GNU Linux-libre 6.9.1-gnu
[releases.git] / drivers / base / property.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * property.c - Unified device property interface.
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *          Mika Westerberg <mika.westerberg@linux.intel.com>
8  */
9
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/export.h>
13 #include <linux/kconfig.h>
14 #include <linux/of.h>
15 #include <linux/property.h>
16 #include <linux/phy.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/types.h>
20
21 struct fwnode_handle *__dev_fwnode(struct device *dev)
22 {
23         return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24                 of_fwnode_handle(dev->of_node) : dev->fwnode;
25 }
26 EXPORT_SYMBOL_GPL(__dev_fwnode);
27
28 const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
29 {
30         return IS_ENABLED(CONFIG_OF) && dev->of_node ?
31                 of_fwnode_handle(dev->of_node) : dev->fwnode;
32 }
33 EXPORT_SYMBOL_GPL(__dev_fwnode_const);
34
35 /**
36  * device_property_present - check if a property of a device is present
37  * @dev: Device whose property is being checked
38  * @propname: Name of the property
39  *
40  * Check if property @propname is present in the device firmware description.
41  *
42  * Return: true if property @propname is present. Otherwise, returns false.
43  */
44 bool device_property_present(const struct device *dev, const char *propname)
45 {
46         return fwnode_property_present(dev_fwnode(dev), propname);
47 }
48 EXPORT_SYMBOL_GPL(device_property_present);
49
50 /**
51  * fwnode_property_present - check if a property of a firmware node is present
52  * @fwnode: Firmware node whose property to check
53  * @propname: Name of the property
54  *
55  * Return: true if property @propname is present. Otherwise, returns false.
56  */
57 bool fwnode_property_present(const struct fwnode_handle *fwnode,
58                              const char *propname)
59 {
60         bool ret;
61
62         if (IS_ERR_OR_NULL(fwnode))
63                 return false;
64
65         ret = fwnode_call_bool_op(fwnode, property_present, propname);
66         if (ret)
67                 return ret;
68
69         return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
70 }
71 EXPORT_SYMBOL_GPL(fwnode_property_present);
72
73 /**
74  * device_property_read_u8_array - return a u8 array property of a device
75  * @dev: Device to get the property of
76  * @propname: Name of the property
77  * @val: The values are stored here or %NULL to return the number of values
78  * @nval: Size of the @val array
79  *
80  * Function reads an array of u8 properties with @propname from the device
81  * firmware description and stores them to @val if found.
82  *
83  * It's recommended to call device_property_count_u8() instead of calling
84  * this function with @val equals %NULL and @nval equals 0.
85  *
86  * Return: number of values if @val was %NULL,
87  *         %0 if the property was found (success),
88  *         %-EINVAL if given arguments are not valid,
89  *         %-ENODATA if the property does not have a value,
90  *         %-EPROTO if the property is not an array of numbers,
91  *         %-EOVERFLOW if the size of the property is not as expected.
92  *         %-ENXIO if no suitable firmware interface is present.
93  */
94 int device_property_read_u8_array(const struct device *dev, const char *propname,
95                                   u8 *val, size_t nval)
96 {
97         return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
98 }
99 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
100
101 /**
102  * device_property_read_u16_array - return a u16 array property of a device
103  * @dev: Device to get the property of
104  * @propname: Name of the property
105  * @val: The values are stored here or %NULL to return the number of values
106  * @nval: Size of the @val array
107  *
108  * Function reads an array of u16 properties with @propname from the device
109  * firmware description and stores them to @val if found.
110  *
111  * It's recommended to call device_property_count_u16() instead of calling
112  * this function with @val equals %NULL and @nval equals 0.
113  *
114  * Return: number of values if @val was %NULL,
115  *         %0 if the property was found (success),
116  *         %-EINVAL if given arguments are not valid,
117  *         %-ENODATA if the property does not have a value,
118  *         %-EPROTO if the property is not an array of numbers,
119  *         %-EOVERFLOW if the size of the property is not as expected.
