GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / base / regmap / regmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38         return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43
44
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46                                unsigned int mask, unsigned int val,
47                                bool *change, bool force_write);
48
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50                                 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52                             unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54                                        unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56                                  unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58                                  unsigned int val);
59
60 bool regmap_reg_in_ranges(unsigned int reg,
61                           const struct regmap_range *ranges,
62                           unsigned int nranges)
63 {
64         const struct regmap_range *r;
65         int i;
66
67         for (i = 0, r = ranges; i < nranges; i++, r++)
68                 if (regmap_reg_in_range(reg, r))
69                         return true;
70         return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75                               const struct regmap_access_table *table)
76 {
77         /* Check "no ranges" first */
78         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79                 return false;
80
81         /* In case zero "yes ranges" are supplied, any reg is OK */
82         if (!table->n_yes_ranges)
83                 return true;
84
85         return regmap_reg_in_ranges(reg, table->yes_ranges,
86                                     table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92         if (map->max_register && reg > map->max_register)
93                 return false;
94
95         if (map->writeable_reg)
96                 return map->writeable_reg(map->dev, reg);
97
98         if (map->wr_table)
99                 return regmap_check_range_table(map, reg, map->wr_table);
100
101         return true;
102 }
103
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106         int ret;
107         unsigned int val;
108
109         if (map->cache_type == REGCACHE_NONE)
110                 return false;
111
112         if (!map->cache_ops)
113                 return false;
114
115         if (map->max_register && reg > map->max_register)
116                 return false;
117
118         map->lock(map->lock_arg);
119         ret = regcache_read(map, reg, &val);
120         map->unlock(map->lock_arg);
121         if (ret)
122                 return false;
123
124         return true;
125 }
126
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129         if (!map->reg_read)
130                 return false;
131
132         if (map->max_register && reg > map->max_register)
133                 return false;
134
135         if (map->format.format_write)
136                 return false;
137
138         if (map->readable_reg)
139                 return map->readable_reg(map->dev, reg);
140
141         if (map->rd_table)
142                 return regmap_check_range_table(map, reg, map->rd_table);
143
144         return true;
145 }
146
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149         if (!map->format.format_write && !regmap_readable(map, reg))
150                 return false;
151
152         if (map->volatile_reg)
153                 return map->volatile_reg(map->dev, reg);
154
155         if (map->volatile_table)
156                 return regmap_check_range_table(map, reg, map->volatile_table);
157
158         if (map->cache_ops)
159                 return false;
160         else
161                 return true;
162 }
163
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166         if (!regmap_readable(map, reg))
167                 return false;
168
169         if (map->precious_reg)
170                 return map->precious_reg(map->dev, reg);
171
172         if (map->precious_table)
173                 return regmap_check_range_table(map, reg, map->precious_table);
174
175         return false;
176 }
177
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180         if (map->writeable_noinc_reg)
181                 return map->writeable_noinc_reg(map->dev, reg);
182
183         if (map->wr_noinc_table)
184                 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186         return true;
187 }
188
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191         if (map->readable_noinc_reg)
192                 return map->readable_noinc_reg(map->dev, reg);
193
194         if (map->rd_noinc_table)
195                 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197         return true;
198 }
199
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201         size_t num)
202 {
203         unsigned int i;
204
205         for (i = 0; i < num; i++)
206                 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207                         return false;
208
209         return true;
210 }
211
212 static void regmap_format_12_20_write(struct regmap *map,
213                                      unsigned int reg, unsigned int val)
214 {
215         u8 *out = map->work_buf;
216
217         out[0] = reg >> 4;
218         out[1] = (reg << 4) | (val >> 16);
219         out[2] = val >> 8;
220         out[3] = val;
221 }
222
223
224 static void regmap_format_2_6_write(struct regmap *map,
225                                      unsigned int reg, unsigned int val)
226 {
227         u8 *out = map->work_buf;
228
229         *out = (reg << 6) | val;
230 }
231
232 static void regmap_format_4_12_write(struct regmap *map,
233                                      unsigned int reg, unsigned int val)
234 {
235         __be16 *out = map->work_buf;
236         *out = cpu_to_be16((reg << 12) | val);
237 }
238
239 static void regmap_format_7_9_write(struct regmap *map,
240                                     unsigned int reg, unsigned int val)
241 {
242         __be16 *out = map->work_buf;
243         *out = cpu_to_be16((reg << 9) | val);
244 }
245
246 static void regmap_format_10_14_write(struct regmap *map,
247                                     unsigned int reg, unsigned int val)
248 {
249         u8 *out = map->work_buf;
250
251         out[2] = val;
252         out[1] = (val >> 8) | (reg << 6);
253         out[0] = reg >> 2;
254 }
255
256 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
257 {
258         u8 *b = buf;
259
260         b[0] = val << shift;
261 }
262
263 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
264 {
265         put_unaligned_be16(val << shift, buf);
266 }
267
268 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
269 {
270         put_unaligned_le16(val << shift, buf);
271 }
272
273 static void regmap_format_16_native(void *buf, unsigned int val,
274                                     unsigned int shift)
275 {
276         u16 v = val << shift;
277
278         memcpy(buf, &v, sizeof(v));
279 }
280
281 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
282 {
283         u8 *b = buf;
284
285         val <<= shift;
286
287         b[0] = val >> 16;
288         b[1] = val >> 8;
289         b[2] = val;
290 }
291
292 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
293 {
294         put_unaligned_be32(val << shift, buf);
295 }
296
297 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
298 {
299         put_unaligned_le32(val << shift, buf);
300 }
301
302 static void regmap_format_32_native(void *buf, unsigned int val,
303                                     unsigned int shift)
304 {
305         u32 v = val << shift;
306
307         memcpy(buf, &v, sizeof(v));
308 }
309
310 #ifdef CONFIG_64BIT
311 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
312 {
313         put_unaligned_be64((u64) val << shift, buf);
314 }
315
316 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
317 {
318         put_unaligned_le64((u64) val << shift, buf);
319 }
320
321 static void regmap_format_64_native(void *buf, unsigned int val,
322                                     unsigned int shift)
323 {
324         u64 v = (u64) val << shift;
325
326         memcpy(buf, &v, sizeof(v));
327 }
328 #endif
329
330 static void regmap_parse_inplace_noop(void *buf)
331 {
332 }
333
334 static unsigned int regmap_parse_8(const void *buf)
335 {
336         const u8 *b = buf;
337
338         return b[0];
339 }
340
341 static unsigned int regmap_parse_16_be(const void *buf)
342 {
343         return get_unaligned_be16(buf);
344 }
345
346 static unsigned int regmap_parse_16_le(const void *buf)
347 {
348         return get_unaligned_le16(buf);
349 }
350
351 static void regmap_parse_16_be_inplace(void *buf)
352 {
353         u16 v = get_unaligned_be16(buf);
354
355         memcpy(buf, &v, sizeof(v));
356 }
357
358 static void regmap_parse_16_le_inplace(void *buf)
359 {
360         u16 v = get_unaligned_le16(buf);
361
362         memcpy(buf, &v, sizeof(v));
363 }
364
365 static unsigned int regmap_parse_16_native(const void *buf)
366 {
367         u16 v;
368
369         memcpy(&v, buf, sizeof(v));
370         return v;
371 }
372
373 static unsigned int regmap_parse_24(const void *buf)
374 {
375         const u8 *b = buf;
376         unsigned int ret = b[2];
377         ret |= ((unsigned int)b[1]) << 8;
378         ret |= ((unsigned int)b[0]) << 16;
379
380         return ret;
381 }
382
383 static unsigned int regmap_parse_32_be(const void *buf)
384 {
385         return get_unaligned_be32(buf);
386 }
387
388 static unsigned int regmap_parse_32_le(const void *buf)
389 {
390         return get_unaligned_le32(buf);
391 }
392
393 static void regmap_parse_32_be_inplace(void *buf)
394 {
395         u32 v = get_unaligned_be32(buf);
396
397         memcpy(buf, &v, sizeof(v));
398 }
399
400 static void regmap_parse_32_le_inplace(void *buf)
401 {
402         u32 v = get_unaligned_le32(buf);
403
404         memcpy(buf, &v, sizeof(v));
405 }
406
407 static unsigned int regmap_parse_32_native(const void *buf)
408 {
409         u32 v;
410
411         memcpy(&v, buf, sizeof(v));
412         return v;
413 }
414
415 #ifdef CONFIG_64BIT
416 static unsigned int regmap_parse_64_be(const void *buf)
417 {
418         return get_unaligned_be64(buf);
419 }
420
421 static unsigned int regmap_parse_64_le(const void *buf)
422 {
423         return get_unaligned_le64(buf);
424 }
425
426 static void regmap_parse_64_be_inplace(void *buf)
427 {
428         u64 v =  get_unaligned_be64(buf);
429
430         memcpy(buf, &v, sizeof(v));
431 }
432
433 static void regmap_parse_64_le_inplace(void *buf)
434 {
435         u64 v = get_unaligned_le64(buf);
436
437         memcpy(buf, &v, sizeof(v));
438 }
439
440 static unsigned int regmap_parse_64_native(const void *buf)
441 {
442         u64 v;
443
444         memcpy(&v, buf, sizeof(v));
445         return v;
446 }
447 #endif
448
449 static void regmap_lock_hwlock(void *__map)
450 {
451         struct regmap *map = __map;
452
453         hwspin_lock_timeout(map->hwlock, UINT_MAX);
454 }
455
456 static void regmap_lock_hwlock_irq(void *__map)
457 {
458         struct regmap *map = __map;
459
460         hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
461 }
462
463 static void regmap_lock_hwlock_irqsave(void *__map)
464 {
465         struct regmap *map = __map;
466
467         hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
468                                     &map->spinlock_flags);
469 }
470
471 static void regmap_unlock_hwlock(void *__map)
472 {
473         struct regmap *map = __map;
474
475         hwspin_unlock(map->hwlock);
476 }
477
478 static void regmap_unlock_hwlock_irq(void *__map)
479 {
480         struct regmap *map = __map;
481
482         hwspin_unlock_irq(map->hwlock);
483 }
484
485 static void regmap_unlock_hwlock_irqrestore(void *__map)
486 {
487         struct regmap *map = __map;
488
489         hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
490 }
491
492 static void regmap_lock_unlock_none(void *__map)
493 {
494
495 }
496
497 static void regmap_lock_mutex(void *__map)
498 {
499         struct regmap *map = __map;
500         mutex_lock(&map->mutex);
501 }
502
503 static void regmap_unlock_mutex(void *__map)
504 {
505         struct regmap *map = __map;
506         mutex_unlock(&map->mutex);
507 }
508
509 static void regmap_lock_spinlock(void *__map)
510 __acquires(&map->spinlock)
511 {
512         struct regmap *map = __map;
513         unsigned long flags;
514
515         spin_lock_irqsave(&map->spinlock, flags);
516         map->spinlock_flags = flags;
517 }
518
519 static void regmap_unlock_spinlock(void *__map)
520 __releases(&map->spinlock)
521 {
522         struct regmap *map = __map;
523         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
524 }
525
526 static void dev_get_regmap_release(struct device *dev, void *res)
527 {
528         /*
529          * We don't actually have anything to do here; the goal here
530          * is not to manage the regmap but to provide a simple way to
531          * get the regmap back given a struct device.
