GNU Linux-libre 4.9.296-gnu1
[releases.git] / drivers / block / drbd / drbd_main.c
1 /*
2    drbd.c
3
4    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11    from Logicworks, Inc. for making SDP replication support possible.
12
13    drbd is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 2, or (at your option)
16    any later version.
17
18    drbd is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22
23    You should have received a copy of the GNU General Public License
24    along with drbd; see the file COPYING.  If not, write to
25    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27  */
28
29 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/jiffies.h>
33 #include <linux/drbd.h>
34 #include <linux/uaccess.h>
35 #include <asm/types.h>
36 #include <net/sock.h>
37 #include <linux/ctype.h>
38 #include <linux/mutex.h>
39 #include <linux/fs.h>
40 #include <linux/file.h>
41 #include <linux/proc_fs.h>
42 #include <linux/init.h>
43 #include <linux/mm.h>
44 #include <linux/memcontrol.h>
45 #include <linux/mm_inline.h>
46 #include <linux/slab.h>
47 #include <linux/random.h>
48 #include <linux/reboot.h>
49 #include <linux/notifier.h>
50 #include <linux/kthread.h>
51 #include <linux/workqueue.h>
52 #define __KERNEL_SYSCALLS__
53 #include <linux/unistd.h>
54 #include <linux/vmalloc.h>
55
56 #include <linux/drbd_limits.h>
57 #include "drbd_int.h"
58 #include "drbd_protocol.h"
59 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
60 #include "drbd_vli.h"
61 #include "drbd_debugfs.h"
62
63 static DEFINE_MUTEX(drbd_main_mutex);
64 static int drbd_open(struct block_device *bdev, fmode_t mode);
65 static void drbd_release(struct gendisk *gd, fmode_t mode);
66 static void md_sync_timer_fn(unsigned long data);
67 static int w_bitmap_io(struct drbd_work *w, int unused);
68
69 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
70               "Lars Ellenberg <lars@linbit.com>");
71 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
72 MODULE_VERSION(REL_VERSION);
73 MODULE_LICENSE("GPL");
74 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
75                  __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
76 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
77
78 #include <linux/moduleparam.h>
79 /* allow_open_on_secondary */
80 MODULE_PARM_DESC(allow_oos, "DONT USE!");
81 /* thanks to these macros, if compiled into the kernel (not-module),
82  * this becomes the boot parameter drbd.minor_count */
83 module_param(minor_count, uint, 0444);
84 module_param(disable_sendpage, bool, 0644);
85 module_param(allow_oos, bool, 0);
86 module_param(proc_details, int, 0644);
87
88 #ifdef CONFIG_DRBD_FAULT_INJECTION
89 int enable_faults;
90 int fault_rate;
91 static int fault_count;
92 int fault_devs;
93 /* bitmap of enabled faults */
94 module_param(enable_faults, int, 0664);
95 /* fault rate % value - applies to all enabled faults */
96 module_param(fault_rate, int, 0664);
97 /* count of faults inserted */
98 module_param(fault_count, int, 0664);
99 /* bitmap of devices to insert faults on */
100 module_param(fault_devs, int, 0644);
101 #endif
102
103 /* module parameter, defined */
104 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
105 bool disable_sendpage;
106 bool allow_oos;
107 int proc_details;       /* Detail level in proc drbd*/
108
109 /* Module parameter for setting the user mode helper program
110  * to run. Default is /sbin/drbdadm */
111 char usermode_helper[80] = "/sbin/drbdadm";
112
113 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
114
115 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
116  * as member "struct gendisk *vdisk;"
117  */
118 struct idr drbd_devices;
119 struct list_head drbd_resources;
120 struct mutex resources_mutex;
121
122 struct kmem_cache *drbd_request_cache;
123 struct kmem_cache *drbd_ee_cache;       /* peer requests */
124 struct kmem_cache *drbd_bm_ext_cache;   /* bitmap extents */
125 struct kmem_cache *drbd_al_ext_cache;   /* activity log extents */
126 mempool_t *drbd_request_mempool;
127 mempool_t *drbd_ee_mempool;
128 mempool_t *drbd_md_io_page_pool;
129 struct bio_set *drbd_md_io_bio_set;
130
131 /* I do not use a standard mempool, because:
132    1) I want to hand out the pre-allocated objects first.
133    2) I want to be able to interrupt sleeping allocation with a signal.
134    Note: This is a single linked list, the next pointer is the private
135          member of struct page.
136  */
137 struct page *drbd_pp_pool;
138 spinlock_t   drbd_pp_lock;
139 int          drbd_pp_vacant;
140 wait_queue_head_t drbd_pp_wait;
141
142 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
143
144 static const struct block_device_operations drbd_ops = {
145         .owner =   THIS_MODULE,
146         .open =    drbd_open,
147         .release = drbd_release,
148 };
149
150 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
151 {
152         struct bio *bio;
153
154         if (!drbd_md_io_bio_set)
155                 return bio_alloc(gfp_mask, 1);
156
157         bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
158         if (!bio)
159                 return NULL;
160         return bio;
161 }
162
163 #ifdef __CHECKER__
164 /* When checking with sparse, and this is an inline function, sparse will
165    give tons of false positives. When this is a real functions sparse works.
166  */
167 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
168 {
169         int io_allowed;
170
171         atomic_inc(&device->local_cnt);
172         io_allowed = (device->state.disk >= mins);
173         if (!io_allowed) {
174                 if (atomic_dec_and_test(&device->local_cnt))
175                         wake_up(&device->misc_wait);
176         }
177         return io_allowed;
178 }
179
180 #endif
181
182 /**
183  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
184  * @connection: DRBD connection.
185  * @barrier_nr: Expected identifier of the DRBD write barrier packet.
186  * @set_size:   Expected number of requests before that barrier.
187  *
188  * In case the passed barrier_nr or set_size does not match the oldest
189  * epoch of not yet barrier-acked requests, this function will cause a
190  * termination of the connection.
191  */
192 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
193                 unsigned int set_size)
194 {
195         struct drbd_request *r;
196         struct drbd_request *req = NULL;
197         int expect_epoch = 0;
198         int expect_size = 0;
199
200         spin_lock_irq(&connection->resource->req_lock);
201
202         /* find oldest not yet barrier-acked write request,
203          * count writes in its epoch. */
204         list_for_each_entry(r, &connection->transfer_log, tl_requests) {
205                 const unsigned s = r->rq_state;
206                 if (!req) {
207                         if (!(s & RQ_WRITE))
208                                 continue;
209                         if (!(s & RQ_NET_MASK))
210                                 continue;
211                         if (s & RQ_NET_DONE)
212                                 continue;
213                         req = r;
214                         expect_epoch = req->epoch;
215                         expect_size ++;
216                 } else {
217                         if (r->epoch != expect_epoch)
218                                 break;
219                         if (!(s & RQ_WRITE))
220                                 continue;
221                         /* if (s & RQ_DONE): not expected */
222                         /* if (!(s & RQ_NET_MASK)): not expected */
223                         expect_size++;
224                 }
225         }
226
227         /* first some paranoia code */
228         if (req == NULL) {
229                 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
230                          barrier_nr);
231                 goto bail;
232         }
233         if (expect_epoch != barrier_nr) {
234                 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
235                          barrier_nr, expect_epoch);
236                 goto bail;
237         }
238
239         if (expect_size != set_size) {
240                 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
241                          barrier_nr, set_size, expect_size);
242                 goto bail;
243         }
244
245         /* Clean up list of requests processed during current epoch. */
246         /* this extra list walk restart is paranoia,
247          * to catch requests being barrier-acked "unexpectedly".
248          * It usually should find the same req again, or some READ preceding it. */
249         list_for_each_entry(req, &connection->transfer_log, tl_requests)
250                 if (req->epoch == expect_epoch)
251                         break;
252         list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
253                 if (req->epoch != expect_epoch)
254                         break;
255                 _req_mod(req, BARRIER_ACKED);
256         }
257         spin_unlock_irq(&connection->resource->req_lock);
258
259         return;
260
261 bail:
262         spin_unlock_irq(&connection->resource->req_lock);
263         conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
264 }
265
266
267 /**
268  * _tl_restart() - Walks the transfer log, and applies an action to all requests
269  * @connection: DRBD connection to operate on.
270  * @what:       The action/event to perform with all request objects
271  *
272  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
273  * RESTART_FROZEN_DISK_IO.
274  */
275 /* must hold resource->req_lock */
276 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
277 {
278         struct drbd_request *req, *r;
279
280         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
281                 _req_mod(req, what);
282 }
283
284 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
285 {
286         spin_lock_irq(&connection->resource->req_lock);
287         _tl_restart(connection, what);
288         spin_unlock_irq(&connection->resource->req_lock);
289 }
290
291 /**
292  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
293  * @device:     DRBD device.
294  *
295  * This is called after the connection to the peer was lost. The storage covered
296  * by the requests on the transfer gets marked as our of sync. Called from the
297  * receiver thread and the worker thread.
298  */
299 void tl_clear(struct drbd_connection *connection)
300 {
301         tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
302 }
303
304 /**
305  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
306  * @device:     DRBD device.
307  */
308 void tl_abort_disk_io(struct drbd_device *device)
309 {
310         struct drbd_connection *connection = first_peer_device(device)->connection;
311         struct drbd_request *req, *r;
312
313         spin_lock_irq(&connection->resource->req_lock);
314         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
315                 if (!(req->rq_state & RQ_LOCAL_PENDING))
316                         continue;
317                 if (req->device != device)
318                         continue;
319                 _req_mod(req, ABORT_DISK_IO);
320         }
321         spin_unlock_irq(&connection->resource->req_lock);
322 }
323
324 static int drbd_thread_setup(void *arg)
325 {
326         struct drbd_thread *thi = (struct drbd_thread *) arg;
327         struct drbd_resource *resource = thi->resource;
328         unsigned long flags;
329         int retval;
330
331         snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
332                  thi->name[0],
333                  resource->name);
334
335         allow_kernel_signal(DRBD_SIGKILL);
336         allow_kernel_signal(SIGXCPU);
337 restart:
338         retval = thi->function(thi);
339
340         spin_lock_irqsave(&thi->t_lock, flags);
341
342         /* if the receiver has been "EXITING", the last thing it did
343          * was set the conn state to "StandAlone",
344          * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
345          * and receiver thread will be "started".
346          * drbd_thread_start needs to set "RESTARTING" in that case.
347          * t_state check and assignment needs to be within the same spinlock,
348          * so either thread_start sees EXITING, and can remap to RESTARTING,
349          * or thread_start see NONE, and can proceed as normal.
350          */
351
352         if (thi->t_state == RESTARTING) {
353                 drbd_info(resource, "Restarting %s thread\n", thi->name);
354                 thi->t_state = RUNNING;
355                 spin_unlock_irqrestore(&thi->t_lock, flags);
356                 goto restart;
357         }
358
359         thi->task = NULL;
360         thi->t_state = NONE;
361         smp_mb();
362         complete_all(&thi->stop);
363         spin_unlock_irqrestore(&thi->t_lock, flags);
364
365         drbd_info(resource, "Terminating %s\n", current->comm);
366
367         /* Release mod reference taken when thread was started */
368
369         if (thi->connection)
370                 kref_put(&thi->connection->kref, drbd_destroy_connection);
371         kref_put(&resource->kref, drbd_destroy_resource);
372         module_put(THIS_MODULE);
373         return retval;
374 }
375
376 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
377                              int (*func) (struct drbd_thread *), const char *name)
378 {
379         spin_lock_init(&thi->t_lock);
380         thi->task    = NULL;
381         thi->t_state = NONE;
382         thi->function = func;
383         thi->resource = resource;
384         thi->connection = NULL;
385         thi->name = name;
386 }
387
388 int drbd_thread_start(struct drbd_thread *thi)
389 {
390         struct drbd_resource *resource = thi->resource;
391         struct task_struct *nt;
392         unsigned long flags;
393
394         /* is used from state engine doing drbd_thread_stop_nowait,
395          * while holding the req lock irqsave */
396         spin_lock_irqsave(&thi->t_lock, flags);
397
398         switch (thi->t_state) {
399         case NONE:
400                 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
401                          thi->name, current->comm, current->pid);
402
403                 /* Get ref on module for thread - this is released when thread exits */
404                 if (!try_module_get(THIS_MODULE)) {
405                         drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
406                         spin_unlock_irqrestore(&thi->t_lock, flags);
407                         return false;
408                 }
409
410                 kref_get(&resource->kref);
411                 if (thi->connection)
412                         kref_get(&thi->connection->kref);
413
414                 init_completion(&thi->stop);
415                 thi->reset_cpu_mask = 1;
416                 thi->t_state = RUNNING;
417                 spin_unlock_irqrestore(&thi->t_lock, flags);
418                 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
419
420                 nt = kthread_create(drbd_thread_setup, (void *) thi,
421                                     "drbd_%c_%s", thi->name[0], thi->resource->name);
422
423                 if (IS_ERR(nt)) {
424                         drbd_err(resource, "Couldn't start thread\n");
425
426                         if (thi->connection)
427                                 kref_put(&thi->connection->kref, drbd_destroy_connection);
428                         kref_put(&resource->kref, drbd_destroy_resource);
429                         module_put(THIS_MODULE);
430                         return false;
431                 }
432                 spin_lock_irqsave(&thi->t_lock, flags);
433                 thi->task = nt;
434                 thi->t_state = RUNNING;
435                 spin_unlock_irqrestore(&thi->t_lock, flags);
436                 wake_up_process(nt);
437                 break;
438         case EXITING:
439                 thi->t_state = RESTARTING;
440                 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
441                                 thi->name, current->comm, current->pid);
442                 /* fall through */
443         case RUNNING:
444         case RESTARTING:
445         default:
446                 spin_unlock_irqrestore(&thi->t_lock, flags);
447                 break;
448         }
449
450         return true;
451 }
452
453
454 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
455 {
456         unsigned long flags;
457
458         enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
459
460         /* may be called from state engine, holding the req lock irqsave */
461         spin_lock_irqsave(&thi->t_lock, flags);
462
463         if (thi->t_state == NONE) {
464                 spin_unlock_irqrestore(&thi->t_lock, flags);
465                 if (restart)
466                         drbd_thread_start(thi);
467                 return;
468         }
469
470         if (thi->t_state != ns) {
471                 if (thi->task == NULL) {
472                         spin_unlock_irqrestore(&thi->t_lock, flags);
473                         return;
474                 }
475
476                 thi->t_state = ns;
477                 smp_mb();
478                 init_completion(&thi->stop);
479                 if (thi->task != current)
480                         force_sig(DRBD_SIGKILL, thi->task);
481         }
482
483         spin_unlock_irqrestore(&thi->t_lock, flags);
484
485         if (wait)
486                 wait_for_completion(&thi->stop);
487 }
488
489 int conn_lowest_minor(struct drbd_connection *connection)
490 {
491         struct drbd_peer_device *peer_device;
492         int vnr = 0, minor = -1;
493
494         rcu_read_lock();
495         peer_device = idr_get_next(&connection->peer_devices, &vnr);
496         if (peer_device)
497                 minor = device_to_minor(peer_device->device);
498         rcu_read_unlock();
499
500         return minor;
501 }
502
503 #ifdef CONFIG_SMP
504 /**
505  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
506  *
507  * Forces all threads of a resource onto the same CPU. This is beneficial for
508  * DRBD's performance. May be overwritten by user's configuration.