120  *         %-ENXIO if no suitable firmware interface is present.
121  */
122 int device_property_read_u16_array(const struct device *dev, const char *propname,
123                                    u16 *val, size_t nval)
124 {
125         return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
126 }
127 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
128
129 /**
130  * device_property_read_u32_array - return a u32 array property of a device
131  * @dev: Device to get the property of
132  * @propname: Name of the property
133  * @val: The values are stored here or %NULL to return the number of values
134  * @nval: Size of the @val array
135  *
136  * Function reads an array of u32 properties with @propname from the device
137  * firmware description and stores them to @val if found.
138  *
139  * It's recommended to call device_property_count_u32() instead of calling
140  * this function with @val equals %NULL and @nval equals 0.
141  *
142  * Return: number of values if @val was %NULL,
143  *         %0 if the property was found (success),
144  *         %-EINVAL if given arguments are not valid,
145  *         %-ENODATA if the property does not have a value,
146  *         %-EPROTO if the property is not an array of numbers,
147  *         %-EOVERFLOW if the size of the property is not as expected.
148  *         %-ENXIO if no suitable firmware interface is present.
149  */
150 int device_property_read_u32_array(const struct device *dev, const char *propname,
151                                    u32 *val, size_t nval)
152 {
153         return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
154 }
155 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
156
157 /**
158  * device_property_read_u64_array - return a u64 array property of a device
159  * @dev: Device to get the property of
160  * @propname: Name of the property
161  * @val: The values are stored here or %NULL to return the number of values
162  * @nval: Size of the @val array
163  *
164  * Function reads an array of u64 properties with @propname from the device
165  * firmware description and stores them to @val if found.
166  *
167  * It's recommended to call device_property_count_u64() instead of calling
168  * this function with @val equals %NULL and @nval equals 0.
169  *
170  * Return: number of values if @val was %NULL,
171  *         %0 if the property was found (success),
172  *         %-EINVAL if given arguments are not valid,
173  *         %-ENODATA if the property does not have a value,
174  *         %-EPROTO if the property is not an array of numbers,
175  *         %-EOVERFLOW if the size of the property is not as expected.
176  *         %-ENXIO if no suitable firmware interface is present.
177  */
178 int device_property_read_u64_array(const struct device *dev, const char *propname,
179                                    u64 *val, size_t nval)
180 {
181         return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
182 }
183 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
184
185 /**
186  * device_property_read_string_array - return a string array property of device
187  * @dev: Device to get the property of
188  * @propname: Name of the property
189  * @val: The values are stored here or %NULL to return the number of values
190  * @nval: Size of the @val array
191  *
192  * Function reads an array of string properties with @propname from the device
193  * firmware description and stores them to @val if found.
194  *
195  * It's recommended to call device_property_string_array_count() instead of calling
196  * this function with @val equals %NULL and @nval equals 0.
197  *
198  * Return: number of values read on success if @val is non-NULL,
199  *         number of values available on success if @val is NULL,
200  *         %-EINVAL if given arguments are not valid,
201  *         %-ENODATA if the property does not have a value,
202  *         %-EPROTO or %-EILSEQ if the property is not an array of strings,
203  *         %-EOVERFLOW if the size of the property is not as expected.
204  *         %-ENXIO if no suitable firmware interface is present.
205  */
206 int device_property_read_string_array(const struct device *dev, const char *propname,
207                                       const char **val, size_t nval)
208 {
209         return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
210 }
211 EXPORT_SYMBOL_GPL(device_property_read_string_array);
212
213 /**
214  * device_property_read_string - return a string property of a device
215  * @dev: Device to get the property of
216  * @propname: Name of the property
217  * @val: The value is stored here
218  *
219  * Function reads property @propname from the device firmware description and
220  * stores the value into @val if found. The value is checked to be a string.
221  *
222  * Return: %0 if the property was found (success),
223  *         %-EINVAL if given arguments are not valid,
224  *         %-ENODATA if the property does not have a value,
225  *         %-EPROTO or %-EILSEQ if the property type is not a string.
