GNU Linux-libre 5.15.54-gnu
[releases.git] / drivers / block / drbd / drbd_main.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd.c
4
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10
11    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12    from Logicworks, Inc. for making SDP replication support possible.
13
14
15  */
16
17 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
18
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/sched/signal.h>
44
45 #include <linux/drbd_limits.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
49 #include "drbd_vli.h"
50 #include "drbd_debugfs.h"
51
52 static DEFINE_MUTEX(drbd_main_mutex);
53 static int drbd_open(struct block_device *bdev, fmode_t mode);
54 static void drbd_release(struct gendisk *gd, fmode_t mode);
55 static void md_sync_timer_fn(struct timer_list *t);
56 static int w_bitmap_io(struct drbd_work *w, int unused);
57
58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
59               "Lars Ellenberg <lars@linbit.com>");
60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
61 MODULE_VERSION(REL_VERSION);
62 MODULE_LICENSE("GPL");
63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
64                  __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
66
67 #include <linux/moduleparam.h>
68 /* thanks to these macros, if compiled into the kernel (not-module),
69  * these become boot parameters (e.g., drbd.minor_count) */
70
71 #ifdef CONFIG_DRBD_FAULT_INJECTION
72 int drbd_enable_faults;
73 int drbd_fault_rate;
74 static int drbd_fault_count;
75 static int drbd_fault_devs;
76 /* bitmap of enabled faults */
77 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
78 /* fault rate % value - applies to all enabled faults */
79 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
80 /* count of faults inserted */
81 module_param_named(fault_count, drbd_fault_count, int, 0664);
82 /* bitmap of devices to insert faults on */
83 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
84 #endif
85
86 /* module parameters we can keep static */
87 static bool drbd_allow_oos; /* allow_open_on_secondary */
88 static bool drbd_disable_sendpage;
89 MODULE_PARM_DESC(allow_oos, "DONT USE!");
90 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
92
93 /* module parameters we share */
94 int drbd_proc_details; /* Detail level in proc drbd*/
95 module_param_named(proc_details, drbd_proc_details, int, 0644);
96 /* module parameters shared with defaults */
97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
98 /* Module parameter for setting the user mode helper program
99  * to run. Default is /sbin/drbdadm */
100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
103
104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
105  * as member "struct gendisk *vdisk;"
106  */
107 struct idr drbd_devices;
108 struct list_head drbd_resources;
109 struct mutex resources_mutex;
110
111 struct kmem_cache *drbd_request_cache;
112 struct kmem_cache *drbd_ee_cache;       /* peer requests */
113 struct kmem_cache *drbd_bm_ext_cache;   /* bitmap extents */
114 struct kmem_cache *drbd_al_ext_cache;   /* activity log extents */
115 mempool_t drbd_request_mempool;
116 mempool_t drbd_ee_mempool;
117 mempool_t drbd_md_io_page_pool;
118 struct bio_set drbd_md_io_bio_set;
119 struct bio_set drbd_io_bio_set;
120
121 /* I do not use a standard mempool, because:
122    1) I want to hand out the pre-allocated objects first.
123    2) I want to be able to interrupt sleeping allocation with a signal.
124    Note: This is a single linked list, the next pointer is the private
125          member of struct page.
126  */
127 struct page *drbd_pp_pool;
128 DEFINE_SPINLOCK(drbd_pp_lock);
129 int          drbd_pp_vacant;
130 wait_queue_head_t drbd_pp_wait;
131
132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
133
134 static const struct block_device_operations drbd_ops = {
135         .owner          = THIS_MODULE,
136         .submit_bio     = drbd_submit_bio,
137         .open           = drbd_open,
138         .release        = drbd_release,
139 };
140
141 #ifdef __CHECKER__
142 /* When checking with sparse, and this is an inline function, sparse will
143    give tons of false positives. When this is a real functions sparse works.
144  */
145 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
146 {
147         int io_allowed;
148
149         atomic_inc(&device->local_cnt);
150         io_allowed = (device->state.disk >= mins);
151         if (!io_allowed) {
152                 if (atomic_dec_and_test(&device->local_cnt))
153                         wake_up(&device->misc_wait);
154         }
155         return io_allowed;
156 }
157
158 #endif
159
160 /**
161  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
162  * @connection: DRBD connection.
163  * @barrier_nr: Expected identifier of the DRBD write barrier packet.
164  * @set_size:   Expected number of requests before that barrier.
165  *
166  * In case the passed barrier_nr or set_size does not match the oldest
167  * epoch of not yet barrier-acked requests, this function will cause a
168  * termination of the connection.
169  */
170 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
171                 unsigned int set_size)
172 {
173         struct drbd_request *r;
174         struct drbd_request *req = NULL, *tmp = NULL;
175         int expect_epoch = 0;
176         int expect_size = 0;
177
178         spin_lock_irq(&connection->resource->req_lock);
179
180         /* find oldest not yet barrier-acked write request,
181          * count writes in its epoch. */
182         list_for_each_entry(r, &connection->transfer_log, tl_requests) {
183                 const unsigned s = r->rq_state;
184                 if (!req) {
185                         if (!(s & RQ_WRITE))
186                                 continue;
187                         if (!(s & RQ_NET_MASK))
188                                 continue;
189                         if (s & RQ_NET_DONE)
190                                 continue;
191                         req = r;
192                         expect_epoch = req->epoch;
193                         expect_size ++;
194                 } else {
195                         if (r->epoch != expect_epoch)
196                                 break;
197                         if (!(s & RQ_WRITE))
198                                 continue;
199                         /* if (s & RQ_DONE): not expected */
200                         /* if (!(s & RQ_NET_MASK)): not expected */
201                         expect_size++;
202                 }
203         }
204
205         /* first some paranoia code */
206         if (req == NULL) {
207                 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
208                          barrier_nr);
209                 goto bail;
210         }
211         if (expect_epoch != barrier_nr) {
212                 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
213                          barrier_nr, expect_epoch);
214                 goto bail;
215         }
216
217         if (expect_size != set_size) {
218                 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
219                          barrier_nr, set_size, expect_size);
220                 goto bail;
221         }
222
223         /* Clean up list of requests processed during current epoch. */
224         /* this extra list walk restart is paranoia,
225          * to catch requests being barrier-acked "unexpectedly".
226          * It usually should find the same req again, or some READ preceding it. */
227         list_for_each_entry(req, &connection->transfer_log, tl_requests)
228                 if (req->epoch == expect_epoch) {
229                         tmp = req;
230                         break;
231                 }
232         req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests);
233         list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
234                 if (req->epoch != expect_epoch)
235                         break;
236                 _req_mod(req, BARRIER_ACKED);
237         }
238         spin_unlock_irq(&connection->resource->req_lock);
239
240         return;
241
242 bail:
243         spin_unlock_irq(&connection->resource->req_lock);
244         conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
245 }
246
247
248 /**
249  * _tl_restart() - Walks the transfer log, and applies an action to all requests
250  * @connection: DRBD connection to operate on.
251  * @what:       The action/event to perform with all request objects
252  *
253  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
254  * RESTART_FROZEN_DISK_IO.
255  */
256 /* must hold resource->req_lock */
257 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
258 {
259         struct drbd_request *req, *r;
260
261         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
262                 _req_mod(req, what);
263 }
264
265 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
266 {
267         spin_lock_irq(&connection->resource->req_lock);
268         _tl_restart(connection, what);
269         spin_unlock_irq(&connection->resource->req_lock);
270 }
271
272 /**
273  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
274  * @connection: DRBD connection.
275  *
276  * This is called after the connection to the peer was lost. The storage covered
277  * by the requests on the transfer gets marked as our of sync. Called from the
278  * receiver thread and the worker thread.
279  */
280 void tl_clear(struct drbd_connection *connection)
281 {
282         tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
283 }
284
285 /**
286  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
287  * @device:     DRBD device.
288  */
289 void tl_abort_disk_io(struct drbd_device *device)
290 {
291         struct drbd_connection *connection = first_peer_device(device)->connection;
292         struct drbd_request *req, *r;
293
294         spin_lock_irq(&connection->resource->req_lock);
295         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
296                 if (!(req->rq_state & RQ_LOCAL_PENDING))
297                         continue;
298                 if (req->device != device)
299                         continue;
300                 _req_mod(req, ABORT_DISK_IO);
301         }
302         spin_unlock_irq(&connection->resource->req_lock);
303 }
304
305 static int drbd_thread_setup(void *arg)
306 {
307         struct drbd_thread *thi = (struct drbd_thread *) arg;
308         struct drbd_resource *resource = thi->resource;
309         unsigned long flags;
310         int retval;
311
312         snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
313                  thi->name[0],
314                  resource->name);
315
316         allow_kernel_signal(DRBD_SIGKILL);
317         allow_kernel_signal(SIGXCPU);
318 restart:
319         retval = thi->function(thi);
320
321         spin_lock_irqsave(&thi->t_lock, flags);
322
323         /* if the receiver has been "EXITING", the last thing it did
324          * was set the conn state to "StandAlone",
325          * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
326          * and receiver thread will be "started".
327          * drbd_thread_start needs to set "RESTARTING" in that case.
328          * t_state check and assignment needs to be within the same spinlock,
329          * so either thread_start sees EXITING, and can remap to RESTARTING,
330          * or thread_start see NONE, and can proceed as normal.
331          */
332
333         if (thi->t_state == RESTARTING) {
334                 drbd_info(resource, "Restarting %s thread\n", thi->name);
335                 thi->t_state = RUNNING;
336                 spin_unlock_irqrestore(&thi->t_lock, flags);
337                 goto restart;
338         }
339
340         thi->task = NULL;
341         thi->t_state = NONE;
342         smp_mb();
343         complete_all(&thi->stop);
344         spin_unlock_irqrestore(&thi->t_lock, flags);
345
346         drbd_info(resource, "Terminating %s\n", current->comm);
347
348         /* Release mod reference taken when thread was started */
349
350         if (thi->connection)
351                 kref_put(&thi->connection->kref, drbd_destroy_connection);
352         kref_put(&resource->kref, drbd_destroy_resource);
353         module_put(THIS_MODULE);
354         return retval;
355 }
356
357 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
358                              int (*func) (struct drbd_thread *), const char *name)
359 {
360         spin_lock_init(&thi->t_lock);
361         thi->task    = NULL;
362         thi->t_state = NONE;
363         thi->function = func;
364         thi->resource = resource;
365         thi->connection = NULL;
366         thi->name = name;
367 }
368
369 int drbd_thread_start(struct drbd_thread *thi)
370 {
371         struct drbd_resource *resource = thi->resource;
372         struct task_struct *nt;
373         unsigned long flags;
374
375         /* is used from state engine doing drbd_thread_stop_nowait,
376          * while holding the req lock irqsave */
377         spin_lock_irqsave(&thi->t_lock, flags);
378
379         switch (thi->t_state) {
380         case NONE:
381                 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
382                          thi->name, current->comm, current->pid);
383
384                 /* Get ref on module for thread - this is released when thread exits */
385                 if (!try_module_get(THIS_MODULE)) {
386                         drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
387                         spin_unlock_irqrestore(&thi->t_lock, flags);
388                         return false;
389                 }
390
391                 kref_get(&resource->kref);
392                 if (thi->connection)
393                         kref_get(&thi->connection->kref);
394
395                 init_completion(&thi->stop);
396                 thi->reset_cpu_mask = 1;
397                 thi->t_state = RUNNING;
398                 spin_unlock_irqrestore(&thi->t_lock, flags);
399                 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
400
401                 nt = kthread_create(drbd_thread_setup, (void *) thi,
402                                     "drbd_%c_%s", thi->name[0], thi->resource->name);
403
404                 if (IS_ERR(nt)) {
405                         drbd_err(resource, "Couldn't start thread\n");
406
407                         if (thi->connection)
408                                 kref_put(&thi->connection->kref, drbd_destroy_connection);
409                         kref_put(&resource->kref, drbd_destroy_resource);
410                         module_put(THIS_MODULE);
411                         return false;
412                 }
413                 spin_lock_irqsave(&thi->t_lock, flags);
414                 thi->task = nt;
415                 thi->t_state = RUNNING;
416                 spin_unlock_irqrestore(&thi->t_lock, flags);
417                 wake_up_process(nt);
418                 break;
419         case EXITING:
420                 thi->t_state = RESTARTING;
421                 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
422                                 thi->name, current->comm, current->pid);
423                 fallthrough;
424         case RUNNING:
425         case RESTARTING:
426         default:
427                 spin_unlock_irqrestore(&thi->t_lock, flags);
428                 break;
429         }
430
431         return true;
432 }
433
434
435 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
436 {
437         unsigned long flags;
438
439         enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
440
441         /* may be called from state engine, holding the req lock irqsave */
442         spin_lock_irqsave(&thi->t_lock, flags);
443
444         if (thi->t_state == NONE) {
445                 spin_unlock_irqrestore(&thi->t_lock, flags);
446                 if (restart)
447                         drbd_thread_start(thi);
448                 return;
449         }
450
451         if (thi->t_state != ns) {
452                 if (thi->task == NULL) {
453                         spin_unlock_irqrestore(&thi->t_lock, flags);
454                         return;
455                 }
456
457                 thi->t_state = ns;
458                 smp_mb();
459                 init_completion(&thi->stop);
460                 if (thi->task != current)
461                         send_sig(DRBD_SIGKILL, thi->task, 1);
462         }
463
464         spin_unlock_irqrestore(&thi->t_lock, flags);
465
466         if (wait)
467                 wait_for_completion(&thi->stop);
468 }
469
470 int conn_lowest_minor(struct drbd_connection *connection)
471 {
472         struct drbd_peer_device *peer_device;
473         int vnr = 0, minor = -1;
474
475         rcu_read_lock();
476         peer_device = idr_get_next(&connection->peer_devices, &vnr);
477         if (peer_device)
478                 minor = device_to_minor(peer_device->device);
479         rcu_read_unlock();
480
481         return minor;
482 }
483
484 #ifdef CONFIG_SMP
485 /*
486  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
487  *
488  * Forces all threads of a resource onto the same CPU. This is beneficial for
489  * DRBD's performance. May be overwritten by user's configuration.
490  */
491 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
492 {
493         unsigned int *resources_per_cpu, min_index = ~0;
494
495         resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
496                                     GFP_KERNEL);
497         if (resources_per_cpu) {
498                 struct drbd_resource *resource;
499                 unsigned int cpu, min = ~0;
500
501                 rcu_read_lock();
502                 for_each_resource_rcu(resource, &drbd_resources) {
503                         for_each_cpu(cpu, resource->cpu_mask)
504                                 resources_per_cpu[cpu]++;
505                 }
506                 rcu_read_unlock();
507                 for_each_online_cpu(cpu) {
508                         if (resources_per_cpu[cpu] < min) {
509                                 min = resources_per_cpu[cpu];
510                                 min_index = cpu;
511                         }
512                 }
513                 kfree(resources_per_cpu);
514         }
515         if (min_index == ~0) {
516                 cpumask_setall(*cpu_mask);
517                 return;
518         }
519         cpumask_set_cpu(min_index, *cpu_mask);
520 }
521
522 /**
523  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
524  * @thi:        drbd_thread object
525  *
526  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
527  * prematurely.