532          */
533 }
534
535 static bool _regmap_range_add(struct regmap *map,
536                               struct regmap_range_node *data)
537 {
538         struct rb_root *root = &map->range_tree;
539         struct rb_node **new = &(root->rb_node), *parent = NULL;
540
541         while (*new) {
542                 struct regmap_range_node *this =
543                         rb_entry(*new, struct regmap_range_node, node);
544
545                 parent = *new;
546                 if (data->range_max < this->range_min)
547                         new = &((*new)->rb_left);
548                 else if (data->range_min > this->range_max)
549                         new = &((*new)->rb_right);
550                 else
551                         return false;
552         }
553
554         rb_link_node(&data->node, parent, new);
555         rb_insert_color(&data->node, root);
556
557         return true;
558 }
559
560 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
561                                                       unsigned int reg)
562 {
563         struct rb_node *node = map->range_tree.rb_node;
564
565         while (node) {
566                 struct regmap_range_node *this =
567                         rb_entry(node, struct regmap_range_node, node);
568
569                 if (reg < this->range_min)
570                         node = node->rb_left;
571                 else if (reg > this->range_max)
572                         node = node->rb_right;
573                 else
574                         return this;
575         }
576
577         return NULL;
578 }
579
580 static void regmap_range_exit(struct regmap *map)
581 {
582         struct rb_node *next;
583         struct regmap_range_node *range_node;
584
585         next = rb_first(&map->range_tree);
586         while (next) {
587                 range_node = rb_entry(next, struct regmap_range_node, node);
588                 next = rb_next(&range_node->node);
589                 rb_erase(&range_node->node, &map->range_tree);
590                 kfree(range_node);
591         }
592
593         kfree(map->selector_work_buf);
594 }
595
596 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
597 {
598         if (config->name) {
599                 const char *name = kstrdup_const(config->name, GFP_KERNEL);
600
601                 if (!name)
602                         return -ENOMEM;
603
604                 kfree_const(map->name);
605                 map->name = name;
606         }
607
608         return 0;
609 }
610
611 int regmap_attach_dev(struct device *dev, struct regmap *map,
612                       const struct regmap_config *config)
613 {
614         struct regmap **m;
615         int ret;
616
617         map->dev = dev;
618
619         ret = regmap_set_name(map, config);
620         if (ret)
621                 return ret;
622
623         regmap_debugfs_exit(map);
624         regmap_debugfs_init(map);
625
626         /* Add a devres resource for dev_get_regmap() */
627         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
628         if (!m) {
629                 regmap_debugfs_exit(map);
630                 return -ENOMEM;
631         }
632         *m = map;
633         devres_add(dev, m);
634
635         return 0;
636 }
637 EXPORT_SYMBOL_GPL(regmap_attach_dev);
638
639 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
640                                         const struct regmap_config *config)
641 {
642         enum regmap_endian endian;
643
644         /* Retrieve the endianness specification from the regmap config */
645         endian = config->reg_format_endian;
646
647         /* If the regmap config specified a non-default value, use that */
648         if (endian != REGMAP_ENDIAN_DEFAULT)
649                 return endian;
650
651         /* Retrieve the endianness specification from the bus config */
652         if (bus && bus->reg_format_endian_default)
653                 endian = bus->reg_format_endian_default;
654
655         /* If the bus specified a non-default value, use that */
656         if (endian != REGMAP_ENDIAN_DEFAULT)
657                 return endian;
658
659         /* Use this if no other value was found */
660         return REGMAP_ENDIAN_BIG;
661 }
662
663 enum regmap_endian regmap_get_val_endian(struct device *dev,
664                                          const struct regmap_bus *bus,
665                                          const struct regmap_config *config)
666 {
667         struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
668         enum regmap_endian endian;
669
670         /* Retrieve the endianness specification from the regmap config */
671         endian = config->val_format_endian;
672
673         /* If the regmap config specified a non-default value, use that */
674         if (endian != REGMAP_ENDIAN_DEFAULT)
675                 return endian;
676
677         /* If the firmware node exist try to get endianness from it */
678         if (fwnode_property_read_bool(fwnode, "big-endian"))
679                 endian = REGMAP_ENDIAN_BIG;
680         else if (fwnode_property_read_bool(fwnode, "little-endian"))
681                 endian = REGMAP_ENDIAN_LITTLE;
682         else if (fwnode_property_read_bool(fwnode, "native-endian"))
683                 endian = REGMAP_ENDIAN_NATIVE;
684
685         /* If the endianness was specified in fwnode, use that */
686         if (endian != REGMAP_ENDIAN_DEFAULT)
687                 return endian;
688
689         /* Retrieve the endianness specification from the bus config */
690         if (bus && bus->val_format_endian_default)
691                 endian = bus->val_format_endian_default;
692
693         /* If the bus specified a non-default value, use that */
694         if (endian != REGMAP_ENDIAN_DEFAULT)
695                 return endian;
696
697         /* Use this if no other value was found */
698         return REGMAP_ENDIAN_BIG;
699 }
700 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
701
702 struct regmap *__regmap_init(struct device *dev,
703                              const struct regmap_bus *bus,
704                              void *bus_context,
705                              const struct regmap_config *config,
706                              struct lock_class_key *lock_key,
707                              const char *lock_name)
708 {
709         struct regmap *map;
710         int ret = -EINVAL;
711         enum regmap_endian reg_endian, val_endian;
712         int i, j;
713
714         if (!config)
715                 goto err;
716
717         map = kzalloc(sizeof(*map), GFP_KERNEL);
718         if (map == NULL) {
719                 ret = -ENOMEM;
720                 goto err;
721         }
722
723         ret = regmap_set_name(map, config);
724         if (ret)
725                 goto err_map;
726
727         ret = -EINVAL; /* Later error paths rely on this */
728
729         if (config->disable_locking) {
730                 map->lock = map->unlock = regmap_lock_unlock_none;
731                 map->can_sleep = config->can_sleep;
732                 regmap_debugfs_disable(map);
733         } else if (config->lock && config->unlock) {
734                 map->lock = config->lock;
735                 map->unlock = config->unlock;
736                 map->lock_arg = config->lock_arg;
737                 map->can_sleep = config->can_sleep;
738         } else if (config->use_hwlock) {
739                 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
740                 if (!map->hwlock) {
741                         ret = -ENXIO;
742                         goto err_name;
743                 }
744
745                 switch (config->hwlock_mode) {
746                 case HWLOCK_IRQSTATE:
747                         map->lock = regmap_lock_hwlock_irqsave;
748                         map->unlock = regmap_unlock_hwlock_irqrestore;
749                         break;
750                 case HWLOCK_IRQ:
751                         map->lock = regmap_lock_hwlock_irq;
752                         map->unlock = regmap_unlock_hwlock_irq;
753                         break;
754                 default:
755                         map->lock = regmap_lock_hwlock;
756                         map->unlock = regmap_unlock_hwlock;
757                         break;
758                 }
759
760                 map->lock_arg = map;
761         } else {
762                 if ((bus && bus->fast_io) ||
763                     config->fast_io) {
764                         spin_lock_init(&map->spinlock);
765                         map->lock = regmap_lock_spinlock;
766                         map->unlock = regmap_unlock_spinlock;
767                         lockdep_set_class_and_name(&map->spinlock,
768                                                    lock_key, lock_name);
769                 } else {
770                         mutex_init(&map->mutex);
771                         map->lock = regmap_lock_mutex;
772                         map->unlock = regmap_unlock_mutex;
773                         map->can_sleep = true;
774                         lockdep_set_class_and_name(&map->mutex,
775                                                    lock_key, lock_name);
776                 }
777                 map->lock_arg = map;
778         }
779
780         /*
781          * When we write in fast-paths with regmap_bulk_write() don't allocate
782          * scratch buffers with sleeping allocations.
783          */
784         if ((bus && bus->fast_io) || config->fast_io)
785                 map->alloc_flags = GFP_ATOMIC;
786         else
787                 map->alloc_flags = GFP_KERNEL;
788
789         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
790         map->format.pad_bytes = config->pad_bits / 8;
791         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
792         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
793                         config->val_bits + config->pad_bits, 8);
794         map->reg_shift = config->pad_bits % 8;
795         if (config->reg_stride)
796                 map->reg_stride = config->reg_stride;
797         else
798                 map->reg_stride = 1;
799         if (is_power_of_2(map->reg_stride))
800                 map->reg_stride_order = ilog2(map->reg_stride);
801         else
802                 map->reg_stride_order = -1;
803         map->use_single_read = config->use_single_read || !bus || !bus->read;
804         map->use_single_write = config->use_single_write || !bus || !bus->write;
805         map->can_multi_write = config->can_multi_write && bus && bus->write;
806         if (bus) {
807                 map->max_raw_read = bus->max_raw_read;
808                 map->max_raw_write = bus->max_raw_write;
809         }
810         map->dev = dev;
811         map->bus = bus;
812         map->bus_context = bus_context;
813         map->max_register = config->max_register;
814         map->wr_table = config->wr_table;
815         map->rd_table = config->rd_table;
816         map->volatile_table = config->volatile_table;
817         map->precious_table = config->precious_table;
818         map->wr_noinc_table = config->wr_noinc_table;
819         map->rd_noinc_table = config->rd_noinc_table;
820         map->writeable_reg = config->writeable_reg;
821         map->readable_reg = config->readable_reg;
822         map->volatile_reg = config->volatile_reg;
823         map->precious_reg = config->precious_reg;
824         map->writeable_noinc_reg = config->writeable_noinc_reg;
825         map->readable_noinc_reg = config->readable_noinc_reg;
826         map->cache_type = config->cache_type;
827
828         spin_lock_init(&map->async_lock);
829         INIT_LIST_HEAD(&map->async_list);
830         INIT_LIST_HEAD(&map->async_free);
831         init_waitqueue_head(&map->async_waitq);
832
833         if (config->read_flag_mask ||
834             config->write_flag_mask ||
835             config->zero_flag_mask) {
836                 map->read_flag_mask = config->read_flag_mask;
837                 map->write_flag_mask = config->write_flag_mask;
838         } else if (bus) {
839                 map->read_flag_mask = bus->read_flag_mask;
840         }
841
842         if (!bus) {
843                 map->reg_read  = config->reg_read;
844                 map->reg_write = config->reg_write;
845
846                 map->defer_caching = false;
847                 goto skip_format_initialization;
848         } else if (!bus->read || !bus->write) {
849                 map->reg_read = _regmap_bus_reg_read;
850                 map->reg_write = _regmap_bus_reg_write;
851                 map->reg_update_bits = bus->reg_update_bits;
852
853                 map->defer_caching = false;
854                 goto skip_format_initialization;
855         } else {
856                 map->reg_read  = _regmap_bus_read;
857                 map->reg_update_bits = bus->reg_update_bits;
858         }
859
860         reg_endian = regmap_get_reg_endian(bus, config);
861         val_endian = regmap_get_val_endian(dev, bus, config);
862
863         switch (config->reg_bits + map->reg_shift) {
864         case 2:
865                 switch (config->val_bits) {
866                 case 6:
867                         map->format.format_write = regmap_format_2_6_write;
868                         break;
869                 default:
870                         goto err_hwlock;
871                 }
872                 break;
873
874         case 4:
875                 switch (config->val_bits) {
876                 case 12:
877                         map->format.format_write = regmap_format_4_12_write;
878                         break;
879                 default:
880                         goto err_hwlock;
881                 }
882                 break;
883
884         case 7:
885                 switch (config->val_bits) {
886                 case 9:
887                         map->format.format_write = regmap_format_7_9_write;
888                         break;
889                 default:
890                         goto err_hwlock;
891                 }
892                 break;
893
894         case 10:
895                 switch (config->val_bits) {
896                 case 14:
897                         map->format.format_write = regmap_format_10_14_write;
898                         break;
899                 default:
900                         goto err_hwlock;
901                 }
902                 break;
903
904         case 12:
905                 switch (config->val_bits) {
906                 case 20:
907                         map->format.format_write = regmap_format_12_20_write;
908                         break;
909                 default:
910                         goto err_hwlock;
911                 }
912                 break;
913
914         case 8:
915                 map->format.format_reg = regmap_format_8;
916                 break;
917
918         case 16:
919                 switch (reg_endian) {
920                 case REGMAP_ENDIAN_BIG:
921                         map->format.format_reg = regmap_format_16_be;
922                         break;
