GNU Linux-libre 4.14.332-gnu1
[releases.git] / drivers / base / regmap / regmap.c
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26
27 #include "internal.h"
28
29 /*
30  * Sometimes for failures during very early init the trace
31  * infrastructure isn't available early enough to be used.  For this
32  * sort of problem defining LOG_DEVICE will add printks for basic
33  * register I/O on a specific device.
34  */
35 #undef LOG_DEVICE
36
37 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
38                                unsigned int mask, unsigned int val,
39                                bool *change, bool force_write);
40
41 static int _regmap_bus_reg_read(void *context, unsigned int reg,
42                                 unsigned int *val);
43 static int _regmap_bus_read(void *context, unsigned int reg,
44                             unsigned int *val);
45 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
46                                        unsigned int val);
47 static int _regmap_bus_reg_write(void *context, unsigned int reg,
48                                  unsigned int val);
49 static int _regmap_bus_raw_write(void *context, unsigned int reg,
50                                  unsigned int val);
51
52 bool regmap_reg_in_ranges(unsigned int reg,
53                           const struct regmap_range *ranges,
54                           unsigned int nranges)
55 {
56         const struct regmap_range *r;
57         int i;
58
59         for (i = 0, r = ranges; i < nranges; i++, r++)
60                 if (regmap_reg_in_range(reg, r))
61                         return true;
62         return false;
63 }
64 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
65
66 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
67                               const struct regmap_access_table *table)
68 {
69         /* Check "no ranges" first */
70         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
71                 return false;
72
73         /* In case zero "yes ranges" are supplied, any reg is OK */
74         if (!table->n_yes_ranges)
75                 return true;
76
77         return regmap_reg_in_ranges(reg, table->yes_ranges,
78                                     table->n_yes_ranges);
79 }
80 EXPORT_SYMBOL_GPL(regmap_check_range_table);
81
82 bool regmap_writeable(struct regmap *map, unsigned int reg)
83 {
84         if (map->max_register && reg > map->max_register)
85                 return false;
86
87         if (map->writeable_reg)
88                 return map->writeable_reg(map->dev, reg);
89
90         if (map->wr_table)
91                 return regmap_check_range_table(map, reg, map->wr_table);
92
93         return true;
94 }
95
96 bool regmap_cached(struct regmap *map, unsigned int reg)
97 {
98         int ret;
99         unsigned int val;
100
101         if (map->cache_type == REGCACHE_NONE)
102                 return false;
103
104         if (!map->cache_ops)
105                 return false;
106
107         if (map->max_register && reg > map->max_register)
108                 return false;
109
110         map->lock(map->lock_arg);
111         ret = regcache_read(map, reg, &val);
112         map->unlock(map->lock_arg);
113         if (ret)
114                 return false;
115
116         return true;
117 }
118
119 bool regmap_readable(struct regmap *map, unsigned int reg)
120 {
121         if (!map->reg_read)
122                 return false;
123
124         if (map->max_register && reg > map->max_register)
125                 return false;
126
127         if (map->format.format_write)
128                 return false;
129
130         if (map->readable_reg)
131                 return map->readable_reg(map->dev, reg);
132
133         if (map->rd_table)
134                 return regmap_check_range_table(map, reg, map->rd_table);
135
136         return true;
137 }
138
139 bool regmap_volatile(struct regmap *map, unsigned int reg)
140 {
141         if (!map->format.format_write && !regmap_readable(map, reg))
142                 return false;
143
144         if (map->volatile_reg)
145                 return map->volatile_reg(map->dev, reg);
146
147         if (map->volatile_table)
148                 return regmap_check_range_table(map, reg, map->volatile_table);
149
150         if (map->cache_ops)
151                 return false;
152         else
153                 return true;
154 }
155
156 bool regmap_precious(struct regmap *map, unsigned int reg)
157 {
158         if (!regmap_readable(map, reg))
159                 return false;
160
161         if (map->precious_reg)
162                 return map->precious_reg(map->dev, reg);
163
164         if (map->precious_table)
165                 return regmap_check_range_table(map, reg, map->precious_table);
166
167         return false;
168 }
169
170 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
171         size_t num)
172 {
173         unsigned int i;
174
175         for (i = 0; i < num; i++)
176                 if (!regmap_volatile(map, reg + i))
177                         return false;
178
179         return true;
180 }
181
182 static void regmap_format_2_6_write(struct regmap *map,
183                                      unsigned int reg, unsigned int val)
184 {
185         u8 *out = map->work_buf;
186
187         *out = (reg << 6) | val;
188 }
189
190 static void regmap_format_4_12_write(struct regmap *map,
191                                      unsigned int reg, unsigned int val)
192 {
193         __be16 *out = map->work_buf;
194         *out = cpu_to_be16((reg << 12) | val);
195 }
196
197 static void regmap_format_7_9_write(struct regmap *map,
198                                     unsigned int reg, unsigned int val)
199 {
200         __be16 *out = map->work_buf;
201         *out = cpu_to_be16((reg << 9) | val);
202 }
203
204 static void regmap_format_10_14_write(struct regmap *map,
205                                     unsigned int reg, unsigned int val)
206 {
207         u8 *out = map->work_buf;
208
209         out[2] = val;
210         out[1] = (val >> 8) | (reg << 6);
211         out[0] = reg >> 2;
212 }
213
214 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
215 {
216         u8 *b = buf;
217
218         b[0] = val << shift;
219 }
220
221 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
222 {
223         __be16 *b = buf;
224
225         b[0] = cpu_to_be16(val << shift);
226 }
227
228 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
229 {
230         __le16 *b = buf;
231
232         b[0] = cpu_to_le16(val << shift);
233 }
234
235 static void regmap_format_16_native(void *buf, unsigned int val,
236                                     unsigned int shift)
237 {
238         *(u16 *)buf = val << shift;
239 }
240
241 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
242 {
243         u8 *b = buf;
244
245         val <<= shift;
246
247         b[0] = val >> 16;
248         b[1] = val >> 8;
249         b[2] = val;
250 }
251
252 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
253 {
254         __be32 *b = buf;
255
256         b[0] = cpu_to_be32(val << shift);
257 }
258
259 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
260 {
261         __le32 *b = buf;
262
263         b[0] = cpu_to_le32(val << shift);
264 }
265
266 static void regmap_format_32_native(void *buf, unsigned int val,
267                                     unsigned int shift)
268 {
269         *(u32 *)buf = val << shift;
270 }
271
272 #ifdef CONFIG_64BIT
273 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
274 {
275         __be64 *b = buf;
276
277         b[0] = cpu_to_be64((u64)val << shift);
278 }
279
280 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
281 {
282         __le64 *b = buf;
283
284         b[0] = cpu_to_le64((u64)val << shift);
285 }
286
287 static void regmap_format_64_native(void *buf, unsigned int val,
288                                     unsigned int shift)
289 {
290         *(u64 *)buf = (u64)val << shift;
291 }
292 #endif
293
294 static void regmap_parse_inplace_noop(void *buf)
295 {
296 }
297
298 static unsigned int regmap_parse_8(const void *buf)
299 {
300         const u8 *b = buf;
301
302         return b[0];
303 }
304
305 static unsigned int regmap_parse_16_be(const void *buf)
306 {
307         const __be16 *b = buf;
308
309         return be16_to_cpu(b[0]);
310 }
311
312 static unsigned int regmap_parse_16_le(const void *buf)
313 {
314         const __le16 *b = buf;
315
316         return le16_to_cpu(b[0]);
317 }
318
319 static void regmap_parse_16_be_inplace(void *buf)
320 {
321         __be16 *b = buf;
322
323         b[0] = be16_to_cpu(b[0]);
324 }
325
326 static void regmap_parse_16_le_inplace(void *buf)
327 {
328         __le16 *b = buf;
329
330         b[0] = le16_to_cpu(b[0]);
331 }
332
333 static unsigned int regmap_parse_16_native(const void *buf)
334 {
335         return *(u16 *)buf;
336 }
337
338 static unsigned int regmap_parse_24(const void *buf)
339 {
340         const u8 *b = buf;
341         unsigned int ret = b[2];
342         ret |= ((unsigned int)b[1]) << 8;
343         ret |= ((unsigned int)b[0]) << 16;
344
345         return ret;
346 }
347
348 static unsigned int regmap_parse_32_be(const void *buf)
349 {
350         const __be32 *b = buf;
351
352         return be32_to_cpu(b[0]);
353 }
354
355 static unsigned int regmap_parse_32_le(const void *buf)
356 {
357         const __le32 *b = buf;
358
359         return le32_to_cpu(b[0]);
360 }
361
362 static void regmap_parse_32_be_inplace(void *buf)
363 {
364         __be32 *b = buf;
365
366         b[0] = be32_to_cpu(b[0]);
367 }
368
369 static void regmap_parse_32_le_inplace(void *buf)
370 {
371         __le32 *b = buf;
372
373         b[0] = le32_to_cpu(b[0]);
374 }
375
376 static unsigned int regmap_parse_32_native(const void *buf)
377 {
378         return *(u32 *)buf;
379 }
380
381 #ifdef CONFIG_64BIT
382 static unsigned int regmap_parse_64_be(const void *buf)
383 {
384         const __be64 *b = buf;
385
386         return be64_to_cpu(b[0]);
387 }
388
389 static unsigned int regmap_parse_64_le(const void *buf)
390 {
391         const __le64 *b = buf;
392
393         return le64_to_cpu(b[0]);
394 }
395
396 static void regmap_parse_64_be_inplace(void *buf)
397 {
398         __be64 *b = buf;
399
400         b[0] = be64_to_cpu(b[0]);
401 }
402
403 static void regmap_parse_64_le_inplace(void *buf)
404 {
405         __le64 *b = buf;
406
407         b[0] = le64_to_cpu(b[0]);
408 }
409
410 static unsigned int regmap_parse_64_native(const void *buf)
411 {
412         return *(u64 *)buf;
413 }
414 #endif
415
416 static void regmap_lock_mutex(void *__map)
417 {
418         struct regmap *map = __map;
419         mutex_lock(&map->mutex);
420 }
421
422 static void regmap_unlock_mutex(void *__map)
423 {
424         struct regmap *map = __map;
425         mutex_unlock(&map->mutex);
426 }
427
428 static void regmap_lock_spinlock(void *__map)
429 __acquires(&map->spinlock)
430 {
431         struct regmap *map = __map;
432         unsigned long flags;
433
434         spin_lock_irqsave(&map->spinlock, flags);
435         map->spinlock_flags = flags;
436 }
437
438 static void regmap_unlock_spinlock(void *__map)
439 __releases(&map->spinlock)
440 {
441         struct regmap *map = __map;
442         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
443 }
444
445 static void dev_get_regmap_release(struct device *dev, void *res)
446 {
447         /*
448          * We don't actually have anything to do here; the goal here
449          * is not to manage the regmap but to provide a simple way to
450          * get the regmap back given a struct device.
