GNU Linux-libre 4.9.317-gnu1
[releases.git] / drivers / block / drbd / drbd_main.c
1 /*
2    drbd.c
3
4    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11    from Logicworks, Inc. for making SDP replication support possible.
12
13    drbd is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 2, or (at your option)
16    any later version.
17
18    drbd is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22
23    You should have received a copy of the GNU General Public License
24    along with drbd; see the file COPYING.  If not, write to
25    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27  */
28
29 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/jiffies.h>
33 #include <linux/drbd.h>
34 #include <linux/uaccess.h>
35 #include <asm/types.h>
36 #include <net/sock.h>
37 #include <linux/ctype.h>
38 #include <linux/mutex.h>
39 #include <linux/fs.h>
40 #include <linux/file.h>
41 #include <linux/proc_fs.h>
42 #include <linux/init.h>
43 #include <linux/mm.h>
44 #include <linux/memcontrol.h>
45 #include <linux/mm_inline.h>
46 #include <linux/slab.h>
47 #include <linux/random.h>
48 #include <linux/reboot.h>
49 #include <linux/notifier.h>
50 #include <linux/kthread.h>
51 #include <linux/workqueue.h>
52 #define __KERNEL_SYSCALLS__
53 #include <linux/unistd.h>
54 #include <linux/vmalloc.h>
55
56 #include <linux/drbd_limits.h>
57 #include "drbd_int.h"
58 #include "drbd_protocol.h"
59 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
60 #include "drbd_vli.h"
61 #include "drbd_debugfs.h"
62
63 static DEFINE_MUTEX(drbd_main_mutex);
64 static int drbd_open(struct block_device *bdev, fmode_t mode);
65 static void drbd_release(struct gendisk *gd, fmode_t mode);
66 static void md_sync_timer_fn(unsigned long data);
67 static int w_bitmap_io(struct drbd_work *w, int unused);
68
69 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
70               "Lars Ellenberg <lars@linbit.com>");
71 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
72 MODULE_VERSION(REL_VERSION);
73 MODULE_LICENSE("GPL");
74 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
75                  __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
76 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
77
78 #include <linux/moduleparam.h>
79 /* allow_open_on_secondary */
80 MODULE_PARM_DESC(allow_oos, "DONT USE!");
81 /* thanks to these macros, if compiled into the kernel (not-module),
82  * this becomes the boot parameter drbd.minor_count */
83 module_param(minor_count, uint, 0444);
84 module_param(disable_sendpage, bool, 0644);
85 module_param(allow_oos, bool, 0);
86 module_param(proc_details, int, 0644);
87
88 #ifdef CONFIG_DRBD_FAULT_INJECTION
89 int enable_faults;
90 int fault_rate;
91 static int fault_count;
92 int fault_devs;
93 /* bitmap of enabled faults */
94 module_param(enable_faults, int, 0664);
95 /* fault rate % value - applies to all enabled faults */
96 module_param(fault_rate, int, 0664);
97 /* count of faults inserted */
98 module_param(fault_count, int, 0664);
99 /* bitmap of devices to insert faults on */
100 module_param(fault_devs, int, 0644);
101 #endif
102
103 /* module parameter, defined */
104 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
105 bool disable_sendpage;
106 bool allow_oos;
107 int proc_details;       /* Detail level in proc drbd*/
108
109 /* Module parameter for setting the user mode helper program
110  * to run. Default is /sbin/drbdadm */
111 char usermode_helper[80] = "/sbin/drbdadm";
112
113 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
114
115 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
116  * as member "struct gendisk *vdisk;"
117  */
118 struct idr drbd_devices;
119 struct list_head drbd_resources;
120 struct mutex resources_mutex;
121
122 struct kmem_cache *drbd_request_cache;
123 struct kmem_cache *drbd_ee_cache;       /* peer requests */
124 struct kmem_cache *drbd_bm_ext_cache;   /* bitmap extents */
125 struct kmem_cache *drbd_al_ext_cache;   /* activity log extents */
126 mempool_t *drbd_request_mempool;
127 mempool_t *drbd_ee_mempool;
128 mempool_t *drbd_md_io_page_pool;
129 struct bio_set *drbd_md_io_bio_set;
130
131 /* I do not use a standard mempool, because:
132    1) I want to hand out the pre-allocated objects first.
133    2) I want to be able to interrupt sleeping allocation with a signal.
134    Note: This is a single linked list, the next pointer is the private
135          member of struct page.
136  */
137 struct page *drbd_pp_pool;
138 spinlock_t   drbd_pp_lock;
139 int          drbd_pp_vacant;
140 wait_queue_head_t drbd_pp_wait;
141
142 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
143
144 static const struct block_device_operations drbd_ops = {
145         .owner =   THIS_MODULE,
146         .open =    drbd_open,
147         .release = drbd_release,
148 };
149
150 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
151 {
152         struct bio *bio;
153
154         if (!drbd_md_io_bio_set)
155                 return bio_alloc(gfp_mask, 1);
156
157         bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
158         if (!bio)
159                 return NULL;
160         return bio;
161 }
162
163 #ifdef __CHECKER__
164 /* When checking with sparse, and this is an inline function, sparse will
165    give tons of false positives. When this is a real functions sparse works.
166  */
167 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
168 {
169         int io_allowed;
170
171         atomic_inc(&device->local_cnt);
172         io_allowed = (device->state.disk >= mins);
173         if (!io_allowed) {
174                 if (atomic_dec_and_test(&device->local_cnt))
175                         wake_up(&device->misc_wait);
176         }
177         return io_allowed;
178 }
179
180 #endif
181
182 /**
183  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
184  * @connection: DRBD connection.
185  * @barrier_nr: Expected identifier of the DRBD write barrier packet.
186  * @set_size:   Expected number of requests before that barrier.
187  *
188  * In case the passed barrier_nr or set_size does not match the oldest
189  * epoch of not yet barrier-acked requests, this function will cause a
190  * termination of the connection.
191  */
192 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
193                 unsigned int set_size)
194 {
195         struct drbd_request *r;
196         struct drbd_request *req = NULL, *tmp = NULL;
197         int expect_epoch = 0;
198         int expect_size = 0;
199
200         spin_lock_irq(&connection->resource->req_lock);
201
202         /* find oldest not yet barrier-acked write request,
203          * count writes in its epoch. */
204         list_for_each_entry(r, &connection->transfer_log, tl_requests) {
205                 const unsigned s = r->rq_state;
206                 if (!req) {
207                         if (!(s & RQ_WRITE))
208                                 continue;
209                         if (!(s & RQ_NET_MASK))
210                                 continue;
211                         if (s & RQ_NET_DONE)
212                                 continue;
213                         req = r;
214                         expect_epoch = req->epoch;
215                         expect_size ++;
216                 } else {
217                         if (r->epoch != expect_epoch)
218                                 break;
219                         if (!(s & RQ_WRITE))
220                                 continue;
221                         /* if (s & RQ_DONE): not expected */
222                         /* if (!(s & RQ_NET_MASK)): not expected */
223                         expect_size++;
224                 }
225         }
226
227         /* first some paranoia code */
228         if (req == NULL) {
229                 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
230                          barrier_nr);
231                 goto bail;
232         }
233         if (expect_epoch != barrier_nr) {
234                 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
235                          barrier_nr, expect_epoch);
236                 goto bail;
237         }
238
239         if (expect_size != set_size) {
240                 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
241                          barrier_nr, set_size, expect_size);
242                 goto bail;
243         }
244
245         /* Clean up list of requests processed during current epoch. */
246         /* this extra list walk restart is paranoia,
247          * to catch requests being barrier-acked "unexpectedly".
248          * It usually should find the same req again, or some READ preceding it. */
249         list_for_each_entry(req, &connection->transfer_log, tl_requests)
250                 if (req->epoch == expect_epoch) {
251                         tmp = req;
252                         break;
253                 }
254         req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests);
255         list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
256                 if (req->epoch != expect_epoch)
257                         break;
258                 _req_mod(req, BARRIER_ACKED);
259         }
260         spin_unlock_irq(&connection->resource->req_lock);
261
262         return;
263
264 bail:
265         spin_unlock_irq(&connection->resource->req_lock);
266         conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
267 }
268
269
270 /**
271  * _tl_restart() - Walks the transfer log, and applies an action to all requests
272  * @connection: DRBD connection to operate on.
273  * @what:       The action/event to perform with all request objects
274  *
275  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
276  * RESTART_FROZEN_DISK_IO.
277  */
278 /* must hold resource->req_lock */
279 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
280 {
281         struct drbd_request *req, *r;
282
283         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
284                 _req_mod(req, what);
285 }
286
287 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
288 {
289         spin_lock_irq(&connection->resource->req_lock);
290         _tl_restart(connection, what);
291         spin_unlock_irq(&connection->resource->req_lock);
292 }
293
294 /**
295  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
296  * @device:     DRBD device.
297  *
298  * This is called after the connection to the peer was lost. The storage covered
299  * by the requests on the transfer gets marked as our of sync. Called from the
300  * receiver thread and the worker thread.
301  */
302 void tl_clear(struct drbd_connection *connection)
303 {
304         tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
305 }
306
307 /**
308  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
309  * @device:     DRBD device.
310  */
311 void tl_abort_disk_io(struct drbd_device *device)
312 {
313         struct drbd_connection *connection = first_peer_device(device)->connection;
314         struct drbd_request *req, *r;
315
316         spin_lock_irq(&connection->resource->req_lock);
317         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
318                 if (!(req->rq_state & RQ_LOCAL_PENDING))
319                         continue;
320                 if (req->device != device)
321                         continue;
322                 _req_mod(req, ABORT_DISK_IO);
323         }
324         spin_unlock_irq(&connection->resource->req_lock);
325 }
326
327 static int drbd_thread_setup(void *arg)
328 {
329         struct drbd_thread *thi = (struct drbd_thread *) arg;
330         struct drbd_resource *resource = thi->resource;
331         unsigned long flags;
332         int retval;
333
334         snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
335                  thi->name[0],
336                  resource->name);
337
338         allow_kernel_signal(DRBD_SIGKILL);
339         allow_kernel_signal(SIGXCPU);
340 restart:
341         retval = thi->function(thi);
342
343         spin_lock_irqsave(&thi->t_lock, flags);
344
345         /* if the receiver has been "EXITING", the last thing it did
346          * was set the conn state to "StandAlone",
347          * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
348          * and receiver thread will be "started".
349          * drbd_thread_start needs to set "RESTARTING" in that case.
350          * t_state check and assignment needs to be within the same spinlock,
351          * so either thread_start sees EXITING, and can remap to RESTARTING,
352          * or thread_start see NONE, and can proceed as normal.
353          */
354
355         if (thi->t_state == RESTARTING) {
356                 drbd_info(resource, "Restarting %s thread\n", thi->name);
357                 thi->t_state = RUNNING;
358                 spin_unlock_irqrestore(&thi->t_lock, flags);
359                 goto restart;
360         }
361
362         thi->task = NULL;
363         thi->t_state = NONE;
364         smp_mb();
365         complete_all(&thi->stop);
366         spin_unlock_irqrestore(&thi->t_lock, flags);
367
368         drbd_info(resource, "Terminating %s\n", current->comm);
369
370         /* Release mod reference taken when thread was started */
371
372         if (thi->connection)
373                 kref_put(&thi->connection->kref, drbd_destroy_connection);
374         kref_put(&resource->kref, drbd_destroy_resource);
375         module_put(THIS_MODULE);
376         return retval;
377 }
378
379 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
380                              int (*func) (struct drbd_thread *), const char *name)
381 {
382         spin_lock_init(&thi->t_lock);
383         thi->task    = NULL;
384         thi->t_state = NONE;
385         thi->function = func;
386         thi->resource = resource;
387         thi->connection = NULL;
388         thi->name = name;
389 }
390
391 int drbd_thread_start(struct drbd_thread *thi)
392 {
393         struct drbd_resource *resource = thi->resource;
394         struct task_struct *nt;
395         unsigned long flags;
396
397         /* is used from state engine doing drbd_thread_stop_nowait,
398          * while holding the req lock irqsave */
399         spin_lock_irqsave(&thi->t_lock, flags);
400
401         switch (thi->t_state) {
402         case NONE:
403                 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
404                          thi->name, current->comm, current->pid);
405
406                 /* Get ref on module for thread - this is released when thread exits */
407                 if (!try_module_get(THIS_MODULE)) {
408                         drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
409                         spin_unlock_irqrestore(&thi->t_lock, flags);
410                         return false;
411                 }
412
413                 kref_get(&resource->kref);
414                 if (thi->connection)
415                         kref_get(&thi->connection->kref);
416
417                 init_completion(&thi->stop);
418                 thi->reset_cpu_mask = 1;
419                 thi->t_state = RUNNING;
420                 spin_unlock_irqrestore(&thi->t_lock, flags);
421                 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
422
423                 nt = kthread_create(drbd_thread_setup, (void *) thi,
424                                     "drbd_%c_%s", thi->name[0], thi->resource->name);
425
426                 if (IS_ERR(nt)) {
427                         drbd_err(resource, "Couldn't start thread\n");
428
429                         if (thi->connection)
430                                 kref_put(&thi->connection->kref, drbd_destroy_connection);
431                         kref_put(&resource->kref, drbd_destroy_resource);
432                         module_put(THIS_MODULE);
433                         return false;
434                 }
435                 spin_lock_irqsave(&thi->t_lock, flags);
436                 thi->task = nt;
437                 thi->t_state = RUNNING;
438                 spin_unlock_irqrestore(&thi->t_lock, flags);
439                 wake_up_process(nt);
440                 break;
441         case EXITING:
442                 thi->t_state = RESTARTING;
443                 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
444                                 thi->name, current->comm, current->pid);
445                 /* fall through */
446         case RUNNING:
447         case RESTARTING:
448         default:
449                 spin_unlock_irqrestore(&thi->t_lock, flags);
450                 break;
451         }
452
453         return true;
454 }
455
456
457 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
458 {
459         unsigned long flags;
460
461         enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
462
463         /* may be called from state engine, holding the req lock irqsave */
464         spin_lock_irqsave(&thi->t_lock, flags);
465
466         if (thi->t_state == NONE) {
467                 spin_unlock_irqrestore(&thi->t_lock, flags);
468                 if (restart)
469                         drbd_thread_start(thi);
470                 return;
471         }
472
473         if (thi->t_state != ns) {
474                 if (thi->task == NULL) {
475                         spin_unlock_irqrestore(&thi->t_lock, flags);
476                         return;
477                 }
478
479                 thi->t_state = ns;
480                 smp_mb();
481                 init_completion(&thi->stop);
482                 if (thi->task != current)
483                         force_sig(DRBD_SIGKILL, thi->task);
484         }
485
486         spin_unlock_irqrestore(&thi->t_lock, flags);
487
488         if (wait)
489                 wait_for_completion(&thi->stop);
490 }
491
492 int conn_lowest_minor(struct drbd_connection *connection)
493 {
494         struct drbd_peer_device *peer_device;
495         int vnr = 0, minor = -1;
496
497         rcu_read_lock();
498         peer_device = idr_get_next(&connection->peer_devices, &vnr);
499         if (peer_device)
500                 minor = device_to_minor(peer_device->device);
501         rcu_read_unlock();
502
503         return minor;
504 }
505
506 #ifdef CONFIG_SMP
507 /**
508  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
509  *
510  * Forces all threads of a resource onto the same CPU. This is beneficial for
511  * DRBD's performance. May be overwritten by user's configuration.