923                 case REGMAP_ENDIAN_LITTLE:
924                         map->format.format_reg = regmap_format_16_le;
925                         break;
926                 case REGMAP_ENDIAN_NATIVE:
927                         map->format.format_reg = regmap_format_16_native;
928                         break;
929                 default:
930                         goto err_hwlock;
931                 }
932                 break;
933
934         case 24:
935                 if (reg_endian != REGMAP_ENDIAN_BIG)
936                         goto err_hwlock;
937                 map->format.format_reg = regmap_format_24;
938                 break;
939
940         case 32:
941                 switch (reg_endian) {
942                 case REGMAP_ENDIAN_BIG:
943                         map->format.format_reg = regmap_format_32_be;
944                         break;
945                 case REGMAP_ENDIAN_LITTLE:
946                         map->format.format_reg = regmap_format_32_le;
947                         break;
948                 case REGMAP_ENDIAN_NATIVE:
949                         map->format.format_reg = regmap_format_32_native;
950                         break;
951                 default:
952                         goto err_hwlock;
953                 }
954                 break;
955
956 #ifdef CONFIG_64BIT
957         case 64:
958                 switch (reg_endian) {
959                 case REGMAP_ENDIAN_BIG:
960                         map->format.format_reg = regmap_format_64_be;
961                         break;
962                 case REGMAP_ENDIAN_LITTLE:
963                         map->format.format_reg = regmap_format_64_le;
964                         break;
965                 case REGMAP_ENDIAN_NATIVE:
966                         map->format.format_reg = regmap_format_64_native;
967                         break;
968                 default:
969                         goto err_hwlock;
970                 }
971                 break;
972 #endif
973
974         default:
975                 goto err_hwlock;
976         }
977
978         if (val_endian == REGMAP_ENDIAN_NATIVE)
979                 map->format.parse_inplace = regmap_parse_inplace_noop;
980
981         switch (config->val_bits) {
982         case 8:
983                 map->format.format_val = regmap_format_8;
984                 map->format.parse_val = regmap_parse_8;
985                 map->format.parse_inplace = regmap_parse_inplace_noop;
986                 break;
987         case 16:
988                 switch (val_endian) {
989                 case REGMAP_ENDIAN_BIG:
990                         map->format.format_val = regmap_format_16_be;
991                         map->format.parse_val = regmap_parse_16_be;
992                         map->format.parse_inplace = regmap_parse_16_be_inplace;
993                         break;
994                 case REGMAP_ENDIAN_LITTLE:
995                         map->format.format_val = regmap_format_16_le;
996                         map->format.parse_val = regmap_parse_16_le;
997                         map->format.parse_inplace = regmap_parse_16_le_inplace;
998                         break;
999                 case REGMAP_ENDIAN_NATIVE:
1000                         map->format.format_val = regmap_format_16_native;
1001                         map->format.parse_val = regmap_parse_16_native;
1002                         break;
1003                 default:
1004                         goto err_hwlock;
1005                 }
1006                 break;
1007         case 24:
1008                 if (val_endian != REGMAP_ENDIAN_BIG)
1009                         goto err_hwlock;
1010                 map->format.format_val = regmap_format_24;
1011                 map->format.parse_val = regmap_parse_24;
1012                 break;
1013         case 32:
1014                 switch (val_endian) {
1015                 case REGMAP_ENDIAN_BIG:
1016                         map->format.format_val = regmap_format_32_be;
1017                         map->format.parse_val = regmap_parse_32_be;
1018                         map->format.parse_inplace = regmap_parse_32_be_inplace;
1019                         break;
1020                 case REGMAP_ENDIAN_LITTLE:
1021                         map->format.format_val = regmap_format_32_le;
1022                         map->format.parse_val = regmap_parse_32_le;
1023                         map->format.parse_inplace = regmap_parse_32_le_inplace;
1024                         break;
1025                 case REGMAP_ENDIAN_NATIVE:
1026                         map->format.format_val = regmap_format_32_native;
1027                         map->format.parse_val = regmap_parse_32_native;
1028                         break;
1029                 default:
1030                         goto err_hwlock;
1031                 }
1032                 break;
1033 #ifdef CONFIG_64BIT
1034         case 64:
1035                 switch (val_endian) {
1036                 case REGMAP_ENDIAN_BIG:
1037                         map->format.format_val = regmap_format_64_be;
1038                         map->format.parse_val = regmap_parse_64_be;
1039                         map->format.parse_inplace = regmap_parse_64_be_inplace;
1040                         break;
1041                 case REGMAP_ENDIAN_LITTLE:
1042                         map->format.format_val = regmap_format_64_le;
1043                         map->format.parse_val = regmap_parse_64_le;
1044                         map->format.parse_inplace = regmap_parse_64_le_inplace;
1045                         break;
1046                 case REGMAP_ENDIAN_NATIVE:
1047                         map->format.format_val = regmap_format_64_native;
1048                         map->format.parse_val = regmap_parse_64_native;
1049                         break;
1050                 default:
1051                         goto err_hwlock;
1052                 }
1053                 break;
1054 #endif
1055         }
1056
1057         if (map->format.format_write) {
1058                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1059                     (val_endian != REGMAP_ENDIAN_BIG))
1060                         goto err_hwlock;
1061                 map->use_single_write = true;
1062         }
1063
1064         if (!map->format.format_write &&
1065             !(map->format.format_reg && map->format.format_val))
1066                 goto err_hwlock;
1067
1068         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1069         if (map->work_buf == NULL) {
1070                 ret = -ENOMEM;
1071                 goto err_hwlock;
1072         }
1073
1074         if (map->format.format_write) {
1075                 map->defer_caching = false;
1076                 map->reg_write = _regmap_bus_formatted_write;
1077         } else if (map->format.format_val) {
1078                 map->defer_caching = true;
1079                 map->reg_write = _regmap_bus_raw_write;
1080         }
1081
1082 skip_format_initialization:
1083
1084         map->range_tree = RB_ROOT;
1085         for (i = 0; i < config->num_ranges; i++) {
1086                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1087                 struct regmap_range_node *new;
1088
1089                 /* Sanity check */
1090                 if (range_cfg->range_max < range_cfg->range_min) {
1091                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1092                                 range_cfg->range_max, range_cfg->range_min);
1093                         goto err_range;
1094                 }
1095
1096                 if (range_cfg->range_max > map->max_register) {
1097                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1098                                 range_cfg->range_max, map->max_register);
1099                         goto err_range;
1100                 }
1101
1102                 if (range_cfg->selector_reg > map->max_register) {
1103                         dev_err(map->dev,
1104                                 "Invalid range %d: selector out of map\n", i);
1105                         goto err_range;
1106                 }
1107
1108                 if (range_cfg->window_len == 0) {
1109                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
1110                                 i);
1111                         goto err_range;
1112                 }
1113
1114                 /* Make sure, that this register range has no selector
1115                    or data window within its boundary */
1116                 for (j = 0; j < config->num_ranges; j++) {
1117                         unsigned sel_reg = config->ranges[j].selector_reg;
1118                         unsigned win_min = config->ranges[j].window_start;
1119                         unsigned win_max = win_min +
1120                                            config->ranges[j].window_len - 1;
1121
1122                         /* Allow data window inside its own virtual range */
1123                         if (j == i)
1124                                 continue;
1125
1126                         if (range_cfg->range_min <= sel_reg &&
1127                             sel_reg <= range_cfg->range_max) {
1128                                 dev_err(map->dev,
1129                                         "Range %d: selector for %d in window\n",
1130                                         i, j);
1131                                 goto err_range;
1132                         }
1133
1134                         if (!(win_max < range_cfg->range_min ||
1135                               win_min > range_cfg->range_max)) {
1136                                 dev_err(map->dev,
1137                                         "Range %d: window for %d in window\n",
1138                                         i, j);
1139                                 goto err_range;
1140                         }
1141                 }
1142
1143                 new = kzalloc(sizeof(*new), GFP_KERNEL);
1144                 if (new == NULL) {
1145                         ret = -ENOMEM;
1146                         goto err_range;
1147                 }
1148
1149                 new->map = map;
1150                 new->name = range_cfg->name;
1151                 new->range_min = range_cfg->range_min;
1152                 new->range_max = range_cfg->range_max;
1153                 new->selector_reg = range_cfg->selector_reg;
1154                 new->selector_mask = range_cfg->selector_mask;
1155                 new->selector_shift = range_cfg->selector_shift;
1156                 new->window_start = range_cfg->window_start;
1157                 new->window_len = range_cfg->window_len;
1158
1159                 if (!_regmap_range_add(map, new)) {
1160                         dev_err(map->dev, "Failed to add range %d\n", i);
1161                         kfree(new);
1162                         goto err_range;
1163                 }
1164
1165                 if (map->selector_work_buf == NULL) {
1166                         map->selector_work_buf =
1167                                 kzalloc(map->format.buf_size, GFP_KERNEL);
1168                         if (map->selector_work_buf == NULL) {
1169                                 ret = -ENOMEM;
1170                                 goto err_range;
1171                         }
1172                 }
1173         }
1174
1175         ret = regcache_init(map, config);
1176         if (ret != 0)
1177                 goto err_range;
1178
1179         if (dev) {
1180                 ret = regmap_attach_dev(dev, map, config);
1181                 if (ret != 0)
1182                         goto err_regcache;
1183         } else {
1184                 regmap_debugfs_init(map);
1185         }
1186
1187         return map;
1188
1189 err_regcache:
1190         regcache_exit(map);
1191 err_range:
1192         regmap_range_exit(map);
1193         kfree(map->work_buf);
1194 err_hwlock:
1195         if (map->hwlock)
1196                 hwspin_lock_free(map->hwlock);
1197 err_name:
1198         kfree_const(map->name);
1199 err_map:
1200         kfree(map);
1201 err:
1202         return ERR_PTR(ret);
1203 }
1204 EXPORT_SYMBOL_GPL(__regmap_init);
1205
1206 static void devm_regmap_release(struct device *dev, void *res)
1207 {
1208         regmap_exit(*(struct regmap **)res);
1209 }
1210
1211 struct regmap *__devm_regmap_init(struct device *dev,
1212                                   const struct regmap_bus *bus,
1213                                   void *bus_context,
1214                                   const struct regmap_config *config,
1215                                   struct lock_class_key *lock_key,
1216                                   const char *lock_name)
1217 {
1218         struct regmap **ptr, *regmap;
1219
1220         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1221         if (!ptr)
1222                 return ERR_PTR(-ENOMEM);
1223
1224         regmap = __regmap_init(dev, bus, bus_context, config,
1225                                lock_key, lock_name);
1226         if (!IS_ERR(regmap)) {
1227                 *ptr = regmap;
1228                 devres_add(dev, ptr);
1229         } else {
1230                 devres_free(ptr);
1231         }
1232
1233         return regmap;
1234 }
1235 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1236
1237 static void regmap_field_init(struct regmap_field *rm_field,
1238         struct regmap *regmap, struct reg_field reg_field)
1239 {
1240         rm_field->regmap = regmap;
1241         rm_field->reg = reg_field.reg;
1242         rm_field->shift = reg_field.lsb;
1243         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1244         rm_field->id_size = reg_field.id_size;
1245         rm_field->id_offset = reg_field.id_offset;
1246 }
1247
1248 /**
1249  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1250  *
1251  * @dev: Device that will be interacted with
1252  * @regmap: regmap bank in which this register field is located.
1253  * @reg_field: Register field with in the bank.
1254  *
1255  * The return value will be an ERR_PTR() on error or a valid pointer
1256  * to a struct regmap_field. The regmap_field will be automatically freed
1257  * by the device management code.
1258  */
1259 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1260                 struct regmap *regmap, struct reg_field reg_field)
1261 {
1262         struct regmap_field *rm_field = devm_kzalloc(dev,
1263                                         sizeof(*rm_field), GFP_KERNEL);
1264         if (!rm_field)
1265                 return ERR_PTR(-ENOMEM);
1266
1267         regmap_field_init(rm_field, regmap, reg_field);
1268
1269         return rm_field;
1270
1271 }
1272 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1273
1274
1275 /**
1276  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1277  *
1278  * @regmap: regmap bank in which this register field is located.
1279  * @rm_field: regmap register fields within the bank.
1280  * @reg_field: Register fields within the bank.
1281  * @num_fields: Number of register fields.
1282  *
1283  * The return value will be an -ENOMEM on error or zero for success.