451          */
452 }
453
454 static bool _regmap_range_add(struct regmap *map,
455                               struct regmap_range_node *data)
456 {
457         struct rb_root *root = &map->range_tree;
458         struct rb_node **new = &(root->rb_node), *parent = NULL;
459
460         while (*new) {
461                 struct regmap_range_node *this =
462                         rb_entry(*new, struct regmap_range_node, node);
463
464                 parent = *new;
465                 if (data->range_max < this->range_min)
466                         new = &((*new)->rb_left);
467                 else if (data->range_min > this->range_max)
468                         new = &((*new)->rb_right);
469                 else
470                         return false;
471         }
472
473         rb_link_node(&data->node, parent, new);
474         rb_insert_color(&data->node, root);
475
476         return true;
477 }
478
479 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
480                                                       unsigned int reg)
481 {
482         struct rb_node *node = map->range_tree.rb_node;
483
484         while (node) {
485                 struct regmap_range_node *this =
486                         rb_entry(node, struct regmap_range_node, node);
487
488                 if (reg < this->range_min)
489                         node = node->rb_left;
490                 else if (reg > this->range_max)
491                         node = node->rb_right;
492                 else
493                         return this;
494         }
495
496         return NULL;
497 }
498
499 static void regmap_range_exit(struct regmap *map)
500 {
501         struct rb_node *next;
502         struct regmap_range_node *range_node;
503
504         next = rb_first(&map->range_tree);
505         while (next) {
506                 range_node = rb_entry(next, struct regmap_range_node, node);
507                 next = rb_next(&range_node->node);
508                 rb_erase(&range_node->node, &map->range_tree);
509                 kfree(range_node);
510         }
511
512         kfree(map->selector_work_buf);
513 }
514
515 int regmap_attach_dev(struct device *dev, struct regmap *map,
516                       const struct regmap_config *config)
517 {
518         struct regmap **m;
519
520         map->dev = dev;
521
522         regmap_debugfs_init(map, config->name);
523
524         /* Add a devres resource for dev_get_regmap() */
525         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
526         if (!m) {
527                 regmap_debugfs_exit(map);
528                 return -ENOMEM;
529         }
530         *m = map;
531         devres_add(dev, m);
532
533         return 0;
534 }
535 EXPORT_SYMBOL_GPL(regmap_attach_dev);
536
537 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
538                                         const struct regmap_config *config)
539 {
540         enum regmap_endian endian;
541
542         /* Retrieve the endianness specification from the regmap config */
543         endian = config->reg_format_endian;
544
545         /* If the regmap config specified a non-default value, use that */
546         if (endian != REGMAP_ENDIAN_DEFAULT)
547                 return endian;
548
549         /* Retrieve the endianness specification from the bus config */
550         if (bus && bus->reg_format_endian_default)
551                 endian = bus->reg_format_endian_default;
552
553         /* If the bus specified a non-default value, use that */
554         if (endian != REGMAP_ENDIAN_DEFAULT)
555                 return endian;
556
557         /* Use this if no other value was found */
558         return REGMAP_ENDIAN_BIG;
559 }
560
561 enum regmap_endian regmap_get_val_endian(struct device *dev,
562                                          const struct regmap_bus *bus,
563                                          const struct regmap_config *config)
564 {
565         struct device_node *np;
566         enum regmap_endian endian;
567
568         /* Retrieve the endianness specification from the regmap config */
569         endian = config->val_format_endian;
570
571         /* If the regmap config specified a non-default value, use that */
572         if (endian != REGMAP_ENDIAN_DEFAULT)
573                 return endian;
574
575         /* If the dev and dev->of_node exist try to get endianness from DT */
576         if (dev && dev->of_node) {
577                 np = dev->of_node;
578
579                 /* Parse the device's DT node for an endianness specification */
580                 if (of_property_read_bool(np, "big-endian"))
581                         endian = REGMAP_ENDIAN_BIG;
582                 else if (of_property_read_bool(np, "little-endian"))
583                         endian = REGMAP_ENDIAN_LITTLE;
584                 else if (of_property_read_bool(np, "native-endian"))
585                         endian = REGMAP_ENDIAN_NATIVE;
586
587                 /* If the endianness was specified in DT, use that */
588                 if (endian != REGMAP_ENDIAN_DEFAULT)
589                         return endian;
590         }
591
592         /* Retrieve the endianness specification from the bus config */
593         if (bus && bus->val_format_endian_default)
594                 endian = bus->val_format_endian_default;
595
596         /* If the bus specified a non-default value, use that */
597         if (endian != REGMAP_ENDIAN_DEFAULT)
598                 return endian;
599
600         /* Use this if no other value was found */
601         return REGMAP_ENDIAN_BIG;
602 }
603 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
604
605 struct regmap *__regmap_init(struct device *dev,
606                              const struct regmap_bus *bus,
607                              void *bus_context,
608                              const struct regmap_config *config,
609                              struct lock_class_key *lock_key,
610                              const char *lock_name)
611 {
612         struct regmap *map;
613         int ret = -EINVAL;
614         enum regmap_endian reg_endian, val_endian;
615         int i, j;
616
617         if (!config)
618                 goto err;
619
620         map = kzalloc(sizeof(*map), GFP_KERNEL);
621         if (map == NULL) {
622                 ret = -ENOMEM;
623                 goto err;
624         }
625
626         if (config->lock && config->unlock) {
627                 map->lock = config->lock;
628                 map->unlock = config->unlock;
629                 map->lock_arg = config->lock_arg;
630         } else {
631                 if ((bus && bus->fast_io) ||
632                     config->fast_io) {
633                         spin_lock_init(&map->spinlock);
634                         map->lock = regmap_lock_spinlock;
635                         map->unlock = regmap_unlock_spinlock;
636                         lockdep_set_class_and_name(&map->spinlock,
637                                                    lock_key, lock_name);
638                 } else {
639                         mutex_init(&map->mutex);
640                         map->lock = regmap_lock_mutex;
641                         map->unlock = regmap_unlock_mutex;
642                         lockdep_set_class_and_name(&map->mutex,
643                                                    lock_key, lock_name);
644                 }
645                 map->lock_arg = map;
646         }
647
648         /*
649          * When we write in fast-paths with regmap_bulk_write() don't allocate
650          * scratch buffers with sleeping allocations.
651          */
652         if ((bus && bus->fast_io) || config->fast_io)
653                 map->alloc_flags = GFP_ATOMIC;
654         else
655                 map->alloc_flags = GFP_KERNEL;
656
657         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
658         map->format.pad_bytes = config->pad_bits / 8;
659         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
660         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
661                         config->val_bits + config->pad_bits, 8);
662         map->reg_shift = config->pad_bits % 8;
663         if (config->reg_stride)
664                 map->reg_stride = config->reg_stride;
665         else
666                 map->reg_stride = 1;
667         if (is_power_of_2(map->reg_stride))
668                 map->reg_stride_order = ilog2(map->reg_stride);
669         else
670                 map->reg_stride_order = -1;
671         map->use_single_read = config->use_single_rw || !bus || !bus->read;
672         map->use_single_write = config->use_single_rw || !bus || !bus->write;
673         map->can_multi_write = config->can_multi_write && bus && bus->write;
674         if (bus) {
675                 map->max_raw_read = bus->max_raw_read;
676                 map->max_raw_write = bus->max_raw_write;
677         }
678         map->dev = dev;
679         map->bus = bus;
680         map->bus_context = bus_context;
681         map->max_register = config->max_register;
682         map->wr_table = config->wr_table;
683         map->rd_table = config->rd_table;
684         map->volatile_table = config->volatile_table;
685         map->precious_table = config->precious_table;
686         map->writeable_reg = config->writeable_reg;
687         map->readable_reg = config->readable_reg;
688         map->volatile_reg = config->volatile_reg;
689         map->precious_reg = config->precious_reg;
690         map->cache_type = config->cache_type;
691         map->name = config->name;
692
693         spin_lock_init(&map->async_lock);
694         INIT_LIST_HEAD(&map->async_list);
695         INIT_LIST_HEAD(&map->async_free);
696         init_waitqueue_head(&map->async_waitq);
697
698         if (config->read_flag_mask || config->write_flag_mask) {
699                 map->read_flag_mask = config->read_flag_mask;
700                 map->write_flag_mask = config->write_flag_mask;
701         } else if (bus) {
702                 map->read_flag_mask = bus->read_flag_mask;
703         }
704
705         if (!bus) {
706                 map->reg_read  = config->reg_read;
707                 map->reg_write = config->reg_write;
708
709                 map->defer_caching = false;
710                 goto skip_format_initialization;
711         } else if (!bus->read || !bus->write) {
712                 map->reg_read = _regmap_bus_reg_read;
713                 map->reg_write = _regmap_bus_reg_write;
714
715                 map->defer_caching = false;
716                 goto skip_format_initialization;
717         } else {
718                 map->reg_read  = _regmap_bus_read;
719                 map->reg_update_bits = bus->reg_update_bits;
720         }
721
722         reg_endian = regmap_get_reg_endian(bus, config);
723         val_endian = regmap_get_val_endian(dev, bus, config);
724
725         switch (config->reg_bits + map->reg_shift) {
726         case 2:
727                 switch (config->val_bits) {
728                 case 6:
729                         map->format.format_write = regmap_format_2_6_write;
730                         break;
731                 default:
732                         goto err_map;
733                 }
734                 break;
735
736         case 4:
737                 switch (config->val_bits) {
738                 case 12:
739                         map->format.format_write = regmap_format_4_12_write;
740                         break;
741                 default:
742                         goto err_map;
743                 }
744                 break;
745
746         case 7:
747                 switch (config->val_bits) {
748                 case 9:
749                         map->format.format_write = regmap_format_7_9_write;
750                         break;
751                 default:
752                         goto err_map;
753                 }
754                 break;
755
756         case 10:
757                 switch (config->val_bits) {
758                 case 14:
759                         map->format.format_write = regmap_format_10_14_write;
760                         break;
761                 default:
762                         goto err_map;
763                 }
764                 break;
765
766         case 8:
767                 map->format.format_reg = regmap_format_8;
768                 break;
769
770         case 16:
771                 switch (reg_endian) {
772                 case REGMAP_ENDIAN_BIG:
773                         map->format.format_reg = regmap_format_16_be;
774                         break;
775                 case REGMAP_ENDIAN_LITTLE:
776                         map->format.format_reg = regmap_format_16_le;
777                         break;
778                 case REGMAP_ENDIAN_NATIVE:
779                         map->format.format_reg = regmap_format_16_native;
780                         break;
781                 default:
782                         goto err_map;
783                 }
784                 break;
785
786         case 24:
787                 if (reg_endian != REGMAP_ENDIAN_BIG)
788                         goto err_map;
789                 map->format.format_reg = regmap_format_24;
790                 break;
791
792         case 32:
793                 switch (reg_endian) {
794                 case REGMAP_ENDIAN_BIG:
795                         map->format.format_reg = regmap_format_32_be;
796                         break;
797                 case REGMAP_ENDIAN_LITTLE:
798                         map->format.format_reg = regmap_format_32_le;
799                         break;
800                 case REGMAP_ENDIAN_NATIVE:
801                         map->format.format_reg = regmap_format_32_native;
