GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / base / regmap / regmap-irq.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17
18 #include "internal.h"
19
20 struct regmap_irq_chip_data {
21         struct mutex lock;
22         struct irq_chip irq_chip;
23
24         struct regmap *map;
25         const struct regmap_irq_chip *chip;
26
27         int irq_base;
28         struct irq_domain *domain;
29
30         int irq;
31         int wake_count;
32
33         void *status_reg_buf;
34         unsigned int *main_status_buf;
35         unsigned int *status_buf;
36         unsigned int *mask_buf;
37         unsigned int *mask_buf_def;
38         unsigned int *wake_buf;
39         unsigned int *type_buf;
40         unsigned int *type_buf_def;
41
42         unsigned int irq_reg_stride;
43         unsigned int type_reg_stride;
44
45         bool clear_status:1;
46 };
47
48 static inline const
49 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
50                                      int irq)
51 {
52         return &data->chip->irqs[irq];
53 }
54
55 static void regmap_irq_lock(struct irq_data *data)
56 {
57         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
58
59         mutex_lock(&d->lock);
60 }
61
62 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
63                                   unsigned int reg, unsigned int mask,
64                                   unsigned int val)
65 {
66         if (d->chip->mask_writeonly)
67                 return regmap_write_bits(d->map, reg, mask, val);
68         else
69                 return regmap_update_bits(d->map, reg, mask, val);
70 }
71
72 static void regmap_irq_sync_unlock(struct irq_data *data)
73 {
74         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75         struct regmap *map = d->map;
76         int i, ret;
77         u32 reg;
78         u32 unmask_offset;
79         u32 val;
80
81         if (d->chip->runtime_pm) {
82                 ret = pm_runtime_get_sync(map->dev);
83                 if (ret < 0)
84                         dev_err(map->dev, "IRQ sync failed to resume: %d\n",
85                                 ret);
86         }
87
88         if (d->clear_status) {
89                 for (i = 0; i < d->chip->num_regs; i++) {
90                         reg = d->chip->status_base +
91                                 (i * map->reg_stride * d->irq_reg_stride);
92
93                         ret = regmap_read(map, reg, &val);
94                         if (ret)
95                                 dev_err(d->map->dev,
96                                         "Failed to clear the interrupt status bits\n");
97                 }
98
99                 d->clear_status = false;
100         }
101
102         /*
103          * If there's been a change in the mask write it back to the
104          * hardware.  We rely on the use of the regmap core cache to
105          * suppress pointless writes.
106          */
107         for (i = 0; i < d->chip->num_regs; i++) {
108                 if (!d->chip->mask_base)
109                         continue;
110
111                 reg = d->chip->mask_base +
112                         (i * map->reg_stride * d->irq_reg_stride);
113                 if (d->chip->mask_invert) {
114                         ret = regmap_irq_update_bits(d, reg,
115                                          d->mask_buf_def[i], ~d->mask_buf[i]);
116                 } else if (d->chip->unmask_base) {
117                         /* set mask with mask_base register */
118                         ret = regmap_irq_update_bits(d, reg,
119                                         d->mask_buf_def[i], ~d->mask_buf[i]);
120                         if (ret < 0)
121                                 dev_err(d->map->dev,
122                                         "Failed to sync unmasks in %x\n",
123                                         reg);
124                         unmask_offset = d->chip->unmask_base -
125                                                         d->chip->mask_base;
126                         /* clear mask with unmask_base register */
127                         ret = regmap_irq_update_bits(d,
128                                         reg + unmask_offset,
129                                         d->mask_buf_def[i],
130                                         d->mask_buf[i]);
131                 } else {
132                         ret = regmap_irq_update_bits(d, reg,
133                                          d->mask_buf_def[i], d->mask_buf[i]);
134                 }
135                 if (ret != 0)
136                         dev_err(d->map->dev, "Failed to sync masks in %x\n",
137                                 reg);
138
139                 reg = d->chip->wake_base +
140                         (i * map->reg_stride * d->irq_reg_stride);
141                 if (d->wake_buf) {