509  */
510 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
511 {
512         unsigned int *resources_per_cpu, min_index = ~0;
513
514         resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
515         if (resources_per_cpu) {
516                 struct drbd_resource *resource;
517                 unsigned int cpu, min = ~0;
518
519                 rcu_read_lock();
520                 for_each_resource_rcu(resource, &drbd_resources) {
521                         for_each_cpu(cpu, resource->cpu_mask)
522                                 resources_per_cpu[cpu]++;
523                 }
524                 rcu_read_unlock();
525                 for_each_online_cpu(cpu) {
526                         if (resources_per_cpu[cpu] < min) {
527                                 min = resources_per_cpu[cpu];
528                                 min_index = cpu;
529                         }
530                 }
531                 kfree(resources_per_cpu);
532         }
533         if (min_index == ~0) {
534                 cpumask_setall(*cpu_mask);
535                 return;
536         }
537         cpumask_set_cpu(min_index, *cpu_mask);
538 }
539
540 /**
541  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
542  * @device:     DRBD device.
543  * @thi:        drbd_thread object
544  *
545  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
546  * prematurely.
547  */
548 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
549 {
550         struct drbd_resource *resource = thi->resource;
551         struct task_struct *p = current;
552
553         if (!thi->reset_cpu_mask)
554                 return;
555         thi->reset_cpu_mask = 0;
556         set_cpus_allowed_ptr(p, resource->cpu_mask);
557 }
558 #else
559 #define drbd_calc_cpu_mask(A) ({})
560 #endif
561
562 /**
563  * drbd_header_size  -  size of a packet header
564  *
565  * The header size is a multiple of 8, so any payload following the header is
566  * word aligned on 64-bit architectures.  (The bitmap send and receive code
567  * relies on this.)
568  */
569 unsigned int drbd_header_size(struct drbd_connection *connection)
570 {
571         if (connection->agreed_pro_version >= 100) {
572                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
573                 return sizeof(struct p_header100);
574         } else {
575                 BUILD_BUG_ON(sizeof(struct p_header80) !=
576                              sizeof(struct p_header95));
577                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
578                 return sizeof(struct p_header80);
579         }
580 }
581
582 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
583 {
584         h->magic   = cpu_to_be32(DRBD_MAGIC);
585         h->command = cpu_to_be16(cmd);
586         h->length  = cpu_to_be16(size);
587         return sizeof(struct p_header80);
588 }
589
590 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
591 {
592         h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
593         h->command = cpu_to_be16(cmd);
594         h->length = cpu_to_be32(size);
595         return sizeof(struct p_header95);
596 }
597
598 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
599                                       int size, int vnr)
600 {
601         h->magic = cpu_to_be32(DRBD_MAGIC_100);
602         h->volume = cpu_to_be16(vnr);
603         h->command = cpu_to_be16(cmd);
604         h->length = cpu_to_be32(size);
605         h->pad = 0;
606         return sizeof(struct p_header100);
607 }
608
609 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
610                                    void *buffer, enum drbd_packet cmd, int size)
611 {
612         if (connection->agreed_pro_version >= 100)
613                 return prepare_header100(buffer, cmd, size, vnr);
614         else if (connection->agreed_pro_version >= 95 &&
615                  size > DRBD_MAX_SIZE_H80_PACKET)
616                 return prepare_header95(buffer, cmd, size);
617         else
618                 return prepare_header80(buffer, cmd, size);
619 }
620
621 static void *__conn_prepare_command(struct drbd_connection *connection,
622                                     struct drbd_socket *sock)
623 {
624         if (!sock->socket)
625                 return NULL;
626         return sock->sbuf + drbd_header_size(connection);
627 }
628
629 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
630 {
631         void *p;
632
633         mutex_lock(&sock->mutex);
634         p = __conn_prepare_command(connection, sock);
635         if (!p)
636                 mutex_unlock(&sock->mutex);
637
638         return p;
639 }
640
641 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
642 {
643         return conn_prepare_command(peer_device->connection, sock);
644 }
645
646 static int __send_command(struct drbd_connection *connection, int vnr,
647                           struct drbd_socket *sock, enum drbd_packet cmd,
648                           unsigned int header_size, void *data,
649                           unsigned int size)
650 {
651         int msg_flags;
652         int err;
653
654         /*
655          * Called with @data == NULL and the size of the data blocks in @size
656          * for commands that send data blocks.  For those commands, omit the
657          * MSG_MORE flag: this will increase the likelihood that data blocks
658          * which are page aligned on the sender will end up page aligned on the
659          * receiver.
660          */
661         msg_flags = data ? MSG_MORE : 0;
662
663         header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
664                                       header_size + size);
665         err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
666                             msg_flags);
667         if (data && !err)
668                 err = drbd_send_all(connection, sock->socket, data, size, 0);
669         /* DRBD protocol "pings" are latency critical.
670          * This is supposed to trigger tcp_push_pending_frames() */
671         if (!err && (cmd == P_PING || cmd == P_PING_ACK))
672                 drbd_tcp_nodelay(sock->socket);
673
674         return err;
675 }
676
677 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
678                                enum drbd_packet cmd, unsigned int header_size,
679                                void *data, unsigned int size)
680 {
681         return __send_command(connection, 0, sock, cmd, header_size, data, size);
682 }
683
684 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
685                       enum drbd_packet cmd, unsigned int header_size,
686                       void *data, unsigned int size)
687 {
688         int err;
689
690         err = __conn_send_command(connection, sock, cmd, header_size, data, size);
691         mutex_unlock(&sock->mutex);
692         return err;
693 }
694
695 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
696                       enum drbd_packet cmd, unsigned int header_size,
697                       void *data, unsigned int size)
698 {
699         int err;
700
701         err = __send_command(peer_device->connection, peer_device->device->vnr,
702                              sock, cmd, header_size, data, size);
703         mutex_unlock(&sock->mutex);
704         return err;
705 }
706
707 int drbd_send_ping(struct drbd_connection *connection)
708 {
709         struct drbd_socket *sock;
710
711         sock = &connection->meta;
712         if (!conn_prepare_command(connection, sock))
713                 return -EIO;
714         return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
715 }
716
717 int drbd_send_ping_ack(struct drbd_connection *connection)
718 {
719         struct drbd_socket *sock;
720
721         sock = &connection->meta;
722         if (!conn_prepare_command(connection, sock))
723                 return -EIO;
724         return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
725 }
726
727 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
728 {
729         struct drbd_socket *sock;
730         struct p_rs_param_95 *p;
731         int size;
732         const int apv = peer_device->connection->agreed_pro_version;
733         enum drbd_packet cmd;
734         struct net_conf *nc;
735         struct disk_conf *dc;
736
737         sock = &peer_device->connection->data;
738         p = drbd_prepare_command(peer_device, sock);
739         if (!p)
740                 return -EIO;
741
742         rcu_read_lock();
743         nc = rcu_dereference(peer_device->connection->net_conf);
744
745         size = apv <= 87 ? sizeof(struct p_rs_param)
746                 : apv == 88 ? sizeof(struct p_rs_param)
747                         + strlen(nc->verify_alg) + 1
748                 : apv <= 94 ? sizeof(struct p_rs_param_89)
749                 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
750
751         cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
752
753         /* initialize verify_alg and csums_alg */
754         memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
755
756         if (get_ldev(peer_device->device)) {
757                 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
758                 p->resync_rate = cpu_to_be32(dc->resync_rate);
759                 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
760                 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
761                 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
762                 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
763                 put_ldev(peer_device->device);
764         } else {
765                 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
766                 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
767                 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
768                 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
769                 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
770         }
771
772         if (apv >= 88)
773                 strcpy(p->verify_alg, nc->verify_alg);
774         if (apv >= 89)
775                 strcpy(p->csums_alg, nc->csums_alg);
776         rcu_read_unlock();
777
778         return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
779 }
780
781 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
782 {
783         struct drbd_socket *sock;
784         struct p_protocol *p;
785         struct net_conf *nc;
786         int size, cf;
787
788         sock = &connection->data;
789         p = __conn_prepare_command(connection, sock);
790         if (!p)
791                 return -EIO;
792
793         rcu_read_lock();
794         nc = rcu_dereference(connection->net_conf);
795
796         if (nc->tentative && connection->agreed_pro_version < 92) {
797                 rcu_read_unlock();
798                 drbd_err(connection, "--dry-run is not supported by peer");
799                 return -EOPNOTSUPP;
800         }
801
802         size = sizeof(*p);
803         if (connection->agreed_pro_version >= 87)
804                 size += strlen(nc->integrity_alg) + 1;
805
806         p->protocol      = cpu_to_be32(nc->wire_protocol);
807         p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
808         p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
809         p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
810         p->two_primaries = cpu_to_be32(nc->two_primaries);
811         cf = 0;
812         if (nc->discard_my_data)
813                 cf |= CF_DISCARD_MY_DATA;
814         if (nc->tentative)
815                 cf |= CF_DRY_RUN;
816         p->conn_flags    = cpu_to_be32(cf);
817
818         if (connection->agreed_pro_version >= 87)
819                 strcpy(p->integrity_alg, nc->integrity_alg);
820         rcu_read_unlock();
821
822         return __conn_send_command(connection, sock, cmd, size, NULL, 0);
823 }
824
825 int drbd_send_protocol(struct drbd_connection *connection)
826 {
827         int err;
828
829         mutex_lock(&connection->data.mutex);
830         err = __drbd_send_protocol(connection, P_PROTOCOL);
831         mutex_unlock(&connection->data.mutex);
832
833         return err;
834 }
835
836 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
837 {
838         struct drbd_device *device = peer_device->device;
839         struct drbd_socket *sock;
840         struct p_uuids *p;
841         int i;
842
843         if (!get_ldev_if_state(device, D_NEGOTIATING))
844                 return 0;
845
846         sock = &peer_device->connection->data;
847         p = drbd_prepare_command(peer_device, sock);
848         if (!p) {
849                 put_ldev(device);
850                 return -EIO;
851         }
852         spin_lock_irq(&device->ldev->md.uuid_lock);
853         for (i = UI_CURRENT; i < UI_SIZE; i++)
854                 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
855         spin_unlock_irq(&device->ldev->md.uuid_lock);
856
857         device->comm_bm_set = drbd_bm_total_weight(device);
858         p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
859         rcu_read_lock();
860         uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
861         rcu_read_unlock();
862         uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
863         uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
864         p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
865
866         put_ldev(device);
867         return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
868 }
869
870 int drbd_send_uuids(struct drbd_peer_device *peer_device)
871 {
872         return _drbd_send_uuids(peer_device, 0);
873 }
874
875 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
876 {
877         return _drbd_send_uuids(peer_device, 8);
878 }
879
880 void drbd_print_uuids(struct drbd_device *device, const char *text)
881 {
882         if (get_ldev_if_state(device, D_NEGOTIATING)) {
883                 u64 *uuid = device->ldev->md.uuid;
884                 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
885                      text,
886                      (unsigned long long)uuid[UI_CURRENT],
887                      (unsigned long long)uuid[UI_BITMAP],
888                      (unsigned long long)uuid[UI_HISTORY_START],
889                      (unsigned long long)uuid[UI_HISTORY_END]);
890                 put_ldev(device);
891         } else {
892                 drbd_info(device, "%s effective data uuid: %016llX\n",
893                                 text,
894                                 (unsigned long long)device->ed_uuid);
895         }
896 }
897
898 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
899 {
900         struct drbd_device *device = peer_device->device;
901         struct drbd_socket *sock;
902         struct p_rs_uuid *p;
903         u64 uuid;
904
905         D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
906
907         uuid = device->ldev->md.uuid[UI_BITMAP];
908         if (uuid && uuid != UUID_JUST_CREATED)
909                 uuid = uuid + UUID_NEW_BM_OFFSET;
910         else
911                 get_random_bytes(&uuid, sizeof(u64));
912         drbd_uuid_set(device, UI_BITMAP, uuid);
913         drbd_print_uuids(device, "updated sync UUID");
914         drbd_md_sync(device);
915
916         sock = &peer_device->connection->data;
917         p = drbd_prepare_command(peer_device, sock);
918         if (p) {
919                 p->uuid = cpu_to_be64(uuid);
920                 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
921         }
922 }
923
924 /* communicated if (agreed_features & DRBD_FF_WSAME) */
925 void assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, struct request_queue *q)
926 {
927         if (q) {
928                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
929                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
930                 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
931                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
932                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
933                 p->qlim->discard_enabled = blk_queue_discard(q);
934                 p->qlim->discard_zeroes_data = queue_discard_zeroes_data(q);
935                 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
936         } else {
937                 q = device->rq_queue;
938                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
939                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
940                 p->qlim->alignment_offset = 0;
941                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
942                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
943                 p->qlim->discard_enabled = 0;
944                 p->qlim->discard_zeroes_data = 0;
945                 p->qlim->write_same_capable = 0;
946         }
947 }
948
949 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
950 {
951         struct drbd_device *device = peer_device->device;
952         struct drbd_socket *sock;
953         struct p_sizes *p;
954         sector_t d_size, u_size;
955         int q_order_type;
956         unsigned int max_bio_size;
957         unsigned int packet_size;
958
959         sock = &peer_device->connection->data;
960         p = drbd_prepare_command(peer_device, sock);
961         if (!p)
962                 return -EIO;
963
964         packet_size = sizeof(*p);
965         if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
966                 packet_size += sizeof(p->qlim[0]);
967
968         memset(p, 0, packet_size);
969         if (get_ldev_if_state(device, D_NEGOTIATING)) {
970                 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
971                 d_size = drbd_get_max_capacity(device->ldev);
972                 rcu_read_lock();
973                 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
974                 rcu_read_unlock();
975                 q_order_type = drbd_queue_order_type(device);
976                 max_bio_size = queue_max_hw_sectors(q) << 9;
977                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
978                 assign_p_sizes_qlim(device, p, q);
979                 put_ldev(device);
980         } else {
981                 d_size = 0;
982                 u_size = 0;
983                 q_order_type = QUEUE_ORDERED_NONE;
984                 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
985                 assign_p_sizes_qlim(device, p, NULL);
986         }
987
988         if (peer_device->connection->agreed_pro_version <= 94)
989                 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
990         else if (peer_device->connection->agreed_pro_version < 100)
991                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
992
993         p->d_size = cpu_to_be64(d_size);
994         p->u_size = cpu_to_be64(u_size);
995         p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
996         p->max_bio_size = cpu_to_be32(max_bio_size);
997         p->queue_order_type = cpu_to_be16(q_order_type);
998         p->dds_flags = cpu_to_be16(flags);
999
1000         return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
1001 }
1002
1003 /**
1004  * drbd_send_current_state() - Sends the drbd state to the peer
1005  * @peer_device:        DRBD peer device.
1006  */
1007 int drbd_send_current_state(struct drbd_peer_device *peer_device)
1008 {
1009         struct drbd_socket *sock;
1010         struct p_state *p;
1011
1012         sock = &peer_device->connection->data;
1013         p = drbd_prepare_command(peer_device, sock);
1014         if (!p)
1015                 return -EIO;
1016         p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1017         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1018 }
1019
1020 /**
1021  * drbd_send_state() - After a state change, sends the new state to the peer
1022  * @peer_device:      DRBD peer device.
1023  * @state:     the state to send, not necessarily the current state.
1024  *
1025  * Each state change queues an "after_state_ch" work, which will eventually
1026  * send the resulting new state to the peer. If more state changes happen
1027  * between queuing and processing of the after_state_ch work, we still
1028  * want to send each intermediary state in the order it occurred.