512  */
513 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
514 {
515         unsigned int *resources_per_cpu, min_index = ~0;
516
517         resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
518         if (resources_per_cpu) {
519                 struct drbd_resource *resource;
520                 unsigned int cpu, min = ~0;
521
522                 rcu_read_lock();
523                 for_each_resource_rcu(resource, &drbd_resources) {
524                         for_each_cpu(cpu, resource->cpu_mask)
525                                 resources_per_cpu[cpu]++;
526                 }
527                 rcu_read_unlock();
528                 for_each_online_cpu(cpu) {
529                         if (resources_per_cpu[cpu] < min) {
530                                 min = resources_per_cpu[cpu];
531                                 min_index = cpu;
532                         }
533                 }
534                 kfree(resources_per_cpu);
535         }
536         if (min_index == ~0) {
537                 cpumask_setall(*cpu_mask);
538                 return;
539         }
540         cpumask_set_cpu(min_index, *cpu_mask);
541 }
542
543 /**
544  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
545  * @device:     DRBD device.
546  * @thi:        drbd_thread object
547  *
548  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
549  * prematurely.
550  */
551 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
552 {
553         struct drbd_resource *resource = thi->resource;
554         struct task_struct *p = current;
555
556         if (!thi->reset_cpu_mask)
557                 return;
558         thi->reset_cpu_mask = 0;
559         set_cpus_allowed_ptr(p, resource->cpu_mask);
560 }
561 #else
562 #define drbd_calc_cpu_mask(A) ({})
563 #endif
564
565 /**
566  * drbd_header_size  -  size of a packet header
567  *
568  * The header size is a multiple of 8, so any payload following the header is
569  * word aligned on 64-bit architectures.  (The bitmap send and receive code
570  * relies on this.)
571  */
572 unsigned int drbd_header_size(struct drbd_connection *connection)
573 {
574         if (connection->agreed_pro_version >= 100) {
575                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
576                 return sizeof(struct p_header100);
577         } else {
578                 BUILD_BUG_ON(sizeof(struct p_header80) !=
579                              sizeof(struct p_header95));
580                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
581                 return sizeof(struct p_header80);
582         }
583 }
584
585 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
586 {
587         h->magic   = cpu_to_be32(DRBD_MAGIC);
588         h->command = cpu_to_be16(cmd);
589         h->length  = cpu_to_be16(size);
590         return sizeof(struct p_header80);
591 }
592
593 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
594 {
595         h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
596         h->command = cpu_to_be16(cmd);
597         h->length = cpu_to_be32(size);
598         return sizeof(struct p_header95);
599 }
600
601 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
602                                       int size, int vnr)
603 {
604         h->magic = cpu_to_be32(DRBD_MAGIC_100);
605         h->volume = cpu_to_be16(vnr);
606         h->command = cpu_to_be16(cmd);
607         h->length = cpu_to_be32(size);
608         h->pad = 0;
609         return sizeof(struct p_header100);
610 }
611
612 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
613                                    void *buffer, enum drbd_packet cmd, int size)
614 {
615         if (connection->agreed_pro_version >= 100)
616                 return prepare_header100(buffer, cmd, size, vnr);
617         else if (connection->agreed_pro_version >= 95 &&
618                  size > DRBD_MAX_SIZE_H80_PACKET)
619                 return prepare_header95(buffer, cmd, size);
620         else
621                 return prepare_header80(buffer, cmd, size);
622 }
623
624 static void *__conn_prepare_command(struct drbd_connection *connection,
625                                     struct drbd_socket *sock)
626 {
627         if (!sock->socket)
628                 return NULL;
629         return sock->sbuf + drbd_header_size(connection);
630 }
631
632 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
633 {
634         void *p;
635
636         mutex_lock(&sock->mutex);
637         p = __conn_prepare_command(connection, sock);
638         if (!p)
639                 mutex_unlock(&sock->mutex);
640
641         return p;
642 }
643
644 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
645 {
646         return conn_prepare_command(peer_device->connection, sock);
647 }
648
649 static int __send_command(struct drbd_connection *connection, int vnr,
650                           struct drbd_socket *sock, enum drbd_packet cmd,
651                           unsigned int header_size, void *data,
652                           unsigned int size)
653 {
654         int msg_flags;
655         int err;
656
657         /*
658          * Called with @data == NULL and the size of the data blocks in @size
659          * for commands that send data blocks.  For those commands, omit the
660          * MSG_MORE flag: this will increase the likelihood that data blocks
661          * which are page aligned on the sender will end up page aligned on the
662          * receiver.
663          */
664         msg_flags = data ? MSG_MORE : 0;
665
666         header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
667                                       header_size + size);
668         err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
669                             msg_flags);
670         if (data && !err)
671                 err = drbd_send_all(connection, sock->socket, data, size, 0);
672         /* DRBD protocol "pings" are latency critical.
673          * This is supposed to trigger tcp_push_pending_frames() */
674         if (!err && (cmd == P_PING || cmd == P_PING_ACK))
675                 drbd_tcp_nodelay(sock->socket);
676
677         return err;
678 }
679
680 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
681                                enum drbd_packet cmd, unsigned int header_size,
682                                void *data, unsigned int size)
683 {
684         return __send_command(connection, 0, sock, cmd, header_size, data, size);
685 }
686
687 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
688                       enum drbd_packet cmd, unsigned int header_size,
689                       void *data, unsigned int size)
690 {
691         int err;
692
693         err = __conn_send_command(connection, sock, cmd, header_size, data, size);
694         mutex_unlock(&sock->mutex);
695         return err;
696 }
697
698 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
699                       enum drbd_packet cmd, unsigned int header_size,
700                       void *data, unsigned int size)
701 {
702         int err;
703
704         err = __send_command(peer_device->connection, peer_device->device->vnr,
705                              sock, cmd, header_size, data, size);
706         mutex_unlock(&sock->mutex);
707         return err;
708 }
709
710 int drbd_send_ping(struct drbd_connection *connection)
711 {
712         struct drbd_socket *sock;
713
714         sock = &connection->meta;
715         if (!conn_prepare_command(connection, sock))
716                 return -EIO;
717         return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
718 }
719
720 int drbd_send_ping_ack(struct drbd_connection *connection)
721 {
722         struct drbd_socket *sock;
723
724         sock = &connection->meta;
725         if (!conn_prepare_command(connection, sock))
726                 return -EIO;
727         return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
728 }
729
730 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
731 {
732         struct drbd_socket *sock;
733         struct p_rs_param_95 *p;
734         int size;
735         const int apv = peer_device->connection->agreed_pro_version;
736         enum drbd_packet cmd;
737         struct net_conf *nc;
738         struct disk_conf *dc;
739
740         sock = &peer_device->connection->data;
741         p = drbd_prepare_command(peer_device, sock);
742         if (!p)
743                 return -EIO;
744
745         rcu_read_lock();
746         nc = rcu_dereference(peer_device->connection->net_conf);
747
748         size = apv <= 87 ? sizeof(struct p_rs_param)
749                 : apv == 88 ? sizeof(struct p_rs_param)
750                         + strlen(nc->verify_alg) + 1
751                 : apv <= 94 ? sizeof(struct p_rs_param_89)
752                 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
753
754         cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
755
756         /* initialize verify_alg and csums_alg */
757         memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
758
759         if (get_ldev(peer_device->device)) {
760                 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
761                 p->resync_rate = cpu_to_be32(dc->resync_rate);
762                 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
763                 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
764                 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
765                 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
766                 put_ldev(peer_device->device);
767         } else {
768                 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
769                 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
770                 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
771                 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
772                 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
773         }
774
775         if (apv >= 88)
776                 strcpy(p->verify_alg, nc->verify_alg);
777         if (apv >= 89)
778                 strcpy(p->csums_alg, nc->csums_alg);
779         rcu_read_unlock();
780
781         return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
782 }
783
784 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
785 {
786         struct drbd_socket *sock;
787         struct p_protocol *p;
788         struct net_conf *nc;
789         int size, cf;
790
791         sock = &connection->data;
792         p = __conn_prepare_command(connection, sock);
793         if (!p)
794                 return -EIO;
795
796         rcu_read_lock();
797         nc = rcu_dereference(connection->net_conf);
798
799         if (nc->tentative && connection->agreed_pro_version < 92) {
800                 rcu_read_unlock();
801                 drbd_err(connection, "--dry-run is not supported by peer");
802                 return -EOPNOTSUPP;
803         }
804
805         size = sizeof(*p);
806         if (connection->agreed_pro_version >= 87)
807                 size += strlen(nc->integrity_alg) + 1;
808
809         p->protocol      = cpu_to_be32(nc->wire_protocol);
810         p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
811         p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
812         p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
813         p->two_primaries = cpu_to_be32(nc->two_primaries);
814         cf = 0;
815         if (nc->discard_my_data)
816                 cf |= CF_DISCARD_MY_DATA;
817         if (nc->tentative)
818                 cf |= CF_DRY_RUN;
819         p->conn_flags    = cpu_to_be32(cf);
820
821         if (connection->agreed_pro_version >= 87)
822                 strcpy(p->integrity_alg, nc->integrity_alg);
823         rcu_read_unlock();
824
825         return __conn_send_command(connection, sock, cmd, size, NULL, 0);
826 }
827
828 int drbd_send_protocol(struct drbd_connection *connection)
829 {
830         int err;
831
832         mutex_lock(&connection->data.mutex);
833         err = __drbd_send_protocol(connection, P_PROTOCOL);
834         mutex_unlock(&connection->data.mutex);
835
836         return err;
837 }
838
839 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
840 {
841         struct drbd_device *device = peer_device->device;
842         struct drbd_socket *sock;
843         struct p_uuids *p;
844         int i;
845
846         if (!get_ldev_if_state(device, D_NEGOTIATING))
847                 return 0;
848
849         sock = &peer_device->connection->data;
850         p = drbd_prepare_command(peer_device, sock);
851         if (!p) {
852                 put_ldev(device);
853                 return -EIO;
854         }
855         spin_lock_irq(&device->ldev->md.uuid_lock);
856         for (i = UI_CURRENT; i < UI_SIZE; i++)
857                 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
858         spin_unlock_irq(&device->ldev->md.uuid_lock);
859
860         device->comm_bm_set = drbd_bm_total_weight(device);
861         p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
862         rcu_read_lock();
863         uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
864         rcu_read_unlock();
865         uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
866         uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
867         p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
868
869         put_ldev(device);
870         return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
871 }
872
873 int drbd_send_uuids(struct drbd_peer_device *peer_device)
874 {
875         return _drbd_send_uuids(peer_device, 0);
876 }
877
878 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
879 {
880         return _drbd_send_uuids(peer_device, 8);
881 }
882
883 void drbd_print_uuids(struct drbd_device *device, const char *text)
884 {
885         if (get_ldev_if_state(device, D_NEGOTIATING)) {
886                 u64 *uuid = device->ldev->md.uuid;
887                 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
888                      text,
889                      (unsigned long long)uuid[UI_CURRENT],
890                      (unsigned long long)uuid[UI_BITMAP],
891                      (unsigned long long)uuid[UI_HISTORY_START],
892                      (unsigned long long)uuid[UI_HISTORY_END]);
893                 put_ldev(device);
894         } else {
895                 drbd_info(device, "%s effective data uuid: %016llX\n",
896                                 text,
897                                 (unsigned long long)device->ed_uuid);
898         }
899 }
900
901 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
902 {
903         struct drbd_device *device = peer_device->device;
904         struct drbd_socket *sock;
905         struct p_rs_uuid *p;
906         u64 uuid;
907
908         D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
909
910         uuid = device->ldev->md.uuid[UI_BITMAP];
911         if (uuid && uuid != UUID_JUST_CREATED)
912                 uuid = uuid + UUID_NEW_BM_OFFSET;
913         else
914                 get_random_bytes(&uuid, sizeof(u64));
915         drbd_uuid_set(device, UI_BITMAP, uuid);
916         drbd_print_uuids(device, "updated sync UUID");
917         drbd_md_sync(device);
918
919         sock = &peer_device->connection->data;
920         p = drbd_prepare_command(peer_device, sock);
921         if (p) {
922                 p->uuid = cpu_to_be64(uuid);
923                 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
924         }
925 }
926
927 /* communicated if (agreed_features & DRBD_FF_WSAME) */
928 void assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, struct request_queue *q)
929 {
930         if (q) {
931                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
932                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
933                 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
934                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
935                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
936                 p->qlim->discard_enabled = blk_queue_discard(q);
937                 p->qlim->discard_zeroes_data = queue_discard_zeroes_data(q);
938                 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
939         } else {
940                 q = device->rq_queue;
941                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
942                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
943                 p->qlim->alignment_offset = 0;
944                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
945                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
946                 p->qlim->discard_enabled = 0;
947                 p->qlim->discard_zeroes_data = 0;
948                 p->qlim->write_same_capable = 0;
949         }
950 }
951
952 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
953 {
954         struct drbd_device *device = peer_device->device;
955         struct drbd_socket *sock;
956         struct p_sizes *p;
957         sector_t d_size, u_size;
958         int q_order_type;
959         unsigned int max_bio_size;
960         unsigned int packet_size;
961
962         sock = &peer_device->connection->data;
963         p = drbd_prepare_command(peer_device, sock);
964         if (!p)
965                 return -EIO;
966
967         packet_size = sizeof(*p);
968         if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
969                 packet_size += sizeof(p->qlim[0]);
970
971         memset(p, 0, packet_size);
972         if (get_ldev_if_state(device, D_NEGOTIATING)) {
973                 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
974                 d_size = drbd_get_max_capacity(device->ldev);
975                 rcu_read_lock();
976                 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
977                 rcu_read_unlock();
978                 q_order_type = drbd_queue_order_type(device);
979                 max_bio_size = queue_max_hw_sectors(q) << 9;
980                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
981                 assign_p_sizes_qlim(device, p, q);
982                 put_ldev(device);
983         } else {
984                 d_size = 0;
985                 u_size = 0;
986                 q_order_type = QUEUE_ORDERED_NONE;
987                 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
988                 assign_p_sizes_qlim(device, p, NULL);
989         }
990
991         if (peer_device->connection->agreed_pro_version <= 94)
992                 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
993         else if (peer_device->connection->agreed_pro_version < 100)
994                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
995
996         p->d_size = cpu_to_be64(d_size);
997         p->u_size = cpu_to_be64(u_size);
998         p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
999         p->max_bio_size = cpu_to_be32(max_bio_size);
1000         p->queue_order_type = cpu_to_be16(q_order_type);
1001         p->dds_flags = cpu_to_be16(flags);
1002
1003         return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
1004 }
1005
1006 /**
1007  * drbd_send_current_state() - Sends the drbd state to the peer
1008  * @peer_device:        DRBD peer device.
1009  */
1010 int drbd_send_current_state(struct drbd_peer_device *peer_device)
1011 {
1012         struct drbd_socket *sock;
1013         struct p_state *p;
1014
1015         sock = &peer_device->connection->data;
1016         p = drbd_prepare_command(peer_device, sock);
1017         if (!p)
1018                 return -EIO;
1019         p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1020         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1021 }
1022
1023 /**
1024  * drbd_send_state() - After a state change, sends the new state to the peer
1025  * @peer_device:      DRBD peer device.
1026  * @state:     the state to send, not necessarily the current state.
1027  *
1028  * Each state change queues an "after_state_ch" work, which will eventually
1029  * send the resulting new state to the peer. If more state changes happen
1030  * between queuing and processing of the after_state_ch work, we still
1031  * want to send each intermediary state in the order it occurred.