802                         break;
803                 default:
804                         goto err_map;
805                 }
806                 break;
807
808 #ifdef CONFIG_64BIT
809         case 64:
810                 switch (reg_endian) {
811                 case REGMAP_ENDIAN_BIG:
812                         map->format.format_reg = regmap_format_64_be;
813                         break;
814                 case REGMAP_ENDIAN_LITTLE:
815                         map->format.format_reg = regmap_format_64_le;
816                         break;
817                 case REGMAP_ENDIAN_NATIVE:
818                         map->format.format_reg = regmap_format_64_native;
819                         break;
820                 default:
821                         goto err_map;
822                 }
823                 break;
824 #endif
825
826         default:
827                 goto err_map;
828         }
829
830         if (val_endian == REGMAP_ENDIAN_NATIVE)
831                 map->format.parse_inplace = regmap_parse_inplace_noop;
832
833         switch (config->val_bits) {
834         case 8:
835                 map->format.format_val = regmap_format_8;
836                 map->format.parse_val = regmap_parse_8;
837                 map->format.parse_inplace = regmap_parse_inplace_noop;
838                 break;
839         case 16:
840                 switch (val_endian) {
841                 case REGMAP_ENDIAN_BIG:
842                         map->format.format_val = regmap_format_16_be;
843                         map->format.parse_val = regmap_parse_16_be;
844                         map->format.parse_inplace = regmap_parse_16_be_inplace;
845                         break;
846                 case REGMAP_ENDIAN_LITTLE:
847                         map->format.format_val = regmap_format_16_le;
848                         map->format.parse_val = regmap_parse_16_le;
849                         map->format.parse_inplace = regmap_parse_16_le_inplace;
850                         break;
851                 case REGMAP_ENDIAN_NATIVE:
852                         map->format.format_val = regmap_format_16_native;
853                         map->format.parse_val = regmap_parse_16_native;
854                         break;
855                 default:
856                         goto err_map;
857                 }
858                 break;
859         case 24:
860                 if (val_endian != REGMAP_ENDIAN_BIG)
861                         goto err_map;
862                 map->format.format_val = regmap_format_24;
863                 map->format.parse_val = regmap_parse_24;
864                 break;
865         case 32:
866                 switch (val_endian) {
867                 case REGMAP_ENDIAN_BIG:
868                         map->format.format_val = regmap_format_32_be;
869                         map->format.parse_val = regmap_parse_32_be;
870                         map->format.parse_inplace = regmap_parse_32_be_inplace;
871                         break;
872                 case REGMAP_ENDIAN_LITTLE:
873                         map->format.format_val = regmap_format_32_le;
874                         map->format.parse_val = regmap_parse_32_le;
875                         map->format.parse_inplace = regmap_parse_32_le_inplace;
876                         break;
877                 case REGMAP_ENDIAN_NATIVE:
878                         map->format.format_val = regmap_format_32_native;
879                         map->format.parse_val = regmap_parse_32_native;
880                         break;
881                 default:
882                         goto err_map;
883                 }
884                 break;
885 #ifdef CONFIG_64BIT
886         case 64:
887                 switch (val_endian) {
888                 case REGMAP_ENDIAN_BIG:
889                         map->format.format_val = regmap_format_64_be;
890                         map->format.parse_val = regmap_parse_64_be;
891                         map->format.parse_inplace = regmap_parse_64_be_inplace;
892                         break;
893                 case REGMAP_ENDIAN_LITTLE:
894                         map->format.format_val = regmap_format_64_le;
895                         map->format.parse_val = regmap_parse_64_le;
896                         map->format.parse_inplace = regmap_parse_64_le_inplace;
897                         break;
898                 case REGMAP_ENDIAN_NATIVE:
899                         map->format.format_val = regmap_format_64_native;
900                         map->format.parse_val = regmap_parse_64_native;
901                         break;
902                 default:
903                         goto err_map;
904                 }
905                 break;
906 #endif
907         }
908
909         if (map->format.format_write) {
910                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
911                     (val_endian != REGMAP_ENDIAN_BIG))
912                         goto err_map;
913                 map->use_single_write = true;
914         }
915
916         if (!map->format.format_write &&
917             !(map->format.format_reg && map->format.format_val))
918                 goto err_map;
919
920         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
921         if (map->work_buf == NULL) {
922                 ret = -ENOMEM;
923                 goto err_map;
924         }
925
926         if (map->format.format_write) {
927                 map->defer_caching = false;
928                 map->reg_write = _regmap_bus_formatted_write;
929         } else if (map->format.format_val) {
930                 map->defer_caching = true;
931                 map->reg_write = _regmap_bus_raw_write;
932         }
933
934 skip_format_initialization:
935
936         map->range_tree = RB_ROOT;
937         for (i = 0; i < config->num_ranges; i++) {
938                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
939                 struct regmap_range_node *new;
940
941                 /* Sanity check */
942                 if (range_cfg->range_max < range_cfg->range_min) {
943                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
944                                 range_cfg->range_max, range_cfg->range_min);
945                         goto err_range;
946                 }
947
948                 if (range_cfg->range_max > map->max_register) {
949                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
950                                 range_cfg->range_max, map->max_register);
951                         goto err_range;
952                 }
953
954                 if (range_cfg->selector_reg > map->max_register) {
955                         dev_err(map->dev,
956                                 "Invalid range %d: selector out of map\n", i);
957                         goto err_range;
958                 }
959
960                 if (range_cfg->window_len == 0) {
961                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
962                                 i);
963                         goto err_range;
964                 }
965
966                 /* Make sure, that this register range has no selector
967                    or data window within its boundary */
968                 for (j = 0; j < config->num_ranges; j++) {
969                         unsigned sel_reg = config->ranges[j].selector_reg;
970                         unsigned win_min = config->ranges[j].window_start;
971                         unsigned win_max = win_min +
972                                            config->ranges[j].window_len - 1;
973
974                         /* Allow data window inside its own virtual range */
975                         if (j == i)
976                                 continue;
977
978                         if (range_cfg->range_min <= sel_reg &&
979                             sel_reg <= range_cfg->range_max) {
980                                 dev_err(map->dev,
981                                         "Range %d: selector for %d in window\n",
982                                         i, j);
983                                 goto err_range;
984                         }
985
986                         if (!(win_max < range_cfg->range_min ||
987                               win_min > range_cfg->range_max)) {
988                                 dev_err(map->dev,
989                                         "Range %d: window for %d in window\n",
990                                         i, j);
991                                 goto err_range;
992                         }
993                 }
994
995                 new = kzalloc(sizeof(*new), GFP_KERNEL);
996                 if (new == NULL) {
997                         ret = -ENOMEM;
998                         goto err_range;
999                 }
1000
1001                 new->map = map;
1002                 new->name = range_cfg->name;
1003                 new->range_min = range_cfg->range_min;
1004                 new->range_max = range_cfg->range_max;
1005                 new->selector_reg = range_cfg->selector_reg;
1006                 new->selector_mask = range_cfg->selector_mask;
1007                 new->selector_shift = range_cfg->selector_shift;
1008                 new->window_start = range_cfg->window_start;
1009                 new->window_len = range_cfg->window_len;
1010
1011                 if (!_regmap_range_add(map, new)) {
1012                         dev_err(map->dev, "Failed to add range %d\n", i);
1013                         kfree(new);
1014                         goto err_range;
1015                 }
1016
1017                 if (map->selector_work_buf == NULL) {
1018                         map->selector_work_buf =
1019                                 kzalloc(map->format.buf_size, GFP_KERNEL);
1020                         if (map->selector_work_buf == NULL) {
1021                                 ret = -ENOMEM;
1022                                 goto err_range;
1023                         }
1024                 }
1025         }
1026
1027         ret = regcache_init(map, config);
1028         if (ret != 0)
1029                 goto err_range;
1030
1031         if (dev) {
1032                 ret = regmap_attach_dev(dev, map, config);
1033                 if (ret != 0)
1034                         goto err_regcache;
1035         }
1036
1037         return map;
1038
1039 err_regcache:
1040         regcache_exit(map);
1041 err_range:
1042         regmap_range_exit(map);
1043         kfree(map->work_buf);
1044 err_map:
1045         kfree(map);
1046 err:
1047         return ERR_PTR(ret);
1048 }
1049 EXPORT_SYMBOL_GPL(__regmap_init);
1050
1051 static void devm_regmap_release(struct device *dev, void *res)
1052 {
1053         regmap_exit(*(struct regmap **)res);
1054 }
1055
1056 struct regmap *__devm_regmap_init(struct device *dev,
1057                                   const struct regmap_bus *bus,
1058                                   void *bus_context,
1059                                   const struct regmap_config *config,
1060                                   struct lock_class_key *lock_key,
1061                                   const char *lock_name)
1062 {
1063         struct regmap **ptr, *regmap;
1064
1065         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1066         if (!ptr)
1067                 return ERR_PTR(-ENOMEM);
1068
1069         regmap = __regmap_init(dev, bus, bus_context, config,
1070                                lock_key, lock_name);
1071         if (!IS_ERR(regmap)) {
1072                 *ptr = regmap;
1073                 devres_add(dev, ptr);
1074         } else {
1075                 devres_free(ptr);
1076         }
1077
1078         return regmap;
1079 }
1080 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1081
1082 static void regmap_field_init(struct regmap_field *rm_field,
1083         struct regmap *regmap, struct reg_field reg_field)
1084 {
1085         rm_field->regmap = regmap;
1086         rm_field->reg = reg_field.reg;
1087         rm_field->shift = reg_field.lsb;
1088         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1089         rm_field->id_size = reg_field.id_size;
1090         rm_field->id_offset = reg_field.id_offset;
1091 }
1092
1093 /**
1094  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1095  *
1096  * @dev: Device that will be interacted with
1097  * @regmap: regmap bank in which this register field is located.
1098  * @reg_field: Register field with in the bank.
1099  *
1100  * The return value will be an ERR_PTR() on error or a valid pointer
1101  * to a struct regmap_field. The regmap_field will be automatically freed
1102  * by the device management code.
1103  */
1104 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1105                 struct regmap *regmap, struct reg_field reg_field)
1106 {
1107         struct regmap_field *rm_field = devm_kzalloc(dev,
1108                                         sizeof(*rm_field), GFP_KERNEL);
1109         if (!rm_field)
1110                 return ERR_PTR(-ENOMEM);
1111
1112         regmap_field_init(rm_field, regmap, reg_field);
1113
1114         return rm_field;
1115
1116 }
1117 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1118
1119 /**
1120  * devm_regmap_field_free() - Free a register field allocated using
1121  *                            devm_regmap_field_alloc.
1122  *
1123  * @dev: Device that will be interacted with
1124  * @field: regmap field which should be freed.
1125  *
1126  * Free register field allocated using devm_regmap_field_alloc(). Usually
1127  * drivers need not call this function, as the memory allocated via devm
1128  * will be freed as per device-driver life-cyle.