226  *         %-ENXIO if no suitable firmware interface is present.
227  */
228 int device_property_read_string(const struct device *dev, const char *propname,
229                                 const char **val)
230 {
231         return fwnode_property_read_string(dev_fwnode(dev), propname, val);
232 }
233 EXPORT_SYMBOL_GPL(device_property_read_string);
234
235 /**
236  * device_property_match_string - find a string in an array and return index
237  * @dev: Device to get the property of
238  * @propname: Name of the property holding the array
239  * @string: String to look for
240  *
241  * Find a given string in a string array and if it is found return the
242  * index back.
243  *
244  * Return: index, starting from %0, if the property was found (success),
245  *         %-EINVAL if given arguments are not valid,
246  *         %-ENODATA if the property does not have a value,
247  *         %-EPROTO if the property is not an array of strings,
248  *         %-ENXIO if no suitable firmware interface is present.
249  */
250 int device_property_match_string(const struct device *dev, const char *propname,
251                                  const char *string)
252 {
253         return fwnode_property_match_string(dev_fwnode(dev), propname, string);
254 }
255 EXPORT_SYMBOL_GPL(device_property_match_string);
256
257 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
258                                           const char *propname,
259                                           unsigned int elem_size, void *val,
260                                           size_t nval)
261 {
262         int ret;
263
264         if (IS_ERR_OR_NULL(fwnode))
265                 return -EINVAL;
266
267         ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
268                                  elem_size, val, nval);
269         if (ret != -EINVAL)
270                 return ret;
271
272         return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
273                                   elem_size, val, nval);
274 }
275
276 /**
277  * fwnode_property_read_u8_array - return a u8 array property of firmware node
278  * @fwnode: Firmware node to get the property of
279  * @propname: Name of the property
280  * @val: The values are stored here or %NULL to return the number of values
281  * @nval: Size of the @val array
282  *
283  * Read an array of u8 properties with @propname from @fwnode and stores them to
284  * @val if found.
285  *
286  * It's recommended to call fwnode_property_count_u8() instead of calling
287  * this function with @val equals %NULL and @nval equals 0.
288  *
289  * Return: number of values if @val was %NULL,
290  *         %0 if the property was found (success),
291  *         %-EINVAL if given arguments are not valid,
292  *         %-ENODATA if the property does not have a value,
293  *         %-EPROTO if the property is not an array of numbers,
294  *         %-EOVERFLOW if the size of the property is not as expected,
295  *         %-ENXIO if no suitable firmware interface is present.
296  */
297 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
298                                   const char *propname, u8 *val, size_t nval)
299 {
300         return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
301                                               val, nval);
302 }
303 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
304
305 /**
306  * fwnode_property_read_u16_array - return a u16 array property of firmware node
307  * @fwnode: Firmware node to get the property of
308  * @propname: Name of the property
309  * @val: The values are stored here or %NULL to return the number of values
310  * @nval: Size of the @val array
311  *
312  * Read an array of u16 properties with @propname from @fwnode and store them to
313  * @val if found.
314  *
315  * It's recommended to call fwnode_property_count_u16() instead of calling
316  * this function with @val equals %NULL and @nval equals 0.
317  *
318  * Return: number of values if @val was %NULL,
319  *         %0 if the property was found (success),
320  *         %-EINVAL if given arguments are not valid,
321  *         %-ENODATA if the property does not have a value,
322  *         %-EPROTO if the property is not an array of numbers,
323  *         %-EOVERFLOW if the size of the property is not as expected,
324  *         %-ENXIO if no suitable firmware interface is present.
325  */
326 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
327                                    const char *propname, u16 *val, size_t nval)
328 {
329         return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
330                                               val, nval);
331 }
332 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
333
334 /**
335  * fwnode_property_read_u32_array - return a u32 array property of firmware node
336  * @fwnode: Firmware node to get the property of
337  * @propname: Name of the property
338  * @val: The values are stored here or %NULL to return the number of values
339  * @nval: Size of the @val array
340  *
341  * Read an array of u32 properties with @propname from @fwnode store them to
342  * @val if found.