528  */
529 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
530 {
531         struct drbd_resource *resource = thi->resource;
532         struct task_struct *p = current;
533
534         if (!thi->reset_cpu_mask)
535                 return;
536         thi->reset_cpu_mask = 0;
537         set_cpus_allowed_ptr(p, resource->cpu_mask);
538 }
539 #else
540 #define drbd_calc_cpu_mask(A) ({})
541 #endif
542
543 /*
544  * drbd_header_size  -  size of a packet header
545  *
546  * The header size is a multiple of 8, so any payload following the header is
547  * word aligned on 64-bit architectures.  (The bitmap send and receive code
548  * relies on this.)
549  */
550 unsigned int drbd_header_size(struct drbd_connection *connection)
551 {
552         if (connection->agreed_pro_version >= 100) {
553                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
554                 return sizeof(struct p_header100);
555         } else {
556                 BUILD_BUG_ON(sizeof(struct p_header80) !=
557                              sizeof(struct p_header95));
558                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
559                 return sizeof(struct p_header80);
560         }
561 }
562
563 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
564 {
565         h->magic   = cpu_to_be32(DRBD_MAGIC);
566         h->command = cpu_to_be16(cmd);
567         h->length  = cpu_to_be16(size);
568         return sizeof(struct p_header80);
569 }
570
571 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
572 {
573         h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
574         h->command = cpu_to_be16(cmd);
575         h->length = cpu_to_be32(size);
576         return sizeof(struct p_header95);
577 }
578
579 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
580                                       int size, int vnr)
581 {
582         h->magic = cpu_to_be32(DRBD_MAGIC_100);
583         h->volume = cpu_to_be16(vnr);
584         h->command = cpu_to_be16(cmd);
585         h->length = cpu_to_be32(size);
586         h->pad = 0;
587         return sizeof(struct p_header100);
588 }
589
590 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
591                                    void *buffer, enum drbd_packet cmd, int size)
592 {
593         if (connection->agreed_pro_version >= 100)
594                 return prepare_header100(buffer, cmd, size, vnr);
595         else if (connection->agreed_pro_version >= 95 &&
596                  size > DRBD_MAX_SIZE_H80_PACKET)
597                 return prepare_header95(buffer, cmd, size);
598         else
599                 return prepare_header80(buffer, cmd, size);
600 }
601
602 static void *__conn_prepare_command(struct drbd_connection *connection,
603                                     struct drbd_socket *sock)
604 {
605         if (!sock->socket)
606                 return NULL;
607         return sock->sbuf + drbd_header_size(connection);
608 }
609
610 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
611 {
612         void *p;
613
614         mutex_lock(&sock->mutex);
615         p = __conn_prepare_command(connection, sock);
616         if (!p)
617                 mutex_unlock(&sock->mutex);
618
619         return p;
620 }
621
622 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
623 {
624         return conn_prepare_command(peer_device->connection, sock);
625 }
626
627 static int __send_command(struct drbd_connection *connection, int vnr,
628                           struct drbd_socket *sock, enum drbd_packet cmd,
629                           unsigned int header_size, void *data,
630                           unsigned int size)
631 {
632         int msg_flags;
633         int err;
634
635         /*
636          * Called with @data == NULL and the size of the data blocks in @size
637          * for commands that send data blocks.  For those commands, omit the
638          * MSG_MORE flag: this will increase the likelihood that data blocks
639          * which are page aligned on the sender will end up page aligned on the
640          * receiver.
641          */
642         msg_flags = data ? MSG_MORE : 0;
643
644         header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
645                                       header_size + size);
646         err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
647                             msg_flags);
648         if (data && !err)
649                 err = drbd_send_all(connection, sock->socket, data, size, 0);
650         /* DRBD protocol "pings" are latency critical.
651          * This is supposed to trigger tcp_push_pending_frames() */
652         if (!err && (cmd == P_PING || cmd == P_PING_ACK))
653                 tcp_sock_set_nodelay(sock->socket->sk);
654
655         return err;
656 }
657
658 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
659                                enum drbd_packet cmd, unsigned int header_size,
660                                void *data, unsigned int size)
661 {
662         return __send_command(connection, 0, sock, cmd, header_size, data, size);
663 }
664
665 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
666                       enum drbd_packet cmd, unsigned int header_size,
667                       void *data, unsigned int size)
668 {
669         int err;
670
671         err = __conn_send_command(connection, sock, cmd, header_size, data, size);
672         mutex_unlock(&sock->mutex);
673         return err;
674 }
675
676 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
677                       enum drbd_packet cmd, unsigned int header_size,
678                       void *data, unsigned int size)
679 {
680         int err;
681
682         err = __send_command(peer_device->connection, peer_device->device->vnr,
683                              sock, cmd, header_size, data, size);
684         mutex_unlock(&sock->mutex);
685         return err;
686 }
687
688 int drbd_send_ping(struct drbd_connection *connection)
689 {
690         struct drbd_socket *sock;
691
692         sock = &connection->meta;
693         if (!conn_prepare_command(connection, sock))
694                 return -EIO;
695         return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
696 }
697
698 int drbd_send_ping_ack(struct drbd_connection *connection)
699 {
700         struct drbd_socket *sock;
701
702         sock = &connection->meta;
703         if (!conn_prepare_command(connection, sock))
704                 return -EIO;
705         return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
706 }
707
708 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
709 {
710         struct drbd_socket *sock;
711         struct p_rs_param_95 *p;
712         int size;
713         const int apv = peer_device->connection->agreed_pro_version;
714         enum drbd_packet cmd;
715         struct net_conf *nc;
716         struct disk_conf *dc;
717
718         sock = &peer_device->connection->data;
719         p = drbd_prepare_command(peer_device, sock);
720         if (!p)
721                 return -EIO;
722
723         rcu_read_lock();
724         nc = rcu_dereference(peer_device->connection->net_conf);
725
726         size = apv <= 87 ? sizeof(struct p_rs_param)
727                 : apv == 88 ? sizeof(struct p_rs_param)
728                         + strlen(nc->verify_alg) + 1
729                 : apv <= 94 ? sizeof(struct p_rs_param_89)
730                 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
731
732         cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
733
734         /* initialize verify_alg and csums_alg */
735         memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
736
737         if (get_ldev(peer_device->device)) {
738                 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
739                 p->resync_rate = cpu_to_be32(dc->resync_rate);
740                 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
741                 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
742                 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
743                 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
744                 put_ldev(peer_device->device);
745         } else {
746                 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
747                 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
748                 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
749                 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
750                 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
751         }
752
753         if (apv >= 88)
754                 strcpy(p->verify_alg, nc->verify_alg);
755         if (apv >= 89)
756                 strcpy(p->csums_alg, nc->csums_alg);
757         rcu_read_unlock();
758
759         return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
760 }
761
762 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
763 {
764         struct drbd_socket *sock;
765         struct p_protocol *p;
766         struct net_conf *nc;
767         int size, cf;
768
769         sock = &connection->data;
770         p = __conn_prepare_command(connection, sock);
771         if (!p)
772                 return -EIO;
773
774         rcu_read_lock();
775         nc = rcu_dereference(connection->net_conf);
776
777         if (nc->tentative && connection->agreed_pro_version < 92) {
778                 rcu_read_unlock();
779                 drbd_err(connection, "--dry-run is not supported by peer");
780                 return -EOPNOTSUPP;
781         }
782
783         size = sizeof(*p);
784         if (connection->agreed_pro_version >= 87)
785                 size += strlen(nc->integrity_alg) + 1;
786
787         p->protocol      = cpu_to_be32(nc->wire_protocol);
788         p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
789         p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
790         p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
791         p->two_primaries = cpu_to_be32(nc->two_primaries);
792         cf = 0;
793         if (nc->discard_my_data)
794                 cf |= CF_DISCARD_MY_DATA;
795         if (nc->tentative)
796                 cf |= CF_DRY_RUN;
797         p->conn_flags    = cpu_to_be32(cf);
798
799         if (connection->agreed_pro_version >= 87)
800                 strcpy(p->integrity_alg, nc->integrity_alg);
801         rcu_read_unlock();
802
803         return __conn_send_command(connection, sock, cmd, size, NULL, 0);
804 }
805
806 int drbd_send_protocol(struct drbd_connection *connection)
807 {
808         int err;
809
810         mutex_lock(&connection->data.mutex);
811         err = __drbd_send_protocol(connection, P_PROTOCOL);
812         mutex_unlock(&connection->data.mutex);
813
814         return err;
815 }
816
817 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
818 {
819         struct drbd_device *device = peer_device->device;
820         struct drbd_socket *sock;
821         struct p_uuids *p;
822         int i;
823
824         if (!get_ldev_if_state(device, D_NEGOTIATING))
825                 return 0;
826
827         sock = &peer_device->connection->data;
828         p = drbd_prepare_command(peer_device, sock);
829         if (!p) {
830                 put_ldev(device);
831                 return -EIO;
832         }
833         spin_lock_irq(&device->ldev->md.uuid_lock);
834         for (i = UI_CURRENT; i < UI_SIZE; i++)
835                 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
836         spin_unlock_irq(&device->ldev->md.uuid_lock);
837
838         device->comm_bm_set = drbd_bm_total_weight(device);
839         p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
840         rcu_read_lock();
841         uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
842         rcu_read_unlock();
843         uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
844         uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
845         p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
846
847         put_ldev(device);
848         return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
849 }
850
851 int drbd_send_uuids(struct drbd_peer_device *peer_device)
852 {
853         return _drbd_send_uuids(peer_device, 0);
854 }
855
856 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
857 {
858         return _drbd_send_uuids(peer_device, 8);
859 }
860
861 void drbd_print_uuids(struct drbd_device *device, const char *text)
862 {
863         if (get_ldev_if_state(device, D_NEGOTIATING)) {
864                 u64 *uuid = device->ldev->md.uuid;
865                 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
866                      text,
867                      (unsigned long long)uuid[UI_CURRENT],
868                      (unsigned long long)uuid[UI_BITMAP],
869                      (unsigned long long)uuid[UI_HISTORY_START],
870                      (unsigned long long)uuid[UI_HISTORY_END]);
871                 put_ldev(device);
872         } else {
873                 drbd_info(device, "%s effective data uuid: %016llX\n",
874                                 text,
875                                 (unsigned long long)device->ed_uuid);
876         }
877 }
878
879 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
880 {
881         struct drbd_device *device = peer_device->device;
882         struct drbd_socket *sock;
883         struct p_rs_uuid *p;
884         u64 uuid;
885
886         D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
887
888         uuid = device->ldev->md.uuid[UI_BITMAP];
889         if (uuid && uuid != UUID_JUST_CREATED)
890                 uuid = uuid + UUID_NEW_BM_OFFSET;
891         else
892                 get_random_bytes(&uuid, sizeof(u64));
893         drbd_uuid_set(device, UI_BITMAP, uuid);
894         drbd_print_uuids(device, "updated sync UUID");
895         drbd_md_sync(device);
896
897         sock = &peer_device->connection->data;
898         p = drbd_prepare_command(peer_device, sock);
899         if (p) {
900                 p->uuid = cpu_to_be64(uuid);
901                 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
902         }
903 }
904
905 /* communicated if (agreed_features & DRBD_FF_WSAME) */
906 static void
907 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p,
908                                         struct request_queue *q)
909 {
910         if (q) {
911                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
912                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
913                 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
914                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
915                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
916                 p->qlim->discard_enabled = blk_queue_discard(q);
917                 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
918         } else {
919                 q = device->rq_queue;
920                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
921                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
922                 p->qlim->alignment_offset = 0;
923                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
924                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
925                 p->qlim->discard_enabled = 0;
926                 p->qlim->write_same_capable = 0;
927         }
928 }
929
930 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
931 {
932         struct drbd_device *device = peer_device->device;
933         struct drbd_socket *sock;
934         struct p_sizes *p;
935         sector_t d_size, u_size;
936         int q_order_type;
937         unsigned int max_bio_size;
938         unsigned int packet_size;
939
940         sock = &peer_device->connection->data;
941         p = drbd_prepare_command(peer_device, sock);
942         if (!p)
943                 return -EIO;
944
945         packet_size = sizeof(*p);
946         if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
947                 packet_size += sizeof(p->qlim[0]);
948
949         memset(p, 0, packet_size);
950         if (get_ldev_if_state(device, D_NEGOTIATING)) {
951                 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
952                 d_size = drbd_get_max_capacity(device->ldev);
953                 rcu_read_lock();
954                 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
955                 rcu_read_unlock();
956                 q_order_type = drbd_queue_order_type(device);
957                 max_bio_size = queue_max_hw_sectors(q) << 9;
958                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
959                 assign_p_sizes_qlim(device, p, q);
960                 put_ldev(device);
961         } else {
962                 d_size = 0;
963                 u_size = 0;
964                 q_order_type = QUEUE_ORDERED_NONE;
965                 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
966                 assign_p_sizes_qlim(device, p, NULL);
967         }
968
969         if (peer_device->connection->agreed_pro_version <= 94)
970                 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
971         else if (peer_device->connection->agreed_pro_version < 100)
972                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
973
974         p->d_size = cpu_to_be64(d_size);
975         p->u_size = cpu_to_be64(u_size);
976         if (trigger_reply)
977                 p->c_size = 0;
978         else
979                 p->c_size = cpu_to_be64(get_capacity(device->vdisk));
980         p->max_bio_size = cpu_to_be32(max_bio_size);
981         p->queue_order_type = cpu_to_be16(q_order_type);
982         p->dds_flags = cpu_to_be16(flags);
983
984         return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
985 }
986
987 /**
988  * drbd_send_current_state() - Sends the drbd state to the peer
989  * @peer_device:        DRBD peer device.
990  */
991 int drbd_send_current_state(struct drbd_peer_device *peer_device)
992 {
993         struct drbd_socket *sock;
994         struct p_state *p;
995
996         sock = &peer_device->connection->data;
997         p = drbd_prepare_command(peer_device, sock);
998         if (!p)
999                 return -EIO;
1000         p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1001         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1002 }
1003
1004 /**
1005  * drbd_send_state() - After a state change, sends the new state to the peer
1006  * @peer_device:      DRBD peer device.
1007  * @state:     the state to send, not necessarily the current state.
1008  *
1009  * Each state change queues an "after_state_ch" work, which will eventually
1010  * send the resulting new state to the peer. If more state changes happen
1011  * between queuing and processing of the after_state_ch work, we still
1012  * want to send each intermediary state in the order it occurred.