1129  */
1130 void devm_regmap_field_free(struct device *dev,
1131         struct regmap_field *field)
1132 {
1133         devm_kfree(dev, field);
1134 }
1135 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1136
1137 /**
1138  * regmap_field_alloc() - Allocate and initialise a register field.
1139  *
1140  * @regmap: regmap bank in which this register field is located.
1141  * @reg_field: Register field with in the bank.
1142  *
1143  * The return value will be an ERR_PTR() on error or a valid pointer
1144  * to a struct regmap_field. The regmap_field should be freed by the
1145  * user once its finished working with it using regmap_field_free().
1146  */
1147 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1148                 struct reg_field reg_field)
1149 {
1150         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1151
1152         if (!rm_field)
1153                 return ERR_PTR(-ENOMEM);
1154
1155         regmap_field_init(rm_field, regmap, reg_field);
1156
1157         return rm_field;
1158 }
1159 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1160
1161 /**
1162  * regmap_field_free() - Free register field allocated using
1163  *                       regmap_field_alloc.
1164  *
1165  * @field: regmap field which should be freed.
1166  */
1167 void regmap_field_free(struct regmap_field *field)
1168 {
1169         kfree(field);
1170 }
1171 EXPORT_SYMBOL_GPL(regmap_field_free);
1172
1173 /**
1174  * regmap_reinit_cache() - Reinitialise the current register cache
1175  *
1176  * @map: Register map to operate on.
1177  * @config: New configuration.  Only the cache data will be used.
1178  *
1179  * Discard any existing register cache for the map and initialize a
1180  * new cache.  This can be used to restore the cache to defaults or to
1181  * update the cache configuration to reflect runtime discovery of the
1182  * hardware.
1183  *
1184  * No explicit locking is done here, the user needs to ensure that
1185  * this function will not race with other calls to regmap.
1186  */
1187 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1188 {
1189         regcache_exit(map);
1190         regmap_debugfs_exit(map);
1191
1192         map->max_register = config->max_register;
1193         map->writeable_reg = config->writeable_reg;
1194         map->readable_reg = config->readable_reg;
1195         map->volatile_reg = config->volatile_reg;
1196         map->precious_reg = config->precious_reg;
1197         map->cache_type = config->cache_type;
1198
1199         regmap_debugfs_init(map, config->name);
1200
1201         map->cache_bypass = false;
1202         map->cache_only = false;
1203
1204         return regcache_init(map, config);
1205 }
1206 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1207
1208 /**
1209  * regmap_exit() - Free a previously allocated register map
1210  *
1211  * @map: Register map to operate on.
1212  */
1213 void regmap_exit(struct regmap *map)
1214 {
1215         struct regmap_async *async;
1216
1217         regcache_exit(map);
1218         regmap_debugfs_exit(map);
1219         regmap_range_exit(map);
1220         if (map->bus && map->bus->free_context)
1221                 map->bus->free_context(map->bus_context);
1222         kfree(map->work_buf);
1223         while (!list_empty(&map->async_free)) {
1224                 async = list_first_entry_or_null(&map->async_free,
1225                                                  struct regmap_async,
1226                                                  list);
1227                 list_del(&async->list);
1228                 kfree(async->work_buf);
1229                 kfree(async);
1230         }
1231         kfree(map);
1232 }
1233 EXPORT_SYMBOL_GPL(regmap_exit);
1234
1235 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1236 {
1237         struct regmap **r = res;
1238         if (!r || !*r) {
1239                 WARN_ON(!r || !*r);
1240                 return 0;
1241         }
1242
1243         /* If the user didn't specify a name match any */
1244         if (data)
1245                 return (*r)->name && !strcmp((*r)->name, data);
1246         else
1247                 return 1;
1248 }
1249
1250 /**
1251  * dev_get_regmap() - Obtain the regmap (if any) for a device
1252  *
1253  * @dev: Device to retrieve the map for
1254  * @name: Optional name for the register map, usually NULL.
1255  *
1256  * Returns the regmap for the device if one is present, or NULL.  If
1257  * name is specified then it must match the name specified when
1258  * registering the device, if it is NULL then the first regmap found
1259  * will be used.  Devices with multiple register maps are very rare,
1260  * generic code should normally not need to specify a name.
1261  */
1262 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1263 {
1264         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1265                                         dev_get_regmap_match, (void *)name);
1266
1267         if (!r)
1268                 return NULL;
1269         return *r;
1270 }
1271 EXPORT_SYMBOL_GPL(dev_get_regmap);
1272
1273 /**
1274  * regmap_get_device() - Obtain the device from a regmap
1275  *
1276  * @map: Register map to operate on.
1277  *
1278  * Returns the underlying device that the regmap has been created for.
1279  */
1280 struct device *regmap_get_device(struct regmap *map)
1281 {
1282         return map->dev;
1283 }
1284 EXPORT_SYMBOL_GPL(regmap_get_device);
1285
1286 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1287                                struct regmap_range_node *range,
1288                                unsigned int val_num)
1289 {
1290         void *orig_work_buf;
1291         unsigned int win_offset;
1292         unsigned int win_page;
1293         bool page_chg;
1294         int ret;
1295
1296         win_offset = (*reg - range->range_min) % range->window_len;
1297         win_page = (*reg - range->range_min) / range->window_len;
1298
1299         if (val_num > 1) {
1300                 /* Bulk write shouldn't cross range boundary */
1301                 if (*reg + val_num - 1 > range->range_max)
1302                         return -EINVAL;
1303
1304                 /* ... or single page boundary */
1305                 if (val_num > range->window_len - win_offset)
1306                         return -EINVAL;
1307         }
1308
1309         /* It is possible to have selector register inside data window.
1310            In that case, selector register is located on every page and
1311            it needs no page switching, when accessed alone. */
1312         if (val_num > 1 ||
1313             range->window_start + win_offset != range->selector_reg) {
1314                 /* Use separate work_buf during page switching */
1315                 orig_work_buf = map->work_buf;
1316                 map->work_buf = map->selector_work_buf;
1317
1318                 ret = _regmap_update_bits(map, range->selector_reg,
1319                                           range->selector_mask,
1320                                           win_page << range->selector_shift,
1321                                           &page_chg, false);
1322
1323                 map->work_buf = orig_work_buf;
1324
1325                 if (ret != 0)
1326                         return ret;
1327         }
1328
1329         *reg = range->window_start + win_offset;
1330
1331         return 0;
1332 }
1333
1334 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1335                                           unsigned long mask)
1336 {
1337         u8 *buf;
1338         int i;
1339
1340         if (!mask || !map->work_buf)
1341                 return;
1342
1343         buf = map->work_buf;
1344
1345         for (i = 0; i < max_bytes; i++)
1346                 buf[i] |= (mask >> (8 * i)) & 0xff;
1347 }
1348
1349 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1350                       const void *val, size_t val_len)
1351 {
1352         struct regmap_range_node *range;
1353         unsigned long flags;
1354         void *work_val = map->work_buf + map->format.reg_bytes +
1355                 map->format.pad_bytes;
1356         void *buf;
1357         int ret = -ENOTSUPP;
1358         size_t len;
1359         int i;
1360
1361         WARN_ON(!map->bus);
1362
1363         /* Check for unwritable registers before we start */
1364         if (map->writeable_reg)
1365                 for (i = 0; i < val_len / map->format.val_bytes; i++)
1366                         if (!map->writeable_reg(map->dev,
1367                                                reg + regmap_get_offset(map, i)))
1368                                 return -EINVAL;
1369
1370         if (!map->cache_bypass && map->format.parse_val) {
1371                 unsigned int ival;
1372                 int val_bytes = map->format.val_bytes;
1373                 for (i = 0; i < val_len / val_bytes; i++) {
1374                         ival = map->format.parse_val(val + (i * val_bytes));
1375                         ret = regcache_write(map,
1376                                              reg + regmap_get_offset(map, i),
1377                                              ival);
1378                         if (ret) {
1379                                 dev_err(map->dev,
1380                                         "Error in caching of register: %x ret: %d\n",
1381                                         reg + regmap_get_offset(map, i), ret);
1382                                 return ret;
1383                         }
1384                 }
1385                 if (map->cache_only) {
1386                         map->cache_dirty = true;
1387                         return 0;
1388                 }
1389         }
1390
1391         range = _regmap_range_lookup(map, reg);
1392         if (range) {
1393                 int val_num = val_len / map->format.val_bytes;
1394                 int win_offset = (reg - range->range_min) % range->window_len;
1395                 int win_residue = range->window_len - win_offset;
1396
1397                 /* If the write goes beyond the end of the window split it */
1398                 while (val_num > win_residue) {
1399                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1400                                 win_residue, val_len / map->format.val_bytes);
1401                         ret = _regmap_raw_write(map, reg, val, win_residue *
1402                                                 map->format.val_bytes);
1403                         if (ret != 0)
1404                                 return ret;
1405
1406                         reg += win_residue;
1407                         val_num -= win_residue;
1408                         val += win_residue * map->format.val_bytes;
1409                         val_len -= win_residue * map->format.val_bytes;
1410
1411                         win_offset = (reg - range->range_min) %
1412                                 range->window_len;
1413                         win_residue = range->window_len - win_offset;
1414                 }
1415
1416                 ret = _regmap_select_page(map, &reg, range, val_num);
1417                 if (ret != 0)
1418                         return ret;
1419         }
1420
1421         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1422         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1423                                       map->write_flag_mask);
1424
1425         /*
1426          * Essentially all I/O mechanisms will be faster with a single
1427          * buffer to write.  Since register syncs often generate raw
1428          * writes of single registers optimise that case.
1429          */
1430         if (val != work_val && val_len == map->format.val_bytes) {
1431                 memcpy(work_val, val, map->format.val_bytes);
1432                 val = work_val;
1433         }
1434
1435         if (map->async && map->bus->async_write) {
1436                 struct regmap_async *async;
1437
1438                 trace_regmap_async_write_start(map, reg, val_len);
1439
1440                 spin_lock_irqsave(&map->async_lock, flags);
1441                 async = list_first_entry_or_null(&map->async_free,
1442                                                  struct regmap_async,
1443                                                  list);
1444                 if (async)
1445                         list_del(&async->list);
1446                 spin_unlock_irqrestore(&map->async_lock, flags);
1447
1448                 if (!async) {
1449                         async = map->bus->async_alloc();
1450                         if (!async)
1451                                 return -ENOMEM;
1452
1453                         async->work_buf = kzalloc(map->format.buf_size,
1454                                                   GFP_KERNEL | GFP_DMA);
1455                         if (!async->work_buf) {
1456                                 kfree(async);
1457                                 return -ENOMEM;
1458                         }
1459                 }
1460
1461                 async->map = map;
1462
1463                 /* If the caller supplied the value we can use it safely. */
1464                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1465                        map->format.reg_bytes + map->format.val_bytes);
1466
1467                 spin_lock_irqsave(&map->async_lock, flags);
1468                 list_add_tail(&async->list, &map->async_list);
1469                 spin_unlock_irqrestore(&map->async_lock, flags);
1470
1471                 if (val != work_val)
1472                         ret = map->bus->async_write(map->bus_context,
1473                                                     async->work_buf,
1474                                                     map->format.reg_bytes +
1475                                                     map->format.pad_bytes,
1476                                                     val, val_len, async);
1477                 else
1478                         ret = map->bus->async_write(map->bus_context,
1479                                                     async->work_buf,
1480                                                     map->format.reg_bytes +
1481                                                     map->format.pad_bytes +
1482                                                     val_len, NULL, 0, async);
1483
1484                 if (ret != 0) {
1485                         dev_err(map->dev, "Failed to schedule write: %d\n",
1486                                 ret);
1487
1488                         spin_lock_irqsave(&map->async_lock, flags);
1489                         list_move(&async->list, &map->async_free);
1490                         spin_unlock_irqrestore(&map->async_lock, flags);
1491                 }
1492
1493                 return ret;
1494         }
1495
1496         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1497
1498         /* If we're doing a single register write we can probably just
1499          * send the work_buf directly, otherwise try to do a gather
1500          * write.