1032  */
1033 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1034 {
1035         struct drbd_socket *sock;
1036         struct p_state *p;
1037
1038         sock = &peer_device->connection->data;
1039         p = drbd_prepare_command(peer_device, sock);
1040         if (!p)
1041                 return -EIO;
1042         p->state = cpu_to_be32(state.i); /* Within the send mutex */
1043         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1044 }
1045
1046 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1047 {
1048         struct drbd_socket *sock;
1049         struct p_req_state *p;
1050
1051         sock = &peer_device->connection->data;
1052         p = drbd_prepare_command(peer_device, sock);
1053         if (!p)
1054                 return -EIO;
1055         p->mask = cpu_to_be32(mask.i);
1056         p->val = cpu_to_be32(val.i);
1057         return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1058 }
1059
1060 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1061 {
1062         enum drbd_packet cmd;
1063         struct drbd_socket *sock;
1064         struct p_req_state *p;
1065
1066         cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1067         sock = &connection->data;
1068         p = conn_prepare_command(connection, sock);
1069         if (!p)
1070                 return -EIO;
1071         p->mask = cpu_to_be32(mask.i);
1072         p->val = cpu_to_be32(val.i);
1073         return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1074 }
1075
1076 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1077 {
1078         struct drbd_socket *sock;
1079         struct p_req_state_reply *p;
1080
1081         sock = &peer_device->connection->meta;
1082         p = drbd_prepare_command(peer_device, sock);
1083         if (p) {
1084                 p->retcode = cpu_to_be32(retcode);
1085                 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1086         }
1087 }
1088
1089 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1090 {
1091         struct drbd_socket *sock;
1092         struct p_req_state_reply *p;
1093         enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1094
1095         sock = &connection->meta;
1096         p = conn_prepare_command(connection, sock);
1097         if (p) {
1098                 p->retcode = cpu_to_be32(retcode);
1099                 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1100         }
1101 }
1102
1103 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1104 {
1105         BUG_ON(code & ~0xf);
1106         p->encoding = (p->encoding & ~0xf) | code;
1107 }
1108
1109 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1110 {
1111         p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1112 }
1113
1114 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1115 {
1116         BUG_ON(n & ~0x7);
1117         p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1118 }
1119
1120 static int fill_bitmap_rle_bits(struct drbd_device *device,
1121                          struct p_compressed_bm *p,
1122                          unsigned int size,
1123                          struct bm_xfer_ctx *c)
1124 {
1125         struct bitstream bs;
1126         unsigned long plain_bits;
1127         unsigned long tmp;
1128         unsigned long rl;
1129         unsigned len;
1130         unsigned toggle;
1131         int bits, use_rle;
1132
1133         /* may we use this feature? */
1134         rcu_read_lock();
1135         use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1136         rcu_read_unlock();
1137         if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1138                 return 0;
1139
1140         if (c->bit_offset >= c->bm_bits)
1141                 return 0; /* nothing to do. */
1142
1143         /* use at most thus many bytes */
1144         bitstream_init(&bs, p->code, size, 0);
1145         memset(p->code, 0, size);
1146         /* plain bits covered in this code string */
1147         plain_bits = 0;
1148
1149         /* p->encoding & 0x80 stores whether the first run length is set.
1150          * bit offset is implicit.
1151          * start with toggle == 2 to be able to tell the first iteration */
1152         toggle = 2;
1153
1154         /* see how much plain bits we can stuff into one packet
1155          * using RLE and VLI. */
1156         do {
1157                 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1158                                     : _drbd_bm_find_next(device, c->bit_offset);
1159                 if (tmp == -1UL)
1160                         tmp = c->bm_bits;
1161                 rl = tmp - c->bit_offset;
1162
1163                 if (toggle == 2) { /* first iteration */
1164                         if (rl == 0) {
1165                                 /* the first checked bit was set,
1166                                  * store start value, */
1167                                 dcbp_set_start(p, 1);
1168                                 /* but skip encoding of zero run length */
1169                                 toggle = !toggle;
1170                                 continue;
1171                         }
1172                         dcbp_set_start(p, 0);
1173                 }
1174
1175                 /* paranoia: catch zero runlength.
1176                  * can only happen if bitmap is modified while we scan it. */
1177                 if (rl == 0) {
1178                         drbd_err(device, "unexpected zero runlength while encoding bitmap "
1179                             "t:%u bo:%lu\n", toggle, c->bit_offset);
1180                         return -1;
1181                 }
1182
1183                 bits = vli_encode_bits(&bs, rl);
1184                 if (bits == -ENOBUFS) /* buffer full */
1185                         break;
1186                 if (bits <= 0) {
1187                         drbd_err(device, "error while encoding bitmap: %d\n", bits);
1188                         return 0;
1189                 }
1190
1191                 toggle = !toggle;
1192                 plain_bits += rl;
1193                 c->bit_offset = tmp;
1194         } while (c->bit_offset < c->bm_bits);
1195
1196         len = bs.cur.b - p->code + !!bs.cur.bit;
1197
1198         if (plain_bits < (len << 3)) {
1199                 /* incompressible with this method.
1200                  * we need to rewind both word and bit position. */
1201                 c->bit_offset -= plain_bits;
1202                 bm_xfer_ctx_bit_to_word_offset(c);
1203                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1204                 return 0;
1205         }
1206
1207         /* RLE + VLI was able to compress it just fine.
1208          * update c->word_offset. */
1209         bm_xfer_ctx_bit_to_word_offset(c);
1210
1211         /* store pad_bits */
1212         dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1213
1214         return len;
1215 }
1216
1217 /**
1218  * send_bitmap_rle_or_plain
1219  *
1220  * Return 0 when done, 1 when another iteration is needed, and a negative error
1221  * code upon failure.
1222  */
1223 static int
1224 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1225 {
1226         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1227         unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1228         struct p_compressed_bm *p = sock->sbuf + header_size;
1229         int len, err;
1230
1231         len = fill_bitmap_rle_bits(device, p,
1232                         DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1233         if (len < 0)
1234                 return -EIO;
1235
1236         if (len) {
1237                 dcbp_set_code(p, RLE_VLI_Bits);
1238                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1239                                      P_COMPRESSED_BITMAP, sizeof(*p) + len,
1240                                      NULL, 0);
1241                 c->packets[0]++;
1242                 c->bytes[0] += header_size + sizeof(*p) + len;
1243
1244                 if (c->bit_offset >= c->bm_bits)
1245                         len = 0; /* DONE */
1246         } else {
1247                 /* was not compressible.
1248                  * send a buffer full of plain text bits instead. */
1249                 unsigned int data_size;
1250                 unsigned long num_words;
1251                 unsigned long *p = sock->sbuf + header_size;
1252
1253                 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1254                 num_words = min_t(size_t, data_size / sizeof(*p),
1255                                   c->bm_words - c->word_offset);
1256                 len = num_words * sizeof(*p);
1257                 if (len)
1258                         drbd_bm_get_lel(device, c->word_offset, num_words, p);
1259                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1260                 c->word_offset += num_words;
1261                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1262
1263                 c->packets[1]++;
1264                 c->bytes[1] += header_size + len;
1265
1266                 if (c->bit_offset > c->bm_bits)
1267                         c->bit_offset = c->bm_bits;
1268         }
1269         if (!err) {
1270                 if (len == 0) {
1271                         INFO_bm_xfer_stats(device, "send", c);
1272                         return 0;
1273                 } else
1274                         return 1;
1275         }
1276         return -EIO;
1277 }
1278
1279 /* See the comment at receive_bitmap() */
1280 static int _drbd_send_bitmap(struct drbd_device *device)
1281 {
1282         struct bm_xfer_ctx c;
1283         int err;
1284
1285         if (!expect(device->bitmap))
1286                 return false;
1287
1288         if (get_ldev(device)) {
1289                 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1290                         drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1291                         drbd_bm_set_all(device);
1292                         if (drbd_bm_write(device)) {
1293                                 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1294                                  * but otherwise process as per normal - need to tell other
1295                                  * side that a full resync is required! */
1296                                 drbd_err(device, "Failed to write bitmap to disk!\n");
1297                         } else {
1298                                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1299                                 drbd_md_sync(device);
1300                         }
1301                 }
1302                 put_ldev(device);
1303         }
1304
1305         c = (struct bm_xfer_ctx) {
1306                 .bm_bits = drbd_bm_bits(device),
1307                 .bm_words = drbd_bm_words(device),
1308         };
1309
1310         do {
1311                 err = send_bitmap_rle_or_plain(device, &c);
1312         } while (err > 0);
1313
1314         return err == 0;
1315 }
1316
1317 int drbd_send_bitmap(struct drbd_device *device)
1318 {
1319         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1320         int err = -1;
1321
1322         mutex_lock(&sock->mutex);
1323         if (sock->socket)
1324                 err = !_drbd_send_bitmap(device);
1325         mutex_unlock(&sock->mutex);
1326         return err;
1327 }
1328
1329 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1330 {
1331         struct drbd_socket *sock;
1332         struct p_barrier_ack *p;
1333
1334         if (connection->cstate < C_WF_REPORT_PARAMS)
1335                 return;
1336
1337         sock = &connection->meta;
1338         p = conn_prepare_command(connection, sock);
1339         if (!p)
1340                 return;
1341         p->barrier = barrier_nr;
1342         p->set_size = cpu_to_be32(set_size);
1343         conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1344 }
1345
1346 /**
1347  * _drbd_send_ack() - Sends an ack packet
1348  * @device:     DRBD device.
1349  * @cmd:        Packet command code.
1350  * @sector:     sector, needs to be in big endian byte order
1351  * @blksize:    size in byte, needs to be in big endian byte order
1352  * @block_id:   Id, big endian byte order
1353  */
1354 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1355                           u64 sector, u32 blksize, u64 block_id)
1356 {
1357         struct drbd_socket *sock;
1358         struct p_block_ack *p;
1359
1360         if (peer_device->device->state.conn < C_CONNECTED)
1361                 return -EIO;
1362
1363         sock = &peer_device->connection->meta;
1364         p = drbd_prepare_command(peer_device, sock);
1365         if (!p)
1366                 return -EIO;
1367         p->sector = sector;
1368         p->block_id = block_id;
1369         p->blksize = blksize;
1370         p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1371         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1372 }
1373
1374 /* dp->sector and dp->block_id already/still in network byte order,
1375  * data_size is payload size according to dp->head,
1376  * and may need to be corrected for digest size. */
1377 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1378                       struct p_data *dp, int data_size)
1379 {
1380         if (peer_device->connection->peer_integrity_tfm)
1381                 data_size -= crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm);
1382         _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1383                        dp->block_id);
1384 }
1385
1386 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1387                       struct p_block_req *rp)
1388 {
1389         _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1390 }
1391
1392 /**
1393  * drbd_send_ack() - Sends an ack packet
1394  * @device:     DRBD device
1395  * @cmd:        packet command code
1396  * @peer_req:   peer request
1397  */
1398 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1399                   struct drbd_peer_request *peer_req)
1400 {
1401         return _drbd_send_ack(peer_device, cmd,
1402                               cpu_to_be64(peer_req->i.sector),
1403                               cpu_to_be32(peer_req->i.size),
1404                               peer_req->block_id);
1405 }
1406
1407 /* This function misuses the block_id field to signal if the blocks
1408  * are is sync or not. */
1409 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1410                      sector_t sector, int blksize, u64 block_id)
1411 {
1412         return _drbd_send_ack(peer_device, cmd,
1413                               cpu_to_be64(sector),
1414                               cpu_to_be32(blksize),
1415                               cpu_to_be64(block_id));
1416 }
1417
1418 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1419                              struct drbd_peer_request *peer_req)
1420 {
1421         struct drbd_socket *sock;
1422         struct p_block_desc *p;
1423
1424         sock = &peer_device->connection->data;
1425         p = drbd_prepare_command(peer_device, sock);
1426         if (!p)
1427                 return -EIO;
1428         p->sector = cpu_to_be64(peer_req->i.sector);
1429         p->blksize = cpu_to_be32(peer_req->i.size);
1430         p->pad = 0;
1431         return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1432 }
1433
1434 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1435                        sector_t sector, int size, u64 block_id)
1436 {
1437         struct drbd_socket *sock;
1438         struct p_block_req *p;
1439
1440         sock = &peer_device->connection->data;
1441         p = drbd_prepare_command(peer_device, sock);
1442         if (!p)
1443                 return -EIO;
1444         p->sector = cpu_to_be64(sector);
1445         p->block_id = block_id;
1446         p->blksize = cpu_to_be32(size);
1447         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1448 }
1449
1450 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1451                             void *digest, int digest_size, enum drbd_packet cmd)
1452 {
1453         struct drbd_socket *sock;
1454         struct p_block_req *p;
1455
1456         /* FIXME: Put the digest into the preallocated socket buffer.  */
1457
1458         sock = &peer_device->connection->data;
1459         p = drbd_prepare_command(peer_device, sock);
1460         if (!p)
1461                 return -EIO;
1462         p->sector = cpu_to_be64(sector);
1463         p->block_id = ID_SYNCER /* unused */;
1464         p->blksize = cpu_to_be32(size);
1465         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1466 }
1467
1468 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1469 {
1470         struct drbd_socket *sock;
1471         struct p_block_req *p;
1472
1473         sock = &peer_device->connection->data;
1474         p = drbd_prepare_command(peer_device, sock);
1475         if (!p)
1476                 return -EIO;
1477         p->sector = cpu_to_be64(sector);
1478         p->block_id = ID_SYNCER /* unused */;
1479         p->blksize = cpu_to_be32(size);
1480         return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1481 }
1482
1483 /* called on sndtimeo
1484  * returns false if we should retry,
1485  * true if we think connection is dead
1486  */
1487 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1488 {
1489         int drop_it;
1490         /* long elapsed = (long)(jiffies - device->last_received); */
1491
1492         drop_it =   connection->meta.socket == sock
1493                 || !connection->ack_receiver.task
1494                 || get_t_state(&connection->ack_receiver) != RUNNING
1495                 || connection->cstate < C_WF_REPORT_PARAMS;
1496
1497         if (drop_it)
1498                 return true;
1499
1500         drop_it = !--connection->ko_count;
1501         if (!drop_it) {
1502                 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1503                          current->comm, current->pid, connection->ko_count);
1504                 request_ping(connection);
1505         }
1506
1507         return drop_it; /* && (device->state == R_PRIMARY) */;
1508 }
1509
1510 static void drbd_update_congested(struct drbd_connection *connection)
1511 {
1512         struct sock *sk = connection->data.socket->sk;
1513         if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1514                 set_bit(NET_CONGESTED, &connection->flags);
1515 }
1516
1517 /* The idea of sendpage seems to be to put some kind of reference
1518  * to the page into the skb, and to hand it over to the NIC. In
1519  * this process get_page() gets called.
1520  *
1521  * As soon as the page was really sent over the network put_page()
1522  * gets called by some part of the network layer. [ NIC driver? ]
1523  *
1524  * [ get_page() / put_page() increment/decrement the count. If count
1525  *   reaches 0 the page will be freed. ]
1526  *
1527  * This works nicely with pages from FSs.
1528  * But this means that in protocol A we might signal IO completion too early!
1529  *
1530  * In order not to corrupt data during a resync we must make sure
1531  * that we do not reuse our own buffer pages (EEs) to early, therefore
1532  * we have the net_ee list.
1533  *
1534  * XFS seems to have problems, still, it submits pages with page_count == 0!
1535  * As a workaround, we disable sendpage on pages
1536  * with page_count == 0 or PageSlab.
1537  */
1538 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1539                               int offset, size_t size, unsigned msg_flags)
1540 {
1541         struct socket *socket;
1542         void *addr;
1543         int err;
1544
1545         socket = peer_device->connection->data.socket;
1546         addr = kmap(page) + offset;
1547         err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1548         kunmap(page);
1549         if (!err)
1550                 peer_device->device->send_cnt += size >> 9;
1551         return err;
1552 }
1553
1554 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1555                     int offset, size_t size, unsigned msg_flags)
1556 {
1557         struct socket *socket = peer_device->connection->data.socket;
1558         mm_segment_t oldfs = get_fs();
1559         int len = size;
1560         int err = -EIO;
1561
1562         /* e.g. XFS meta- & log-data is in slab pages, which have a
1563          * page_count of 0 and/or have PageSlab() set.