1013  */
1014 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1015 {
1016         struct drbd_socket *sock;
1017         struct p_state *p;
1018
1019         sock = &peer_device->connection->data;
1020         p = drbd_prepare_command(peer_device, sock);
1021         if (!p)
1022                 return -EIO;
1023         p->state = cpu_to_be32(state.i); /* Within the send mutex */
1024         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1025 }
1026
1027 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1028 {
1029         struct drbd_socket *sock;
1030         struct p_req_state *p;
1031
1032         sock = &peer_device->connection->data;
1033         p = drbd_prepare_command(peer_device, sock);
1034         if (!p)
1035                 return -EIO;
1036         p->mask = cpu_to_be32(mask.i);
1037         p->val = cpu_to_be32(val.i);
1038         return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1039 }
1040
1041 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1042 {
1043         enum drbd_packet cmd;
1044         struct drbd_socket *sock;
1045         struct p_req_state *p;
1046
1047         cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1048         sock = &connection->data;
1049         p = conn_prepare_command(connection, sock);
1050         if (!p)
1051                 return -EIO;
1052         p->mask = cpu_to_be32(mask.i);
1053         p->val = cpu_to_be32(val.i);
1054         return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1055 }
1056
1057 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1058 {
1059         struct drbd_socket *sock;
1060         struct p_req_state_reply *p;
1061
1062         sock = &peer_device->connection->meta;
1063         p = drbd_prepare_command(peer_device, sock);
1064         if (p) {
1065                 p->retcode = cpu_to_be32(retcode);
1066                 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1067         }
1068 }
1069
1070 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1071 {
1072         struct drbd_socket *sock;
1073         struct p_req_state_reply *p;
1074         enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1075
1076         sock = &connection->meta;
1077         p = conn_prepare_command(connection, sock);
1078         if (p) {
1079                 p->retcode = cpu_to_be32(retcode);
1080                 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1081         }
1082 }
1083
1084 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1085 {
1086         BUG_ON(code & ~0xf);
1087         p->encoding = (p->encoding & ~0xf) | code;
1088 }
1089
1090 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1091 {
1092         p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1093 }
1094
1095 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1096 {
1097         BUG_ON(n & ~0x7);
1098         p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1099 }
1100
1101 static int fill_bitmap_rle_bits(struct drbd_device *device,
1102                          struct p_compressed_bm *p,
1103                          unsigned int size,
1104                          struct bm_xfer_ctx *c)
1105 {
1106         struct bitstream bs;
1107         unsigned long plain_bits;
1108         unsigned long tmp;
1109         unsigned long rl;
1110         unsigned len;
1111         unsigned toggle;
1112         int bits, use_rle;
1113
1114         /* may we use this feature? */
1115         rcu_read_lock();
1116         use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1117         rcu_read_unlock();
1118         if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1119                 return 0;
1120
1121         if (c->bit_offset >= c->bm_bits)
1122                 return 0; /* nothing to do. */
1123
1124         /* use at most thus many bytes */
1125         bitstream_init(&bs, p->code, size, 0);
1126         memset(p->code, 0, size);
1127         /* plain bits covered in this code string */
1128         plain_bits = 0;
1129
1130         /* p->encoding & 0x80 stores whether the first run length is set.
1131          * bit offset is implicit.
1132          * start with toggle == 2 to be able to tell the first iteration */
1133         toggle = 2;
1134
1135         /* see how much plain bits we can stuff into one packet
1136          * using RLE and VLI. */
1137         do {
1138                 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1139                                     : _drbd_bm_find_next(device, c->bit_offset);
1140                 if (tmp == -1UL)
1141                         tmp = c->bm_bits;
1142                 rl = tmp - c->bit_offset;
1143
1144                 if (toggle == 2) { /* first iteration */
1145                         if (rl == 0) {
1146                                 /* the first checked bit was set,
1147                                  * store start value, */
1148                                 dcbp_set_start(p, 1);
1149                                 /* but skip encoding of zero run length */
1150                                 toggle = !toggle;
1151                                 continue;
1152                         }
1153                         dcbp_set_start(p, 0);
1154                 }
1155
1156                 /* paranoia: catch zero runlength.
1157                  * can only happen if bitmap is modified while we scan it. */
1158                 if (rl == 0) {
1159                         drbd_err(device, "unexpected zero runlength while encoding bitmap "
1160                             "t:%u bo:%lu\n", toggle, c->bit_offset);
1161                         return -1;
1162                 }
1163
1164                 bits = vli_encode_bits(&bs, rl);
1165                 if (bits == -ENOBUFS) /* buffer full */
1166                         break;
1167                 if (bits <= 0) {
1168                         drbd_err(device, "error while encoding bitmap: %d\n", bits);
1169                         return 0;
1170                 }
1171
1172                 toggle = !toggle;
1173                 plain_bits += rl;
1174                 c->bit_offset = tmp;
1175         } while (c->bit_offset < c->bm_bits);
1176
1177         len = bs.cur.b - p->code + !!bs.cur.bit;
1178
1179         if (plain_bits < (len << 3)) {
1180                 /* incompressible with this method.
1181                  * we need to rewind both word and bit position. */
1182                 c->bit_offset -= plain_bits;
1183                 bm_xfer_ctx_bit_to_word_offset(c);
1184                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1185                 return 0;
1186         }
1187
1188         /* RLE + VLI was able to compress it just fine.
1189          * update c->word_offset. */
1190         bm_xfer_ctx_bit_to_word_offset(c);
1191
1192         /* store pad_bits */
1193         dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1194
1195         return len;
1196 }
1197
1198 /*
1199  * send_bitmap_rle_or_plain
1200  *
1201  * Return 0 when done, 1 when another iteration is needed, and a negative error
1202  * code upon failure.
1203  */
1204 static int
1205 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1206 {
1207         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1208         unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1209         struct p_compressed_bm *p = sock->sbuf + header_size;
1210         int len, err;
1211
1212         len = fill_bitmap_rle_bits(device, p,
1213                         DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1214         if (len < 0)
1215                 return -EIO;
1216
1217         if (len) {
1218                 dcbp_set_code(p, RLE_VLI_Bits);
1219                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1220                                      P_COMPRESSED_BITMAP, sizeof(*p) + len,
1221                                      NULL, 0);
1222                 c->packets[0]++;
1223                 c->bytes[0] += header_size + sizeof(*p) + len;
1224
1225                 if (c->bit_offset >= c->bm_bits)
1226                         len = 0; /* DONE */
1227         } else {
1228                 /* was not compressible.
1229                  * send a buffer full of plain text bits instead. */
1230                 unsigned int data_size;
1231                 unsigned long num_words;
1232                 unsigned long *p = sock->sbuf + header_size;
1233
1234                 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1235                 num_words = min_t(size_t, data_size / sizeof(*p),
1236                                   c->bm_words - c->word_offset);
1237                 len = num_words * sizeof(*p);
1238                 if (len)
1239                         drbd_bm_get_lel(device, c->word_offset, num_words, p);
1240                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1241                 c->word_offset += num_words;
1242                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1243
1244                 c->packets[1]++;
1245                 c->bytes[1] += header_size + len;
1246
1247                 if (c->bit_offset > c->bm_bits)
1248                         c->bit_offset = c->bm_bits;
1249         }
1250         if (!err) {
1251                 if (len == 0) {
1252                         INFO_bm_xfer_stats(device, "send", c);
1253                         return 0;
1254                 } else
1255                         return 1;
1256         }
1257         return -EIO;
1258 }
1259
1260 /* See the comment at receive_bitmap() */
1261 static int _drbd_send_bitmap(struct drbd_device *device)
1262 {
1263         struct bm_xfer_ctx c;
1264         int err;
1265
1266         if (!expect(device->bitmap))
1267                 return false;
1268
1269         if (get_ldev(device)) {
1270                 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1271                         drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1272                         drbd_bm_set_all(device);
1273                         if (drbd_bm_write(device)) {
1274                                 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1275                                  * but otherwise process as per normal - need to tell other
1276                                  * side that a full resync is required! */
1277                                 drbd_err(device, "Failed to write bitmap to disk!\n");
1278                         } else {
1279                                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1280                                 drbd_md_sync(device);
1281                         }
1282                 }
1283                 put_ldev(device);
1284         }
1285
1286         c = (struct bm_xfer_ctx) {
1287                 .bm_bits = drbd_bm_bits(device),
1288                 .bm_words = drbd_bm_words(device),
1289         };
1290
1291         do {
1292                 err = send_bitmap_rle_or_plain(device, &c);
1293         } while (err > 0);
1294
1295         return err == 0;
1296 }
1297
1298 int drbd_send_bitmap(struct drbd_device *device)
1299 {
1300         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1301         int err = -1;
1302
1303         mutex_lock(&sock->mutex);
1304         if (sock->socket)
1305                 err = !_drbd_send_bitmap(device);
1306         mutex_unlock(&sock->mutex);
1307         return err;
1308 }
1309
1310 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1311 {
1312         struct drbd_socket *sock;
1313         struct p_barrier_ack *p;
1314
1315         if (connection->cstate < C_WF_REPORT_PARAMS)
1316                 return;
1317
1318         sock = &connection->meta;
1319         p = conn_prepare_command(connection, sock);
1320         if (!p)
1321                 return;
1322         p->barrier = barrier_nr;
1323         p->set_size = cpu_to_be32(set_size);
1324         conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1325 }
1326
1327 /**
1328  * _drbd_send_ack() - Sends an ack packet
1329  * @peer_device:        DRBD peer device.
1330  * @cmd:                Packet command code.
1331  * @sector:             sector, needs to be in big endian byte order
1332  * @blksize:            size in byte, needs to be in big endian byte order
1333  * @block_id:           Id, big endian byte order
1334  */
1335 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1336                           u64 sector, u32 blksize, u64 block_id)
1337 {
1338         struct drbd_socket *sock;
1339         struct p_block_ack *p;
1340
1341         if (peer_device->device->state.conn < C_CONNECTED)
1342                 return -EIO;
1343
1344         sock = &peer_device->connection->meta;
1345         p = drbd_prepare_command(peer_device, sock);
1346         if (!p)
1347                 return -EIO;
1348         p->sector = sector;
1349         p->block_id = block_id;
1350         p->blksize = blksize;
1351         p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1352         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1353 }
1354
1355 /* dp->sector and dp->block_id already/still in network byte order,
1356  * data_size is payload size according to dp->head,
1357  * and may need to be corrected for digest size. */
1358 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1359                       struct p_data *dp, int data_size)
1360 {
1361         if (peer_device->connection->peer_integrity_tfm)
1362                 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1363         _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1364                        dp->block_id);
1365 }
1366
1367 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1368                       struct p_block_req *rp)
1369 {
1370         _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1371 }
1372
1373 /**
1374  * drbd_send_ack() - Sends an ack packet
1375  * @peer_device:        DRBD peer device
1376  * @cmd:                packet command code
1377  * @peer_req:           peer request
1378  */
1379 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1380                   struct drbd_peer_request *peer_req)
1381 {
1382         return _drbd_send_ack(peer_device, cmd,
1383                               cpu_to_be64(peer_req->i.sector),
1384                               cpu_to_be32(peer_req->i.size),
1385                               peer_req->block_id);
1386 }
1387
1388 /* This function misuses the block_id field to signal if the blocks
1389  * are is sync or not. */
1390 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1391                      sector_t sector, int blksize, u64 block_id)
1392 {
1393         return _drbd_send_ack(peer_device, cmd,
1394                               cpu_to_be64(sector),
1395                               cpu_to_be32(blksize),
1396                               cpu_to_be64(block_id));
1397 }
1398
1399 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1400                              struct drbd_peer_request *peer_req)
1401 {
1402         struct drbd_socket *sock;
1403         struct p_block_desc *p;
1404
1405         sock = &peer_device->connection->data;
1406         p = drbd_prepare_command(peer_device, sock);
1407         if (!p)
1408                 return -EIO;
1409         p->sector = cpu_to_be64(peer_req->i.sector);
1410         p->blksize = cpu_to_be32(peer_req->i.size);
1411         p->pad = 0;
1412         return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1413 }
1414
1415 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1416                        sector_t sector, int size, u64 block_id)
1417 {
1418         struct drbd_socket *sock;
1419         struct p_block_req *p;
1420
1421         sock = &peer_device->connection->data;
1422         p = drbd_prepare_command(peer_device, sock);
1423         if (!p)
1424                 return -EIO;
1425         p->sector = cpu_to_be64(sector);
1426         p->block_id = block_id;
1427         p->blksize = cpu_to_be32(size);
1428         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1429 }
1430
1431 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1432                             void *digest, int digest_size, enum drbd_packet cmd)
1433 {
1434         struct drbd_socket *sock;
1435         struct p_block_req *p;
1436
1437         /* FIXME: Put the digest into the preallocated socket buffer.  */
1438
1439         sock = &peer_device->connection->data;
1440         p = drbd_prepare_command(peer_device, sock);
1441         if (!p)
1442                 return -EIO;
1443         p->sector = cpu_to_be64(sector);
1444         p->block_id = ID_SYNCER /* unused */;
1445         p->blksize = cpu_to_be32(size);
1446         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1447 }
1448
1449 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1450 {
1451         struct drbd_socket *sock;
1452         struct p_block_req *p;
1453
1454         sock = &peer_device->connection->data;
1455         p = drbd_prepare_command(peer_device, sock);
1456         if (!p)
1457                 return -EIO;
1458         p->sector = cpu_to_be64(sector);
1459         p->block_id = ID_SYNCER /* unused */;
1460         p->blksize = cpu_to_be32(size);
1461         return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1462 }
1463
1464 /* called on sndtimeo
1465  * returns false if we should retry,
1466  * true if we think connection is dead
1467  */
1468 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1469 {
1470         int drop_it;
1471         /* long elapsed = (long)(jiffies - device->last_received); */
1472
1473         drop_it =   connection->meta.socket == sock
1474                 || !connection->ack_receiver.task
1475                 || get_t_state(&connection->ack_receiver) != RUNNING
1476                 || connection->cstate < C_WF_REPORT_PARAMS;
1477
1478         if (drop_it)
1479                 return true;
1480
1481         drop_it = !--connection->ko_count;
1482         if (!drop_it) {
1483                 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1484                          current->comm, current->pid, connection->ko_count);
1485                 request_ping(connection);
1486         }
1487
1488         return drop_it; /* && (device->state == R_PRIMARY) */;
1489 }
1490
1491 static void drbd_update_congested(struct drbd_connection *connection)
1492 {
1493         struct sock *sk = connection->data.socket->sk;
1494         if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1495                 set_bit(NET_CONGESTED, &connection->flags);
1496 }
1497
1498 /* The idea of sendpage seems to be to put some kind of reference
1499  * to the page into the skb, and to hand it over to the NIC. In
1500  * this process get_page() gets called.
1501  *
1502  * As soon as the page was really sent over the network put_page()
1503  * gets called by some part of the network layer. [ NIC driver? ]
1504  *
1505  * [ get_page() / put_page() increment/decrement the count. If count
1506  *   reaches 0 the page will be freed. ]
1507  *
1508  * This works nicely with pages from FSs.
1509  * But this means that in protocol A we might signal IO completion too early!
1510  *
1511  * In order not to corrupt data during a resync we must make sure
1512  * that we do not reuse our own buffer pages (EEs) to early, therefore
1513  * we have the net_ee list.