1284  * Newly allocated regmap_fields should be freed by calling
1285  * regmap_field_bulk_free()
1286  */
1287 int regmap_field_bulk_alloc(struct regmap *regmap,
1288                             struct regmap_field **rm_field,
1289                             struct reg_field *reg_field,
1290                             int num_fields)
1291 {
1292         struct regmap_field *rf;
1293         int i;
1294
1295         rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1296         if (!rf)
1297                 return -ENOMEM;
1298
1299         for (i = 0; i < num_fields; i++) {
1300                 regmap_field_init(&rf[i], regmap, reg_field[i]);
1301                 rm_field[i] = &rf[i];
1302         }
1303
1304         return 0;
1305 }
1306 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1307
1308 /**
1309  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1310  * fields.
1311  *
1312  * @dev: Device that will be interacted with
1313  * @regmap: regmap bank in which this register field is located.
1314  * @rm_field: regmap register fields within the bank.
1315  * @reg_field: Register fields within the bank.
1316  * @num_fields: Number of register fields.
1317  *
1318  * The return value will be an -ENOMEM on error or zero for success.
1319  * Newly allocated regmap_fields will be automatically freed by the
1320  * device management code.
1321  */
1322 int devm_regmap_field_bulk_alloc(struct device *dev,
1323                                  struct regmap *regmap,
1324                                  struct regmap_field **rm_field,
1325                                  struct reg_field *reg_field,
1326                                  int num_fields)
1327 {
1328         struct regmap_field *rf;
1329         int i;
1330
1331         rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1332         if (!rf)
1333                 return -ENOMEM;
1334
1335         for (i = 0; i < num_fields; i++) {
1336                 regmap_field_init(&rf[i], regmap, reg_field[i]);
1337                 rm_field[i] = &rf[i];
1338         }
1339
1340         return 0;
1341 }
1342 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1343
1344 /**
1345  * regmap_field_bulk_free() - Free register field allocated using
1346  *                       regmap_field_bulk_alloc.
1347  *
1348  * @field: regmap fields which should be freed.
1349  */
1350 void regmap_field_bulk_free(struct regmap_field *field)
1351 {
1352         kfree(field);
1353 }
1354 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1355
1356 /**
1357  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1358  *                            devm_regmap_field_bulk_alloc.
1359  *
1360  * @dev: Device that will be interacted with
1361  * @field: regmap field which should be freed.
1362  *
1363  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1364  * drivers need not call this function, as the memory allocated via devm
1365  * will be freed as per device-driver life-cycle.
1366  */
1367 void devm_regmap_field_bulk_free(struct device *dev,
1368                                  struct regmap_field *field)
1369 {
1370         devm_kfree(dev, field);
1371 }
1372 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1373
1374 /**
1375  * devm_regmap_field_free() - Free a register field allocated using
1376  *                            devm_regmap_field_alloc.
1377  *
1378  * @dev: Device that will be interacted with
1379  * @field: regmap field which should be freed.
1380  *
1381  * Free register field allocated using devm_regmap_field_alloc(). Usually
1382  * drivers need not call this function, as the memory allocated via devm
1383  * will be freed as per device-driver life-cyle.
1384  */
1385 void devm_regmap_field_free(struct device *dev,
1386         struct regmap_field *field)
1387 {
1388         devm_kfree(dev, field);
1389 }
1390 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1391
1392 /**
1393  * regmap_field_alloc() - Allocate and initialise a register field.
1394  *
1395  * @regmap: regmap bank in which this register field is located.
1396  * @reg_field: Register field with in the bank.
1397  *
1398  * The return value will be an ERR_PTR() on error or a valid pointer
1399  * to a struct regmap_field. The regmap_field should be freed by the
1400  * user once its finished working with it using regmap_field_free().
1401  */
1402 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1403                 struct reg_field reg_field)
1404 {
1405         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1406
1407         if (!rm_field)
1408                 return ERR_PTR(-ENOMEM);
1409
1410         regmap_field_init(rm_field, regmap, reg_field);
1411
1412         return rm_field;
1413 }
1414 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1415
1416 /**
1417  * regmap_field_free() - Free register field allocated using
1418  *                       regmap_field_alloc.
1419  *
1420  * @field: regmap field which should be freed.
1421  */
1422 void regmap_field_free(struct regmap_field *field)
1423 {
1424         kfree(field);
1425 }
1426 EXPORT_SYMBOL_GPL(regmap_field_free);
1427
1428 /**
1429  * regmap_reinit_cache() - Reinitialise the current register cache
1430  *
1431  * @map: Register map to operate on.
1432  * @config: New configuration.  Only the cache data will be used.
1433  *
1434  * Discard any existing register cache for the map and initialize a
1435  * new cache.  This can be used to restore the cache to defaults or to
1436  * update the cache configuration to reflect runtime discovery of the
1437  * hardware.
1438  *
1439  * No explicit locking is done here, the user needs to ensure that
1440  * this function will not race with other calls to regmap.
1441  */
1442 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1443 {
1444         int ret;
1445
1446         regcache_exit(map);
1447         regmap_debugfs_exit(map);
1448
1449         map->max_register = config->max_register;
1450         map->writeable_reg = config->writeable_reg;
1451         map->readable_reg = config->readable_reg;
1452         map->volatile_reg = config->volatile_reg;
1453         map->precious_reg = config->precious_reg;
1454         map->writeable_noinc_reg = config->writeable_noinc_reg;
1455         map->readable_noinc_reg = config->readable_noinc_reg;
1456         map->cache_type = config->cache_type;
1457
1458         ret = regmap_set_name(map, config);
1459         if (ret)
1460                 return ret;
1461
1462         regmap_debugfs_init(map);
1463
1464         map->cache_bypass = false;
1465         map->cache_only = false;
1466
1467         return regcache_init(map, config);
1468 }
1469 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1470
1471 /**
1472  * regmap_exit() - Free a previously allocated register map
1473  *
1474  * @map: Register map to operate on.
1475  */
1476 void regmap_exit(struct regmap *map)
1477 {
1478         struct regmap_async *async;
1479
1480         regcache_exit(map);
1481         regmap_debugfs_exit(map);
1482         regmap_range_exit(map);
1483         if (map->bus && map->bus->free_context)
1484                 map->bus->free_context(map->bus_context);
1485         kfree(map->work_buf);
1486         while (!list_empty(&map->async_free)) {
1487                 async = list_first_entry_or_null(&map->async_free,
1488                                                  struct regmap_async,
1489                                                  list);
1490                 list_del(&async->list);
1491                 kfree(async->work_buf);
1492                 kfree(async);
1493         }
1494         if (map->hwlock)
1495                 hwspin_lock_free(map->hwlock);
1496         if (map->lock == regmap_lock_mutex)
1497                 mutex_destroy(&map->mutex);
1498         kfree_const(map->name);
1499         kfree(map->patch);
1500         kfree(map);
1501 }
1502 EXPORT_SYMBOL_GPL(regmap_exit);
1503
1504 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1505 {
1506         struct regmap **r = res;
1507         if (!r || !*r) {
1508                 WARN_ON(!r || !*r);
1509                 return 0;
1510         }
1511
1512         /* If the user didn't specify a name match any */
1513         if (data)
1514                 return !strcmp((*r)->name, data);
1515         else
1516                 return 1;
1517 }
1518
1519 /**
1520  * dev_get_regmap() - Obtain the regmap (if any) for a device
1521  *
1522  * @dev: Device to retrieve the map for
1523  * @name: Optional name for the register map, usually NULL.
1524  *
1525  * Returns the regmap for the device if one is present, or NULL.  If
1526  * name is specified then it must match the name specified when
1527  * registering the device, if it is NULL then the first regmap found
1528  * will be used.  Devices with multiple register maps are very rare,
1529  * generic code should normally not need to specify a name.
1530  */
1531 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1532 {
1533         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1534                                         dev_get_regmap_match, (void *)name);
1535
1536         if (!r)
1537                 return NULL;
1538         return *r;
1539 }
1540 EXPORT_SYMBOL_GPL(dev_get_regmap);
1541
1542 /**
1543  * regmap_get_device() - Obtain the device from a regmap
1544  *
1545  * @map: Register map to operate on.
1546  *
1547  * Returns the underlying device that the regmap has been created for.
1548  */
1549 struct device *regmap_get_device(struct regmap *map)
1550 {
1551         return map->dev;
1552 }
1553 EXPORT_SYMBOL_GPL(regmap_get_device);
1554
1555 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1556                                struct regmap_range_node *range,
1557                                unsigned int val_num)
1558 {
1559         void *orig_work_buf;
1560         unsigned int win_offset;
1561         unsigned int win_page;
1562         bool page_chg;
1563         int ret;
1564
1565         win_offset = (*reg - range->range_min) % range->window_len;
1566         win_page = (*reg - range->range_min) / range->window_len;
1567
1568         if (val_num > 1) {
1569                 /* Bulk write shouldn't cross range boundary */
1570                 if (*reg + val_num - 1 > range->range_max)
1571                         return -EINVAL;
1572
1573                 /* ... or single page boundary */
1574                 if (val_num > range->window_len - win_offset)
1575                         return -EINVAL;
1576         }
1577
1578         /* It is possible to have selector register inside data window.
1579            In that case, selector register is located on every page and
1580            it needs no page switching, when accessed alone. */
1581         if (val_num > 1 ||
1582             range->window_start + win_offset != range->selector_reg) {
1583                 /* Use separate work_buf during page switching */
1584                 orig_work_buf = map->work_buf;
1585                 map->work_buf = map->selector_work_buf;
1586
1587                 ret = _regmap_update_bits(map, range->selector_reg,
1588                                           range->selector_mask,
1589                                           win_page << range->selector_shift,
1590                                           &page_chg, false);
1591
1592                 map->work_buf = orig_work_buf;
1593
1594                 if (ret != 0)
1595                         return ret;
1596         }
1597
1598         *reg = range->window_start + win_offset;
1599
1600         return 0;
1601 }
1602
1603 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1604                                           unsigned long mask)
1605 {
1606         u8 *buf;
1607         int i;
1608
1609         if (!mask || !map->work_buf)
1610                 return;
1611
1612         buf = map->work_buf;
1613
1614         for (i = 0; i < max_bytes; i++)
1615                 buf[i] |= (mask >> (8 * i)) & 0xff;
1616 }
1617
1618 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1619                                   const void *val, size_t val_len, bool noinc)
1620 {
1621         struct regmap_range_node *range;
1622         unsigned long flags;
1623         void *work_val = map->work_buf + map->format.reg_bytes +
1624                 map->format.pad_bytes;
1625         void *buf;
1626         int ret = -ENOTSUPP;
1627         size_t len;
1628         int i;
1629
1630         WARN_ON(!map->bus);
1631
1632         /* Check for unwritable or noinc registers in range
1633          * before we start
1634          */
1635         if (!regmap_writeable_noinc(map, reg)) {
1636                 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1637                         unsigned int element =
1638                                 reg + regmap_get_offset(map, i);
1639                         if (!regmap_writeable(map, element) ||
1640                                 regmap_writeable_noinc(map, element))
1641                                 return -EINVAL;
1642                 }
1643         }
1644
1645         if (!map->cache_bypass && map->format.parse_val) {
1646                 unsigned int ival;
1647                 int val_bytes = map->format.val_bytes;
1648                 for (i = 0; i < val_len / val_bytes; i++) {
1649                         ival = map->format.parse_val(val + (i * val_bytes));
1650                         ret = regcache_write(map,
1651                                              reg + regmap_get_offset(map, i),
1652                                              ival);
1653                         if (ret) {
1654                                 dev_err(map->dev,
1655                                         "Error in caching of register: %x ret: %d\n",
1656                                         reg + regmap_get_offset(map, i), ret);
1657                                 return ret;
1658                         }
1659                 }
1660                 if (map->cache_only) {
1661                         map->cache_dirty = true;
1662                         return 0;
1663                 }
1664         }
1665
1666         range = _regmap_range_lookup(map, reg);
1667         if (range) {
1668                 int val_num = val_len / map->format.val_bytes;
1669                 int win_offset = (reg - range->range_min) % range->window_len;
1670                 int win_residue = range->window_len - win_offset;
1671
1672                 /* If the write goes beyond the end of the window split it */
1673                 while (val_num > win_residue) {
1674                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1675                                 win_residue, val_len / map->format.val_bytes);
1676                         ret = _regmap_raw_write_impl(map, reg, val,
1677                                                      win_residue *
1678                                                      map->format.val_bytes, noinc);
1679                         if (ret != 0)
1680                                 return ret;
1681
1682                         reg += win_residue;
1683                         val_num -= win_residue;
1684                         val += win_residue * map->format.val_bytes;
1685                         val_len -= win_residue * map->format.val_bytes;
1686
1687                         win_offset = (reg - range->range_min) %
1688                                 range->window_len;
1689                         win_residue = range->window_len - win_offset;
1690                 }
1691
1692                 ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1693                 if (ret != 0)
1694                         return ret;
1695         }
1696
1697         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1698         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1699                                       map->write_flag_mask);
1700
1701         /*
1702          * Essentially all I/O mechanisms will be faster with a single
1703          * buffer to write.  Since register syncs often generate raw
1704          * writes of single registers optimise that case.