1564          * we cannot use send_page for those, as that does get_page();
1565          * put_page(); and would cause either a VM_BUG directly, or
1566          * __page_cache_release a page that would actually still be referenced
1567          * by someone, leading to some obscure delayed Oops somewhere else. */
1568         if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1569                 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1570
1571         msg_flags |= MSG_NOSIGNAL;
1572         drbd_update_congested(peer_device->connection);
1573         set_fs(KERNEL_DS);
1574         do {
1575                 int sent;
1576
1577                 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1578                 if (sent <= 0) {
1579                         if (sent == -EAGAIN) {
1580                                 if (we_should_drop_the_connection(peer_device->connection, socket))
1581                                         break;
1582                                 continue;
1583                         }
1584                         drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1585                              __func__, (int)size, len, sent);
1586                         if (sent < 0)
1587                                 err = sent;
1588                         break;
1589                 }
1590                 len    -= sent;
1591                 offset += sent;
1592         } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1593         set_fs(oldfs);
1594         clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1595
1596         if (len == 0) {
1597                 err = 0;
1598                 peer_device->device->send_cnt += size >> 9;
1599         }
1600         return err;
1601 }
1602
1603 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1604 {
1605         struct bio_vec bvec;
1606         struct bvec_iter iter;
1607
1608         /* hint all but last page with MSG_MORE */
1609         bio_for_each_segment(bvec, bio, iter) {
1610                 int err;
1611
1612                 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1613                                          bvec.bv_offset, bvec.bv_len,
1614                                          bio_iter_last(bvec, iter)
1615                                          ? 0 : MSG_MORE);
1616                 if (err)
1617                         return err;
1618                 /* REQ_OP_WRITE_SAME has only one segment */
1619                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1620                         break;
1621         }
1622         return 0;
1623 }
1624
1625 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1626 {
1627         struct bio_vec bvec;
1628         struct bvec_iter iter;
1629
1630         /* hint all but last page with MSG_MORE */
1631         bio_for_each_segment(bvec, bio, iter) {
1632                 int err;
1633
1634                 err = _drbd_send_page(peer_device, bvec.bv_page,
1635                                       bvec.bv_offset, bvec.bv_len,
1636                                       bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1637                 if (err)
1638                         return err;
1639                 /* REQ_OP_WRITE_SAME has only one segment */
1640                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1641                         break;
1642         }
1643         return 0;
1644 }
1645
1646 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1647                             struct drbd_peer_request *peer_req)
1648 {
1649         struct page *page = peer_req->pages;
1650         unsigned len = peer_req->i.size;
1651         int err;
1652
1653         /* hint all but last page with MSG_MORE */
1654         page_chain_for_each(page) {
1655                 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1656
1657                 err = _drbd_send_page(peer_device, page, 0, l,
1658                                       page_chain_next(page) ? MSG_MORE : 0);
1659                 if (err)
1660                         return err;
1661                 len -= l;
1662         }
1663         return 0;
1664 }
1665
1666 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1667                              struct bio *bio)
1668 {
1669         if (connection->agreed_pro_version >= 95)
1670                 return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1671                         (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1672                         (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1673                         (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1674                         (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0);
1675         else
1676                 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1677 }
1678
1679 /* Used to send write or TRIM aka REQ_DISCARD requests
1680  * R_PRIMARY -> Peer    (P_DATA, P_TRIM)
1681  */
1682 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1683 {
1684         struct drbd_device *device = peer_device->device;
1685         struct drbd_socket *sock;
1686         struct p_data *p;
1687         struct p_wsame *wsame = NULL;
1688         void *digest_out;
1689         unsigned int dp_flags = 0;
1690         int digest_size;
1691         int err;
1692
1693         sock = &peer_device->connection->data;
1694         p = drbd_prepare_command(peer_device, sock);
1695         digest_size = peer_device->connection->integrity_tfm ?
1696                       crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1697
1698         if (!p)
1699                 return -EIO;
1700         p->sector = cpu_to_be64(req->i.sector);
1701         p->block_id = (unsigned long)req;
1702         p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1703         dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1704         if (device->state.conn >= C_SYNC_SOURCE &&
1705             device->state.conn <= C_PAUSED_SYNC_T)
1706                 dp_flags |= DP_MAY_SET_IN_SYNC;
1707         if (peer_device->connection->agreed_pro_version >= 100) {
1708                 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1709                         dp_flags |= DP_SEND_RECEIVE_ACK;
1710                 /* During resync, request an explicit write ack,
1711                  * even in protocol != C */
1712                 if (req->rq_state & RQ_EXP_WRITE_ACK
1713                 || (dp_flags & DP_MAY_SET_IN_SYNC))
1714                         dp_flags |= DP_SEND_WRITE_ACK;
1715         }
1716         p->dp_flags = cpu_to_be32(dp_flags);
1717
1718         if (dp_flags & DP_DISCARD) {
1719                 struct p_trim *t = (struct p_trim*)p;
1720                 t->size = cpu_to_be32(req->i.size);
1721                 err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0);
1722                 goto out;
1723         }
1724         if (dp_flags & DP_WSAME) {
1725                 /* this will only work if DRBD_FF_WSAME is set AND the
1726                  * handshake agreed that all nodes and backend devices are
1727                  * WRITE_SAME capable and agree on logical_block_size */
1728                 wsame = (struct p_wsame*)p;
1729                 digest_out = wsame + 1;
1730                 wsame->size = cpu_to_be32(req->i.size);
1731         } else
1732                 digest_out = p + 1;
1733
1734         /* our digest is still only over the payload.
1735          * TRIM does not carry any payload. */
1736         if (digest_size)
1737                 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1738         if (wsame) {
1739                 err =
1740                     __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1741                                    sizeof(*wsame) + digest_size, NULL,
1742                                    bio_iovec(req->master_bio).bv_len);
1743         } else
1744                 err =
1745                     __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1746                                    sizeof(*p) + digest_size, NULL, req->i.size);
1747         if (!err) {
1748                 /* For protocol A, we have to memcpy the payload into
1749                  * socket buffers, as we may complete right away
1750                  * as soon as we handed it over to tcp, at which point the data
1751                  * pages may become invalid.
1752                  *
1753                  * For data-integrity enabled, we copy it as well, so we can be
1754                  * sure that even if the bio pages may still be modified, it
1755                  * won't change the data on the wire, thus if the digest checks
1756                  * out ok after sending on this side, but does not fit on the
1757                  * receiving side, we sure have detected corruption elsewhere.
1758                  */
1759                 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1760                         err = _drbd_send_bio(peer_device, req->master_bio);
1761                 else
1762                         err = _drbd_send_zc_bio(peer_device, req->master_bio);
1763
1764                 /* double check digest, sometimes buffers have been modified in flight. */
1765                 if (digest_size > 0 && digest_size <= 64) {
1766                         /* 64 byte, 512 bit, is the largest digest size
1767                          * currently supported in kernel crypto. */
1768                         unsigned char digest[64];
1769                         drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1770                         if (memcmp(p + 1, digest, digest_size)) {
1771                                 drbd_warn(device,
1772                                         "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1773                                         (unsigned long long)req->i.sector, req->i.size);
1774                         }
1775                 } /* else if (digest_size > 64) {
1776                      ... Be noisy about digest too large ...
1777                 } */
1778         }
1779 out:
1780         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1781
1782         return err;
1783 }
1784
1785 /* answer packet, used to send data back for read requests:
1786  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1787  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1788  */
1789 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1790                     struct drbd_peer_request *peer_req)
1791 {
1792         struct drbd_device *device = peer_device->device;
1793         struct drbd_socket *sock;
1794         struct p_data *p;
1795         int err;
1796         int digest_size;
1797
1798         sock = &peer_device->connection->data;
1799         p = drbd_prepare_command(peer_device, sock);
1800
1801         digest_size = peer_device->connection->integrity_tfm ?
1802                       crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1803
1804         if (!p)
1805                 return -EIO;
1806         p->sector = cpu_to_be64(peer_req->i.sector);
1807         p->block_id = peer_req->block_id;
1808         p->seq_num = 0;  /* unused */
1809         p->dp_flags = 0;
1810         if (digest_size)
1811                 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1812         err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1813         if (!err)
1814                 err = _drbd_send_zc_ee(peer_device, peer_req);
1815         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1816
1817         return err;
1818 }
1819
1820 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1821 {
1822         struct drbd_socket *sock;
1823         struct p_block_desc *p;
1824
1825         sock = &peer_device->connection->data;
1826         p = drbd_prepare_command(peer_device, sock);
1827         if (!p)
1828                 return -EIO;
1829         p->sector = cpu_to_be64(req->i.sector);
1830         p->blksize = cpu_to_be32(req->i.size);
1831         return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1832 }
1833
1834 /*
1835   drbd_send distinguishes two cases:
1836
1837   Packets sent via the data socket "sock"
1838   and packets sent via the meta data socket "msock"
1839
1840                     sock                      msock
1841   -----------------+-------------------------+------------------------------
1842   timeout           conf.timeout / 2          conf.timeout / 2
1843   timeout action    send a ping via msock     Abort communication
1844                                               and close all sockets
1845 */
1846
1847 /*
1848  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1849  */
1850 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1851               void *buf, size_t size, unsigned msg_flags)
1852 {
1853         struct kvec iov;
1854         struct msghdr msg;
1855         int rv, sent = 0;
1856
1857         if (!sock)
1858                 return -EBADR;
1859
1860         /* THINK  if (signal_pending) return ... ? */
1861
1862         iov.iov_base = buf;
1863         iov.iov_len  = size;
1864
1865         msg.msg_name       = NULL;
1866         msg.msg_namelen    = 0;
1867         msg.msg_control    = NULL;
1868         msg.msg_controllen = 0;
1869         msg.msg_flags      = msg_flags | MSG_NOSIGNAL;
1870
1871         if (sock == connection->data.socket) {
1872                 rcu_read_lock();
1873                 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1874                 rcu_read_unlock();
1875                 drbd_update_congested(connection);
1876         }
1877         do {
1878                 rv = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
1879                 if (rv == -EAGAIN) {
1880                         if (we_should_drop_the_connection(connection, sock))
1881                                 break;
1882                         else
1883                                 continue;
1884                 }
1885                 if (rv == -EINTR) {
1886                         flush_signals(current);
1887                         rv = 0;
1888                 }
1889                 if (rv < 0)
1890                         break;
1891                 sent += rv;
1892                 iov.iov_base += rv;
1893                 iov.iov_len  -= rv;
1894         } while (sent < size);
1895
1896         if (sock == connection->data.socket)
1897                 clear_bit(NET_CONGESTED, &connection->flags);
1898
1899         if (rv <= 0) {
1900                 if (rv != -EAGAIN) {
1901                         drbd_err(connection, "%s_sendmsg returned %d\n",
1902                                  sock == connection->meta.socket ? "msock" : "sock",
1903                                  rv);
1904                         conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1905                 } else
1906                         conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1907         }
1908
1909         return sent;
1910 }
1911
1912 /**
1913  * drbd_send_all  -  Send an entire buffer
1914  *
1915  * Returns 0 upon success and a negative error value otherwise.
1916  */
1917 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1918                   size_t size, unsigned msg_flags)
1919 {
1920         int err;
1921
1922         err = drbd_send(connection, sock, buffer, size, msg_flags);
1923         if (err < 0)
1924                 return err;
1925         if (err != size)
1926                 return -EIO;
1927         return 0;
1928 }
1929
1930 static int drbd_open(struct block_device *bdev, fmode_t mode)
1931 {
1932         struct drbd_device *device = bdev->bd_disk->private_data;
1933         unsigned long flags;
1934         int rv = 0;
1935
1936         mutex_lock(&drbd_main_mutex);
1937         spin_lock_irqsave(&device->resource->req_lock, flags);
1938         /* to have a stable device->state.role
1939          * and no race with updating open_cnt */
1940
1941         if (device->state.role != R_PRIMARY) {
1942                 if (mode & FMODE_WRITE)
1943                         rv = -EROFS;
1944                 else if (!allow_oos)
1945                         rv = -EMEDIUMTYPE;
1946         }
1947
1948         if (!rv)
1949                 device->open_cnt++;
1950         spin_unlock_irqrestore(&device->resource->req_lock, flags);
1951         mutex_unlock(&drbd_main_mutex);
1952
1953         return rv;
1954 }
1955
1956 static void drbd_release(struct gendisk *gd, fmode_t mode)
1957 {
1958         struct drbd_device *device = gd->private_data;
1959         mutex_lock(&drbd_main_mutex);
1960         device->open_cnt--;
1961         mutex_unlock(&drbd_main_mutex);
1962 }
1963
1964 static void drbd_set_defaults(struct drbd_device *device)
1965 {
1966         /* Beware! The actual layout differs
1967          * between big endian and little endian */
1968         device->state = (union drbd_dev_state) {
1969                 { .role = R_SECONDARY,
1970                   .peer = R_UNKNOWN,
1971                   .conn = C_STANDALONE,
1972                   .disk = D_DISKLESS,
1973                   .pdsk = D_UNKNOWN,
1974                 } };
1975 }
1976
1977 void drbd_init_set_defaults(struct drbd_device *device)
1978 {
1979         /* the memset(,0,) did most of this.