1029  */
1030 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1031 {
1032         struct drbd_socket *sock;
1033         struct p_state *p;
1034
1035         sock = &peer_device->connection->data;
1036         p = drbd_prepare_command(peer_device, sock);
1037         if (!p)
1038                 return -EIO;
1039         p->state = cpu_to_be32(state.i); /* Within the send mutex */
1040         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1041 }
1042
1043 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1044 {
1045         struct drbd_socket *sock;
1046         struct p_req_state *p;
1047
1048         sock = &peer_device->connection->data;
1049         p = drbd_prepare_command(peer_device, sock);
1050         if (!p)
1051                 return -EIO;
1052         p->mask = cpu_to_be32(mask.i);
1053         p->val = cpu_to_be32(val.i);
1054         return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1055 }
1056
1057 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1058 {
1059         enum drbd_packet cmd;
1060         struct drbd_socket *sock;
1061         struct p_req_state *p;
1062
1063         cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1064         sock = &connection->data;
1065         p = conn_prepare_command(connection, sock);
1066         if (!p)
1067                 return -EIO;
1068         p->mask = cpu_to_be32(mask.i);
1069         p->val = cpu_to_be32(val.i);
1070         return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1071 }
1072
1073 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1074 {
1075         struct drbd_socket *sock;
1076         struct p_req_state_reply *p;
1077
1078         sock = &peer_device->connection->meta;
1079         p = drbd_prepare_command(peer_device, sock);
1080         if (p) {
1081                 p->retcode = cpu_to_be32(retcode);
1082                 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1083         }
1084 }
1085
1086 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1087 {
1088         struct drbd_socket *sock;
1089         struct p_req_state_reply *p;
1090         enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1091
1092         sock = &connection->meta;
1093         p = conn_prepare_command(connection, sock);
1094         if (p) {
1095                 p->retcode = cpu_to_be32(retcode);
1096                 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1097         }
1098 }
1099
1100 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1101 {
1102         BUG_ON(code & ~0xf);
1103         p->encoding = (p->encoding & ~0xf) | code;
1104 }
1105
1106 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1107 {
1108         p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1109 }
1110
1111 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1112 {
1113         BUG_ON(n & ~0x7);
1114         p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1115 }
1116
1117 static int fill_bitmap_rle_bits(struct drbd_device *device,
1118                          struct p_compressed_bm *p,
1119                          unsigned int size,
1120                          struct bm_xfer_ctx *c)
1121 {
1122         struct bitstream bs;
1123         unsigned long plain_bits;
1124         unsigned long tmp;
1125         unsigned long rl;
1126         unsigned len;
1127         unsigned toggle;
1128         int bits, use_rle;
1129
1130         /* may we use this feature? */
1131         rcu_read_lock();
1132         use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1133         rcu_read_unlock();
1134         if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1135                 return 0;
1136
1137         if (c->bit_offset >= c->bm_bits)
1138                 return 0; /* nothing to do. */
1139
1140         /* use at most thus many bytes */
1141         bitstream_init(&bs, p->code, size, 0);
1142         memset(p->code, 0, size);
1143         /* plain bits covered in this code string */
1144         plain_bits = 0;
1145
1146         /* p->encoding & 0x80 stores whether the first run length is set.
1147          * bit offset is implicit.
1148          * start with toggle == 2 to be able to tell the first iteration */
1149         toggle = 2;
1150
1151         /* see how much plain bits we can stuff into one packet
1152          * using RLE and VLI. */
1153         do {
1154                 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1155                                     : _drbd_bm_find_next(device, c->bit_offset);
1156                 if (tmp == -1UL)
1157                         tmp = c->bm_bits;
1158                 rl = tmp - c->bit_offset;
1159
1160                 if (toggle == 2) { /* first iteration */
1161                         if (rl == 0) {
1162                                 /* the first checked bit was set,
1163                                  * store start value, */
1164                                 dcbp_set_start(p, 1);
1165                                 /* but skip encoding of zero run length */
1166                                 toggle = !toggle;
1167                                 continue;
1168                         }
1169                         dcbp_set_start(p, 0);
1170                 }
1171
1172                 /* paranoia: catch zero runlength.
1173                  * can only happen if bitmap is modified while we scan it. */
1174                 if (rl == 0) {
1175                         drbd_err(device, "unexpected zero runlength while encoding bitmap "
1176                             "t:%u bo:%lu\n", toggle, c->bit_offset);
1177                         return -1;
1178                 }
1179
1180                 bits = vli_encode_bits(&bs, rl);
1181                 if (bits == -ENOBUFS) /* buffer full */
1182                         break;
1183                 if (bits <= 0) {
1184                         drbd_err(device, "error while encoding bitmap: %d\n", bits);
1185                         return 0;
1186                 }
1187
1188                 toggle = !toggle;
1189                 plain_bits += rl;
1190                 c->bit_offset = tmp;
1191         } while (c->bit_offset < c->bm_bits);
1192
1193         len = bs.cur.b - p->code + !!bs.cur.bit;
1194
1195         if (plain_bits < (len << 3)) {
1196                 /* incompressible with this method.
1197                  * we need to rewind both word and bit position. */
1198                 c->bit_offset -= plain_bits;
1199                 bm_xfer_ctx_bit_to_word_offset(c);
1200                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1201                 return 0;
1202         }
1203
1204         /* RLE + VLI was able to compress it just fine.
1205          * update c->word_offset. */
1206         bm_xfer_ctx_bit_to_word_offset(c);
1207
1208         /* store pad_bits */
1209         dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1210
1211         return len;
1212 }
1213
1214 /**
1215  * send_bitmap_rle_or_plain
1216  *
1217  * Return 0 when done, 1 when another iteration is needed, and a negative error
1218  * code upon failure.
1219  */
1220 static int
1221 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1222 {
1223         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1224         unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1225         struct p_compressed_bm *p = sock->sbuf + header_size;
1226         int len, err;
1227
1228         len = fill_bitmap_rle_bits(device, p,
1229                         DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1230         if (len < 0)
1231                 return -EIO;
1232
1233         if (len) {
1234                 dcbp_set_code(p, RLE_VLI_Bits);
1235                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1236                                      P_COMPRESSED_BITMAP, sizeof(*p) + len,
1237                                      NULL, 0);
1238                 c->packets[0]++;
1239                 c->bytes[0] += header_size + sizeof(*p) + len;
1240
1241                 if (c->bit_offset >= c->bm_bits)
1242                         len = 0; /* DONE */
1243         } else {
1244                 /* was not compressible.
1245                  * send a buffer full of plain text bits instead. */
1246                 unsigned int data_size;
1247                 unsigned long num_words;
1248                 unsigned long *p = sock->sbuf + header_size;
1249
1250                 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1251                 num_words = min_t(size_t, data_size / sizeof(*p),
1252                                   c->bm_words - c->word_offset);
1253                 len = num_words * sizeof(*p);
1254                 if (len)
1255                         drbd_bm_get_lel(device, c->word_offset, num_words, p);
1256                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1257                 c->word_offset += num_words;
1258                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1259
1260                 c->packets[1]++;
1261                 c->bytes[1] += header_size + len;
1262
1263                 if (c->bit_offset > c->bm_bits)
1264                         c->bit_offset = c->bm_bits;
1265         }
1266         if (!err) {
1267                 if (len == 0) {
1268                         INFO_bm_xfer_stats(device, "send", c);
1269                         return 0;
1270                 } else
1271                         return 1;
1272         }
1273         return -EIO;
1274 }
1275
1276 /* See the comment at receive_bitmap() */
1277 static int _drbd_send_bitmap(struct drbd_device *device)
1278 {
1279         struct bm_xfer_ctx c;
1280         int err;
1281
1282         if (!expect(device->bitmap))
1283                 return false;
1284
1285         if (get_ldev(device)) {
1286                 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1287                         drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1288                         drbd_bm_set_all(device);
1289                         if (drbd_bm_write(device)) {
1290                                 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1291                                  * but otherwise process as per normal - need to tell other
1292                                  * side that a full resync is required! */
1293                                 drbd_err(device, "Failed to write bitmap to disk!\n");
1294                         } else {
1295                                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1296                                 drbd_md_sync(device);
1297                         }
1298                 }
1299                 put_ldev(device);
1300         }
1301
1302         c = (struct bm_xfer_ctx) {
1303                 .bm_bits = drbd_bm_bits(device),
1304                 .bm_words = drbd_bm_words(device),
1305         };
1306
1307         do {
1308                 err = send_bitmap_rle_or_plain(device, &c);
1309         } while (err > 0);
1310
1311         return err == 0;
1312 }
1313
1314 int drbd_send_bitmap(struct drbd_device *device)
1315 {
1316         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1317         int err = -1;
1318
1319         mutex_lock(&sock->mutex);
1320         if (sock->socket)
1321                 err = !_drbd_send_bitmap(device);
1322         mutex_unlock(&sock->mutex);
1323         return err;
1324 }
1325
1326 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1327 {
1328         struct drbd_socket *sock;
1329         struct p_barrier_ack *p;
1330
1331         if (connection->cstate < C_WF_REPORT_PARAMS)
1332                 return;
1333
1334         sock = &connection->meta;
1335         p = conn_prepare_command(connection, sock);
1336         if (!p)
1337                 return;
1338         p->barrier = barrier_nr;
1339         p->set_size = cpu_to_be32(set_size);
1340         conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1341 }
1342
1343 /**
1344  * _drbd_send_ack() - Sends an ack packet
1345  * @device:     DRBD device.
1346  * @cmd:        Packet command code.
1347  * @sector:     sector, needs to be in big endian byte order
1348  * @blksize:    size in byte, needs to be in big endian byte order
1349  * @block_id:   Id, big endian byte order
1350  */
1351 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1352                           u64 sector, u32 blksize, u64 block_id)
1353 {
1354         struct drbd_socket *sock;
1355         struct p_block_ack *p;
1356
1357         if (peer_device->device->state.conn < C_CONNECTED)
1358                 return -EIO;
1359
1360         sock = &peer_device->connection->meta;
1361         p = drbd_prepare_command(peer_device, sock);
1362         if (!p)
1363                 return -EIO;
1364         p->sector = sector;
1365         p->block_id = block_id;
1366         p->blksize = blksize;
1367         p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1368         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1369 }
1370
1371 /* dp->sector and dp->block_id already/still in network byte order,
1372  * data_size is payload size according to dp->head,
1373  * and may need to be corrected for digest size. */
1374 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1375                       struct p_data *dp, int data_size)
1376 {
1377         if (peer_device->connection->peer_integrity_tfm)
1378                 data_size -= crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm);
1379         _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1380                        dp->block_id);
1381 }
1382
1383 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1384                       struct p_block_req *rp)
1385 {
1386         _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1387 }
1388
1389 /**
1390  * drbd_send_ack() - Sends an ack packet
1391  * @device:     DRBD device
1392  * @cmd:        packet command code
1393  * @peer_req:   peer request
1394  */
1395 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1396                   struct drbd_peer_request *peer_req)
1397 {
1398         return _drbd_send_ack(peer_device, cmd,
1399                               cpu_to_be64(peer_req->i.sector),
1400                               cpu_to_be32(peer_req->i.size),
1401                               peer_req->block_id);
1402 }
1403
1404 /* This function misuses the block_id field to signal if the blocks
1405  * are is sync or not. */
1406 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1407                      sector_t sector, int blksize, u64 block_id)
1408 {
1409         return _drbd_send_ack(peer_device, cmd,
1410                               cpu_to_be64(sector),
1411                               cpu_to_be32(blksize),
1412                               cpu_to_be64(block_id));
1413 }
1414
1415 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1416                              struct drbd_peer_request *peer_req)
1417 {
1418         struct drbd_socket *sock;
1419         struct p_block_desc *p;
1420
1421         sock = &peer_device->connection->data;
1422         p = drbd_prepare_command(peer_device, sock);
1423         if (!p)
1424                 return -EIO;
1425         p->sector = cpu_to_be64(peer_req->i.sector);
1426         p->blksize = cpu_to_be32(peer_req->i.size);
1427         p->pad = 0;
1428         return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1429 }
1430
1431 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1432                        sector_t sector, int size, u64 block_id)
1433 {
1434         struct drbd_socket *sock;
1435         struct p_block_req *p;
1436
1437         sock = &peer_device->connection->data;
1438         p = drbd_prepare_command(peer_device, sock);
1439         if (!p)
1440                 return -EIO;
1441         p->sector = cpu_to_be64(sector);
1442         p->block_id = block_id;
1443         p->blksize = cpu_to_be32(size);
1444         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1445 }
1446
1447 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1448                             void *digest, int digest_size, enum drbd_packet cmd)
1449 {
1450         struct drbd_socket *sock;
1451         struct p_block_req *p;
1452
1453         /* FIXME: Put the digest into the preallocated socket buffer.  */
1454
1455         sock = &peer_device->connection->data;
1456         p = drbd_prepare_command(peer_device, sock);
1457         if (!p)
1458                 return -EIO;
1459         p->sector = cpu_to_be64(sector);
1460         p->block_id = ID_SYNCER /* unused */;
1461         p->blksize = cpu_to_be32(size);
1462         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1463 }
1464
1465 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1466 {
1467         struct drbd_socket *sock;
1468         struct p_block_req *p;
1469
1470         sock = &peer_device->connection->data;
1471         p = drbd_prepare_command(peer_device, sock);
1472         if (!p)
1473                 return -EIO;
1474         p->sector = cpu_to_be64(sector);
1475         p->block_id = ID_SYNCER /* unused */;
1476         p->blksize = cpu_to_be32(size);
1477         return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1478 }
1479
1480 /* called on sndtimeo
1481  * returns false if we should retry,
1482  * true if we think connection is dead
1483  */
1484 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1485 {
1486         int drop_it;
1487         /* long elapsed = (long)(jiffies - device->last_received); */
1488
1489         drop_it =   connection->meta.socket == sock
1490                 || !connection->ack_receiver.task
1491                 || get_t_state(&connection->ack_receiver) != RUNNING
1492                 || connection->cstate < C_WF_REPORT_PARAMS;
1493
1494         if (drop_it)
1495                 return true;
1496
1497         drop_it = !--connection->ko_count;
1498         if (!drop_it) {
1499                 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1500                          current->comm, current->pid, connection->ko_count);
1501                 request_ping(connection);
1502         }
1503
1504         return drop_it; /* && (device->state == R_PRIMARY) */;
1505 }
1506
1507 static void drbd_update_congested(struct drbd_connection *connection)
1508 {
1509         struct sock *sk = connection->data.socket->sk;
1510         if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1511                 set_bit(NET_CONGESTED, &connection->flags);
1512 }
1513
1514 /* The idea of sendpage seems to be to put some kind of reference
1515  * to the page into the skb, and to hand it over to the NIC. In
1516  * this process get_page() gets called.
1517  *
1518  * As soon as the page was really sent over the network put_page()
1519  * gets called by some part of the network layer. [ NIC driver? ]
1520  *
1521  * [ get_page() / put_page() increment/decrement the count. If count
1522  *   reaches 0 the page will be freed. ]
1523  *
1524  * This works nicely with pages from FSs.
1525  * But this means that in protocol A we might signal IO completion too early!
1526  *
1527  * In order not to corrupt data during a resync we must make sure
1528  * that we do not reuse our own buffer pages (EEs) to early, therefore
1529  * we have the net_ee list.
1530  *
1531  * XFS seems to have problems, still, it submits pages with page_count == 0!
1532  * As a workaround, we disable sendpage on pages
1533  * with page_count == 0 or PageSlab.
1534  */
1535 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1536                               int offset, size_t size, unsigned msg_flags)
1537 {
1538         struct socket *socket;
1539         void *addr;
1540         int err;
1541
1542         socket = peer_device->connection->data.socket;
1543         addr = kmap(page) + offset;
1544         err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1545         kunmap(page);
1546         if (!err)
1547                 peer_device->device->send_cnt += size >> 9;
1548         return err;
1549 }
1550
1551 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1552                     int offset, size_t size, unsigned msg_flags)
1553 {
1554         struct socket *socket = peer_device->connection->data.socket;
1555         mm_segment_t oldfs = get_fs();
1556         int len = size;
1557         int err = -EIO;
1558
1559         /* e.g. XFS meta- & log-data is in slab pages, which have a
1560          * page_count of 0 and/or have PageSlab() set.