1514  *
1515  * XFS seems to have problems, still, it submits pages with page_count == 0!
1516  * As a workaround, we disable sendpage on pages
1517  * with page_count == 0 or PageSlab.
1518  */
1519 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1520                               int offset, size_t size, unsigned msg_flags)
1521 {
1522         struct socket *socket;
1523         void *addr;
1524         int err;
1525
1526         socket = peer_device->connection->data.socket;
1527         addr = kmap(page) + offset;
1528         err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1529         kunmap(page);
1530         if (!err)
1531                 peer_device->device->send_cnt += size >> 9;
1532         return err;
1533 }
1534
1535 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1536                     int offset, size_t size, unsigned msg_flags)
1537 {
1538         struct socket *socket = peer_device->connection->data.socket;
1539         int len = size;
1540         int err = -EIO;
1541
1542         /* e.g. XFS meta- & log-data is in slab pages, which have a
1543          * page_count of 0 and/or have PageSlab() set.
1544          * we cannot use send_page for those, as that does get_page();
1545          * put_page(); and would cause either a VM_BUG directly, or
1546          * __page_cache_release a page that would actually still be referenced
1547          * by someone, leading to some obscure delayed Oops somewhere else. */
1548         if (drbd_disable_sendpage || !sendpage_ok(page))
1549                 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1550
1551         msg_flags |= MSG_NOSIGNAL;
1552         drbd_update_congested(peer_device->connection);
1553         do {
1554                 int sent;
1555
1556                 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1557                 if (sent <= 0) {
1558                         if (sent == -EAGAIN) {
1559                                 if (we_should_drop_the_connection(peer_device->connection, socket))
1560                                         break;
1561                                 continue;
1562                         }
1563                         drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1564                              __func__, (int)size, len, sent);
1565                         if (sent < 0)
1566                                 err = sent;
1567                         break;
1568                 }
1569                 len    -= sent;
1570                 offset += sent;
1571         } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1572         clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1573
1574         if (len == 0) {
1575                 err = 0;
1576                 peer_device->device->send_cnt += size >> 9;
1577         }
1578         return err;
1579 }
1580
1581 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1582 {
1583         struct bio_vec bvec;
1584         struct bvec_iter iter;
1585
1586         /* hint all but last page with MSG_MORE */
1587         bio_for_each_segment(bvec, bio, iter) {
1588                 int err;
1589
1590                 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1591                                          bvec.bv_offset, bvec.bv_len,
1592                                          bio_iter_last(bvec, iter)
1593                                          ? 0 : MSG_MORE);
1594                 if (err)
1595                         return err;
1596                 /* REQ_OP_WRITE_SAME has only one segment */
1597                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1598                         break;
1599         }
1600         return 0;
1601 }
1602
1603 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1604 {
1605         struct bio_vec bvec;
1606         struct bvec_iter iter;
1607
1608         /* hint all but last page with MSG_MORE */
1609         bio_for_each_segment(bvec, bio, iter) {
1610                 int err;
1611
1612                 err = _drbd_send_page(peer_device, bvec.bv_page,
1613                                       bvec.bv_offset, bvec.bv_len,
1614                                       bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1615                 if (err)
1616                         return err;
1617                 /* REQ_OP_WRITE_SAME has only one segment */
1618                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1619                         break;
1620         }
1621         return 0;
1622 }
1623
1624 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1625                             struct drbd_peer_request *peer_req)
1626 {
1627         struct page *page = peer_req->pages;
1628         unsigned len = peer_req->i.size;
1629         int err;
1630
1631         /* hint all but last page with MSG_MORE */
1632         page_chain_for_each(page) {
1633                 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1634
1635                 err = _drbd_send_page(peer_device, page, 0, l,
1636                                       page_chain_next(page) ? MSG_MORE : 0);
1637                 if (err)
1638                         return err;
1639                 len -= l;
1640         }
1641         return 0;
1642 }
1643
1644 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1645                              struct bio *bio)
1646 {
1647         if (connection->agreed_pro_version >= 95)
1648                 return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1649                         (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1650                         (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1651                         (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1652                         (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1653                         (bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1654                           ((connection->agreed_features & DRBD_FF_WZEROES) ?
1655                            (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1656                            : DP_DISCARD)
1657                         : 0);
1658         else
1659                 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1660 }
1661
1662 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1663  * R_PRIMARY -> Peer    (P_DATA, P_TRIM)
1664  */
1665 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1666 {
1667         struct drbd_device *device = peer_device->device;
1668         struct drbd_socket *sock;
1669         struct p_data *p;
1670         struct p_wsame *wsame = NULL;
1671         void *digest_out;
1672         unsigned int dp_flags = 0;
1673         int digest_size;
1674         int err;
1675
1676         sock = &peer_device->connection->data;
1677         p = drbd_prepare_command(peer_device, sock);
1678         digest_size = peer_device->connection->integrity_tfm ?
1679                       crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1680
1681         if (!p)
1682                 return -EIO;
1683         p->sector = cpu_to_be64(req->i.sector);
1684         p->block_id = (unsigned long)req;
1685         p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1686         dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1687         if (device->state.conn >= C_SYNC_SOURCE &&
1688             device->state.conn <= C_PAUSED_SYNC_T)
1689                 dp_flags |= DP_MAY_SET_IN_SYNC;
1690         if (peer_device->connection->agreed_pro_version >= 100) {
1691                 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1692                         dp_flags |= DP_SEND_RECEIVE_ACK;
1693                 /* During resync, request an explicit write ack,
1694                  * even in protocol != C */
1695                 if (req->rq_state & RQ_EXP_WRITE_ACK
1696                 || (dp_flags & DP_MAY_SET_IN_SYNC))
1697                         dp_flags |= DP_SEND_WRITE_ACK;
1698         }
1699         p->dp_flags = cpu_to_be32(dp_flags);
1700
1701         if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1702                 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1703                 struct p_trim *t = (struct p_trim*)p;
1704                 t->size = cpu_to_be32(req->i.size);
1705                 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1706                 goto out;
1707         }
1708         if (dp_flags & DP_WSAME) {
1709                 /* this will only work if DRBD_FF_WSAME is set AND the
1710                  * handshake agreed that all nodes and backend devices are
1711                  * WRITE_SAME capable and agree on logical_block_size */
1712                 wsame = (struct p_wsame*)p;
1713                 digest_out = wsame + 1;
1714                 wsame->size = cpu_to_be32(req->i.size);
1715         } else
1716                 digest_out = p + 1;
1717
1718         /* our digest is still only over the payload.
1719          * TRIM does not carry any payload. */
1720         if (digest_size)
1721                 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1722         if (wsame) {
1723                 err =
1724                     __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1725                                    sizeof(*wsame) + digest_size, NULL,
1726                                    bio_iovec(req->master_bio).bv_len);
1727         } else
1728                 err =
1729                     __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1730                                    sizeof(*p) + digest_size, NULL, req->i.size);
1731         if (!err) {
1732                 /* For protocol A, we have to memcpy the payload into
1733                  * socket buffers, as we may complete right away
1734                  * as soon as we handed it over to tcp, at which point the data
1735                  * pages may become invalid.
1736                  *
1737                  * For data-integrity enabled, we copy it as well, so we can be
1738                  * sure that even if the bio pages may still be modified, it
1739                  * won't change the data on the wire, thus if the digest checks
1740                  * out ok after sending on this side, but does not fit on the
1741                  * receiving side, we sure have detected corruption elsewhere.
1742                  */
1743                 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1744                         err = _drbd_send_bio(peer_device, req->master_bio);
1745                 else
1746                         err = _drbd_send_zc_bio(peer_device, req->master_bio);
1747
1748                 /* double check digest, sometimes buffers have been modified in flight. */
1749                 if (digest_size > 0 && digest_size <= 64) {
1750                         /* 64 byte, 512 bit, is the largest digest size
1751                          * currently supported in kernel crypto. */
1752                         unsigned char digest[64];
1753                         drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1754                         if (memcmp(p + 1, digest, digest_size)) {
1755                                 drbd_warn(device,
1756                                         "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1757                                         (unsigned long long)req->i.sector, req->i.size);
1758                         }
1759                 } /* else if (digest_size > 64) {
1760                      ... Be noisy about digest too large ...
1761                 } */
1762         }
1763 out:
1764         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1765
1766         return err;
1767 }
1768
1769 /* answer packet, used to send data back for read requests:
1770  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1771  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1772  */
1773 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1774                     struct drbd_peer_request *peer_req)
1775 {
1776         struct drbd_device *device = peer_device->device;
1777         struct drbd_socket *sock;
1778         struct p_data *p;
1779         int err;
1780         int digest_size;
1781
1782         sock = &peer_device->connection->data;
1783         p = drbd_prepare_command(peer_device, sock);
1784
1785         digest_size = peer_device->connection->integrity_tfm ?
1786                       crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1787
1788         if (!p)
1789                 return -EIO;
1790         p->sector = cpu_to_be64(peer_req->i.sector);
1791         p->block_id = peer_req->block_id;
1792         p->seq_num = 0;  /* unused */
1793         p->dp_flags = 0;
1794         if (digest_size)
1795                 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1796         err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1797         if (!err)
1798                 err = _drbd_send_zc_ee(peer_device, peer_req);
1799         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1800
1801         return err;
1802 }
1803
1804 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1805 {
1806         struct drbd_socket *sock;
1807         struct p_block_desc *p;
1808
1809         sock = &peer_device->connection->data;
1810         p = drbd_prepare_command(peer_device, sock);
1811         if (!p)
1812                 return -EIO;
1813         p->sector = cpu_to_be64(req->i.sector);
1814         p->blksize = cpu_to_be32(req->i.size);
1815         return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1816 }
1817
1818 /*
1819   drbd_send distinguishes two cases:
1820
1821   Packets sent via the data socket "sock"
1822   and packets sent via the meta data socket "msock"
1823
1824                     sock                      msock
1825   -----------------+-------------------------+------------------------------
1826   timeout           conf.timeout / 2          conf.timeout / 2
1827   timeout action    send a ping via msock     Abort communication
1828                                               and close all sockets
1829 */
1830
1831 /*
1832  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1833  */
1834 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1835               void *buf, size_t size, unsigned msg_flags)
1836 {
1837         struct kvec iov = {.iov_base = buf, .iov_len = size};
1838         struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1839         int rv, sent = 0;
1840
1841         if (!sock)
1842                 return -EBADR;
1843
1844         /* THINK  if (signal_pending) return ... ? */
1845
1846         iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1847
1848         if (sock == connection->data.socket) {
1849                 rcu_read_lock();
1850                 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1851                 rcu_read_unlock();
1852                 drbd_update_congested(connection);
1853         }
1854         do {
1855                 rv = sock_sendmsg(sock, &msg);
1856                 if (rv == -EAGAIN) {
1857                         if (we_should_drop_the_connection(connection, sock))
1858                                 break;
1859                         else
1860                                 continue;
1861                 }
1862                 if (rv == -EINTR) {
1863                         flush_signals(current);
1864                         rv = 0;
1865                 }
1866                 if (rv < 0)
1867                         break;
1868                 sent += rv;
1869         } while (sent < size);
1870
1871         if (sock == connection->data.socket)
1872                 clear_bit(NET_CONGESTED, &connection->flags);
1873
1874         if (rv <= 0) {
1875                 if (rv != -EAGAIN) {
1876                         drbd_err(connection, "%s_sendmsg returned %d\n",
1877                                  sock == connection->meta.socket ? "msock" : "sock",
1878                                  rv);
1879                         conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1880                 } else
1881                         conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1882         }
1883
1884         return sent;
1885 }
1886
1887 /*
1888  * drbd_send_all  -  Send an entire buffer
1889  *
1890  * Returns 0 upon success and a negative error value otherwise.
1891  */
1892 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1893                   size_t size, unsigned msg_flags)
1894 {
1895         int err;
1896
1897         err = drbd_send(connection, sock, buffer, size, msg_flags);
1898         if (err < 0)
1899                 return err;
1900         if (err != size)
1901                 return -EIO;
1902         return 0;
1903 }
1904
1905 static int drbd_open(struct block_device *bdev, fmode_t mode)
1906 {
1907         struct drbd_device *device = bdev->bd_disk->private_data;
1908         unsigned long flags;
1909         int rv = 0;
1910
1911         mutex_lock(&drbd_main_mutex);
1912         spin_lock_irqsave(&device->resource->req_lock, flags);
1913         /* to have a stable device->state.role
1914          * and no race with updating open_cnt */
1915
1916         if (device->state.role != R_PRIMARY) {
1917                 if (mode & FMODE_WRITE)
1918                         rv = -EROFS;
1919                 else if (!drbd_allow_oos)
1920                         rv = -EMEDIUMTYPE;
1921         }
1922
1923         if (!rv)
1924                 device->open_cnt++;
1925         spin_unlock_irqrestore(&device->resource->req_lock, flags);
1926         mutex_unlock(&drbd_main_mutex);
1927
1928         return rv;
1929 }
1930
1931 static void drbd_release(struct gendisk *gd, fmode_t mode)
1932 {
1933         struct drbd_device *device = gd->private_data;
1934         mutex_lock(&drbd_main_mutex);
1935         device->open_cnt--;
1936         mutex_unlock(&drbd_main_mutex);
1937 }
1938
1939 /* need to hold resource->req_lock */
1940 void drbd_queue_unplug(struct drbd_device *device)
1941 {
1942         if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1943                 D_ASSERT(device, device->state.role == R_PRIMARY);
1944                 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1945                         drbd_queue_work_if_unqueued(
1946                                 &first_peer_device(device)->connection->sender_work,
1947                                 &device->unplug_work);
1948                 }
1949         }
1950 }
1951
1952 static void drbd_set_defaults(struct drbd_device *device)
1953 {
1954         /* Beware! The actual layout differs
1955          * between big endian and little endian */
1956         device->state = (union drbd_dev_state) {
1957                 { .role = R_SECONDARY,
1958                   .peer = R_UNKNOWN,
1959                   .conn = C_STANDALONE,
1960                   .disk = D_DISKLESS,
1961                   .pdsk = D_UNKNOWN,
1962                 } };
1963 }
1964
1965 void drbd_init_set_defaults(struct drbd_device *device)
1966 {
1967         /* the memset(,0,) did most of this.