1980          * note: only assignments, no allocation in here */
1981
1982         drbd_set_defaults(device);
1983
1984         atomic_set(&device->ap_bio_cnt, 0);
1985         atomic_set(&device->ap_actlog_cnt, 0);
1986         atomic_set(&device->ap_pending_cnt, 0);
1987         atomic_set(&device->rs_pending_cnt, 0);
1988         atomic_set(&device->unacked_cnt, 0);
1989         atomic_set(&device->local_cnt, 0);
1990         atomic_set(&device->pp_in_use_by_net, 0);
1991         atomic_set(&device->rs_sect_in, 0);
1992         atomic_set(&device->rs_sect_ev, 0);
1993         atomic_set(&device->ap_in_flight, 0);
1994         atomic_set(&device->md_io.in_use, 0);
1995
1996         mutex_init(&device->own_state_mutex);
1997         device->state_mutex = &device->own_state_mutex;
1998
1999         spin_lock_init(&device->al_lock);
2000         spin_lock_init(&device->peer_seq_lock);
2001
2002         INIT_LIST_HEAD(&device->active_ee);
2003         INIT_LIST_HEAD(&device->sync_ee);
2004         INIT_LIST_HEAD(&device->done_ee);
2005         INIT_LIST_HEAD(&device->read_ee);
2006         INIT_LIST_HEAD(&device->net_ee);
2007         INIT_LIST_HEAD(&device->resync_reads);
2008         INIT_LIST_HEAD(&device->resync_work.list);
2009         INIT_LIST_HEAD(&device->unplug_work.list);
2010         INIT_LIST_HEAD(&device->bm_io_work.w.list);
2011         INIT_LIST_HEAD(&device->pending_master_completion[0]);
2012         INIT_LIST_HEAD(&device->pending_master_completion[1]);
2013         INIT_LIST_HEAD(&device->pending_completion[0]);
2014         INIT_LIST_HEAD(&device->pending_completion[1]);
2015
2016         device->resync_work.cb  = w_resync_timer;
2017         device->unplug_work.cb  = w_send_write_hint;
2018         device->bm_io_work.w.cb = w_bitmap_io;
2019
2020         init_timer(&device->resync_timer);
2021         init_timer(&device->md_sync_timer);
2022         init_timer(&device->start_resync_timer);
2023         init_timer(&device->request_timer);
2024         device->resync_timer.function = resync_timer_fn;
2025         device->resync_timer.data = (unsigned long) device;
2026         device->md_sync_timer.function = md_sync_timer_fn;
2027         device->md_sync_timer.data = (unsigned long) device;
2028         device->start_resync_timer.function = start_resync_timer_fn;
2029         device->start_resync_timer.data = (unsigned long) device;
2030         device->request_timer.function = request_timer_fn;
2031         device->request_timer.data = (unsigned long) device;
2032
2033         init_waitqueue_head(&device->misc_wait);
2034         init_waitqueue_head(&device->state_wait);
2035         init_waitqueue_head(&device->ee_wait);
2036         init_waitqueue_head(&device->al_wait);
2037         init_waitqueue_head(&device->seq_wait);
2038
2039         device->resync_wenr = LC_FREE;
2040         device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2041         device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2042 }
2043
2044 void drbd_device_cleanup(struct drbd_device *device)
2045 {
2046         int i;
2047         if (first_peer_device(device)->connection->receiver.t_state != NONE)
2048                 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2049                                 first_peer_device(device)->connection->receiver.t_state);
2050
2051         device->al_writ_cnt  =
2052         device->bm_writ_cnt  =
2053         device->read_cnt     =
2054         device->recv_cnt     =
2055         device->send_cnt     =
2056         device->writ_cnt     =
2057         device->p_size       =
2058         device->rs_start     =
2059         device->rs_total     =
2060         device->rs_failed    = 0;
2061         device->rs_last_events = 0;
2062         device->rs_last_sect_ev = 0;
2063         for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2064                 device->rs_mark_left[i] = 0;
2065                 device->rs_mark_time[i] = 0;
2066         }
2067         D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2068
2069         drbd_set_my_capacity(device, 0);
2070         if (device->bitmap) {
2071                 /* maybe never allocated. */
2072                 drbd_bm_resize(device, 0, 1);
2073                 drbd_bm_cleanup(device);
2074         }
2075
2076         drbd_backing_dev_free(device, device->ldev);
2077         device->ldev = NULL;
2078
2079         clear_bit(AL_SUSPENDED, &device->flags);
2080
2081         D_ASSERT(device, list_empty(&device->active_ee));
2082         D_ASSERT(device, list_empty(&device->sync_ee));
2083         D_ASSERT(device, list_empty(&device->done_ee));
2084         D_ASSERT(device, list_empty(&device->read_ee));
2085         D_ASSERT(device, list_empty(&device->net_ee));
2086         D_ASSERT(device, list_empty(&device->resync_reads));
2087         D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2088         D_ASSERT(device, list_empty(&device->resync_work.list));
2089         D_ASSERT(device, list_empty(&device->unplug_work.list));
2090
2091         drbd_set_defaults(device);
2092 }
2093
2094
2095 static void drbd_destroy_mempools(void)
2096 {
2097         struct page *page;
2098
2099         while (drbd_pp_pool) {
2100                 page = drbd_pp_pool;
2101                 drbd_pp_pool = (struct page *)page_private(page);
2102                 __free_page(page);
2103                 drbd_pp_vacant--;
2104         }
2105
2106         /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2107
2108         if (drbd_md_io_bio_set)
2109                 bioset_free(drbd_md_io_bio_set);
2110         if (drbd_md_io_page_pool)
2111                 mempool_destroy(drbd_md_io_page_pool);
2112         if (drbd_ee_mempool)
2113                 mempool_destroy(drbd_ee_mempool);
2114         if (drbd_request_mempool)
2115                 mempool_destroy(drbd_request_mempool);
2116         if (drbd_ee_cache)
2117                 kmem_cache_destroy(drbd_ee_cache);
2118         if (drbd_request_cache)
2119                 kmem_cache_destroy(drbd_request_cache);
2120         if (drbd_bm_ext_cache)
2121                 kmem_cache_destroy(drbd_bm_ext_cache);
2122         if (drbd_al_ext_cache)
2123                 kmem_cache_destroy(drbd_al_ext_cache);
2124
2125         drbd_md_io_bio_set   = NULL;
2126         drbd_md_io_page_pool = NULL;
2127         drbd_ee_mempool      = NULL;
2128         drbd_request_mempool = NULL;
2129         drbd_ee_cache        = NULL;
2130         drbd_request_cache   = NULL;
2131         drbd_bm_ext_cache    = NULL;
2132         drbd_al_ext_cache    = NULL;
2133
2134         return;
2135 }
2136
2137 static int drbd_create_mempools(void)
2138 {
2139         struct page *page;
2140         const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2141         int i;
2142
2143         /* prepare our caches and mempools */
2144         drbd_request_mempool = NULL;
2145         drbd_ee_cache        = NULL;
2146         drbd_request_cache   = NULL;
2147         drbd_bm_ext_cache    = NULL;
2148         drbd_al_ext_cache    = NULL;
2149         drbd_pp_pool         = NULL;
2150         drbd_md_io_page_pool = NULL;
2151         drbd_md_io_bio_set   = NULL;
2152
2153         /* caches */
2154         drbd_request_cache = kmem_cache_create(
2155                 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2156         if (drbd_request_cache == NULL)
2157                 goto Enomem;
2158
2159         drbd_ee_cache = kmem_cache_create(
2160                 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2161         if (drbd_ee_cache == NULL)
2162                 goto Enomem;
2163
2164         drbd_bm_ext_cache = kmem_cache_create(
2165                 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2166         if (drbd_bm_ext_cache == NULL)
2167                 goto Enomem;
2168
2169         drbd_al_ext_cache = kmem_cache_create(
2170                 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2171         if (drbd_al_ext_cache == NULL)
2172                 goto Enomem;
2173
2174         /* mempools */
2175         drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2176         if (drbd_md_io_bio_set == NULL)
2177                 goto Enomem;
2178
2179         drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2180         if (drbd_md_io_page_pool == NULL)
2181                 goto Enomem;
2182
2183         drbd_request_mempool = mempool_create_slab_pool(number,
2184                 drbd_request_cache);
2185         if (drbd_request_mempool == NULL)
2186                 goto Enomem;
2187
2188         drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache);
2189         if (drbd_ee_mempool == NULL)
2190                 goto Enomem;
2191
2192         /* drbd's page pool */
2193         spin_lock_init(&drbd_pp_lock);
2194
2195         for (i = 0; i < number; i++) {
2196                 page = alloc_page(GFP_HIGHUSER);
2197                 if (!page)
2198                         goto Enomem;
2199                 set_page_private(page, (unsigned long)drbd_pp_pool);
2200                 drbd_pp_pool = page;
2201         }
2202         drbd_pp_vacant = number;
2203
2204         return 0;
2205
2206 Enomem:
2207         drbd_destroy_mempools(); /* in case we allocated some */
2208         return -ENOMEM;
2209 }
2210
2211 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2212 {
2213         int rr;
2214
2215         rr = drbd_free_peer_reqs(device, &device->active_ee);
2216         if (rr)
2217                 drbd_err(device, "%d EEs in active list found!\n", rr);
2218
2219         rr = drbd_free_peer_reqs(device, &device->sync_ee);
2220         if (rr)
2221                 drbd_err(device, "%d EEs in sync list found!\n", rr);
2222
2223         rr = drbd_free_peer_reqs(device, &device->read_ee);
2224         if (rr)
2225                 drbd_err(device, "%d EEs in read list found!\n", rr);
2226
2227         rr = drbd_free_peer_reqs(device, &device->done_ee);
2228         if (rr)
2229                 drbd_err(device, "%d EEs in done list found!\n", rr);
2230
2231         rr = drbd_free_peer_reqs(device, &device->net_ee);
2232         if (rr)
2233                 drbd_err(device, "%d EEs in net list found!\n", rr);
2234 }
2235
2236 /* caution. no locking. */
2237 void drbd_destroy_device(struct kref *kref)
2238 {
2239         struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2240         struct drbd_resource *resource = device->resource;
2241         struct drbd_peer_device *peer_device, *tmp_peer_device;
2242
2243         del_timer_sync(&device->request_timer);
2244
2245         /* paranoia asserts */
2246         D_ASSERT(device, device->open_cnt == 0);
2247         /* end paranoia asserts */
2248
2249         /* cleanup stuff that may have been allocated during
2250          * device (re-)configuration or state changes */
2251
2252         if (device->this_bdev)
2253                 bdput(device->this_bdev);
2254
2255         drbd_backing_dev_free(device, device->ldev);
2256         device->ldev = NULL;
2257
2258         drbd_release_all_peer_reqs(device);
2259
2260         lc_destroy(device->act_log);
2261         lc_destroy(device->resync);
2262
2263         kfree(device->p_uuid);
2264         /* device->p_uuid = NULL; */
2265
2266         if (device->bitmap) /* should no longer be there. */
2267                 drbd_bm_cleanup(device);
2268         __free_page(device->md_io.page);
2269         put_disk(device->vdisk);
2270         blk_cleanup_queue(device->rq_queue);
2271         kfree(device->rs_plan_s);
2272
2273         /* not for_each_connection(connection, resource):
2274          * those may have been cleaned up and disassociated already.
2275          */
2276         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2277                 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2278                 kfree(peer_device);
2279         }
2280         memset(device, 0xfd, sizeof(*device));
2281         kfree(device);
2282         kref_put(&resource->kref, drbd_destroy_resource);
2283 }
2284
2285 /* One global retry thread, if we need to push back some bio and have it
2286  * reinserted through our make request function.
2287  */
2288 static struct retry_worker {
2289         struct workqueue_struct *wq;
2290         struct work_struct worker;
2291
2292         spinlock_t lock;
2293         struct list_head writes;
2294 } retry;
2295
2296 static void do_retry(struct work_struct *ws)
2297 {
2298         struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2299         LIST_HEAD(writes);
2300         struct drbd_request *req, *tmp;
2301
2302         spin_lock_irq(&retry->lock);
2303         list_splice_init(&retry->writes, &writes);
2304         spin_unlock_irq(&retry->lock);
2305
2306         list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2307                 struct drbd_device *device = req->device;
2308                 struct bio *bio = req->master_bio;
2309                 unsigned long start_jif = req->start_jif;
2310                 bool expected;
2311
2312                 expected =
2313                         expect(atomic_read(&req->completion_ref) == 0) &&
2314                         expect(req->rq_state & RQ_POSTPONED) &&
2315                         expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2316                                 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2317
2318                 if (!expected)
2319                         drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2320                                 req, atomic_read(&req->completion_ref),
2321                                 req->rq_state);
2322
2323                 /* We still need to put one kref associated with the
2324                  * "completion_ref" going zero in the code path that queued it
2325                  * here.  The request object may still be referenced by a
2326                  * frozen local req->private_bio, in case we force-detached.
2327                  */
2328                 kref_put(&req->kref, drbd_req_destroy);
2329
2330                 /* A single suspended or otherwise blocking device may stall
2331                  * all others as well.  Fortunately, this code path is to
2332                  * recover from a situation that "should not happen":
2333                  * concurrent writes in multi-primary setup.
2334                  * In a "normal" lifecycle, this workqueue is supposed to be
2335                  * destroyed without ever doing anything.
2336                  * If it turns out to be an issue anyways, we can do per
2337                  * resource (replication group) or per device (minor) retry
2338                  * workqueues instead.
2339                  */
2340
2341                 /* We are not just doing generic_make_request(),
2342                  * as we want to keep the start_time information. */
2343                 inc_ap_bio(device);
2344                 __drbd_make_request(device, bio, start_jif);
2345         }
2346 }
2347
2348 /* called via drbd_req_put_completion_ref(),
2349  * holds resource->req_lock */
2350 void drbd_restart_request(struct drbd_request *req)
2351 {
2352         unsigned long flags;
2353         spin_lock_irqsave(&retry.lock, flags);
2354         list_move_tail(&req->tl_requests, &retry.writes);
2355         spin_unlock_irqrestore(&retry.lock, flags);
2356
2357         /* Drop the extra reference that would otherwise
2358          * have been dropped by complete_master_bio.
2359          * do_retry() needs to grab a new one. */
2360         dec_ap_bio(req->device);
2361
2362         queue_work(retry.wq, &retry.worker);
2363 }
2364
2365 void drbd_destroy_resource(struct kref *kref)
2366 {
2367         struct drbd_resource *resource =
2368                 container_of(kref, struct drbd_resource, kref);
2369
2370         idr_destroy(&resource->devices);
2371         free_cpumask_var(resource->cpu_mask);
2372         kfree(resource->name);
2373         memset(resource, 0xf2, sizeof(*resource));
2374         kfree(resource);
2375 }
2376
2377 void drbd_free_resource(struct drbd_resource *resource)
2378 {
2379         struct drbd_connection *connection, *tmp;
2380
2381         for_each_connection_safe(connection, tmp, resource) {
2382                 list_del(&connection->connections);
2383                 drbd_debugfs_connection_cleanup(connection);
2384                 kref_put(&connection->kref, drbd_destroy_connection);
2385         }
2386         drbd_debugfs_resource_cleanup(resource);
2387         kref_put(&resource->kref, drbd_destroy_resource);
2388 }
2389
2390 static void drbd_cleanup(void)
2391 {
2392         unsigned int i;
2393         struct drbd_device *device;
2394         struct drbd_resource *resource, *tmp;
2395
2396         /* first remove proc,
2397          * drbdsetup uses it's presence to detect
2398          * whether DRBD is loaded.
2399          * If we would get stuck in proc removal,
2400          * but have netlink already deregistered,
2401          * some drbdsetup commands may wait forever
2402          * for an answer.
2403          */
2404         if (drbd_proc)
2405                 remove_proc_entry("drbd", NULL);
2406
2407         if (retry.wq)
2408                 destroy_workqueue(retry.wq);
2409
2410         drbd_genl_unregister();
2411         drbd_debugfs_cleanup();
2412
2413         idr_for_each_entry(&drbd_devices, device, i)
2414                 drbd_delete_device(device);
2415
2416         /* not _rcu since, no other updater anymore. Genl already unregistered */
2417         for_each_resource_safe(resource, tmp, &drbd_resources) {
2418                 list_del(&resource->resources);
2419                 drbd_free_resource(resource);
2420         }
2421
2422         drbd_destroy_mempools();
2423         unregister_blkdev(DRBD_MAJOR, "drbd");
2424
2425         idr_destroy(&drbd_devices);
2426
2427         pr_info("module cleanup done.\n");
2428 }
2429
2430 /**
2431  * drbd_congested() - Callback for the flusher thread
2432  * @congested_data:     User data
2433  * @bdi_bits:           Bits the BDI flusher thread is currently interested in
2434  *
2435  * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested.
2436  */
2437 static int drbd_congested(void *congested_data, int bdi_bits)
2438 {
2439         struct drbd_device *device = congested_data;
2440         struct request_queue *q;
2441         char reason = '-';
2442         int r = 0;
2443
2444         if (!may_inc_ap_bio(device)) {
2445                 /* DRBD has frozen IO */
2446                 r = bdi_bits;
2447                 reason = 'd';
2448                 goto out;
2449         }
2450
2451         if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2452                 r |= (1 << WB_async_congested);
2453                 /* Without good local data, we would need to read from remote,
2454                  * and that would need the worker thread as well, which is
2455                  * currently blocked waiting for that usermode helper to
2456                  * finish.
