_set;
358
359         /* protects updating the header */
360         struct rw_semaphore     header_rwsem;
361
362         struct rbd_mapping      mapping;
363
364         struct list_head        node;
365
366         /* sysfs related */
367         struct device           dev;
368         unsigned long           open_count;     /* protected by lock */
369 };
370
371 /*
372  * Flag bits for rbd_dev->flags.  If atomicity is required,
373  * rbd_dev->lock is used to protect access.
374  *
375  * Currently, only the "removing" flag (which is coupled with the
376  * "open_count" field) requires atomic access.
377  */
378 enum rbd_dev_flags {
379         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
380         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
381 };
382
383 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
384
385 static LIST_HEAD(rbd_dev_list);    /* devices */
386 static DEFINE_SPINLOCK(rbd_dev_list_lock);
387
388 static LIST_HEAD(rbd_client_list);              /* clients */
389 static DEFINE_SPINLOCK(rbd_client_list_lock);
390
391 /* Slab caches for frequently-allocated structures */
392
393 static struct kmem_cache        *rbd_img_request_cache;
394 static struct kmem_cache        *rbd_obj_request_cache;
395 static struct kmem_cache        *rbd_segment_name_cache;
396
397 static int rbd_major;
398 static DEFINE_IDA(rbd_dev_id_ida);
399
400 static struct workqueue_struct *rbd_wq;
401
402 /*
403  * Default to false for now, as single-major requires >= 0.75 version of
404  * userspace rbd utility.
405  */
406 static bool single_major = false;
407 module_param(single_major, bool, S_IRUGO);
408 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
409
410 static int rbd_img_request_submit(struct rbd_img_request *img_request);
411
412 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
413                        size_t count);
414 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
415                           size_t count);
416 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
417                                     size_t count);
418 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
419                                        size_t count);
420 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
421 static void rbd_spec_put(struct rbd_spec *spec);
422
423 static int rbd_dev_id_to_minor(int dev_id)
424 {
425         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
426 }
427
428 static int minor_to_rbd_dev_id(int minor)
429 {
430         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
431 }
432
433 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
434 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
435 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
436 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
437
438 static struct attribute *rbd_bus_attrs[] = {
439         &bus_attr_add.attr,
440         &bus_attr_remove.attr,
441         &bus_attr_add_single_major.attr,
442         &bus_attr_remove_single_major.attr,
443         NULL,
444 };
445
446 static umode_t rbd_bus_is_visible(struct kobject *kobj,
447                                   struct attribute *attr, int index)
448 {
449         if (!single_major &&
450             (attr == &bus_attr_add_single_major.attr ||
451              attr == &bus_attr_remove_single_major.attr))
452                 return 0;
453
454         return attr->mode;
455 }
456
457 static const struct attribute_group rbd_bus_group = {
458         .attrs = rbd_bus_attrs,
459         .is_visible = rbd_bus_is_visible,
460 };
461 __ATTRIBUTE_GROUPS(rbd_bus);
462
463 static struct bus_type rbd_bus_type = {
464         .name           = "rbd",
465         .bus_groups     = rbd_bus_groups,
466 };
467
468 static void rbd_root_dev_release(struct device *dev)
469 {
470 }
471
472 static struct device rbd_root_dev = {
473         .init_name =    "rbd",
474         .release =      rbd_root_dev_release,
475 };
476
477 static __printf(2, 3)
478 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
479 {
480         struct va_format vaf;
481         va_list args;
482
483         va_start(args, fmt);
484         vaf.fmt = fmt;
485         vaf.va = &args;
486
487         if (!rbd_dev)
488                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
489         else if (rbd_dev->disk)
490                 printk(KERN_WARNING "%s: %s: %pV\n",
491                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
492         else if (rbd_dev->spec && rbd_dev->spec->image_name)
493                 printk(KERN_WARNING "%s: image %s: %pV\n",
494                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
495         else if (rbd_dev->spec && rbd_dev->spec->image_id)
496                 printk(KERN_WARNING "%s: id %s: %pV\n",
497                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
498         else    /* punt */
499                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
500                         RBD_DRV_NAME, rbd_dev, &vaf);
501         va_end(args);
502 }
503
504 #ifdef RBD_DEBUG
505 #define rbd_assert(expr)                                                \
506                 if (unlikely(!(expr))) {                                \
507                         printk(KERN_ERR "\nAssertion failure in %s() "  \
508                                                 "at line %d:\n\n"       \
509                                         "\trbd_assert(%s);\n\n",        \
510                                         __func__, __LINE__, #expr);     \
511                         BUG();                                          \
512                 }
513 #else /* !RBD_DEBUG */
514 #  define rbd_assert(expr)      ((void) 0)
515 #endif /* !RBD_DEBUG */
516
517 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
518 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
519 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
520 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
521
522 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
523 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
524 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
525 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
526 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
527                                         u64 snap_id);
528 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
529                                 u8 *order, u64 *snap_size);
530 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
531                 u64 *snap_features);
532 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
533
534 static int rbd_open(struct block_device *bdev, fmode_t mode)
535 {
536         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
537         bool removing = false;
538
539         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
540                 return -EROFS;
541
542         spin_lock_irq(&rbd_dev->lock);
543         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
544                 removing = true;
545         else
546                 rbd_dev->open_count++;
547         spin_unlock_irq(&rbd_dev->lock);
548         if (removing)
549                 return -ENOENT;
550
551         (void) get_device(&rbd_dev->dev);
552
553         return 0;
554 }
555
556 static void rbd_release(struct gendisk *disk, fmode_t mode)
557 {
558         struct rbd_device *rbd_dev = disk->private_data;
559         unsigned long open_count_before;
560
561         spin_lock_irq(&rbd_dev->lock);
562         open_count_before = rbd_dev->open_count--;
563         spin_unlock_irq(&rbd_dev->lock);
564         rbd_assert(open_count_before > 0);
565
566         put_device(&rbd_dev->dev);
567 }
568
569 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
570 {
571         int ret = 0;
572         int val;
573         bool ro;
574         bool ro_changed = false;
575
576         /* get_user() may sleep, so call it before taking rbd_dev->lock */
577         if (get_user(val, (int __user *)(arg)))
578                 return -EFAULT;
579
580         ro = val ? true : false;
581         /* Snapshot doesn't allow to write*/
582         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
583                 return -EROFS;
584
585         spin_lock_irq(&rbd_dev->lock);
586         /* prevent others open this device */
587         if (rbd_dev->open_count > 1) {
588                 ret = -EBUSY;
589                 goto out;
590         }
591
592         if (rbd_dev->mapping.read_only != ro) {
593                 rbd_dev->mapping.read_only = ro;
594                 ro_changed = true;
595         }
596
597 out:
598         spin_unlock_irq(&rbd_dev->lock);
599         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
600         if (ret == 0 && ro_changed)
601                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
602
603         return ret;
604 }
605
606 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
607                         unsigned int cmd, unsigned long arg)
608 {
609         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
610         int ret = 0;
611
612         switch (cmd) {
613         case BLKROSET:
614                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
615                 break;
616         default:
617                 ret = -ENOTTY;
618         }
619
620         return ret;
621 }
622
623 #ifdef CONFIG_COMPAT
624 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
625                                 unsigned int cmd, unsigned long arg)
626 {
627         return rbd_ioctl(bdev, mode, cmd, arg);
628 }
629 #endif /* CONFIG_COMPAT */
630
631 static const struct block_device_operations rbd_bd_ops = {
632         .owner                  = THIS_MODULE,
633         .open                   = rbd_open,
634         .release                = rbd_release,
635         .ioctl                  = rbd_ioctl,
636 #ifdef CONFIG_COMPAT
637         .compat_ioctl           = rbd_compat_ioctl,
638 #endif
639 };
640
641 /*
642  * Initialize an rbd client instance.  Success or not, this function
643  * consumes ceph_opts.  Caller holds client_mutex.
644  */
645 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
646 {
647         struct rbd_client *rbdc;
648         int ret = -ENOMEM;
649
650         dout("%s:\n", __func__);
651         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
652         if (!rbdc)
653                 goto out_opt;
654
655         kref_init(&rbdc->kref);
656         INIT_LIST_HEAD(&rbdc->node);
657
658         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
659         if (IS_ERR(rbdc->client))
660                 goto out_rbdc;
661         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
662
663         ret = ceph_open_session(rbdc->client);
664         if (ret < 0)
665                 goto out_client;
666
667         spin_lock(&rbd_client_list_lock);
668         list_add_tail(&rbdc->node, &rbd_client_list);
669         spin_unlock(&rbd_client_list_lock);
670
671         dout("%s: rbdc %p\n", __func__, rbdc);
672
673         return rbdc;
674 out_client:
675         ceph_destroy_client(rbdc->client);
676 out_rbdc:
677         kfree(rbdc);
678 out_opt:
679         if (ceph_opts)
680                 ceph_destroy_options(ceph_opts);
681         dout("%s: error %d\n", __func__, ret);
682
683         return ERR_PTR(ret);
684 }
685
686 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
687 {
688         kref_get(&rbdc->kref);
689
690         return rbdc;
691 }
692
693 /*
694  * Find a ceph client with specific addr and configuration.  If
695  * found, bump its reference count.
696  */
697 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
698 {
699         struct rbd_client *client_node;
700         bool found = false;
701
702         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
703                 return NULL;
704
705         spin_lock(&rbd_client_list_lock);
706         list_for_each_entry(client_node, &rbd_client_list, node) {
707                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
708                         __rbd_get_client(client_node);
709
710                         found = true;
711                         break;
712                 }
713         }
714         spin_unlock(&rbd_client_list_lock);
715
716         return found ? client_node : NULL;
717 }
718
719 /*
720  * (Per device) rbd map options
721  */
722 enum {
723         Opt_queue_depth,
724         Opt_last_int,
725         /* int args above */
726         Opt_last_string,
727         /* string args above */
728         Opt_read_only,
729         Opt_read_write,
730         Opt_err
731 };
732
733 static match_table_t rbd_opts_tokens = {
734         {Opt_queue_depth, "queue_depth=%d"},
735         /* int args above */
736         /* string args above */
737         {Opt_read_only, "read_only"},
738         {Opt_read_only, "ro"},          /* Alternate spelling */
739         {Opt_read_write, "read_write"},
740         {Opt_read_write, "rw"},         /* Alternate spelling */
741         {Opt_err, NULL}
742 };
743
744 struct rbd_options {
745         int     queue_depth;
746         bool    read_only;
747 };
748
749 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
750 #define RBD_READ_ONLY_DEFAULT   false
751
752 static int parse_rbd_opts_token(char *c, void *private)
753 {
754         struct rbd_options *rbd_opts = private;
755         substring_t argstr[MAX_OPT_ARGS];
756         int token, intval, ret;
757
758         token = match_token(c, rbd_opts_tokens, argstr);
759         if (token < Opt_last_int) {
760                 ret = match_int(&argstr[0], &intval);
761                 if (ret < 0) {
762                         pr_err("bad mount option arg (not int) at '%s'\n", c);
763                         return ret;
764                 }
765                 dout("got int token %d val %d\n", token, intval);
766         } else if (token > Opt_last_int && token < Opt_last_string) {
767                 dout("got string token %d val %s\n", token, argstr[0].from);
768         } else {
769                 dout("got token %d\n", token);
770         }
771
772         switch (token) {
773         case Opt_queue_depth:
774                 if (intval < 1) {
775                         pr_err("queue_depth out of range\n");
776                         return -EINVAL;
777                 }
778                 rbd_opts->queue_depth = intval;
779                 break;
780         case Opt_read_only:
781                 rbd_opts->read_only = true;
782                 break;
783         case Opt_read_write:
784                 rbd_opts->read_only = false;
785                 break;
786         default:
787                 /* libceph prints "bad option" msg */
788                 return -EINVAL;
789         }
790
791         return 0;
792 }
793
794 static char* obj_op_name(enum obj_operation_type op_type)
795 {
796         switch (op_type) {
797         case OBJ_OP_READ:
798                 return "read";
799         case OBJ_OP_WRITE:
800                 return "write";
801         case OBJ_OP_DISCARD:
802                 return "discard";
803         default:
804                 return "???";
805         }
806 }
807
808 /*
809  * Get a ceph client with specific addr and configuration, if one does
810  * not exist create it.  Either way, ceph_opts is consumed by this
811  * function.
812  */
813 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
814 {
815         struct rbd_client *rbdc;
816
817         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
818         rbdc = rbd_client_find(ceph_opts);
819         if (rbdc)       /* using an existing client */
820                 ceph_destroy_options(ceph_opts);
821         else
822                 rbdc = rbd_client_create(ceph_opts);
823         mutex_unlock(&client_mutex);
824
825         return rbdc;
826 }
827
828 /*
829  * Destroy ceph client
830  *
831  * Caller must hold rbd_client_list_lock.
832  */
833 static void rbd_client_release(struct kref *kref)
834 {
835         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
836
837         dout("%s: rbdc %p\n", __func__, rbdc);
838         spin_lock(&rbd_client_list_lock);
839         list_del(&rbdc->node);
840         spin_unlock(&rbd_client_list_lock);
841
842         ceph_destroy_client(rbdc->client);
843         kfree(rbdc);
844 }
845
846 /*
847  * Drop reference to ceph client node. If it's not referenced anymore, release
848  * it.
849  */
850 static void rbd_put_client(struct rbd_client *rbdc)
851 {
852         if (rbdc)
853                 kref_put(&rbdc->kref, rbd_client_release);
854 }
855
856 static bool rbd_image_format_valid(u32 image_format)
857 {
858         return image_format == 1 || image_format == 2;
859 }
860
861 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
862 {
863         size_t size;
864         u32 snap_count;
865
866         /* The header has to start with the magic rbd header text */
867         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
868                 return false;
869
870         /* The bio layer requires at least sector-sized I/O */
871
872         if (ondisk->options.order < SECTOR_SHIFT)
873                 return false;
874
875         /* If we use u64 in a few spots we may be able to loosen this */
876
877         if (ondisk->options.order > 8 * sizeof (int) - 1)
878                 return false;
879
880         /*
881          * The size of a snapshot header has to fit in a size_t, and
882          * that limits the number of snapshots.
883          */
884         snap_count = le32_to_cpu(ondisk->snap_count);
885         size = SIZE_MAX - sizeof (struct ceph_snap_context);
886         if (snap_count > size / sizeof (__le64))
887                 return false;
888
889         /*
890          * Not only that, but the size of the entire the snapshot
891          * header must also be representable in a size_t.
892          */
893         size -= snap_count * sizeof (__le64);
894         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
895                 return false;
896
897         return true;
898 }
899
900 /*
901  * Fill an rbd image header with information from the given format 1
902  * on-disk header.
903  */
904 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
905                                  struct rbd_image_header_ondisk *ondisk)
906 {
907         struct rbd_image_header *header = &rbd_dev->header;
908         bool first_time = header->object_prefix == NULL;
909         struct ceph_snap_context *snapc;
910         char *object_prefix = NULL;
911         char *snap_names = NULL;
912         u64 *snap_sizes = NULL;
913         u32 snap_count;
914         size_t size;
915         int ret = -ENOMEM;
916         u32 i;
917
918         /* Allocate this now to avoid having to handle failure below */
919
920         if (first_time) {
921                 size_t len;
922
923                 len = strnlen(ondisk->object_prefix,
924                                 sizeof (ondisk->object_prefix));
925                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
926                 if (!object_prefix)
927                         return -ENOMEM;
928                 memcpy(object_prefix, ondisk->object_prefix, len);
929                 object_prefix[len] = '\0';
930         }
931
932         /* Allocate the snapshot context and fill it in */
933
934         snap_count = le32_to_cpu(ondisk->snap_count);
935         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
936         if (!snapc)
937                 goto out_err;
938         snapc->seq = le64_to_cpu(ondisk->snap_seq);
939         if (snap_count) {
940                 struct rbd_image_snap_ondisk *snaps;
941                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
942
943                 /* We'll keep a copy of the snapshot names... */
944
945                 if (snap_names_len > (u64)SIZE_MAX)
946                         goto out_2big;
947                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
948                 if (!snap_names)
949                         goto out_err;
950
951                 /* ...as well as the array of their sizes. */
952
953                 size = snap_count * sizeof (*header->snap_sizes);
954                 snap_sizes = kmalloc(size, GFP_KERNEL);
955                 if (!snap_sizes)
956                         goto out_err;
957
958                 /*
959                  * Copy the names, and fill in each snapshot's id
960                  * and size.
961                  *
962                  * Note that rbd_dev_v1_header_info() guarantees the
963                  * ondisk buffer we're working with has
964                  * snap_names_len bytes beyond the end of the
965                  * snapshot id array, this memcpy() is safe.
966                  */
967                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
968                 snaps = ondisk->snaps;
969                 for (i = 0; i < snap_count; i++) {
970                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
971                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
972                 }
973         }
974
975         /* We won't fail any more, fill in the header */
976
977         if (first_time) {
978                 header->object_prefix = object_prefix;
979                 header->obj_order = ondisk->options.order;
980                 header->crypt_type = ondisk->options.crypt_type;
981                 header->comp_type = ondisk->options.comp_type;
982                 /* The rest aren't used for format 1 images */
983                 header->stripe_unit = 0;
984                 header->stripe_count = 0;
985                 header->features = 0;
986         } else {
987                 ceph_put_snap_context(header->snapc);
988                 kfree(header->snap_names);
989                 kfree(header->snap_sizes);
990         }
991
992         /* The remaining fields always get updated (when we refresh) */
993
994         header->image_size = le64_to_cpu(ondisk->image_size);
995         header->snapc = snapc;
996         header->snap_names = snap_names;
997         header->snap_sizes = snap_sizes;
998
999         return 0;
1000 out_2big:
1001         ret = -EIO;
1002 out_err:
1003         kfree(snap_sizes);
1004         kfree(snap_names);
1005         ceph_put_snap_context(snapc);
1006         kfree(object_prefix);
1007
1008         return ret;
1009 }
1010
1011 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1012 {
1013         const char *snap_name;
1014
1015         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1016
1017         /* Skip over names until we find the one we are looking for */
1018
1019         snap_name = rbd_dev->header.snap_names;
1020         while (which--)
1021                 snap_name += strlen(snap_name) + 1;
1022
1023         return kstrdup(snap_name, GFP_KERNEL);
1024 }
1025
1026 /*
1027  * Snapshot id comparison function for use with qsort()/bsearch().
1028  * Note that result is for snapshots in *descending* order.
1029  */
1030 static int snapid_compare_reverse(const void *s1, const void *s2)
1031 {
1032         u64 snap_id1 = *(u64 *)s1;
1033         u64 snap_id2 = *(u64 *)s2;
1034
1035         if (snap_id1 < snap_id2)
1036                 return 1;
1037         return snap_id1 == snap_id2 ? 0 : -1;
1038 }
1039
1040 /*
1041  * Search a snapshot context to see if the given snapshot id is
1042  * present.
1043  *
1044  * Returns the position of the snapshot id in the array if it's found,
1045  * or BAD_SNAP_INDEX otherwise.
1046  *
1047  * Note: The snapshot array is in kept sorted (by the osd) in
1048  * reverse order, highest snapshot id first.