1705          */
1706         if (val != work_val && val_len == map->format.val_bytes) {
1707                 memcpy(work_val, val, map->format.val_bytes);
1708                 val = work_val;
1709         }
1710
1711         if (map->async && map->bus->async_write) {
1712                 struct regmap_async *async;
1713
1714                 trace_regmap_async_write_start(map, reg, val_len);
1715
1716                 spin_lock_irqsave(&map->async_lock, flags);
1717                 async = list_first_entry_or_null(&map->async_free,
1718                                                  struct regmap_async,
1719                                                  list);
1720                 if (async)
1721                         list_del(&async->list);
1722                 spin_unlock_irqrestore(&map->async_lock, flags);
1723
1724                 if (!async) {
1725                         async = map->bus->async_alloc();
1726                         if (!async)
1727                                 return -ENOMEM;
1728
1729                         async->work_buf = kzalloc(map->format.buf_size,
1730                                                   GFP_KERNEL | GFP_DMA);
1731                         if (!async->work_buf) {
1732                                 kfree(async);
1733                                 return -ENOMEM;
1734                         }
1735                 }
1736
1737                 async->map = map;
1738
1739                 /* If the caller supplied the value we can use it safely. */
1740                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1741                        map->format.reg_bytes + map->format.val_bytes);
1742
1743                 spin_lock_irqsave(&map->async_lock, flags);
1744                 list_add_tail(&async->list, &map->async_list);
1745                 spin_unlock_irqrestore(&map->async_lock, flags);
1746
1747                 if (val != work_val)
1748                         ret = map->bus->async_write(map->bus_context,
1749                                                     async->work_buf,
1750                                                     map->format.reg_bytes +
1751                                                     map->format.pad_bytes,
1752                                                     val, val_len, async);
1753                 else
1754                         ret = map->bus->async_write(map->bus_context,
1755                                                     async->work_buf,
1756                                                     map->format.reg_bytes +
1757                                                     map->format.pad_bytes +
1758                                                     val_len, NULL, 0, async);
1759
1760                 if (ret != 0) {
1761                         dev_err(map->dev, "Failed to schedule write: %d\n",
1762                                 ret);
1763
1764                         spin_lock_irqsave(&map->async_lock, flags);
1765                         list_move(&async->list, &map->async_free);
1766                         spin_unlock_irqrestore(&map->async_lock, flags);
1767                 }
1768
1769                 return ret;
1770         }
1771
1772         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1773
1774         /* If we're doing a single register write we can probably just
1775          * send the work_buf directly, otherwise try to do a gather
1776          * write.
1777          */
1778         if (val == work_val)
1779                 ret = map->bus->write(map->bus_context, map->work_buf,
1780                                       map->format.reg_bytes +
1781                                       map->format.pad_bytes +
1782                                       val_len);
1783         else if (map->bus->gather_write)
1784                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1785                                              map->format.reg_bytes +
1786                                              map->format.pad_bytes,
1787                                              val, val_len);
1788         else
1789                 ret = -ENOTSUPP;
1790
1791         /* If that didn't work fall back on linearising by hand. */
1792         if (ret == -ENOTSUPP) {
1793                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1794                 buf = kzalloc(len, GFP_KERNEL);
1795                 if (!buf)
1796                         return -ENOMEM;
1797
1798                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1799                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1800                        val, val_len);
1801                 ret = map->bus->write(map->bus_context, buf, len);
1802
1803                 kfree(buf);
1804         } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1805                 /* regcache_drop_region() takes lock that we already have,
1806                  * thus call map->cache_ops->drop() directly
1807                  */
1808                 if (map->cache_ops && map->cache_ops->drop)
1809                         map->cache_ops->drop(map, reg, reg + 1);
1810         }
1811
1812         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1813
1814         return ret;
1815 }
1816
1817 /**
1818  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1819  *
1820  * @map: Map to check.
1821  */
1822 bool regmap_can_raw_write(struct regmap *map)
1823 {
1824         return map->bus && map->bus->write && map->format.format_val &&
1825                 map->format.format_reg;
1826 }
1827 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1828
1829 /**
1830  * regmap_get_raw_read_max - Get the maximum size we can read
1831  *
1832  * @map: Map to check.
1833  */
1834 size_t regmap_get_raw_read_max(struct regmap *map)
1835 {
1836         return map->max_raw_read;
1837 }
1838 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1839
1840 /**
1841  * regmap_get_raw_write_max - Get the maximum size we can read
1842  *
1843  * @map: Map to check.
1844  */
1845 size_t regmap_get_raw_write_max(struct regmap *map)
1846 {
1847         return map->max_raw_write;
1848 }
1849 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1850
1851 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1852                                        unsigned int val)
1853 {
1854         int ret;
1855         struct regmap_range_node *range;
1856         struct regmap *map = context;
1857
1858         WARN_ON(!map->bus || !map->format.format_write);
1859
1860         range = _regmap_range_lookup(map, reg);
1861         if (range) {
1862                 ret = _regmap_select_page(map, &reg, range, 1);
1863                 if (ret != 0)
1864                         return ret;
1865         }
1866
1867         map->format.format_write(map, reg, val);
1868
1869         trace_regmap_hw_write_start(map, reg, 1);
1870
1871         ret = map->bus->write(map->bus_context, map->work_buf,
1872                               map->format.buf_size);
1873
1874         trace_regmap_hw_write_done(map, reg, 1);
1875
1876         return ret;
1877 }
1878
1879 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1880                                  unsigned int val)
1881 {
1882         struct regmap *map = context;
1883
1884         return map->bus->reg_write(map->bus_context, reg, val);
1885 }
1886
1887 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1888                                  unsigned int val)
1889 {
1890         struct regmap *map = context;
1891
1892         WARN_ON(!map->bus || !map->format.format_val);
1893
1894         map->format.format_val(map->work_buf + map->format.reg_bytes
1895                                + map->format.pad_bytes, val, 0);
1896         return _regmap_raw_write_impl(map, reg,
1897                                       map->work_buf +
1898                                       map->format.reg_bytes +
1899                                       map->format.pad_bytes,
1900                                       map->format.val_bytes,
1901                                       false);
1902 }
1903
1904 static inline void *_regmap_map_get_context(struct regmap *map)
1905 {
1906         return (map->bus) ? map : map->bus_context;
1907 }
1908
1909 int _regmap_write(struct regmap *map, unsigned int reg,
1910                   unsigned int val)
1911 {
1912         int ret;
1913         void *context = _regmap_map_get_context(map);
1914
1915         if (!regmap_writeable(map, reg))
1916                 return -EIO;
1917
1918         if (!map->cache_bypass && !map->defer_caching) {
1919                 ret = regcache_write(map, reg, val);
1920                 if (ret != 0)
1921                         return ret;
1922                 if (map->cache_only) {
1923                         map->cache_dirty = true;
1924                         return 0;
1925                 }
1926         }
1927
1928         if (regmap_should_log(map))
1929                 dev_info(map->dev, "%x <= %x\n", reg, val);
1930
1931         trace_regmap_reg_write(map, reg, val);
1932
1933         return map->reg_write(context, reg, val);
1934 }
1935
1936 /**
1937  * regmap_write() - Write a value to a single register
1938  *
1939  * @map: Register map to write to
1940  * @reg: Register to write to
1941  * @val: Value to be written
1942  *
1943  * A value of zero will be returned on success, a negative errno will
1944  * be returned in error cases.
1945  */
1946 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1947 {
1948         int ret;
1949
1950         if (!IS_ALIGNED(reg, map->reg_stride))
1951                 return -EINVAL;
1952
1953         map->lock(map->lock_arg);
1954
1955         ret = _regmap_write(map, reg, val);
1956
1957         map->unlock(map->lock_arg);
1958
1959         return ret;
1960 }
1961 EXPORT_SYMBOL_GPL(regmap_write);
1962
1963 /**
1964  * regmap_write_async() - Write a value to a single register asynchronously
1965  *
1966  * @map: Register map to write to
1967  * @reg: Register to write to
1968  * @val: Value to be written
1969  *
1970  * A value of zero will be returned on success, a negative errno will
1971  * be returned in error cases.
1972  */
1973 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1974 {
1975         int ret;
1976
1977         if (!IS_ALIGNED(reg, map->reg_stride))
1978                 return -EINVAL;
1979
1980         map->lock(map->lock_arg);
1981
1982         map->async = true;
1983
1984         ret = _regmap_write(map, reg, val);
1985
1986         map->async = false;
1987
1988         map->unlock(map->lock_arg);
1989
1990         return ret;
1991 }
1992 EXPORT_SYMBOL_GPL(regmap_write_async);
1993
1994 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1995                       const void *val, size_t val_len, bool noinc)
1996 {
1997         size_t val_bytes = map->format.val_bytes;
1998         size_t val_count = val_len / val_bytes;
1999         size_t chunk_count, chunk_bytes;
2000         size_t chunk_regs = val_count;
2001         int ret, i;
2002
2003         if (!val_count)
2004                 return -EINVAL;
2005
2006         if (map->use_single_write)
2007                 chunk_regs = 1;
2008         else if (map->max_raw_write && val_len > map->max_raw_write)
2009                 chunk_regs = map->max_raw_write / val_bytes;
2010
2011         chunk_count = val_count / chunk_regs;
2012         chunk_bytes = chunk_regs * val_bytes;
2013
2014         /* Write as many bytes as possible with chunk_size */
2015         for (i = 0; i < chunk_count; i++) {
2016                 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2017                 if (ret)
2018                         return ret;
2019
2020                 reg += regmap_get_offset(map, chunk_regs);
2021                 val += chunk_bytes;
2022                 val_len -= chunk_bytes;
2023         }
2024
2025         /* Write remaining bytes */
2026         if (val_len)
2027                 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2028
2029         return ret;
2030 }
2031
2032 /**
2033  * regmap_raw_write() - Write raw values to one or more registers
2034  *
2035  * @map: Register map to write to
2036  * @reg: Initial register to write to
2037  * @val: Block of data to be written, laid out for direct transmission to the
2038  *       device
2039  * @val_len: Length of data pointed to by val.
2040  *
2041  * This function is intended to be used for things like firmware
2042  * download where a large block of data needs to be transferred to the
2043  * device.  No formatting will be done on the data provided.
2044  *
2045  * A value of zero will be returned on success, a negative errno will
2046  * be returned in error cases.
2047  */
2048 int regmap_raw_write(struct regmap *map, unsigned int reg,
2049                      const void *val, size_t val_len)
2050 {
2051         int ret;
2052
2053         if (!regmap_can_raw_write(map))
2054                 return -EINVAL;
2055         if (val_len % map->format.val_bytes)
2056                 return -EINVAL;
2057
2058         map->lock(map->lock_arg);
2059
2060         ret = _regmap_raw_write(map, reg, val, val_len, false);
2061
2062         map->unlock(map->lock_arg);
2063
2064         return ret;
2065 }
2066 EXPORT_SYMBOL_GPL(regmap_raw_write);
2067
2068 /**
2069  * regmap_noinc_write(): Write data from a register without incrementing the
2070  *                      register number
2071  *
2072  * @map: Register map to write to
2073  * @reg: Register to write to
2074  * @val: Pointer to data buffer
2075  * @val_len: Length of output buffer in bytes.