1968          * note: only assignments, no allocation in here */
1969
1970         drbd_set_defaults(device);
1971
1972         atomic_set(&device->ap_bio_cnt, 0);
1973         atomic_set(&device->ap_actlog_cnt, 0);
1974         atomic_set(&device->ap_pending_cnt, 0);
1975         atomic_set(&device->rs_pending_cnt, 0);
1976         atomic_set(&device->unacked_cnt, 0);
1977         atomic_set(&device->local_cnt, 0);
1978         atomic_set(&device->pp_in_use_by_net, 0);
1979         atomic_set(&device->rs_sect_in, 0);
1980         atomic_set(&device->rs_sect_ev, 0);
1981         atomic_set(&device->ap_in_flight, 0);
1982         atomic_set(&device->md_io.in_use, 0);
1983
1984         mutex_init(&device->own_state_mutex);
1985         device->state_mutex = &device->own_state_mutex;
1986
1987         spin_lock_init(&device->al_lock);
1988         spin_lock_init(&device->peer_seq_lock);
1989
1990         INIT_LIST_HEAD(&device->active_ee);
1991         INIT_LIST_HEAD(&device->sync_ee);
1992         INIT_LIST_HEAD(&device->done_ee);
1993         INIT_LIST_HEAD(&device->read_ee);
1994         INIT_LIST_HEAD(&device->net_ee);
1995         INIT_LIST_HEAD(&device->resync_reads);
1996         INIT_LIST_HEAD(&device->resync_work.list);
1997         INIT_LIST_HEAD(&device->unplug_work.list);
1998         INIT_LIST_HEAD(&device->bm_io_work.w.list);
1999         INIT_LIST_HEAD(&device->pending_master_completion[0]);
2000         INIT_LIST_HEAD(&device->pending_master_completion[1]);
2001         INIT_LIST_HEAD(&device->pending_completion[0]);
2002         INIT_LIST_HEAD(&device->pending_completion[1]);
2003
2004         device->resync_work.cb  = w_resync_timer;
2005         device->unplug_work.cb  = w_send_write_hint;
2006         device->bm_io_work.w.cb = w_bitmap_io;
2007
2008         timer_setup(&device->resync_timer, resync_timer_fn, 0);
2009         timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
2010         timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
2011         timer_setup(&device->request_timer, request_timer_fn, 0);
2012
2013         init_waitqueue_head(&device->misc_wait);
2014         init_waitqueue_head(&device->state_wait);
2015         init_waitqueue_head(&device->ee_wait);
2016         init_waitqueue_head(&device->al_wait);
2017         init_waitqueue_head(&device->seq_wait);
2018
2019         device->resync_wenr = LC_FREE;
2020         device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2021         device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2022 }
2023
2024 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2025 {
2026         char ppb[10];
2027
2028         set_capacity_and_notify(device->vdisk, size);
2029
2030         drbd_info(device, "size = %s (%llu KB)\n",
2031                 ppsize(ppb, size>>1), (unsigned long long)size>>1);
2032 }
2033
2034 void drbd_device_cleanup(struct drbd_device *device)
2035 {
2036         int i;
2037         if (first_peer_device(device)->connection->receiver.t_state != NONE)
2038                 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2039                                 first_peer_device(device)->connection->receiver.t_state);
2040
2041         device->al_writ_cnt  =
2042         device->bm_writ_cnt  =
2043         device->read_cnt     =
2044         device->recv_cnt     =
2045         device->send_cnt     =
2046         device->writ_cnt     =
2047         device->p_size       =
2048         device->rs_start     =
2049         device->rs_total     =
2050         device->rs_failed    = 0;
2051         device->rs_last_events = 0;
2052         device->rs_last_sect_ev = 0;
2053         for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2054                 device->rs_mark_left[i] = 0;
2055                 device->rs_mark_time[i] = 0;
2056         }
2057         D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2058
2059         set_capacity_and_notify(device->vdisk, 0);
2060         if (device->bitmap) {
2061                 /* maybe never allocated. */
2062                 drbd_bm_resize(device, 0, 1);
2063                 drbd_bm_cleanup(device);
2064         }
2065
2066         drbd_backing_dev_free(device, device->ldev);
2067         device->ldev = NULL;
2068
2069         clear_bit(AL_SUSPENDED, &device->flags);
2070
2071         D_ASSERT(device, list_empty(&device->active_ee));
2072         D_ASSERT(device, list_empty(&device->sync_ee));
2073         D_ASSERT(device, list_empty(&device->done_ee));
2074         D_ASSERT(device, list_empty(&device->read_ee));
2075         D_ASSERT(device, list_empty(&device->net_ee));
2076         D_ASSERT(device, list_empty(&device->resync_reads));
2077         D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2078         D_ASSERT(device, list_empty(&device->resync_work.list));
2079         D_ASSERT(device, list_empty(&device->unplug_work.list));
2080
2081         drbd_set_defaults(device);
2082 }
2083
2084
2085 static void drbd_destroy_mempools(void)
2086 {
2087         struct page *page;
2088
2089         while (drbd_pp_pool) {
2090                 page = drbd_pp_pool;
2091                 drbd_pp_pool = (struct page *)page_private(page);
2092                 __free_page(page);
2093                 drbd_pp_vacant--;
2094         }
2095
2096         /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2097
2098         bioset_exit(&drbd_io_bio_set);
2099         bioset_exit(&drbd_md_io_bio_set);
2100         mempool_exit(&drbd_md_io_page_pool);
2101         mempool_exit(&drbd_ee_mempool);
2102         mempool_exit(&drbd_request_mempool);
2103         kmem_cache_destroy(drbd_ee_cache);
2104         kmem_cache_destroy(drbd_request_cache);
2105         kmem_cache_destroy(drbd_bm_ext_cache);
2106         kmem_cache_destroy(drbd_al_ext_cache);
2107
2108         drbd_ee_cache        = NULL;
2109         drbd_request_cache   = NULL;
2110         drbd_bm_ext_cache    = NULL;
2111         drbd_al_ext_cache    = NULL;
2112
2113         return;
2114 }
2115
2116 static int drbd_create_mempools(void)
2117 {
2118         struct page *page;
2119         const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2120         int i, ret;
2121
2122         /* caches */
2123         drbd_request_cache = kmem_cache_create(
2124                 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2125         if (drbd_request_cache == NULL)
2126                 goto Enomem;
2127
2128         drbd_ee_cache = kmem_cache_create(
2129                 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2130         if (drbd_ee_cache == NULL)
2131                 goto Enomem;
2132
2133         drbd_bm_ext_cache = kmem_cache_create(
2134                 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2135         if (drbd_bm_ext_cache == NULL)
2136                 goto Enomem;
2137
2138         drbd_al_ext_cache = kmem_cache_create(
2139                 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2140         if (drbd_al_ext_cache == NULL)
2141                 goto Enomem;
2142
2143         /* mempools */
2144         ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2145         if (ret)
2146                 goto Enomem;
2147
2148         ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2149                           BIOSET_NEED_BVECS);
2150         if (ret)
2151                 goto Enomem;
2152
2153         ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2154         if (ret)
2155                 goto Enomem;
2156
2157         ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2158                                      drbd_request_cache);
2159         if (ret)
2160                 goto Enomem;
2161
2162         ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2163         if (ret)
2164                 goto Enomem;
2165
2166         for (i = 0; i < number; i++) {
2167                 page = alloc_page(GFP_HIGHUSER);
2168                 if (!page)
2169                         goto Enomem;
2170                 set_page_private(page, (unsigned long)drbd_pp_pool);
2171                 drbd_pp_pool = page;
2172         }
2173         drbd_pp_vacant = number;
2174
2175         return 0;
2176
2177 Enomem:
2178         drbd_destroy_mempools(); /* in case we allocated some */
2179         return -ENOMEM;
2180 }
2181
2182 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2183 {
2184         int rr;
2185
2186         rr = drbd_free_peer_reqs(device, &device->active_ee);
2187         if (rr)
2188                 drbd_err(device, "%d EEs in active list found!\n", rr);
2189
2190         rr = drbd_free_peer_reqs(device, &device->sync_ee);
2191         if (rr)
2192                 drbd_err(device, "%d EEs in sync list found!\n", rr);
2193
2194         rr = drbd_free_peer_reqs(device, &device->read_ee);
2195         if (rr)
2196                 drbd_err(device, "%d EEs in read list found!\n", rr);
2197
2198         rr = drbd_free_peer_reqs(device, &device->done_ee);
2199         if (rr)
2200                 drbd_err(device, "%d EEs in done list found!\n", rr);
2201
2202         rr = drbd_free_peer_reqs(device, &device->net_ee);
2203         if (rr)
2204                 drbd_err(device, "%d EEs in net list found!\n", rr);
2205 }
2206
2207 /* caution. no locking. */
2208 void drbd_destroy_device(struct kref *kref)
2209 {
2210         struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2211         struct drbd_resource *resource = device->resource;
2212         struct drbd_peer_device *peer_device, *tmp_peer_device;
2213
2214         del_timer_sync(&device->request_timer);
2215
2216         /* paranoia asserts */
2217         D_ASSERT(device, device->open_cnt == 0);
2218         /* end paranoia asserts */
2219
2220         /* cleanup stuff that may have been allocated during
2221          * device (re-)configuration or state changes */
2222
2223         drbd_backing_dev_free(device, device->ldev);
2224         device->ldev = NULL;
2225
2226         drbd_release_all_peer_reqs(device);
2227
2228         lc_destroy(device->act_log);
2229         lc_destroy(device->resync);
2230
2231         kfree(device->p_uuid);
2232         /* device->p_uuid = NULL; */
2233
2234         if (device->bitmap) /* should no longer be there. */
2235                 drbd_bm_cleanup(device);
2236         __free_page(device->md_io.page);
2237         blk_cleanup_disk(device->vdisk);
2238         kfree(device->rs_plan_s);
2239
2240         /* not for_each_connection(connection, resource):
2241          * those may have been cleaned up and disassociated already.
2242          */
2243         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2244                 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2245                 kfree(peer_device);
2246         }
2247         memset(device, 0xfd, sizeof(*device));
2248         kfree(device);
2249         kref_put(&resource->kref, drbd_destroy_resource);
2250 }
2251
2252 /* One global retry thread, if we need to push back some bio and have it
2253  * reinserted through our make request function.
2254  */
2255 static struct retry_worker {
2256         struct workqueue_struct *wq;
2257         struct work_struct worker;
2258
2259         spinlock_t lock;
2260         struct list_head writes;
2261 } retry;
2262
2263 static void do_retry(struct work_struct *ws)
2264 {
2265         struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2266         LIST_HEAD(writes);
2267         struct drbd_request *req, *tmp;
2268
2269         spin_lock_irq(&retry->lock);
2270         list_splice_init(&retry->writes, &writes);
2271         spin_unlock_irq(&retry->lock);
2272
2273         list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2274                 struct drbd_device *device = req->device;
2275                 struct bio *bio = req->master_bio;
2276                 bool expected;
2277
2278                 expected =
2279                         expect(atomic_read(&req->completion_ref) == 0) &&
2280                         expect(req->rq_state & RQ_POSTPONED) &&
2281                         expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2282                                 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2283
2284                 if (!expected)
2285                         drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2286                                 req, atomic_read(&req->completion_ref),
2287                                 req->rq_state);
2288
2289                 /* We still need to put one kref associated with the
2290                  * "completion_ref" going zero in the code path that queued it
2291                  * here.  The request object may still be referenced by a
2292                  * frozen local req->private_bio, in case we force-detached.
2293                  */
2294                 kref_put(&req->kref, drbd_req_destroy);
2295
2296                 /* A single suspended or otherwise blocking device may stall
2297                  * all others as well.  Fortunately, this code path is to
2298                  * recover from a situation that "should not happen":
2299                  * concurrent writes in multi-primary setup.
2300                  * In a "normal" lifecycle, this workqueue is supposed to be
2301                  * destroyed without ever doing anything.
2302                  * If it turns out to be an issue anyways, we can do per
2303                  * resource (replication group) or per device (minor) retry
2304                  * workqueues instead.
2305                  */
2306
2307                 /* We are not just doing submit_bio_noacct(),
2308                  * as we want to keep the start_time information. */
2309                 inc_ap_bio(device);
2310                 __drbd_make_request(device, bio);
2311         }
2312 }
2313
2314 /* called via drbd_req_put_completion_ref(),
2315  * holds resource->req_lock */
2316 void drbd_restart_request(struct drbd_request *req)
2317 {
2318         unsigned long flags;
2319         spin_lock_irqsave(&retry.lock, flags);
2320         list_move_tail(&req->tl_requests, &retry.writes);
2321         spin_unlock_irqrestore(&retry.lock, flags);
2322
2323         /* Drop the extra reference that would otherwise
2324          * have been dropped by complete_master_bio.
2325          * do_retry() needs to grab a new one. */
2326         dec_ap_bio(req->device);
2327
2328         queue_work(retry.wq, &retry.worker);
2329 }
2330
2331 void drbd_destroy_resource(struct kref *kref)
2332 {
2333         struct drbd_resource *resource =
2334                 container_of(kref, struct drbd_resource, kref);
2335
2336         idr_destroy(&resource->devices);
2337         free_cpumask_var(resource->cpu_mask);
2338         kfree(resource->name);
2339         memset(resource, 0xf2, sizeof(*resource));
2340         kfree(resource);
2341 }
2342
2343 void drbd_free_resource(struct drbd_resource *resource)
2344 {
2345         struct drbd_connection *connection, *tmp;
2346
2347         for_each_connection_safe(connection, tmp, resource) {
2348                 list_del(&connection->connections);
2349                 drbd_debugfs_connection_cleanup(connection);
2350                 kref_put(&connection->kref, drbd_destroy_connection);
2351         }
2352         drbd_debugfs_resource_cleanup(resource);
2353         kref_put(&resource->kref, drbd_destroy_resource);
2354 }
2355
2356 static void drbd_cleanup(void)
2357 {
2358         unsigned int i;
2359         struct drbd_device *device;
2360         struct drbd_resource *resource, *tmp;
2361
2362         /* first remove proc,
2363          * drbdsetup uses it's presence to detect
2364          * whether DRBD is loaded.
2365          * If we would get stuck in proc removal,
2366          * but have netlink already deregistered,
2367          * some drbdsetup commands may wait forever
2368          * for an answer.