1049  */
1050 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1051 {
1052         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1053         u64 *found;
1054
1055         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1056                                 sizeof (snap_id), snapid_compare_reverse);
1057
1058         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1059 }
1060
1061 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1062                                         u64 snap_id)
1063 {
1064         u32 which;
1065         const char *snap_name;
1066
1067         which = rbd_dev_snap_index(rbd_dev, snap_id);
1068         if (which == BAD_SNAP_INDEX)
1069                 return ERR_PTR(-ENOENT);
1070
1071         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1072         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1073 }
1074
1075 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1076 {
1077         if (snap_id == CEPH_NOSNAP)
1078                 return RBD_SNAP_HEAD_NAME;
1079
1080         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1081         if (rbd_dev->image_format == 1)
1082                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1083
1084         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1085 }
1086
1087 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1088                                 u64 *snap_size)
1089 {
1090         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1091         if (snap_id == CEPH_NOSNAP) {
1092                 *snap_size = rbd_dev->header.image_size;
1093         } else if (rbd_dev->image_format == 1) {
1094                 u32 which;
1095
1096                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1097                 if (which == BAD_SNAP_INDEX)
1098                         return -ENOENT;
1099
1100                 *snap_size = rbd_dev->header.snap_sizes[which];
1101         } else {
1102                 u64 size = 0;
1103                 int ret;
1104
1105                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1106                 if (ret)
1107                         return ret;
1108
1109                 *snap_size = size;
1110         }
1111         return 0;
1112 }
1113
1114 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1115                         u64 *snap_features)
1116 {
1117         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1118         if (snap_id == CEPH_NOSNAP) {
1119                 *snap_features = rbd_dev->header.features;
1120         } else if (rbd_dev->image_format == 1) {
1121                 *snap_features = 0;     /* No features for format 1 */
1122         } else {
1123                 u64 features = 0;
1124                 int ret;
1125
1126                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1127                 if (ret)
1128                         return ret;
1129
1130                 *snap_features = features;
1131         }
1132         return 0;
1133 }
1134
1135 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1136 {
1137         u64 snap_id = rbd_dev->spec->snap_id;
1138         u64 size = 0;
1139         u64 features = 0;
1140         int ret;
1141
1142         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1143         if (ret)
1144                 return ret;
1145         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1146         if (ret)
1147                 return ret;
1148
1149         rbd_dev->mapping.size = size;
1150         rbd_dev->mapping.features = features;
1151
1152         return 0;
1153 }
1154
1155 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1156 {
1157         rbd_dev->mapping.size = 0;
1158         rbd_dev->mapping.features = 0;
1159 }
1160
1161 static void rbd_segment_name_free(const char *name)
1162 {
1163         /* The explicit cast here is needed to drop the const qualifier */
1164
1165         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1166 }
1167
1168 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1169 {
1170         char *name;
1171         u64 segment;
1172         int ret;
1173         char *name_format;
1174
1175         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1176         if (!name)
1177                 return NULL;
1178         segment = offset >> rbd_dev->header.obj_order;
1179         name_format = "%s.%012llx";
1180         if (rbd_dev->image_format == 2)
1181                 name_format = "%s.%016llx";
1182         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1183                         rbd_dev->header.object_prefix, segment);
1184         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1185                 pr_err("error formatting segment name for #%llu (%d)\n",
1186                         segment, ret);
1187                 rbd_segment_name_free(name);
1188                 name = NULL;
1189         }
1190
1191         return name;
1192 }
1193
1194 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1195 {
1196         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1197
1198         return offset & (segment_size - 1);
1199 }
1200
1201 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1202                                 u64 offset, u64 length)
1203 {
1204         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1205
1206         offset &= segment_size - 1;
1207
1208         rbd_assert(length <= U64_MAX - offset);
1209         if (offset + length > segment_size)
1210                 length = segment_size - offset;
1211
1212         return length;
1213 }
1214
1215 /*
1216  * returns the size of an object in the image
1217  */
1218 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1219 {
1220         return 1 << header->obj_order;
1221 }
1222
1223 /*
1224  * bio helpers
1225  */
1226
1227 static void bio_chain_put(struct bio *chain)
1228 {
1229         struct bio *tmp;
1230
1231         while (chain) {
1232                 tmp = chain;
1233                 chain = chain->bi_next;
1234                 bio_put(tmp);
1235         }
1236 }
1237
1238 /*
1239  * zeros a bio chain, starting at specific offset
1240  */
1241 static void zero_bio_chain(struct bio *chain, int start_ofs)
1242 {
1243         struct bio_vec bv;
1244         struct bvec_iter iter;
1245         unsigned long flags;
1246         void *buf;
1247         int pos = 0;
1248
1249         while (chain) {
1250                 bio_for_each_segment(bv, chain, iter) {
1251                         if (pos + bv.bv_len > start_ofs) {
1252                                 int remainder = max(start_ofs - pos, 0);
1253                                 buf = bvec_kmap_irq(&bv, &flags);
1254                                 memset(buf + remainder, 0,
1255                                        bv.bv_len - remainder);
1256                                 flush_dcache_page(bv.bv_page);
1257                                 bvec_kunmap_irq(buf, &flags);
1258                         }
1259                         pos += bv.bv_len;
1260                 }
1261
1262                 chain = chain->bi_next;
1263         }
1264 }
1265
1266 /*
1267  * similar to zero_bio_chain(), zeros data defined by a page array,
1268  * starting at the given byte offset from the start of the array and
1269  * continuing up to the given end offset.  The pages array is
1270  * assumed to be big enough to hold all bytes up to the end.
1271  */
1272 static void zero_pages(struct page **pages, u64 offset, u64 end)
1273 {
1274         struct page **page = &pages[offset >> PAGE_SHIFT];
1275
1276         rbd_assert(end > offset);
1277         rbd_assert(end - offset <= (u64)SIZE_MAX);
1278         while (offset < end) {
1279                 size_t page_offset;
1280                 size_t length;
1281                 unsigned long flags;
1282                 void *kaddr;
1283
1284                 page_offset = offset & ~PAGE_MASK;
1285                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1286                 local_irq_save(flags);
1287                 kaddr = kmap_atomic(*page);
1288                 memset(kaddr + page_offset, 0, length);
1289                 flush_dcache_page(*page);
1290                 kunmap_atomic(kaddr);
1291                 local_irq_restore(flags);
1292
1293                 offset += length;
1294                 page++;
1295         }
1296 }
1297
1298 /*
1299  * Clone a portion of a bio, starting at the given byte offset
1300  * and continuing for the number of bytes indicated.
1301  */
1302 static struct bio *bio_clone_range(struct bio *bio_src,
1303                                         unsigned int offset,
1304                                         unsigned int len,
1305                                         gfp_t gfpmask)
1306 {
1307         struct bio *bio;
1308
1309         bio = bio_clone(bio_src, gfpmask);
1310         if (!bio)
1311                 return NULL;    /* ENOMEM */
1312
1313         bio_advance(bio, offset);
1314         bio->bi_iter.bi_size = len;
1315
1316         return bio;
1317 }
1318
1319 /*
1320  * Clone a portion of a bio chain, starting at the given byte offset
1321  * into the first bio in the source chain and continuing for the
1322  * number of bytes indicated.  The result is another bio chain of
1323  * exactly the given length, or a null pointer on error.
1324  *
1325  * The bio_src and offset parameters are both in-out.  On entry they
1326  * refer to the first source bio and the offset into that bio where
1327  * the start of data to be cloned is located.
1328  *
1329  * On return, bio_src is updated to refer to the bio in the source
1330  * chain that contains first un-cloned byte, and *offset will
1331  * contain the offset of that byte within that bio.
1332  */
1333 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1334                                         unsigned int *offset,
1335                                         unsigned int len,
1336                                         gfp_t gfpmask)
1337 {
1338         struct bio *bi = *bio_src;
1339         unsigned int off = *offset;
1340         struct bio *chain = NULL;
1341         struct bio **end;
1342
1343         /* Build up a chain of clone bios up to the limit */
1344
1345         if (!bi || off >= bi->bi_iter.bi_size || !len)
1346                 return NULL;            /* Nothing to clone */
1347
1348         end = &chain;
1349         while (len) {
1350                 unsigned int bi_size;
1351                 struct bio *bio;
1352
1353                 if (!bi) {
1354                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1355                         goto out_err;   /* EINVAL; ran out of bio's */
1356                 }
1357                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1358                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1359                 if (!bio)
1360                         goto out_err;   /* ENOMEM */
1361
1362                 *end = bio;
1363                 end = &bio->bi_next;
1364
1365                 off += bi_size;
1366                 if (off == bi->bi_iter.bi_size) {
1367                         bi = bi->bi_next;
1368                         off = 0;
1369                 }
1370                 len -= bi_size;
1371         }
1372         *bio_src = bi;
1373         *offset = off;
1374
1375         return chain;
1376 out_err:
1377         bio_chain_put(chain);
1378
1379         return NULL;
1380 }
1381
1382 /*
1383  * The default/initial value for all object request flags is 0.  For
1384  * each flag, once its value is set to 1 it is never reset to 0
1385  * again.
1386  */
1387 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1388 {
1389         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1390                 struct rbd_device *rbd_dev;
1391
1392                 rbd_dev = obj_request->img_request->rbd_dev;
1393                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1394                         obj_request);
1395         }
1396 }
1397
1398 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1399 {
1400         smp_mb();
1401         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1402 }
1403
1404 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1405 {
1406         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1407                 struct rbd_device *rbd_dev = NULL;
1408
1409                 if (obj_request_img_data_test(obj_request))
1410                         rbd_dev = obj_request->img_request->rbd_dev;
1411                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1412                         obj_request);
1413         }
1414 }
1415
1416 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1417 {
1418         smp_mb();
1419         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1420 }
1421
1422 /*
1423  * This sets the KNOWN flag after (possibly) setting the EXISTS
1424  * flag.  The latter is set based on the "exists" value provided.
1425  *
1426  * Note that for our purposes once an object exists it never goes
1427  * away again.  It's possible that the response from two existence
1428  * checks are separated by the creation of the target object, and
1429  * the first ("doesn't exist") response arrives *after* the second
1430  * ("does exist").  In that case we ignore the second one.
1431  */
1432 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1433                                 bool exists)
1434 {
1435         if (exists)
1436                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1437         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1438         smp_mb();
1439 }
1440
1441 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1442 {
1443         smp_mb();
1444         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1445 }
1446
1447 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1448 {
1449         smp_mb();
1450         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1451 }
1452
1453 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1454 {
1455         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1456
1457         return obj_request->img_offset <
1458             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1459 }
1460
1461 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1462 {
1463         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1464                 atomic_read(&obj_request->kref.refcount));
1465         kref_get(&obj_request->kref);
1466 }
1467
1468 static void rbd_obj_request_destroy(struct kref *kref);
1469 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1470 {
1471         rbd_assert(obj_request != NULL);
1472         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1473                 atomic_read(&obj_request->kref.refcount));
1474         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1475 }
1476
1477 static void rbd_img_request_get(struct rbd_img_request *img_request)
1478 {
1479         dout("%s: img %p (was %d)\n", __func__, img_request,
1480              atomic_read(&img_request->kref.refcount));
1481         kref_get(&img_request->kref);
1482 }
1483
1484 static bool img_request_child_test(struct rbd_img_request *img_request);
1485 static void rbd_parent_request_destroy(struct kref *kref);
1486 static void rbd_img_request_destroy(struct kref *kref);
1487 static void rbd_img_request_put(struct rbd_img_request *img_request)
1488 {
1489         rbd_assert(img_request != NULL);
1490         dout("%s: img %p (was %d)\n", __func__, img_request,
1491                 atomic_read(&img_request->kref.refcount));
1492         if (img_request_child_test(img_request))
1493                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1494         else
1495                 kref_put(&img_request->kref, rbd_img_request_destroy);
1496 }
1497
1498 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1499                                         struct rbd_obj_request *obj_request)
1500 {
1501         rbd_assert(obj_request->img_request == NULL);
1502
1503         /* Image request now owns object's original reference */
1504         obj_request->img_request = img_request;
1505         obj_request->which = img_request->obj_request_count;
1506         rbd_assert(!obj_request_img_data_test(obj_request));
1507         obj_request_img_data_set(obj_request);
1508         rbd_assert(obj_request->which != BAD_WHICH);
1509         img_request->obj_request_count++;
1510         list_add_tail(&obj_request->links, &img_request->obj_requests);
1511         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1512                 obj_request->which);
1513 }
1514
1515 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1516                                         struct rbd_obj_request *obj_request)
1517 {
1518         rbd_assert(obj_request->which != BAD_WHICH);
1519
1520         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1521                 obj_request->which);
1522         list_del(&obj_request->links);
1523         rbd_assert(img_request->obj_request_count > 0);
1524         img_request->obj_request_count--;
1525         rbd_assert(obj_request->which == img_request->obj_request_count);
1526         obj_request->which = BAD_WHICH;
1527         rbd_assert(obj_request_img_data_test(obj_request));
1528         rbd_assert(obj_request->img_request == img_request);
1529         obj_request->img_request = NULL;
1530         obj_request->callback = NULL;
1531         rbd_obj_request_put(obj_request);
1532 }
1533
1534 static bool obj_request_type_valid(enum obj_request_type type)
1535 {
1536         switch (type) {
1537         case OBJ_REQUEST_NODATA:
1538         case OBJ_REQUEST_BIO:
1539         case OBJ_REQUEST_PAGES:
1540                 return true;
1541         default:
1542                 return false;
1543         }
1544 }
1545
1546 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1547                                 struct rbd_obj_request *obj_request)
1548 {
1549         dout("%s %p\n", __func__, obj_request);
1550         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1551 }
1552
1553 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1554 {
1555         dout("%s %p\n", __func__, obj_request);
1556         ceph_osdc_cancel_request(obj_request->osd_req);
1557 }
1558
1559 /*
1560  * Wait for an object request to complete.  If interrupted, cancel the
1561  * underlying osd request.
1562  *
1563  * @timeout: in jiffies, 0 means "wait forever"
1564  */
1565 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1566                                   unsigned long timeout)
1567 {
1568         long ret;
1569
1570         dout("%s %p\n", __func__, obj_request);
1571         ret = wait_for_completion_interruptible_timeout(
1572                                         &obj_request->completion,
1573                                         ceph_timeout_jiffies(timeout));
1574         if (ret <= 0) {
1575                 if (ret == 0)
1576                         ret = -ETIMEDOUT;
1577                 rbd_obj_request_end(obj_request);
1578         } else {
1579                 ret = 0;
1580         }
1581
1582         dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1583         return ret;
1584 }
1585
1586 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1587 {
1588         return __rbd_obj_request_wait(obj_request, 0);
1589 }
1590
1591 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1592                                         unsigned long timeout)
1593 {
1594         return __rbd_obj_request_wait(obj_request, timeout);
1595 }
1596
1597 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1598 {
1599
1600         dout("%s: img %p\n", __func__, img_request);
1601
1602         /*
1603          * If no error occurred, compute the aggregate transfer
1604          * count for the image request.  We could instead use
1605          * atomic64_cmpxchg() to update it as each object request
1606          * completes; not clear which way is better off hand.
1607          */
1608         if (!img_request->result) {
1609                 struct rbd_obj_request *obj_request;
1610                 u64 xferred = 0;
1611
1612                 for_each_obj_request(img_request, obj_request)
1613                         xferred += obj_request->xferred;
1614                 img_request->xferred = xferred;
1615         }
1616
1617         if (img_request->callback)
1618                 img_request->callback(img_request);
1619         else
1620                 rbd_img_request_put(img_request);
1621 }
1622
1623 /*
1624  * The default/initial value for all image request flags is 0.  Each
1625  * is conditionally set to 1 at image request initialization time
1626  * and currently never change thereafter.
1627  */
1628 static void img_request_write_set(struct rbd_img_request *img_request)
1629 {
1630         set_bit(IMG_REQ_WRITE, &img_request->flags);
1631         smp_mb();
1632 }
1633
1634 static bool img_request_write_test(struct rbd_img_request *img_request)
1635 {
1636         smp_mb();
1637         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1638 }
1639
1640 /*
1641  * Set the discard flag when the img_request is an discard request
1642  */
1643 static void img_request_discard_set(struct rbd_img_request *img_request)
1644 {
1645         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1646         smp_mb();
1647 }
1648
1649 static bool img_request_discard_test(struct rbd_img_request *img_request)
1650 {
1651         smp_mb();
1652         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1653 }
1654
1655 static void img_request_child_set(struct rbd_img_request *img_request)
1656 {
1657         set_bit(IMG_REQ_CHILD, &img_request->flags);
1658         smp_mb();
1659 }
1660
1661 static void img_request_child_clear(struct rbd_img_request *img_request)
1662 {
1663         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1664         smp_mb();
1665 }
1666
1667 static bool img_request_child_test(struct rbd_img_request *img_request)
1668 {
1669         smp_mb();
1670         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1671 }
1672
1673 static void img_request_layered_set(struct rbd_img_request *img_request)
1674 {
1675         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1676         smp_mb();
1677 }
1678
1679 static void img_request_layered_clear(struct rbd_img_request *img_request)
1680 {
1681         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1682         smp_mb();
1683 }
1684
1685 static bool img_request_layered_test(struct rbd_img_request *img_request)
1686 {
1687         smp_mb();
1688         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1689 }
1690
1691 static enum obj_operation_type
1692 rbd_img_request_op_type(struct rbd_img_request *img_request)
1693 {
1694         if (img_request_write_test(img_request))
1695                 return OBJ_OP_WRITE;
1696         else if (img_request_discard_test(img_request))
1697                 return OBJ_OP_DISCARD;
1698         else
1699                 return OBJ_OP_READ;
1700 }
1701
1702 static void
1703 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1704 {
1705         u64 xferred = obj_request->xferred;
1706         u64 length = obj_request->length;
1707
1708         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1709                 obj_request, obj_request->img_request, obj_request->result,
1710                 xferred, length);
1711         /*
1712          * ENOENT means a hole in the image.  We zero-fill the entire
1713          * length of the request.  A short read also implies zero-fill
1714          * to the end of the request.  An error requires the whole
1715          * length of the request to be reported finished with an error
1716          * to the block layer.  In each case we update the xferred
1717          * count to indicate the whole request was satisfied.
1718          */
1719         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1720         if (obj_request->result == -ENOENT) {
1721                 if (obj_request->type == OBJ_REQUEST_BIO)
1722                         zero_bio_chain(obj_request->bio_list, 0);
1723                 else
1724                         zero_pages(obj_request->pages, 0, length);
1725                 obj_request->result = 0;
1726         } else if (xferred < length && !obj_request->result) {
1727                 if (obj_request->type == OBJ_REQUEST_BIO)
1728                         zero_bio_chain(obj_request->bio_list, xferred);
1729                 else
1730                         zero_pages(obj_request->pages, xferred, length);
1731         }
1732         obj_request->xferred = length;
1733         obj_request_done_set(obj_request);
1734 }
1735
1736 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1737 {
1738         dout("%s: obj %p cb %p\n", __func__, obj_request,
1739                 obj_request->callback);
1740         if (obj_request->callback)
1741                 obj_request->callback(obj_request);
1742         else
1743                 complete_all(&obj_request->completion);
1744 }
1745
1746 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1747 {
1748         dout("%s: obj %p\n", __func__, obj_request);
1749         obj_request_done_set(obj_request);
1750 }
1751
1752 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1753 {
1754         struct rbd_img_request *img_request = NULL;
1755         struct rbd_device *rbd_dev = NULL;
1756         bool layered = false;
1757
1758         if (obj_request_img_data_test(obj_request)) {
1759                 img_request = obj_request->img_request;
1760                 layered = img_request && img_request_layered_test(img_request);
1761                 rbd_dev = img_request->rbd_dev;
1762         }
1763
1764         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1765                 obj_request, img_request, obj_request->result,
1766                 obj_request->xferred, obj_request->length);
1767         if (layered && obj_request->result == -ENOENT &&
1768                         obj_request->img_offset < rbd_dev->parent_overlap)
1769                 rbd_img_parent_read(obj_request);
1770         else if (img_request)
1771                 rbd_img_obj_request_read_callback(obj_request);
1772         else
1773                 obj_request_done_set(obj_request);
1774 }
1775
1776 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1777 {
1778         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1779                 obj_request->result, obj_request->length);
1780         /*
1781          * There is no such thing as a successful short write.  Set
1782          * it to our originally-requested length.
1783          */
1784         obj_request->xferred = obj_request->length;
1785         obj_request_done_set(obj_request);
1786 }
1787
1788 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1789 {
1790         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1791                 obj_request->result, obj_request->length);
1792         /*
1793          * There is no such thing as a successful short discard.  Set
1794          * it to our originally-requested length.
1795          */
1796         obj_request->xferred = obj_request->length;
1797         /* discarding a non-existent object is not a problem */
1798         if (obj_request->result == -ENOENT)
1799                 obj_request->result = 0;
1800         obj_request_done_set(obj_request);
1801 }
1802
1803 /*
1804  * For a simple stat call there's nothing to do.  We'll do more if
1805  * this is part of a write sequence for a layered image.