343  *
344  * It's recommended to call fwnode_property_count_u32() instead of calling
345  * this function with @val equals %NULL and @nval equals 0.
346  *
347  * Return: number of values if @val was %NULL,
348  *         %0 if the property was found (success),
349  *         %-EINVAL if given arguments are not valid,
350  *         %-ENODATA if the property does not have a value,
351  *         %-EPROTO if the property is not an array of numbers,
352  *         %-EOVERFLOW if the size of the property is not as expected,
353  *         %-ENXIO if no suitable firmware interface is present.
354  */
355 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
356                                    const char *propname, u32 *val, size_t nval)
357 {
358         return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
359                                               val, nval);
360 }
361 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
362
363 /**
364  * fwnode_property_read_u64_array - return a u64 array property firmware node
365  * @fwnode: Firmware node to get the property of
366  * @propname: Name of the property
367  * @val: The values are stored here or %NULL to return the number of values
368  * @nval: Size of the @val array
369  *
370  * Read an array of u64 properties with @propname from @fwnode and store them to
371  * @val if found.
372  *
373  * It's recommended to call fwnode_property_count_u64() instead of calling
374  * this function with @val equals %NULL and @nval equals 0.
375  *
376  * Return: number of values if @val was %NULL,
377  *         %0 if the property was found (success),
378  *         %-EINVAL if given arguments are not valid,
379  *         %-ENODATA if the property does not have a value,
380  *         %-EPROTO if the property is not an array of numbers,
381  *         %-EOVERFLOW if the size of the property is not as expected,
382  *         %-ENXIO if no suitable firmware interface is present.
383  */
384 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
385                                    const char *propname, u64 *val, size_t nval)
386 {
387         return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
388                                               val, nval);
389 }
390 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
391
392 /**
393  * fwnode_property_read_string_array - return string array property of a node
394  * @fwnode: Firmware node to get the property of
395  * @propname: Name of the property
396  * @val: The values are stored here or %NULL to return the number of values
397  * @nval: Size of the @val array
398  *
399  * Read an string list property @propname from the given firmware node and store
400  * them to @val if found.
401  *
402  * It's recommended to call fwnode_property_string_array_count() instead of calling
403  * this function with @val equals %NULL and @nval equals 0.
404  *
405  * Return: number of values read on success if @val is non-NULL,
406  *         number of values available on success if @val is NULL,
407  *         %-EINVAL if given arguments are not valid,
408  *         %-ENODATA if the property does not have a value,
409  *         %-EPROTO or %-EILSEQ if the property is not an array of strings,
410  *         %-EOVERFLOW if the size of the property is not as expected,
411  *         %-ENXIO if no suitable firmware interface is present.
412  */
413 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
414                                       const char *propname, const char **val,
415                                       size_t nval)
416 {
417         int ret;
418
419         if (IS_ERR_OR_NULL(fwnode))
420                 return -EINVAL;
421
422         ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
423                                  val, nval);
424         if (ret != -EINVAL)
425                 return ret;
426
427         return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
428                                   val, nval);
429 }
430 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
431
432 /**
433  * fwnode_property_read_string - return a string property of a firmware node
434  * @fwnode: Firmware node to get the property of
435  * @propname: Name of the property
436  * @val: The value is stored here
437  *
438  * Read property @propname from the given firmware node and store the value into
439  * @val if found.  The value is checked to be a string.
440  *
441  * Return: %0 if the property was found (success),
442  *         %-EINVAL if given arguments are not valid,
443  *         %-ENODATA if the property does not have a value,
444  *         %-EPROTO or %-EILSEQ if the property is not a string,
445  *         %-ENXIO if no suitable firmware interface is present.