142                         if (d->chip->wake_invert)
143                                 ret = regmap_irq_update_bits(d, reg,
144                                                          d->mask_buf_def[i],
145                                                          ~d->wake_buf[i]);
146                         else
147                                 ret = regmap_irq_update_bits(d, reg,
148                                                          d->mask_buf_def[i],
149                                                          d->wake_buf[i]);
150                         if (ret != 0)
151                                 dev_err(d->map->dev,
152                                         "Failed to sync wakes in %x: %d\n",
153                                         reg, ret);
154                 }
155
156                 if (!d->chip->init_ack_masked)
157                         continue;
158                 /*
159                  * Ack all the masked interrupts unconditionally,
160                  * OR if there is masked interrupt which hasn't been Acked,
161                  * it'll be ignored in irq handler, then may introduce irq storm
162                  */
163                 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164                         reg = d->chip->ack_base +
165                                 (i * map->reg_stride * d->irq_reg_stride);
166                         /* some chips ack by write 0 */
167                         if (d->chip->ack_invert)
168                                 ret = regmap_write(map, reg, ~d->mask_buf[i]);
169                         else
170                                 ret = regmap_write(map, reg, d->mask_buf[i]);
171                         if (d->chip->clear_ack) {
172                                 if (d->chip->ack_invert && !ret)
173                                         ret = regmap_write(map, reg, UINT_MAX);
174                                 else if (!ret)
175                                         ret = regmap_write(map, reg, 0);
176                         }
177                         if (ret != 0)
178                                 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
179                                         reg, ret);
180                 }
181         }
182
183         /* Don't update the type bits if we're using mask bits for irq type. */
184         if (!d->chip->type_in_mask) {
185                 for (i = 0; i < d->chip->num_type_reg; i++) {
186                         if (!d->type_buf_def[i])
187                                 continue;
188                         reg = d->chip->type_base +
189                                 (i * map->reg_stride * d->type_reg_stride);
190                         if (d->chip->type_invert)
191                                 ret = regmap_irq_update_bits(d, reg,
192                                         d->type_buf_def[i], ~d->type_buf[i]);
193                         else
194                                 ret = regmap_irq_update_bits(d, reg,
195                                         d->type_buf_def[i], d->type_buf[i]);
196                         if (ret != 0)
197                                 dev_err(d->map->dev, "Failed to sync type in %x\n",
198                                         reg);
199                 }
200         }
201
202         if (d->chip->runtime_pm)
203                 pm_runtime_put(map->dev);
204
205         /* If we've changed our wakeup count propagate it to the parent */
206         if (d->wake_count < 0)
207                 for (i = d->wake_count; i < 0; i++)
208                         irq_set_irq_wake(d->irq, 0);
209         else if (d->wake_count > 0)
210                 for (i = 0; i < d->wake_count; i++)
211                         irq_set_irq_wake(d->irq, 1);
212
213         d->wake_count = 0;
214
215         mutex_unlock(&d->lock);
216 }
217
218 static void regmap_irq_enable(struct irq_data *data)
219 {
220         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
221         struct regmap *map = d->map;
222         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
223         unsigned int reg = irq_data->reg_offset / map->reg_stride;
224         unsigned int mask, type;
225
226         type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
227
228         /*
229          * The type_in_mask flag means that the underlying hardware uses
230          * separate mask bits for rising and falling edge interrupts, but
231          * we want to make them into a single virtual interrupt with
232          * configurable edge.
233          *
234          * If the interrupt we're enabling defines the falling or rising
235          * masks then instead of using the regular mask bits for this
236          * interrupt, use the value previously written to the type buffer
237          * at the corresponding offset in regmap_irq_set_type().