1806  */
1807 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1808 {
1809         dout("%s: obj %p\n", __func__, obj_request);
1810         obj_request_done_set(obj_request);
1811 }
1812
1813 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1814 {
1815         dout("%s: obj %p\n", __func__, obj_request);
1816
1817         if (obj_request_img_data_test(obj_request))
1818                 rbd_osd_copyup_callback(obj_request);
1819         else
1820                 obj_request_done_set(obj_request);
1821 }
1822
1823 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1824                                 struct ceph_msg *msg)
1825 {
1826         struct rbd_obj_request *obj_request = osd_req->r_priv;
1827         u16 opcode;
1828
1829         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1830         rbd_assert(osd_req == obj_request->osd_req);
1831         if (obj_request_img_data_test(obj_request)) {
1832                 rbd_assert(obj_request->img_request);
1833                 rbd_assert(obj_request->which != BAD_WHICH);
1834         } else {
1835                 rbd_assert(obj_request->which == BAD_WHICH);
1836         }
1837
1838         if (osd_req->r_result < 0)
1839                 obj_request->result = osd_req->r_result;
1840
1841         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1842
1843         /*
1844          * We support a 64-bit length, but ultimately it has to be
1845          * passed to the block layer, which just supports a 32-bit
1846          * length field.
1847          */
1848         obj_request->xferred = osd_req->r_reply_op_len[0];
1849         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1850
1851         opcode = osd_req->r_ops[0].op;
1852         switch (opcode) {
1853         case CEPH_OSD_OP_READ:
1854                 rbd_osd_read_callback(obj_request);
1855                 break;
1856         case CEPH_OSD_OP_SETALLOCHINT:
1857                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1858                            osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1859                 /* fall through */
1860         case CEPH_OSD_OP_WRITE:
1861         case CEPH_OSD_OP_WRITEFULL:
1862                 rbd_osd_write_callback(obj_request);
1863                 break;
1864         case CEPH_OSD_OP_STAT:
1865                 rbd_osd_stat_callback(obj_request);
1866                 break;
1867         case CEPH_OSD_OP_DELETE:
1868         case CEPH_OSD_OP_TRUNCATE:
1869         case CEPH_OSD_OP_ZERO:
1870                 rbd_osd_discard_callback(obj_request);
1871                 break;
1872         case CEPH_OSD_OP_CALL:
1873                 rbd_osd_call_callback(obj_request);
1874                 break;
1875         case CEPH_OSD_OP_NOTIFY_ACK:
1876         case CEPH_OSD_OP_WATCH:
1877                 rbd_osd_trivial_callback(obj_request);
1878                 break;
1879         default:
1880                 rbd_warn(NULL, "%s: unsupported op %hu",
1881                         obj_request->object_name, (unsigned short) opcode);
1882                 break;
1883         }
1884
1885         if (obj_request_done_test(obj_request))
1886                 rbd_obj_request_complete(obj_request);
1887 }
1888
1889 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1890 {
1891         struct rbd_img_request *img_request = obj_request->img_request;
1892         struct ceph_osd_request *osd_req = obj_request->osd_req;
1893         u64 snap_id;
1894
1895         rbd_assert(osd_req != NULL);
1896
1897         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1898         ceph_osdc_build_request(osd_req, obj_request->offset,
1899                         NULL, snap_id, NULL);
1900 }
1901
1902 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1903 {
1904         struct rbd_img_request *img_request = obj_request->img_request;
1905         struct ceph_osd_request *osd_req = obj_request->osd_req;
1906         struct ceph_snap_context *snapc;
1907         struct timespec mtime = CURRENT_TIME;
1908
1909         rbd_assert(osd_req != NULL);
1910
1911         snapc = img_request ? img_request->snapc : NULL;
1912         ceph_osdc_build_request(osd_req, obj_request->offset,
1913                         snapc, CEPH_NOSNAP, &mtime);
1914 }
1915
1916 /*
1917  * Create an osd request.  A read request has one osd op (read).
1918  * A write request has either one (watch) or two (hint+write) osd ops.
1919  * (All rbd data writes are prefixed with an allocation hint op, but
1920  * technically osd watch is a write request, hence this distinction.)
1921  */
1922 static struct ceph_osd_request *rbd_osd_req_create(
1923                                         struct rbd_device *rbd_dev,
1924                                         enum obj_operation_type op_type,
1925                                         unsigned int num_ops,
1926                                         struct rbd_obj_request *obj_request)
1927 {
1928         struct ceph_snap_context *snapc = NULL;
1929         struct ceph_osd_client *osdc;
1930         struct ceph_osd_request *osd_req;
1931
1932         if (obj_request_img_data_test(obj_request) &&
1933                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1934                 struct rbd_img_request *img_request = obj_request->img_request;
1935                 if (op_type == OBJ_OP_WRITE) {
1936                         rbd_assert(img_request_write_test(img_request));
1937                 } else {
1938                         rbd_assert(img_request_discard_test(img_request));
1939                 }
1940                 snapc = img_request->snapc;
1941         }
1942
1943         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1944
1945         /* Allocate and initialize the request, for the num_ops ops */
1946
1947         osdc = &rbd_dev->rbd_client->client->osdc;
1948         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1949                                           GFP_NOIO);
1950         if (!osd_req)
1951                 return NULL;    /* ENOMEM */
1952
1953         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1954                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1955         else
1956                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1957
1958         osd_req->r_callback = rbd_osd_req_callback;
1959         osd_req->r_priv = obj_request;
1960
1961         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1962         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1963
1964         return osd_req;
1965 }
1966
1967 /*
1968  * Create a copyup osd request based on the information in the object
1969  * request supplied.  A copyup request has two or three osd ops, a
1970  * copyup method call, potentially a hint op, and a write or truncate
1971  * or zero op.
1972  */
1973 static struct ceph_osd_request *
1974 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1975 {
1976         struct rbd_img_request *img_request;
1977         struct ceph_snap_context *snapc;
1978         struct rbd_device *rbd_dev;
1979         struct ceph_osd_client *osdc;
1980         struct ceph_osd_request *osd_req;
1981         int num_osd_ops = 3;
1982
1983         rbd_assert(obj_request_img_data_test(obj_request));
1984         img_request = obj_request->img_request;
1985         rbd_assert(img_request);
1986         rbd_assert(img_request_write_test(img_request) ||
1987                         img_request_discard_test(img_request));
1988
1989         if (img_request_discard_test(img_request))
1990                 num_osd_ops = 2;
1991
1992         /* Allocate and initialize the request, for all the ops */
1993
1994         snapc = img_request->snapc;
1995         rbd_dev = img_request->rbd_dev;
1996         osdc = &rbd_dev->rbd_client->client->osdc;
1997         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1998                                                 false, GFP_NOIO);
1999         if (!osd_req)
2000                 return NULL;    /* ENOMEM */
2001
2002         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2003         osd_req->r_callback = rbd_osd_req_callback;
2004         osd_req->r_priv = obj_request;
2005
2006         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2007         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
2008
2009         return osd_req;
2010 }
2011
2012
2013 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2014 {
2015         ceph_osdc_put_request(osd_req);
2016 }
2017
2018 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2019
2020 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2021                                                 u64 offset, u64 length,
2022                                                 enum obj_request_type type)
2023 {
2024         struct rbd_obj_request *obj_request;
2025         size_t size;
2026         char *name;
2027
2028         rbd_assert(obj_request_type_valid(type));
2029
2030         size = strlen(object_name) + 1;
2031         name = kmalloc(size, GFP_NOIO);
2032         if (!name)
2033                 return NULL;
2034
2035         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2036         if (!obj_request) {
2037                 kfree(name);
2038                 return NULL;
2039         }
2040
2041         obj_request->object_name = memcpy(name, object_name, size);
2042         obj_request->offset = offset;
2043         obj_request->length = length;
2044         obj_request->flags = 0;
2045         obj_request->which = BAD_WHICH;
2046         obj_request->type = type;
2047         INIT_LIST_HEAD(&obj_request->links);
2048         init_completion(&obj_request->completion);
2049         kref_init(&obj_request->kref);
2050
2051         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2052                 offset, length, (int)type, obj_request);
2053
2054         return obj_request;
2055 }
2056
2057 static void rbd_obj_request_destroy(struct kref *kref)
2058 {
2059         struct rbd_obj_request *obj_request;
2060
2061         obj_request = container_of(kref, struct rbd_obj_request, kref);
2062
2063         dout("%s: obj %p\n", __func__, obj_request);
2064
2065         rbd_assert(obj_request->img_request == NULL);
2066         rbd_assert(obj_request->which == BAD_WHICH);
2067
2068         if (obj_request->osd_req)
2069                 rbd_osd_req_destroy(obj_request->osd_req);
2070
2071         rbd_assert(obj_request_type_valid(obj_request->type));
2072         switch (obj_request->type) {
2073         case OBJ_REQUEST_NODATA:
2074                 break;          /* Nothing to do */
2075         case OBJ_REQUEST_BIO:
2076                 if (obj_request->bio_list)
2077                         bio_chain_put(obj_request->bio_list);
2078                 break;
2079         case OBJ_REQUEST_PAGES:
2080                 if (obj_request->pages)
2081                         ceph_release_page_vector(obj_request->pages,
2082                                                 obj_request->page_count);
2083                 break;
2084         }
2085
2086         kfree(obj_request->object_name);
2087         obj_request->object_name = NULL;
2088         kmem_cache_free(rbd_obj_request_cache, obj_request);
2089 }
2090
2091 /* It's OK to call this for a device with no parent */
2092
2093 static void rbd_spec_put(struct rbd_spec *spec);
2094 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2095 {
2096         rbd_dev_remove_parent(rbd_dev);
2097         rbd_spec_put(rbd_dev->parent_spec);
2098         rbd_dev->parent_spec = NULL;
2099         rbd_dev->parent_overlap = 0;
2100 }
2101
2102 /*
2103  * Parent image reference counting is used to determine when an
2104  * image's parent fields can be safely torn down--after there are no
2105  * more in-flight requests to the parent image.  When the last
2106  * reference is dropped, cleaning them up is safe.
2107  */
2108 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2109 {
2110         int counter;
2111
2112         if (!rbd_dev->parent_spec)
2113                 return;
2114
2115         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2116         if (counter > 0)
2117                 return;
2118
2119         /* Last reference; clean up parent data structures */
2120
2121         if (!counter)
2122                 rbd_dev_unparent(rbd_dev);
2123         else
2124                 rbd_warn(rbd_dev, "parent reference underflow");
2125 }
2126
2127 /*
2128  * If an image has a non-zero parent overlap, get a reference to its
2129  * parent.
2130  *
2131  * Returns true if the rbd device has a parent with a non-zero
2132  * overlap and a reference for it was successfully taken, or
2133  * false otherwise.
2134  */
2135 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2136 {
2137         int counter = 0;
2138
2139         if (!rbd_dev->parent_spec)
2140                 return false;
2141
2142         down_read(&rbd_dev->header_rwsem);
2143         if (rbd_dev->parent_overlap)
2144                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2145         up_read(&rbd_dev->header_rwsem);
2146
2147         if (counter < 0)
2148                 rbd_warn(rbd_dev, "parent reference overflow");
2149
2150         return counter > 0;
2151 }
2152
2153 /*
2154  * Caller is responsible for filling in the list of object requests
2155  * that comprises the image request, and the Linux request pointer
2156  * (if there is one).
2157  */
2158 static struct rbd_img_request *rbd_img_request_create(
2159                                         struct rbd_device *rbd_dev,
2160                                         u64 offset, u64 length,
2161                                         enum obj_operation_type op_type,
2162                                         struct ceph_snap_context *snapc)
2163 {
2164         struct rbd_img_request *img_request;
2165
2166         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2167         if (!img_request)
2168                 return NULL;
2169
2170         img_request->rq = NULL;
2171         img_request->rbd_dev = rbd_dev;
2172         img_request->offset = offset;
2173         img_request->length = length;
2174         img_request->flags = 0;
2175         if (op_type == OBJ_OP_DISCARD) {
2176                 img_request_discard_set(img_request);
2177                 img_request->snapc = snapc;
2178         } else if (op_type == OBJ_OP_WRITE) {
2179                 img_request_write_set(img_request);
2180                 img_request->snapc = snapc;
2181         } else {
2182                 img_request->snap_id = rbd_dev->spec->snap_id;
2183         }
2184         if (rbd_dev_parent_get(rbd_dev))
2185                 img_request_layered_set(img_request);
2186         spin_lock_init(&img_request->completion_lock);
2187         img_request->next_completion = 0;
2188         img_request->callback = NULL;
2189         img_request->result = 0;
2190         img_request->obj_request_count = 0;
2191         INIT_LIST_HEAD(&img_request->obj_requests);
2192         kref_init(&img_request->kref);
2193
2194         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2195                 obj_op_name(op_type), offset, length, img_request);
2196
2197         return img_request;
2198 }
2199
2200 static void rbd_img_request_destroy(struct kref *kref)
2201 {
2202         struct rbd_img_request *img_request;
2203         struct rbd_obj_request *obj_request;
2204         struct rbd_obj_request *next_obj_request;
2205
2206         img_request = container_of(kref, struct rbd_img_request, kref);
2207
2208         dout("%s: img %p\n", __func__, img_request);
2209
2210         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2211                 rbd_img_obj_request_del(img_request, obj_request);
2212         rbd_assert(img_request->obj_request_count == 0);
2213
2214         if (img_request_layered_test(img_request)) {
2215                 img_request_layered_clear(img_request);
2216                 rbd_dev_parent_put(img_request->rbd_dev);
2217         }
2218
2219         if (img_request_write_test(img_request) ||
2220                 img_request_discard_test(img_request))
2221                 ceph_put_snap_context(img_request->snapc);
2222
2223         kmem_cache_free(rbd_img_request_cache, img_request);
2224 }
2225
2226 static struct rbd_img_request *rbd_parent_request_create(
2227                                         struct rbd_obj_request *obj_request,
2228                                         u64 img_offset, u64 length)
2229 {
2230         struct rbd_img_request *parent_request;
2231         struct rbd_device *rbd_dev;
2232
2233         rbd_assert(obj_request->img_request);
2234         rbd_dev = obj_request->img_request->rbd_dev;
2235
2236         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2237                                                 length, OBJ_OP_READ, NULL);
2238         if (!parent_request)
2239                 return NULL;
2240
2241         img_request_child_set(parent_request);
2242         rbd_obj_request_get(obj_request);
2243         parent_request->obj_request = obj_request;
2244
2245         return parent_request;
2246 }
2247
2248 static void rbd_parent_request_destroy(struct kref *kref)
2249 {
2250         struct rbd_img_request *parent_request;
2251         struct rbd_obj_request *orig_request;
2252
2253         parent_request = container_of(kref, struct rbd_img_request, kref);
2254         orig_request = parent_request->obj_request;
2255
2256         parent_request->obj_request = NULL;
2257         rbd_obj_request_put(orig_request);
2258         img_request_child_clear(parent_request);
2259
2260         rbd_img_request_destroy(kref);
2261 }
2262
2263 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2264 {
2265         struct rbd_img_request *img_request;
2266         unsigned int xferred;
2267         int result;
2268         bool more;
2269
2270         rbd_assert(obj_request_img_data_test(obj_request));
2271         img_request = obj_request->img_request;
2272
2273         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2274         xferred = (unsigned int)obj_request->xferred;
2275         result = obj_request->result;
2276         if (result) {
2277                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2278                 enum obj_operation_type op_type;
2279
2280                 if (img_request_discard_test(img_request))
2281                         op_type = OBJ_OP_DISCARD;
2282                 else if (img_request_write_test(img_request))
2283                         op_type = OBJ_OP_WRITE;
2284                 else
2285                         op_type = OBJ_OP_READ;
2286
2287                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2288                         obj_op_name(op_type), obj_request->length,
2289                         obj_request->img_offset, obj_request->offset);
2290                 rbd_warn(rbd_dev, "  result %d xferred %x",
2291                         result, xferred);
2292                 if (!img_request->result)
2293                         img_request->result = result;
2294                 /*
2295                  * Need to end I/O on the entire obj_request worth of
2296                  * bytes in case of error.
2297                  */
2298                 xferred = obj_request->length;
2299         }
2300
2301         /* Image object requests don't own their page array */
2302
2303         if (obj_request->type == OBJ_REQUEST_PAGES) {
2304                 obj_request->pages = NULL;
2305                 obj_request->page_count = 0;
2306         }
2307
2308         if (img_request_child_test(img_request)) {
2309                 rbd_assert(img_request->obj_request != NULL);
2310                 more = obj_request->which < img_request->obj_request_count - 1;
2311         } else {
2312                 rbd_assert(img_request->rq != NULL);
2313
2314                 more = blk_update_request(img_request->rq, result, xferred);
2315                 if (!more)
2316                         __blk_mq_end_request(img_request->rq, result);
2317         }
2318
2319         return more;
2320 }
2321
2322 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2323 {
2324         struct rbd_img_request *img_request;
2325         u32 which = obj_request->which;
2326         bool more = true;
2327
2328         rbd_assert(obj_request_img_data_test(obj_request));
2329         img_request = obj_request->img_request;
2330
2331         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2332         rbd_assert(img_request != NULL);
2333         rbd_assert(img_request->obj_request_count > 0);
2334         rbd_assert(which != BAD_WHICH);
2335         rbd_assert(which < img_request->obj_request_count);
2336
2337         spin_lock_irq(&img_request->completion_lock);
2338         if (which != img_request->next_completion)
2339                 goto out;
2340
2341         for_each_obj_request_from(img_request, obj_request) {
2342                 rbd_assert(more);
2343                 rbd_assert(which < img_request->obj_request_count);
2344
2345                 if (!obj_request_done_test(obj_request))
2346                         break;
2347                 more = rbd_img_obj_end_request(obj_request);
2348                 which++;
2349         }
2350
2351         rbd_assert(more ^ (which == img_request->obj_request_count));
2352         img_request->next_completion = which;
2353 out:
2354         spin_unlock_irq(&img_request->completion_lock);
2355         rbd_img_request_put(img_request);
2356
2357         if (!more)
2358                 rbd_img_request_complete(img_request);
2359 }
2360
2361 /*
2362  * Add individual osd ops to the given ceph_osd_request and prepare
2363  * them for submission. num_ops is the current number of
2364  * osd operations already to the object request.
2365  */
2366 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2367                                 struct ceph_osd_request *osd_request,
2368                                 enum obj_operation_type op_type,
2369                                 unsigned int num_ops)
2370 {
2371         struct rbd_img_request *img_request = obj_request->img_request;
2372         struct rbd_device *rbd_dev = img_request->rbd_dev;
2373         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2374         u64 offset = obj_request->offset;
2375         u64 length = obj_request->length;
2376         u64 img_end;
2377         u16 opcode;
2378
2379         if (op_type == OBJ_OP_DISCARD) {
2380                 if (!offset && length == object_size &&
2381                     (!img_request_layered_test(img_request) ||
2382                      !obj_request_overlaps_parent(obj_request))) {
2383                         opcode = CEPH_OSD_OP_DELETE;
2384                 } else if ((offset + length == object_size)) {
2385                         opcode = CEPH_OSD_OP_TRUNCATE;
2386                 } else {
2387                         down_read(&rbd_dev->header_rwsem);
2388                         img_end = rbd_dev->header.image_size;
2389                         up_read(&rbd_dev->header_rwsem);
2390
2391                         if (obj_request->img_offset + length == img_end)
2392                                 opcode = CEPH_OSD_OP_TRUNCATE;
2393                         else
2394                                 opcode = CEPH_OSD_OP_ZERO;
2395                 }
2396         } else if (op_type == OBJ_OP_WRITE) {
2397                 if (!offset && length == object_size)
2398                         opcode = CEPH_OSD_OP_WRITEFULL;
2399                 else
2400                         opcode = CEPH_OSD_OP_WRITE;
2401                 osd_req_op_alloc_hint_init(osd_request, num_ops,
2402                                         object_size, object_size);
2403                 num_ops++;
2404         } else {
2405                 opcode = CEPH_OSD_OP_READ;
2406         }
2407
2408         if (opcode == CEPH_OSD_OP_DELETE)
2409                 osd_req_op_init(osd_request, num_ops, opcode, 0);
2410         else
2411                 osd_req_op_extent_init(osd_request, num_ops, opcode,
2412                                        offset, length, 0, 0);
2413
2414         if (obj_request->type == OBJ_REQUEST_BIO)
2415                 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2416                                         obj_request->bio_list, length);
2417         else if (obj_request->type == OBJ_REQUEST_PAGES)
2418                 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2419                                         obj_request->pages, length,
2420                                         offset & ~PAGE_MASK, false, false);
2421
2422         /* Discards are also writes */
2423         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2424                 rbd_osd_req_format_write(obj_request);
2425         else
2426                 rbd_osd_req_format_read(obj_request);
2427 }
2428
2429 /*
2430  * Split up an image request into one or more object requests, each
2431  * to a different object.  The "type" parameter indicates whether
2432  * "data_desc" is the pointer to the head of a list of bio
2433  * structures, or the base of a page array.  In either case this
2434  * function assumes data_desc describes memory sufficient to hold
2435  * all data described by the image request.