1501          */
1502         if (val == work_val)
1503                 ret = map->bus->write(map->bus_context, map->work_buf,
1504                                       map->format.reg_bytes +
1505                                       map->format.pad_bytes +
1506                                       val_len);
1507         else if (map->bus->gather_write)
1508                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1509                                              map->format.reg_bytes +
1510                                              map->format.pad_bytes,
1511                                              val, val_len);
1512         else
1513                 ret = -ENOTSUPP;
1514
1515         /* If that didn't work fall back on linearising by hand. */
1516         if (ret == -ENOTSUPP) {
1517                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1518                 buf = kzalloc(len, GFP_KERNEL);
1519                 if (!buf)
1520                         return -ENOMEM;
1521
1522                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1523                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1524                        val, val_len);
1525                 ret = map->bus->write(map->bus_context, buf, len);
1526
1527                 kfree(buf);
1528         } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1529                 /* regcache_drop_region() takes lock that we already have,
1530                  * thus call map->cache_ops->drop() directly
1531                  */
1532                 if (map->cache_ops && map->cache_ops->drop)
1533                         map->cache_ops->drop(map, reg, reg + 1);
1534         }
1535
1536         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1537
1538         return ret;
1539 }
1540
1541 /**
1542  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1543  *
1544  * @map: Map to check.
1545  */
1546 bool regmap_can_raw_write(struct regmap *map)
1547 {
1548         return map->bus && map->bus->write && map->format.format_val &&
1549                 map->format.format_reg;
1550 }
1551 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1552
1553 /**
1554  * regmap_get_raw_read_max - Get the maximum size we can read
1555  *
1556  * @map: Map to check.
1557  */
1558 size_t regmap_get_raw_read_max(struct regmap *map)
1559 {
1560         return map->max_raw_read;
1561 }
1562 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1563
1564 /**
1565  * regmap_get_raw_write_max - Get the maximum size we can read
1566  *
1567  * @map: Map to check.
1568  */
1569 size_t regmap_get_raw_write_max(struct regmap *map)
1570 {
1571         return map->max_raw_write;
1572 }
1573 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1574
1575 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1576                                        unsigned int val)
1577 {
1578         int ret;
1579         struct regmap_range_node *range;
1580         struct regmap *map = context;
1581
1582         WARN_ON(!map->bus || !map->format.format_write);
1583
1584         range = _regmap_range_lookup(map, reg);
1585         if (range) {
1586                 ret = _regmap_select_page(map, &reg, range, 1);
1587                 if (ret != 0)
1588                         return ret;
1589         }
1590
1591         map->format.format_write(map, reg, val);
1592
1593         trace_regmap_hw_write_start(map, reg, 1);
1594
1595         ret = map->bus->write(map->bus_context, map->work_buf,
1596                               map->format.buf_size);
1597
1598         trace_regmap_hw_write_done(map, reg, 1);
1599
1600         return ret;
1601 }
1602
1603 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1604                                  unsigned int val)
1605 {
1606         struct regmap *map = context;
1607
1608         return map->bus->reg_write(map->bus_context, reg, val);
1609 }
1610
1611 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1612                                  unsigned int val)
1613 {
1614         struct regmap *map = context;
1615
1616         WARN_ON(!map->bus || !map->format.format_val);
1617
1618         map->format.format_val(map->work_buf + map->format.reg_bytes
1619                                + map->format.pad_bytes, val, 0);
1620         return _regmap_raw_write(map, reg,
1621                                  map->work_buf +
1622                                  map->format.reg_bytes +
1623                                  map->format.pad_bytes,
1624                                  map->format.val_bytes);
1625 }
1626
1627 static inline void *_regmap_map_get_context(struct regmap *map)
1628 {
1629         return (map->bus) ? map : map->bus_context;
1630 }
1631
1632 int _regmap_write(struct regmap *map, unsigned int reg,
1633                   unsigned int val)
1634 {
1635         int ret;
1636         void *context = _regmap_map_get_context(map);
1637
1638         if (!regmap_writeable(map, reg))
1639                 return -EIO;
1640
1641         if (!map->cache_bypass && !map->defer_caching) {
1642                 ret = regcache_write(map, reg, val);
1643                 if (ret != 0)
1644                         return ret;
1645                 if (map->cache_only) {
1646                         map->cache_dirty = true;
1647                         return 0;
1648                 }
1649         }
1650
1651 #ifdef LOG_DEVICE
1652         if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1653                 dev_info(map->dev, "%x <= %x\n", reg, val);
1654 #endif
1655
1656         trace_regmap_reg_write(map, reg, val);
1657
1658         return map->reg_write(context, reg, val);
1659 }
1660
1661 /**
1662  * regmap_write() - Write a value to a single register
1663  *
1664  * @map: Register map to write to
1665  * @reg: Register to write to
1666  * @val: Value to be written
1667  *
1668  * A value of zero will be returned on success, a negative errno will
1669  * be returned in error cases.
1670  */
1671 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1672 {
1673         int ret;
1674
1675         if (!IS_ALIGNED(reg, map->reg_stride))
1676                 return -EINVAL;
1677
1678         map->lock(map->lock_arg);
1679
1680         ret = _regmap_write(map, reg, val);
1681
1682         map->unlock(map->lock_arg);
1683
1684         return ret;
1685 }
1686 EXPORT_SYMBOL_GPL(regmap_write);
1687
1688 /**
1689  * regmap_write_async() - Write a value to a single register asynchronously
1690  *
1691  * @map: Register map to write to
1692  * @reg: Register to write to
1693  * @val: Value to be written
1694  *
1695  * A value of zero will be returned on success, a negative errno will
1696  * be returned in error cases.
1697  */
1698 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1699 {
1700         int ret;
1701
1702         if (!IS_ALIGNED(reg, map->reg_stride))
1703                 return -EINVAL;
1704
1705         map->lock(map->lock_arg);
1706
1707         map->async = true;
1708
1709         ret = _regmap_write(map, reg, val);
1710
1711         map->async = false;
1712
1713         map->unlock(map->lock_arg);
1714
1715         return ret;
1716 }
1717 EXPORT_SYMBOL_GPL(regmap_write_async);
1718
1719 /**
1720  * regmap_raw_write() - Write raw values to one or more registers
1721  *
1722  * @map: Register map to write to
1723  * @reg: Initial register to write to
1724  * @val: Block of data to be written, laid out for direct transmission to the
1725  *       device
1726  * @val_len: Length of data pointed to by val.
1727  *
1728  * This function is intended to be used for things like firmware
1729  * download where a large block of data needs to be transferred to the
1730  * device.  No formatting will be done on the data provided.
1731  *
1732  * A value of zero will be returned on success, a negative errno will
1733  * be returned in error cases.
1734  */
1735 int regmap_raw_write(struct regmap *map, unsigned int reg,
1736                      const void *val, size_t val_len)
1737 {
1738         int ret;
1739
1740         if (!regmap_can_raw_write(map))
1741                 return -EINVAL;
1742         if (val_len % map->format.val_bytes)
1743                 return -EINVAL;
1744         if (map->max_raw_write && map->max_raw_write < val_len)
1745                 return -E2BIG;
1746
1747         map->lock(map->lock_arg);
1748
1749         ret = _regmap_raw_write(map, reg, val, val_len);
1750
1751         map->unlock(map->lock_arg);
1752
1753         return ret;
1754 }
1755 EXPORT_SYMBOL_GPL(regmap_raw_write);
1756
1757 /**
1758  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1759  *                                   register field.
1760  *
1761  * @field: Register field to write to
1762  * @mask: Bitmask to change
1763  * @val: Value to be written
1764  * @change: Boolean indicating if a write was done
1765  * @async: Boolean indicating asynchronously
1766  * @force: Boolean indicating use force update
1767  *
1768  * Perform a read/modify/write cycle on the register field with change,
1769  * async, force option.
1770  *
1771  * A value of zero will be returned on success, a negative errno will
1772  * be returned in error cases.
1773  */
1774 int regmap_field_update_bits_base(struct regmap_field *field,
1775                                   unsigned int mask, unsigned int val,
1776                                   bool *change, bool async, bool force)
1777 {
1778         mask = (mask << field->shift) & field->mask;
1779
1780         return regmap_update_bits_base(field->regmap, field->reg,
1781                                        mask, val << field->shift,
1782                                        change, async, force);
1783 }
1784 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1785
1786 /**
1787  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1788  *                                    register field with port ID
1789  *
1790  * @field: Register field to write to
1791  * @id: port ID
1792  * @mask: Bitmask to change
1793  * @val: Value to be written
1794  * @change: Boolean indicating if a write was done
1795  * @async: Boolean indicating asynchronously
1796  * @force: Boolean indicating use force update
1797  *
1798  * A value of zero will be returned on success, a negative errno will
1799  * be returned in error cases.
1800  */
1801 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1802                                    unsigned int mask, unsigned int val,
1803                                    bool *change, bool async, bool force)
1804 {
1805         if (id >= field->id_size)
1806                 return -EINVAL;
1807
1808         mask = (mask << field->shift) & field->mask;
1809
1810         return regmap_update_bits_base(field->regmap,
1811                                        field->reg + (field->id_offset * id),
1812                                        mask, val << field->shift,
1813                                        change, async, force);
1814 }
1815 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1816
1817 /**
1818  * regmap_bulk_write() - Write multiple registers to the device
1819  *
1820  * @map: Register map to write to
1821  * @reg: First register to be write from
1822  * @val: Block of data to be written, in native register size for device
1823  * @val_count: Number of registers to write
1824  *
1825  * This function is intended to be used for writing a large block of
1826  * data to the device either in single transfer or multiple transfer.
1827  *
1828  * A value of zero will be returned on success, a negative errno will
1829  * be returned in error cases.