238          */
239         if (d->chip->type_in_mask && type)
240                 mask = d->type_buf[reg] & irq_data->mask;
241         else
242                 mask = irq_data->mask;
243
244         if (d->chip->clear_on_unmask)
245                 d->clear_status = true;
246
247         d->mask_buf[reg] &= ~mask;
248 }
249
250 static void regmap_irq_disable(struct irq_data *data)
251 {
252         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
253         struct regmap *map = d->map;
254         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
255
256         d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
257 }
258
259 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
260 {
261         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
262         struct regmap *map = d->map;
263         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
264         int reg;
265         const struct regmap_irq_type *t = &irq_data->type;
266
267         if ((t->types_supported & type) != type)
268                 return 0;
269
270         reg = t->type_reg_offset / map->reg_stride;
271
272         if (t->type_reg_mask)
273                 d->type_buf[reg] &= ~t->type_reg_mask;
274         else
275                 d->type_buf[reg] &= ~(t->type_falling_val |
276                                       t->type_rising_val |
277                                       t->type_level_low_val |
278                                       t->type_level_high_val);
279         switch (type) {
280         case IRQ_TYPE_EDGE_FALLING:
281                 d->type_buf[reg] |= t->type_falling_val;
282                 break;
283
284         case IRQ_TYPE_EDGE_RISING:
285                 d->type_buf[reg] |= t->type_rising_val;
286                 break;
287
288         case IRQ_TYPE_EDGE_BOTH:
289                 d->type_buf[reg] |= (t->type_falling_val |
290                                         t->type_rising_val);
291                 break;
292
293         case IRQ_TYPE_LEVEL_HIGH:
294                 d->type_buf[reg] |= t->type_level_high_val;
295                 break;
296
297         case IRQ_TYPE_LEVEL_LOW:
298                 d->type_buf[reg] |= t->type_level_low_val;
299                 break;
300         default:
301                 return -EINVAL;
302         }
303         return 0;
304 }
305
306 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
307 {
308         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
309         struct regmap *map = d->map;
310         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
311
312         if (on) {
313                 if (d->wake_buf)
314                         d->wake_buf[irq_data->reg_offset / map->reg_stride]
315                                 &= ~irq_data->mask;
316                 d->wake_count++;
317         } else {
318                 if (d->wake_buf)
319                         d->wake_buf[irq_data->reg_offset / map->reg_stride]
320                                 |= irq_data->mask;
321                 d->wake_count--;
322         }
323
324         return 0;
325 }
326
327 static const struct irq_chip regmap_irq_chip = {
328         .irq_bus_lock           = regmap_irq_lock,
329         .irq_bus_sync_unlock    = regmap_irq_sync_unlock,
330         .irq_disable            = regmap_irq_disable,
331         .irq_enable             = regmap_irq_enable,
332         .irq_set_type           = regmap_irq_set_type,
333         .irq_set_wake           = regmap_irq_set_wake,
334 };
335
336 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
337                                            unsigned int b)
338 {
339         const struct regmap_irq_chip *chip = data->chip;
340         struct regmap *map = data->map;
341         struct regmap_irq_sub_irq_map *subreg;
342         int i, ret = 0;
343
344         if (!chip->sub_reg_offsets) {
345                 /* Assume linear mapping */
346                 ret = regmap_read(map, chip->status_base +
347                                   (b * map->reg_stride * data->irq_reg_stride),
348                                    &data->status_buf[b]);
349         } else {
350                 subreg = &chip->sub_reg_offsets[b];
351                 for (i = 0; i < subreg->num_regs; i++) {
352                         unsigned int offset = subreg->offset[i];
353
354                         ret = regmap_read(map, chip->status_base + offset,
355                                           &data->status_buf[offset]);
356                         if (ret)
357                                 break;
358                 }
359         }
360         return ret;
361 }
362
363 static irqreturn_t regmap_irq_thread(int irq, void *d)
364 {
365         struct regmap_irq_chip_data *data = d;
366         const struct regmap_irq_chip *chip = data->chip;
367         struct regmap *map = data->map;
368         int ret, i;
369         bool handled = false;
370         u32 reg;
371
372         if (chip->handle_pre_irq)
373                 chip->handle_pre_irq(chip->irq_drv_data);
374
375         if (chip->runtime_pm) {
376                 ret = pm_runtime_get_sync(map->dev);
377                 if (ret < 0) {
378                         dev_err(map->dev, "IRQ thread failed to resume: %d\n",
379                                 ret);
380                         goto exit;
381                 }
382         }
383
384         /*
385          * Read only registers with active IRQs if the chip has 'main status
386          * register'. Else read in the statuses, using a single bulk read if
387          * possible in order to reduce the I/O overheads.