2369          */
2370         if (drbd_proc)
2371                 remove_proc_entry("drbd", NULL);
2372
2373         if (retry.wq)
2374                 destroy_workqueue(retry.wq);
2375
2376         drbd_genl_unregister();
2377
2378         idr_for_each_entry(&drbd_devices, device, i)
2379                 drbd_delete_device(device);
2380
2381         /* not _rcu since, no other updater anymore. Genl already unregistered */
2382         for_each_resource_safe(resource, tmp, &drbd_resources) {
2383                 list_del(&resource->resources);
2384                 drbd_free_resource(resource);
2385         }
2386
2387         drbd_debugfs_cleanup();
2388
2389         drbd_destroy_mempools();
2390         unregister_blkdev(DRBD_MAJOR, "drbd");
2391
2392         idr_destroy(&drbd_devices);
2393
2394         pr_info("module cleanup done.\n");
2395 }
2396
2397 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2398 {
2399         spin_lock_init(&wq->q_lock);
2400         INIT_LIST_HEAD(&wq->q);
2401         init_waitqueue_head(&wq->q_wait);
2402 }
2403
2404 struct completion_work {
2405         struct drbd_work w;
2406         struct completion done;
2407 };
2408
2409 static int w_complete(struct drbd_work *w, int cancel)
2410 {
2411         struct completion_work *completion_work =
2412                 container_of(w, struct completion_work, w);
2413
2414         complete(&completion_work->done);
2415         return 0;
2416 }
2417
2418 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2419 {
2420         struct completion_work completion_work;
2421
2422         completion_work.w.cb = w_complete;
2423         init_completion(&completion_work.done);
2424         drbd_queue_work(work_queue, &completion_work.w);
2425         wait_for_completion(&completion_work.done);
2426 }
2427
2428 struct drbd_resource *drbd_find_resource(const char *name)
2429 {
2430         struct drbd_resource *resource;
2431
2432         if (!name || !name[0])
2433                 return NULL;
2434
2435         rcu_read_lock();
2436         for_each_resource_rcu(resource, &drbd_resources) {
2437                 if (!strcmp(resource->name, name)) {
2438                         kref_get(&resource->kref);
2439                         goto found;
2440                 }
2441         }
2442         resource = NULL;
2443 found:
2444         rcu_read_unlock();
2445         return resource;
2446 }
2447
2448 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2449                                      void *peer_addr, int peer_addr_len)
2450 {
2451         struct drbd_resource *resource;
2452         struct drbd_connection *connection;
2453
2454         rcu_read_lock();
2455         for_each_resource_rcu(resource, &drbd_resources) {
2456                 for_each_connection_rcu(connection, resource) {
2457                         if (connection->my_addr_len == my_addr_len &&
2458                             connection->peer_addr_len == peer_addr_len &&
2459                             !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2460                             !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2461                                 kref_get(&connection->kref);
2462                                 goto found;
2463                         }
2464                 }
2465         }
2466         connection = NULL;
2467 found:
2468         rcu_read_unlock();
2469         return connection;
2470 }
2471
2472 static int drbd_alloc_socket(struct drbd_socket *socket)
2473 {
2474         socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2475         if (!socket->rbuf)
2476                 return -ENOMEM;
2477         socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2478         if (!socket->sbuf)
2479                 return -ENOMEM;
2480         return 0;
2481 }
2482
2483 static void drbd_free_socket(struct drbd_socket *socket)
2484 {
2485         free_page((unsigned long) socket->sbuf);
2486         free_page((unsigned long) socket->rbuf);
2487 }
2488
2489 void conn_free_crypto(struct drbd_connection *connection)
2490 {
2491         drbd_free_sock(connection);
2492
2493         crypto_free_shash(connection->csums_tfm);
2494         crypto_free_shash(connection->verify_tfm);
2495         crypto_free_shash(connection->cram_hmac_tfm);
2496         crypto_free_shash(connection->integrity_tfm);
2497         crypto_free_shash(connection->peer_integrity_tfm);
2498         kfree(connection->int_dig_in);
2499         kfree(connection->int_dig_vv);
2500
2501         connection->csums_tfm = NULL;
2502         connection->verify_tfm = NULL;
2503         connection->cram_hmac_tfm = NULL;
2504         connection->integrity_tfm = NULL;
2505         connection->peer_integrity_tfm = NULL;
2506         connection->int_dig_in = NULL;
2507         connection->int_dig_vv = NULL;
2508 }
2509
2510 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2511 {
2512         struct drbd_connection *connection;
2513         cpumask_var_t new_cpu_mask;
2514         int err;
2515
2516         if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2517                 return -ENOMEM;
2518
2519         /* silently ignore cpu mask on UP kernel */
2520         if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2521                 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2522                                    cpumask_bits(new_cpu_mask), nr_cpu_ids);
2523                 if (err == -EOVERFLOW) {
2524                         /* So what. mask it out. */
2525                         cpumask_var_t tmp_cpu_mask;
2526                         if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2527                                 cpumask_setall(tmp_cpu_mask);
2528                                 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2529                                 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2530                                         res_opts->cpu_mask,
2531                                         strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2532                                         nr_cpu_ids);
2533                                 free_cpumask_var(tmp_cpu_mask);
2534                                 err = 0;
2535                         }
2536                 }
2537                 if (err) {
2538                         drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2539                         /* retcode = ERR_CPU_MASK_PARSE; */
2540                         goto fail;
2541                 }
2542         }
2543         resource->res_opts = *res_opts;
2544         if (cpumask_empty(new_cpu_mask))
2545                 drbd_calc_cpu_mask(&new_cpu_mask);
2546         if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2547                 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2548                 for_each_connection_rcu(connection, resource) {
2549                         connection->receiver.reset_cpu_mask = 1;
2550                         connection->ack_receiver.reset_cpu_mask = 1;
2551                         connection->worker.reset_cpu_mask = 1;
2552                 }
2553         }
2554         err = 0;
2555
2556 fail:
2557         free_cpumask_var(new_cpu_mask);
2558         return err;
2559
2560 }
2561
2562 struct drbd_resource *drbd_create_resource(const char *name)
2563 {
2564         struct drbd_resource *resource;
2565
2566         resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2567         if (!resource)
2568                 goto fail;
2569         resource->name = kstrdup(name, GFP_KERNEL);
2570         if (!resource->name)
2571                 goto fail_free_resource;
2572         if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2573                 goto fail_free_name;
2574         kref_init(&resource->kref);
2575         idr_init(&resource->devices);
2576         INIT_LIST_HEAD(&resource->connections);
2577         resource->write_ordering = WO_BDEV_FLUSH;
2578         list_add_tail_rcu(&resource->resources, &drbd_resources);
2579         mutex_init(&resource->conf_update);
2580         mutex_init(&resource->adm_mutex);
2581         spin_lock_init(&resource->req_lock);
2582         drbd_debugfs_resource_add(resource);
2583         return resource;
2584
2585 fail_free_name:
2586         kfree(resource->name);
2587 fail_free_resource:
2588         kfree(resource);
2589 fail:
2590         return NULL;
2591 }
2592
2593 /* caller must be under adm_mutex */
2594 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2595 {
2596         struct drbd_resource *resource;
2597         struct drbd_connection *connection;
2598
2599         connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2600         if (!connection)
2601                 return NULL;
2602
2603         if (drbd_alloc_socket(&connection->data))
2604                 goto fail;
2605         if (drbd_alloc_socket(&connection->meta))
2606                 goto fail;
2607
2608         connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2609         if (!connection->current_epoch)
2610                 goto fail;
2611
2612         INIT_LIST_HEAD(&connection->transfer_log);
2613
2614         INIT_LIST_HEAD(&connection->current_epoch->list);
2615         connection->epochs = 1;
2616         spin_lock_init(&connection->epoch_lock);
2617
2618         connection->send.seen_any_write_yet = false;
2619         connection->send.current_epoch_nr = 0;
2620         connection->send.current_epoch_writes = 0;
2621
2622         resource = drbd_create_resource(name);
2623         if (!resource)
2624                 goto fail;
2625
2626         connection->cstate = C_STANDALONE;
2627         mutex_init(&connection->cstate_mutex);
2628         init_waitqueue_head(&connection->ping_wait);
2629         idr_init(&connection->peer_devices);
2630
2631         drbd_init_workqueue(&connection->sender_work);
2632         mutex_init(&connection->data.mutex);
2633         mutex_init(&connection->meta.mutex);
2634
2635         drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2636         connection->receiver.connection = connection;
2637         drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2638         connection->worker.connection = connection;
2639         drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2640         connection->ack_receiver.connection = connection;
2641
2642         kref_init(&connection->kref);
2643
2644         connection->resource = resource;
2645
2646         if (set_resource_options(resource, res_opts))
2647                 goto fail_resource;
2648
2649         kref_get(&resource->kref);
2650         list_add_tail_rcu(&connection->connections, &resource->connections);
2651         drbd_debugfs_connection_add(connection);
2652         return connection;
2653
2654 fail_resource:
2655         list_del(&resource->resources);
2656         drbd_free_resource(resource);
2657 fail:
2658         kfree(connection->current_epoch);
2659         drbd_free_socket(&connection->meta);
2660         drbd_free_socket(&connection->data);
2661         kfree(connection);
2662         return NULL;
2663 }
2664
2665 void drbd_destroy_connection(struct kref *kref)
2666 {
2667         struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2668         struct drbd_resource *resource = connection->resource;
2669
2670         if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2671                 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2672         kfree(connection->current_epoch);
2673
2674         idr_destroy(&connection->peer_devices);
2675
2676         drbd_free_socket(&connection->meta);
2677         drbd_free_socket(&connection->data);
2678         kfree(connection->int_dig_in);
2679         kfree(connection->int_dig_vv);
2680         memset(connection, 0xfc, sizeof(*connection));
2681         kfree(connection);
2682         kref_put(&resource->kref, drbd_destroy_resource);
2683 }
2684
2685 static int init_submitter(struct drbd_device *device)
2686 {
2687         /* opencoded create_singlethread_workqueue(),
2688          * to be able to say "drbd%d", ..., minor */
2689         device->submit.wq =
2690                 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2691         if (!device->submit.wq)
2692                 return -ENOMEM;
2693
2694         INIT_WORK(&device->submit.worker, do_submit);
2695         INIT_LIST_HEAD(&device->submit.writes);
2696         return 0;
2697 }
2698
2699 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2700 {
2701         struct drbd_resource *resource = adm_ctx->resource;
2702         struct drbd_connection *connection;
2703         struct drbd_device *device;
2704         struct drbd_peer_device *peer_device, *tmp_peer_device;
2705         struct gendisk *disk;
2706         int id;
2707         int vnr = adm_ctx->volume;
2708         enum drbd_ret_code err = ERR_NOMEM;
2709
2710         device = minor_to_device(minor);
2711         if (device)
2712                 return ERR_MINOR_OR_VOLUME_EXISTS;
2713
2714         /* GFP_KERNEL, we are outside of all write-out paths */
2715         device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2716         if (!device)
2717                 return ERR_NOMEM;
2718         kref_init(&device->kref);
2719
2720         kref_get(&resource->kref);
2721         device->resource = resource;
2722         device->minor = minor;
2723         device->vnr = vnr;
2724
2725         drbd_init_set_defaults(device);
2726
2727         disk = blk_alloc_disk(NUMA_NO_NODE);
2728         if (!disk)
2729                 goto out_no_disk;
2730
2731         device->vdisk = disk;
2732         device->rq_queue = disk->queue;
2733
2734         set_disk_ro(disk, true);
2735
2736         disk->major = DRBD_MAJOR;
2737         disk->first_minor = minor;
2738         disk->minors = 1;
2739         disk->fops = &drbd_ops;
2740         sprintf(disk->disk_name, "drbd%d", minor);
2741         disk->private_data = device;
2742
2743         blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, disk->queue);
2744         blk_queue_write_cache(disk->queue, true, true);
2745         /* Setting the max_hw_sectors to an odd value of 8kibyte here
2746            This triggers a max_bio_size message upon first attach or connect */
2747         blk_queue_max_hw_sectors(disk->queue, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2748
2749         device->md_io.page = alloc_page(GFP_KERNEL);
2750         if (!device->md_io.page)
2751                 goto out_no_io_page;
2752
2753         if (drbd_bm_init(device))
2754                 goto out_no_bitmap;
2755         device->read_requests = RB_ROOT;
2756         device->write_requests = RB_ROOT;
2757
2758         id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2759         if (id < 0) {
2760                 if (id == -ENOSPC)
2761                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2762                 goto out_no_minor_idr;
2763         }
2764         kref_get(&device->kref);
2765
2766         id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2767         if (id < 0) {
2768                 if (id == -ENOSPC)
2769                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2770                 goto out_idr_remove_minor;
2771         }
2772         kref_get(&device->kref);
2773
2774         INIT_LIST_HEAD(&device->peer_devices);
2775         INIT_LIST_HEAD(&device->pending_bitmap_io);
2776         for_each_connection(connection, resource) {
2777                 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2778                 if (!peer_device)
2779                         goto out_idr_remove_from_resource;
2780                 peer_device->connection = connection;
2781                 peer_device->device = device;
2782
2783                 list_add(&peer_device->peer_devices, &device->peer_devices);
2784                 kref_get(&device->kref);
2785
2786                 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2787                 if (id < 0) {
2788                         if (id == -ENOSPC)
2789                                 err = ERR_INVALID_REQUEST;
2790                         goto out_idr_remove_from_resource;
2791                 }
2792                 kref_get(&connection->kref);
2793                 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2794         }
2795
2796         if (init_submitter(device)) {
2797                 err = ERR_NOMEM;
2798                 goto out_idr_remove_from_resource;
2799         }
2800
2801         err = add_disk(disk);
2802         if (err)
2803                 goto out_idr_remove_from_resource;
2804
2805         /* inherit the connection state */
2806         device->state.conn = first_connection(resource)->cstate;
2807         if (device->state.conn == C_WF_REPORT_PARAMS) {
2808                 for_each_peer_device(peer_device, device)
2809                         drbd_connected(peer_device);
2810         }
2811         /* move to create_peer_device() */
2812         for_each_peer_device(peer_device, device)
2813                 drbd_debugfs_peer_device_add(peer_device);
2814         drbd_debugfs_device_add(device);
2815         return NO_ERROR;
2816
2817 out_idr_remove_from_resource:
2818         for_each_connection(connection, resource) {
2819                 peer_device = idr_remove(&connection->peer_devices, vnr);
2820                 if (peer_device)
2821                         kref_put(&connection->kref, drbd_destroy_connection);
2822         }
2823         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2824                 list_del(&peer_device->peer_devices);
2825                 kfree(peer_device);
2826         }
2827         idr_remove(&resource->devices, vnr);
2828 out_idr_remove_minor:
2829         idr_remove(&drbd_devices, minor);
2830         synchronize_rcu();
2831 out_no_minor_idr:
2832         drbd_bm_cleanup(device);
2833 out_no_bitmap:
2834         __free_page(device->md_io.page);
2835 out_no_io_page:
2836         blk_cleanup_disk(disk);
2837 out_no_disk:
2838         kref_put(&resource->kref, drbd_destroy_resource);
2839         kfree(device);
2840         return err;
2841 }
2842
2843 void drbd_delete_device(struct drbd_device *device)
2844 {
2845         struct drbd_resource *resource = device->resource;
2846         struct drbd_connection *connection;
2847         struct drbd_peer_device *peer_device;
2848
2849         /* move to free_peer_device() */
2850         for_each_peer_device(peer_device, device)
2851                 drbd_debugfs_peer_device_cleanup(peer_device);
2852         drbd_debugfs_device_cleanup(device);
2853         for_each_connection(connection, resource) {
2854                 idr_remove(&connection->peer_devices, device->vnr);
2855                 kref_put(&device->kref, drbd_destroy_device);
2856         }
2857         idr_remove(&resource->devices, device->vnr);
2858         kref_put(&device->kref, drbd_destroy_device);
2859         idr_remove(&drbd_devices, device_to_minor(device));
2860         kref_put(&device->kref, drbd_destroy_device);
2861         del_gendisk(device->vdisk);
2862         synchronize_rcu();
2863         kref_put(&device->kref, drbd_destroy_device);
2864 }
2865
2866 static int __init drbd_init(void)
2867 {
2868         int err;
2869
2870         if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2871                 pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2872 #ifdef MODULE
2873                 return -EINVAL;
2874 #else
2875                 drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2876 #endif
2877         }
2878
2879         err = register_blkdev(DRBD_MAJOR, "drbd");
2880         if (err) {
2881                 pr_err("unable to register block device major %d\n",