1830  */
1831 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1832                      size_t val_count)
1833 {
1834         int ret = 0, i;
1835         size_t val_bytes = map->format.val_bytes;
1836         size_t total_size = val_bytes * val_count;
1837
1838         if (!IS_ALIGNED(reg, map->reg_stride))
1839                 return -EINVAL;
1840
1841         /*
1842          * Some devices don't support bulk write, for
1843          * them we have a series of single write operations in the first two if
1844          * blocks.
1845          *
1846          * The first if block is used for memory mapped io. It does not allow
1847          * val_bytes of 3 for example.
1848          * The second one is for busses that do not provide raw I/O.
1849          * The third one is used for busses which do not have these limitations
1850          * and can write arbitrary value lengths.
1851          */
1852         if (!map->bus) {
1853                 map->lock(map->lock_arg);
1854                 for (i = 0; i < val_count; i++) {
1855                         unsigned int ival;
1856
1857                         switch (val_bytes) {
1858                         case 1:
1859                                 ival = *(u8 *)(val + (i * val_bytes));
1860                                 break;
1861                         case 2:
1862                                 ival = *(u16 *)(val + (i * val_bytes));
1863                                 break;
1864                         case 4:
1865                                 ival = *(u32 *)(val + (i * val_bytes));
1866                                 break;
1867 #ifdef CONFIG_64BIT
1868                         case 8:
1869                                 ival = *(u64 *)(val + (i * val_bytes));
1870                                 break;
1871 #endif
1872                         default:
1873                                 ret = -EINVAL;
1874                                 goto out;
1875                         }
1876
1877                         ret = _regmap_write(map,
1878                                             reg + regmap_get_offset(map, i),
1879                                             ival);
1880                         if (ret != 0)
1881                                 goto out;
1882                 }
1883 out:
1884                 map->unlock(map->lock_arg);
1885         } else if (map->bus && !map->format.parse_inplace) {
1886                 const u8 *u8 = val;
1887                 const u16 *u16 = val;
1888                 const u32 *u32 = val;
1889                 unsigned int ival;
1890
1891                 for (i = 0; i < val_count; i++) {
1892                         switch (map->format.val_bytes) {
1893                         case 4:
1894                                 ival = u32[i];
1895                                 break;
1896                         case 2:
1897                                 ival = u16[i];
1898                                 break;
1899                         case 1:
1900                                 ival = u8[i];
1901                                 break;
1902                         default:
1903                                 return -EINVAL;
1904                         }
1905
1906                         ret = regmap_write(map, reg + (i * map->reg_stride),
1907                                            ival);
1908                         if (ret)
1909                                 return ret;
1910                 }
1911         } else if (map->use_single_write ||
1912                    (map->max_raw_write && map->max_raw_write < total_size)) {
1913                 int chunk_stride = map->reg_stride;
1914                 size_t chunk_size = val_bytes;
1915                 size_t chunk_count = val_count;
1916
1917                 if (!map->use_single_write) {
1918                         chunk_size = map->max_raw_write;
1919                         if (chunk_size % val_bytes)
1920                                 chunk_size -= chunk_size % val_bytes;
1921                         chunk_count = total_size / chunk_size;
1922                         chunk_stride *= chunk_size / val_bytes;
1923                 }
1924
1925                 map->lock(map->lock_arg);
1926                 /* Write as many bytes as possible with chunk_size */
1927                 for (i = 0; i < chunk_count; i++) {
1928                         ret = _regmap_raw_write(map,
1929                                                 reg + (i * chunk_stride),
1930                                                 val + (i * chunk_size),
1931                                                 chunk_size);
1932                         if (ret)
1933                                 break;
1934                 }
1935
1936                 /* Write remaining bytes */
1937                 if (!ret && chunk_size * i < total_size) {
1938                         ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1939                                                 val + (i * chunk_size),
1940                                                 total_size - i * chunk_size);
1941                 }
1942                 map->unlock(map->lock_arg);
1943         } else {
1944                 void *wval;
1945
1946                 if (!val_count)
1947                         return -EINVAL;
1948
1949                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1950                 if (!wval) {
1951                         dev_err(map->dev, "Error in memory allocation\n");
1952                         return -ENOMEM;
1953                 }
1954                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1955                         map->format.parse_inplace(wval + i);
1956
1957                 map->lock(map->lock_arg);
1958                 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1959                 map->unlock(map->lock_arg);
1960
1961                 kfree(wval);
1962         }
1963         return ret;
1964 }
1965 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1966
1967 /*
1968  * _regmap_raw_multi_reg_write()
1969  *
1970  * the (register,newvalue) pairs in regs have not been formatted, but
1971  * they are all in the same page and have been changed to being page
1972  * relative. The page register has been written if that was necessary.
1973  */
1974 static int _regmap_raw_multi_reg_write(struct regmap *map,
1975                                        const struct reg_sequence *regs,
1976                                        size_t num_regs)
1977 {
1978         int ret;
1979         void *buf;
1980         int i;
1981         u8 *u8;
1982         size_t val_bytes = map->format.val_bytes;
1983         size_t reg_bytes = map->format.reg_bytes;
1984         size_t pad_bytes = map->format.pad_bytes;
1985         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1986         size_t len = pair_size * num_regs;
1987
1988         if (!len)
1989                 return -EINVAL;
1990
1991         buf = kzalloc(len, GFP_KERNEL);
1992         if (!buf)
1993                 return -ENOMEM;
1994
1995         /* We have to linearise by hand. */
1996
1997         u8 = buf;
1998
1999         for (i = 0; i < num_regs; i++) {
2000                 unsigned int reg = regs[i].reg;
2001                 unsigned int val = regs[i].def;
2002                 trace_regmap_hw_write_start(map, reg, 1);
2003                 map->format.format_reg(u8, reg, map->reg_shift);
2004                 u8 += reg_bytes + pad_bytes;
2005                 map->format.format_val(u8, val, 0);
2006                 u8 += val_bytes;
2007         }
2008         u8 = buf;
2009         *u8 |= map->write_flag_mask;
2010
2011         ret = map->bus->write(map->bus_context, buf, len);
2012
2013         kfree(buf);
2014
2015         for (i = 0; i < num_regs; i++) {
2016                 int reg = regs[i].reg;
2017                 trace_regmap_hw_write_done(map, reg, 1);
2018         }
2019         return ret;
2020 }
2021
2022 static unsigned int _regmap_register_page(struct regmap *map,
2023                                           unsigned int reg,
2024                                           struct regmap_range_node *range)
2025 {
2026         unsigned int win_page = (reg - range->range_min) / range->window_len;
2027
2028         return win_page;
2029 }
2030
2031 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2032                                                struct reg_sequence *regs,
2033                                                size_t num_regs)
2034 {
2035         int ret;
2036         int i, n;
2037         struct reg_sequence *base;
2038         unsigned int this_page = 0;
2039         unsigned int page_change = 0;
2040         /*
2041          * the set of registers are not neccessarily in order, but
2042          * since the order of write must be preserved this algorithm
2043          * chops the set each time the page changes. This also applies
2044          * if there is a delay required at any point in the sequence.
2045          */
2046         base = regs;
2047         for (i = 0, n = 0; i < num_regs; i++, n++) {
2048                 unsigned int reg = regs[i].reg;
2049                 struct regmap_range_node *range;
2050
2051                 range = _regmap_range_lookup(map, reg);
2052                 if (range) {
2053                         unsigned int win_page = _regmap_register_page(map, reg,
2054                                                                       range);
2055
2056                         if (i == 0)
2057                                 this_page = win_page;
2058                         if (win_page != this_page) {
2059                                 this_page = win_page;
2060                                 page_change = 1;
2061                         }
2062                 }
2063
2064                 /* If we have both a page change and a delay make sure to
2065                  * write the regs and apply the delay before we change the
2066                  * page.
2067                  */
2068
2069                 if (page_change || regs[i].delay_us) {
2070
2071                                 /* For situations where the first write requires
2072                                  * a delay we need to make sure we don't call
2073                                  * raw_multi_reg_write with n=0
2074                                  * This can't occur with page breaks as we
2075                                  * never write on the first iteration
2076                                  */
2077                                 if (regs[i].delay_us && i == 0)
2078                                         n = 1;
2079
2080                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2081                                 if (ret != 0)
2082                                         return ret;
2083
2084                                 if (regs[i].delay_us)
2085                                         udelay(regs[i].delay_us);
2086
2087                                 base += n;
2088                                 n = 0;
2089
2090                                 if (page_change) {
2091                                         ret = _regmap_select_page(map,
2092                                                                   &base[n].reg,
2093                                                                   range, 1);
2094                                         if (ret != 0)
2095                                                 return ret;
2096
2097                                         page_change = 0;
2098                                 }
2099
2100                 }
2101
2102         }
2103         if (n > 0)
2104                 return _regmap_raw_multi_reg_write(map, base, n);
2105         return 0;
2106 }
2107
2108 static int _regmap_multi_reg_write(struct regmap *map,
2109                                    const struct reg_sequence *regs,
2110                                    size_t num_regs)
2111 {
2112         int i;
2113         int ret;
2114
2115         if (!map->can_multi_write) {
2116                 for (i = 0; i < num_regs; i++) {
2117                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2118                         if (ret != 0)
2119                                 return ret;
2120
2121                         if (regs[i].delay_us)
2122                                 udelay(regs[i].delay_us);
2123                 }
2124                 return 0;
2125         }
2126
2127         if (!map->format.parse_inplace)
2128                 return -EINVAL;
2129
2130         if (map->writeable_reg)
2131                 for (i = 0; i < num_regs; i++) {
2132                         int reg = regs[i].reg;
2133                         if (!map->writeable_reg(map->dev, reg))
2134                                 return -EINVAL;
2135                         if (!IS_ALIGNED(reg, map->reg_stride))
2136                                 return -EINVAL;
2137                 }
2138
2139         if (!map->cache_bypass) {
2140                 for (i = 0; i < num_regs; i++) {
2141                         unsigned int val = regs[i].def;
2142                         unsigned int reg = regs[i].reg;
2143                         ret = regcache_write(map, reg, val);
2144                         if (ret) {
2145                                 dev_err(map->dev,
2146                                 "Error in caching of register: %x ret: %d\n",
2147                                                                 reg, ret);
2148                                 return ret;
2149                         }
2150                 }
2151                 if (map->cache_only) {
2152                         map->cache_dirty = true;
2153                         return 0;
2154                 }
2155         }
2156
2157         WARN_ON(!map->bus);
2158
2159         for (i = 0; i < num_regs; i++) {
2160                 unsigned int reg = regs[i].reg;
2161                 struct regmap_range_node *range;
2162
2163                 /* Coalesce all the writes between a page break or a delay
2164                  * in a sequence
2165                  */
2166                 range = _regmap_range_lookup(map, reg);
2167                 if (range || regs[i].delay_us) {
2168                         size_t len = sizeof(struct reg_sequence)*num_regs;
2169                         struct reg_sequence *base = kmemdup(regs, len,
2170                                                            GFP_KERNEL);
2171                         if (!base)
2172                                 return -ENOMEM;
2173                         ret = _regmap_range_multi_paged_reg_write(map, base,
2174                                                                   num_regs);
2175                         kfree(base);
2176
2177                         return ret;
2178                 }
2179         }
2180         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2181 }
2182
2183 /**
2184  * regmap_multi_reg_write() - Write multiple registers to the device
2185  *
2186  * @map: Register map to write to
2187  * @regs: Array of structures containing register,value to be written
2188  * @num_regs: Number of registers to write
2189  *
2190  * Write multiple registers to the device where the set of register, value
2191  * pairs are supplied in any order, possibly not all in a single range.