388          */
389
390         if (chip->num_main_regs) {
391                 unsigned int max_main_bits;
392                 unsigned long size;
393
394                 size = chip->num_regs * sizeof(unsigned int);
395
396                 max_main_bits = (chip->num_main_status_bits) ?
397                                  chip->num_main_status_bits : chip->num_regs;
398                 /* Clear the status buf as we don't read all status regs */
399                 memset(data->status_buf, 0, size);
400
401                 /* We could support bulk read for main status registers
402                  * but I don't expect to see devices with really many main
403                  * status registers so let's only support single reads for the
404                  * sake of simplicity. and add bulk reads only if needed
405                  */
406                 for (i = 0; i < chip->num_main_regs; i++) {
407                         ret = regmap_read(map, chip->main_status +
408                                   (i * map->reg_stride
409                                    * data->irq_reg_stride),
410                                   &data->main_status_buf[i]);
411                         if (ret) {
412                                 dev_err(map->dev,
413                                         "Failed to read IRQ status %d\n",
414                                         ret);
415                                 goto exit;
416                         }
417                 }
418
419                 /* Read sub registers with active IRQs */
420                 for (i = 0; i < chip->num_main_regs; i++) {
421                         unsigned int b;
422                         const unsigned long mreg = data->main_status_buf[i];
423
424                         for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
425                                 if (i * map->format.val_bytes * 8 + b >
426                                     max_main_bits)
427                                         break;
428                                 ret = read_sub_irq_data(data, b);
429
430                                 if (ret != 0) {
431                                         dev_err(map->dev,
432                                                 "Failed to read IRQ status %d\n",
433                                                 ret);
434                                         goto exit;
435                                 }
436                         }
437
438                 }
439         } else if (!map->use_single_read && map->reg_stride == 1 &&
440                    data->irq_reg_stride == 1) {
441
442                 u8 *buf8 = data->status_reg_buf;
443                 u16 *buf16 = data->status_reg_buf;
444                 u32 *buf32 = data->status_reg_buf;
445
446                 BUG_ON(!data->status_reg_buf);
447
448                 ret = regmap_bulk_read(map, chip->status_base,
449                                        data->status_reg_buf,
450                                        chip->num_regs);
451                 if (ret != 0) {
452                         dev_err(map->dev, "Failed to read IRQ status: %d\n",
453                                 ret);
454                         goto exit;
455                 }
456
457                 for (i = 0; i < data->chip->num_regs; i++) {
458                         switch (map->format.val_bytes) {
459                         case 1:
460                                 data->status_buf[i] = buf8[i];
461                                 break;
462                         case 2:
463                                 data->status_buf[i] = buf16[i];
464                                 break;
465                         case 4:
466                                 data->status_buf[i] = buf32[i];
467                                 break;
468                         default:
469                                 BUG();
470                                 goto exit;
471                         }
472                 }
473
474         } else {
475                 for (i = 0; i < data->chip->num_regs; i++) {
476                         ret = regmap_read(map, chip->status_base +
477                                           (i * map->reg_stride
478                                            * data->irq_reg_stride),
479                                           &data->status_buf[i]);
480
481                         if (ret != 0) {
482                                 dev_err(map->dev,
483                                         "Failed to read IRQ status: %d\n",
484                                         ret);
485                                 goto exit;
486                         }
487                 }
488         }
489
490         /*
491          * Ignore masked IRQs and ack if we need to; we ack early so
492          * there is no race between handling and acknowleding the
493          * interrupt.  We assume that typically few of the interrupts
494          * will fire simultaneously so don't worry about overhead from
495          * doing a write per register.