1561          * we cannot use send_page for those, as that does get_page();
1562          * put_page(); and would cause either a VM_BUG directly, or
1563          * __page_cache_release a page that would actually still be referenced
1564          * by someone, leading to some obscure delayed Oops somewhere else. */
1565         if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1566                 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1567
1568         msg_flags |= MSG_NOSIGNAL;
1569         drbd_update_congested(peer_device->connection);
1570         set_fs(KERNEL_DS);
1571         do {
1572                 int sent;
1573
1574                 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1575                 if (sent <= 0) {
1576                         if (sent == -EAGAIN) {
1577                                 if (we_should_drop_the_connection(peer_device->connection, socket))
1578                                         break;
1579                                 continue;
1580                         }
1581                         drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1582                              __func__, (int)size, len, sent);
1583                         if (sent < 0)
1584                                 err = sent;
1585                         break;
1586                 }
1587                 len    -= sent;
1588                 offset += sent;
1589         } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1590         set_fs(oldfs);
1591         clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1592
1593         if (len == 0) {
1594                 err = 0;
1595                 peer_device->device->send_cnt += size >> 9;
1596         }
1597         return err;
1598 }
1599
1600 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1601 {
1602         struct bio_vec bvec;
1603         struct bvec_iter iter;
1604
1605         /* hint all but last page with MSG_MORE */
1606         bio_for_each_segment(bvec, bio, iter) {
1607                 int err;
1608
1609                 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1610                                          bvec.bv_offset, bvec.bv_len,
1611                                          bio_iter_last(bvec, iter)
1612                                          ? 0 : MSG_MORE);
1613                 if (err)
1614                         return err;
1615                 /* REQ_OP_WRITE_SAME has only one segment */
1616                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1617                         break;
1618         }
1619         return 0;
1620 }
1621
1622 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1623 {
1624         struct bio_vec bvec;
1625         struct bvec_iter iter;
1626
1627         /* hint all but last page with MSG_MORE */
1628         bio_for_each_segment(bvec, bio, iter) {
1629                 int err;
1630
1631                 err = _drbd_send_page(peer_device, bvec.bv_page,
1632                                       bvec.bv_offset, bvec.bv_len,
1633                                       bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1634                 if (err)
1635                         return err;
1636                 /* REQ_OP_WRITE_SAME has only one segment */
1637                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1638                         break;
1639         }
1640         return 0;
1641 }
1642
1643 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1644                             struct drbd_peer_request *peer_req)
1645 {
1646         struct page *page = peer_req->pages;
1647         unsigned len = peer_req->i.size;
1648         int err;
1649
1650         /* hint all but last page with MSG_MORE */
1651         page_chain_for_each(page) {
1652                 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1653
1654                 err = _drbd_send_page(peer_device, page, 0, l,
1655                                       page_chain_next(page) ? MSG_MORE : 0);
1656                 if (err)
1657                         return err;
1658                 len -= l;
1659         }
1660         return 0;
1661 }
1662
1663 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1664                              struct bio *bio)
1665 {
1666         if (connection->agreed_pro_version >= 95)
1667                 return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1668                         (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1669                         (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1670                         (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1671                         (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0);
1672         else
1673                 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1674 }
1675
1676 /* Used to send write or TRIM aka REQ_DISCARD requests
1677  * R_PRIMARY -> Peer    (P_DATA, P_TRIM)
1678  */
1679 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1680 {
1681         struct drbd_device *device = peer_device->device;
1682         struct drbd_socket *sock;
1683         struct p_data *p;
1684         struct p_wsame *wsame = NULL;
1685         void *digest_out;
1686         unsigned int dp_flags = 0;
1687         int digest_size;
1688         int err;
1689
1690         sock = &peer_device->connection->data;
1691         p = drbd_prepare_command(peer_device, sock);
1692         digest_size = peer_device->connection->integrity_tfm ?
1693                       crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1694
1695         if (!p)
1696                 return -EIO;
1697         p->sector = cpu_to_be64(req->i.sector);
1698         p->block_id = (unsigned long)req;
1699         p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1700         dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1701         if (device->state.conn >= C_SYNC_SOURCE &&
1702             device->state.conn <= C_PAUSED_SYNC_T)
1703                 dp_flags |= DP_MAY_SET_IN_SYNC;
1704         if (peer_device->connection->agreed_pro_version >= 100) {
1705                 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1706                         dp_flags |= DP_SEND_RECEIVE_ACK;
1707                 /* During resync, request an explicit write ack,
1708                  * even in protocol != C */
1709                 if (req->rq_state & RQ_EXP_WRITE_ACK
1710                 || (dp_flags & DP_MAY_SET_IN_SYNC))
1711                         dp_flags |= DP_SEND_WRITE_ACK;
1712         }
1713         p->dp_flags = cpu_to_be32(dp_flags);
1714
1715         if (dp_flags & DP_DISCARD) {
1716                 struct p_trim *t = (struct p_trim*)p;
1717                 t->size = cpu_to_be32(req->i.size);
1718                 err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0);
1719                 goto out;
1720         }
1721         if (dp_flags & DP_WSAME) {
1722                 /* this will only work if DRBD_FF_WSAME is set AND the
1723                  * handshake agreed that all nodes and backend devices are
1724                  * WRITE_SAME capable and agree on logical_block_size */
1725                 wsame = (struct p_wsame*)p;
1726                 digest_out = wsame + 1;
1727                 wsame->size = cpu_to_be32(req->i.size);
1728         } else
1729                 digest_out = p + 1;
1730
1731         /* our digest is still only over the payload.
1732          * TRIM does not carry any payload. */
1733         if (digest_size)
1734                 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1735         if (wsame) {
1736                 err =
1737                     __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1738                                    sizeof(*wsame) + digest_size, NULL,
1739                                    bio_iovec(req->master_bio).bv_len);
1740         } else
1741                 err =
1742                     __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1743                                    sizeof(*p) + digest_size, NULL, req->i.size);
1744         if (!err) {
1745                 /* For protocol A, we have to memcpy the payload into
1746                  * socket buffers, as we may complete right away
1747                  * as soon as we handed it over to tcp, at which point the data
1748                  * pages may become invalid.
1749                  *
1750                  * For data-integrity enabled, we copy it as well, so we can be
1751                  * sure that even if the bio pages may still be modified, it
1752                  * won't change the data on the wire, thus if the digest checks
1753                  * out ok after sending on this side, but does not fit on the
1754                  * receiving side, we sure have detected corruption elsewhere.
1755                  */
1756                 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1757                         err = _drbd_send_bio(peer_device, req->master_bio);
1758                 else
1759                         err = _drbd_send_zc_bio(peer_device, req->master_bio);
1760
1761                 /* double check digest, sometimes buffers have been modified in flight. */
1762                 if (digest_size > 0 && digest_size <= 64) {
1763                         /* 64 byte, 512 bit, is the largest digest size
1764                          * currently supported in kernel crypto. */
1765                         unsigned char digest[64];
1766                         drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1767                         if (memcmp(p + 1, digest, digest_size)) {
1768                                 drbd_warn(device,
1769                                         "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1770                                         (unsigned long long)req->i.sector, req->i.size);
1771                         }
1772                 } /* else if (digest_size > 64) {
1773                      ... Be noisy about digest too large ...
1774                 } */
1775         }
1776 out:
1777         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1778
1779         return err;
1780 }
1781
1782 /* answer packet, used to send data back for read requests:
1783  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1784  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1785  */
1786 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1787                     struct drbd_peer_request *peer_req)
1788 {
1789         struct drbd_device *device = peer_device->device;
1790         struct drbd_socket *sock;
1791         struct p_data *p;
1792         int err;
1793         int digest_size;
1794
1795         sock = &peer_device->connection->data;
1796         p = drbd_prepare_command(peer_device, sock);
1797
1798         digest_size = peer_device->connection->integrity_tfm ?
1799                       crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1800
1801         if (!p)
1802                 return -EIO;
1803         p->sector = cpu_to_be64(peer_req->i.sector);
1804         p->block_id = peer_req->block_id;
1805         p->seq_num = 0;  /* unused */
1806         p->dp_flags = 0;
1807         if (digest_size)
1808                 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1809         err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1810         if (!err)
1811                 err = _drbd_send_zc_ee(peer_device, peer_req);
1812         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1813
1814         return err;
1815 }
1816
1817 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1818 {
1819         struct drbd_socket *sock;
1820         struct p_block_desc *p;
1821
1822         sock = &peer_device->connection->data;
1823         p = drbd_prepare_command(peer_device, sock);
1824         if (!p)
1825                 return -EIO;
1826         p->sector = cpu_to_be64(req->i.sector);
1827         p->blksize = cpu_to_be32(req->i.size);
1828         return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1829 }
1830
1831 /*
1832   drbd_send distinguishes two cases:
1833
1834   Packets sent via the data socket "sock"
1835   and packets sent via the meta data socket "msock"
1836
1837                     sock                      msock
1838   -----------------+-------------------------+------------------------------
1839   timeout           conf.timeout / 2          conf.timeout / 2
1840   timeout action    send a ping via msock     Abort communication
1841                                               and close all sockets
1842 */
1843
1844 /*
1845  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1846  */
1847 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1848               void *buf, size_t size, unsigned msg_flags)
1849 {
1850         struct kvec iov;
1851         struct msghdr msg;
1852         int rv, sent = 0;
1853
1854         if (!sock)
1855                 return -EBADR;
1856
1857         /* THINK  if (signal_pending) return ... ? */
1858
1859         iov.iov_base = buf;
1860         iov.iov_len  = size;
1861
1862         msg.msg_name       = NULL;
1863         msg.msg_namelen    = 0;
1864         msg.msg_control    = NULL;
1865         msg.msg_controllen = 0;
1866         msg.msg_flags      = msg_flags | MSG_NOSIGNAL;
1867
1868         if (sock == connection->data.socket) {
1869                 rcu_read_lock();
1870                 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1871                 rcu_read_unlock();
1872                 drbd_update_congested(connection);
1873         }
1874         do {
1875                 rv = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
1876                 if (rv == -EAGAIN) {
1877                         if (we_should_drop_the_connection(connection, sock))
1878                                 break;
1879                         else
1880                                 continue;
1881                 }
1882                 if (rv == -EINTR) {
1883                         flush_signals(current);
1884                         rv = 0;
1885                 }
1886                 if (rv < 0)
1887                         break;
1888                 sent += rv;
1889                 iov.iov_base += rv;
1890                 iov.iov_len  -= rv;
1891         } while (sent < size);
1892
1893         if (sock == connection->data.socket)
1894                 clear_bit(NET_CONGESTED, &connection->flags);
1895
1896         if (rv <= 0) {
1897                 if (rv != -EAGAIN) {
1898                         drbd_err(connection, "%s_sendmsg returned %d\n",
1899                                  sock == connection->meta.socket ? "msock" : "sock",
1900                                  rv);
1901                         conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1902                 } else
1903                         conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1904         }
1905
1906         return sent;
1907 }
1908
1909 /**
1910  * drbd_send_all  -  Send an entire buffer
1911  *
1912  * Returns 0 upon success and a negative error value otherwise.
1913  */
1914 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1915                   size_t size, unsigned msg_flags)
1916 {
1917         int err;
1918
1919         err = drbd_send(connection, sock, buffer, size, msg_flags);
1920         if (err < 0)
1921                 return err;
1922         if (err != size)
1923                 return -EIO;
1924         return 0;
1925 }
1926
1927 static int drbd_open(struct block_device *bdev, fmode_t mode)
1928 {
1929         struct drbd_device *device = bdev->bd_disk->private_data;
1930         unsigned long flags;
1931         int rv = 0;
1932
1933         mutex_lock(&drbd_main_mutex);
1934         spin_lock_irqsave(&device->resource->req_lock, flags);
1935         /* to have a stable device->state.role
1936          * and no race with updating open_cnt */
1937
1938         if (device->state.role != R_PRIMARY) {
1939                 if (mode & FMODE_WRITE)
1940                         rv = -EROFS;
1941                 else if (!allow_oos)
1942                         rv = -EMEDIUMTYPE;
1943         }
1944
1945         if (!rv)
1946                 device->open_cnt++;
1947         spin_unlock_irqrestore(&device->resource->req_lock, flags);
1948         mutex_unlock(&drbd_main_mutex);
1949
1950         return rv;
1951 }
1952
1953 static void drbd_release(struct gendisk *gd, fmode_t mode)
1954 {
1955         struct drbd_device *device = gd->private_data;
1956         mutex_lock(&drbd_main_mutex);
1957         device->open_cnt--;
1958         mutex_unlock(&drbd_main_mutex);
1959 }
1960
1961 static void drbd_set_defaults(struct drbd_device *device)
1962 {
1963         /* Beware! The actual layout differs
1964          * between big endian and little endian */
1965         device->state = (union drbd_dev_state) {
1966                 { .role = R_SECONDARY,
1967                   .peer = R_UNKNOWN,
1968                   .conn = C_STANDALONE,
1969                   .disk = D_DISKLESS,
1970                   .pdsk = D_UNKNOWN,
1971                 } };
1972 }
1973
1974 void drbd_init_set_defaults(struct drbd_device *device)
1975 {
1976         /* the memset(,0,) did most of this.