2192  *
2193  * The 'normal' block write mode will send ultimately send data on the
2194  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2195  * addressed. However, this alternative block multi write mode will send
2196  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2197  * must of course support the mode.
2198  *
2199  * A value of zero will be returned on success, a negative errno will be
2200  * returned in error cases.
2201  */
2202 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2203                            int num_regs)
2204 {
2205         int ret;
2206
2207         map->lock(map->lock_arg);
2208
2209         ret = _regmap_multi_reg_write(map, regs, num_regs);
2210
2211         map->unlock(map->lock_arg);
2212
2213         return ret;
2214 }
2215 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2216
2217 /**
2218  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2219  *                                     device but not the cache
2220  *
2221  * @map: Register map to write to
2222  * @regs: Array of structures containing register,value to be written
2223  * @num_regs: Number of registers to write
2224  *
2225  * Write multiple registers to the device but not the cache where the set
2226  * of register are supplied in any order.
2227  *
2228  * This function is intended to be used for writing a large block of data
2229  * atomically to the device in single transfer for those I2C client devices
2230  * that implement this alternative block write mode.
2231  *
2232  * A value of zero will be returned on success, a negative errno will
2233  * be returned in error cases.
2234  */
2235 int regmap_multi_reg_write_bypassed(struct regmap *map,
2236                                     const struct reg_sequence *regs,
2237                                     int num_regs)
2238 {
2239         int ret;
2240         bool bypass;
2241
2242         map->lock(map->lock_arg);
2243
2244         bypass = map->cache_bypass;
2245         map->cache_bypass = true;
2246
2247         ret = _regmap_multi_reg_write(map, regs, num_regs);
2248
2249         map->cache_bypass = bypass;
2250
2251         map->unlock(map->lock_arg);
2252
2253         return ret;
2254 }
2255 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2256
2257 /**
2258  * regmap_raw_write_async() - Write raw values to one or more registers
2259  *                            asynchronously
2260  *
2261  * @map: Register map to write to
2262  * @reg: Initial register to write to
2263  * @val: Block of data to be written, laid out for direct transmission to the
2264  *       device.  Must be valid until regmap_async_complete() is called.
2265  * @val_len: Length of data pointed to by val.
2266  *
2267  * This function is intended to be used for things like firmware
2268  * download where a large block of data needs to be transferred to the
2269  * device.  No formatting will be done on the data provided.
2270  *
2271  * If supported by the underlying bus the write will be scheduled
2272  * asynchronously, helping maximise I/O speed on higher speed buses
2273  * like SPI.  regmap_async_complete() can be called to ensure that all
2274  * asynchrnous writes have been completed.
2275  *
2276  * A value of zero will be returned on success, a negative errno will
2277  * be returned in error cases.
2278  */
2279 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2280                            const void *val, size_t val_len)
2281 {
2282         int ret;
2283
2284         if (val_len % map->format.val_bytes)
2285                 return -EINVAL;
2286         if (!IS_ALIGNED(reg, map->reg_stride))
2287                 return -EINVAL;
2288
2289         map->lock(map->lock_arg);
2290
2291         map->async = true;
2292
2293         ret = _regmap_raw_write(map, reg, val, val_len);
2294
2295         map->async = false;
2296
2297         map->unlock(map->lock_arg);
2298
2299         return ret;
2300 }
2301 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2302
2303 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2304                             unsigned int val_len)
2305 {
2306         struct regmap_range_node *range;
2307         int ret;
2308
2309         WARN_ON(!map->bus);
2310
2311         if (!map->bus || !map->bus->read)
2312                 return -EINVAL;
2313
2314         range = _regmap_range_lookup(map, reg);
2315         if (range) {
2316                 ret = _regmap_select_page(map, &reg, range,
2317                                           val_len / map->format.val_bytes);
2318                 if (ret != 0)
2319                         return ret;
2320         }
2321
2322         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2323         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2324                                       map->read_flag_mask);
2325         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2326
2327         ret = map->bus->read(map->bus_context, map->work_buf,
2328                              map->format.reg_bytes + map->format.pad_bytes,
2329                              val, val_len);
2330
2331         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2332
2333         return ret;
2334 }
2335
2336 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2337                                 unsigned int *val)
2338 {
2339         struct regmap *map = context;
2340
2341         return map->bus->reg_read(map->bus_context, reg, val);
2342 }
2343
2344 static int _regmap_bus_read(void *context, unsigned int reg,
2345                             unsigned int *val)
2346 {
2347         int ret;
2348         struct regmap *map = context;
2349
2350         if (!map->format.parse_val)
2351                 return -EINVAL;
2352
2353         ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2354         if (ret == 0)
2355                 *val = map->format.parse_val(map->work_buf);
2356
2357         return ret;
2358 }
2359
2360 static int _regmap_read(struct regmap *map, unsigned int reg,
2361                         unsigned int *val)
2362 {
2363         int ret;
2364         void *context = _regmap_map_get_context(map);
2365
2366         if (!map->cache_bypass) {
2367                 ret = regcache_read(map, reg, val);
2368                 if (ret == 0)
2369                         return 0;
2370         }
2371
2372         if (map->cache_only)
2373                 return -EBUSY;
2374
2375         if (!regmap_readable(map, reg))
2376                 return -EIO;
2377
2378         ret = map->reg_read(context, reg, val);
2379         if (ret == 0) {
2380 #ifdef LOG_DEVICE
2381                 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2382                         dev_info(map->dev, "%x => %x\n", reg, *val);
2383 #endif
2384
2385                 trace_regmap_reg_read(map, reg, *val);
2386
2387                 if (!map->cache_bypass)
2388                         regcache_write(map, reg, *val);
2389         }
2390
2391         return ret;
2392 }
2393
2394 /**
2395  * regmap_read() - Read a value from a single register
2396  *
2397  * @map: Register map to read from
2398  * @reg: Register to be read from
2399  * @val: Pointer to store read value
2400  *
2401  * A value of zero will be returned on success, a negative errno will
2402  * be returned in error cases.
2403  */
2404 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2405 {
2406         int ret;
2407
2408         if (!IS_ALIGNED(reg, map->reg_stride))
2409                 return -EINVAL;
2410
2411         map->lock(map->lock_arg);
2412
2413         ret = _regmap_read(map, reg, val);
2414
2415         map->unlock(map->lock_arg);
2416
2417         return ret;
2418 }
2419 EXPORT_SYMBOL_GPL(regmap_read);
2420
2421 /**
2422  * regmap_raw_read() - Read raw data from the device
2423  *
2424  * @map: Register map to read from
2425  * @reg: First register to be read from
2426  * @val: Pointer to store read value
2427  * @val_len: Size of data to read
2428  *
2429  * A value of zero will be returned on success, a negative errno will
2430  * be returned in error cases.
2431  */
2432 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2433                     size_t val_len)
2434 {
2435         size_t val_bytes = map->format.val_bytes;
2436         size_t val_count = val_len / val_bytes;
2437         unsigned int v;
2438         int ret, i;
2439
2440         if (!map->bus)
2441                 return -EINVAL;
2442         if (val_len % map->format.val_bytes)
2443                 return -EINVAL;
2444         if (!IS_ALIGNED(reg, map->reg_stride))
2445                 return -EINVAL;
2446         if (val_count == 0)
2447                 return -EINVAL;
2448
2449         map->lock(map->lock_arg);
2450
2451         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2452             map->cache_type == REGCACHE_NONE) {
2453                 if (!map->bus->read) {
2454                         ret = -ENOTSUPP;
2455                         goto out;
2456                 }
2457                 if (map->max_raw_read && map->max_raw_read < val_len) {
2458                         ret = -E2BIG;
2459                         goto out;
2460                 }
2461
2462                 /* Physical block read if there's no cache involved */
2463                 ret = _regmap_raw_read(map, reg, val, val_len);
2464
2465         } else {
2466                 /* Otherwise go word by word for the cache; should be low
2467                  * cost as we expect to hit the cache.
2468                  */
2469                 for (i = 0; i < val_count; i++) {
2470                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2471                                            &v);
2472                         if (ret != 0)
2473                                 goto out;
2474
2475                         map->format.format_val(val + (i * val_bytes), v, 0);
2476                 }
2477         }
2478
2479  out:
2480         map->unlock(map->lock_arg);
2481
2482         return ret;
2483 }
2484 EXPORT_SYMBOL_GPL(regmap_raw_read);
2485
2486 /**
2487  * regmap_field_read() - Read a value to a single register field
2488  *
2489  * @field: Register field to read from
2490  * @val: Pointer to store read value
2491  *
2492  * A value of zero will be returned on success, a negative errno will
2493  * be returned in error cases.
2494  */
2495 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2496 {
2497         int ret;
2498         unsigned int reg_val;
2499         ret = regmap_read(field->regmap, field->reg, &reg_val);
2500         if (ret != 0)
2501                 return ret;
2502
2503         reg_val &= field->mask;
2504         reg_val >>= field->shift;
2505         *val = reg_val;
2506
2507         return ret;
2508 }
2509 EXPORT_SYMBOL_GPL(regmap_field_read);
2510
2511 /**
2512  * regmap_fields_read() - Read a value to a single register field with port ID
2513  *
2514  * @field: Register field to read from
2515  * @id: port ID
2516  * @val: Pointer to store read value
2517  *
2518  * A value of zero will be returned on success, a negative errno will
2519  * be returned in error cases.
2520  */
2521 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2522                        unsigned int *val)
2523 {
2524         int ret;
2525         unsigned int reg_val;
2526
2527         if (id >= field->id_size)
2528                 return -EINVAL;
2529
2530         ret = regmap_read(field->regmap,
2531                           field->reg + (field->id_offset * id),
2532                           &reg_val);
2533         if (ret != 0)
2534                 return ret;
2535
2536         reg_val &= field->mask;
2537         reg_val >>= field->shift;
2538         *val = reg_val;
2539
2540         return ret;
2541 }
2542 EXPORT_SYMBOL_GPL(regmap_fields_read);
2543
2544 /**
2545  * regmap_bulk_read() - Read multiple registers from the device
2546  *
2547  * @map: Register map to read from
2548  * @reg: First register to be read from
2549  * @val: Pointer to store read value, in native register size for device
2550  * @val_count: Number of registers to read
2551  *
2552  * A value of zero will be returned on success, a negative errno will
2553  * be returned in error cases.