496          */
497         for (i = 0; i < data->chip->num_regs; i++) {
498                 data->status_buf[i] &= ~data->mask_buf[i];
499
500                 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
501                         reg = chip->ack_base +
502                                 (i * map->reg_stride * data->irq_reg_stride);
503                         if (chip->ack_invert)
504                                 ret = regmap_write(map, reg,
505                                                 ~data->status_buf[i]);
506                         else
507                                 ret = regmap_write(map, reg,
508                                                 data->status_buf[i]);
509                         if (chip->clear_ack) {
510                                 if (chip->ack_invert && !ret)
511                                         ret = regmap_write(map, reg, UINT_MAX);
512                                 else if (!ret)
513                                         ret = regmap_write(map, reg, 0);
514                         }
515                         if (ret != 0)
516                                 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
517                                         reg, ret);
518                 }
519         }
520
521         for (i = 0; i < chip->num_irqs; i++) {
522                 if (data->status_buf[chip->irqs[i].reg_offset /
523                                      map->reg_stride] & chip->irqs[i].mask) {
524                         handle_nested_irq(irq_find_mapping(data->domain, i));
525                         handled = true;
526                 }
527         }
528
529 exit:
530         if (chip->runtime_pm)
531                 pm_runtime_put(map->dev);
532
533         if (chip->handle_post_irq)
534                 chip->handle_post_irq(chip->irq_drv_data);
535
536         if (handled)
537                 return IRQ_HANDLED;
538         else
539                 return IRQ_NONE;
540 }
541
542 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
543                           irq_hw_number_t hw)
544 {
545         struct regmap_irq_chip_data *data = h->host_data;
546
547         irq_set_chip_data(virq, data);
548         irq_set_chip(virq, &data->irq_chip);
549         irq_set_nested_thread(virq, 1);
550         irq_set_parent(virq, data->irq);
551         irq_set_noprobe(virq);
552
553         return 0;
554 }
555
556 static const struct irq_domain_ops regmap_domain_ops = {
557         .map    = regmap_irq_map,
558         .xlate  = irq_domain_xlate_onetwocell,
559 };
560
561 /**
562  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
563  *
564  * @fwnode: The firmware node where the IRQ domain should be added to.
565  * @map: The regmap for the device.
566  * @irq: The IRQ the device uses to signal interrupts.
567  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
568  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
569  * @chip: Configuration for the interrupt controller.
570  * @data: Runtime data structure for the controller, allocated on success.
571  *
572  * Returns 0 on success or an errno on failure.
573  *
574  * In order for this to be efficient the chip really should use a
575  * register cache.  The chip driver is responsible for restoring the
576  * register values used by the IRQ controller over suspend and resume.
577  */
578 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
579                                struct regmap *map, int irq,
580                                int irq_flags, int irq_base,
581                                const struct regmap_irq_chip *chip,
582                                struct regmap_irq_chip_data **data)
583 {
584         struct regmap_irq_chip_data *d;
585         int i;
586         int ret = -ENOMEM;
587         int num_type_reg;
588         u32 reg;
589         u32 unmask_offset;
590
591         if (chip->num_regs <= 0)
592                 return -EINVAL;
593
594         if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
595                 return -EINVAL;
596
597         for (i = 0; i < chip->num_irqs; i++) {
598                 if (chip->irqs[i].reg_offset % map->reg_stride)
599                         return -EINVAL;
600                 if (chip->irqs[i].reg_offset / map->reg_stride >=
601                     chip->num_regs)
602                         return -EINVAL;
603         }
604
605         if (irq_base) {
606                 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
607                 if (irq_base < 0) {
608                         dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
609                                  irq_base);
610                         return irq_base;
611                 }
612         }
613
614         d = kzalloc(sizeof(*d), GFP_KERNEL);
615         if (!d)
616                 return -ENOMEM;
617
618         if (chip->num_main_regs) {
619                 d->main_status_buf = kcalloc(chip->num_main_regs,
620                                              sizeof(unsigned int),
621                                              GFP_KERNEL);
622
623                 if (!d->main_status_buf)
624                         goto err_alloc;
625         }
626
627         d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
628                                 GFP_KERNEL);
629         if (!d->status_buf)
630                 goto err_alloc;
631
632         d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
633                               GFP_KERNEL);
634         if (!d->mask_buf)
635                 goto err_alloc;
636
637         d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
638                                   GFP_KERNEL);
639         if (!d->mask_buf_def)
640                 goto err_alloc;
641
642         if (chip->wake_base) {
643                 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