446  */
447 int fwnode_property_read_string(const struct fwnode_handle *fwnode,
448                                 const char *propname, const char **val)
449 {
450         int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
451
452         return ret < 0 ? ret : 0;
453 }
454 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
455
456 /**
457  * fwnode_property_match_string - find a string in an array and return index
458  * @fwnode: Firmware node to get the property of
459  * @propname: Name of the property holding the array
460  * @string: String to look for
461  *
462  * Find a given string in a string array and if it is found return the
463  * index back.
464  *
465  * Return: index, starting from %0, if the property was found (success),
466  *         %-EINVAL if given arguments are not valid,
467  *         %-ENODATA if the property does not have a value,
468  *         %-EPROTO if the property is not an array of strings,
469  *         %-ENXIO if no suitable firmware interface is present.
470  */
471 int fwnode_property_match_string(const struct fwnode_handle *fwnode,
472         const char *propname, const char *string)
473 {
474         const char **values;
475         int nval, ret;
476
477         nval = fwnode_property_string_array_count(fwnode, propname);
478         if (nval < 0)
479                 return nval;
480
481         if (nval == 0)
482                 return -ENODATA;
483
484         values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
485         if (!values)
486                 return -ENOMEM;
487
488         ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
489         if (ret < 0)
490                 goto out_free;
491
492         ret = match_string(values, nval, string);
493         if (ret < 0)
494                 ret = -ENODATA;
495
496 out_free:
497         kfree(values);
498         return ret;
499 }
500 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
501
502 /**
503  * fwnode_property_match_property_string - find a property string value in an array and return index
504  * @fwnode: Firmware node to get the property of
505  * @propname: Name of the property holding the string value
506  * @array: String array to search in
507  * @n: Size of the @array
508  *
509  * Find a property string value in a given @array and if it is found return
510  * the index back.
511  *
512  * Return: index, starting from %0, if the string value was found in the @array (success),
513  *         %-ENOENT when the string value was not found in the @array,
514  *         %-EINVAL if given arguments are not valid,
515  *         %-ENODATA if the property does not have a value,
516  *         %-EPROTO or %-EILSEQ if the property is not a string,
517  *         %-ENXIO if no suitable firmware interface is present.
518  */
519 int fwnode_property_match_property_string(const struct fwnode_handle *fwnode,
520         const char *propname, const char * const *array, size_t n)
521 {
522         const char *string;
523         int ret;
524
525         ret = fwnode_property_read_string(fwnode, propname, &string);
526         if (ret)
527                 return ret;
528
529         ret = match_string(array, n, string);
530         if (ret < 0)
531                 ret = -ENOENT;
532
533         return ret;
534 }
535 EXPORT_SYMBOL_GPL(fwnode_property_match_property_string);
536
537 /**
538  * fwnode_property_get_reference_args() - Find a reference with arguments
539  * @fwnode:     Firmware node where to look for the reference
540  * @prop:       The name of the property
541  * @nargs_prop: The name of the property telling the number of
542  *              arguments in the referred node. NULL if @nargs is known,
543  *              otherwise @nargs is ignored. Only relevant on OF.
544  * @nargs:      Number of arguments. Ignored if @nargs_prop is non-NULL.
545  * @index:      Index of the reference, from zero onwards.
546  * @args:       Result structure with reference and integer arguments.
547  *              May be NULL.
548  *
549  * Obtain a reference based on a named property in an fwnode, with
550  * integer arguments.
551  *
552  * The caller is responsible for calling fwnode_handle_put() on the returned
553  * @args->fwnode pointer.