2554  */
2555 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2556                      size_t val_count)
2557 {
2558         int ret, i;
2559         size_t val_bytes = map->format.val_bytes;
2560         bool vol = regmap_volatile_range(map, reg, val_count);
2561
2562         if (!IS_ALIGNED(reg, map->reg_stride))
2563                 return -EINVAL;
2564
2565         if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2566                 /*
2567                  * Some devices does not support bulk read, for
2568                  * them we have a series of single read operations.
2569                  */
2570                 size_t total_size = val_bytes * val_count;
2571
2572                 if (!map->use_single_read &&
2573                     (!map->max_raw_read || map->max_raw_read > total_size)) {
2574                         ret = regmap_raw_read(map, reg, val,
2575                                               val_bytes * val_count);
2576                         if (ret != 0)
2577                                 return ret;
2578                 } else {
2579                         /*
2580                          * Some devices do not support bulk read or do not
2581                          * support large bulk reads, for them we have a series
2582                          * of read operations.
2583                          */
2584                         int chunk_stride = map->reg_stride;
2585                         size_t chunk_size = val_bytes;
2586                         size_t chunk_count = val_count;
2587
2588                         if (!map->use_single_read) {
2589                                 chunk_size = map->max_raw_read;
2590                                 if (chunk_size % val_bytes)
2591                                         chunk_size -= chunk_size % val_bytes;
2592                                 chunk_count = total_size / chunk_size;
2593                                 chunk_stride *= chunk_size / val_bytes;
2594                         }
2595
2596                         /* Read bytes that fit into a multiple of chunk_size */
2597                         for (i = 0; i < chunk_count; i++) {
2598                                 ret = regmap_raw_read(map,
2599                                                       reg + (i * chunk_stride),
2600                                                       val + (i * chunk_size),
2601                                                       chunk_size);
2602                                 if (ret != 0)
2603                                         return ret;
2604                         }
2605
2606                         /* Read remaining bytes */
2607                         if (chunk_size * i < total_size) {
2608                                 ret = regmap_raw_read(map,
2609                                                       reg + (i * chunk_stride),
2610                                                       val + (i * chunk_size),
2611                                                       total_size - i * chunk_size);
2612                                 if (ret != 0)
2613                                         return ret;
2614                         }
2615                 }
2616
2617                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2618                         map->format.parse_inplace(val + i);
2619         } else {
2620                 for (i = 0; i < val_count; i++) {
2621                         unsigned int ival;
2622                         ret = regmap_read(map, reg + regmap_get_offset(map, i),
2623                                           &ival);
2624                         if (ret != 0)
2625                                 return ret;
2626
2627                         if (map->format.format_val) {
2628                                 map->format.format_val(val + (i * val_bytes), ival, 0);
2629                         } else {
2630                                 /* Devices providing read and write
2631                                  * operations can use the bulk I/O
2632                                  * functions if they define a val_bytes,
2633                                  * we assume that the values are native
2634                                  * endian.
2635                                  */
2636 #ifdef CONFIG_64BIT
2637                                 u64 *u64 = val;
2638 #endif
2639                                 u32 *u32 = val;
2640                                 u16 *u16 = val;
2641                                 u8 *u8 = val;
2642
2643                                 switch (map->format.val_bytes) {
2644 #ifdef CONFIG_64BIT
2645                                 case 8:
2646                                         u64[i] = ival;
2647                                         break;
2648 #endif
2649                                 case 4:
2650                                         u32[i] = ival;
2651                                         break;
2652                                 case 2:
2653                                         u16[i] = ival;
2654                                         break;
2655                                 case 1:
2656                                         u8[i] = ival;
2657                                         break;
2658                                 default:
2659                                         return -EINVAL;
2660                                 }
2661                         }
2662                 }
2663         }
2664
2665         return 0;
2666 }
2667 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2668
2669 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2670                                unsigned int mask, unsigned int val,
2671                                bool *change, bool force_write)
2672 {
2673         int ret;
2674         unsigned int tmp, orig;
2675
2676         if (change)
2677                 *change = false;
2678
2679         if (regmap_volatile(map, reg) && map->reg_update_bits) {
2680                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2681                 if (ret == 0 && change)
2682                         *change = true;
2683         } else {
2684                 ret = _regmap_read(map, reg, &orig);
2685                 if (ret != 0)
2686                         return ret;
2687
2688                 tmp = orig & ~mask;
2689                 tmp |= val & mask;
2690
2691                 if (force_write || (tmp != orig)) {
2692                         ret = _regmap_write(map, reg, tmp);
2693                         if (ret == 0 && change)
2694                                 *change = true;
2695                 }
2696         }
2697
2698         return ret;
2699 }
2700
2701 /**
2702  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2703  *
2704  * @map: Register map to update
2705  * @reg: Register to update
2706  * @mask: Bitmask to change
2707  * @val: New value for bitmask
2708  * @change: Boolean indicating if a write was done
2709  * @async: Boolean indicating asynchronously
2710  * @force: Boolean indicating use force update
2711  *
2712  * Perform a read/modify/write cycle on a register map with change, async, force
2713  * options.
2714  *
2715  * If async is true:
2716  *
2717  * With most buses the read must be done synchronously so this is most useful
2718  * for devices with a cache which do not need to interact with the hardware to
2719  * determine the current register value.
2720  *
2721  * Returns zero for success, a negative number on error.
2722  */
2723 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2724                             unsigned int mask, unsigned int val,
2725                             bool *change, bool async, bool force)
2726 {
2727         int ret;
2728
2729         map->lock(map->lock_arg);
2730
2731         map->async = async;
2732
2733         ret = _regmap_update_bits(map, reg, mask, val, change, force);
2734
2735         map->async = false;
2736
2737         map->unlock(map->lock_arg);
2738
2739         return ret;
2740 }
2741 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2742
2743 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2744 {
2745         struct regmap *map = async->map;
2746         bool wake;
2747
2748         trace_regmap_async_io_complete(map);
2749
2750         spin_lock(&map->async_lock);
2751         list_move(&async->list, &map->async_free);
2752         wake = list_empty(&map->async_list);
2753
2754         if (ret != 0)
2755                 map->async_ret = ret;
2756
2757         spin_unlock(&map->async_lock);
2758
2759         if (wake)
2760                 wake_up(&map->async_waitq);
2761 }
2762 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2763
2764 static int regmap_async_is_done(struct regmap *map)
2765 {
2766         unsigned long flags;
2767         int ret;
2768
2769         spin_lock_irqsave(&map->async_lock, flags);
2770         ret = list_empty(&map->async_list);
2771         spin_unlock_irqrestore(&map->async_lock, flags);
2772
2773         return ret;
2774 }
2775
2776 /**
2777  * regmap_async_complete - Ensure all asynchronous I/O has completed.
2778  *
2779  * @map: Map to operate on.
2780  *
2781  * Blocks until any pending asynchronous I/O has completed.  Returns
2782  * an error code for any failed I/O operations.
2783  */
2784 int regmap_async_complete(struct regmap *map)
2785 {
2786         unsigned long flags;
2787         int ret;
2788
2789         /* Nothing to do with no async support */
2790         if (!map->bus || !map->bus->async_write)
2791                 return 0;
2792
2793         trace_regmap_async_complete_start(map);
2794
2795         wait_event(map->async_waitq, regmap_async_is_done(map));
2796
2797         spin_lock_irqsave(&map->async_lock, flags);
2798         ret = map->async_ret;
2799         map->async_ret = 0;
2800         spin_unlock_irqrestore(&map->async_lock, flags);
2801
2802         trace_regmap_async_complete_done(map);
2803
2804         return ret;
2805 }
2806 EXPORT_SYMBOL_GPL(regmap_async_complete);
2807
2808 /**
2809  * regmap_register_patch - Register and apply register updates to be applied
2810  *                         on device initialistion
2811  *
2812  * @map: Register map to apply updates to.
2813  * @regs: Values to update.
2814  * @num_regs: Number of entries in regs.
2815  *
2816  * Register a set of register updates to be applied to the device
2817  * whenever the device registers are synchronised with the cache and
2818  * apply them immediately.  Typically this is used to apply
2819  * corrections to be applied to the device defaults on startup, such
2820  * as the updates some vendors provide to undocumented registers.
2821  *
2822  * The caller must ensure that this function cannot be called
2823  * concurrently with either itself or regcache_sync().
2824  */
2825 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2826                           int num_regs)
2827 {
2828         struct reg_sequence *p;
2829         int ret;
2830         bool bypass;
2831
2832         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2833             num_regs))
2834                 return 0;
2835
2836         p = krealloc(map->patch,
2837                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2838                      GFP_KERNEL);
2839         if (p) {
2840                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2841                 map->patch = p;
2842                 map->patch_regs += num_regs;
2843         } else {
2844                 return -ENOMEM;
2845         }
2846
2847         map->lock(map->lock_arg);
2848
2849         bypass = map->cache_bypass;
2850
2851         map->cache_bypass = true;
2852         map->async = true;
2853
2854         ret = _regmap_multi_reg_write(map, regs, num_regs);
2855
2856         map->async = false;
2857         map->cache_bypass = bypass;
2858
2859         map->unlock(map->lock_arg);
2860
2861         regmap_async_complete(map);
2862
2863         return ret;
2864 }
2865 EXPORT_SYMBOL_GPL(regmap_register_patch);
2866
2867 /**
2868  * regmap_get_val_bytes() - Report the size of a register value
2869  *
2870  * @map: Register map to operate on.
2871  *
2872  * Report the size of a register value, mainly intended to for use by
2873  * generic infrastructure built on top of regmap.
2874  */
2875 int regmap_get_val_bytes(struct regmap *map)
2876 {
2877         if (map->format.format_write)
2878                 return -EINVAL;
2879
2880         return map->format.val_bytes;
2881 }
2882 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2883
2884 /**
2885  * regmap_get_max_register() - Report the max register value
2886  *
2887  * @map: Register map to operate on.
2888  *
2889  * Report the max register value, mainly intended to for use by
2890  * generic infrastructure built on top of regmap.
2891  */
2892 int regmap_get_max_register(struct regmap *map)
2893 {
2894         return map->max_register ? map->max_register : -EINVAL;
2895 }
2896 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2897
2898 /**
2899  * regmap_get_reg_stride() - Report the register address stride
2900  *
2901  * @map: Register map to operate on.
2902  *
2903  * Report the register address stride, mainly intended to for use by
2904  * generic infrastructure built on top of regmap.
2905  */
2906 int regmap_get_reg_stride(struct regmap *map)
2907 {
2908         return map->reg_stride;
2909 }
2910 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2911
2912 int regmap_parse_val(struct regmap *map, const void *buf,
2913                         unsigned int *val)
2914 {
2915         if (!map->format.parse_val)
2916                 return -EINVAL;
2917
2918         *val = map->format.parse_val(buf);
2919
2920         return 0;
2921 }
2922 EXPORT_SYMBOL_GPL(regmap_parse_val);
2923
2924 static int __init regmap_initcall(void)
2925 {
2926         regmap_debugfs_initcall();
2927
2928         return 0;
2929 }
2930 postcore_initcall(regmap_initcall);