2076  *
2077  * The regmap API usually assumes that bulk bus write operations will write a
2078  * range of registers. Some devices have certain registers for which a write
2079  * operation can write to an internal FIFO.
2080  *
2081  * The target register must be volatile but registers after it can be
2082  * completely unrelated cacheable registers.
2083  *
2084  * This will attempt multiple writes as required to write val_len bytes.
2085  *
2086  * A value of zero will be returned on success, a negative errno will be
2087  * returned in error cases.
2088  */
2089 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2090                       const void *val, size_t val_len)
2091 {
2092         size_t write_len;
2093         int ret;
2094
2095         if (!map->bus)
2096                 return -EINVAL;
2097         if (!map->bus->write)
2098                 return -ENOTSUPP;
2099         if (val_len % map->format.val_bytes)
2100                 return -EINVAL;
2101         if (!IS_ALIGNED(reg, map->reg_stride))
2102                 return -EINVAL;
2103         if (val_len == 0)
2104                 return -EINVAL;
2105
2106         map->lock(map->lock_arg);
2107
2108         if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2109                 ret = -EINVAL;
2110                 goto out_unlock;
2111         }
2112
2113         while (val_len) {
2114                 if (map->max_raw_write && map->max_raw_write < val_len)
2115                         write_len = map->max_raw_write;
2116                 else
2117                         write_len = val_len;
2118                 ret = _regmap_raw_write(map, reg, val, write_len, true);
2119                 if (ret)
2120                         goto out_unlock;
2121                 val = ((u8 *)val) + write_len;
2122                 val_len -= write_len;
2123         }
2124
2125 out_unlock:
2126         map->unlock(map->lock_arg);
2127         return ret;
2128 }
2129 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2130
2131 /**
2132  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2133  *                                   register field.
2134  *
2135  * @field: Register field to write to
2136  * @mask: Bitmask to change
2137  * @val: Value to be written
2138  * @change: Boolean indicating if a write was done
2139  * @async: Boolean indicating asynchronously
2140  * @force: Boolean indicating use force update
2141  *
2142  * Perform a read/modify/write cycle on the register field with change,
2143  * async, force option.
2144  *
2145  * A value of zero will be returned on success, a negative errno will
2146  * be returned in error cases.
2147  */
2148 int regmap_field_update_bits_base(struct regmap_field *field,
2149                                   unsigned int mask, unsigned int val,
2150                                   bool *change, bool async, bool force)
2151 {
2152         mask = (mask << field->shift) & field->mask;
2153
2154         return regmap_update_bits_base(field->regmap, field->reg,
2155                                        mask, val << field->shift,
2156                                        change, async, force);
2157 }
2158 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2159
2160 /**
2161  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2162  *                                    register field with port ID
2163  *
2164  * @field: Register field to write to
2165  * @id: port ID
2166  * @mask: Bitmask to change
2167  * @val: Value to be written
2168  * @change: Boolean indicating if a write was done
2169  * @async: Boolean indicating asynchronously
2170  * @force: Boolean indicating use force update
2171  *
2172  * A value of zero will be returned on success, a negative errno will
2173  * be returned in error cases.
2174  */
2175 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2176                                    unsigned int mask, unsigned int val,
2177                                    bool *change, bool async, bool force)
2178 {
2179         if (id >= field->id_size)
2180                 return -EINVAL;
2181
2182         mask = (mask << field->shift) & field->mask;
2183
2184         return regmap_update_bits_base(field->regmap,
2185                                        field->reg + (field->id_offset * id),
2186                                        mask, val << field->shift,
2187                                        change, async, force);
2188 }
2189 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2190
2191 /**
2192  * regmap_bulk_write() - Write multiple registers to the device
2193  *
2194  * @map: Register map to write to
2195  * @reg: First register to be write from
2196  * @val: Block of data to be written, in native register size for device
2197  * @val_count: Number of registers to write
2198  *
2199  * This function is intended to be used for writing a large block of
2200  * data to the device either in single transfer or multiple transfer.
2201  *
2202  * A value of zero will be returned on success, a negative errno will
2203  * be returned in error cases.
2204  */
2205 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2206                      size_t val_count)
2207 {
2208         int ret = 0, i;
2209         size_t val_bytes = map->format.val_bytes;
2210
2211         if (!IS_ALIGNED(reg, map->reg_stride))
2212                 return -EINVAL;
2213
2214         /*
2215          * Some devices don't support bulk write, for them we have a series of
2216          * single write operations.
2217          */
2218         if (!map->bus || !map->format.parse_inplace) {
2219                 map->lock(map->lock_arg);
2220                 for (i = 0; i < val_count; i++) {
2221                         unsigned int ival;
2222
2223                         switch (val_bytes) {
2224                         case 1:
2225                                 ival = *(u8 *)(val + (i * val_bytes));
2226                                 break;
2227                         case 2:
2228                                 ival = *(u16 *)(val + (i * val_bytes));
2229                                 break;
2230                         case 4:
2231                                 ival = *(u32 *)(val + (i * val_bytes));
2232                                 break;
2233 #ifdef CONFIG_64BIT
2234                         case 8:
2235                                 ival = *(u64 *)(val + (i * val_bytes));
2236                                 break;
2237 #endif
2238                         default:
2239                                 ret = -EINVAL;
2240                                 goto out;
2241                         }
2242
2243                         ret = _regmap_write(map,
2244                                             reg + regmap_get_offset(map, i),
2245                                             ival);
2246                         if (ret != 0)
2247                                 goto out;
2248                 }
2249 out:
2250                 map->unlock(map->lock_arg);
2251         } else {
2252                 void *wval;
2253
2254                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2255                 if (!wval)
2256                         return -ENOMEM;
2257
2258                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2259                         map->format.parse_inplace(wval + i);
2260
2261                 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2262
2263                 kfree(wval);
2264         }
2265         return ret;
2266 }
2267 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2268
2269 /*
2270  * _regmap_raw_multi_reg_write()
2271  *
2272  * the (register,newvalue) pairs in regs have not been formatted, but
2273  * they are all in the same page and have been changed to being page
2274  * relative. The page register has been written if that was necessary.
2275  */
2276 static int _regmap_raw_multi_reg_write(struct regmap *map,
2277                                        const struct reg_sequence *regs,
2278                                        size_t num_regs)
2279 {
2280         int ret;
2281         void *buf;
2282         int i;
2283         u8 *u8;
2284         size_t val_bytes = map->format.val_bytes;
2285         size_t reg_bytes = map->format.reg_bytes;
2286         size_t pad_bytes = map->format.pad_bytes;
2287         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2288         size_t len = pair_size * num_regs;
2289
2290         if (!len)
2291                 return -EINVAL;
2292
2293         buf = kzalloc(len, GFP_KERNEL);
2294         if (!buf)
2295                 return -ENOMEM;
2296
2297         /* We have to linearise by hand. */
2298
2299         u8 = buf;
2300
2301         for (i = 0; i < num_regs; i++) {
2302                 unsigned int reg = regs[i].reg;
2303                 unsigned int val = regs[i].def;
2304                 trace_regmap_hw_write_start(map, reg, 1);
2305                 map->format.format_reg(u8, reg, map->reg_shift);
2306                 u8 += reg_bytes + pad_bytes;
2307                 map->format.format_val(u8, val, 0);
2308                 u8 += val_bytes;
2309         }
2310         u8 = buf;
2311         *u8 |= map->write_flag_mask;
2312
2313         ret = map->bus->write(map->bus_context, buf, len);
2314
2315         kfree(buf);
2316
2317         for (i = 0; i < num_regs; i++) {
2318                 int reg = regs[i].reg;
2319                 trace_regmap_hw_write_done(map, reg, 1);
2320         }
2321         return ret;
2322 }
2323
2324 static unsigned int _regmap_register_page(struct regmap *map,
2325                                           unsigned int reg,
2326                                           struct regmap_range_node *range)
2327 {
2328         unsigned int win_page = (reg - range->range_min) / range->window_len;
2329
2330         return win_page;
2331 }
2332
2333 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2334                                                struct reg_sequence *regs,
2335                                                size_t num_regs)
2336 {
2337         int ret;
2338         int i, n;
2339         struct reg_sequence *base;
2340         unsigned int this_page = 0;
2341         unsigned int page_change = 0;
2342         /*
2343          * the set of registers are not neccessarily in order, but
2344          * since the order of write must be preserved this algorithm
2345          * chops the set each time the page changes. This also applies
2346          * if there is a delay required at any point in the sequence.
2347          */
2348         base = regs;
2349         for (i = 0, n = 0; i < num_regs; i++, n++) {
2350                 unsigned int reg = regs[i].reg;
2351                 struct regmap_range_node *range;
2352
2353                 range = _regmap_range_lookup(map, reg);
2354                 if (range) {
2355                         unsigned int win_page = _regmap_register_page(map, reg,
2356                                                                       range);
2357
2358                         if (i == 0)
2359                                 this_page = win_page;
2360                         if (win_page != this_page) {
2361                                 this_page = win_page;
2362                                 page_change = 1;
2363                         }
2364                 }
2365
2366                 /* If we have both a page change and a delay make sure to
2367                  * write the regs and apply the delay before we change the
2368                  * page.
2369                  */
2370
2371                 if (page_change || regs[i].delay_us) {
2372
2373                                 /* For situations where the first write requires
2374                                  * a delay we need to make sure we don't call
2375                                  * raw_multi_reg_write with n=0
2376                                  * This can't occur with page breaks as we
2377                                  * never write on the first iteration
2378                                  */
2379                                 if (regs[i].delay_us && i == 0)
2380                                         n = 1;
2381
2382                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2383                                 if (ret != 0)
2384                                         return ret;
2385
2386                                 if (regs[i].delay_us) {
2387                                         if (map->can_sleep)
2388                                                 fsleep(regs[i].delay_us);
2389                                         else
2390                                                 udelay(regs[i].delay_us);
2391                                 }
2392
2393                                 base += n;
2394                                 n = 0;
2395
2396                                 if (page_change) {
2397                                         ret = _regmap_select_page(map,
2398                                                                   &base[n].reg,
2399                                                                   range, 1);
2400                                         if (ret != 0)
2401                                                 return ret;
2402
2403                                         page_change = 0;
2404                                 }
2405
2406                 }
2407
2408         }
2409         if (n > 0)
2410                 return _regmap_raw_multi_reg_write(map, base, n);
2411         return 0;
2412 }
2413
2414 static int _regmap_multi_reg_write(struct regmap *map,
2415                                    const struct reg_sequence *regs,
2416                                    size_t num_regs)
2417 {
2418         int i;
2419         int ret;
2420
2421         if (!map->can_multi_write) {
2422                 for (i = 0; i < num_regs; i++) {
2423                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2424                         if (ret != 0)
2425                                 return ret;
2426
2427                         if (regs[i].delay_us) {
2428                                 if (map->can_sleep)
2429                                         fsleep(regs[i].delay_us);
2430                                 else
2431                                         udelay(regs[i].delay_us);
2432                         }
2433                 }
2434                 return 0;
2435         }
2436
2437         if (!map->format.parse_inplace)
2438                 return -EINVAL;
2439
2440         if (map->writeable_reg)
2441                 for (i = 0; i < num_regs; i++) {
2442                         int reg = regs[i].reg;
2443                         if (!map->writeable_reg(map->dev, reg))
2444                                 return -EINVAL;
2445                         if (!IS_ALIGNED(reg, map->reg_stride))
2446                                 return -EINVAL;
2447                 }
2448
2449         if (!map->cache_bypass) {
2450                 for (i = 0; i < num_regs; i++) {
2451                         unsigned int val = regs[i].def;
2452                         unsigned int reg = regs[i].reg;
2453                         ret = regcache_write(map, reg, val);
2454                         if (ret) {
2455                                 dev_err(map->dev,
2456                                 "Error in caching of register: %x ret: %d\n",
2457                                                                 reg, ret);
2458                                 return ret;
2459                         }
2460                 }
2461                 if (map->cache_only) {
2462                         map->cache_dirty = true;
2463                         return 0;
2464                 }
2465         }
2466
2467         WARN_ON(!map->bus);
2468
2469         for (i = 0; i < num_regs; i++) {
2470                 unsigned int reg = regs[i].reg;
2471                 struct regmap_range_node *range;
2472
2473                 /* Coalesce all the writes between a page break or a delay
2474                  * in a sequence
2475                  */
2476                 range = _regmap_range_lookup(map, reg);
2477                 if (range || regs[i].delay_us) {
2478                         size_t len = sizeof(struct reg_sequence)*num_regs;
2479                         struct reg_sequence *base = kmemdup(regs, len,
2480                                                            GFP_KERNEL);
2481                         if (!base)
2482                                 return -ENOMEM;
2483                         ret = _regmap_range_multi_paged_reg_write(map, base,
2484                                                                   num_regs);
2485                         kfree(base);
2486
2487                         return ret;
2488                 }
2489         }
2490         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2491 }
2492
2493 /**
2494  * regmap_multi_reg_write() - Write multiple registers to the device
2495  *
2496  * @map: Register map to write to
2497  * @regs: Array of structures containing register,value to be written
2498  * @num_regs: Number of registers to write
2499  *
2500  * Write multiple registers to the device where the set of register, value
2501  * pairs are supplied in any order, possibly not all in a single range.