2457                  */
2458                 if (!get_ldev_if_state(device, D_UP_TO_DATE))
2459                         r |= (1 << WB_sync_congested);
2460                 else
2461                         put_ldev(device);
2462                 r &= bdi_bits;
2463                 reason = 'c';
2464                 goto out;
2465         }
2466
2467         if (get_ldev(device)) {
2468                 q = bdev_get_queue(device->ldev->backing_bdev);
2469                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
2470                 put_ldev(device);
2471                 if (r)
2472                         reason = 'b';
2473         }
2474
2475         if (bdi_bits & (1 << WB_async_congested) &&
2476             test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2477                 r |= (1 << WB_async_congested);
2478                 reason = reason == 'b' ? 'a' : 'n';
2479         }
2480
2481 out:
2482         device->congestion_reason = reason;
2483         return r;
2484 }
2485
2486 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2487 {
2488         spin_lock_init(&wq->q_lock);
2489         INIT_LIST_HEAD(&wq->q);
2490         init_waitqueue_head(&wq->q_wait);
2491 }
2492
2493 struct completion_work {
2494         struct drbd_work w;
2495         struct completion done;
2496 };
2497
2498 static int w_complete(struct drbd_work *w, int cancel)
2499 {
2500         struct completion_work *completion_work =
2501                 container_of(w, struct completion_work, w);
2502
2503         complete(&completion_work->done);
2504         return 0;
2505 }
2506
2507 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2508 {
2509         struct completion_work completion_work;
2510
2511         completion_work.w.cb = w_complete;
2512         init_completion(&completion_work.done);
2513         drbd_queue_work(work_queue, &completion_work.w);
2514         wait_for_completion(&completion_work.done);
2515 }
2516
2517 struct drbd_resource *drbd_find_resource(const char *name)
2518 {
2519         struct drbd_resource *resource;
2520
2521         if (!name || !name[0])
2522                 return NULL;
2523
2524         rcu_read_lock();
2525         for_each_resource_rcu(resource, &drbd_resources) {
2526                 if (!strcmp(resource->name, name)) {
2527                         kref_get(&resource->kref);
2528                         goto found;
2529                 }
2530         }
2531         resource = NULL;
2532 found:
2533         rcu_read_unlock();
2534         return resource;
2535 }
2536
2537 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2538                                      void *peer_addr, int peer_addr_len)
2539 {
2540         struct drbd_resource *resource;
2541         struct drbd_connection *connection;
2542
2543         rcu_read_lock();
2544         for_each_resource_rcu(resource, &drbd_resources) {
2545                 for_each_connection_rcu(connection, resource) {
2546                         if (connection->my_addr_len == my_addr_len &&
2547                             connection->peer_addr_len == peer_addr_len &&
2548                             !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2549                             !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2550                                 kref_get(&connection->kref);
2551                                 goto found;
2552                         }
2553                 }
2554         }
2555         connection = NULL;
2556 found:
2557         rcu_read_unlock();
2558         return connection;
2559 }
2560
2561 static int drbd_alloc_socket(struct drbd_socket *socket)
2562 {
2563         socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2564         if (!socket->rbuf)
2565                 return -ENOMEM;
2566         socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2567         if (!socket->sbuf)
2568                 return -ENOMEM;
2569         return 0;
2570 }
2571
2572 static void drbd_free_socket(struct drbd_socket *socket)
2573 {
2574         free_page((unsigned long) socket->sbuf);
2575         free_page((unsigned long) socket->rbuf);
2576 }
2577
2578 void conn_free_crypto(struct drbd_connection *connection)
2579 {
2580         drbd_free_sock(connection);
2581
2582         crypto_free_ahash(connection->csums_tfm);
2583         crypto_free_ahash(connection->verify_tfm);
2584         crypto_free_shash(connection->cram_hmac_tfm);
2585         crypto_free_ahash(connection->integrity_tfm);
2586         crypto_free_ahash(connection->peer_integrity_tfm);
2587         kfree(connection->int_dig_in);
2588         kfree(connection->int_dig_vv);
2589
2590         connection->csums_tfm = NULL;
2591         connection->verify_tfm = NULL;
2592         connection->cram_hmac_tfm = NULL;
2593         connection->integrity_tfm = NULL;
2594         connection->peer_integrity_tfm = NULL;
2595         connection->int_dig_in = NULL;
2596         connection->int_dig_vv = NULL;
2597 }
2598
2599 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2600 {
2601         struct drbd_connection *connection;
2602         cpumask_var_t new_cpu_mask;
2603         int err;
2604
2605         if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2606                 return -ENOMEM;
2607
2608         /* silently ignore cpu mask on UP kernel */
2609         if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2610                 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2611                                    cpumask_bits(new_cpu_mask), nr_cpu_ids);
2612                 if (err == -EOVERFLOW) {
2613                         /* So what. mask it out. */
2614                         cpumask_var_t tmp_cpu_mask;
2615                         if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2616                                 cpumask_setall(tmp_cpu_mask);
2617                                 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2618                                 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2619                                         res_opts->cpu_mask,
2620                                         strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2621                                         nr_cpu_ids);
2622                                 free_cpumask_var(tmp_cpu_mask);
2623                                 err = 0;
2624                         }
2625                 }
2626                 if (err) {
2627                         drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2628                         /* retcode = ERR_CPU_MASK_PARSE; */
2629                         goto fail;
2630                 }
2631         }
2632         resource->res_opts = *res_opts;
2633         if (cpumask_empty(new_cpu_mask))
2634                 drbd_calc_cpu_mask(&new_cpu_mask);
2635         if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2636                 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2637                 for_each_connection_rcu(connection, resource) {
2638                         connection->receiver.reset_cpu_mask = 1;
2639                         connection->ack_receiver.reset_cpu_mask = 1;
2640                         connection->worker.reset_cpu_mask = 1;
2641                 }
2642         }
2643         err = 0;
2644
2645 fail:
2646         free_cpumask_var(new_cpu_mask);
2647         return err;
2648
2649 }
2650
2651 struct drbd_resource *drbd_create_resource(const char *name)
2652 {
2653         struct drbd_resource *resource;
2654
2655         resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2656         if (!resource)
2657                 goto fail;
2658         resource->name = kstrdup(name, GFP_KERNEL);
2659         if (!resource->name)
2660                 goto fail_free_resource;
2661         if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2662                 goto fail_free_name;
2663         kref_init(&resource->kref);
2664         idr_init(&resource->devices);
2665         INIT_LIST_HEAD(&resource->connections);
2666         resource->write_ordering = WO_BDEV_FLUSH;
2667         list_add_tail_rcu(&resource->resources, &drbd_resources);
2668         mutex_init(&resource->conf_update);
2669         mutex_init(&resource->adm_mutex);
2670         spin_lock_init(&resource->req_lock);
2671         drbd_debugfs_resource_add(resource);
2672         return resource;
2673
2674 fail_free_name:
2675         kfree(resource->name);
2676 fail_free_resource:
2677         kfree(resource);
2678 fail:
2679         return NULL;
2680 }
2681
2682 /* caller must be under adm_mutex */
2683 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2684 {
2685         struct drbd_resource *resource;
2686         struct drbd_connection *connection;
2687
2688         connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2689         if (!connection)
2690                 return NULL;
2691
2692         if (drbd_alloc_socket(&connection->data))
2693                 goto fail;
2694         if (drbd_alloc_socket(&connection->meta))
2695                 goto fail;
2696
2697         connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2698         if (!connection->current_epoch)
2699                 goto fail;
2700
2701         INIT_LIST_HEAD(&connection->transfer_log);
2702
2703         INIT_LIST_HEAD(&connection->current_epoch->list);
2704         connection->epochs = 1;
2705         spin_lock_init(&connection->epoch_lock);
2706
2707         connection->send.seen_any_write_yet = false;
2708         connection->send.current_epoch_nr = 0;
2709         connection->send.current_epoch_writes = 0;
2710
2711         resource = drbd_create_resource(name);
2712         if (!resource)
2713                 goto fail;
2714
2715         connection->cstate = C_STANDALONE;
2716         mutex_init(&connection->cstate_mutex);
2717         init_waitqueue_head(&connection->ping_wait);
2718         idr_init(&connection->peer_devices);
2719
2720         drbd_init_workqueue(&connection->sender_work);
2721         mutex_init(&connection->data.mutex);
2722         mutex_init(&connection->meta.mutex);
2723
2724         drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2725         connection->receiver.connection = connection;
2726         drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2727         connection->worker.connection = connection;
2728         drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2729         connection->ack_receiver.connection = connection;
2730
2731         kref_init(&connection->kref);
2732
2733         connection->resource = resource;
2734
2735         if (set_resource_options(resource, res_opts))
2736                 goto fail_resource;
2737
2738         kref_get(&resource->kref);
2739         list_add_tail_rcu(&connection->connections, &resource->connections);
2740         drbd_debugfs_connection_add(connection);
2741         return connection;
2742
2743 fail_resource:
2744         list_del(&resource->resources);
2745         drbd_free_resource(resource);
2746 fail:
2747         kfree(connection->current_epoch);
2748         drbd_free_socket(&connection->meta);
2749         drbd_free_socket(&connection->data);
2750         kfree(connection);
2751         return NULL;
2752 }
2753
2754 void drbd_destroy_connection(struct kref *kref)
2755 {
2756         struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2757         struct drbd_resource *resource = connection->resource;
2758
2759         if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2760                 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2761         kfree(connection->current_epoch);
2762
2763         idr_destroy(&connection->peer_devices);
2764
2765         drbd_free_socket(&connection->meta);
2766         drbd_free_socket(&connection->data);
2767         kfree(connection->int_dig_in);
2768         kfree(connection->int_dig_vv);
2769         memset(connection, 0xfc, sizeof(*connection));
2770         kfree(connection);
2771         kref_put(&resource->kref, drbd_destroy_resource);
2772 }
2773
2774 static int init_submitter(struct drbd_device *device)
2775 {
2776         /* opencoded create_singlethread_workqueue(),
2777          * to be able to say "drbd%d", ..., minor */
2778         device->submit.wq =
2779                 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2780         if (!device->submit.wq)
2781                 return -ENOMEM;
2782
2783         INIT_WORK(&device->submit.worker, do_submit);
2784         INIT_LIST_HEAD(&device->submit.writes);
2785         return 0;
2786 }
2787
2788 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2789 {
2790         struct drbd_resource *resource = adm_ctx->resource;
2791         struct drbd_connection *connection;
2792         struct drbd_device *device;
2793         struct drbd_peer_device *peer_device, *tmp_peer_device;
2794         struct gendisk *disk;
2795         struct request_queue *q;
2796         int id;
2797         int vnr = adm_ctx->volume;
2798         enum drbd_ret_code err = ERR_NOMEM;
2799
2800         device = minor_to_device(minor);
2801         if (device)
2802                 return ERR_MINOR_OR_VOLUME_EXISTS;
2803
2804         /* GFP_KERNEL, we are outside of all write-out paths */
2805         device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2806         if (!device)
2807                 return ERR_NOMEM;
2808         kref_init(&device->kref);
2809
2810         kref_get(&resource->kref);
2811         device->resource = resource;
2812         device->minor = minor;
2813         device->vnr = vnr;
2814
2815         drbd_init_set_defaults(device);
2816
2817         q = blk_alloc_queue(GFP_KERNEL);
2818         if (!q)
2819                 goto out_no_q;
2820         device->rq_queue = q;
2821         q->queuedata   = device;
2822
2823         disk = alloc_disk(1);
2824         if (!disk)
2825                 goto out_no_disk;
2826         device->vdisk = disk;
2827
2828         set_disk_ro(disk, true);
2829
2830         disk->queue = q;
2831         disk->major = DRBD_MAJOR;
2832         disk->first_minor = minor;
2833         disk->fops = &drbd_ops;
2834         sprintf(disk->disk_name, "drbd%d", minor);
2835         disk->private_data = device;
2836
2837         device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2838         /* we have no partitions. we contain only ourselves. */
2839         device->this_bdev->bd_contains = device->this_bdev;
2840
2841         q->backing_dev_info.congested_fn = drbd_congested;
2842         q->backing_dev_info.congested_data = device;
2843
2844         blk_queue_make_request(q, drbd_make_request);
2845         blk_queue_write_cache(q, true, true);
2846         /* Setting the max_hw_sectors to an odd value of 8kibyte here
2847            This triggers a max_bio_size message upon first attach or connect */
2848         blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2849         blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2850         q->queue_lock = &resource->req_lock;
2851
2852         device->md_io.page = alloc_page(GFP_KERNEL);
2853         if (!device->md_io.page)
2854                 goto out_no_io_page;
2855
2856         if (drbd_bm_init(device))
2857                 goto out_no_bitmap;
2858         device->read_requests = RB_ROOT;
2859         device->write_requests = RB_ROOT;
2860
2861         id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2862         if (id < 0) {
2863                 if (id == -ENOSPC)
2864                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2865                 goto out_no_minor_idr;
2866         }
2867         kref_get(&device->kref);
2868
2869         id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2870         if (id < 0) {
2871                 if (id == -ENOSPC)
2872                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2873                 goto out_idr_remove_minor;
2874         }
2875         kref_get(&device->kref);
2876
2877         INIT_LIST_HEAD(&device->peer_devices);
2878         INIT_LIST_HEAD(&device->pending_bitmap_io);
2879         for_each_connection(connection, resource) {
2880                 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2881                 if (!peer_device)
2882                         goto out_idr_remove_from_resource;
2883                 peer_device->connection = connection;
2884                 peer_device->device = device;
2885
2886                 list_add(&peer_device->peer_devices, &device->peer_devices);
2887                 kref_get(&device->kref);
2888
2889                 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2890                 if (id < 0) {
2891                         if (id == -ENOSPC)
2892                                 err = ERR_INVALID_REQUEST;
2893                         goto out_idr_remove_from_resource;
2894                 }
2895                 kref_get(&connection->kref);
2896                 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2897         }
2898
2899         if (init_submitter(device)) {
2900                 err = ERR_NOMEM;
2901                 goto out_idr_remove_vol;
2902         }
2903
2904         add_disk(disk);
2905
2906         /* inherit the connection state */
2907         device->state.conn = first_connection(resource)->cstate;
2908         if (device->state.conn == C_WF_REPORT_PARAMS) {
2909                 for_each_peer_device(peer_device, device)
2910                         drbd_connected(peer_device);
2911         }
2912         /* move to create_peer_device() */
2913         for_each_peer_device(peer_device, device)
2914                 drbd_debugfs_peer_device_add(peer_device);
2915         drbd_debugfs_device_add(device);
2916         return NO_ERROR;
2917
2918 out_idr_remove_vol:
2919         idr_remove(&connection->peer_devices, vnr);
2920 out_idr_remove_from_resource:
2921         for_each_connection(connection, resource) {
2922                 peer_device = idr_find(&connection->peer_devices, vnr);
2923                 if (peer_device) {
2924                         idr_remove(&connection->peer_devices, vnr);
2925                         kref_put(&connection->kref, drbd_destroy_connection);
2926                 }
2927         }
2928         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2929                 list_del(&peer_device->peer_devices);
2930                 kfree(peer_device);
2931         }
2932         idr_remove(&resource->devices, vnr);
2933 out_idr_remove_minor:
2934         idr_remove(&drbd_devices, minor);
2935         synchronize_rcu();
2936 out_no_minor_idr:
2937         drbd_bm_cleanup(device);
2938 out_no_bitmap:
2939         __free_page(device->md_io.page);
2940 out_no_io_page:
2941         put_disk(disk);
2942 out_no_disk:
2943         blk_cleanup_queue(q);
2944 out_no_q:
2945         kref_put(&resource->kref, drbd_destroy_resource);
2946         kfree(device);
2947         return err;
2948 }
2949
2950 void drbd_delete_device(struct drbd_device *device)
2951 {
2952         struct drbd_resource *resource = device->resource;
2953         struct drbd_connection *connection;
2954         struct drbd_peer_device *peer_device;
2955         int refs = 3;
2956
2957         /* move to free_peer_device() */
2958         for_each_peer_device(peer_device, device)
2959                 drbd_debugfs_peer_device_cleanup(peer_device);
2960         drbd_debugfs_device_cleanup(device);
2961         for_each_connection(connection, resource) {
2962                 idr_remove(&connection->peer_devices, device->vnr);
2963                 refs++;
2964         }
2965         idr_remove(&resource->devices, device->vnr);
2966         idr_remove(&drbd_devices, device_to_minor(device));
2967         del_gendisk(device->vdisk);
2968         synchronize_rcu();
2969         kref_sub(&device->kref, refs, drbd_destroy_device);
2970 }
2971
2972 static int __init drbd_init(void)
2973 {
2974         int err;
2975
2976         if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2977                 pr_err("invalid minor_count (%d)\n", minor_count);
2978 #ifdef MODULE
2979                 return -EINVAL;
2980 #else
2981                 minor_count = DRBD_MINOR_COUNT_DEF;