1977          * note: only assignments, no allocation in here */
1978
1979         drbd_set_defaults(device);
1980
1981         atomic_set(&device->ap_bio_cnt, 0);
1982         atomic_set(&device->ap_actlog_cnt, 0);
1983         atomic_set(&device->ap_pending_cnt, 0);
1984         atomic_set(&device->rs_pending_cnt, 0);
1985         atomic_set(&device->unacked_cnt, 0);
1986         atomic_set(&device->local_cnt, 0);
1987         atomic_set(&device->pp_in_use_by_net, 0);
1988         atomic_set(&device->rs_sect_in, 0);
1989         atomic_set(&device->rs_sect_ev, 0);
1990         atomic_set(&device->ap_in_flight, 0);
1991         atomic_set(&device->md_io.in_use, 0);
1992
1993         mutex_init(&device->own_state_mutex);
1994         device->state_mutex = &device->own_state_mutex;
1995
1996         spin_lock_init(&device->al_lock);
1997         spin_lock_init(&device->peer_seq_lock);
1998
1999         INIT_LIST_HEAD(&device->active_ee);
2000         INIT_LIST_HEAD(&device->sync_ee);
2001         INIT_LIST_HEAD(&device->done_ee);
2002         INIT_LIST_HEAD(&device->read_ee);
2003         INIT_LIST_HEAD(&device->net_ee);
2004         INIT_LIST_HEAD(&device->resync_reads);
2005         INIT_LIST_HEAD(&device->resync_work.list);
2006         INIT_LIST_HEAD(&device->unplug_work.list);
2007         INIT_LIST_HEAD(&device->bm_io_work.w.list);
2008         INIT_LIST_HEAD(&device->pending_master_completion[0]);
2009         INIT_LIST_HEAD(&device->pending_master_completion[1]);
2010         INIT_LIST_HEAD(&device->pending_completion[0]);
2011         INIT_LIST_HEAD(&device->pending_completion[1]);
2012
2013         device->resync_work.cb  = w_resync_timer;
2014         device->unplug_work.cb  = w_send_write_hint;
2015         device->bm_io_work.w.cb = w_bitmap_io;
2016
2017         init_timer(&device->resync_timer);
2018         init_timer(&device->md_sync_timer);
2019         init_timer(&device->start_resync_timer);
2020         init_timer(&device->request_timer);
2021         device->resync_timer.function = resync_timer_fn;
2022         device->resync_timer.data = (unsigned long) device;
2023         device->md_sync_timer.function = md_sync_timer_fn;
2024         device->md_sync_timer.data = (unsigned long) device;
2025         device->start_resync_timer.function = start_resync_timer_fn;
2026         device->start_resync_timer.data = (unsigned long) device;
2027         device->request_timer.function = request_timer_fn;
2028         device->request_timer.data = (unsigned long) device;
2029
2030         init_waitqueue_head(&device->misc_wait);
2031         init_waitqueue_head(&device->state_wait);
2032         init_waitqueue_head(&device->ee_wait);
2033         init_waitqueue_head(&device->al_wait);
2034         init_waitqueue_head(&device->seq_wait);
2035
2036         device->resync_wenr = LC_FREE;
2037         device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2038         device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2039 }
2040
2041 void drbd_device_cleanup(struct drbd_device *device)
2042 {
2043         int i;
2044         if (first_peer_device(device)->connection->receiver.t_state != NONE)
2045                 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2046                                 first_peer_device(device)->connection->receiver.t_state);
2047
2048         device->al_writ_cnt  =
2049         device->bm_writ_cnt  =
2050         device->read_cnt     =
2051         device->recv_cnt     =
2052         device->send_cnt     =
2053         device->writ_cnt     =
2054         device->p_size       =
2055         device->rs_start     =
2056         device->rs_total     =
2057         device->rs_failed    = 0;
2058         device->rs_last_events = 0;
2059         device->rs_last_sect_ev = 0;
2060         for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2061                 device->rs_mark_left[i] = 0;
2062                 device->rs_mark_time[i] = 0;
2063         }
2064         D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2065
2066         drbd_set_my_capacity(device, 0);
2067         if (device->bitmap) {
2068                 /* maybe never allocated. */
2069                 drbd_bm_resize(device, 0, 1);
2070                 drbd_bm_cleanup(device);
2071         }
2072
2073         drbd_backing_dev_free(device, device->ldev);
2074         device->ldev = NULL;
2075
2076         clear_bit(AL_SUSPENDED, &device->flags);
2077
2078         D_ASSERT(device, list_empty(&device->active_ee));
2079         D_ASSERT(device, list_empty(&device->sync_ee));
2080         D_ASSERT(device, list_empty(&device->done_ee));
2081         D_ASSERT(device, list_empty(&device->read_ee));
2082         D_ASSERT(device, list_empty(&device->net_ee));
2083         D_ASSERT(device, list_empty(&device->resync_reads));
2084         D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2085         D_ASSERT(device, list_empty(&device->resync_work.list));
2086         D_ASSERT(device, list_empty(&device->unplug_work.list));
2087
2088         drbd_set_defaults(device);
2089 }
2090
2091
2092 static void drbd_destroy_mempools(void)
2093 {
2094         struct page *page;
2095
2096         while (drbd_pp_pool) {
2097                 page = drbd_pp_pool;
2098                 drbd_pp_pool = (struct page *)page_private(page);
2099                 __free_page(page);
2100                 drbd_pp_vacant--;
2101         }
2102
2103         /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2104
2105         if (drbd_md_io_bio_set)
2106                 bioset_free(drbd_md_io_bio_set);
2107         if (drbd_md_io_page_pool)
2108                 mempool_destroy(drbd_md_io_page_pool);
2109         if (drbd_ee_mempool)
2110                 mempool_destroy(drbd_ee_mempool);
2111         if (drbd_request_mempool)
2112                 mempool_destroy(drbd_request_mempool);
2113         if (drbd_ee_cache)
2114                 kmem_cache_destroy(drbd_ee_cache);
2115         if (drbd_request_cache)
2116                 kmem_cache_destroy(drbd_request_cache);
2117         if (drbd_bm_ext_cache)
2118                 kmem_cache_destroy(drbd_bm_ext_cache);
2119         if (drbd_al_ext_cache)
2120                 kmem_cache_destroy(drbd_al_ext_cache);
2121
2122         drbd_md_io_bio_set   = NULL;
2123         drbd_md_io_page_pool = NULL;
2124         drbd_ee_mempool      = NULL;
2125         drbd_request_mempool = NULL;
2126         drbd_ee_cache        = NULL;
2127         drbd_request_cache   = NULL;
2128         drbd_bm_ext_cache    = NULL;
2129         drbd_al_ext_cache    = NULL;
2130
2131         return;
2132 }
2133
2134 static int drbd_create_mempools(void)
2135 {
2136         struct page *page;
2137         const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2138         int i;
2139
2140         /* prepare our caches and mempools */
2141         drbd_request_mempool = NULL;
2142         drbd_ee_cache        = NULL;
2143         drbd_request_cache   = NULL;
2144         drbd_bm_ext_cache    = NULL;
2145         drbd_al_ext_cache    = NULL;
2146         drbd_pp_pool         = NULL;
2147         drbd_md_io_page_pool = NULL;
2148         drbd_md_io_bio_set   = NULL;
2149
2150         /* caches */
2151         drbd_request_cache = kmem_cache_create(
2152                 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2153         if (drbd_request_cache == NULL)
2154                 goto Enomem;
2155
2156         drbd_ee_cache = kmem_cache_create(
2157                 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2158         if (drbd_ee_cache == NULL)
2159                 goto Enomem;
2160
2161         drbd_bm_ext_cache = kmem_cache_create(
2162                 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2163         if (drbd_bm_ext_cache == NULL)
2164                 goto Enomem;
2165
2166         drbd_al_ext_cache = kmem_cache_create(
2167                 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2168         if (drbd_al_ext_cache == NULL)
2169                 goto Enomem;
2170
2171         /* mempools */
2172         drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2173         if (drbd_md_io_bio_set == NULL)
2174                 goto Enomem;
2175
2176         drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2177         if (drbd_md_io_page_pool == NULL)
2178                 goto Enomem;
2179
2180         drbd_request_mempool = mempool_create_slab_pool(number,
2181                 drbd_request_cache);
2182         if (drbd_request_mempool == NULL)
2183                 goto Enomem;
2184
2185         drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache);
2186         if (drbd_ee_mempool == NULL)
2187                 goto Enomem;
2188
2189         /* drbd's page pool */
2190         spin_lock_init(&drbd_pp_lock);
2191
2192         for (i = 0; i < number; i++) {
2193                 page = alloc_page(GFP_HIGHUSER);
2194                 if (!page)
2195                         goto Enomem;
2196                 set_page_private(page, (unsigned long)drbd_pp_pool);
2197                 drbd_pp_pool = page;
2198         }
2199         drbd_pp_vacant = number;
2200
2201         return 0;
2202
2203 Enomem:
2204         drbd_destroy_mempools(); /* in case we allocated some */
2205         return -ENOMEM;
2206 }
2207
2208 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2209 {
2210         int rr;
2211
2212         rr = drbd_free_peer_reqs(device, &device->active_ee);
2213         if (rr)
2214                 drbd_err(device, "%d EEs in active list found!\n", rr);
2215
2216         rr = drbd_free_peer_reqs(device, &device->sync_ee);
2217         if (rr)
2218                 drbd_err(device, "%d EEs in sync list found!\n", rr);
2219
2220         rr = drbd_free_peer_reqs(device, &device->read_ee);
2221         if (rr)
2222                 drbd_err(device, "%d EEs in read list found!\n", rr);
2223
2224         rr = drbd_free_peer_reqs(device, &device->done_ee);
2225         if (rr)
2226                 drbd_err(device, "%d EEs in done list found!\n", rr);
2227
2228         rr = drbd_free_peer_reqs(device, &device->net_ee);
2229         if (rr)
2230                 drbd_err(device, "%d EEs in net list found!\n", rr);
2231 }
2232
2233 /* caution. no locking. */
2234 void drbd_destroy_device(struct kref *kref)
2235 {
2236         struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2237         struct drbd_resource *resource = device->resource;
2238         struct drbd_peer_device *peer_device, *tmp_peer_device;
2239
2240         del_timer_sync(&device->request_timer);
2241
2242         /* paranoia asserts */
2243         D_ASSERT(device, device->open_cnt == 0);
2244         /* end paranoia asserts */
2245
2246         /* cleanup stuff that may have been allocated during
2247          * device (re-)configuration or state changes */
2248
2249         if (device->this_bdev)
2250                 bdput(device->this_bdev);
2251
2252         drbd_backing_dev_free(device, device->ldev);
2253         device->ldev = NULL;
2254
2255         drbd_release_all_peer_reqs(device);
2256
2257         lc_destroy(device->act_log);
2258         lc_destroy(device->resync);
2259
2260         kfree(device->p_uuid);
2261         /* device->p_uuid = NULL; */
2262
2263         if (device->bitmap) /* should no longer be there. */
2264                 drbd_bm_cleanup(device);
2265         __free_page(device->md_io.page);
2266         put_disk(device->vdisk);
2267         blk_cleanup_queue(device->rq_queue);
2268         kfree(device->rs_plan_s);
2269
2270         /* not for_each_connection(connection, resource):
2271          * those may have been cleaned up and disassociated already.
2272          */
2273         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2274                 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2275                 kfree(peer_device);
2276         }
2277         memset(device, 0xfd, sizeof(*device));
2278         kfree(device);
2279         kref_put(&resource->kref, drbd_destroy_resource);
2280 }
2281
2282 /* One global retry thread, if we need to push back some bio and have it
2283  * reinserted through our make request function.
2284  */
2285 static struct retry_worker {
2286         struct workqueue_struct *wq;
2287         struct work_struct worker;
2288
2289         spinlock_t lock;
2290         struct list_head writes;
2291 } retry;
2292
2293 static void do_retry(struct work_struct *ws)
2294 {
2295         struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2296         LIST_HEAD(writes);
2297         struct drbd_request *req, *tmp;
2298
2299         spin_lock_irq(&retry->lock);
2300         list_splice_init(&retry->writes, &writes);
2301         spin_unlock_irq(&retry->lock);
2302
2303         list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2304                 struct drbd_device *device = req->device;
2305                 struct bio *bio = req->master_bio;
2306                 unsigned long start_jif = req->start_jif;
2307                 bool expected;
2308
2309                 expected =
2310                         expect(atomic_read(&req->completion_ref) == 0) &&
2311                         expect(req->rq_state & RQ_POSTPONED) &&
2312                         expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2313                                 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2314
2315                 if (!expected)
2316                         drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2317                                 req, atomic_read(&req->completion_ref),
2318                                 req->rq_state);
2319
2320                 /* We still need to put one kref associated with the
2321                  * "completion_ref" going zero in the code path that queued it
2322                  * here.  The request object may still be referenced by a
2323                  * frozen local req->private_bio, in case we force-detached.
2324                  */
2325                 kref_put(&req->kref, drbd_req_destroy);
2326
2327                 /* A single suspended or otherwise blocking device may stall
2328                  * all others as well.  Fortunately, this code path is to
2329                  * recover from a situation that "should not happen":
2330                  * concurrent writes in multi-primary setup.
2331                  * In a "normal" lifecycle, this workqueue is supposed to be
2332                  * destroyed without ever doing anything.
2333                  * If it turns out to be an issue anyways, we can do per
2334                  * resource (replication group) or per device (minor) retry
2335                  * workqueues instead.
2336                  */
2337
2338                 /* We are not just doing generic_make_request(),
2339                  * as we want to keep the start_time information. */
2340                 inc_ap_bio(device);
2341                 __drbd_make_request(device, bio, start_jif);
2342         }
2343 }
2344
2345 /* called via drbd_req_put_completion_ref(),
2346  * holds resource->req_lock */
2347 void drbd_restart_request(struct drbd_request *req)
2348 {
2349         unsigned long flags;
2350         spin_lock_irqsave(&retry.lock, flags);
2351         list_move_tail(&req->tl_requests, &retry.writes);
2352         spin_unlock_irqrestore(&retry.lock, flags);
2353
2354         /* Drop the extra reference that would otherwise
2355          * have been dropped by complete_master_bio.
2356          * do_retry() needs to grab a new one. */
2357         dec_ap_bio(req->device);
2358
2359         queue_work(retry.wq, &retry.worker);
2360 }
2361
2362 void drbd_destroy_resource(struct kref *kref)
2363 {
2364         struct drbd_resource *resource =
2365                 container_of(kref, struct drbd_resource, kref);
2366
2367         idr_destroy(&resource->devices);
2368         free_cpumask_var(resource->cpu_mask);
2369         kfree(resource->name);
2370         memset(resource, 0xf2, sizeof(*resource));
2371         kfree(resource);
2372 }
2373
2374 void drbd_free_resource(struct drbd_resource *resource)
2375 {
2376         struct drbd_connection *connection, *tmp;
2377
2378         for_each_connection_safe(connection, tmp, resource) {
2379                 list_del(&connection->connections);
2380                 drbd_debugfs_connection_cleanup(connection);
2381                 kref_put(&connection->kref, drbd_destroy_connection);
2382         }
2383         drbd_debugfs_resource_cleanup(resource);
2384         kref_put(&resource->kref, drbd_destroy_resource);
2385 }
2386
2387 static void drbd_cleanup(void)
2388 {
2389         unsigned int i;
2390         struct drbd_device *device;
2391         struct drbd_resource *resource, *tmp;
2392
2393         /* first remove proc,
2394          * drbdsetup uses it's presence to detect
2395          * whether DRBD is loaded.
2396          * If we would get stuck in proc removal,
2397          * but have netlink already deregistered,
2398          * some drbdsetup commands may wait forever
2399          * for an answer.
2400          */
2401         if (drbd_proc)
2402                 remove_proc_entry("drbd", NULL);
2403
2404         if (retry.wq)
2405                 destroy_workqueue(retry.wq);
2406
2407         drbd_genl_unregister();
2408         drbd_debugfs_cleanup();
2409
2410         idr_for_each_entry(&drbd_devices, device, i)
2411                 drbd_delete_device(device);
2412
2413         /* not _rcu since, no other updater anymore. Genl already unregistered */
2414         for_each_resource_safe(resource, tmp, &drbd_resources) {
2415                 list_del(&resource->resources);
2416                 drbd_free_resource(resource);
2417         }
2418
2419         drbd_destroy_mempools();
2420         unregister_blkdev(DRBD_MAJOR, "drbd");
2421
2422         idr_destroy(&drbd_devices);
2423
2424         pr_info("module cleanup done.\n");
2425 }
2426
2427 /**
2428  * drbd_congested() - Callback for the flusher thread
2429  * @congested_data:     User data
2430  * @bdi_bits:           Bits the BDI flusher thread is currently interested in
2431  *
2432  * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested.
2433  */
2434 static int drbd_congested(void *congested_data, int bdi_bits)
2435 {
2436         struct drbd_device *device = congested_data;
2437         struct request_queue *q;
2438         char reason = '-';
2439         int r = 0;
2440
2441         if (!may_inc_ap_bio(device)) {
2442                 /* DRBD has frozen IO */
2443                 r = bdi_bits;
2444                 reason = 'd';
2445                 goto out;
2446         }
2447
2448         if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2449                 r |= (1 << WB_async_congested);
2450                 /* Without good local data, we would need to read from remote,
2451                  * and that would need the worker thread as well, which is
2452                  * currently blocked waiting for that usermode helper to
2453                  * finish.