644                                       GFP_KERNEL);
645                 if (!d->wake_buf)
646                         goto err_alloc;
647         }
648
649         num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
650         if (num_type_reg) {
651                 d->type_buf_def = kcalloc(num_type_reg,
652                                           sizeof(unsigned int), GFP_KERNEL);
653                 if (!d->type_buf_def)
654                         goto err_alloc;
655
656                 d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
657                                       GFP_KERNEL);
658                 if (!d->type_buf)
659                         goto err_alloc;
660         }
661
662         d->irq_chip = regmap_irq_chip;
663         d->irq_chip.name = chip->name;
664         d->irq = irq;
665         d->map = map;
666         d->chip = chip;
667         d->irq_base = irq_base;
668
669         if (chip->irq_reg_stride)
670                 d->irq_reg_stride = chip->irq_reg_stride;
671         else
672                 d->irq_reg_stride = 1;
673
674         if (chip->type_reg_stride)
675                 d->type_reg_stride = chip->type_reg_stride;
676         else
677                 d->type_reg_stride = 1;
678
679         if (!map->use_single_read && map->reg_stride == 1 &&
680             d->irq_reg_stride == 1) {
681                 d->status_reg_buf = kmalloc_array(chip->num_regs,
682                                                   map->format.val_bytes,
683                                                   GFP_KERNEL);
684                 if (!d->status_reg_buf)
685                         goto err_alloc;
686         }
687
688         mutex_init(&d->lock);
689
690         for (i = 0; i < chip->num_irqs; i++)
691                 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
692                         |= chip->irqs[i].mask;
693
694         /* Mask all the interrupts by default */
695         for (i = 0; i < chip->num_regs; i++) {
696                 d->mask_buf[i] = d->mask_buf_def[i];
697                 if (!chip->mask_base)
698                         continue;
699
700                 reg = chip->mask_base +
701                         (i * map->reg_stride * d->irq_reg_stride);
702                 if (chip->mask_invert)
703                         ret = regmap_irq_update_bits(d, reg,
704                                          d->mask_buf[i], ~d->mask_buf[i]);
705                 else if (d->chip->unmask_base) {
706                         unmask_offset = d->chip->unmask_base -
707                                         d->chip->mask_base;
708                         ret = regmap_irq_update_bits(d,
709                                         reg + unmask_offset,
710                                         d->mask_buf[i],
711                                         d->mask_buf[i]);
712                 } else
713                         ret = regmap_irq_update_bits(d, reg,
714                                          d->mask_buf[i], d->mask_buf[i]);
715                 if (ret != 0) {
716                         dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
717                                 reg, ret);
718                         goto err_alloc;
719                 }
720
721                 if (!chip->init_ack_masked)
722                         continue;
723
724                 /* Ack masked but set interrupts */
725                 reg = chip->status_base +
726                         (i * map->reg_stride * d->irq_reg_stride);
727                 ret = regmap_read(map, reg, &d->status_buf[i]);
728                 if (ret != 0) {
729                         dev_err(map->dev, "Failed to read IRQ status: %d\n",
730                                 ret);
731                         goto err_alloc;
732                 }
733
734                 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
735                         reg = chip->ack_base +
736                                 (i * map->reg_stride * d->irq_reg_stride);
737                         if (chip->ack_invert)
738                                 ret = regmap_write(map, reg,
739                                         ~(d->status_buf[i] & d->mask_buf[i]));
740                         else
741                                 ret = regmap_write(map, reg,
742                                         d->status_buf[i] & d->mask_buf[i]);
743                         if (chip->clear_ack) {
744                                 if (chip->ack_invert && !ret)
745                                         ret = regmap_write(map, reg, UINT_MAX);
746                                 else if (!ret)
747                                         ret = regmap_write(map, reg, 0);
748                         }
749                         if (ret != 0) {
750                                 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
751                                         reg, ret);
752                                 goto err_alloc;
753                         }
754                 }
755         }
756
757         /* Wake is disabled by default */
758         if (d->wake_buf) {
759                 for (i = 0; i < chip->num_regs; i++) {
760                         d->wake_buf[i] = d->mask_buf_def[i];
761                         reg = chip->wake_base +
762                                 (i * map->reg_stride * d->irq_reg_stride);
763
764                         if (chip->wake_invert)
765                                 ret = regmap_irq_update_bits(d, reg,
766                                                          d->mask_buf_def[i],
767                                                          0);
768                         else
769                                 ret = regmap_irq_update_bits(d, reg,
770                                                          d->mask_buf_def[i],