2436  */
2437 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2438                                         enum obj_request_type type,
2439                                         void *data_desc)
2440 {
2441         struct rbd_device *rbd_dev = img_request->rbd_dev;
2442         struct rbd_obj_request *obj_request = NULL;
2443         struct rbd_obj_request *next_obj_request;
2444         struct bio *bio_list = NULL;
2445         unsigned int bio_offset = 0;
2446         struct page **pages = NULL;
2447         enum obj_operation_type op_type;
2448         u64 img_offset;
2449         u64 resid;
2450
2451         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2452                 (int)type, data_desc);
2453
2454         img_offset = img_request->offset;
2455         resid = img_request->length;
2456         rbd_assert(resid > 0);
2457         op_type = rbd_img_request_op_type(img_request);
2458
2459         if (type == OBJ_REQUEST_BIO) {
2460                 bio_list = data_desc;
2461                 rbd_assert(img_offset ==
2462                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2463         } else if (type == OBJ_REQUEST_PAGES) {
2464                 pages = data_desc;
2465         }
2466
2467         while (resid) {
2468                 struct ceph_osd_request *osd_req;
2469                 const char *object_name;
2470                 u64 offset;
2471                 u64 length;
2472
2473                 object_name = rbd_segment_name(rbd_dev, img_offset);
2474                 if (!object_name)
2475                         goto out_unwind;
2476                 offset = rbd_segment_offset(rbd_dev, img_offset);
2477                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2478                 obj_request = rbd_obj_request_create(object_name,
2479                                                 offset, length, type);
2480                 /* object request has its own copy of the object name */
2481                 rbd_segment_name_free(object_name);
2482                 if (!obj_request)
2483                         goto out_unwind;
2484
2485                 /*
2486                  * set obj_request->img_request before creating the
2487                  * osd_request so that it gets the right snapc
2488                  */
2489                 rbd_img_obj_request_add(img_request, obj_request);
2490
2491                 if (type == OBJ_REQUEST_BIO) {
2492                         unsigned int clone_size;
2493
2494                         rbd_assert(length <= (u64)UINT_MAX);
2495                         clone_size = (unsigned int)length;
2496                         obj_request->bio_list =
2497                                         bio_chain_clone_range(&bio_list,
2498                                                                 &bio_offset,
2499                                                                 clone_size,
2500                                                                 GFP_NOIO);
2501                         if (!obj_request->bio_list)
2502                                 goto out_unwind;
2503                 } else if (type == OBJ_REQUEST_PAGES) {
2504                         unsigned int page_count;
2505
2506                         obj_request->pages = pages;
2507                         page_count = (u32)calc_pages_for(offset, length);
2508                         obj_request->page_count = page_count;
2509                         if ((offset + length) & ~PAGE_MASK)
2510                                 page_count--;   /* more on last page */
2511                         pages += page_count;
2512                 }
2513
2514                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2515                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2516                                         obj_request);
2517                 if (!osd_req)
2518                         goto out_unwind;
2519
2520                 obj_request->osd_req = osd_req;
2521                 obj_request->callback = rbd_img_obj_callback;
2522                 obj_request->img_offset = img_offset;
2523
2524                 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2525
2526                 rbd_img_request_get(img_request);
2527
2528                 img_offset += length;
2529                 resid -= length;
2530         }
2531
2532         return 0;
2533
2534 out_unwind:
2535         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2536                 rbd_img_obj_request_del(img_request, obj_request);
2537
2538         return -ENOMEM;
2539 }
2540
2541 static void
2542 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2543 {
2544         struct rbd_img_request *img_request;
2545         struct rbd_device *rbd_dev;
2546         struct page **pages;
2547         u32 page_count;
2548
2549         dout("%s: obj %p\n", __func__, obj_request);
2550
2551         rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2552                 obj_request->type == OBJ_REQUEST_NODATA);
2553         rbd_assert(obj_request_img_data_test(obj_request));
2554         img_request = obj_request->img_request;
2555         rbd_assert(img_request);
2556
2557         rbd_dev = img_request->rbd_dev;
2558         rbd_assert(rbd_dev);
2559
2560         pages = obj_request->copyup_pages;
2561         rbd_assert(pages != NULL);
2562         obj_request->copyup_pages = NULL;
2563         page_count = obj_request->copyup_page_count;
2564         rbd_assert(page_count);
2565         obj_request->copyup_page_count = 0;
2566         ceph_release_page_vector(pages, page_count);
2567
2568         /*
2569          * We want the transfer count to reflect the size of the
2570          * original write request.  There is no such thing as a
2571          * successful short write, so if the request was successful
2572          * we can just set it to the originally-requested length.
2573          */
2574         if (!obj_request->result)
2575                 obj_request->xferred = obj_request->length;
2576
2577         obj_request_done_set(obj_request);
2578 }
2579
2580 static void
2581 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2582 {
2583         struct rbd_obj_request *orig_request;
2584         struct ceph_osd_request *osd_req;
2585         struct ceph_osd_client *osdc;
2586         struct rbd_device *rbd_dev;
2587         struct page **pages;
2588         enum obj_operation_type op_type;
2589         u32 page_count;
2590         int img_result;
2591         u64 parent_length;
2592
2593         rbd_assert(img_request_child_test(img_request));
2594
2595         /* First get what we need from the image request */
2596
2597         pages = img_request->copyup_pages;
2598         rbd_assert(pages != NULL);
2599         img_request->copyup_pages = NULL;
2600         page_count = img_request->copyup_page_count;
2601         rbd_assert(page_count);
2602         img_request->copyup_page_count = 0;
2603
2604         orig_request = img_request->obj_request;
2605         rbd_assert(orig_request != NULL);
2606         rbd_assert(obj_request_type_valid(orig_request->type));
2607         img_result = img_request->result;
2608         parent_length = img_request->length;
2609         rbd_assert(parent_length == img_request->xferred);
2610         rbd_img_request_put(img_request);
2611
2612         rbd_assert(orig_request->img_request);
2613         rbd_dev = orig_request->img_request->rbd_dev;
2614         rbd_assert(rbd_dev);
2615
2616         /*
2617          * If the overlap has become 0 (most likely because the
2618          * image has been flattened) we need to free the pages
2619          * and re-submit the original write request.
2620          */
2621         if (!rbd_dev->parent_overlap) {
2622                 struct ceph_osd_client *osdc;
2623
2624                 ceph_release_page_vector(pages, page_count);
2625                 osdc = &rbd_dev->rbd_client->client->osdc;
2626                 img_result = rbd_obj_request_submit(osdc, orig_request);
2627                 if (!img_result)
2628                         return;
2629         }
2630
2631         if (img_result)
2632                 goto out_err;
2633
2634         /*
2635          * The original osd request is of no use to use any more.
2636          * We need a new one that can hold the three ops in a copyup
2637          * request.  Allocate the new copyup osd request for the
2638          * original request, and release the old one.
2639          */
2640         img_result = -ENOMEM;
2641         osd_req = rbd_osd_req_create_copyup(orig_request);
2642         if (!osd_req)
2643                 goto out_err;
2644         rbd_osd_req_destroy(orig_request->osd_req);
2645         orig_request->osd_req = osd_req;
2646         orig_request->copyup_pages = pages;
2647         orig_request->copyup_page_count = page_count;
2648
2649         /* Initialize the copyup op */
2650
2651         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2652         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2653                                                 false, false);
2654
2655         /* Add the other op(s) */
2656
2657         op_type = rbd_img_request_op_type(orig_request->img_request);
2658         rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2659
2660         /* All set, send it off. */
2661
2662         osdc = &rbd_dev->rbd_client->client->osdc;
2663         img_result = rbd_obj_request_submit(osdc, orig_request);
2664         if (!img_result)
2665                 return;
2666 out_err:
2667         /* Record the error code and complete the request */
2668
2669         orig_request->result = img_result;
2670         orig_request->xferred = 0;
2671         obj_request_done_set(orig_request);
2672         rbd_obj_request_complete(orig_request);
2673 }
2674
2675 /*
2676  * Read from the parent image the range of data that covers the
2677  * entire target of the given object request.  This is used for
2678  * satisfying a layered image write request when the target of an
2679  * object request from the image request does not exist.
2680  *
2681  * A page array big enough to hold the returned data is allocated
2682  * and supplied to rbd_img_request_fill() as the "data descriptor."
2683  * When the read completes, this page array will be transferred to
2684  * the original object request for the copyup operation.
2685  *
2686  * If an error occurs, record it as the result of the original
2687  * object request and mark it done so it gets completed.
2688  */
2689 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2690 {
2691         struct rbd_img_request *img_request = NULL;
2692         struct rbd_img_request *parent_request = NULL;
2693         struct rbd_device *rbd_dev;
2694         u64 img_offset;
2695         u64 length;
2696         struct page **pages = NULL;
2697         u32 page_count;
2698         int result;
2699
2700         rbd_assert(obj_request_img_data_test(obj_request));
2701         rbd_assert(obj_request_type_valid(obj_request->type));
2702
2703         img_request = obj_request->img_request;
2704         rbd_assert(img_request != NULL);
2705         rbd_dev = img_request->rbd_dev;
2706         rbd_assert(rbd_dev->parent != NULL);
2707
2708         /*
2709          * Determine the byte range covered by the object in the
2710          * child image to which the original request was to be sent.
2711          */
2712         img_offset = obj_request->img_offset - obj_request->offset;
2713         length = (u64)1 << rbd_dev->header.obj_order;
2714
2715         /*
2716          * There is no defined parent data beyond the parent
2717          * overlap, so limit what we read at that boundary if
2718          * necessary.
2719          */
2720         if (img_offset + length > rbd_dev->parent_overlap) {
2721                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2722                 length = rbd_dev->parent_overlap - img_offset;
2723         }
2724
2725         /*
2726          * Allocate a page array big enough to receive the data read
2727          * from the parent.
2728          */
2729         page_count = (u32)calc_pages_for(0, length);
2730         pages = ceph_alloc_page_vector(page_count, GFP_NOIO);
2731         if (IS_ERR(pages)) {
2732                 result = PTR_ERR(pages);
2733                 pages = NULL;
2734                 goto out_err;
2735         }
2736
2737         result = -ENOMEM;
2738         parent_request = rbd_parent_request_create(obj_request,
2739                                                 img_offset, length);
2740         if (!parent_request)
2741                 goto out_err;
2742
2743         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2744         if (result)
2745                 goto out_err;
2746         parent_request->copyup_pages = pages;
2747         parent_request->copyup_page_count = page_count;
2748
2749         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2750         result = rbd_img_request_submit(parent_request);
2751         if (!result)
2752                 return 0;
2753
2754         parent_request->copyup_pages = NULL;
2755         parent_request->copyup_page_count = 0;
2756         parent_request->obj_request = NULL;
2757         rbd_obj_request_put(obj_request);
2758 out_err:
2759         if (pages)
2760                 ceph_release_page_vector(pages, page_count);
2761         if (parent_request)
2762                 rbd_img_request_put(parent_request);
2763         obj_request->result = result;
2764         obj_request->xferred = 0;
2765         obj_request_done_set(obj_request);
2766
2767         return result;
2768 }
2769
2770 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2771 {
2772         struct rbd_obj_request *orig_request;
2773         struct rbd_device *rbd_dev;
2774         int result;
2775
2776         rbd_assert(!obj_request_img_data_test(obj_request));
2777
2778         /*
2779          * All we need from the object request is the original
2780          * request and the result of the STAT op.  Grab those, then
2781          * we're done with the request.
2782          */
2783         orig_request = obj_request->obj_request;
2784         obj_request->obj_request = NULL;
2785         rbd_obj_request_put(orig_request);
2786         rbd_assert(orig_request);
2787         rbd_assert(orig_request->img_request);
2788
2789         result = obj_request->result;
2790         obj_request->result = 0;
2791
2792         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2793                 obj_request, orig_request, result,
2794                 obj_request->xferred, obj_request->length);
2795         rbd_obj_request_put(obj_request);
2796
2797         /*
2798          * If the overlap has become 0 (most likely because the
2799          * image has been flattened) we need to free the pages
2800          * and re-submit the original write request.
2801          */
2802         rbd_dev = orig_request->img_request->rbd_dev;
2803         if (!rbd_dev->parent_overlap) {
2804                 struct ceph_osd_client *osdc;
2805
2806                 osdc = &rbd_dev->rbd_client->client->osdc;
2807                 result = rbd_obj_request_submit(osdc, orig_request);
2808                 if (!result)
2809                         return;
2810         }
2811
2812         /*
2813          * Our only purpose here is to determine whether the object
2814          * exists, and we don't want to treat the non-existence as
2815          * an error.  If something else comes back, transfer the
2816          * error to the original request and complete it now.
2817          */
2818         if (!result) {
2819                 obj_request_existence_set(orig_request, true);
2820         } else if (result == -ENOENT) {
2821                 obj_request_existence_set(orig_request, false);
2822         } else if (result) {
2823                 orig_request->result = result;
2824                 goto out;
2825         }
2826
2827         /*
2828          * Resubmit the original request now that we have recorded
2829          * whether the target object exists.
2830          */
2831         orig_request->result = rbd_img_obj_request_submit(orig_request);
2832 out:
2833         if (orig_request->result)
2834                 rbd_obj_request_complete(orig_request);
2835 }
2836
2837 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2838 {
2839         struct rbd_obj_request *stat_request;
2840         struct rbd_device *rbd_dev;
2841         struct ceph_osd_client *osdc;
2842         struct page **pages = NULL;
2843         u32 page_count;
2844         size_t size;
2845         int ret;
2846
2847         /*
2848          * The response data for a STAT call consists of:
2849          *     le64 length;
2850          *     struct {
2851          *         le32 tv_sec;
2852          *         le32 tv_nsec;
2853          *     } mtime;
2854          */
2855         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2856         page_count = (u32)calc_pages_for(0, size);
2857         pages = ceph_alloc_page_vector(page_count, GFP_NOIO);
2858         if (IS_ERR(pages))
2859                 return PTR_ERR(pages);
2860
2861         ret = -ENOMEM;
2862         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2863                                                         OBJ_REQUEST_PAGES);
2864         if (!stat_request)
2865                 goto out;
2866
2867         rbd_obj_request_get(obj_request);
2868         stat_request->obj_request = obj_request;
2869         stat_request->pages = pages;
2870         stat_request->page_count = page_count;
2871
2872         rbd_assert(obj_request->img_request);
2873         rbd_dev = obj_request->img_request->rbd_dev;
2874         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2875                                                    stat_request);
2876         if (!stat_request->osd_req)
2877                 goto out;
2878         stat_request->callback = rbd_img_obj_exists_callback;
2879
2880         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2881         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2882                                         false, false);
2883         rbd_osd_req_format_read(stat_request);
2884
2885         osdc = &rbd_dev->rbd_client->client->osdc;
2886         ret = rbd_obj_request_submit(osdc, stat_request);
2887 out:
2888         if (ret)
2889                 rbd_obj_request_put(obj_request);
2890
2891         return ret;
2892 }
2893
2894 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2895 {
2896         struct rbd_img_request *img_request;
2897         struct rbd_device *rbd_dev;
2898
2899         rbd_assert(obj_request_img_data_test(obj_request));
2900
2901         img_request = obj_request->img_request;
2902         rbd_assert(img_request);
2903         rbd_dev = img_request->rbd_dev;
2904
2905         /* Reads */
2906         if (!img_request_write_test(img_request) &&
2907             !img_request_discard_test(img_request))
2908                 return true;
2909
2910         /* Non-layered writes */
2911         if (!img_request_layered_test(img_request))
2912                 return true;
2913
2914         /*
2915          * Layered writes outside of the parent overlap range don't
2916          * share any data with the parent.
2917          */
2918         if (!obj_request_overlaps_parent(obj_request))
2919                 return true;
2920
2921         /*
2922          * Entire-object layered writes - we will overwrite whatever
2923          * parent data there is anyway.
2924          */
2925         if (!obj_request->offset &&
2926             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2927                 return true;
2928
2929         /*
2930          * If the object is known to already exist, its parent data has
2931          * already been copied.
2932          */
2933         if (obj_request_known_test(obj_request) &&
2934             obj_request_exists_test(obj_request))
2935                 return true;
2936
2937         return false;
2938 }
2939
2940 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2941 {
2942         if (img_obj_request_simple(obj_request)) {
2943                 struct rbd_device *rbd_dev;
2944                 struct ceph_osd_client *osdc;
2945
2946                 rbd_dev = obj_request->img_request->rbd_dev;
2947                 osdc = &rbd_dev->rbd_client->client->osdc;
2948
2949                 return rbd_obj_request_submit(osdc, obj_request);
2950         }
2951
2952         /*
2953          * It's a layered write.  The target object might exist but
2954          * we may not know that yet.  If we know it doesn't exist,
2955          * start by reading the data for the full target object from
2956          * the parent so we can use it for a copyup to the target.
2957          */
2958         if (obj_request_known_test(obj_request))
2959                 return rbd_img_obj_parent_read_full(obj_request);
2960
2961         /* We don't know whether the target exists.  Go find out. */
2962
2963         return rbd_img_obj_exists_submit(obj_request);
2964 }
2965
2966 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2967 {
2968         struct rbd_obj_request *obj_request;
2969         struct rbd_obj_request *next_obj_request;
2970
2971         dout("%s: img %p\n", __func__, img_request);
2972         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2973                 int ret;
2974
2975                 ret = rbd_img_obj_request_submit(obj_request);
2976                 if (ret)
2977                         return ret;
2978         }
2979
2980         return 0;
2981 }
2982
2983 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2984 {
2985         struct rbd_obj_request *obj_request;
2986         struct rbd_device *rbd_dev;
2987         u64 obj_end;
2988         u64 img_xferred;
2989         int img_result;
2990
2991         rbd_assert(img_request_child_test(img_request));
2992
2993         /* First get what we need from the image request and release it */
2994
2995         obj_request = img_request->obj_request;
2996         img_xferred = img_request->xferred;
2997         img_result = img_request->result;
2998         rbd_img_request_put(img_request);
2999
3000         /*
3001          * If the overlap has become 0 (most likely because the
3002          * image has been flattened) we need to re-submit the
3003          * original request.
3004          */
3005         rbd_assert(obj_request);
3006         rbd_assert(obj_request->img_request);
3007         rbd_dev = obj_request->img_request->rbd_dev;
3008         if (!rbd_dev->parent_overlap) {
3009                 struct ceph_osd_client *osdc;
3010
3011                 osdc = &rbd_dev->rbd_client->client->osdc;
3012                 img_result = rbd_obj_request_submit(osdc, obj_request);
3013                 if (!img_result)
3014                         return;
3015         }
3016
3017         obj_request->result = img_result;
3018         if (obj_request->result)
3019                 goto out;
3020
3021         /*
3022          * We need to zero anything beyond the parent overlap
3023          * boundary.  Since rbd_img_obj_request_read_callback()
3024          * will zero anything beyond the end of a short read, an
3025          * easy way to do this is to pretend the data from the
3026          * parent came up short--ending at the overlap boundary.