2502  *
2503  * The 'normal' block write mode will send ultimately send data on the
2504  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2505  * addressed. However, this alternative block multi write mode will send
2506  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2507  * must of course support the mode.
2508  *
2509  * A value of zero will be returned on success, a negative errno will be
2510  * returned in error cases.
2511  */
2512 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2513                            int num_regs)
2514 {
2515         int ret;
2516
2517         map->lock(map->lock_arg);
2518
2519         ret = _regmap_multi_reg_write(map, regs, num_regs);
2520
2521         map->unlock(map->lock_arg);
2522
2523         return ret;
2524 }
2525 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2526
2527 /**
2528  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2529  *                                     device but not the cache
2530  *
2531  * @map: Register map to write to
2532  * @regs: Array of structures containing register,value to be written
2533  * @num_regs: Number of registers to write
2534  *
2535  * Write multiple registers to the device but not the cache where the set
2536  * of register are supplied in any order.
2537  *
2538  * This function is intended to be used for writing a large block of data
2539  * atomically to the device in single transfer for those I2C client devices
2540  * that implement this alternative block write mode.
2541  *
2542  * A value of zero will be returned on success, a negative errno will
2543  * be returned in error cases.
2544  */
2545 int regmap_multi_reg_write_bypassed(struct regmap *map,
2546                                     const struct reg_sequence *regs,
2547                                     int num_regs)
2548 {
2549         int ret;
2550         bool bypass;
2551
2552         map->lock(map->lock_arg);
2553
2554         bypass = map->cache_bypass;
2555         map->cache_bypass = true;
2556
2557         ret = _regmap_multi_reg_write(map, regs, num_regs);
2558
2559         map->cache_bypass = bypass;
2560
2561         map->unlock(map->lock_arg);
2562
2563         return ret;
2564 }
2565 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2566
2567 /**
2568  * regmap_raw_write_async() - Write raw values to one or more registers
2569  *                            asynchronously
2570  *
2571  * @map: Register map to write to
2572  * @reg: Initial register to write to
2573  * @val: Block of data to be written, laid out for direct transmission to the
2574  *       device.  Must be valid until regmap_async_complete() is called.
2575  * @val_len: Length of data pointed to by val.
2576  *
2577  * This function is intended to be used for things like firmware
2578  * download where a large block of data needs to be transferred to the
2579  * device.  No formatting will be done on the data provided.
2580  *
2581  * If supported by the underlying bus the write will be scheduled
2582  * asynchronously, helping maximise I/O speed on higher speed buses
2583  * like SPI.  regmap_async_complete() can be called to ensure that all
2584  * asynchrnous writes have been completed.
2585  *
2586  * A value of zero will be returned on success, a negative errno will
2587  * be returned in error cases.
2588  */
2589 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2590                            const void *val, size_t val_len)
2591 {
2592         int ret;
2593
2594         if (val_len % map->format.val_bytes)
2595                 return -EINVAL;
2596         if (!IS_ALIGNED(reg, map->reg_stride))
2597                 return -EINVAL;
2598
2599         map->lock(map->lock_arg);
2600
2601         map->async = true;
2602
2603         ret = _regmap_raw_write(map, reg, val, val_len, false);
2604
2605         map->async = false;
2606
2607         map->unlock(map->lock_arg);
2608
2609         return ret;
2610 }
2611 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2612
2613 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2614                             unsigned int val_len, bool noinc)
2615 {
2616         struct regmap_range_node *range;
2617         int ret;
2618
2619         WARN_ON(!map->bus);
2620
2621         if (!map->bus || !map->bus->read)
2622                 return -EINVAL;
2623
2624         range = _regmap_range_lookup(map, reg);
2625         if (range) {
2626                 ret = _regmap_select_page(map, &reg, range,
2627                                           noinc ? 1 : val_len / map->format.val_bytes);
2628                 if (ret != 0)
2629                         return ret;
2630         }
2631
2632         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2633         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2634                                       map->read_flag_mask);
2635         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2636
2637         ret = map->bus->read(map->bus_context, map->work_buf,
2638                              map->format.reg_bytes + map->format.pad_bytes,
2639                              val, val_len);
2640
2641         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2642
2643         return ret;
2644 }
2645
2646 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2647                                 unsigned int *val)
2648 {
2649         struct regmap *map = context;
2650
2651         return map->bus->reg_read(map->bus_context, reg, val);
2652 }
2653
2654 static int _regmap_bus_read(void *context, unsigned int reg,
2655                             unsigned int *val)
2656 {
2657         int ret;
2658         struct regmap *map = context;
2659         void *work_val = map->work_buf + map->format.reg_bytes +
2660                 map->format.pad_bytes;
2661
2662         if (!map->format.parse_val)
2663                 return -EINVAL;
2664
2665         ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2666         if (ret == 0)
2667                 *val = map->format.parse_val(work_val);
2668
2669         return ret;
2670 }
2671
2672 static int _regmap_read(struct regmap *map, unsigned int reg,
2673                         unsigned int *val)
2674 {
2675         int ret;
2676         void *context = _regmap_map_get_context(map);
2677
2678         if (!map->cache_bypass) {
2679                 ret = regcache_read(map, reg, val);
2680                 if (ret == 0)
2681                         return 0;
2682         }
2683
2684         if (map->cache_only)
2685                 return -EBUSY;
2686
2687         if (!regmap_readable(map, reg))
2688                 return -EIO;
2689
2690         ret = map->reg_read(context, reg, val);
2691         if (ret == 0) {
2692                 if (regmap_should_log(map))
2693                         dev_info(map->dev, "%x => %x\n", reg, *val);
2694
2695                 trace_regmap_reg_read(map, reg, *val);
2696
2697                 if (!map->cache_bypass)
2698                         regcache_write(map, reg, *val);
2699         }
2700
2701         return ret;
2702 }
2703
2704 /**
2705  * regmap_read() - Read a value from a single register
2706  *
2707  * @map: Register map to read from
2708  * @reg: Register to be read from
2709  * @val: Pointer to store read value
2710  *
2711  * A value of zero will be returned on success, a negative errno will
2712  * be returned in error cases.
2713  */
2714 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2715 {
2716         int ret;
2717
2718         if (!IS_ALIGNED(reg, map->reg_stride))
2719                 return -EINVAL;
2720
2721         map->lock(map->lock_arg);
2722
2723         ret = _regmap_read(map, reg, val);
2724
2725         map->unlock(map->lock_arg);
2726
2727         return ret;
2728 }
2729 EXPORT_SYMBOL_GPL(regmap_read);
2730
2731 /**
2732  * regmap_raw_read() - Read raw data from the device
2733  *
2734  * @map: Register map to read from
2735  * @reg: First register to be read from
2736  * @val: Pointer to store read value
2737  * @val_len: Size of data to read
2738  *
2739  * A value of zero will be returned on success, a negative errno will
2740  * be returned in error cases.
2741  */
2742 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2743                     size_t val_len)
2744 {
2745         size_t val_bytes = map->format.val_bytes;
2746         size_t val_count = val_len / val_bytes;
2747         unsigned int v;
2748         int ret, i;
2749
2750         if (!map->bus)
2751                 return -EINVAL;
2752         if (val_len % map->format.val_bytes)
2753                 return -EINVAL;
2754         if (!IS_ALIGNED(reg, map->reg_stride))
2755                 return -EINVAL;
2756         if (val_count == 0)
2757                 return -EINVAL;
2758
2759         map->lock(map->lock_arg);
2760
2761         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2762             map->cache_type == REGCACHE_NONE) {
2763                 size_t chunk_count, chunk_bytes;
2764                 size_t chunk_regs = val_count;
2765
2766                 if (!map->bus->read) {
2767                         ret = -ENOTSUPP;
2768                         goto out;
2769                 }
2770
2771                 if (map->use_single_read)
2772                         chunk_regs = 1;
2773                 else if (map->max_raw_read && val_len > map->max_raw_read)
2774                         chunk_regs = map->max_raw_read / val_bytes;
2775
2776                 chunk_count = val_count / chunk_regs;
2777                 chunk_bytes = chunk_regs * val_bytes;
2778
2779                 /* Read bytes that fit into whole chunks */
2780                 for (i = 0; i < chunk_count; i++) {
2781                         ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2782                         if (ret != 0)
2783                                 goto out;
2784
2785                         reg += regmap_get_offset(map, chunk_regs);
2786                         val += chunk_bytes;
2787                         val_len -= chunk_bytes;
2788                 }
2789
2790                 /* Read remaining bytes */
2791                 if (val_len) {
2792                         ret = _regmap_raw_read(map, reg, val, val_len, false);
2793                         if (ret != 0)
2794                                 goto out;
2795                 }
2796         } else {
2797                 /* Otherwise go word by word for the cache; should be low
2798                  * cost as we expect to hit the cache.
2799                  */
2800                 for (i = 0; i < val_count; i++) {
2801                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2802                                            &v);
2803                         if (ret != 0)
2804                                 goto out;
2805
2806                         map->format.format_val(val + (i * val_bytes), v, 0);
2807                 }
2808         }
2809
2810  out:
2811         map->unlock(map->lock_arg);
2812
2813         return ret;
2814 }
2815 EXPORT_SYMBOL_GPL(regmap_raw_read);
2816
2817 /**
2818  * regmap_noinc_read(): Read data from a register without incrementing the
2819  *                      register number
2820  *
2821  * @map: Register map to read from
2822  * @reg: Register to read from
2823  * @val: Pointer to data buffer
2824  * @val_len: Length of output buffer in bytes.
2825  *
2826  * The regmap API usually assumes that bulk bus read operations will read a
2827  * range of registers. Some devices have certain registers for which a read
2828  * operation read will read from an internal FIFO.
2829  *
2830  * The target register must be volatile but registers after it can be
2831  * completely unrelated cacheable registers.
2832  *
2833  * This will attempt multiple reads as required to read val_len bytes.
2834  *
2835  * A value of zero will be returned on success, a negative errno will be
2836  * returned in error cases.