2882                        DRBD_MAJOR);
2883                 return err;
2884         }
2885
2886         /*
2887          * allocate all necessary structs
2888          */
2889         init_waitqueue_head(&drbd_pp_wait);
2890
2891         drbd_proc = NULL; /* play safe for drbd_cleanup */
2892         idr_init(&drbd_devices);
2893
2894         mutex_init(&resources_mutex);
2895         INIT_LIST_HEAD(&drbd_resources);
2896
2897         err = drbd_genl_register();
2898         if (err) {
2899                 pr_err("unable to register generic netlink family\n");
2900                 goto fail;
2901         }
2902
2903         err = drbd_create_mempools();
2904         if (err)
2905                 goto fail;
2906
2907         err = -ENOMEM;
2908         drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2909         if (!drbd_proc) {
2910                 pr_err("unable to register proc file\n");
2911                 goto fail;
2912         }
2913
2914         retry.wq = create_singlethread_workqueue("drbd-reissue");
2915         if (!retry.wq) {
2916                 pr_err("unable to create retry workqueue\n");
2917                 goto fail;
2918         }
2919         INIT_WORK(&retry.worker, do_retry);
2920         spin_lock_init(&retry.lock);
2921         INIT_LIST_HEAD(&retry.writes);
2922
2923         drbd_debugfs_init();
2924
2925         pr_info("initialized. "
2926                "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2927                API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2928         pr_info("%s\n", drbd_buildtag());
2929         pr_info("registered as block device major %d\n", DRBD_MAJOR);
2930         return 0; /* Success! */
2931
2932 fail:
2933         drbd_cleanup();
2934         if (err == -ENOMEM)
2935                 pr_err("ran out of memory\n");
2936         else
2937                 pr_err("initialization failure\n");
2938         return err;
2939 }
2940
2941 static void drbd_free_one_sock(struct drbd_socket *ds)
2942 {
2943         struct socket *s;
2944         mutex_lock(&ds->mutex);
2945         s = ds->socket;
2946         ds->socket = NULL;
2947         mutex_unlock(&ds->mutex);
2948         if (s) {
2949                 /* so debugfs does not need to mutex_lock() */
2950                 synchronize_rcu();
2951                 kernel_sock_shutdown(s, SHUT_RDWR);
2952                 sock_release(s);
2953         }
2954 }
2955
2956 void drbd_free_sock(struct drbd_connection *connection)
2957 {
2958         if (connection->data.socket)
2959                 drbd_free_one_sock(&connection->data);
2960         if (connection->meta.socket)
2961                 drbd_free_one_sock(&connection->meta);
2962 }
2963
2964 /* meta data management */
2965
2966 void conn_md_sync(struct drbd_connection *connection)
2967 {
2968         struct drbd_peer_device *peer_device;
2969         int vnr;
2970
2971         rcu_read_lock();
2972         idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2973                 struct drbd_device *device = peer_device->device;
2974
2975                 kref_get(&device->kref);
2976                 rcu_read_unlock();
2977                 drbd_md_sync(device);
2978                 kref_put(&device->kref, drbd_destroy_device);
2979                 rcu_read_lock();
2980         }
2981         rcu_read_unlock();
2982 }
2983
2984 /* aligned 4kByte */
2985 struct meta_data_on_disk {
2986         u64 la_size_sect;      /* last agreed size. */
2987         u64 uuid[UI_SIZE];   /* UUIDs. */
2988         u64 device_uuid;
2989         u64 reserved_u64_1;
2990         u32 flags;             /* MDF */
2991         u32 magic;
2992         u32 md_size_sect;
2993         u32 al_offset;         /* offset to this block */
2994         u32 al_nr_extents;     /* important for restoring the AL (userspace) */
2995               /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2996         u32 bm_offset;         /* offset to the bitmap, from here */
2997         u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
2998         u32 la_peer_max_bio_size;   /* last peer max_bio_size */
2999
3000         /* see al_tr_number_to_on_disk_sector() */
3001         u32 al_stripes;
3002         u32 al_stripe_size_4k;
3003
3004         u8 reserved_u8[4096 - (7*8 + 10*4)];
3005 } __packed;
3006
3007
3008
3009 void drbd_md_write(struct drbd_device *device, void *b)
3010 {
3011         struct meta_data_on_disk *buffer = b;
3012         sector_t sector;
3013         int i;
3014
3015         memset(buffer, 0, sizeof(*buffer));
3016
3017         buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
3018         for (i = UI_CURRENT; i < UI_SIZE; i++)
3019                 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3020         buffer->flags = cpu_to_be32(device->ldev->md.flags);
3021         buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3022
3023         buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3024         buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3025         buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3026         buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3027         buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3028
3029         buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3030         buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3031
3032         buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3033         buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3034
3035         D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3036         sector = device->ldev->md.md_offset;
3037
3038         if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3039                 /* this was a try anyways ... */
3040                 drbd_err(device, "meta data update failed!\n");
3041                 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3042         }
3043 }
3044
3045 /**
3046  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3047  * @device:     DRBD device.
3048  */
3049 void drbd_md_sync(struct drbd_device *device)
3050 {
3051         struct meta_data_on_disk *buffer;
3052
3053         /* Don't accidentally change the DRBD meta data layout. */
3054         BUILD_BUG_ON(UI_SIZE != 4);
3055         BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3056
3057         del_timer(&device->md_sync_timer);
3058         /* timer may be rearmed by drbd_md_mark_dirty() now. */
3059         if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3060                 return;
3061
3062         /* We use here D_FAILED and not D_ATTACHING because we try to write
3063          * metadata even if we detach due to a disk failure! */
3064         if (!get_ldev_if_state(device, D_FAILED))
3065                 return;
3066
3067         buffer = drbd_md_get_buffer(device, __func__);
3068         if (!buffer)
3069                 goto out;
3070
3071         drbd_md_write(device, buffer);
3072
3073         /* Update device->ldev->md.la_size_sect,
3074          * since we updated it on metadata. */
3075         device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3076
3077         drbd_md_put_buffer(device);
3078 out:
3079         put_ldev(device);
3080 }
3081
3082 static int check_activity_log_stripe_size(struct drbd_device *device,
3083                 struct meta_data_on_disk *on_disk,
3084                 struct drbd_md *in_core)
3085 {
3086         u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3087         u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3088         u64 al_size_4k;
3089
3090         /* both not set: default to old fixed size activity log */
3091         if (al_stripes == 0 && al_stripe_size_4k == 0) {
3092                 al_stripes = 1;
3093                 al_stripe_size_4k = MD_32kB_SECT/8;
3094         }
3095
3096         /* some paranoia plausibility checks */
3097
3098         /* we need both values to be set */
3099         if (al_stripes == 0 || al_stripe_size_4k == 0)
3100                 goto err;
3101
3102         al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3103
3104         /* Upper limit of activity log area, to avoid potential overflow
3105          * problems in al_tr_number_to_on_disk_sector(). As right now, more
3106          * than 72 * 4k blocks total only increases the amount of history,
3107          * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3108         if (al_size_4k > (16 * 1024 * 1024/4))
3109                 goto err;
3110
3111         /* Lower limit: we need at least 8 transaction slots (32kB)
3112          * to not break existing setups */
3113         if (al_size_4k < MD_32kB_SECT/8)
3114                 goto err;
3115
3116         in_core->al_stripe_size_4k = al_stripe_size_4k;
3117         in_core->al_stripes = al_stripes;
3118         in_core->al_size_4k = al_size_4k;
3119
3120         return 0;
3121 err:
3122         drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3123                         al_stripes, al_stripe_size_4k);
3124         return -EINVAL;
3125 }
3126
3127 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3128 {
3129         sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3130         struct drbd_md *in_core = &bdev->md;
3131         s32 on_disk_al_sect;
3132         s32 on_disk_bm_sect;
3133
3134         /* The on-disk size of the activity log, calculated from offsets, and
3135          * the size of the activity log calculated from the stripe settings,
3136          * should match.
3137          * Though we could relax this a bit: it is ok, if the striped activity log
3138          * fits in the available on-disk activity log size.
3139          * Right now, that would break how resize is implemented.
3140          * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3141          * of possible unused padding space in the on disk layout. */
3142         if (in_core->al_offset < 0) {
3143                 if (in_core->bm_offset > in_core->al_offset)
3144                         goto err;
3145                 on_disk_al_sect = -in_core->al_offset;
3146                 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3147         } else {
3148                 if (in_core->al_offset != MD_4kB_SECT)
3149                         goto err;
3150                 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3151                         goto err;
3152
3153                 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3154                 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3155         }
3156
3157         /* old fixed size meta data is exactly that: fixed. */
3158         if (in_core->meta_dev_idx >= 0) {
3159                 if (in_core->md_size_sect != MD_128MB_SECT
3160                 ||  in_core->al_offset != MD_4kB_SECT
3161                 ||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3162                 ||  in_core->al_stripes != 1
3163                 ||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3164                         goto err;
3165         }
3166
3167         if (capacity < in_core->md_size_sect)
3168                 goto err;
3169         if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3170                 goto err;
3171
3172         /* should be aligned, and at least 32k */
3173         if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3174                 goto err;
3175
3176         /* should fit (for now: exactly) into the available on-disk space;
3177          * overflow prevention is in check_activity_log_stripe_size() above. */
3178         if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3179                 goto err;
3180
3181         /* again, should be aligned */
3182         if (in_core->bm_offset & 7)
3183                 goto err;
3184
3185         /* FIXME check for device grow with flex external meta data? */
3186
3187         /* can the available bitmap space cover the last agreed device size? */
3188         if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3189                 goto err;
3190
3191         return 0;
3192
3193 err:
3194         drbd_err(device, "meta data offsets don't make sense: idx=%d "
3195                         "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3196                         "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3197                         in_core->meta_dev_idx,
3198                         in_core->al_stripes, in_core->al_stripe_size_4k,
3199                         in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3200                         (unsigned long long)in_core->la_size_sect,
3201                         (unsigned long long)capacity);
3202
3203         return -EINVAL;
3204 }
3205
3206
3207 /**
3208  * drbd_md_read() - Reads in the meta data super block
3209  * @device:     DRBD device.
3210  * @bdev:       Device from which the meta data should be read in.
3211  *
3212  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3213  * something goes wrong.
3214  *
3215  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3216  * even before @bdev is assigned to @device->ldev.
3217  */
3218 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3219 {
3220         struct meta_data_on_disk *buffer;
3221         u32 magic, flags;
3222         int i, rv = NO_ERROR;
3223
3224         if (device->state.disk != D_DISKLESS)
3225                 return ERR_DISK_CONFIGURED;
3226
3227         buffer = drbd_md_get_buffer(device, __func__);
3228         if (!buffer)
3229                 return ERR_NOMEM;
3230
3231         /* First, figure out where our meta data superblock is located,
3232          * and read it. */
3233         bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3234         bdev->md.md_offset = drbd_md_ss(bdev);
3235         /* Even for (flexible or indexed) external meta data,
3236          * initially restrict us to the 4k superblock for now.
3237          * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3238         bdev->md.md_size_sect = 8;
3239
3240         if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3241                                  REQ_OP_READ)) {
3242                 /* NOTE: can't do normal error processing here as this is
3243                    called BEFORE disk is attached */
3244                 drbd_err(device, "Error while reading metadata.\n");
3245                 rv = ERR_IO_MD_DISK;
3246                 goto err;
3247         }
3248
3249         magic = be32_to_cpu(buffer->magic);
3250         flags = be32_to_cpu(buffer->flags);
3251         if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3252             (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3253                         /* btw: that's Activity Log clean, not "all" clean. */
3254                 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3255                 rv = ERR_MD_UNCLEAN;
3256                 goto err;
3257         }
3258
3259         rv = ERR_MD_INVALID;
3260         if (magic != DRBD_MD_MAGIC_08) {
3261                 if (magic == DRBD_MD_MAGIC_07)
3262                         drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3263                 else
3264                         drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3265                 goto err;
3266         }
3267
3268         if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3269                 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3270                     be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3271                 goto err;
3272         }
3273
3274
3275         /* convert to in_core endian */
3276         bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3277         for (i = UI_CURRENT; i < UI_SIZE; i++)
3278                 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3279         bdev->md.flags = be32_to_cpu(buffer->flags);
3280         bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3281
3282         bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3283         bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3284         bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3285
3286         if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3287                 goto err;
3288         if (check_offsets_and_sizes(device, bdev))
3289                 goto err;
3290
3291         if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3292                 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3293                     be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3294                 goto err;
3295         }
3296         if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3297                 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3298                     be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3299                 goto err;
3300         }
3301
3302         rv = NO_ERROR;
3303
3304         spin_lock_irq(&device->resource->req_lock);
3305         if (device->state.conn < C_CONNECTED) {
3306                 unsigned int peer;
3307                 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3308                 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3309                 device->peer_max_bio_size = peer;
3310         }
3311         spin_unlock_irq(&device->resource->req_lock);
3312
3313  err:
3314         drbd_md_put_buffer(device);
3315
3316         return rv;
3317 }
3318
3319 /**
3320  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3321  * @device:     DRBD device.
3322  *
3323  * Call this function if you change anything that should be written to
3324  * the meta-data super block. This function sets MD_DIRTY, and starts a
3325  * timer that ensures that within five seconds you have to call drbd_md_sync().
3326  */
3327 void drbd_md_mark_dirty(struct drbd_device *device)
3328 {
3329         if (!test_and_set_bit(MD_DIRTY, &device->flags))
3330                 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3331 }
3332
3333 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3334 {
3335         int i;
3336
3337         for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3338                 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3339 }
3340
3341 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3342 {
3343         if (idx == UI_CURRENT) {
3344                 if (device->state.role == R_PRIMARY)
3345                         val |= 1;
3346                 else
3347                         val &= ~((u64)1);
3348
3349                 drbd_set_ed_uuid(device, val);
3350         }
3351
3352         device->ldev->md.uuid[idx] = val;
3353         drbd_md_mark_dirty(device);
3354 }
3355
3356 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3357 {
3358         unsigned long flags;
3359         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3360         __drbd_uuid_set(device, idx, val);
3361         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3362 }
3363
3364 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3365 {
3366         unsigned long flags;
3367         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3368         if (device->ldev->md.uuid[idx]) {
3369                 drbd_uuid_move_history(device);
3370                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3371         }
3372         __drbd_uuid_set(device, idx, val);
3373         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3374 }
3375
3376 /**
3377  * drbd_uuid_new_current() - Creates a new current UUID
3378  * @device:     DRBD device.
3379  *
3380  * Creates a new current UUID, and rotates the old current UUID into
3381  * the bitmap slot. Causes an incremental resync upon next connect.