3027          */
3028         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3029         obj_end = obj_request->img_offset + obj_request->length;
3030         if (obj_end > rbd_dev->parent_overlap) {
3031                 u64 xferred = 0;
3032
3033                 if (obj_request->img_offset < rbd_dev->parent_overlap)
3034                         xferred = rbd_dev->parent_overlap -
3035                                         obj_request->img_offset;
3036
3037                 obj_request->xferred = min(img_xferred, xferred);
3038         } else {
3039                 obj_request->xferred = img_xferred;
3040         }
3041 out:
3042         rbd_img_obj_request_read_callback(obj_request);
3043         rbd_obj_request_complete(obj_request);
3044 }
3045
3046 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3047 {
3048         struct rbd_img_request *img_request;
3049         int result;
3050
3051         rbd_assert(obj_request_img_data_test(obj_request));
3052         rbd_assert(obj_request->img_request != NULL);
3053         rbd_assert(obj_request->result == (s32) -ENOENT);
3054         rbd_assert(obj_request_type_valid(obj_request->type));
3055
3056         /* rbd_read_finish(obj_request, obj_request->length); */
3057         img_request = rbd_parent_request_create(obj_request,
3058                                                 obj_request->img_offset,
3059                                                 obj_request->length);
3060         result = -ENOMEM;
3061         if (!img_request)
3062                 goto out_err;
3063
3064         if (obj_request->type == OBJ_REQUEST_BIO)
3065                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3066                                                 obj_request->bio_list);
3067         else
3068                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3069                                                 obj_request->pages);
3070         if (result)
3071                 goto out_err;
3072
3073         img_request->callback = rbd_img_parent_read_callback;
3074         result = rbd_img_request_submit(img_request);
3075         if (result)
3076                 goto out_err;
3077
3078         return;
3079 out_err:
3080         if (img_request)
3081                 rbd_img_request_put(img_request);
3082         obj_request->result = result;
3083         obj_request->xferred = 0;
3084         obj_request_done_set(obj_request);
3085 }
3086
3087 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3088 {
3089         struct rbd_obj_request *obj_request;
3090         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3091         int ret;
3092
3093         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3094                                                         OBJ_REQUEST_NODATA);
3095         if (!obj_request)
3096                 return -ENOMEM;
3097
3098         ret = -ENOMEM;
3099         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3100                                                   obj_request);
3101         if (!obj_request->osd_req)
3102                 goto out;
3103
3104         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3105                                         notify_id, 0, 0);
3106         rbd_osd_req_format_read(obj_request);
3107
3108         ret = rbd_obj_request_submit(osdc, obj_request);
3109         if (ret)
3110                 goto out;
3111         ret = rbd_obj_request_wait(obj_request);
3112 out:
3113         rbd_obj_request_put(obj_request);
3114
3115         return ret;
3116 }
3117
3118 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3119 {
3120         struct rbd_device *rbd_dev = (struct rbd_device *)data;
3121         int ret;
3122
3123         if (!rbd_dev)
3124                 return;
3125
3126         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3127                 rbd_dev->header_name, (unsigned long long)notify_id,
3128                 (unsigned int)opcode);
3129
3130         /*
3131          * Until adequate refresh error handling is in place, there is
3132          * not much we can do here, except warn.
3133          *
3134          * See http://tracker.ceph.com/issues/5040
3135          */
3136         ret = rbd_dev_refresh(rbd_dev);
3137         if (ret)
3138                 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3139
3140         ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3141         if (ret)
3142                 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3143 }
3144
3145 /*
3146  * Send a (un)watch request and wait for the ack.  Return a request
3147  * with a ref held on success or error.
3148  */
3149 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3150                                                 struct rbd_device *rbd_dev,
3151                                                 bool watch)
3152 {
3153         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3154         struct ceph_options *opts = osdc->client->options;
3155         struct rbd_obj_request *obj_request;
3156         int ret;
3157
3158         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3159                                              OBJ_REQUEST_NODATA);
3160         if (!obj_request)
3161                 return ERR_PTR(-ENOMEM);
3162
3163         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3164                                                   obj_request);
3165         if (!obj_request->osd_req) {
3166                 ret = -ENOMEM;
3167                 goto out;
3168         }
3169
3170         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3171                               rbd_dev->watch_event->cookie, 0, watch);
3172         rbd_osd_req_format_write(obj_request);
3173
3174         if (watch)
3175                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3176
3177         ret = rbd_obj_request_submit(osdc, obj_request);
3178         if (ret)
3179                 goto out;
3180
3181         ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3182         if (ret)
3183                 goto out;
3184
3185         ret = obj_request->result;
3186         if (ret) {
3187                 if (watch)
3188                         rbd_obj_request_end(obj_request);
3189                 goto out;
3190         }
3191
3192         return obj_request;
3193
3194 out:
3195         rbd_obj_request_put(obj_request);
3196         return ERR_PTR(ret);
3197 }
3198
3199 /*
3200  * Initiate a watch request, synchronously.
3201  */
3202 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3203 {
3204         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3205         struct rbd_obj_request *obj_request;
3206         int ret;
3207
3208         rbd_assert(!rbd_dev->watch_event);
3209         rbd_assert(!rbd_dev->watch_request);
3210
3211         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3212                                      &rbd_dev->watch_event);
3213         if (ret < 0)
3214                 return ret;
3215
3216         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3217         if (IS_ERR(obj_request)) {
3218                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3219                 rbd_dev->watch_event = NULL;
3220                 return PTR_ERR(obj_request);
3221         }
3222
3223         /*
3224          * A watch request is set to linger, so the underlying osd
3225          * request won't go away until we unregister it.  We retain
3226          * a pointer to the object request during that time (in
3227          * rbd_dev->watch_request), so we'll keep a reference to it.
3228          * We'll drop that reference after we've unregistered it in
3229          * rbd_dev_header_unwatch_sync().
3230          */
3231         rbd_dev->watch_request = obj_request;
3232
3233         return 0;
3234 }
3235
3236 /*
3237  * Tear down a watch request, synchronously.
3238  */
3239 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3240 {
3241         struct rbd_obj_request *obj_request;
3242
3243         rbd_assert(rbd_dev->watch_event);
3244         rbd_assert(rbd_dev->watch_request);
3245
3246         rbd_obj_request_end(rbd_dev->watch_request);
3247         rbd_obj_request_put(rbd_dev->watch_request);
3248         rbd_dev->watch_request = NULL;
3249
3250         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3251         if (!IS_ERR(obj_request))
3252                 rbd_obj_request_put(obj_request);
3253         else
3254                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3255                          PTR_ERR(obj_request));
3256
3257         ceph_osdc_cancel_event(rbd_dev->watch_event);
3258         rbd_dev->watch_event = NULL;
3259 }
3260
3261 /*
3262  * Synchronous osd object method call.  Returns the number of bytes
3263  * returned in the outbound buffer, or a negative error code.
3264  */
3265 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3266                              const char *object_name,
3267                              const char *class_name,
3268                              const char *method_name,
3269                              const void *outbound,
3270                              size_t outbound_size,
3271                              void *inbound,
3272                              size_t inbound_size)
3273 {
3274         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3275         struct rbd_obj_request *obj_request;
3276         struct page **pages;
3277         u32 page_count;
3278         int ret;
3279
3280         /*
3281          * Method calls are ultimately read operations.  The result
3282          * should placed into the inbound buffer provided.  They
3283          * also supply outbound data--parameters for the object
3284          * method.  Currently if this is present it will be a
3285          * snapshot id.
3286          */
3287         page_count = (u32)calc_pages_for(0, inbound_size);
3288         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3289         if (IS_ERR(pages))
3290                 return PTR_ERR(pages);
3291
3292         ret = -ENOMEM;
3293         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3294                                                         OBJ_REQUEST_PAGES);
3295         if (!obj_request)
3296                 goto out;
3297
3298         obj_request->pages = pages;
3299         obj_request->page_count = page_count;
3300
3301         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3302                                                   obj_request);
3303         if (!obj_request->osd_req)
3304                 goto out;
3305
3306         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3307                                         class_name, method_name);
3308         if (outbound_size) {
3309                 struct ceph_pagelist *pagelist;
3310
3311                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3312                 if (!pagelist)
3313                         goto out;
3314
3315                 ceph_pagelist_init(pagelist);
3316                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3317                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3318                                                 pagelist);
3319         }
3320         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3321                                         obj_request->pages, inbound_size,
3322                                         0, false, false);
3323         rbd_osd_req_format_read(obj_request);
3324
3325         ret = rbd_obj_request_submit(osdc, obj_request);
3326         if (ret)
3327                 goto out;
3328         ret = rbd_obj_request_wait(obj_request);
3329         if (ret)
3330                 goto out;
3331
3332         ret = obj_request->result;
3333         if (ret < 0)
3334                 goto out;
3335
3336         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3337         ret = (int)obj_request->xferred;
3338         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3339 out:
3340         if (obj_request)
3341                 rbd_obj_request_put(obj_request);
3342         else
3343                 ceph_release_page_vector(pages, page_count);
3344
3345         return ret;
3346 }
3347
3348 static void rbd_queue_workfn(struct work_struct *work)
3349 {
3350         struct request *rq = blk_mq_rq_from_pdu(work);
3351         struct rbd_device *rbd_dev = rq->q->queuedata;
3352         struct rbd_img_request *img_request;
3353         struct ceph_snap_context *snapc = NULL;
3354         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3355         u64 length = blk_rq_bytes(rq);
3356         enum obj_operation_type op_type;
3357         u64 mapping_size;
3358         int result;
3359
3360         if (rq->cmd_type != REQ_TYPE_FS) {
3361                 dout("%s: non-fs request type %d\n", __func__,
3362                         (int) rq->cmd_type);
3363                 result = -EIO;
3364                 goto err;
3365         }
3366
3367         if (rq->cmd_flags & REQ_DISCARD)
3368                 op_type = OBJ_OP_DISCARD;
3369         else if (rq->cmd_flags & REQ_WRITE)
3370                 op_type = OBJ_OP_WRITE;
3371         else
3372                 op_type = OBJ_OP_READ;
3373
3374         /* Ignore/skip any zero-length requests */
3375
3376         if (!length) {
3377                 dout("%s: zero-length request\n", __func__);
3378                 result = 0;
3379                 goto err_rq;
3380         }
3381
3382         /* Only reads are allowed to a read-only device */
3383
3384         if (op_type != OBJ_OP_READ) {
3385                 if (rbd_dev->mapping.read_only) {
3386                         result = -EROFS;
3387                         goto err_rq;
3388                 }
3389                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3390         }
3391
3392         /*
3393          * Quit early if the mapped snapshot no longer exists.  It's
3394          * still possible the snapshot will have disappeared by the
3395          * time our request arrives at the osd, but there's no sense in
3396          * sending it if we already know.
3397          */
3398         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3399                 dout("request for non-existent snapshot");
3400                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3401                 result = -ENXIO;
3402                 goto err_rq;
3403         }
3404
3405         if (offset && length > U64_MAX - offset + 1) {
3406                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3407                          length);
3408                 result = -EINVAL;
3409                 goto err_rq;    /* Shouldn't happen */
3410         }
3411
3412         blk_mq_start_request(rq);
3413
3414         down_read(&rbd_dev->header_rwsem);
3415         mapping_size = rbd_dev->mapping.size;
3416         if (op_type != OBJ_OP_READ) {
3417                 snapc = rbd_dev->header.snapc;
3418                 ceph_get_snap_context(snapc);
3419         }
3420         up_read(&rbd_dev->header_rwsem);
3421
3422         if (offset + length > mapping_size) {
3423                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3424                          length, mapping_size);
3425                 result = -EIO;
3426                 goto err_rq;
3427         }
3428
3429         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3430                                              snapc);
3431         if (!img_request) {
3432                 result = -ENOMEM;
3433                 goto err_rq;
3434         }
3435         img_request->rq = rq;
3436         snapc = NULL; /* img_request consumes a ref */
3437
3438         if (op_type == OBJ_OP_DISCARD)
3439                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3440                                               NULL);
3441         else
3442                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3443                                               rq->bio);
3444         if (result)
3445                 goto err_img_request;
3446
3447         result = rbd_img_request_submit(img_request);
3448         if (result)
3449                 goto err_img_request;
3450
3451         return;
3452
3453 err_img_request:
3454         rbd_img_request_put(img_request);
3455 err_rq:
3456         if (result)
3457                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3458                          obj_op_name(op_type), length, offset, result);
3459         ceph_put_snap_context(snapc);
3460 err:
3461         blk_mq_end_request(rq, result);
3462 }
3463
3464 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3465                 const struct blk_mq_queue_data *bd)
3466 {
3467         struct request *rq = bd->rq;
3468         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3469
3470         queue_work(rbd_wq, work);
3471         return BLK_MQ_RQ_QUEUE_OK;
3472 }
3473
3474 static void rbd_free_disk(struct rbd_device *rbd_dev)
3475 {
3476         struct gendisk *disk = rbd_dev->disk;
3477
3478         if (!disk)
3479                 return;
3480
3481         rbd_dev->disk = NULL;
3482         if (disk->flags & GENHD_FL_UP) {
3483                 del_gendisk(disk);
3484                 if (disk->queue)
3485                         blk_cleanup_queue(disk->queue);
3486                 blk_mq_free_tag_set(&rbd_dev->tag_set);
3487         }
3488         put_disk(disk);
3489 }
3490
3491 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3492                                 const char *object_name,
3493                                 u64 offset, u64 length, void *buf)
3494
3495 {
3496         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3497         struct rbd_obj_request *obj_request;
3498         struct page **pages = NULL;
3499         u32 page_count;
3500         size_t size;
3501         int ret;
3502
3503         page_count = (u32) calc_pages_for(offset, length);
3504         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3505         if (IS_ERR(pages))
3506                 return PTR_ERR(pages);
3507
3508         ret = -ENOMEM;
3509         obj_request = rbd_obj_request_create(object_name, offset, length,
3510                                                         OBJ_REQUEST_PAGES);
3511         if (!obj_request)
3512                 goto out;
3513
3514         obj_request->pages = pages;
3515         obj_request->page_count = page_count;
3516
3517         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3518                                                   obj_request);
3519         if (!obj_request->osd_req)
3520                 goto out;
3521
3522         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3523                                         offset, length, 0, 0);
3524         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3525                                         obj_request->pages,
3526                                         obj_request->length,
3527                                         obj_request->offset & ~PAGE_MASK,
3528                                         false, false);
3529         rbd_osd_req_format_read(obj_request);
3530
3531         ret = rbd_obj_request_submit(osdc, obj_request);
3532         if (ret)
3533                 goto out;
3534         ret = rbd_obj_request_wait(obj_request);
3535         if (ret)
3536                 goto out;
3537
3538         ret = obj_request->result;
3539         if (ret < 0)
3540                 goto out;
3541
3542         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3543         size = (size_t) obj_request->xferred;
3544         ceph_copy_from_page_vector(pages, buf, 0, size);
3545         rbd_assert(size <= (size_t)INT_MAX);
3546         ret = (int)size;
3547 out:
3548         if (obj_request)
3549                 rbd_obj_request_put(obj_request);
3550         else
3551                 ceph_release_page_vector(pages, page_count);
3552
3553         return ret;
3554 }
3555
3556 /*
3557  * Read the complete header for the given rbd device.  On successful
3558  * return, the rbd_dev->header field will contain up-to-date
3559  * information about the image.
3560  */
3561 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3562 {
3563         struct rbd_image_header_ondisk *ondisk = NULL;
3564         u32 snap_count = 0;
3565         u64 names_size = 0;
3566         u32 want_count;
3567         int ret;
3568
3569         /*
3570          * The complete header will include an array of its 64-bit
3571          * snapshot ids, followed by the names of those snapshots as
3572          * a contiguous block of NUL-terminated strings.  Note that
3573          * the number of snapshots could change by the time we read
3574          * it in, in which case we re-read it.
3575          */
3576         do {
3577                 size_t size;
3578
3579                 kfree(ondisk);
3580
3581                 size = sizeof (*ondisk);
3582                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3583                 size += names_size;
3584                 ondisk = kmalloc(size, GFP_KERNEL);
3585                 if (!ondisk)
3586                         return -ENOMEM;
3587
3588                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3589                                        0, size, ondisk);
3590                 if (ret < 0)
3591                         goto out;
3592                 if ((size_t)ret < size) {
3593                         ret = -ENXIO;
3594                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3595                                 size, ret);
3596                         goto out;
3597                 }
3598                 if (!rbd_dev_ondisk_valid(ondisk)) {
3599                         ret = -ENXIO;
3600                         rbd_warn(rbd_dev, "invalid header");
3601                         goto out;
3602                 }
3603
3604                 names_size = le64_to_cpu(ondisk->snap_names_len);
3605                 want_count = snap_count;
3606                 snap_count = le32_to_cpu(ondisk->snap_count);
3607         } while (snap_count != want_count);
3608
3609         ret = rbd_header_from_disk(rbd_dev, ondisk);
3610 out:
3611         kfree(ondisk);
3612
3613         return ret;
3614 }
3615
3616 /*
3617  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3618  * has disappeared from the (just updated) snapshot context.
3619  */
3620 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3621 {
3622         u64 snap_id;
3623
3624         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3625                 return;
3626
3627         snap_id = rbd_dev->spec->snap_id;
3628         if (snap_id == CEPH_NOSNAP)
3629                 return;
3630
3631         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3632                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3633 }
3634
3635 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3636 {
3637         sector_t size;
3638         bool removing;
3639
3640         /*
3641          * Don't hold the lock while doing disk operations,
3642          * or lock ordering will conflict with the bdev mutex via:
3643          * rbd_add() -> blkdev_get() -> rbd_open()
3644          */
3645         spin_lock_irq(&rbd_dev->lock);
3646         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3647         spin_unlock_irq(&rbd_dev->lock);
3648         /*
3649          * If the device is being removed, rbd_dev->disk has
3650          * been destroyed, so don't try to update its size
3651          */
3652         if (!removing) {
3653                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3654                 dout("setting size to %llu sectors", (unsigned long long)size);
3655                 set_capacity(rbd_dev->disk, size);
3656                 revalidate_disk(rbd_dev->disk);
3657         }
3658 }
3659
3660 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3661 {
3662         u64 mapping_size;
3663         int ret;
3664
3665         down_write(&rbd_dev->header_rwsem);
3666         mapping_size = rbd_dev->mapping.size;
3667
3668         ret = rbd_dev_header_info(rbd_dev);
3669         if (ret)
3670                 goto out;
3671
3672         /*
3673          * If there is a parent, see if it has disappeared due to the
3674          * mapped image getting flattened.
3675          */
3676         if (rbd_dev->parent) {
3677                 ret = rbd_dev_v2_parent_info(rbd_dev);
3678                 if (ret)
3679                         goto out;
3680         }
3681
3682         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3683                 rbd_dev->mapping.size = rbd_dev->header.image_size;
3684         } else {
3685                 /* validate mapped snapshot's EXISTS flag */
3686                 rbd_exists_validate(rbd_dev);
3687         }
3688
3689 out:
3690         up_write(&rbd_dev->header_rwsem);
3691         if (!ret && mapping_size != rbd_dev->mapping.size)
3692                 rbd_dev_update_size(rbd_dev);
3693
3694         return ret;
3695 }
3696
3697 static int rbd_init_request(void *data, struct request *rq,
3698                 unsigned int hctx_idx, unsigned int request_idx,
3699                 unsigned int numa_node)
3700 {
3701         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3702
3703         INIT_WORK(work, rbd_queue_workfn);
3704         return 0;
3705 }
3706
3707 static struct blk_mq_ops rbd_mq_ops = {
3708         .queue_rq       = rbd_queue_rq,
3709         .map_queue      = blk_mq_map_queue,
3710         .init_request   = rbd_init_request,
3711 };
3712
3713 static int rbd_init_disk(struct rbd_device *rbd_dev)
3714 {
3715         struct gendisk *disk;
3716         struct request_queue *q;
3717         u64 segment_size;
3718         int err;
3719
3720         /* create gendisk info */
3721         disk = alloc_disk(single_major ?