771                                                          d->wake_buf[i]);
772                         if (ret != 0) {
773                                 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
774                                         reg, ret);
775                                 goto err_alloc;
776                         }
777                 }
778         }
779
780         if (chip->num_type_reg && !chip->type_in_mask) {
781                 for (i = 0; i < chip->num_type_reg; ++i) {
782                         reg = chip->type_base +
783                                 (i * map->reg_stride * d->type_reg_stride);
784
785                         ret = regmap_read(map, reg, &d->type_buf_def[i]);
786
787                         if (d->chip->type_invert)
788                                 d->type_buf_def[i] = ~d->type_buf_def[i];
789
790                         if (ret) {
791                                 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
792                                         reg, ret);
793                                 goto err_alloc;
794                         }
795                 }
796         }
797
798         if (irq_base)
799                 d->domain = irq_domain_add_legacy(to_of_node(fwnode),
800                                                   chip->num_irqs, irq_base,
801                                                   0, &regmap_domain_ops, d);
802         else
803                 d->domain = irq_domain_add_linear(to_of_node(fwnode),
804                                                   chip->num_irqs,
805                                                   &regmap_domain_ops, d);
806         if (!d->domain) {
807                 dev_err(map->dev, "Failed to create IRQ domain\n");
808                 ret = -ENOMEM;
809                 goto err_alloc;
810         }
811
812         ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
813                                    irq_flags | IRQF_ONESHOT,
814                                    chip->name, d);
815         if (ret != 0) {
816                 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
817                         irq, chip->name, ret);
818                 goto err_domain;
819         }
820
821         *data = d;
822
823         return 0;
824
825 err_domain:
826         /* Should really dispose of the domain but... */
827 err_alloc:
828         kfree(d->type_buf);
829         kfree(d->type_buf_def);
830         kfree(d->wake_buf);
831         kfree(d->mask_buf_def);
832         kfree(d->mask_buf);
833         kfree(d->status_buf);
834         kfree(d->status_reg_buf);
835         kfree(d);
836         return ret;
837 }
838 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
839
840 /**
841  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
842  *
843  * @map: The regmap for the device.
844  * @irq: The IRQ the device uses to signal interrupts.
845  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
846  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
847  * @chip: Configuration for the interrupt controller.
848  * @data: Runtime data structure for the controller, allocated on success.
849  *
850  * Returns 0 on success or an errno on failure.
851  *
852  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
853  * node of the regmap is used.
854  */
855 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
856                         int irq_base, const struct regmap_irq_chip *chip,
857                         struct regmap_irq_chip_data **data)
858 {
859         return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
860                                           irq_flags, irq_base, chip, data);
861 }
862 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
863
864 /**
865  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
866  *
867  * @irq: Primary IRQ for the device
868  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
869  *
870  * This function also disposes of all mapped IRQs on the chip.
871  */
872 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
873 {
874         unsigned int virq;
875         int hwirq;
876
877         if (!d)
878                 return;
879
880         free_irq(irq, d);
881
882         /* Dispose all virtual irq from irq domain before removing it */
883         for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
884                 /* Ignore hwirq if holes in the IRQ list */
885                 if (!d->chip->irqs[hwirq].mask)
886                         continue;
887
888                 /*
889                  * Find the virtual irq of hwirq on chip and if it is
890                  * there then dispose it
891                  */
892                 virq = irq_find_mapping(d->domain, hwirq);
893                 if (virq)
894                         irq_dispose_mapping(virq);
895         }
896
897         irq_domain_remove(d->domain);
898         kfree(d->type_buf);
899         kfree(d->type_buf_def);
900         kfree(d->wake_buf);
901         kfree(d->mask_buf_def);
902         kfree(d->mask_buf);
903         kfree(d->status_reg_buf);
904         kfree(d->status_buf);
905         kfree(d);
906 }
907 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
908
909 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
910 {
911         struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
912
913         regmap_del_irq_chip(d->irq, d);
914 }
915
916 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
917
918 {
919         struct regmap_irq_chip_data **r = res;
920
921         if (!r || !*r) {
922                 WARN_ON(!r || !*r);
923                 return 0;
924         }
925         return *r == data;
926 }
927
928 /**
929  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
930  *
931  * @dev: The device pointer on which irq_chip belongs to.