2454                  */
2455                 if (!get_ldev_if_state(device, D_UP_TO_DATE))
2456                         r |= (1 << WB_sync_congested);
2457                 else
2458                         put_ldev(device);
2459                 r &= bdi_bits;
2460                 reason = 'c';
2461                 goto out;
2462         }
2463
2464         if (get_ldev(device)) {
2465                 q = bdev_get_queue(device->ldev->backing_bdev);
2466                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
2467                 put_ldev(device);
2468                 if (r)
2469                         reason = 'b';
2470         }
2471
2472         if (bdi_bits & (1 << WB_async_congested) &&
2473             test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2474                 r |= (1 << WB_async_congested);
2475                 reason = reason == 'b' ? 'a' : 'n';
2476         }
2477
2478 out:
2479         device->congestion_reason = reason;
2480         return r;
2481 }
2482
2483 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2484 {
2485         spin_lock_init(&wq->q_lock);
2486         INIT_LIST_HEAD(&wq->q);
2487         init_waitqueue_head(&wq->q_wait);
2488 }
2489
2490 struct completion_work {
2491         struct drbd_work w;
2492         struct completion done;
2493 };
2494
2495 static int w_complete(struct drbd_work *w, int cancel)
2496 {
2497         struct completion_work *completion_work =
2498                 container_of(w, struct completion_work, w);
2499
2500         complete(&completion_work->done);
2501         return 0;
2502 }
2503
2504 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2505 {
2506         struct completion_work completion_work;
2507
2508         completion_work.w.cb = w_complete;
2509         init_completion(&completion_work.done);
2510         drbd_queue_work(work_queue, &completion_work.w);
2511         wait_for_completion(&completion_work.done);
2512 }
2513
2514 struct drbd_resource *drbd_find_resource(const char *name)
2515 {
2516         struct drbd_resource *resource;
2517
2518         if (!name || !name[0])
2519                 return NULL;
2520
2521         rcu_read_lock();
2522         for_each_resource_rcu(resource, &drbd_resources) {
2523                 if (!strcmp(resource->name, name)) {
2524                         kref_get(&resource->kref);
2525                         goto found;
2526                 }
2527         }
2528         resource = NULL;
2529 found:
2530         rcu_read_unlock();
2531         return resource;
2532 }
2533
2534 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2535                                      void *peer_addr, int peer_addr_len)
2536 {
2537         struct drbd_resource *resource;
2538         struct drbd_connection *connection;
2539
2540         rcu_read_lock();
2541         for_each_resource_rcu(resource, &drbd_resources) {
2542                 for_each_connection_rcu(connection, resource) {
2543                         if (connection->my_addr_len == my_addr_len &&
2544                             connection->peer_addr_len == peer_addr_len &&
2545                             !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2546                             !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2547                                 kref_get(&connection->kref);
2548                                 goto found;
2549                         }
2550                 }
2551         }
2552         connection = NULL;
2553 found:
2554         rcu_read_unlock();
2555         return connection;
2556 }
2557
2558 static int drbd_alloc_socket(struct drbd_socket *socket)
2559 {
2560         socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2561         if (!socket->rbuf)
2562                 return -ENOMEM;
2563         socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2564         if (!socket->sbuf)
2565                 return -ENOMEM;
2566         return 0;
2567 }
2568
2569 static void drbd_free_socket(struct drbd_socket *socket)
2570 {
2571         free_page((unsigned long) socket->sbuf);
2572         free_page((unsigned long) socket->rbuf);
2573 }
2574
2575 void conn_free_crypto(struct drbd_connection *connection)
2576 {
2577         drbd_free_sock(connection);
2578
2579         crypto_free_ahash(connection->csums_tfm);
2580         crypto_free_ahash(connection->verify_tfm);
2581         crypto_free_shash(connection->cram_hmac_tfm);
2582         crypto_free_ahash(connection->integrity_tfm);
2583         crypto_free_ahash(connection->peer_integrity_tfm);
2584         kfree(connection->int_dig_in);
2585         kfree(connection->int_dig_vv);
2586
2587         connection->csums_tfm = NULL;
2588         connection->verify_tfm = NULL;
2589         connection->cram_hmac_tfm = NULL;
2590         connection->integrity_tfm = NULL;
2591         connection->peer_integrity_tfm = NULL;
2592         connection->int_dig_in = NULL;
2593         connection->int_dig_vv = NULL;
2594 }
2595
2596 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2597 {
2598         struct drbd_connection *connection;
2599         cpumask_var_t new_cpu_mask;
2600         int err;
2601
2602         if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2603                 return -ENOMEM;
2604
2605         /* silently ignore cpu mask on UP kernel */
2606         if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2607                 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2608                                    cpumask_bits(new_cpu_mask), nr_cpu_ids);
2609                 if (err == -EOVERFLOW) {
2610                         /* So what. mask it out. */
2611                         cpumask_var_t tmp_cpu_mask;
2612                         if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2613                                 cpumask_setall(tmp_cpu_mask);
2614                                 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2615                                 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2616                                         res_opts->cpu_mask,
2617                                         strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2618                                         nr_cpu_ids);
2619                                 free_cpumask_var(tmp_cpu_mask);
2620                                 err = 0;
2621                         }
2622                 }
2623                 if (err) {
2624                         drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2625                         /* retcode = ERR_CPU_MASK_PARSE; */
2626                         goto fail;
2627                 }
2628         }
2629         resource->res_opts = *res_opts;
2630         if (cpumask_empty(new_cpu_mask))
2631                 drbd_calc_cpu_mask(&new_cpu_mask);
2632         if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2633                 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2634                 for_each_connection_rcu(connection, resource) {
2635                         connection->receiver.reset_cpu_mask = 1;
2636                         connection->ack_receiver.reset_cpu_mask = 1;
2637                         connection->worker.reset_cpu_mask = 1;
2638                 }
2639         }
2640         err = 0;
2641
2642 fail:
2643         free_cpumask_var(new_cpu_mask);
2644         return err;
2645
2646 }
2647
2648 struct drbd_resource *drbd_create_resource(const char *name)
2649 {
2650         struct drbd_resource *resource;
2651
2652         resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2653         if (!resource)
2654                 goto fail;
2655         resource->name = kstrdup(name, GFP_KERNEL);
2656         if (!resource->name)
2657                 goto fail_free_resource;
2658         if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2659                 goto fail_free_name;
2660         kref_init(&resource->kref);
2661         idr_init(&resource->devices);
2662         INIT_LIST_HEAD(&resource->connections);
2663         resource->write_ordering = WO_BDEV_FLUSH;
2664         list_add_tail_rcu(&resource->resources, &drbd_resources);
2665         mutex_init(&resource->conf_update);
2666         mutex_init(&resource->adm_mutex);
2667         spin_lock_init(&resource->req_lock);
2668         drbd_debugfs_resource_add(resource);
2669         return resource;
2670
2671 fail_free_name:
2672         kfree(resource->name);
2673 fail_free_resource:
2674         kfree(resource);
2675 fail:
2676         return NULL;
2677 }
2678
2679 /* caller must be under adm_mutex */
2680 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2681 {
2682         struct drbd_resource *resource;
2683         struct drbd_connection *connection;
2684
2685         connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2686         if (!connection)
2687                 return NULL;
2688
2689         if (drbd_alloc_socket(&connection->data))
2690                 goto fail;
2691         if (drbd_alloc_socket(&connection->meta))
2692                 goto fail;
2693
2694         connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2695         if (!connection->current_epoch)
2696                 goto fail;
2697
2698         INIT_LIST_HEAD(&connection->transfer_log);
2699
2700         INIT_LIST_HEAD(&connection->current_epoch->list);
2701         connection->epochs = 1;
2702         spin_lock_init(&connection->epoch_lock);
2703
2704         connection->send.seen_any_write_yet = false;
2705         connection->send.current_epoch_nr = 0;
2706         connection->send.current_epoch_writes = 0;
2707
2708         resource = drbd_create_resource(name);
2709         if (!resource)
2710                 goto fail;
2711
2712         connection->cstate = C_STANDALONE;
2713         mutex_init(&connection->cstate_mutex);
2714         init_waitqueue_head(&connection->ping_wait);
2715         idr_init(&connection->peer_devices);
2716
2717         drbd_init_workqueue(&connection->sender_work);
2718         mutex_init(&connection->data.mutex);
2719         mutex_init(&connection->meta.mutex);
2720
2721         drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2722         connection->receiver.connection = connection;
2723         drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2724         connection->worker.connection = connection;
2725         drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2726         connection->ack_receiver.connection = connection;
2727
2728         kref_init(&connection->kref);
2729
2730         connection->resource = resource;
2731
2732         if (set_resource_options(resource, res_opts))
2733                 goto fail_resource;
2734
2735         kref_get(&resource->kref);
2736         list_add_tail_rcu(&connection->connections, &resource->connections);
2737         drbd_debugfs_connection_add(connection);
2738         return connection;
2739
2740 fail_resource:
2741         list_del(&resource->resources);
2742         drbd_free_resource(resource);
2743 fail:
2744         kfree(connection->current_epoch);
2745         drbd_free_socket(&connection->meta);
2746         drbd_free_socket(&connection->data);
2747         kfree(connection);
2748         return NULL;
2749 }
2750
2751 void drbd_destroy_connection(struct kref *kref)
2752 {
2753         struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2754         struct drbd_resource *resource = connection->resource;
2755
2756         if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2757                 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2758         kfree(connection->current_epoch);
2759
2760         idr_destroy(&connection->peer_devices);
2761
2762         drbd_free_socket(&connection->meta);
2763         drbd_free_socket(&connection->data);
2764         kfree(connection->int_dig_in);
2765         kfree(connection->int_dig_vv);
2766         memset(connection, 0xfc, sizeof(*connection));
2767         kfree(connection);
2768         kref_put(&resource->kref, drbd_destroy_resource);
2769 }
2770
2771 static int init_submitter(struct drbd_device *device)
2772 {
2773         /* opencoded create_singlethread_workqueue(),
2774          * to be able to say "drbd%d", ..., minor */
2775         device->submit.wq =
2776                 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2777         if (!device->submit.wq)
2778                 return -ENOMEM;
2779
2780         INIT_WORK(&device->submit.worker, do_submit);
2781         INIT_LIST_HEAD(&device->submit.writes);
2782         return 0;
2783 }
2784
2785 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2786 {
2787         struct drbd_resource *resource = adm_ctx->resource;
2788         struct drbd_connection *connection;
2789         struct drbd_device *device;
2790         struct drbd_peer_device *peer_device, *tmp_peer_device;
2791         struct gendisk *disk;
2792         struct request_queue *q;
2793         int id;
2794         int vnr = adm_ctx->volume;
2795         enum drbd_ret_code err = ERR_NOMEM;
2796
2797         device = minor_to_device(minor);
2798         if (device)
2799                 return ERR_MINOR_OR_VOLUME_EXISTS;
2800
2801         /* GFP_KERNEL, we are outside of all write-out paths */
2802         device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2803         if (!device)
2804                 return ERR_NOMEM;
2805         kref_init(&device->kref);
2806
2807         kref_get(&resource->kref);
2808         device->resource = resource;
2809         device->minor = minor;
2810         device->vnr = vnr;
2811
2812         drbd_init_set_defaults(device);
2813
2814         q = blk_alloc_queue(GFP_KERNEL);
2815         if (!q)
2816                 goto out_no_q;
2817         device->rq_queue = q;
2818         q->queuedata   = device;
2819
2820         disk = alloc_disk(1);
2821         if (!disk)
2822                 goto out_no_disk;
2823         device->vdisk = disk;
2824
2825         set_disk_ro(disk, true);
2826
2827         disk->queue = q;
2828         disk->major = DRBD_MAJOR;
2829         disk->first_minor = minor;
2830         disk->fops = &drbd_ops;
2831         sprintf(disk->disk_name, "drbd%d", minor);
2832         disk->private_data = device;
2833
2834         device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2835         /* we have no partitions. we contain only ourselves. */
2836         device->this_bdev->bd_contains = device->this_bdev;
2837
2838         q->backing_dev_info.congested_fn = drbd_congested;
2839         q->backing_dev_info.congested_data = device;
2840
2841         blk_queue_make_request(q, drbd_make_request);
2842         blk_queue_write_cache(q, true, true);
2843         /* Setting the max_hw_sectors to an odd value of 8kibyte here
2844            This triggers a max_bio_size message upon first attach or connect */
2845         blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2846         blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2847         q->queue_lock = &resource->req_lock;
2848
2849         device->md_io.page = alloc_page(GFP_KERNEL);
2850         if (!device->md_io.page)
2851                 goto out_no_io_page;
2852
2853         if (drbd_bm_init(device))
2854                 goto out_no_bitmap;
2855         device->read_requests = RB_ROOT;
2856         device->write_requests = RB_ROOT;
2857
2858         id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2859         if (id < 0) {
2860                 if (id == -ENOSPC)
2861                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2862                 goto out_no_minor_idr;
2863         }
2864         kref_get(&device->kref);
2865
2866         id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2867         if (id < 0) {
2868                 if (id == -ENOSPC)
2869                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2870                 goto out_idr_remove_minor;
2871         }
2872         kref_get(&device->kref);
2873
2874         INIT_LIST_HEAD(&device->peer_devices);
2875         INIT_LIST_HEAD(&device->pending_bitmap_io);
2876         for_each_connection(connection, resource) {
2877                 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2878                 if (!peer_device)
2879                         goto out_idr_remove_from_resource;
2880                 peer_device->connection = connection;
2881                 peer_device->device = device;
2882
2883                 list_add(&peer_device->peer_devices, &device->peer_devices);
2884                 kref_get(&device->kref);
2885
2886                 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2887                 if (id < 0) {
2888                         if (id == -ENOSPC)
2889                                 err = ERR_INVALID_REQUEST;
2890                         goto out_idr_remove_from_resource;
2891                 }
2892                 kref_get(&connection->kref);
2893                 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2894         }
2895
2896         if (init_submitter(device)) {
2897                 err = ERR_NOMEM;
2898                 goto out_idr_remove_vol;
2899         }
2900
2901         add_disk(disk);
2902
2903         /* inherit the connection state */
2904         device->state.conn = first_connection(resource)->cstate;
2905         if (device->state.conn == C_WF_REPORT_PARAMS) {
2906                 for_each_peer_device(peer_device, device)
2907                         drbd_connected(peer_device);
2908         }
2909         /* move to create_peer_device() */
2910         for_each_peer_device(peer_device, device)
2911                 drbd_debugfs_peer_device_add(peer_device);
2912         drbd_debugfs_device_add(device);
2913         return NO_ERROR;
2914
2915 out_idr_remove_vol:
2916         idr_remove(&connection->peer_devices, vnr);
2917 out_idr_remove_from_resource:
2918         for_each_connection(connection, resource) {
2919                 peer_device = idr_find(&connection->peer_devices, vnr);
2920                 if (peer_device) {
2921                         idr_remove(&connection->peer_devices, vnr);
2922                         kref_put(&connection->kref, drbd_destroy_connection);
2923                 }
2924         }
2925         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2926                 list_del(&peer_device->peer_devices);
2927                 kfree(peer_device);
2928         }
2929         idr_remove(&resource->devices, vnr);
2930 out_idr_remove_minor:
2931         idr_remove(&drbd_devices, minor);
2932         synchronize_rcu();
2933 out_no_minor_idr:
2934         drbd_bm_cleanup(device);
2935 out_no_bitmap:
2936         __free_page(device->md_io.page);
2937 out_no_io_page:
2938         put_disk(disk);
2939 out_no_disk:
2940         blk_cleanup_queue(q);
2941 out_no_q:
2942         kref_put(&resource->kref, drbd_destroy_resource);
2943         kfree(device);
2944         return err;
2945 }
2946
2947 void drbd_delete_device(struct drbd_device *device)
2948 {
2949         struct drbd_resource *resource = device->resource;
2950         struct drbd_connection *connection;
2951         struct drbd_peer_device *peer_device;
2952         int refs = 3;
2953
2954         /* move to free_peer_device() */
2955         for_each_peer_device(peer_device, device)
2956                 drbd_debugfs_peer_device_cleanup(peer_device);
2957         drbd_debugfs_device_cleanup(device);
2958         for_each_connection(connection, resource) {
2959                 idr_remove(&connection->peer_devices, device->vnr);
2960                 refs++;
2961         }
2962         idr_remove(&resource->devices, device->vnr);
2963         idr_remove(&drbd_devices, device_to_minor(device));
2964         del_gendisk(device->vdisk);
2965         synchronize_rcu();
2966         kref_sub(&device->kref, refs, drbd_destroy_device);
2967 }
2968
2969 static int __init drbd_init(void)
2970 {
2971         int err;
2972
2973         if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2974                 pr_err("invalid minor_count (%d)\n", minor_count);
2975 #ifdef MODULE
2976                 return -EINVAL;
2977 #else
2978                 minor_count = DRBD_MINOR_COUNT_DEF;