3722                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3723                           RBD_MINORS_PER_MAJOR);
3724         if (!disk)
3725                 return -ENOMEM;
3726
3727         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3728                  rbd_dev->dev_id);
3729         disk->major = rbd_dev->major;
3730         disk->first_minor = rbd_dev->minor;
3731         if (single_major)
3732                 disk->flags |= GENHD_FL_EXT_DEVT;
3733         disk->fops = &rbd_bd_ops;
3734         disk->private_data = rbd_dev;
3735
3736         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3737         rbd_dev->tag_set.ops = &rbd_mq_ops;
3738         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3739         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3740         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3741         rbd_dev->tag_set.nr_hw_queues = 1;
3742         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3743
3744         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3745         if (err)
3746                 goto out_disk;
3747
3748         q = blk_mq_init_queue(&rbd_dev->tag_set);
3749         if (IS_ERR(q)) {
3750                 err = PTR_ERR(q);
3751                 goto out_tag_set;
3752         }
3753
3754         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3755         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3756
3757         /* set io sizes to object size */
3758         segment_size = rbd_obj_bytes(&rbd_dev->header);
3759         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3760         q->limits.max_sectors = queue_max_hw_sectors(q);
3761         blk_queue_max_segments(q, USHRT_MAX);
3762         blk_queue_max_segment_size(q, segment_size);
3763         blk_queue_io_min(q, segment_size);
3764         blk_queue_io_opt(q, segment_size);
3765
3766         /* enable the discard support */
3767         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3768         q->limits.discard_granularity = segment_size;
3769         q->limits.discard_alignment = segment_size;
3770         blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3771         q->limits.discard_zeroes_data = 1;
3772
3773         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3774                 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
3775
3776         disk->queue = q;
3777
3778         q->queuedata = rbd_dev;
3779
3780         rbd_dev->disk = disk;
3781
3782         return 0;
3783 out_tag_set:
3784         blk_mq_free_tag_set(&rbd_dev->tag_set);
3785 out_disk:
3786         put_disk(disk);
3787         return err;
3788 }
3789
3790 /*
3791   sysfs
3792 */
3793
3794 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3795 {
3796         return container_of(dev, struct rbd_device, dev);
3797 }
3798
3799 static ssize_t rbd_size_show(struct device *dev,
3800                              struct device_attribute *attr, char *buf)
3801 {
3802         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3803
3804         return sprintf(buf, "%llu\n",
3805                 (unsigned long long)rbd_dev->mapping.size);
3806 }
3807
3808 /*
3809  * Note this shows the features for whatever's mapped, which is not
3810  * necessarily the base image.
3811  */
3812 static ssize_t rbd_features_show(struct device *dev,
3813                              struct device_attribute *attr, char *buf)
3814 {
3815         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3816
3817         return sprintf(buf, "0x%016llx\n",
3818                         (unsigned long long)rbd_dev->mapping.features);
3819 }
3820
3821 static ssize_t rbd_major_show(struct device *dev,
3822                               struct device_attribute *attr, char *buf)
3823 {
3824         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3825
3826         if (rbd_dev->major)
3827                 return sprintf(buf, "%d\n", rbd_dev->major);
3828
3829         return sprintf(buf, "(none)\n");
3830 }
3831
3832 static ssize_t rbd_minor_show(struct device *dev,
3833                               struct device_attribute *attr, char *buf)
3834 {
3835         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3836
3837         return sprintf(buf, "%d\n", rbd_dev->minor);
3838 }
3839
3840 static ssize_t rbd_client_id_show(struct device *dev,
3841                                   struct device_attribute *attr, char *buf)
3842 {
3843         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3844
3845         return sprintf(buf, "client%lld\n",
3846                         ceph_client_id(rbd_dev->rbd_client->client));
3847 }
3848
3849 static ssize_t rbd_pool_show(struct device *dev,
3850                              struct device_attribute *attr, char *buf)
3851 {
3852         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3853
3854         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3855 }
3856
3857 static ssize_t rbd_pool_id_show(struct device *dev,
3858                              struct device_attribute *attr, char *buf)
3859 {
3860         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3861
3862         return sprintf(buf, "%llu\n",
3863                         (unsigned long long) rbd_dev->spec->pool_id);
3864 }
3865
3866 static ssize_t rbd_name_show(struct device *dev,
3867                              struct device_attribute *attr, char *buf)
3868 {
3869         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3870
3871         if (rbd_dev->spec->image_name)
3872                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3873
3874         return sprintf(buf, "(unknown)\n");
3875 }
3876
3877 static ssize_t rbd_image_id_show(struct device *dev,
3878                              struct device_attribute *attr, char *buf)
3879 {
3880         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3881
3882         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3883 }
3884
3885 /*
3886  * Shows the name of the currently-mapped snapshot (or
3887  * RBD_SNAP_HEAD_NAME for the base image).
3888  */
3889 static ssize_t rbd_snap_show(struct device *dev,
3890                              struct device_attribute *attr,
3891                              char *buf)
3892 {
3893         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3894
3895         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3896 }
3897
3898 /*
3899  * For a v2 image, shows the chain of parent images, separated by empty
3900  * lines.  For v1 images or if there is no parent, shows "(no parent
3901  * image)".
3902  */
3903 static ssize_t rbd_parent_show(struct device *dev,
3904                                struct device_attribute *attr,
3905                                char *buf)
3906 {
3907         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3908         ssize_t count = 0;
3909
3910         if (!rbd_dev->parent)
3911                 return sprintf(buf, "(no parent image)\n");
3912
3913         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3914                 struct rbd_spec *spec = rbd_dev->parent_spec;
3915
3916                 count += sprintf(&buf[count], "%s"
3917                             "pool_id %llu\npool_name %s\n"
3918                             "image_id %s\nimage_name %s\n"
3919                             "snap_id %llu\nsnap_name %s\n"
3920                             "overlap %llu\n",
3921                             !count ? "" : "\n", /* first? */
3922                             spec->pool_id, spec->pool_name,
3923                             spec->image_id, spec->image_name ?: "(unknown)",
3924                             spec->snap_id, spec->snap_name,
3925                             rbd_dev->parent_overlap);
3926         }
3927
3928         return count;
3929 }
3930
3931 static ssize_t rbd_image_refresh(struct device *dev,
3932                                  struct device_attribute *attr,
3933                                  const char *buf,
3934                                  size_t size)
3935 {
3936         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3937         int ret;
3938
3939         if (!capable(CAP_SYS_ADMIN))
3940                 return -EPERM;
3941
3942         ret = rbd_dev_refresh(rbd_dev);
3943         if (ret)
3944                 return ret;
3945
3946         return size;
3947 }
3948
3949 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3950 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3951 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3952 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3953 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3954 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3955 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3956 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3957 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3958 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3959 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3960 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3961
3962 static struct attribute *rbd_attrs[] = {
3963         &dev_attr_size.attr,
3964         &dev_attr_features.attr,
3965         &dev_attr_major.attr,
3966         &dev_attr_minor.attr,
3967         &dev_attr_client_id.attr,
3968         &dev_attr_pool.attr,
3969         &dev_attr_pool_id.attr,
3970         &dev_attr_name.attr,
3971         &dev_attr_image_id.attr,
3972         &dev_attr_current_snap.attr,
3973         &dev_attr_parent.attr,
3974         &dev_attr_refresh.attr,
3975         NULL
3976 };
3977
3978 static struct attribute_group rbd_attr_group = {
3979         .attrs = rbd_attrs,
3980 };
3981
3982 static const struct attribute_group *rbd_attr_groups[] = {
3983         &rbd_attr_group,
3984         NULL
3985 };
3986
3987 static void rbd_dev_release(struct device *dev);
3988
3989 static struct device_type rbd_device_type = {
3990         .name           = "rbd",
3991         .groups         = rbd_attr_groups,
3992         .release        = rbd_dev_release,
3993 };
3994
3995 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3996 {
3997         kref_get(&spec->kref);
3998
3999         return spec;
4000 }
4001
4002 static void rbd_spec_free(struct kref *kref);
4003 static void rbd_spec_put(struct rbd_spec *spec)
4004 {
4005         if (spec)
4006                 kref_put(&spec->kref, rbd_spec_free);
4007 }
4008
4009 static struct rbd_spec *rbd_spec_alloc(void)
4010 {
4011         struct rbd_spec *spec;
4012
4013         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4014         if (!spec)
4015                 return NULL;
4016
4017         spec->pool_id = CEPH_NOPOOL;
4018         spec->snap_id = CEPH_NOSNAP;
4019         kref_init(&spec->kref);
4020
4021         return spec;
4022 }
4023
4024 static void rbd_spec_free(struct kref *kref)
4025 {
4026         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4027
4028         kfree(spec->pool_name);
4029         kfree(spec->image_id);
4030         kfree(spec->image_name);
4031         kfree(spec->snap_name);
4032         kfree(spec);
4033 }
4034
4035 static void rbd_dev_release(struct device *dev)
4036 {
4037         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4038         bool need_put = !!rbd_dev->opts;
4039
4040         rbd_put_client(rbd_dev->rbd_client);
4041         rbd_spec_put(rbd_dev->spec);
4042         kfree(rbd_dev->opts);
4043         kfree(rbd_dev);
4044
4045         /*
4046          * This is racy, but way better than putting module outside of
4047          * the release callback.  The race window is pretty small, so
4048          * doing something similar to dm (dm-builtin.c) is overkill.
4049          */
4050         if (need_put)
4051                 module_put(THIS_MODULE);
4052 }
4053
4054 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4055                                          struct rbd_spec *spec,
4056                                          struct rbd_options *opts)
4057 {
4058         struct rbd_device *rbd_dev;
4059
4060         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4061         if (!rbd_dev)
4062                 return NULL;
4063
4064         spin_lock_init(&rbd_dev->lock);
4065         rbd_dev->flags = 0;
4066         atomic_set(&rbd_dev->parent_ref, 0);
4067         INIT_LIST_HEAD(&rbd_dev->node);
4068         init_rwsem(&rbd_dev->header_rwsem);
4069
4070         rbd_dev->dev.bus = &rbd_bus_type;
4071         rbd_dev->dev.type = &rbd_device_type;
4072         rbd_dev->dev.parent = &rbd_root_dev;
4073         device_initialize(&rbd_dev->dev);
4074
4075         rbd_dev->rbd_client = rbdc;
4076         rbd_dev->spec = spec;
4077         rbd_dev->opts = opts;
4078
4079         /* Initialize the layout used for all rbd requests */
4080
4081         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4082         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4083         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4084         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4085
4086         /*
4087          * If this is a mapping rbd_dev (as opposed to a parent one),
4088          * pin our module.  We have a ref from do_rbd_add(), so use
4089          * __module_get().
4090          */
4091         if (rbd_dev->opts)
4092                 __module_get(THIS_MODULE);
4093
4094         return rbd_dev;
4095 }
4096
4097 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4098 {
4099         if (rbd_dev)
4100                 put_device(&rbd_dev->dev);
4101 }
4102
4103 /*
4104  * Get the size and object order for an image snapshot, or if
4105  * snap_id is CEPH_NOSNAP, gets this information for the base
4106  * image.
4107  */
4108 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4109                                 u8 *order, u64 *snap_size)
4110 {
4111         __le64 snapid = cpu_to_le64(snap_id);
4112         int ret;
4113         struct {
4114                 u8 order;
4115                 __le64 size;
4116         } __attribute__ ((packed)) size_buf = { 0 };
4117
4118         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4119                                 "rbd", "get_size",
4120                                 &snapid, sizeof (snapid),
4121                                 &size_buf, sizeof (size_buf));
4122         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4123         if (ret < 0)
4124                 return ret;
4125         if (ret < sizeof (size_buf))
4126                 return -ERANGE;
4127
4128         if (order) {
4129                 *order = size_buf.order;
4130                 dout("  order %u", (unsigned int)*order);
4131         }
4132         *snap_size = le64_to_cpu(size_buf.size);
4133
4134         dout("  snap_id 0x%016llx snap_size = %llu\n",
4135                 (unsigned long long)snap_id,
4136                 (unsigned long long)*snap_size);
4137
4138         return 0;
4139 }
4140
4141 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4142 {
4143         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4144                                         &rbd_dev->header.obj_order,
4145                                         &rbd_dev->header.image_size);
4146 }
4147
4148 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4149 {
4150         void *reply_buf;
4151         int ret;
4152         void *p;
4153
4154         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4155         if (!reply_buf)
4156                 return -ENOMEM;
4157
4158         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4159                                 "rbd", "get_object_prefix", NULL, 0,
4160                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4161         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4162         if (ret < 0)
4163                 goto out;
4164
4165         p = reply_buf;
4166         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4167                                                 p + ret, NULL, GFP_NOIO);
4168         ret = 0;
4169
4170         if (IS_ERR(rbd_dev->header.object_prefix)) {
4171                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4172                 rbd_dev->header.object_prefix = NULL;
4173         } else {
4174                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4175         }
4176 out:
4177         kfree(reply_buf);
4178
4179         return ret;
4180 }
4181
4182 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4183                 u64 *snap_features)
4184 {
4185         __le64 snapid = cpu_to_le64(snap_id);
4186         struct {
4187                 __le64 features;
4188                 __le64 incompat;
4189         } __attribute__ ((packed)) features_buf = { 0 };
4190         u64 incompat;
4191         int ret;
4192
4193         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4194                                 "rbd", "get_features",
4195                                 &snapid, sizeof (snapid),
4196                                 &features_buf, sizeof (features_buf));
4197         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4198         if (ret < 0)
4199                 return ret;
4200         if (ret < sizeof (features_buf))
4201                 return -ERANGE;
4202
4203         incompat = le64_to_cpu(features_buf.incompat);
4204         if (incompat & ~RBD_FEATURES_SUPPORTED)
4205                 return -ENXIO;
4206
4207         *snap_features = le64_to_cpu(features_buf.features);
4208
4209         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4210                 (unsigned long long)snap_id,
4211                 (unsigned long long)*snap_features,
4212                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4213
4214         return 0;
4215 }
4216
4217 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4218 {
4219         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4220                                                 &rbd_dev->header.features);
4221 }
4222
4223 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4224 {
4225         struct rbd_spec *parent_spec;
4226         size_t size;
4227         void *reply_buf = NULL;
4228         __le64 snapid;
4229         void *p;
4230         void *end;
4231         u64 pool_id;
4232         char *image_id;
4233         u64 snap_id;
4234         u64 overlap;
4235         int ret;
4236
4237         parent_spec = rbd_spec_alloc();
4238         if (!parent_spec)
4239                 return -ENOMEM;
4240
4241         size = sizeof (__le64) +                                /* pool_id */
4242                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4243                 sizeof (__le64) +                               /* snap_id */
4244                 sizeof (__le64);                                /* overlap */
4245         reply_buf = kmalloc(size, GFP_KERNEL);
4246         if (!reply_buf) {
4247                 ret = -ENOMEM;
4248                 goto out_err;
4249         }
4250
4251         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4252         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4253                                 "rbd", "get_parent",
4254                                 &snapid, sizeof (snapid),
4255                                 reply_buf, size);
4256         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4257         if (ret < 0)
4258                 goto out_err;
4259
4260         p = reply_buf;
4261         end = reply_buf + ret;
4262         ret = -ERANGE;
4263         ceph_decode_64_safe(&p, end, pool_id, out_err);
4264         if (pool_id == CEPH_NOPOOL) {
4265                 /*
4266                  * Either the parent never existed, or we have
4267                  * record of it but the image got flattened so it no
4268                  * longer has a parent.  When the parent of a
4269                  * layered image disappears we immediately set the
4270                  * overlap to 0.  The effect of this is that all new
4271                  * requests will be treated as if the image had no
4272                  * parent.
4273                  */
4274                 if (rbd_dev->parent_overlap) {
4275                         rbd_dev->parent_overlap = 0;
4276                         rbd_dev_parent_put(rbd_dev);
4277                         pr_info("%s: clone image has been flattened\n",
4278                                 rbd_dev->disk->disk_name);
4279                 }
4280
4281                 goto out;       /* No parent?  No problem. */
4282         }
4283
4284         /* The ceph file layout needs to fit pool id in 32 bits */
4285
4286         ret = -EIO;
4287         if (pool_id > (u64)U32_MAX) {
4288                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4289                         (unsigned long long)pool_id, U32_MAX);
4290                 goto out_err;
4291         }
4292
4293         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4294         if (IS_ERR(image_id)) {
4295                 ret = PTR_ERR(image_id);
4296                 goto out_err;
4297         }
4298         ceph_decode_64_safe(&p, end, snap_id, out_err);
4299         ceph_decode_64_safe(&p, end, overlap, out_err);
4300
4301         /*
4302          * The parent won't change (except when the clone is
4303          * flattened, already handled that).  So we only need to
4304          * record the parent spec we have not already done so.
4305          */
4306         if (!rbd_dev->parent_spec) {
4307                 parent_spec->pool_id = pool_id;
4308                 parent_spec->image_id = image_id;
4309                 parent_spec->snap_id = snap_id;
4310                 rbd_dev->parent_spec = parent_spec;
4311                 parent_spec = NULL;     /* rbd_dev now owns this */
4312         } else {
4313                 kfree(image_id);
4314         }
4315
4316         /*
4317          * We always update the parent overlap.  If it's zero we issue
4318          * a warning, as we will proceed as if there was no parent.
4319          */
4320         if (!overlap) {
4321                 if (parent_spec) {
4322                         /* refresh, careful to warn just once */
4323                         if (rbd_dev->parent_overlap)
4324                                 rbd_warn(rbd_dev,
4325                                     "clone now standalone (overlap became 0)");
4326                 } else {
4327                         /* initial probe */
4328                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4329                 }
4330         }
4331         rbd_dev->parent_overlap = overlap;
4332
4333 out:
4334         ret = 0;
4335 out_err:
4336         kfree(reply_buf);
4337         rbd_spec_put(parent_spec);
4338
4339         return ret;
4340 }
4341
4342 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4343 {
4344         struct {
4345                 __le64 stripe_unit;
4346                 __le64 stripe_count;
4347         } __attribute__ ((packed)) striping_info_buf = { 0 };
4348         size_t size = sizeof (striping_info_buf);
4349         void *p;
4350         u64 obj_size;
4351         u64 stripe_unit;
4352         u64 stripe_count;
4353         int ret;
4354
4355         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4356                                 "rbd", "get_stripe_unit_count", NULL, 0,
4357                                 (char *)&striping_info_buf, size);
4358         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4359         if (ret < 0)
4360                 return ret;
4361         if (ret < size)
4362                 return -ERANGE;
4363
4364         /*
4365          * We don't actually support the "fancy striping" feature
4366          * (STRIPINGV2) yet, but if the striping sizes are the
4367          * defaults the behavior is the same as before.  So find
4368          * out, and only fail if the image has non-default values.