554  *
555  * Return: %0 on success
556  *          %-ENOENT when the index is out of bounds, the index has an empty
557  *                   reference or the property was not found
558  *          %-EINVAL on parse error
559  */
560 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
561                                        const char *prop, const char *nargs_prop,
562                                        unsigned int nargs, unsigned int index,
563                                        struct fwnode_reference_args *args)
564 {
565         int ret;
566
567         if (IS_ERR_OR_NULL(fwnode))
568                 return -ENOENT;
569
570         ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
571                                  nargs, index, args);
572         if (ret == 0)
573                 return ret;
574
575         if (IS_ERR_OR_NULL(fwnode->secondary))
576                 return ret;
577
578         return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
579                                   nargs, index, args);
580 }
581 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
582
583 /**
584  * fwnode_find_reference - Find named reference to a fwnode_handle
585  * @fwnode: Firmware node where to look for the reference
586  * @name: The name of the reference
587  * @index: Index of the reference
588  *
589  * @index can be used when the named reference holds a table of references.
590  *
591  * The caller is responsible for calling fwnode_handle_put() on the returned
592  * fwnode pointer.
593  *
594  * Return: a pointer to the reference fwnode, when found. Otherwise,
595  * returns an error pointer.
596  */
597 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
598                                             const char *name,
599                                             unsigned int index)
600 {
601         struct fwnode_reference_args args;
602         int ret;
603
604         ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
605                                                  &args);
606         return ret ? ERR_PTR(ret) : args.fwnode;
607 }
608 EXPORT_SYMBOL_GPL(fwnode_find_reference);
609
610 /**
611  * fwnode_get_name - Return the name of a node
612  * @fwnode: The firmware node
613  *
614  * Return: a pointer to the node name, or %NULL.
615  */
616 const char *fwnode_get_name(const struct fwnode_handle *fwnode)
617 {
618         return fwnode_call_ptr_op(fwnode, get_name);
619 }
620 EXPORT_SYMBOL_GPL(fwnode_get_name);
621
622 /**
623  * fwnode_get_name_prefix - Return the prefix of node for printing purposes
624  * @fwnode: The firmware node
625  *
626  * Return: the prefix of a node, intended to be printed right before the node.
627  * The prefix works also as a separator between the nodes.
628  */
629 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
630 {
631         return fwnode_call_ptr_op(fwnode, get_name_prefix);
632 }
633
634 /**
635  * fwnode_name_eq - Return true if node name is equal
636  * @fwnode: The firmware node
637  * @name: The name to which to compare the node name
638  *
639  * Compare the name provided as an argument to the name of the node, stopping
640  * the comparison at either NUL or '@' character, whichever comes first. This
641  * function is generally used for comparing node names while ignoring the
642  * possible unit address of the node.
643  *
644  * Return: true if the node name matches with the name provided in the @name
645  * argument, false otherwise.
646  */
647 bool fwnode_name_eq(const struct fwnode_handle *fwnode, const char *name)
648 {
649         const char *node_name;
650         ptrdiff_t len;
651
652         node_name = fwnode_get_name(fwnode);
653         if (!node_name)
654                 return false;
655
656         len = strchrnul(node_name, '@') - node_name;
657
658         return str_has_prefix(node_name, name) == len;
659 }
660 EXPORT_SYMBOL_GPL(fwnode_name_eq);
661
662 /**
663  * fwnode_get_parent - Return parent firwmare node
664  * @fwnode: Firmware whose parent is retrieved
665  *
666  * The caller is responsible for calling fwnode_handle_put() on the returned
667  * fwnode pointer.
668  *
669  * Return: parent firmware node of the given node if possible or %NULL if no
670  * parent was available.
671  */
672 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
673 {
674         return fwnode_call_ptr_op(fwnode, get_parent);
675 }
676 EXPORT_SYMBOL_GPL(fwnode_get_parent);
677
678 /**
679  * fwnode_get_next_parent - Iterate to the node's parent
680  * @fwnode: Firmware whose parent is retrieved
681  *
682  * This is like fwnode_get_parent() except that it drops the refcount
683  * on the passed node, making it suitable for iterating through a
684  * node's parents.
685  *
686  * The caller is responsible for calling fwnode_handle_put() on the returned
687  * fwnode pointer. Note that this function also puts a reference to @fwnode
688  * unconditionally.
689  *
690  * Return: parent firmware node of the given node if possible or %NULL if no
691  * parent was available.