2837  */
2838 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2839                       void *val, size_t val_len)
2840 {
2841         size_t read_len;
2842         int ret;
2843
2844         if (!map->bus)
2845                 return -EINVAL;
2846         if (!map->bus->read)
2847                 return -ENOTSUPP;
2848         if (val_len % map->format.val_bytes)
2849                 return -EINVAL;
2850         if (!IS_ALIGNED(reg, map->reg_stride))
2851                 return -EINVAL;
2852         if (val_len == 0)
2853                 return -EINVAL;
2854
2855         map->lock(map->lock_arg);
2856
2857         if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2858                 ret = -EINVAL;
2859                 goto out_unlock;
2860         }
2861
2862         while (val_len) {
2863                 if (map->max_raw_read && map->max_raw_read < val_len)
2864                         read_len = map->max_raw_read;
2865                 else
2866                         read_len = val_len;
2867                 ret = _regmap_raw_read(map, reg, val, read_len, true);
2868                 if (ret)
2869                         goto out_unlock;
2870                 val = ((u8 *)val) + read_len;
2871                 val_len -= read_len;
2872         }
2873
2874 out_unlock:
2875         map->unlock(map->lock_arg);
2876         return ret;
2877 }
2878 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2879
2880 /**
2881  * regmap_field_read(): Read a value to a single register field
2882  *
2883  * @field: Register field to read from
2884  * @val: Pointer to store read value
2885  *
2886  * A value of zero will be returned on success, a negative errno will
2887  * be returned in error cases.
2888  */
2889 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2890 {
2891         int ret;
2892         unsigned int reg_val;
2893         ret = regmap_read(field->regmap, field->reg, &reg_val);
2894         if (ret != 0)
2895                 return ret;
2896
2897         reg_val &= field->mask;
2898         reg_val >>= field->shift;
2899         *val = reg_val;
2900
2901         return ret;
2902 }
2903 EXPORT_SYMBOL_GPL(regmap_field_read);
2904
2905 /**
2906  * regmap_fields_read() - Read a value to a single register field with port ID
2907  *
2908  * @field: Register field to read from
2909  * @id: port ID
2910  * @val: Pointer to store read value
2911  *
2912  * A value of zero will be returned on success, a negative errno will
2913  * be returned in error cases.
2914  */
2915 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2916                        unsigned int *val)
2917 {
2918         int ret;
2919         unsigned int reg_val;
2920
2921         if (id >= field->id_size)
2922                 return -EINVAL;
2923
2924         ret = regmap_read(field->regmap,
2925                           field->reg + (field->id_offset * id),
2926                           &reg_val);
2927         if (ret != 0)
2928                 return ret;
2929
2930         reg_val &= field->mask;
2931         reg_val >>= field->shift;
2932         *val = reg_val;
2933
2934         return ret;
2935 }
2936 EXPORT_SYMBOL_GPL(regmap_fields_read);
2937
2938 /**
2939  * regmap_bulk_read() - Read multiple registers from the device
2940  *
2941  * @map: Register map to read from
2942  * @reg: First register to be read from
2943  * @val: Pointer to store read value, in native register size for device
2944  * @val_count: Number of registers to read
2945  *
2946  * A value of zero will be returned on success, a negative errno will
2947  * be returned in error cases.
2948  */
2949 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2950                      size_t val_count)
2951 {
2952         int ret, i;
2953         size_t val_bytes = map->format.val_bytes;
2954         bool vol = regmap_volatile_range(map, reg, val_count);
2955
2956         if (!IS_ALIGNED(reg, map->reg_stride))
2957                 return -EINVAL;
2958         if (val_count == 0)
2959                 return -EINVAL;
2960
2961         if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2962                 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2963                 if (ret != 0)
2964                         return ret;
2965
2966                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2967                         map->format.parse_inplace(val + i);
2968         } else {
2969 #ifdef CONFIG_64BIT
2970                 u64 *u64 = val;
2971 #endif
2972                 u32 *u32 = val;
2973                 u16 *u16 = val;
2974                 u8 *u8 = val;
2975
2976                 map->lock(map->lock_arg);
2977
2978                 for (i = 0; i < val_count; i++) {
2979                         unsigned int ival;
2980
2981                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2982                                            &ival);
2983                         if (ret != 0)
2984                                 goto out;
2985
2986                         switch (map->format.val_bytes) {
2987 #ifdef CONFIG_64BIT
2988                         case 8:
2989                                 u64[i] = ival;
2990                                 break;
2991 #endif
2992                         case 4:
2993                                 u32[i] = ival;
2994                                 break;
2995                         case 2:
2996                                 u16[i] = ival;
2997                                 break;
2998                         case 1:
2999                                 u8[i] = ival;
3000                                 break;
3001                         default:
3002                                 ret = -EINVAL;
3003                                 goto out;
3004                         }
3005                 }
3006
3007 out:
3008                 map->unlock(map->lock_arg);
3009         }
3010
3011         return ret;
3012 }
3013 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3014
3015 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3016                                unsigned int mask, unsigned int val,
3017                                bool *change, bool force_write)
3018 {
3019         int ret;
3020         unsigned int tmp, orig;
3021
3022         if (change)
3023                 *change = false;
3024
3025         if (regmap_volatile(map, reg) && map->reg_update_bits) {
3026                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3027                 if (ret == 0 && change)
3028                         *change = true;
3029         } else {
3030                 ret = _regmap_read(map, reg, &orig);
3031                 if (ret != 0)
3032                         return ret;
3033
3034                 tmp = orig & ~mask;
3035                 tmp |= val & mask;
3036
3037                 if (force_write || (tmp != orig)) {
3038                         ret = _regmap_write(map, reg, tmp);
3039                         if (ret == 0 && change)
3040                                 *change = true;
3041                 }
3042         }
3043
3044         return ret;
3045 }
3046
3047 /**
3048  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3049  *
3050  * @map: Register map to update
3051  * @reg: Register to update
3052  * @mask: Bitmask to change
3053  * @val: New value for bitmask
3054  * @change: Boolean indicating if a write was done
3055  * @async: Boolean indicating asynchronously
3056  * @force: Boolean indicating use force update
3057  *
3058  * Perform a read/modify/write cycle on a register map with change, async, force
3059  * options.
3060  *
3061  * If async is true:
3062  *
3063  * With most buses the read must be done synchronously so this is most useful
3064  * for devices with a cache which do not need to interact with the hardware to
3065  * determine the current register value.
3066  *
3067  * Returns zero for success, a negative number on error.
3068  */
3069 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3070                             unsigned int mask, unsigned int val,
3071                             bool *change, bool async, bool force)
3072 {
3073         int ret;
3074
3075         map->lock(map->lock_arg);
3076
3077         map->async = async;
3078
3079         ret = _regmap_update_bits(map, reg, mask, val, change, force);
3080
3081         map->async = false;
3082
3083         map->unlock(map->lock_arg);
3084
3085         return ret;
3086 }
3087 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3088
3089 /**
3090  * regmap_test_bits() - Check if all specified bits are set in a register.
3091  *
3092  * @map: Register map to operate on
3093  * @reg: Register to read from
3094  * @bits: Bits to test
3095  *
3096  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3097  * bits are set and a negative error number if the underlying regmap_read()
3098  * fails.
3099  */
3100 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3101 {
3102         unsigned int val, ret;
3103
3104         ret = regmap_read(map, reg, &val);
3105         if (ret)
3106                 return ret;
3107
3108         return (val & bits) == bits;
3109 }
3110 EXPORT_SYMBOL_GPL(regmap_test_bits);
3111
3112 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3113 {
3114         struct regmap *map = async->map;
3115         bool wake;
3116
3117         trace_regmap_async_io_complete(map);
3118
3119         spin_lock(&map->async_lock);
3120         list_move(&async->list, &map->async_free);
3121         wake = list_empty(&map->async_list);
3122
3123         if (ret != 0)
3124                 map->async_ret = ret;
3125
3126         spin_unlock(&map->async_lock);
3127
3128         if (wake)
3129                 wake_up(&map->async_waitq);
3130 }
3131 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3132
3133 static int regmap_async_is_done(struct regmap *map)
3134 {
3135         unsigned long flags;
3136         int ret;
3137
3138         spin_lock_irqsave(&map->async_lock, flags);
3139         ret = list_empty(&map->async_list);
3140         spin_unlock_irqrestore(&map->async_lock, flags);
3141
3142         return ret;
3143 }
3144
3145 /**
3146  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3147  *
3148  * @map: Map to operate on.
3149  *
3150  * Blocks until any pending asynchronous I/O has completed.  Returns
3151  * an error code for any failed I/O operations.
3152  */
3153 int regmap_async_complete(struct regmap *map)
3154 {
3155         unsigned long flags;
3156         int ret;
3157
3158         /* Nothing to do with no async support */
3159         if (!map->bus || !map->bus->async_write)
3160                 return 0;
3161
3162         trace_regmap_async_complete_start(map);
3163
3164         wait_event(map->async_waitq, regmap_async_is_done(map));
3165
3166         spin_lock_irqsave(&map->async_lock, flags);
3167         ret = map->async_ret;
3168         map->async_ret = 0;
3169         spin_unlock_irqrestore(&map->async_lock, flags);
3170
3171         trace_regmap_async_complete_done(map);
3172
3173         return ret;
3174 }
3175 EXPORT_SYMBOL_GPL(regmap_async_complete);
3176
3177 /**
3178  * regmap_register_patch - Register and apply register updates to be applied
3179  *                         on device initialistion
3180  *
3181  * @map: Register map to apply updates to.
3182  * @regs: Values to update.
3183  * @num_regs: Number of entries in regs.
3184  *
3185  * Register a set of register updates to be applied to the device
3186  * whenever the device registers are synchronised with the cache and
3187  * apply them immediately.  Typically this is used to apply
3188  * corrections to be applied to the device defaults on startup, such
3189  * as the updates some vendors provide to undocumented registers.
3190  *
3191  * The caller must ensure that this function cannot be called
3192  * concurrently with either itself or regcache_sync().
3193  */
3194 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3195                           int num_regs)
3196 {
3197         struct reg_sequence *p;
3198         int ret;
3199         bool bypass;
3200
3201         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3202             num_regs))
3203                 return 0;
3204
3205         p = krealloc(map->patch,
3206                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3207                      GFP_KERNEL);
3208         if (p) {
3209                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3210                 map->patch = p;
3211                 map->patch_regs += num_regs;
3212         } else {
3213                 return -ENOMEM;
3214         }
3215
3216         map->lock(map->lock_arg);
3217
3218         bypass = map->cache_bypass;
3219
3220         map->cache_bypass = true;
3221         map->async = true;
3222
3223         ret = _regmap_multi_reg_write(map, regs, num_regs);
3224
3225         map->async = false;
3226         map->cache_bypass = bypass;
3227
3228         map->unlock(map->lock_arg);
3229
3230         regmap_async_complete(map);
3231
3232         return ret;
3233 }
3234 EXPORT_SYMBOL_GPL(regmap_register_patch);
3235
3236 /**
3237  * regmap_get_val_bytes() - Report the size of a register value
3238  *
3239  * @map: Register map to operate on.
3240  *
3241  * Report the size of a register value, mainly intended to for use by
3242  * generic infrastructure built on top of regmap.
3243  */
3244 int regmap_get_val_bytes(struct regmap *map)
3245 {
3246         if (map->format.format_write)
3247                 return -EINVAL;
3248
3249         return map->format.val_bytes;
3250 }
3251 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3252
3253 /**
3254  * regmap_get_max_register() - Report the max register value
3255  *
3256  * @map: Register map to operate on.
3257  *
3258  * Report the max register value, mainly intended to for use by
3259  * generic infrastructure built on top of regmap.
3260  */
3261 int regmap_get_max_register(struct regmap *map)
3262 {
3263         return map->max_register ? map->max_register : -EINVAL;
3264 }
3265 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3266
3267 /**
3268  * regmap_get_reg_stride() - Report the register address stride
3269  *
3270  * @map: Register map to operate on.
3271  *
3272  * Report the register address stride, mainly intended to for use by
3273  * generic infrastructure built on top of regmap.
3274  */
3275 int regmap_get_reg_stride(struct regmap *map)
3276 {
3277         return map->reg_stride;
3278 }
3279 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3280
3281 int regmap_parse_val(struct regmap *map, const void *buf,
3282                         unsigned int *val)
3283 {
3284         if (!map->format.parse_val)
3285                 return -EINVAL;
3286
3287         *val = map->format.parse_val(buf);
3288
3289         return 0;
3290 }
3291 EXPORT_SYMBOL_GPL(regmap_parse_val);
3292
3293 static int __init regmap_initcall(void)
3294 {
3295         regmap_debugfs_initcall();
3296
3297         return 0;
3298 }
3299 postcore_initcall(regmap_initcall);