4369          */
4370         ret = -EINVAL;
4371         obj_size = (u64)1 << rbd_dev->header.obj_order;
4372         p = &striping_info_buf;
4373         stripe_unit = ceph_decode_64(&p);
4374         if (stripe_unit != obj_size) {
4375                 rbd_warn(rbd_dev, "unsupported stripe unit "
4376                                 "(got %llu want %llu)",
4377                                 stripe_unit, obj_size);
4378                 return -EINVAL;
4379         }
4380         stripe_count = ceph_decode_64(&p);
4381         if (stripe_count != 1) {
4382                 rbd_warn(rbd_dev, "unsupported stripe count "
4383                                 "(got %llu want 1)", stripe_count);
4384                 return -EINVAL;
4385         }
4386         rbd_dev->header.stripe_unit = stripe_unit;
4387         rbd_dev->header.stripe_count = stripe_count;
4388
4389         return 0;
4390 }
4391
4392 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4393 {
4394         size_t image_id_size;
4395         char *image_id;
4396         void *p;
4397         void *end;
4398         size_t size;
4399         void *reply_buf = NULL;
4400         size_t len = 0;
4401         char *image_name = NULL;
4402         int ret;
4403
4404         rbd_assert(!rbd_dev->spec->image_name);
4405
4406         len = strlen(rbd_dev->spec->image_id);
4407         image_id_size = sizeof (__le32) + len;
4408         image_id = kmalloc(image_id_size, GFP_KERNEL);
4409         if (!image_id)
4410                 return NULL;
4411
4412         p = image_id;
4413         end = image_id + image_id_size;
4414         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4415
4416         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4417         reply_buf = kmalloc(size, GFP_KERNEL);
4418         if (!reply_buf)
4419                 goto out;
4420
4421         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4422                                 "rbd", "dir_get_name",
4423                                 image_id, image_id_size,
4424                                 reply_buf, size);
4425         if (ret < 0)
4426                 goto out;
4427         p = reply_buf;
4428         end = reply_buf + ret;
4429
4430         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4431         if (IS_ERR(image_name))
4432                 image_name = NULL;
4433         else
4434                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4435 out:
4436         kfree(reply_buf);
4437         kfree(image_id);
4438
4439         return image_name;
4440 }
4441
4442 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4443 {
4444         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4445         const char *snap_name;
4446         u32 which = 0;
4447
4448         /* Skip over names until we find the one we are looking for */
4449
4450         snap_name = rbd_dev->header.snap_names;
4451         while (which < snapc->num_snaps) {
4452                 if (!strcmp(name, snap_name))
4453                         return snapc->snaps[which];
4454                 snap_name += strlen(snap_name) + 1;
4455                 which++;
4456         }
4457         return CEPH_NOSNAP;
4458 }
4459
4460 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4461 {
4462         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4463         u32 which;
4464         bool found = false;
4465         u64 snap_id;
4466
4467         for (which = 0; !found && which < snapc->num_snaps; which++) {
4468                 const char *snap_name;
4469
4470                 snap_id = snapc->snaps[which];
4471                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4472                 if (IS_ERR(snap_name)) {
4473                         /* ignore no-longer existing snapshots */
4474                         if (PTR_ERR(snap_name) == -ENOENT)
4475                                 continue;
4476                         else
4477                                 break;
4478                 }
4479                 found = !strcmp(name, snap_name);
4480                 kfree(snap_name);
4481         }
4482         return found ? snap_id : CEPH_NOSNAP;
4483 }
4484
4485 /*
4486  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4487  * no snapshot by that name is found, or if an error occurs.
4488  */
4489 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4490 {
4491         if (rbd_dev->image_format == 1)
4492                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4493
4494         return rbd_v2_snap_id_by_name(rbd_dev, name);
4495 }
4496
4497 /*
4498  * An image being mapped will have everything but the snap id.
4499  */
4500 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4501 {
4502         struct rbd_spec *spec = rbd_dev->spec;
4503
4504         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4505         rbd_assert(spec->image_id && spec->image_name);
4506         rbd_assert(spec->snap_name);
4507
4508         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4509                 u64 snap_id;
4510
4511                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4512                 if (snap_id == CEPH_NOSNAP)
4513                         return -ENOENT;
4514
4515                 spec->snap_id = snap_id;
4516         } else {
4517                 spec->snap_id = CEPH_NOSNAP;
4518         }
4519
4520         return 0;
4521 }
4522
4523 /*
4524  * A parent image will have all ids but none of the names.
4525  *
4526  * All names in an rbd spec are dynamically allocated.  It's OK if we
4527  * can't figure out the name for an image id.
4528  */
4529 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4530 {
4531         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4532         struct rbd_spec *spec = rbd_dev->spec;
4533         const char *pool_name;
4534         const char *image_name;
4535         const char *snap_name;
4536         int ret;
4537
4538         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4539         rbd_assert(spec->image_id);
4540         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4541
4542         /* Get the pool name; we have to make our own copy of this */
4543
4544         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4545         if (!pool_name) {
4546                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4547                 return -EIO;
4548         }
4549         pool_name = kstrdup(pool_name, GFP_KERNEL);
4550         if (!pool_name)
4551                 return -ENOMEM;
4552
4553         /* Fetch the image name; tolerate failure here */
4554
4555         image_name = rbd_dev_image_name(rbd_dev);
4556         if (!image_name)
4557                 rbd_warn(rbd_dev, "unable to get image name");
4558
4559         /* Fetch the snapshot name */
4560
4561         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4562         if (IS_ERR(snap_name)) {
4563                 ret = PTR_ERR(snap_name);
4564                 goto out_err;
4565         }
4566
4567         spec->pool_name = pool_name;
4568         spec->image_name = image_name;
4569         spec->snap_name = snap_name;
4570
4571         return 0;
4572
4573 out_err:
4574         kfree(image_name);
4575         kfree(pool_name);
4576         return ret;
4577 }
4578
4579 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4580 {
4581         size_t size;
4582         int ret;
4583         void *reply_buf;
4584         void *p;
4585         void *end;
4586         u64 seq;
4587         u32 snap_count;
4588         struct ceph_snap_context *snapc;
4589         u32 i;
4590
4591         /*
4592          * We'll need room for the seq value (maximum snapshot id),
4593          * snapshot count, and array of that many snapshot ids.
4594          * For now we have a fixed upper limit on the number we're
4595          * prepared to receive.
4596          */
4597         size = sizeof (__le64) + sizeof (__le32) +
4598                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4599         reply_buf = kzalloc(size, GFP_KERNEL);
4600         if (!reply_buf)
4601                 return -ENOMEM;
4602
4603         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4604                                 "rbd", "get_snapcontext", NULL, 0,
4605                                 reply_buf, size);
4606         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4607         if (ret < 0)
4608                 goto out;
4609
4610         p = reply_buf;
4611         end = reply_buf + ret;
4612         ret = -ERANGE;
4613         ceph_decode_64_safe(&p, end, seq, out);
4614         ceph_decode_32_safe(&p, end, snap_count, out);
4615
4616         /*
4617          * Make sure the reported number of snapshot ids wouldn't go
4618          * beyond the end of our buffer.  But before checking that,
4619          * make sure the computed size of the snapshot context we
4620          * allocate is representable in a size_t.
4621          */
4622         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4623                                  / sizeof (u64)) {
4624                 ret = -EINVAL;
4625                 goto out;
4626         }
4627         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4628                 goto out;
4629         ret = 0;
4630
4631         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4632         if (!snapc) {
4633                 ret = -ENOMEM;
4634                 goto out;
4635         }
4636         snapc->seq = seq;
4637         for (i = 0; i < snap_count; i++)
4638                 snapc->snaps[i] = ceph_decode_64(&p);
4639
4640         ceph_put_snap_context(rbd_dev->header.snapc);
4641         rbd_dev->header.snapc = snapc;
4642
4643         dout("  snap context seq = %llu, snap_count = %u\n",
4644                 (unsigned long long)seq, (unsigned int)snap_count);
4645 out:
4646         kfree(reply_buf);
4647
4648         return ret;
4649 }
4650
4651 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4652                                         u64 snap_id)
4653 {
4654         size_t size;
4655         void *reply_buf;
4656         __le64 snapid;
4657         int ret;
4658         void *p;
4659         void *end;
4660         char *snap_name;
4661
4662         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4663         reply_buf = kmalloc(size, GFP_KERNEL);
4664         if (!reply_buf)
4665                 return ERR_PTR(-ENOMEM);
4666
4667         snapid = cpu_to_le64(snap_id);
4668         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4669                                 "rbd", "get_snapshot_name",
4670                                 &snapid, sizeof (snapid),
4671                                 reply_buf, size);
4672         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4673         if (ret < 0) {
4674                 snap_name = ERR_PTR(ret);
4675                 goto out;
4676         }
4677
4678         p = reply_buf;
4679         end = reply_buf + ret;
4680         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4681         if (IS_ERR(snap_name))
4682                 goto out;
4683
4684         dout("  snap_id 0x%016llx snap_name = %s\n",
4685                 (unsigned long long)snap_id, snap_name);
4686 out:
4687         kfree(reply_buf);
4688
4689         return snap_name;
4690 }
4691
4692 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4693 {
4694         bool first_time = rbd_dev->header.object_prefix == NULL;
4695         int ret;
4696
4697         ret = rbd_dev_v2_image_size(rbd_dev);
4698         if (ret)
4699                 return ret;
4700
4701         if (first_time) {
4702                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4703                 if (ret)
4704                         return ret;
4705         }
4706
4707         ret = rbd_dev_v2_snap_context(rbd_dev);
4708         if (ret && first_time) {
4709                 kfree(rbd_dev->header.object_prefix);
4710                 rbd_dev->header.object_prefix = NULL;
4711         }
4712
4713         return ret;
4714 }
4715
4716 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4717 {
4718         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4719
4720         if (rbd_dev->image_format == 1)
4721                 return rbd_dev_v1_header_info(rbd_dev);
4722
4723         return rbd_dev_v2_header_info(rbd_dev);
4724 }
4725
4726 /*
4727  * Get a unique rbd identifier for the given new rbd_dev, and add
4728  * the rbd_dev to the global list.
4729  */
4730 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4731 {
4732         int new_dev_id;
4733
4734         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4735                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4736                                     GFP_KERNEL);
4737         if (new_dev_id < 0)
4738                 return new_dev_id;
4739
4740         rbd_dev->dev_id = new_dev_id;
4741
4742         spin_lock(&rbd_dev_list_lock);
4743         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4744         spin_unlock(&rbd_dev_list_lock);
4745
4746         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4747
4748         return 0;
4749 }
4750
4751 /*
4752  * Remove an rbd_dev from the global list, and record that its
4753  * identifier is no longer in use.
4754  */
4755 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4756 {
4757         spin_lock(&rbd_dev_list_lock);
4758         list_del_init(&rbd_dev->node);
4759         spin_unlock(&rbd_dev_list_lock);
4760
4761         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4762
4763         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4764 }
4765
4766 /*
4767  * Skips over white space at *buf, and updates *buf to point to the
4768  * first found non-space character (if any). Returns the length of
4769  * the token (string of non-white space characters) found.  Note
4770  * that *buf must be terminated with '\0'.
4771  */
4772 static inline size_t next_token(const char **buf)
4773 {
4774         /*
4775         * These are the characters that produce nonzero for
4776         * isspace() in the "C" and "POSIX" locales.
4777         */
4778         const char *spaces = " \f\n\r\t\v";
4779
4780         *buf += strspn(*buf, spaces);   /* Find start of token */
4781
4782         return strcspn(*buf, spaces);   /* Return token length */
4783 }
4784
4785 /*
4786  * Finds the next token in *buf, dynamically allocates a buffer big
4787  * enough to hold a copy of it, and copies the token into the new
4788  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4789  * that a duplicate buffer is created even for a zero-length token.
4790  *
4791  * Returns a pointer to the newly-allocated duplicate, or a null
4792  * pointer if memory for the duplicate was not available.  If
4793  * the lenp argument is a non-null pointer, the length of the token
4794  * (not including the '\0') is returned in *lenp.
4795  *
4796  * If successful, the *buf pointer will be updated to point beyond
4797  * the end of the found token.
4798  *
4799  * Note: uses GFP_KERNEL for allocation.
4800  */
4801 static inline char *dup_token(const char **buf, size_t *lenp)
4802 {
4803         char *dup;
4804         size_t len;
4805
4806         len = next_token(buf);
4807         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4808         if (!dup)
4809                 return NULL;
4810         *(dup + len) = '\0';
4811         *buf += len;
4812
4813         if (lenp)
4814                 *lenp = len;
4815
4816         return dup;
4817 }
4818
4819 /*
4820  * Parse the options provided for an "rbd add" (i.e., rbd image
4821  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4822  * and the data written is passed here via a NUL-terminated buffer.
4823  * Returns 0 if successful or an error code otherwise.
4824  *
4825  * The information extracted from these options is recorded in
4826  * the other parameters which return dynamically-allocated
4827  * structures:
4828  *  ceph_opts
4829  *      The address of a pointer that will refer to a ceph options
4830  *      structure.  Caller must release the returned pointer using
4831  *      ceph_destroy_options() when it is no longer needed.
4832  *  rbd_opts
4833  *      Address of an rbd options pointer.  Fully initialized by
4834  *      this function; caller must release with kfree().
4835  *  spec
4836  *      Address of an rbd image specification pointer.  Fully
4837  *      initialized by this function based on parsed options.
4838  *      Caller must release with rbd_spec_put().
4839  *
4840  * The options passed take this form:
4841  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4842  * where:
4843  *  <mon_addrs>
4844  *      A comma-separated list of one or more monitor addresses.
4845  *      A monitor address is an ip address, optionally followed
4846  *      by a port number (separated by a colon).
4847  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4848  *  <options>
4849  *      A comma-separated list of ceph and/or rbd options.
4850  *  <pool_name>
4851  *      The name of the rados pool containing the rbd image.
4852  *  <image_name>
4853  *      The name of the image in that pool to map.
4854  *  <snap_id>
4855  *      An optional snapshot id.  If provided, the mapping will
4856  *      present data from the image at the time that snapshot was
4857  *      created.  The image head is used if no snapshot id is
4858  *      provided.  Snapshot mappings are always read-only.
4859  */
4860 static int rbd_add_parse_args(const char *buf,
4861                                 struct ceph_options **ceph_opts,
4862                                 struct rbd_options **opts,
4863                                 struct rbd_spec **rbd_spec)
4864 {
4865         size_t len;
4866         char *options;
4867         const char *mon_addrs;
4868         char *snap_name;
4869         size_t mon_addrs_size;
4870         struct rbd_spec *spec = NULL;
4871         struct rbd_options *rbd_opts = NULL;
4872         struct ceph_options *copts;
4873         int ret;
4874
4875         /* The first four tokens are required */
4876
4877         len = next_token(&buf);
4878         if (!len) {
4879                 rbd_warn(NULL, "no monitor address(es) provided");
4880                 return -EINVAL;
4881         }
4882         mon_addrs = buf;
4883         mon_addrs_size = len + 1;
4884         buf += len;
4885
4886         ret = -EINVAL;
4887         options = dup_token(&buf, NULL);
4888         if (!options)
4889                 return -ENOMEM;
4890         if (!*options) {
4891                 rbd_warn(NULL, "no options provided");
4892                 goto out_err;
4893         }
4894
4895         spec = rbd_spec_alloc();
4896         if (!spec)
4897                 goto out_mem;
4898
4899         spec->pool_name = dup_token(&buf, NULL);
4900         if (!spec->pool_name)
4901                 goto out_mem;
4902         if (!*spec->pool_name) {
4903                 rbd_warn(NULL, "no pool name provided");
4904                 goto out_err;
4905         }
4906
4907         spec->image_name = dup_token(&buf, NULL);
4908         if (!spec->image_name)
4909                 goto out_mem;
4910         if (!*spec->image_name) {
4911                 rbd_warn(NULL, "no image name provided");
4912                 goto out_err;
4913         }
4914
4915         /*
4916          * Snapshot name is optional; default is to use "-"
4917          * (indicating the head/no snapshot).
4918          */
4919         len = next_token(&buf);
4920         if (!len) {
4921                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4922                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4923         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4924                 ret = -ENAMETOOLONG;
4925                 goto out_err;
4926         }
4927         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4928         if (!snap_name)
4929                 goto out_mem;
4930         *(snap_name + len) = '\0';
4931         spec->snap_name = snap_name;
4932
4933         /* Initialize all rbd options to the defaults */
4934
4935         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4936         if (!rbd_opts)
4937                 goto out_mem;
4938
4939         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4940         rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4941
4942         copts = ceph_parse_options(options, mon_addrs,
4943                                         mon_addrs + mon_addrs_size - 1,
4944                                         parse_rbd_opts_token, rbd_opts);
4945         if (IS_ERR(copts)) {
4946                 ret = PTR_ERR(copts);
4947                 goto out_err;
4948         }
4949         kfree(options);
4950
4951         *ceph_opts = copts;
4952         *opts = rbd_opts;
4953         *rbd_spec = spec;
4954
4955         return 0;
4956 out_mem:
4957         ret = -ENOMEM;
4958 out_err:
4959         kfree(rbd_opts);
4960         rbd_spec_put(spec);
4961         kfree(options);
4962
4963         return ret;
4964 }
4965
4966 /*
4967  * Return pool id (>= 0) or a negative error code.
4968  */
4969 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4970 {
4971         struct ceph_options *opts = rbdc->client->options;
4972         u64 newest_epoch;
4973         int tries = 0;
4974         int ret;
4975
4976 again:
4977         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4978         if (ret == -ENOENT && tries++ < 1) {
4979                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4980                                                &newest_epoch);
4981                 if (ret < 0)
4982                         return ret;
4983
4984                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4985                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4986                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4987                                                      newest_epoch,
4988                                                      opts->mount_timeout);
4989                         goto again;
4990                 } else {
4991                         /* the osdmap we have is new enough */
4992                         return -ENOENT;
4993                 }
4994         }
4995
4996         return ret;
4997 }
4998
4999 /*
5000  * An rbd format 2 image has a unique identifier, distinct from the
5001  * name given to it by the user.  Internally, that identifier is
5002  * what's used to specify the names of objects related to the image.
5003  *
5004  * A special "rbd id" object is used to map an rbd image name to its
5005  * id.  If that object doesn't exist, then there is no v2 rbd image
5006  * with the supplied name.
5007  *
5008  * This function will record the given rbd_dev's image_id field if
5009  * it can be determined, and in that case will return 0.  If any
5010  * errors occur a negative errno will be returned and the rbd_dev's
5011  * image_id field will be unchanged (and should be NULL).
5012  */
5013 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5014 {
5015         int ret;
5016         size_t size;
5017         char *object_name;
5018         void *response;
5019         char *image_id;
5020
5021         /*
5022          * When probing a parent image, the image id is already
5023          * known (and the image name likely is not).  There's no
5024          * need to fetch the image id again in this case.  We
5025          * do still need to set the image format though.
5026          */
5027         if (rbd_dev->spec->image_id) {
5028                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5029
5030                 return 0;
5031         }
5032
5033         /*
5034          * First, see if the format 2 image id file exists, and if
5035          * so, get the image's persistent id from it.
5036          */
5037         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5038         object_name = kmalloc(size, GFP_NOIO);
5039         if (!object_name)
5040                 return -ENOMEM;
5041         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5042         dout("rbd id object name is %s\n", object_name);
5043
5044         /* Response will be an encoded string, which includes a length */
5045
5046         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5047         response = kzalloc(size, GFP_NOIO);
5048         if (!response) {
5049                 ret = -ENOMEM;
5050                 goto out;
5051         }
5052
5053         /* If it doesn't exist we'll assume it's a format 1 image */
5054
5055         ret = rbd_obj_method_sync(rbd_dev, object_name,
5056                                 "rbd", "get_id", NULL, 0,
5057                                 response, RBD_IMAGE_ID_LEN_MAX);
5058         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5059         if (ret == -ENOENT) {
5060                 image_id = kstrdup("", GFP_KERNEL);
5061                 ret = image_id ? 0 : -ENOMEM;
5062                 if (!ret)
5063                         rbd_dev->image_format = 1;
5064         } else if (ret >= 0) {
5065                 void *p = response;
5066
5067                 image_id = ceph_extract_encoded_string(&p, p + ret,
5068                                                 NULL, GFP_NOIO);
5069                 ret = PTR_ERR_OR_ZERO(image_id);
5070                 if (!ret)
5071                         rbd_dev->image_format = 2;
5072         }
5073
5074         if (!ret) {
5075                 rbd_dev->spec->image_id = image_id;
5076                 dout("image_id is %s\n", image_id);
5077         }
5078 out:
5079         kfree(response);
5080         kfree(object_name);
5081
5082         return ret;
5083 }
5084
5085 /*
5086  * Undo whatever state changes are made by v1 or v2 header info
5087  * call.