2982 #endif
2983         }
2984
2985         err = register_blkdev(DRBD_MAJOR, "drbd");
2986         if (err) {
2987                 pr_err("unable to register block device major %d\n",
2988                        DRBD_MAJOR);
2989                 return err;
2990         }
2991
2992         /*
2993          * allocate all necessary structs
2994          */
2995         init_waitqueue_head(&drbd_pp_wait);
2996
2997         drbd_proc = NULL; /* play safe for drbd_cleanup */
2998         idr_init(&drbd_devices);
2999
3000         mutex_init(&resources_mutex);
3001         INIT_LIST_HEAD(&drbd_resources);
3002
3003         err = drbd_genl_register();
3004         if (err) {
3005                 pr_err("unable to register generic netlink family\n");
3006                 goto fail;
3007         }
3008
3009         err = drbd_create_mempools();
3010         if (err)
3011                 goto fail;
3012
3013         err = -ENOMEM;
3014         drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
3015         if (!drbd_proc) {
3016                 pr_err("unable to register proc file\n");
3017                 goto fail;
3018         }
3019
3020         retry.wq = create_singlethread_workqueue("drbd-reissue");
3021         if (!retry.wq) {
3022                 pr_err("unable to create retry workqueue\n");
3023                 goto fail;
3024         }
3025         INIT_WORK(&retry.worker, do_retry);
3026         spin_lock_init(&retry.lock);
3027         INIT_LIST_HEAD(&retry.writes);
3028
3029         if (drbd_debugfs_init())
3030                 pr_notice("failed to initialize debugfs -- will not be available\n");
3031
3032         pr_info("initialized. "
3033                "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
3034                API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
3035         pr_info("%s\n", drbd_buildtag());
3036         pr_info("registered as block device major %d\n", DRBD_MAJOR);
3037         return 0; /* Success! */
3038
3039 fail:
3040         drbd_cleanup();
3041         if (err == -ENOMEM)
3042                 pr_err("ran out of memory\n");
3043         else
3044                 pr_err("initialization failure\n");
3045         return err;
3046 }
3047
3048 static void drbd_free_one_sock(struct drbd_socket *ds)
3049 {
3050         struct socket *s;
3051         mutex_lock(&ds->mutex);
3052         s = ds->socket;
3053         ds->socket = NULL;
3054         mutex_unlock(&ds->mutex);
3055         if (s) {
3056                 /* so debugfs does not need to mutex_lock() */
3057                 synchronize_rcu();
3058                 kernel_sock_shutdown(s, SHUT_RDWR);
3059                 sock_release(s);
3060         }
3061 }
3062
3063 void drbd_free_sock(struct drbd_connection *connection)
3064 {
3065         if (connection->data.socket)
3066                 drbd_free_one_sock(&connection->data);
3067         if (connection->meta.socket)
3068                 drbd_free_one_sock(&connection->meta);
3069 }
3070
3071 /* meta data management */
3072
3073 void conn_md_sync(struct drbd_connection *connection)
3074 {
3075         struct drbd_peer_device *peer_device;
3076         int vnr;
3077
3078         rcu_read_lock();
3079         idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
3080                 struct drbd_device *device = peer_device->device;
3081
3082                 kref_get(&device->kref);
3083                 rcu_read_unlock();
3084                 drbd_md_sync(device);
3085                 kref_put(&device->kref, drbd_destroy_device);
3086                 rcu_read_lock();
3087         }
3088         rcu_read_unlock();
3089 }
3090
3091 /* aligned 4kByte */
3092 struct meta_data_on_disk {
3093         u64 la_size_sect;      /* last agreed size. */
3094         u64 uuid[UI_SIZE];   /* UUIDs. */
3095         u64 device_uuid;
3096         u64 reserved_u64_1;
3097         u32 flags;             /* MDF */
3098         u32 magic;
3099         u32 md_size_sect;
3100         u32 al_offset;         /* offset to this block */
3101         u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3102               /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3103         u32 bm_offset;         /* offset to the bitmap, from here */
3104         u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3105         u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3106
3107         /* see al_tr_number_to_on_disk_sector() */
3108         u32 al_stripes;
3109         u32 al_stripe_size_4k;
3110
3111         u8 reserved_u8[4096 - (7*8 + 10*4)];
3112 } __packed;
3113
3114
3115
3116 void drbd_md_write(struct drbd_device *device, void *b)
3117 {
3118         struct meta_data_on_disk *buffer = b;
3119         sector_t sector;
3120         int i;
3121
3122         memset(buffer, 0, sizeof(*buffer));
3123
3124         buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3125         for (i = UI_CURRENT; i < UI_SIZE; i++)
3126                 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3127         buffer->flags = cpu_to_be32(device->ldev->md.flags);
3128         buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3129
3130         buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3131         buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3132         buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3133         buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3134         buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3135
3136         buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3137         buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3138
3139         buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3140         buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3141
3142         D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3143         sector = device->ldev->md.md_offset;
3144
3145         if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3146                 /* this was a try anyways ... */
3147                 drbd_err(device, "meta data update failed!\n");
3148                 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3149         }
3150 }
3151
3152 /**
3153  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3154  * @device:     DRBD device.
3155  */
3156 void drbd_md_sync(struct drbd_device *device)
3157 {
3158         struct meta_data_on_disk *buffer;
3159
3160         /* Don't accidentally change the DRBD meta data layout. */
3161         BUILD_BUG_ON(UI_SIZE != 4);
3162         BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3163
3164         del_timer(&device->md_sync_timer);
3165         /* timer may be rearmed by drbd_md_mark_dirty() now. */
3166         if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3167                 return;
3168
3169         /* We use here D_FAILED and not D_ATTACHING because we try to write
3170          * metadata even if we detach due to a disk failure! */
3171         if (!get_ldev_if_state(device, D_FAILED))
3172                 return;
3173
3174         buffer = drbd_md_get_buffer(device, __func__);
3175         if (!buffer)
3176                 goto out;
3177
3178         drbd_md_write(device, buffer);
3179
3180         /* Update device->ldev->md.la_size_sect,
3181          * since we updated it on metadata. */
3182         device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3183
3184         drbd_md_put_buffer(device);
3185 out:
3186         put_ldev(device);
3187 }
3188
3189 static int check_activity_log_stripe_size(struct drbd_device *device,
3190                 struct meta_data_on_disk *on_disk,
3191                 struct drbd_md *in_core)
3192 {
3193         u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3194         u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3195         u64 al_size_4k;
3196
3197         /* both not set: default to old fixed size activity log */
3198         if (al_stripes == 0 && al_stripe_size_4k == 0) {
3199                 al_stripes = 1;
3200                 al_stripe_size_4k = MD_32kB_SECT/8;
3201         }
3202
3203         /* some paranoia plausibility checks */
3204
3205         /* we need both values to be set */
3206         if (al_stripes == 0 || al_stripe_size_4k == 0)
3207                 goto err;
3208
3209         al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3210
3211         /* Upper limit of activity log area, to avoid potential overflow
3212          * problems in al_tr_number_to_on_disk_sector(). As right now, more
3213          * than 72 * 4k blocks total only increases the amount of history,
3214          * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3215         if (al_size_4k > (16 * 1024 * 1024/4))
3216                 goto err;
3217
3218         /* Lower limit: we need at least 8 transaction slots (32kB)
3219          * to not break existing setups */
3220         if (al_size_4k < MD_32kB_SECT/8)
3221                 goto err;
3222
3223         in_core->al_stripe_size_4k = al_stripe_size_4k;
3224         in_core->al_stripes = al_stripes;
3225         in_core->al_size_4k = al_size_4k;
3226
3227         return 0;
3228 err:
3229         drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3230                         al_stripes, al_stripe_size_4k);
3231         return -EINVAL;
3232 }
3233
3234 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3235 {
3236         sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3237         struct drbd_md *in_core = &bdev->md;
3238         s32 on_disk_al_sect;
3239         s32 on_disk_bm_sect;
3240
3241         /* The on-disk size of the activity log, calculated from offsets, and
3242          * the size of the activity log calculated from the stripe settings,
3243          * should match.
3244          * Though we could relax this a bit: it is ok, if the striped activity log
3245          * fits in the available on-disk activity log size.
3246          * Right now, that would break how resize is implemented.
3247          * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3248          * of possible unused padding space in the on disk layout. */
3249         if (in_core->al_offset < 0) {
3250                 if (in_core->bm_offset > in_core->al_offset)
3251                         goto err;
3252                 on_disk_al_sect = -in_core->al_offset;
3253                 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3254         } else {
3255                 if (in_core->al_offset != MD_4kB_SECT)
3256                         goto err;
3257                 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3258                         goto err;
3259
3260                 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3261                 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3262         }
3263
3264         /* old fixed size meta data is exactly that: fixed. */
3265         if (in_core->meta_dev_idx >= 0) {
3266                 if (in_core->md_size_sect != MD_128MB_SECT
3267                 ||  in_core->al_offset != MD_4kB_SECT
3268                 ||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3269                 ||  in_core->al_stripes != 1
3270                 ||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3271                         goto err;
3272         }
3273
3274         if (capacity < in_core->md_size_sect)
3275                 goto err;
3276         if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3277                 goto err;
3278
3279         /* should be aligned, and at least 32k */
3280         if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3281                 goto err;
3282
3283         /* should fit (for now: exactly) into the available on-disk space;
3284          * overflow prevention is in check_activity_log_stripe_size() above. */
3285         if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3286                 goto err;
3287
3288         /* again, should be aligned */
3289         if (in_core->bm_offset & 7)
3290                 goto err;
3291
3292         /* FIXME check for device grow with flex external meta data? */
3293
3294         /* can the available bitmap space cover the last agreed device size? */
3295         if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3296                 goto err;
3297
3298         return 0;
3299
3300 err:
3301         drbd_err(device, "meta data offsets don't make sense: idx=%d "
3302                         "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3303                         "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3304                         in_core->meta_dev_idx,
3305                         in_core->al_stripes, in_core->al_stripe_size_4k,
3306                         in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3307                         (unsigned long long)in_core->la_size_sect,
3308                         (unsigned long long)capacity);
3309
3310         return -EINVAL;
3311 }
3312
3313
3314 /**
3315  * drbd_md_read() - Reads in the meta data super block
3316  * @device:     DRBD device.
3317  * @bdev:       Device from which the meta data should be read in.
3318  *
3319  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3320  * something goes wrong.
3321  *
3322  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3323  * even before @bdev is assigned to @device->ldev.
3324  */
3325 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3326 {
3327         struct meta_data_on_disk *buffer;
3328         u32 magic, flags;
3329         int i, rv = NO_ERROR;
3330
3331         if (device->state.disk != D_DISKLESS)
3332                 return ERR_DISK_CONFIGURED;
3333
3334         buffer = drbd_md_get_buffer(device, __func__);
3335         if (!buffer)
3336                 return ERR_NOMEM;
3337
3338         /* First, figure out where our meta data superblock is located,
3339          * and read it. */
3340         bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3341         bdev->md.md_offset = drbd_md_ss(bdev);
3342         /* Even for (flexible or indexed) external meta data,
3343          * initially restrict us to the 4k superblock for now.
3344          * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3345         bdev->md.md_size_sect = 8;
3346
3347         if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3348                                  REQ_OP_READ)) {
3349                 /* NOTE: can't do normal error processing here as this is
3350                    called BEFORE disk is attached */
3351                 drbd_err(device, "Error while reading metadata.\n");
3352                 rv = ERR_IO_MD_DISK;
3353                 goto err;
3354         }
3355
3356         magic = be32_to_cpu(buffer->magic);
3357         flags = be32_to_cpu(buffer->flags);
3358         if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3359             (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3360                         /* btw: that's Activity Log clean, not "all" clean. */
3361                 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3362                 rv = ERR_MD_UNCLEAN;
3363                 goto err;
3364         }
3365
3366         rv = ERR_MD_INVALID;
3367         if (magic != DRBD_MD_MAGIC_08) {
3368                 if (magic == DRBD_MD_MAGIC_07)
3369                         drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3370                 else
3371                         drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3372                 goto err;
3373         }
3374
3375         if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3376                 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3377                     be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3378                 goto err;
3379         }
3380
3381
3382         /* convert to in_core endian */
3383         bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3384         for (i = UI_CURRENT; i < UI_SIZE; i++)
3385                 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3386         bdev->md.flags = be32_to_cpu(buffer->flags);
3387         bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3388
3389         bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3390         bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3391         bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3392
3393         if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3394                 goto err;
3395         if (check_offsets_and_sizes(device, bdev))
3396                 goto err;
3397
3398         if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3399                 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3400                     be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3401                 goto err;
3402         }
3403         if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3404                 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3405                     be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3406                 goto err;
3407         }
3408
3409         rv = NO_ERROR;
3410
3411         spin_lock_irq(&device->resource->req_lock);
3412         if (device->state.conn < C_CONNECTED) {
3413                 unsigned int peer;
3414                 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3415                 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3416                 device->peer_max_bio_size = peer;
3417         }
3418         spin_unlock_irq(&device->resource->req_lock);
3419
3420  err:
3421         drbd_md_put_buffer(device);
3422
3423         return rv;
3424 }
3425
3426 /**
3427  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3428  * @device:     DRBD device.
3429  *
3430  * Call this function if you change anything that should be written to
3431  * the meta-data super block. This function sets MD_DIRTY, and starts a
3432  * timer that ensures that within five seconds you have to call drbd_md_sync().
3433  */
3434 #ifdef DEBUG
3435 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3436 {
3437         if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3438                 mod_timer(&device->md_sync_timer, jiffies + HZ);
3439                 device->last_md_mark_dirty.line = line;
3440                 device->last_md_mark_dirty.func = func;
3441         }
3442 }
3443 #else
3444 void drbd_md_mark_dirty(struct drbd_device *device)
3445 {
3446         if (!test_and_set_bit(MD_DIRTY, &device->flags))
3447                 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3448 }
3449 #endif
3450
3451 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3452 {
3453         int i;
3454
3455         for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3456                 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3457 }
3458
3459 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3460 {
3461         if (idx == UI_CURRENT) {
3462                 if (device->state.role == R_PRIMARY)
3463                         val |= 1;
3464                 else
3465                         val &= ~((u64)1);
3466
3467                 drbd_set_ed_uuid(device, val);
3468         }
3469
3470         device->ldev->md.uuid[idx] = val;
3471         drbd_md_mark_dirty(device);
3472 }
3473
3474 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3475 {
3476         unsigned long flags;
3477         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3478         __drbd_uuid_set(device, idx, val);
3479         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3480 }
3481
3482 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3483 {
3484         unsigned long flags;
3485         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3486         if (device->ldev->md.uuid[idx]) {
3487                 drbd_uuid_move_history(device);
3488                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3489         }
3490         __drbd_uuid_set(device, idx, val);
3491         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3492 }
3493
3494 /**
3495  * drbd_uuid_new_current() - Creates a new current UUID
3496  * @device:     DRBD device.