692  */
693 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
694 {
695         struct fwnode_handle *parent = fwnode_get_parent(fwnode);
696
697         fwnode_handle_put(fwnode);
698
699         return parent;
700 }
701 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
702
703 /**
704  * fwnode_count_parents - Return the number of parents a node has
705  * @fwnode: The node the parents of which are to be counted
706  *
707  * Return: the number of parents a node has.
708  */
709 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
710 {
711         struct fwnode_handle *parent;
712         unsigned int count = 0;
713
714         fwnode_for_each_parent_node(fwnode, parent)
715                 count++;
716
717         return count;
718 }
719 EXPORT_SYMBOL_GPL(fwnode_count_parents);
720
721 /**
722  * fwnode_get_nth_parent - Return an nth parent of a node
723  * @fwnode: The node the parent of which is requested
724  * @depth: Distance of the parent from the node
725  *
726  * The caller is responsible for calling fwnode_handle_put() on the returned
727  * fwnode pointer.
728  *
729  * Return: the nth parent of a node. If there is no parent at the requested
730  * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
731  * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
732  */
733 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
734                                             unsigned int depth)
735 {
736         struct fwnode_handle *parent;
737
738         if (depth == 0)
739                 return fwnode_handle_get(fwnode);
740
741         fwnode_for_each_parent_node(fwnode, parent) {
742                 if (--depth == 0)
743                         return parent;
744         }
745         return NULL;
746 }
747 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
748
749 /**
750  * fwnode_get_next_child_node - Return the next child node handle for a node
751  * @fwnode: Firmware node to find the next child node for.
752  * @child: Handle to one of the node's child nodes or a %NULL handle.
753  *
754  * The caller is responsible for calling fwnode_handle_put() on the returned
755  * fwnode pointer. Note that this function also puts a reference to @child
756  * unconditionally.
757  */
758 struct fwnode_handle *
759 fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
760                            struct fwnode_handle *child)
761 {
762         return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
763 }
764 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
765
766 /**
767  * fwnode_get_next_available_child_node - Return the next available child node handle for a node
768  * @fwnode: Firmware node to find the next child node for.
769  * @child: Handle to one of the node's child nodes or a %NULL handle.
770  *
771  * The caller is responsible for calling fwnode_handle_put() on the returned
772  * fwnode pointer. Note that this function also puts a reference to @child
773  * unconditionally.
774  */
775 struct fwnode_handle *
776 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
777                                      struct fwnode_handle *child)
778 {
779         struct fwnode_handle *next_child = child;
780
781         if (IS_ERR_OR_NULL(fwnode))
782                 return NULL;
783
784         do {
785                 next_child = fwnode_get_next_child_node(fwnode, next_child);
786                 if (!next_child)
787                         return NULL;
788         } while (!fwnode_device_is_available(next_child));
789
790         return next_child;
791 }
792 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
793
794 /**
795  * device_get_next_child_node - Return the next child node handle for a device
796  * @dev: Device to find the next child node for.
797  * @child: Handle to one of the device's child nodes or a %NULL handle.
798  *
799  * The caller is responsible for calling fwnode_handle_put() on the returned
800  * fwnode pointer. Note that this function also puts a reference to @child
801  * unconditionally.
802  */
803 struct fwnode_handle *device_get_next_child_node(const struct device *dev,
804                                                  struct fwnode_handle *child)
805 {
806         const struct fwnode_handle *fwnode = dev_fwnode(dev);
807         struct fwnode_handle *next;
808
809         if (IS_ERR_OR_NULL(fwnode))
810                 return NULL;
811
812         /* Try to find a child in primary fwnode */
813         next = fwnode_get_next_child_node(fwnode, child);
814         if (next)
815                 return next;
816
817         /* When no more children in primary, continue with secondary */
818         return fwnode_get_next_child_node(fwnode->secondary, child);
819 }
820 EXPORT_SYMBOL_GPL(device_get_next_child_node);
821
822 /**
823  * fwnode_get_named_child_node - Return first matching named child node handle
824  * @fwnode: Firmware node to find the named child node for.