5088  */
5089 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5090 {
5091         struct rbd_image_header *header;
5092
5093         rbd_dev_parent_put(rbd_dev);
5094
5095         /* Free dynamic fields from the header, then zero it out */
5096
5097         header = &rbd_dev->header;
5098         ceph_put_snap_context(header->snapc);
5099         kfree(header->snap_sizes);
5100         kfree(header->snap_names);
5101         kfree(header->object_prefix);
5102         memset(header, 0, sizeof (*header));
5103 }
5104
5105 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5106 {
5107         int ret;
5108
5109         ret = rbd_dev_v2_object_prefix(rbd_dev);
5110         if (ret)
5111                 goto out_err;
5112
5113         /*
5114          * Get the and check features for the image.  Currently the
5115          * features are assumed to never change.
5116          */
5117         ret = rbd_dev_v2_features(rbd_dev);
5118         if (ret)
5119                 goto out_err;
5120
5121         /* If the image supports fancy striping, get its parameters */
5122
5123         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5124                 ret = rbd_dev_v2_striping_info(rbd_dev);
5125                 if (ret < 0)
5126                         goto out_err;
5127         }
5128         /* No support for crypto and compression type format 2 images */
5129
5130         return 0;
5131 out_err:
5132         rbd_dev->header.features = 0;
5133         kfree(rbd_dev->header.object_prefix);
5134         rbd_dev->header.object_prefix = NULL;
5135
5136         return ret;
5137 }
5138
5139 /*
5140  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5141  * rbd_dev_image_probe() recursion depth, which means it's also the
5142  * length of the already discovered part of the parent chain.
5143  */
5144 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5145 {
5146         struct rbd_device *parent = NULL;
5147         int ret;
5148
5149         if (!rbd_dev->parent_spec)
5150                 return 0;
5151
5152         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5153                 pr_info("parent chain is too long (%d)\n", depth);
5154                 ret = -EINVAL;
5155                 goto out_err;
5156         }
5157
5158         parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec,
5159                                 NULL);
5160         if (!parent) {
5161                 ret = -ENOMEM;
5162                 goto out_err;
5163         }
5164
5165         /*
5166          * Images related by parent/child relationships always share
5167          * rbd_client and spec/parent_spec, so bump their refcounts.
5168          */
5169         __rbd_get_client(rbd_dev->rbd_client);
5170         rbd_spec_get(rbd_dev->parent_spec);
5171
5172         ret = rbd_dev_image_probe(parent, depth);
5173         if (ret < 0)
5174                 goto out_err;
5175
5176         rbd_dev->parent = parent;
5177         atomic_set(&rbd_dev->parent_ref, 1);
5178         return 0;
5179
5180 out_err:
5181         rbd_dev_unparent(rbd_dev);
5182         if (parent)
5183                 rbd_dev_destroy(parent);
5184         return ret;
5185 }
5186
5187 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5188 {
5189         int ret;
5190
5191         /* Get an id and fill in device name. */
5192
5193         ret = rbd_dev_id_get(rbd_dev);
5194         if (ret)
5195                 return ret;
5196
5197         BUILD_BUG_ON(DEV_NAME_LEN
5198                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5199         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5200
5201         /* Record our major and minor device numbers. */
5202
5203         if (!single_major) {
5204                 ret = register_blkdev(0, rbd_dev->name);
5205                 if (ret < 0)
5206                         goto err_out_id;
5207
5208                 rbd_dev->major = ret;
5209                 rbd_dev->minor = 0;
5210         } else {
5211                 rbd_dev->major = rbd_major;
5212                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5213         }
5214
5215         /* Set up the blkdev mapping. */
5216
5217         ret = rbd_init_disk(rbd_dev);
5218         if (ret)
5219                 goto err_out_blkdev;
5220
5221         ret = rbd_dev_mapping_set(rbd_dev);
5222         if (ret)
5223                 goto err_out_disk;
5224
5225         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5226         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5227
5228         dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5229         ret = device_add(&rbd_dev->dev);
5230         if (ret)
5231                 goto err_out_mapping;
5232
5233         /* Everything's ready.  Announce the disk to the world. */
5234
5235         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5236         add_disk(rbd_dev->disk);
5237
5238         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5239                 (unsigned long long) rbd_dev->mapping.size);
5240
5241         return ret;
5242
5243 err_out_mapping:
5244         rbd_dev_mapping_clear(rbd_dev);
5245 err_out_disk:
5246         rbd_free_disk(rbd_dev);
5247 err_out_blkdev:
5248         if (!single_major)
5249                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5250 err_out_id:
5251         rbd_dev_id_put(rbd_dev);
5252         return ret;
5253 }
5254
5255 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5256 {
5257         struct rbd_spec *spec = rbd_dev->spec;
5258         size_t size;
5259
5260         /* Record the header object name for this rbd image. */
5261
5262         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5263
5264         if (rbd_dev->image_format == 1)
5265                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5266         else
5267                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5268
5269         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5270         if (!rbd_dev->header_name)
5271                 return -ENOMEM;
5272
5273         if (rbd_dev->image_format == 1)
5274                 sprintf(rbd_dev->header_name, "%s%s",
5275                         spec->image_name, RBD_SUFFIX);
5276         else
5277                 sprintf(rbd_dev->header_name, "%s%s",
5278                         RBD_HEADER_PREFIX, spec->image_id);
5279         return 0;
5280 }
5281
5282 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5283 {
5284         rbd_dev_unprobe(rbd_dev);
5285         kfree(rbd_dev->header_name);
5286         rbd_dev->header_name = NULL;
5287         rbd_dev->image_format = 0;
5288         kfree(rbd_dev->spec->image_id);
5289         rbd_dev->spec->image_id = NULL;
5290
5291         rbd_dev_destroy(rbd_dev);
5292 }
5293
5294 /*
5295  * Probe for the existence of the header object for the given rbd
5296  * device.  If this image is the one being mapped (i.e., not a
5297  * parent), initiate a watch on its header object before using that
5298  * object to get detailed information about the rbd image.
5299  */
5300 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5301 {
5302         int ret;
5303
5304         /*
5305          * Get the id from the image id object.  Unless there's an
5306          * error, rbd_dev->spec->image_id will be filled in with
5307          * a dynamically-allocated string, and rbd_dev->image_format
5308          * will be set to either 1 or 2.
5309          */
5310         ret = rbd_dev_image_id(rbd_dev);
5311         if (ret)
5312                 return ret;
5313
5314         ret = rbd_dev_header_name(rbd_dev);
5315         if (ret)
5316                 goto err_out_format;
5317
5318         if (!depth) {
5319                 ret = rbd_dev_header_watch_sync(rbd_dev);
5320                 if (ret) {
5321                         if (ret == -ENOENT)
5322                                 pr_info("image %s/%s does not exist\n",
5323                                         rbd_dev->spec->pool_name,
5324                                         rbd_dev->spec->image_name);
5325                         goto out_header_name;
5326                 }
5327         }
5328
5329         ret = rbd_dev_header_info(rbd_dev);
5330         if (ret)
5331                 goto err_out_watch;
5332
5333         /*
5334          * If this image is the one being mapped, we have pool name and
5335          * id, image name and id, and snap name - need to fill snap id.
5336          * Otherwise this is a parent image, identified by pool, image
5337          * and snap ids - need to fill in names for those ids.
5338          */
5339         if (!depth)
5340                 ret = rbd_spec_fill_snap_id(rbd_dev);
5341         else
5342                 ret = rbd_spec_fill_names(rbd_dev);
5343         if (ret) {
5344                 if (ret == -ENOENT)
5345                         pr_info("snap %s/%s@%s does not exist\n",
5346                                 rbd_dev->spec->pool_name,
5347                                 rbd_dev->spec->image_name,
5348                                 rbd_dev->spec->snap_name);
5349                 goto err_out_probe;
5350         }
5351
5352         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5353                 ret = rbd_dev_v2_parent_info(rbd_dev);
5354                 if (ret)
5355                         goto err_out_probe;
5356
5357                 /*
5358                  * Need to warn users if this image is the one being
5359                  * mapped and has a parent.
5360                  */
5361                 if (!depth && rbd_dev->parent_spec)
5362                         rbd_warn(rbd_dev,
5363                                  "WARNING: kernel layering is EXPERIMENTAL!");
5364         }
5365
5366         ret = rbd_dev_probe_parent(rbd_dev, depth);
5367         if (ret)
5368                 goto err_out_probe;
5369
5370         dout("discovered format %u image, header name is %s\n",
5371                 rbd_dev->image_format, rbd_dev->header_name);
5372         return 0;
5373
5374 err_out_probe:
5375         rbd_dev_unprobe(rbd_dev);
5376 err_out_watch:
5377         if (!depth)
5378                 rbd_dev_header_unwatch_sync(rbd_dev);
5379 out_header_name:
5380         kfree(rbd_dev->header_name);
5381         rbd_dev->header_name = NULL;
5382 err_out_format:
5383         rbd_dev->image_format = 0;
5384         kfree(rbd_dev->spec->image_id);
5385         rbd_dev->spec->image_id = NULL;
5386         return ret;
5387 }
5388
5389 static ssize_t do_rbd_add(struct bus_type *bus,
5390                           const char *buf,
5391                           size_t count)
5392 {
5393         struct rbd_device *rbd_dev = NULL;
5394         struct ceph_options *ceph_opts = NULL;
5395         struct rbd_options *rbd_opts = NULL;
5396         struct rbd_spec *spec = NULL;
5397         struct rbd_client *rbdc;
5398         bool read_only;
5399         int rc;
5400
5401         if (!capable(CAP_SYS_ADMIN))
5402                 return -EPERM;
5403
5404         if (!try_module_get(THIS_MODULE))
5405                 return -ENODEV;
5406
5407         /* parse add command */
5408         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5409         if (rc < 0)
5410                 goto out;
5411
5412         rbdc = rbd_get_client(ceph_opts);
5413         if (IS_ERR(rbdc)) {
5414                 rc = PTR_ERR(rbdc);
5415                 goto err_out_args;
5416         }
5417
5418         /* pick the pool */
5419         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5420         if (rc < 0) {
5421                 if (rc == -ENOENT)
5422                         pr_info("pool %s does not exist\n", spec->pool_name);
5423                 goto err_out_client;
5424         }
5425         spec->pool_id = (u64)rc;
5426
5427         /* The ceph file layout needs to fit pool id in 32 bits */
5428
5429         if (spec->pool_id > (u64)U32_MAX) {
5430                 rbd_warn(NULL, "pool id too large (%llu > %u)",
5431                                 (unsigned long long)spec->pool_id, U32_MAX);
5432                 rc = -EIO;
5433                 goto err_out_client;
5434         }
5435
5436         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5437         if (!rbd_dev) {
5438                 rc = -ENOMEM;
5439                 goto err_out_client;
5440         }
5441         rbdc = NULL;            /* rbd_dev now owns this */
5442         spec = NULL;            /* rbd_dev now owns this */
5443         rbd_opts = NULL;        /* rbd_dev now owns this */
5444
5445         rc = rbd_dev_image_probe(rbd_dev, 0);
5446         if (rc < 0)
5447                 goto err_out_rbd_dev;
5448
5449         /* If we are mapping a snapshot it must be marked read-only */
5450
5451         read_only = rbd_dev->opts->read_only;
5452         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5453                 read_only = true;
5454         rbd_dev->mapping.read_only = read_only;
5455
5456         rc = rbd_dev_device_setup(rbd_dev);
5457         if (rc) {
5458                 /*
5459                  * rbd_dev_header_unwatch_sync() can't be moved into
5460                  * rbd_dev_image_release() without refactoring, see
5461                  * commit 1f3ef78861ac.
5462                  */
5463                 rbd_dev_header_unwatch_sync(rbd_dev);
5464                 rbd_dev_image_release(rbd_dev);
5465                 goto out;
5466         }
5467
5468         rc = count;
5469 out:
5470         module_put(THIS_MODULE);
5471         return rc;
5472
5473 err_out_rbd_dev:
5474         rbd_dev_destroy(rbd_dev);
5475 err_out_client:
5476         rbd_put_client(rbdc);
5477 err_out_args:
5478         rbd_spec_put(spec);
5479         kfree(rbd_opts);
5480         goto out;
5481 }
5482
5483 static ssize_t rbd_add(struct bus_type *bus,
5484                        const char *buf,
5485                        size_t count)
5486 {
5487         if (single_major)
5488                 return -EINVAL;
5489
5490         return do_rbd_add(bus, buf, count);
5491 }
5492
5493 static ssize_t rbd_add_single_major(struct bus_type *bus,
5494                                     const char *buf,
5495                                     size_t count)
5496 {
5497         return do_rbd_add(bus, buf, count);
5498 }
5499
5500 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5501 {
5502         rbd_free_disk(rbd_dev);
5503         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5504         device_del(&rbd_dev->dev);
5505         rbd_dev_mapping_clear(rbd_dev);
5506         if (!single_major)
5507                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5508         rbd_dev_id_put(rbd_dev);
5509 }
5510
5511 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5512 {
5513         while (rbd_dev->parent) {
5514                 struct rbd_device *first = rbd_dev;
5515                 struct rbd_device *second = first->parent;
5516                 struct rbd_device *third;
5517
5518                 /*
5519                  * Follow to the parent with no grandparent and
5520                  * remove it.
5521                  */
5522                 while (second && (third = second->parent)) {
5523                         first = second;
5524                         second = third;
5525                 }
5526                 rbd_assert(second);
5527                 rbd_dev_image_release(second);
5528                 first->parent = NULL;
5529                 first->parent_overlap = 0;
5530
5531                 rbd_assert(first->parent_spec);
5532                 rbd_spec_put(first->parent_spec);
5533                 first->parent_spec = NULL;
5534         }
5535 }
5536
5537 static ssize_t do_rbd_remove(struct bus_type *bus,
5538                              const char *buf,
5539                              size_t count)
5540 {
5541         struct rbd_device *rbd_dev = NULL;
5542         struct list_head *tmp;
5543         int dev_id;
5544         unsigned long ul;
5545         bool already = false;
5546         int ret;
5547
5548         if (!capable(CAP_SYS_ADMIN))
5549                 return -EPERM;
5550
5551         ret = kstrtoul(buf, 10, &ul);
5552         if (ret)
5553                 return ret;
5554
5555         /* convert to int; abort if we lost anything in the conversion */
5556         dev_id = (int)ul;
5557         if (dev_id != ul)
5558                 return -EINVAL;
5559
5560         ret = -ENOENT;
5561         spin_lock(&rbd_dev_list_lock);
5562         list_for_each(tmp, &rbd_dev_list) {
5563                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5564                 if (rbd_dev->dev_id == dev_id) {
5565                         ret = 0;
5566                         break;
5567                 }
5568         }
5569         if (!ret) {
5570                 spin_lock_irq(&rbd_dev->lock);
5571                 if (rbd_dev->open_count)
5572                         ret = -EBUSY;
5573                 else
5574                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5575                                                         &rbd_dev->flags);
5576                 spin_unlock_irq(&rbd_dev->lock);
5577         }
5578         spin_unlock(&rbd_dev_list_lock);
5579         if (ret < 0 || already)
5580                 return ret;
5581
5582         rbd_dev_header_unwatch_sync(rbd_dev);
5583         /*
5584          * flush remaining watch callbacks - these must be complete
5585          * before the osd_client is shutdown
5586          */
5587         dout("%s: flushing notifies", __func__);
5588         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5589
5590         /*
5591          * Don't free anything from rbd_dev->disk until after all
5592          * notifies are completely processed. Otherwise
5593          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5594          * in a potential use after free of rbd_dev->disk or rbd_dev.
5595          */
5596         rbd_dev_device_release(rbd_dev);
5597         rbd_dev_image_release(rbd_dev);
5598
5599         return count;
5600 }
5601
5602 static ssize_t rbd_remove(struct bus_type *bus,
5603                           const char *buf,
5604                           size_t count)
5605 {
5606         if (single_major)
5607                 return -EINVAL;
5608
5609         return do_rbd_remove(bus, buf, count);
5610 }
5611
5612 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5613                                        const char *buf,
5614                                        size_t count)
5615 {
5616         return do_rbd_remove(bus, buf, count);
5617 }
5618
5619 /*
5620  * create control files in sysfs
5621  * /sys/bus/rbd/...
5622  */
5623 static int rbd_sysfs_init(void)
5624 {
5625         int ret;
5626
5627         ret = device_register(&rbd_root_dev);
5628         if (ret < 0)
5629                 return ret;
5630
5631         ret = bus_register(&rbd_bus_type);
5632         if (ret < 0)
5633                 device_unregister(&rbd_root_dev);
5634
5635         return ret;
5636 }
5637
5638 static void rbd_sysfs_cleanup(void)
5639 {
5640         bus_unregister(&rbd_bus_type);
5641         device_unregister(&rbd_root_dev);
5642 }
5643
5644 static int rbd_slab_init(void)
5645 {
5646         rbd_assert(!rbd_img_request_cache);
5647         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5648                                         sizeof (struct rbd_img_request),
5649                                         __alignof__(struct rbd_img_request),
5650                                         0, NULL);
5651         if (!rbd_img_request_cache)
5652                 return -ENOMEM;
5653
5654         rbd_assert(!rbd_obj_request_cache);
5655         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5656                                         sizeof (struct rbd_obj_request),
5657                                         __alignof__(struct rbd_obj_request),
5658                                         0, NULL);
5659         if (!rbd_obj_request_cache)
5660                 goto out_err;
5661
5662         rbd_assert(!rbd_segment_name_cache);
5663         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5664                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5665         if (rbd_segment_name_cache)
5666                 return 0;
5667 out_err:
5668         kmem_cache_destroy(rbd_obj_request_cache);
5669         rbd_obj_request_cache = NULL;
5670
5671         kmem_cache_destroy(rbd_img_request_cache);
5672         rbd_img_request_cache = NULL;
5673
5674         return -ENOMEM;
5675 }
5676
5677 static void rbd_slab_exit(void)
5678 {
5679         rbd_assert(rbd_segment_name_cache);
5680         kmem_cache_destroy(rbd_segment_name_cache);
5681         rbd_segment_name_cache = NULL;
5682
5683         rbd_assert(rbd_obj_request_cache);
5684         kmem_cache_destroy(rbd_obj_request_cache);
5685         rbd_obj_request_cache = NULL;
5686
5687         rbd_assert(rbd_img_request_cache);
5688         kmem_cache_destroy(rbd_img_request_cache);
5689         rbd_img_request_cache = NULL;
5690 }
5691
5692 static int __init rbd_init(void)
5693 {
5694         int rc;
5695
5696         if (!libceph_compatible(NULL)) {
5697                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5698                 return -EINVAL;
5699         }
5700
5701         rc = rbd_slab_init();
5702         if (rc)
5703                 return rc;
5704
5705         /*
5706          * The number of active work items is limited by the number of
5707          * rbd devices * queue depth, so leave @max_active at default.
5708          */
5709         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5710         if (!rbd_wq) {
5711                 rc = -ENOMEM;
5712                 goto err_out_slab;
5713         }
5714
5715         if (single_major) {
5716                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5717                 if (rbd_major < 0) {
5718                         rc = rbd_major;
5719                         goto err_out_wq;
5720                 }
5721         }
5722
5723         rc = rbd_sysfs_init();
5724         if (rc)
5725                 goto err_out_blkdev;
5726
5727         if (single_major)
5728                 pr_info("loaded (major %d)\n", rbd_major);
5729         else
5730                 pr_info("loaded\n");
5731
5732         return 0;
5733
5734 err_out_blkdev:
5735         if (single_major)
5736                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5737 err_out_wq:
5738         destroy_workqueue(rbd_wq);
5739 err_out_slab:
5740         rbd_slab_exit();
5741         return rc;
5742 }
5743
5744 static void __exit rbd_exit(void)
5745 {
5746         ida_destroy(&rbd_dev_id_ida);
5747         rbd_sysfs_cleanup();
5748         if (single_major)
5749                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5750         destroy_workqueue(rbd_wq);
5751         rbd_slab_exit();
5752 }
5753
5754 module_init(rbd_init);
5755 module_exit(rbd_exit);
5756
5757 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5758 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5759 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5760 /* following authorship retained from original osdblk.c */
5761 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5762
5763 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5764 MODULE_LICENSE("GPL");