3382  */
3383 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3384 {
3385         u64 val;
3386         unsigned long long bm_uuid;
3387
3388         get_random_bytes(&val, sizeof(u64));
3389
3390         spin_lock_irq(&device->ldev->md.uuid_lock);
3391         bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3392
3393         if (bm_uuid)
3394                 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3395
3396         device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3397         __drbd_uuid_set(device, UI_CURRENT, val);
3398         spin_unlock_irq(&device->ldev->md.uuid_lock);
3399
3400         drbd_print_uuids(device, "new current UUID");
3401         /* get it to stable storage _now_ */
3402         drbd_md_sync(device);
3403 }
3404
3405 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3406 {
3407         unsigned long flags;
3408         if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3409                 return;
3410
3411         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3412         if (val == 0) {
3413                 drbd_uuid_move_history(device);
3414                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3415                 device->ldev->md.uuid[UI_BITMAP] = 0;
3416         } else {
3417                 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3418                 if (bm_uuid)
3419                         drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3420
3421                 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3422         }
3423         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3424
3425         drbd_md_mark_dirty(device);
3426 }
3427
3428 /**
3429  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3430  * @device:     DRBD device.
3431  *
3432  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3433  */
3434 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3435 {
3436         int rv = -EIO;
3437
3438         drbd_md_set_flag(device, MDF_FULL_SYNC);
3439         drbd_md_sync(device);
3440         drbd_bm_set_all(device);
3441
3442         rv = drbd_bm_write(device);
3443
3444         if (!rv) {
3445                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3446                 drbd_md_sync(device);
3447         }
3448
3449         return rv;
3450 }
3451
3452 /**
3453  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3454  * @device:     DRBD device.
3455  *
3456  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3457  */
3458 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3459 {
3460         drbd_resume_al(device);
3461         drbd_bm_clear_all(device);
3462         return drbd_bm_write(device);
3463 }
3464
3465 static int w_bitmap_io(struct drbd_work *w, int unused)
3466 {
3467         struct drbd_device *device =
3468                 container_of(w, struct drbd_device, bm_io_work.w);
3469         struct bm_io_work *work = &device->bm_io_work;
3470         int rv = -EIO;
3471
3472         if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3473                 int cnt = atomic_read(&device->ap_bio_cnt);
3474                 if (cnt)
3475                         drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3476                                         cnt, work->why);
3477         }
3478
3479         if (get_ldev(device)) {
3480                 drbd_bm_lock(device, work->why, work->flags);
3481                 rv = work->io_fn(device);
3482                 drbd_bm_unlock(device);
3483                 put_ldev(device);
3484         }
3485
3486         clear_bit_unlock(BITMAP_IO, &device->flags);
3487         wake_up(&device->misc_wait);
3488
3489         if (work->done)
3490                 work->done(device, rv);
3491
3492         clear_bit(BITMAP_IO_QUEUED, &device->flags);
3493         work->why = NULL;
3494         work->flags = 0;
3495
3496         return 0;
3497 }
3498
3499 /**
3500  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3501  * @device:     DRBD device.
3502  * @io_fn:      IO callback to be called when bitmap IO is possible
3503  * @done:       callback to be called after the bitmap IO was performed
3504  * @why:        Descriptive text of the reason for doing the IO
3505  * @flags:      Bitmap flags
3506  *
3507  * While IO on the bitmap happens we freeze application IO thus we ensure
3508  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3509  * called from worker context. It MUST NOT be used while a previous such
3510  * work is still pending!
3511  *
3512  * Its worker function encloses the call of io_fn() by get_ldev() and
3513  * put_ldev().
3514  */
3515 void drbd_queue_bitmap_io(struct drbd_device *device,
3516                           int (*io_fn)(struct drbd_device *),
3517                           void (*done)(struct drbd_device *, int),
3518                           char *why, enum bm_flag flags)
3519 {
3520         D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3521
3522         D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3523         D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3524         D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3525         if (device->bm_io_work.why)
3526                 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3527                         why, device->bm_io_work.why);
3528
3529         device->bm_io_work.io_fn = io_fn;
3530         device->bm_io_work.done = done;
3531         device->bm_io_work.why = why;
3532         device->bm_io_work.flags = flags;
3533
3534         spin_lock_irq(&device->resource->req_lock);
3535         set_bit(BITMAP_IO, &device->flags);
3536         /* don't wait for pending application IO if the caller indicates that
3537          * application IO does not conflict anyways. */
3538         if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3539                 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3540                         drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3541                                         &device->bm_io_work.w);
3542         }
3543         spin_unlock_irq(&device->resource->req_lock);
3544 }
3545
3546 /**
3547  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3548  * @device:     DRBD device.
3549  * @io_fn:      IO callback to be called when bitmap IO is possible
3550  * @why:        Descriptive text of the reason for doing the IO
3551  * @flags:      Bitmap flags
3552  *
3553  * freezes application IO while that the actual IO operations runs. This
3554  * functions MAY NOT be called from worker context.
3555  */
3556 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3557                 char *why, enum bm_flag flags)
3558 {
3559         /* Only suspend io, if some operation is supposed to be locked out */
3560         const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3561         int rv;
3562
3563         D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3564
3565         if (do_suspend_io)
3566                 drbd_suspend_io(device);
3567
3568         drbd_bm_lock(device, why, flags);
3569         rv = io_fn(device);
3570         drbd_bm_unlock(device);
3571
3572         if (do_suspend_io)
3573                 drbd_resume_io(device);
3574
3575         return rv;
3576 }
3577
3578 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3579 {
3580         if ((device->ldev->md.flags & flag) != flag) {
3581                 drbd_md_mark_dirty(device);
3582                 device->ldev->md.flags |= flag;
3583         }
3584 }
3585
3586 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3587 {
3588         if ((device->ldev->md.flags & flag) != 0) {
3589                 drbd_md_mark_dirty(device);
3590                 device->ldev->md.flags &= ~flag;
3591         }
3592 }
3593 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3594 {
3595         return (bdev->md.flags & flag) != 0;
3596 }
3597
3598 static void md_sync_timer_fn(struct timer_list *t)
3599 {
3600         struct drbd_device *device = from_timer(device, t, md_sync_timer);
3601         drbd_device_post_work(device, MD_SYNC);
3602 }
3603
3604 const char *cmdname(enum drbd_packet cmd)
3605 {
3606         /* THINK may need to become several global tables
3607          * when we want to support more than
3608          * one PRO_VERSION */
3609         static const char *cmdnames[] = {
3610
3611                 [P_DATA]                = "Data",
3612                 [P_DATA_REPLY]          = "DataReply",
3613                 [P_RS_DATA_REPLY]       = "RSDataReply",
3614                 [P_BARRIER]             = "Barrier",
3615                 [P_BITMAP]              = "ReportBitMap",
3616                 [P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3617                 [P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3618                 [P_UNPLUG_REMOTE]       = "UnplugRemote",
3619                 [P_DATA_REQUEST]        = "DataRequest",
3620                 [P_RS_DATA_REQUEST]     = "RSDataRequest",
3621                 [P_SYNC_PARAM]          = "SyncParam",
3622                 [P_PROTOCOL]            = "ReportProtocol",
3623                 [P_UUIDS]               = "ReportUUIDs",
3624                 [P_SIZES]               = "ReportSizes",
3625                 [P_STATE]               = "ReportState",
3626                 [P_SYNC_UUID]           = "ReportSyncUUID",
3627                 [P_AUTH_CHALLENGE]      = "AuthChallenge",
3628                 [P_AUTH_RESPONSE]       = "AuthResponse",
3629                 [P_STATE_CHG_REQ]       = "StateChgRequest",
3630                 [P_PING]                = "Ping",
3631                 [P_PING_ACK]            = "PingAck",
3632                 [P_RECV_ACK]            = "RecvAck",
3633                 [P_WRITE_ACK]           = "WriteAck",
3634                 [P_RS_WRITE_ACK]        = "RSWriteAck",
3635                 [P_SUPERSEDED]          = "Superseded",
3636                 [P_NEG_ACK]             = "NegAck",
3637                 [P_NEG_DREPLY]          = "NegDReply",
3638                 [P_NEG_RS_DREPLY]       = "NegRSDReply",
3639                 [P_BARRIER_ACK]         = "BarrierAck",
3640                 [P_STATE_CHG_REPLY]     = "StateChgReply",
3641                 [P_OV_REQUEST]          = "OVRequest",
3642                 [P_OV_REPLY]            = "OVReply",
3643                 [P_OV_RESULT]           = "OVResult",
3644                 [P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3645                 [P_RS_IS_IN_SYNC]       = "CsumRSIsInSync",
3646                 [P_SYNC_PARAM89]        = "SyncParam89",
3647                 [P_COMPRESSED_BITMAP]   = "CBitmap",
3648                 [P_DELAY_PROBE]         = "DelayProbe",
3649                 [P_OUT_OF_SYNC]         = "OutOfSync",
3650                 [P_RS_CANCEL]           = "RSCancel",
3651                 [P_CONN_ST_CHG_REQ]     = "conn_st_chg_req",
3652                 [P_CONN_ST_CHG_REPLY]   = "conn_st_chg_reply",
3653                 [P_PROTOCOL_UPDATE]     = "protocol_update",
3654                 [P_TRIM]                = "Trim",
3655                 [P_RS_THIN_REQ]         = "rs_thin_req",
3656                 [P_RS_DEALLOCATED]      = "rs_deallocated",
3657                 [P_WSAME]               = "WriteSame",
3658                 [P_ZEROES]              = "Zeroes",
3659
3660                 /* enum drbd_packet, but not commands - obsoleted flags:
3661                  *      P_MAY_IGNORE
3662                  *      P_MAX_OPT_CMD
3663                  */
3664         };
3665
3666         /* too big for the array: 0xfffX */
3667         if (cmd == P_INITIAL_META)
3668                 return "InitialMeta";
3669         if (cmd == P_INITIAL_DATA)
3670                 return "InitialData";
3671         if (cmd == P_CONNECTION_FEATURES)
3672                 return "ConnectionFeatures";
3673         if (cmd >= ARRAY_SIZE(cmdnames))
3674                 return "Unknown";
3675         return cmdnames[cmd];
3676 }
3677
3678 /**
3679  * drbd_wait_misc  -  wait for a request to make progress
3680  * @device:     device associated with the request
3681  * @i:          the struct drbd_interval embedded in struct drbd_request or
3682  *              struct drbd_peer_request
3683  */
3684 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3685 {
3686         struct net_conf *nc;
3687         DEFINE_WAIT(wait);
3688         long timeout;
3689
3690         rcu_read_lock();
3691         nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3692         if (!nc) {
3693                 rcu_read_unlock();
3694                 return -ETIMEDOUT;
3695         }
3696         timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3697         rcu_read_unlock();
3698
3699         /* Indicate to wake up device->misc_wait on progress.  */
3700         i->waiting = true;
3701         prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3702         spin_unlock_irq(&device->resource->req_lock);
3703         timeout = schedule_timeout(timeout);
3704         finish_wait(&device->misc_wait, &wait);
3705         spin_lock_irq(&device->resource->req_lock);
3706         if (!timeout || device->state.conn < C_CONNECTED)
3707                 return -ETIMEDOUT;
3708         if (signal_pending(current))
3709                 return -ERESTARTSYS;
3710         return 0;
3711 }
3712
3713 void lock_all_resources(void)
3714 {
3715         struct drbd_resource *resource;
3716         int __maybe_unused i = 0;
3717
3718         mutex_lock(&resources_mutex);
3719         local_irq_disable();
3720         for_each_resource(resource, &drbd_resources)
3721                 spin_lock_nested(&resource->req_lock, i++);
3722 }
3723
3724 void unlock_all_resources(void)
3725 {
3726         struct drbd_resource *resource;
3727
3728         for_each_resource(resource, &drbd_resources)
3729                 spin_unlock(&resource->req_lock);
3730         local_irq_enable();
3731         mutex_unlock(&resources_mutex);
3732 }
3733
3734 #ifdef CONFIG_DRBD_FAULT_INJECTION
3735 /* Fault insertion support including random number generator shamelessly
3736  * stolen from kernel/rcutorture.c */
3737 struct fault_random_state {
3738         unsigned long state;
3739         unsigned long count;
3740 };
3741
3742 #define FAULT_RANDOM_MULT 39916801  /* prime */
3743 #define FAULT_RANDOM_ADD        479001701 /* prime */
3744 #define FAULT_RANDOM_REFRESH 10000
3745
3746 /*
3747  * Crude but fast random-number generator.  Uses a linear congruential
3748  * generator, with occasional help from get_random_bytes().
3749  */
3750 static unsigned long
3751 _drbd_fault_random(struct fault_random_state *rsp)
3752 {
3753         long refresh;
3754
3755         if (!rsp->count--) {
3756                 get_random_bytes(&refresh, sizeof(refresh));
3757                 rsp->state += refresh;
3758                 rsp->count = FAULT_RANDOM_REFRESH;
3759         }
3760         rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3761         return swahw32(rsp->state);
3762 }
3763
3764 static char *
3765 _drbd_fault_str(unsigned int type) {
3766         static char *_faults[] = {
3767                 [DRBD_FAULT_MD_WR] = "Meta-data write",
3768                 [DRBD_FAULT_MD_RD] = "Meta-data read",
3769                 [DRBD_FAULT_RS_WR] = "Resync write",
3770                 [DRBD_FAULT_RS_RD] = "Resync read",
3771                 [DRBD_FAULT_DT_WR] = "Data write",
3772                 [DRBD_FAULT_DT_RD] = "Data read",
3773                 [DRBD_FAULT_DT_RA] = "Data read ahead",
3774                 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3775                 [DRBD_FAULT_AL_EE] = "EE allocation",
3776                 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3777         };
3778
3779         return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3780 }
3781
3782 unsigned int
3783 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3784 {
3785         static struct fault_random_state rrs = {0, 0};
3786
3787         unsigned int ret = (
3788                 (drbd_fault_devs == 0 ||
3789                         ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3790                 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3791
3792         if (ret) {
3793                 drbd_fault_count++;
3794
3795                 if (__ratelimit(&drbd_ratelimit_state))
3796                         drbd_warn(device, "***Simulating %s failure\n",
3797                                 _drbd_fault_str(type));
3798         }
3799
3800         return ret;
3801 }
3802 #endif
3803
3804 const char *drbd_buildtag(void)
3805 {
3806         /* DRBD built from external sources has here a reference to the
3807            git hash of the source code. */
3808
3809         static char buildtag[38] = "\0uilt-in";
3810
3811         if (buildtag[0] == 0) {
3812 #ifdef MODULE
3813                 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3814 #else
3815                 buildtag[0] = 'b';
3816 #endif
3817         }
3818
3819         return buildtag;
3820 }
3821
3822 module_init(drbd_init)
3823 module_exit(drbd_cleanup)
3824
3825 EXPORT_SYMBOL(drbd_conn_str);
3826 EXPORT_SYMBOL(drbd_role_str);
3827 EXPORT_SYMBOL(drbd_disk_str);
3828 EXPORT_SYMBOL(drbd_set_st_err_str);