2979 #endif
2980         }
2981
2982         err = register_blkdev(DRBD_MAJOR, "drbd");
2983         if (err) {
2984                 pr_err("unable to register block device major %d\n",
2985                        DRBD_MAJOR);
2986                 return err;
2987         }
2988
2989         /*
2990          * allocate all necessary structs
2991          */
2992         init_waitqueue_head(&drbd_pp_wait);
2993
2994         drbd_proc = NULL; /* play safe for drbd_cleanup */
2995         idr_init(&drbd_devices);
2996
2997         mutex_init(&resources_mutex);
2998         INIT_LIST_HEAD(&drbd_resources);
2999
3000         err = drbd_genl_register();
3001         if (err) {
3002                 pr_err("unable to register generic netlink family\n");
3003                 goto fail;
3004         }
3005
3006         err = drbd_create_mempools();
3007         if (err)
3008                 goto fail;
3009
3010         err = -ENOMEM;
3011         drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
3012         if (!drbd_proc) {
3013                 pr_err("unable to register proc file\n");
3014                 goto fail;
3015         }
3016
3017         retry.wq = create_singlethread_workqueue("drbd-reissue");
3018         if (!retry.wq) {
3019                 pr_err("unable to create retry workqueue\n");
3020                 goto fail;
3021         }
3022         INIT_WORK(&retry.worker, do_retry);
3023         spin_lock_init(&retry.lock);
3024         INIT_LIST_HEAD(&retry.writes);
3025
3026         if (drbd_debugfs_init())
3027                 pr_notice("failed to initialize debugfs -- will not be available\n");
3028
3029         pr_info("initialized. "
3030                "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
3031                API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
3032         pr_info("%s\n", drbd_buildtag());
3033         pr_info("registered as block device major %d\n", DRBD_MAJOR);
3034         return 0; /* Success! */
3035
3036 fail:
3037         drbd_cleanup();
3038         if (err == -ENOMEM)
3039                 pr_err("ran out of memory\n");
3040         else
3041                 pr_err("initialization failure\n");
3042         return err;
3043 }
3044
3045 static void drbd_free_one_sock(struct drbd_socket *ds)
3046 {
3047         struct socket *s;
3048         mutex_lock(&ds->mutex);
3049         s = ds->socket;
3050         ds->socket = NULL;
3051         mutex_unlock(&ds->mutex);
3052         if (s) {
3053                 /* so debugfs does not need to mutex_lock() */
3054                 synchronize_rcu();
3055                 kernel_sock_shutdown(s, SHUT_RDWR);
3056                 sock_release(s);
3057         }
3058 }
3059
3060 void drbd_free_sock(struct drbd_connection *connection)
3061 {
3062         if (connection->data.socket)
3063                 drbd_free_one_sock(&connection->data);
3064         if (connection->meta.socket)
3065                 drbd_free_one_sock(&connection->meta);
3066 }
3067
3068 /* meta data management */
3069
3070 void conn_md_sync(struct drbd_connection *connection)
3071 {
3072         struct drbd_peer_device *peer_device;
3073         int vnr;
3074
3075         rcu_read_lock();
3076         idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
3077                 struct drbd_device *device = peer_device->device;
3078
3079                 kref_get(&device->kref);
3080                 rcu_read_unlock();
3081                 drbd_md_sync(device);
3082                 kref_put(&device->kref, drbd_destroy_device);
3083                 rcu_read_lock();
3084         }
3085         rcu_read_unlock();
3086 }
3087
3088 /* aligned 4kByte */
3089 struct meta_data_on_disk {
3090         u64 la_size_sect;      /* last agreed size. */
3091         u64 uuid[UI_SIZE];   /* UUIDs. */
3092         u64 device_uuid;
3093         u64 reserved_u64_1;
3094         u32 flags;             /* MDF */
3095         u32 magic;
3096         u32 md_size_sect;
3097         u32 al_offset;         /* offset to this block */
3098         u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3099               /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3100         u32 bm_offset;         /* offset to the bitmap, from here */
3101         u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3102         u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3103
3104         /* see al_tr_number_to_on_disk_sector() */
3105         u32 al_stripes;
3106         u32 al_stripe_size_4k;
3107
3108         u8 reserved_u8[4096 - (7*8 + 10*4)];
3109 } __packed;
3110
3111
3112
3113 void drbd_md_write(struct drbd_device *device, void *b)
3114 {
3115         struct meta_data_on_disk *buffer = b;
3116         sector_t sector;
3117         int i;
3118
3119         memset(buffer, 0, sizeof(*buffer));
3120
3121         buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3122         for (i = UI_CURRENT; i < UI_SIZE; i++)
3123                 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3124         buffer->flags = cpu_to_be32(device->ldev->md.flags);
3125         buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3126
3127         buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3128         buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3129         buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3130         buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3131         buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3132
3133         buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3134         buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3135
3136         buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3137         buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3138
3139         D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3140         sector = device->ldev->md.md_offset;
3141
3142         if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3143                 /* this was a try anyways ... */
3144                 drbd_err(device, "meta data update failed!\n");
3145                 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3146         }
3147 }
3148
3149 /**
3150  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3151  * @device:     DRBD device.
3152  */
3153 void drbd_md_sync(struct drbd_device *device)
3154 {
3155         struct meta_data_on_disk *buffer;
3156
3157         /* Don't accidentally change the DRBD meta data layout. */
3158         BUILD_BUG_ON(UI_SIZE != 4);
3159         BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3160
3161         del_timer(&device->md_sync_timer);
3162         /* timer may be rearmed by drbd_md_mark_dirty() now. */
3163         if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3164                 return;
3165
3166         /* We use here D_FAILED and not D_ATTACHING because we try to write
3167          * metadata even if we detach due to a disk failure! */
3168         if (!get_ldev_if_state(device, D_FAILED))
3169                 return;
3170
3171         buffer = drbd_md_get_buffer(device, __func__);
3172         if (!buffer)
3173                 goto out;
3174
3175         drbd_md_write(device, buffer);
3176
3177         /* Update device->ldev->md.la_size_sect,
3178          * since we updated it on metadata. */
3179         device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3180
3181         drbd_md_put_buffer(device);
3182 out:
3183         put_ldev(device);
3184 }
3185
3186 static int check_activity_log_stripe_size(struct drbd_device *device,
3187                 struct meta_data_on_disk *on_disk,
3188                 struct drbd_md *in_core)
3189 {
3190         u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3191         u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3192         u64 al_size_4k;
3193
3194         /* both not set: default to old fixed size activity log */
3195         if (al_stripes == 0 && al_stripe_size_4k == 0) {
3196                 al_stripes = 1;
3197                 al_stripe_size_4k = MD_32kB_SECT/8;
3198         }
3199
3200         /* some paranoia plausibility checks */
3201
3202         /* we need both values to be set */
3203         if (al_stripes == 0 || al_stripe_size_4k == 0)
3204                 goto err;
3205
3206         al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3207
3208         /* Upper limit of activity log area, to avoid potential overflow
3209          * problems in al_tr_number_to_on_disk_sector(). As right now, more
3210          * than 72 * 4k blocks total only increases the amount of history,
3211          * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3212         if (al_size_4k > (16 * 1024 * 1024/4))
3213                 goto err;
3214
3215         /* Lower limit: we need at least 8 transaction slots (32kB)
3216          * to not break existing setups */
3217         if (al_size_4k < MD_32kB_SECT/8)
3218                 goto err;
3219
3220         in_core->al_stripe_size_4k = al_stripe_size_4k;
3221         in_core->al_stripes = al_stripes;
3222         in_core->al_size_4k = al_size_4k;
3223
3224         return 0;
3225 err:
3226         drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3227                         al_stripes, al_stripe_size_4k);
3228         return -EINVAL;
3229 }
3230
3231 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3232 {
3233         sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3234         struct drbd_md *in_core = &bdev->md;
3235         s32 on_disk_al_sect;
3236         s32 on_disk_bm_sect;
3237
3238         /* The on-disk size of the activity log, calculated from offsets, and
3239          * the size of the activity log calculated from the stripe settings,
3240          * should match.
3241          * Though we could relax this a bit: it is ok, if the striped activity log
3242          * fits in the available on-disk activity log size.
3243          * Right now, that would break how resize is implemented.
3244          * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3245          * of possible unused padding space in the on disk layout. */
3246         if (in_core->al_offset < 0) {
3247                 if (in_core->bm_offset > in_core->al_offset)
3248                         goto err;
3249                 on_disk_al_sect = -in_core->al_offset;
3250                 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3251         } else {
3252                 if (in_core->al_offset != MD_4kB_SECT)
3253                         goto err;
3254                 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3255                         goto err;
3256
3257                 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3258                 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3259         }
3260
3261         /* old fixed size meta data is exactly that: fixed. */
3262         if (in_core->meta_dev_idx >= 0) {
3263                 if (in_core->md_size_sect != MD_128MB_SECT
3264                 ||  in_core->al_offset != MD_4kB_SECT
3265                 ||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3266                 ||  in_core->al_stripes != 1
3267                 ||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3268                         goto err;
3269         }
3270
3271         if (capacity < in_core->md_size_sect)
3272                 goto err;
3273         if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3274                 goto err;
3275
3276         /* should be aligned, and at least 32k */
3277         if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3278                 goto err;
3279
3280         /* should fit (for now: exactly) into the available on-disk space;
3281          * overflow prevention is in check_activity_log_stripe_size() above. */
3282         if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3283                 goto err;
3284
3285         /* again, should be aligned */
3286         if (in_core->bm_offset & 7)
3287                 goto err;
3288
3289         /* FIXME check for device grow with flex external meta data? */
3290
3291         /* can the available bitmap space cover the last agreed device size? */
3292         if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3293                 goto err;
3294
3295         return 0;
3296
3297 err:
3298         drbd_err(device, "meta data offsets don't make sense: idx=%d "
3299                         "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3300                         "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3301                         in_core->meta_dev_idx,
3302                         in_core->al_stripes, in_core->al_stripe_size_4k,
3303                         in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3304                         (unsigned long long)in_core->la_size_sect,
3305                         (unsigned long long)capacity);
3306
3307         return -EINVAL;
3308 }
3309
3310
3311 /**
3312  * drbd_md_read() - Reads in the meta data super block
3313  * @device:     DRBD device.
3314  * @bdev:       Device from which the meta data should be read in.
3315  *
3316  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3317  * something goes wrong.
3318  *
3319  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3320  * even before @bdev is assigned to @device->ldev.
3321  */
3322 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3323 {
3324         struct meta_data_on_disk *buffer;
3325         u32 magic, flags;
3326         int i, rv = NO_ERROR;
3327
3328         if (device->state.disk != D_DISKLESS)
3329                 return ERR_DISK_CONFIGURED;
3330
3331         buffer = drbd_md_get_buffer(device, __func__);
3332         if (!buffer)
3333                 return ERR_NOMEM;
3334
3335         /* First, figure out where our meta data superblock is located,
3336          * and read it. */
3337         bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3338         bdev->md.md_offset = drbd_md_ss(bdev);
3339         /* Even for (flexible or indexed) external meta data,
3340          * initially restrict us to the 4k superblock for now.
3341          * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3342         bdev->md.md_size_sect = 8;
3343
3344         if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3345                                  REQ_OP_READ)) {
3346                 /* NOTE: can't do normal error processing here as this is
3347                    called BEFORE disk is attached */
3348                 drbd_err(device, "Error while reading metadata.\n");
3349                 rv = ERR_IO_MD_DISK;
3350                 goto err;
3351         }
3352
3353         magic = be32_to_cpu(buffer->magic);
3354         flags = be32_to_cpu(buffer->flags);
3355         if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3356             (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3357                         /* btw: that's Activity Log clean, not "all" clean. */
3358                 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3359                 rv = ERR_MD_UNCLEAN;
3360                 goto err;
3361         }
3362
3363         rv = ERR_MD_INVALID;
3364         if (magic != DRBD_MD_MAGIC_08) {
3365                 if (magic == DRBD_MD_MAGIC_07)
3366                         drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3367                 else
3368                         drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3369                 goto err;
3370         }
3371
3372         if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3373                 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3374                     be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3375                 goto err;
3376         }
3377
3378
3379         /* convert to in_core endian */
3380         bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3381         for (i = UI_CURRENT; i < UI_SIZE; i++)
3382                 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3383         bdev->md.flags = be32_to_cpu(buffer->flags);
3384         bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3385
3386         bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3387         bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3388         bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3389
3390         if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3391                 goto err;
3392         if (check_offsets_and_sizes(device, bdev))
3393                 goto err;
3394
3395         if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3396                 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3397                     be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3398                 goto err;
3399         }
3400         if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3401                 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3402                     be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3403                 goto err;
3404         }
3405
3406         rv = NO_ERROR;
3407
3408         spin_lock_irq(&device->resource->req_lock);
3409         if (device->state.conn < C_CONNECTED) {
3410                 unsigned int peer;
3411                 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3412                 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3413                 device->peer_max_bio_size = peer;
3414         }
3415         spin_unlock_irq(&device->resource->req_lock);
3416
3417  err:
3418         drbd_md_put_buffer(device);
3419
3420         return rv;
3421 }
3422
3423 /**
3424  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3425  * @device:     DRBD device.
3426  *
3427  * Call this function if you change anything that should be written to
3428  * the meta-data super block. This function sets MD_DIRTY, and starts a
3429  * timer that ensures that within five seconds you have to call drbd_md_sync().
3430  */
3431 #ifdef DEBUG
3432 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3433 {
3434         if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3435                 mod_timer(&device->md_sync_timer, jiffies + HZ);
3436                 device->last_md_mark_dirty.line = line;
3437                 device->last_md_mark_dirty.func = func;
3438         }
3439 }
3440 #else
3441 void drbd_md_mark_dirty(struct drbd_device *device)
3442 {
3443         if (!test_and_set_bit(MD_DIRTY, &device->flags))
3444                 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3445 }
3446 #endif
3447
3448 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3449 {
3450         int i;
3451
3452         for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3453                 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3454 }
3455
3456 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3457 {
3458         if (idx == UI_CURRENT) {
3459                 if (device->state.role == R_PRIMARY)
3460                         val |= 1;
3461                 else
3462                         val &= ~((u64)1);
3463
3464                 drbd_set_ed_uuid(device, val);
3465         }
3466
3467         device->ldev->md.uuid[idx] = val;
3468         drbd_md_mark_dirty(device);
3469 }
3470
3471 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3472 {
3473         unsigned long flags;
3474         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3475         __drbd_uuid_set(device, idx, val);
3476         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3477 }
3478
3479 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3480 {
3481         unsigned long flags;
3482         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3483         if (device->ldev->md.uuid[idx]) {
3484                 drbd_uuid_move_history(device);
3485                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3486         }
3487         __drbd_uuid_set(device, idx, val);
3488         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3489 }
3490
3491 /**
3492  * drbd_uuid_new_current() - Creates a new current UUID
3493  * @device:     DRBD device.