3497  *
3498  * Creates a new current UUID, and rotates the old current UUID into
3499  * the bitmap slot. Causes an incremental resync upon next connect.
3500  */
3501 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3502 {
3503         u64 val;
3504         unsigned long long bm_uuid;
3505
3506         get_random_bytes(&val, sizeof(u64));
3507
3508         spin_lock_irq(&device->ldev->md.uuid_lock);
3509         bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3510
3511         if (bm_uuid)
3512                 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3513
3514         device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3515         __drbd_uuid_set(device, UI_CURRENT, val);
3516         spin_unlock_irq(&device->ldev->md.uuid_lock);
3517
3518         drbd_print_uuids(device, "new current UUID");
3519         /* get it to stable storage _now_ */
3520         drbd_md_sync(device);
3521 }
3522
3523 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3524 {
3525         unsigned long flags;
3526         if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3527                 return;
3528
3529         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3530         if (val == 0) {
3531                 drbd_uuid_move_history(device);
3532                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3533                 device->ldev->md.uuid[UI_BITMAP] = 0;
3534         } else {
3535                 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3536                 if (bm_uuid)
3537                         drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3538
3539                 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3540         }
3541         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3542
3543         drbd_md_mark_dirty(device);
3544 }
3545
3546 /**
3547  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3548  * @device:     DRBD device.
3549  *
3550  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3551  */
3552 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3553 {
3554         int rv = -EIO;
3555
3556         drbd_md_set_flag(device, MDF_FULL_SYNC);
3557         drbd_md_sync(device);
3558         drbd_bm_set_all(device);
3559
3560         rv = drbd_bm_write(device);
3561
3562         if (!rv) {
3563                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3564                 drbd_md_sync(device);
3565         }
3566
3567         return rv;
3568 }
3569
3570 /**
3571  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3572  * @device:     DRBD device.
3573  *
3574  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3575  */
3576 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3577 {
3578         drbd_resume_al(device);
3579         drbd_bm_clear_all(device);
3580         return drbd_bm_write(device);
3581 }
3582
3583 static int w_bitmap_io(struct drbd_work *w, int unused)
3584 {
3585         struct drbd_device *device =
3586                 container_of(w, struct drbd_device, bm_io_work.w);
3587         struct bm_io_work *work = &device->bm_io_work;
3588         int rv = -EIO;
3589
3590         if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3591                 int cnt = atomic_read(&device->ap_bio_cnt);
3592                 if (cnt)
3593                         drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3594                                         cnt, work->why);
3595         }
3596
3597         if (get_ldev(device)) {
3598                 drbd_bm_lock(device, work->why, work->flags);
3599                 rv = work->io_fn(device);
3600                 drbd_bm_unlock(device);
3601                 put_ldev(device);
3602         }
3603
3604         clear_bit_unlock(BITMAP_IO, &device->flags);
3605         wake_up(&device->misc_wait);
3606
3607         if (work->done)
3608                 work->done(device, rv);
3609
3610         clear_bit(BITMAP_IO_QUEUED, &device->flags);
3611         work->why = NULL;
3612         work->flags = 0;
3613
3614         return 0;
3615 }
3616
3617 /**
3618  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3619  * @device:     DRBD device.
3620  * @io_fn:      IO callback to be called when bitmap IO is possible
3621  * @done:       callback to be called after the bitmap IO was performed
3622  * @why:        Descriptive text of the reason for doing the IO
3623  *
3624  * While IO on the bitmap happens we freeze application IO thus we ensure
3625  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3626  * called from worker context. It MUST NOT be used while a previous such
3627  * work is still pending!
3628  *
3629  * Its worker function encloses the call of io_fn() by get_ldev() and
3630  * put_ldev().
3631  */
3632 void drbd_queue_bitmap_io(struct drbd_device *device,
3633                           int (*io_fn)(struct drbd_device *),
3634                           void (*done)(struct drbd_device *, int),
3635                           char *why, enum bm_flag flags)
3636 {
3637         D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3638
3639         D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3640         D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3641         D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3642         if (device->bm_io_work.why)
3643                 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3644                         why, device->bm_io_work.why);
3645
3646         device->bm_io_work.io_fn = io_fn;
3647         device->bm_io_work.done = done;
3648         device->bm_io_work.why = why;
3649         device->bm_io_work.flags = flags;
3650
3651         spin_lock_irq(&device->resource->req_lock);
3652         set_bit(BITMAP_IO, &device->flags);
3653         /* don't wait for pending application IO if the caller indicates that
3654          * application IO does not conflict anyways. */
3655         if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3656                 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3657                         drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3658                                         &device->bm_io_work.w);
3659         }
3660         spin_unlock_irq(&device->resource->req_lock);
3661 }
3662
3663 /**
3664  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3665  * @device:     DRBD device.
3666  * @io_fn:      IO callback to be called when bitmap IO is possible
3667  * @why:        Descriptive text of the reason for doing the IO
3668  *
3669  * freezes application IO while that the actual IO operations runs. This
3670  * functions MAY NOT be called from worker context.
3671  */
3672 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3673                 char *why, enum bm_flag flags)
3674 {
3675         /* Only suspend io, if some operation is supposed to be locked out */
3676         const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3677         int rv;
3678
3679         D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3680
3681         if (do_suspend_io)
3682                 drbd_suspend_io(device);
3683
3684         drbd_bm_lock(device, why, flags);
3685         rv = io_fn(device);
3686         drbd_bm_unlock(device);
3687
3688         if (do_suspend_io)
3689                 drbd_resume_io(device);
3690
3691         return rv;
3692 }
3693
3694 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3695 {
3696         if ((device->ldev->md.flags & flag) != flag) {
3697                 drbd_md_mark_dirty(device);
3698                 device->ldev->md.flags |= flag;
3699         }
3700 }
3701
3702 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3703 {
3704         if ((device->ldev->md.flags & flag) != 0) {
3705                 drbd_md_mark_dirty(device);
3706                 device->ldev->md.flags &= ~flag;
3707         }
3708 }
3709 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3710 {
3711         return (bdev->md.flags & flag) != 0;
3712 }
3713
3714 static void md_sync_timer_fn(unsigned long data)
3715 {
3716         struct drbd_device *device = (struct drbd_device *) data;
3717         drbd_device_post_work(device, MD_SYNC);
3718 }
3719
3720 const char *cmdname(enum drbd_packet cmd)
3721 {
3722         /* THINK may need to become several global tables
3723          * when we want to support more than
3724          * one PRO_VERSION */
3725         static const char *cmdnames[] = {
3726                 [P_DATA]                = "Data",
3727                 [P_WSAME]               = "WriteSame",
3728                 [P_TRIM]                = "Trim",
3729                 [P_DATA_REPLY]          = "DataReply",
3730                 [P_RS_DATA_REPLY]       = "RSDataReply",
3731                 [P_BARRIER]             = "Barrier",
3732                 [P_BITMAP]              = "ReportBitMap",
3733                 [P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3734                 [P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3735                 [P_UNPLUG_REMOTE]       = "UnplugRemote",
3736                 [P_DATA_REQUEST]        = "DataRequest",
3737                 [P_RS_DATA_REQUEST]     = "RSDataRequest",
3738                 [P_SYNC_PARAM]          = "SyncParam",
3739                 [P_SYNC_PARAM89]        = "SyncParam89",
3740                 [P_PROTOCOL]            = "ReportProtocol",
3741                 [P_UUIDS]               = "ReportUUIDs",
3742                 [P_SIZES]               = "ReportSizes",
3743                 [P_STATE]               = "ReportState",
3744                 [P_SYNC_UUID]           = "ReportSyncUUID",
3745                 [P_AUTH_CHALLENGE]      = "AuthChallenge",
3746                 [P_AUTH_RESPONSE]       = "AuthResponse",
3747                 [P_PING]                = "Ping",
3748                 [P_PING_ACK]            = "PingAck",
3749                 [P_RECV_ACK]            = "RecvAck",
3750                 [P_WRITE_ACK]           = "WriteAck",
3751                 [P_RS_WRITE_ACK]        = "RSWriteAck",
3752                 [P_SUPERSEDED]          = "Superseded",
3753                 [P_NEG_ACK]             = "NegAck",
3754                 [P_NEG_DREPLY]          = "NegDReply",
3755                 [P_NEG_RS_DREPLY]       = "NegRSDReply",
3756                 [P_BARRIER_ACK]         = "BarrierAck",
3757                 [P_STATE_CHG_REQ]       = "StateChgRequest",
3758                 [P_STATE_CHG_REPLY]     = "StateChgReply",
3759                 [P_OV_REQUEST]          = "OVRequest",
3760                 [P_OV_REPLY]            = "OVReply",
3761                 [P_OV_RESULT]           = "OVResult",
3762                 [P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3763                 [P_RS_IS_IN_SYNC]       = "CsumRSIsInSync",
3764                 [P_COMPRESSED_BITMAP]   = "CBitmap",
3765                 [P_DELAY_PROBE]         = "DelayProbe",
3766                 [P_OUT_OF_SYNC]         = "OutOfSync",
3767                 [P_RETRY_WRITE]         = "RetryWrite",
3768                 [P_RS_CANCEL]           = "RSCancel",
3769                 [P_CONN_ST_CHG_REQ]     = "conn_st_chg_req",
3770                 [P_CONN_ST_CHG_REPLY]   = "conn_st_chg_reply",
3771                 [P_RETRY_WRITE]         = "retry_write",
3772                 [P_PROTOCOL_UPDATE]     = "protocol_update",
3773                 [P_RS_THIN_REQ]         = "rs_thin_req",
3774                 [P_RS_DEALLOCATED]      = "rs_deallocated",
3775
3776                 /* enum drbd_packet, but not commands - obsoleted flags:
3777                  *      P_MAY_IGNORE
3778                  *      P_MAX_OPT_CMD
3779                  */
3780         };
3781
3782         /* too big for the array: 0xfffX */
3783         if (cmd == P_INITIAL_META)
3784                 return "InitialMeta";
3785         if (cmd == P_INITIAL_DATA)
3786                 return "InitialData";
3787         if (cmd == P_CONNECTION_FEATURES)
3788                 return "ConnectionFeatures";
3789         if (cmd >= ARRAY_SIZE(cmdnames))
3790                 return "Unknown";
3791         return cmdnames[cmd];
3792 }
3793
3794 /**
3795  * drbd_wait_misc  -  wait for a request to make progress
3796  * @device:     device associated with the request
3797  * @i:          the struct drbd_interval embedded in struct drbd_request or
3798  *              struct drbd_peer_request
3799  */
3800 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3801 {
3802         struct net_conf *nc;
3803         DEFINE_WAIT(wait);
3804         long timeout;
3805
3806         rcu_read_lock();
3807         nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3808         if (!nc) {
3809                 rcu_read_unlock();
3810                 return -ETIMEDOUT;
3811         }
3812         timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3813         rcu_read_unlock();
3814
3815         /* Indicate to wake up device->misc_wait on progress.  */
3816         i->waiting = true;
3817         prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3818         spin_unlock_irq(&device->resource->req_lock);
3819         timeout = schedule_timeout(timeout);
3820         finish_wait(&device->misc_wait, &wait);
3821         spin_lock_irq(&device->resource->req_lock);
3822         if (!timeout || device->state.conn < C_CONNECTED)
3823                 return -ETIMEDOUT;
3824         if (signal_pending(current))
3825                 return -ERESTARTSYS;
3826         return 0;
3827 }
3828
3829 void lock_all_resources(void)
3830 {
3831         struct drbd_resource *resource;
3832         int __maybe_unused i = 0;
3833
3834         mutex_lock(&resources_mutex);
3835         local_irq_disable();
3836         for_each_resource(resource, &drbd_resources)
3837                 spin_lock_nested(&resource->req_lock, i++);
3838 }
3839
3840 void unlock_all_resources(void)
3841 {
3842         struct drbd_resource *resource;
3843
3844         for_each_resource(resource, &drbd_resources)
3845                 spin_unlock(&resource->req_lock);
3846         local_irq_enable();
3847         mutex_unlock(&resources_mutex);
3848 }
3849
3850 #ifdef CONFIG_DRBD_FAULT_INJECTION
3851 /* Fault insertion support including random number generator shamelessly
3852  * stolen from kernel/rcutorture.c */
3853 struct fault_random_state {
3854         unsigned long state;
3855         unsigned long count;
3856 };
3857
3858 #define FAULT_RANDOM_MULT 39916801  /* prime */
3859 #define FAULT_RANDOM_ADD        479001701 /* prime */
3860 #define FAULT_RANDOM_REFRESH 10000
3861
3862 /*
3863  * Crude but fast random-number generator.  Uses a linear congruential
3864  * generator, with occasional help from get_random_bytes().
3865  */
3866 static unsigned long
3867 _drbd_fault_random(struct fault_random_state *rsp)
3868 {
3869         long refresh;
3870
3871         if (!rsp->count--) {
3872                 get_random_bytes(&refresh, sizeof(refresh));
3873                 rsp->state += refresh;
3874                 rsp->count = FAULT_RANDOM_REFRESH;
3875         }
3876         rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3877         return swahw32(rsp->state);
3878 }
3879
3880 static char *
3881 _drbd_fault_str(unsigned int type) {
3882         static char *_faults[] = {
3883                 [DRBD_FAULT_MD_WR] = "Meta-data write",
3884                 [DRBD_FAULT_MD_RD] = "Meta-data read",
3885                 [DRBD_FAULT_RS_WR] = "Resync write",
3886                 [DRBD_FAULT_RS_RD] = "Resync read",
3887                 [DRBD_FAULT_DT_WR] = "Data write",
3888                 [DRBD_FAULT_DT_RD] = "Data read",
3889                 [DRBD_FAULT_DT_RA] = "Data read ahead",
3890                 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3891                 [DRBD_FAULT_AL_EE] = "EE allocation",
3892                 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3893         };
3894
3895         return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3896 }
3897
3898 unsigned int
3899 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3900 {
3901         static struct fault_random_state rrs = {0, 0};
3902
3903         unsigned int ret = (
3904                 (fault_devs == 0 ||
3905                         ((1 << device_to_minor(device)) & fault_devs) != 0) &&
3906                 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3907
3908         if (ret) {
3909                 fault_count++;
3910
3911                 if (__ratelimit(&drbd_ratelimit_state))
3912                         drbd_warn(device, "***Simulating %s failure\n",
3913                                 _drbd_fault_str(type));
3914         }
3915
3916         return ret;
3917 }
3918 #endif
3919
3920 const char *drbd_buildtag(void)
3921 {
3922         /* DRBD built from external sources has here a reference to the
3923            git hash of the source code. */
3924
3925         static char buildtag[38] = "\0uilt-in";
3926
3927         if (buildtag[0] == 0) {
3928 #ifdef MODULE
3929                 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3930 #else
3931                 buildtag[0] = 'b';
3932 #endif
3933         }
3934
3935         return buildtag;
3936 }
3937
3938 module_init(drbd_init)
3939 module_exit(drbd_cleanup)
3940
3941 EXPORT_SYMBOL(drbd_conn_str);
3942 EXPORT_SYMBOL(drbd_role_str);
3943 EXPORT_SYMBOL(drbd_disk_str);
3944 EXPORT_SYMBOL(drbd_set_st_err_str);