932  * @fwnode: The firmware node where the IRQ domain should be added to.
933  * @map: The regmap for the device.
934  * @irq: The IRQ the device uses to signal interrupts
935  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
936  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
937  * @chip: Configuration for the interrupt controller.
938  * @data: Runtime data structure for the controller, allocated on success
939  *
940  * Returns 0 on success or an errno on failure.
941  *
942  * The &regmap_irq_chip_data will be automatically released when the device is
943  * unbound.
944  */
945 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
946                                     struct fwnode_handle *fwnode,
947                                     struct regmap *map, int irq,
948                                     int irq_flags, int irq_base,
949                                     const struct regmap_irq_chip *chip,
950                                     struct regmap_irq_chip_data **data)
951 {
952         struct regmap_irq_chip_data **ptr, *d;
953         int ret;
954
955         ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
956                            GFP_KERNEL);
957         if (!ptr)
958                 return -ENOMEM;
959
960         ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
961                                          chip, &d);
962         if (ret < 0) {
963                 devres_free(ptr);
964                 return ret;
965         }
966
967         *ptr = d;
968         devres_add(dev, ptr);
969         *data = d;
970         return 0;
971 }
972 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
973
974 /**
975  * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
976  *
977  * @dev: The device pointer on which irq_chip belongs to.
978  * @map: The regmap for the device.
979  * @irq: The IRQ the device uses to signal interrupts
980  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
981  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
982  * @chip: Configuration for the interrupt controller.
983  * @data: Runtime data structure for the controller, allocated on success
984  *
985  * Returns 0 on success or an errno on failure.
986  *
987  * The &regmap_irq_chip_data will be automatically released when the device is
988  * unbound.
989  */
990 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
991                              int irq_flags, int irq_base,
992                              const struct regmap_irq_chip *chip,
993                              struct regmap_irq_chip_data **data)
994 {
995         return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
996                                                irq, irq_flags, irq_base, chip,
997                                                data);
998 }
999 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1000
1001 /**
1002  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1003  *
1004  * @dev: Device for which which resource was allocated.
1005  * @irq: Primary IRQ for the device.
1006  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1007  *
1008  * A resource managed version of regmap_del_irq_chip().
1009  */
1010 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1011                               struct regmap_irq_chip_data *data)
1012 {
1013         int rc;
1014
1015         WARN_ON(irq != data->irq);
1016         rc = devres_release(dev, devm_regmap_irq_chip_release,
1017                             devm_regmap_irq_chip_match, data);
1018
1019         if (rc != 0)
1020                 WARN_ON(rc);
1021 }
1022 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1023
1024 /**
1025  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1026  *
1027  * @data: regmap irq controller to operate on.
1028  *
1029  * Useful for drivers to request their own IRQs.
1030  */
1031 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1032 {
1033         WARN_ON(!data->irq_base);
1034         return data->irq_base;
1035 }
1036 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1037
1038 /**
1039  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1040  *
1041  * @data: regmap irq controller to operate on.
1042  * @irq: index of the interrupt requested in the chip IRQs.
1043  *
1044  * Useful for drivers to request their own IRQs.
1045  */
1046 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1047 {
1048         /* Handle holes in the IRQ list */
1049         if (!data->chip->irqs[irq].mask)
1050                 return -EINVAL;
1051
1052         return irq_create_mapping(data->domain, irq);
1053 }
1054 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1055
1056 /**
1057  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1058  *
1059  * @data: regmap_irq controller to operate on.
1060  *
1061  * Useful for drivers to request their own IRQs and for integration
1062  * with subsystems.  For ease of integration NULL is accepted as a
1063  * domain, allowing devices to just call this even if no domain is
1064  * allocated.
1065  */
1066 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1067 {
1068         if (data)
1069                 return data->domain;
1070         else
1071                 return NULL;
1072 }
1073 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);