3494  *
3495  * Creates a new current UUID, and rotates the old current UUID into
3496  * the bitmap slot. Causes an incremental resync upon next connect.
3497  */
3498 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3499 {
3500         u64 val;
3501         unsigned long long bm_uuid;
3502
3503         get_random_bytes(&val, sizeof(u64));
3504
3505         spin_lock_irq(&device->ldev->md.uuid_lock);
3506         bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3507
3508         if (bm_uuid)
3509                 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3510
3511         device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3512         __drbd_uuid_set(device, UI_CURRENT, val);
3513         spin_unlock_irq(&device->ldev->md.uuid_lock);
3514
3515         drbd_print_uuids(device, "new current UUID");
3516         /* get it to stable storage _now_ */
3517         drbd_md_sync(device);
3518 }
3519
3520 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3521 {
3522         unsigned long flags;
3523         if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3524                 return;
3525
3526         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3527         if (val == 0) {
3528                 drbd_uuid_move_history(device);
3529                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3530                 device->ldev->md.uuid[UI_BITMAP] = 0;
3531         } else {
3532                 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3533                 if (bm_uuid)
3534                         drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3535
3536                 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3537         }
3538         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3539
3540         drbd_md_mark_dirty(device);
3541 }
3542
3543 /**
3544  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3545  * @device:     DRBD device.
3546  *
3547  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3548  */
3549 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3550 {
3551         int rv = -EIO;
3552
3553         drbd_md_set_flag(device, MDF_FULL_SYNC);
3554         drbd_md_sync(device);
3555         drbd_bm_set_all(device);
3556
3557         rv = drbd_bm_write(device);
3558
3559         if (!rv) {
3560                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3561                 drbd_md_sync(device);
3562         }
3563
3564         return rv;
3565 }
3566
3567 /**
3568  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3569  * @device:     DRBD device.
3570  *
3571  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3572  */
3573 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3574 {
3575         drbd_resume_al(device);
3576         drbd_bm_clear_all(device);
3577         return drbd_bm_write(device);
3578 }
3579
3580 static int w_bitmap_io(struct drbd_work *w, int unused)
3581 {
3582         struct drbd_device *device =
3583                 container_of(w, struct drbd_device, bm_io_work.w);
3584         struct bm_io_work *work = &device->bm_io_work;
3585         int rv = -EIO;
3586
3587         if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3588                 int cnt = atomic_read(&device->ap_bio_cnt);
3589                 if (cnt)
3590                         drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3591                                         cnt, work->why);
3592         }
3593
3594         if (get_ldev(device)) {
3595                 drbd_bm_lock(device, work->why, work->flags);
3596                 rv = work->io_fn(device);
3597                 drbd_bm_unlock(device);
3598                 put_ldev(device);
3599         }
3600
3601         clear_bit_unlock(BITMAP_IO, &device->flags);
3602         wake_up(&device->misc_wait);
3603
3604         if (work->done)
3605                 work->done(device, rv);
3606
3607         clear_bit(BITMAP_IO_QUEUED, &device->flags);
3608         work->why = NULL;
3609         work->flags = 0;
3610
3611         return 0;
3612 }
3613
3614 /**
3615  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3616  * @device:     DRBD device.
3617  * @io_fn:      IO callback to be called when bitmap IO is possible
3618  * @done:       callback to be called after the bitmap IO was performed
3619  * @why:        Descriptive text of the reason for doing the IO
3620  *
3621  * While IO on the bitmap happens we freeze application IO thus we ensure
3622  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3623  * called from worker context. It MUST NOT be used while a previous such
3624  * work is still pending!
3625  *
3626  * Its worker function encloses the call of io_fn() by get_ldev() and
3627  * put_ldev().
3628  */
3629 void drbd_queue_bitmap_io(struct drbd_device *device,
3630                           int (*io_fn)(struct drbd_device *),
3631                           void (*done)(struct drbd_device *, int),
3632                           char *why, enum bm_flag flags)
3633 {
3634         D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3635
3636         D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3637         D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3638         D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3639         if (device->bm_io_work.why)
3640                 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3641                         why, device->bm_io_work.why);
3642
3643         device->bm_io_work.io_fn = io_fn;
3644         device->bm_io_work.done = done;
3645         device->bm_io_work.why = why;
3646         device->bm_io_work.flags = flags;
3647
3648         spin_lock_irq(&device->resource->req_lock);
3649         set_bit(BITMAP_IO, &device->flags);
3650         /* don't wait for pending application IO if the caller indicates that
3651          * application IO does not conflict anyways. */
3652         if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3653                 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3654                         drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3655                                         &device->bm_io_work.w);
3656         }
3657         spin_unlock_irq(&device->resource->req_lock);
3658 }
3659
3660 /**
3661  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3662  * @device:     DRBD device.
3663  * @io_fn:      IO callback to be called when bitmap IO is possible
3664  * @why:        Descriptive text of the reason for doing the IO
3665  *
3666  * freezes application IO while that the actual IO operations runs. This
3667  * functions MAY NOT be called from worker context.
3668  */
3669 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3670                 char *why, enum bm_flag flags)
3671 {
3672         /* Only suspend io, if some operation is supposed to be locked out */
3673         const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3674         int rv;
3675
3676         D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3677
3678         if (do_suspend_io)
3679                 drbd_suspend_io(device);
3680
3681         drbd_bm_lock(device, why, flags);
3682         rv = io_fn(device);
3683         drbd_bm_unlock(device);
3684
3685         if (do_suspend_io)
3686                 drbd_resume_io(device);
3687
3688         return rv;
3689 }
3690
3691 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3692 {
3693         if ((device->ldev->md.flags & flag) != flag) {
3694                 drbd_md_mark_dirty(device);
3695                 device->ldev->md.flags |= flag;
3696         }
3697 }
3698
3699 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3700 {
3701         if ((device->ldev->md.flags & flag) != 0) {
3702                 drbd_md_mark_dirty(device);
3703                 device->ldev->md.flags &= ~flag;
3704         }
3705 }
3706 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3707 {
3708         return (bdev->md.flags & flag) != 0;
3709 }
3710
3711 static void md_sync_timer_fn(unsigned long data)
3712 {
3713         struct drbd_device *device = (struct drbd_device *) data;
3714         drbd_device_post_work(device, MD_SYNC);
3715 }
3716
3717 const char *cmdname(enum drbd_packet cmd)
3718 {
3719         /* THINK may need to become several global tables
3720          * when we want to support more than
3721          * one PRO_VERSION */
3722         static const char *cmdnames[] = {
3723                 [P_DATA]                = "Data",
3724                 [P_WSAME]               = "WriteSame",
3725                 [P_TRIM]                = "Trim",
3726                 [P_DATA_REPLY]          = "DataReply",
3727                 [P_RS_DATA_REPLY]       = "RSDataReply",
3728                 [P_BARRIER]             = "Barrier",
3729                 [P_BITMAP]              = "ReportBitMap",
3730                 [P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3731                 [P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3732                 [P_UNPLUG_REMOTE]       = "UnplugRemote",
3733                 [P_DATA_REQUEST]        = "DataRequest",
3734                 [P_RS_DATA_REQUEST]     = "RSDataRequest",
3735                 [P_SYNC_PARAM]          = "SyncParam",
3736                 [P_SYNC_PARAM89]        = "SyncParam89",
3737                 [P_PROTOCOL]            = "ReportProtocol",
3738                 [P_UUIDS]               = "ReportUUIDs",
3739                 [P_SIZES]               = "ReportSizes",
3740                 [P_STATE]               = "ReportState",
3741                 [P_SYNC_UUID]           = "ReportSyncUUID",
3742                 [P_AUTH_CHALLENGE]      = "AuthChallenge",
3743                 [P_AUTH_RESPONSE]       = "AuthResponse",
3744                 [P_PING]                = "Ping",
3745                 [P_PING_ACK]            = "PingAck",
3746                 [P_RECV_ACK]            = "RecvAck",
3747                 [P_WRITE_ACK]           = "WriteAck",
3748                 [P_RS_WRITE_ACK]        = "RSWriteAck",
3749                 [P_SUPERSEDED]          = "Superseded",
3750                 [P_NEG_ACK]             = "NegAck",
3751                 [P_NEG_DREPLY]          = "NegDReply",
3752                 [P_NEG_RS_DREPLY]       = "NegRSDReply",
3753                 [P_BARRIER_ACK]         = "BarrierAck",
3754                 [P_STATE_CHG_REQ]       = "StateChgRequest",
3755                 [P_STATE_CHG_REPLY]     = "StateChgReply",
3756                 [P_OV_REQUEST]          = "OVRequest",
3757                 [P_OV_REPLY]            = "OVReply",
3758                 [P_OV_RESULT]           = "OVResult",
3759                 [P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3760                 [P_RS_IS_IN_SYNC]       = "CsumRSIsInSync",
3761                 [P_COMPRESSED_BITMAP]   = "CBitmap",
3762                 [P_DELAY_PROBE]         = "DelayProbe",
3763                 [P_OUT_OF_SYNC]         = "OutOfSync",
3764                 [P_RETRY_WRITE]         = "RetryWrite",
3765                 [P_RS_CANCEL]           = "RSCancel",
3766                 [P_CONN_ST_CHG_REQ]     = "conn_st_chg_req",
3767                 [P_CONN_ST_CHG_REPLY]   = "conn_st_chg_reply",
3768                 [P_RETRY_WRITE]         = "retry_write",
3769                 [P_PROTOCOL_UPDATE]     = "protocol_update",
3770                 [P_RS_THIN_REQ]         = "rs_thin_req",
3771                 [P_RS_DEALLOCATED]      = "rs_deallocated",
3772
3773                 /* enum drbd_packet, but not commands - obsoleted flags:
3774                  *      P_MAY_IGNORE
3775                  *      P_MAX_OPT_CMD
3776                  */
3777         };
3778
3779         /* too big for the array: 0xfffX */
3780         if (cmd == P_INITIAL_META)
3781                 return "InitialMeta";
3782         if (cmd == P_INITIAL_DATA)
3783                 return "InitialData";
3784         if (cmd == P_CONNECTION_FEATURES)
3785                 return "ConnectionFeatures";
3786         if (cmd >= ARRAY_SIZE(cmdnames))
3787                 return "Unknown";
3788         return cmdnames[cmd];
3789 }
3790
3791 /**
3792  * drbd_wait_misc  -  wait for a request to make progress
3793  * @device:     device associated with the request
3794  * @i:          the struct drbd_interval embedded in struct drbd_request or
3795  *              struct drbd_peer_request
3796  */
3797 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3798 {
3799         struct net_conf *nc;
3800         DEFINE_WAIT(wait);
3801         long timeout;
3802
3803         rcu_read_lock();
3804         nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3805         if (!nc) {
3806                 rcu_read_unlock();
3807                 return -ETIMEDOUT;
3808         }
3809         timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3810         rcu_read_unlock();
3811
3812         /* Indicate to wake up device->misc_wait on progress.  */
3813         i->waiting = true;
3814         prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3815         spin_unlock_irq(&device->resource->req_lock);
3816         timeout = schedule_timeout(timeout);
3817         finish_wait(&device->misc_wait, &wait);
3818         spin_lock_irq(&device->resource->req_lock);
3819         if (!timeout || device->state.conn < C_CONNECTED)
3820                 return -ETIMEDOUT;
3821         if (signal_pending(current))
3822                 return -ERESTARTSYS;
3823         return 0;
3824 }
3825
3826 void lock_all_resources(void)
3827 {
3828         struct drbd_resource *resource;
3829         int __maybe_unused i = 0;
3830
3831         mutex_lock(&resources_mutex);
3832         local_irq_disable();
3833         for_each_resource(resource, &drbd_resources)
3834                 spin_lock_nested(&resource->req_lock, i++);
3835 }
3836
3837 void unlock_all_resources(void)
3838 {
3839         struct drbd_resource *resource;
3840
3841         for_each_resource(resource, &drbd_resources)
3842                 spin_unlock(&resource->req_lock);
3843         local_irq_enable();
3844         mutex_unlock(&resources_mutex);
3845 }
3846
3847 #ifdef CONFIG_DRBD_FAULT_INJECTION
3848 /* Fault insertion support including random number generator shamelessly
3849  * stolen from kernel/rcutorture.c */
3850 struct fault_random_state {
3851         unsigned long state;
3852         unsigned long count;
3853 };
3854
3855 #define FAULT_RANDOM_MULT 39916801  /* prime */
3856 #define FAULT_RANDOM_ADD        479001701 /* prime */
3857 #define FAULT_RANDOM_REFRESH 10000
3858
3859 /*
3860  * Crude but fast random-number generator.  Uses a linear congruential
3861  * generator, with occasional help from get_random_bytes().
3862  */
3863 static unsigned long
3864 _drbd_fault_random(struct fault_random_state *rsp)
3865 {
3866         long refresh;
3867
3868         if (!rsp->count--) {
3869                 get_random_bytes(&refresh, sizeof(refresh));
3870                 rsp->state += refresh;
3871                 rsp->count = FAULT_RANDOM_REFRESH;
3872         }
3873         rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3874         return swahw32(rsp->state);
3875 }
3876
3877 static char *
3878 _drbd_fault_str(unsigned int type) {
3879         static char *_faults[] = {
3880                 [DRBD_FAULT_MD_WR] = "Meta-data write",
3881                 [DRBD_FAULT_MD_RD] = "Meta-data read",
3882                 [DRBD_FAULT_RS_WR] = "Resync write",
3883                 [DRBD_FAULT_RS_RD] = "Resync read",
3884                 [DRBD_FAULT_DT_WR] = "Data write",
3885                 [DRBD_FAULT_DT_RD] = "Data read",
3886                 [DRBD_FAULT_DT_RA] = "Data read ahead",
3887                 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3888                 [DRBD_FAULT_AL_EE] = "EE allocation",
3889                 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3890         };
3891
3892         return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3893 }
3894
3895 unsigned int
3896 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3897 {
3898         static struct fault_random_state rrs = {0, 0};
3899
3900         unsigned int ret = (
3901                 (fault_devs == 0 ||
3902                         ((1 << device_to_minor(device)) & fault_devs) != 0) &&
3903                 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3904
3905         if (ret) {
3906                 fault_count++;
3907
3908                 if (__ratelimit(&drbd_ratelimit_state))
3909                         drbd_warn(device, "***Simulating %s failure\n",
3910                                 _drbd_fault_str(type));
3911         }
3912
3913         return ret;
3914 }
3915 #endif
3916
3917 const char *drbd_buildtag(void)
3918 {
3919         /* DRBD built from external sources has here a reference to the
3920            git hash of the source code. */
3921
3922         static char buildtag[38] = "\0uilt-in";
3923
3924         if (buildtag[0] == 0) {
3925 #ifdef MODULE
3926                 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3927 #else
3928                 buildtag[0] = 'b';
3929 #endif
3930         }
3931
3932         return buildtag;
3933 }
3934
3935 module_init(drbd_init)
3936 module_exit(drbd_cleanup)
3937
3938 EXPORT_SYMBOL(drbd_conn_str);
3939 EXPORT_SYMBOL(drbd_role_str);
3940 EXPORT_SYMBOL(drbd_disk_str);
3941 EXPORT_SYMBOL(drbd_set_st_err_str);