825  * @childname: String to match child node name against.
826  *
827  * The caller is responsible for calling fwnode_handle_put() on the returned
828  * fwnode pointer.
829  */
830 struct fwnode_handle *
831 fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
832                             const char *childname)
833 {
834         return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
835 }
836 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
837
838 /**
839  * device_get_named_child_node - Return first matching named child node handle
840  * @dev: Device to find the named child node for.
841  * @childname: String to match child node name against.
842  *
843  * The caller is responsible for calling fwnode_handle_put() on the returned
844  * fwnode pointer.
845  */
846 struct fwnode_handle *device_get_named_child_node(const struct device *dev,
847                                                   const char *childname)
848 {
849         return fwnode_get_named_child_node(dev_fwnode(dev), childname);
850 }
851 EXPORT_SYMBOL_GPL(device_get_named_child_node);
852
853 /**
854  * fwnode_handle_get - Obtain a reference to a device node
855  * @fwnode: Pointer to the device node to obtain the reference to.
856  *
857  * The caller is responsible for calling fwnode_handle_put() on the returned
858  * fwnode pointer.
859  *
860  * Return: the fwnode handle.
861  */
862 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
863 {
864         if (!fwnode_has_op(fwnode, get))
865                 return fwnode;
866
867         return fwnode_call_ptr_op(fwnode, get);
868 }
869 EXPORT_SYMBOL_GPL(fwnode_handle_get);
870
871 /**
872  * fwnode_handle_put - Drop reference to a device node
873  * @fwnode: Pointer to the device node to drop the reference to.
874  *
875  * This has to be used when terminating device_for_each_child_node() iteration
876  * with break or return to prevent stale device node references from being left
877  * behind.
878  */
879 void fwnode_handle_put(struct fwnode_handle *fwnode)
880 {
881         fwnode_call_void_op(fwnode, put);
882 }
883 EXPORT_SYMBOL_GPL(fwnode_handle_put);
884
885 /**
886  * fwnode_device_is_available - check if a device is available for use
887  * @fwnode: Pointer to the fwnode of the device.
888  *
889  * Return: true if device is available for use. Otherwise, returns false.
890  *
891  * For fwnode node types that don't implement the .device_is_available()
892  * operation, this function returns true.
893  */
894 bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
895 {
896         if (IS_ERR_OR_NULL(fwnode))
897                 return false;
898
899         if (!fwnode_has_op(fwnode, device_is_available))
900                 return true;
901
902         return fwnode_call_bool_op(fwnode, device_is_available);
903 }
904 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
905
906 /**
907  * device_get_child_node_count - return the number of child nodes for device
908  * @dev: Device to cound the child nodes for
909  *
910  * Return: the number of child nodes for a given device.
911  */
912 unsigned int device_get_child_node_count(const struct device *dev)
913 {
914         struct fwnode_handle *child;
915         unsigned int count = 0;
916
917         device_for_each_child_node(dev, child)
918                 count++;
919
920         return count;
921 }
922 EXPORT_SYMBOL_GPL(device_get_child_node_count);
923
924 bool device_dma_supported(const struct device *dev)
925 {
926         return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
927 }
928 EXPORT_SYMBOL_GPL(device_dma_supported);
929
930 enum dev_dma_attr device_get_dma_attr(const struct device *dev)
931 {
932         if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
933                 return DEV_DMA_NOT_SUPPORTED;
934
935         return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
936 }
937 EXPORT_SYMBOL_GPL(device_get_dma_attr);
938
939 /**
940  * fwnode_get_phy_mode - Get phy mode for given firmware node
941  * @fwnode:     Pointer to the given node
942  *
943  * The function gets phy interface string from property 'phy-mode' or
944  * 'phy-connection-type', and return its index in phy_modes table, or errno in
945  * error case.
946  */
947 int fwnode_get_phy_mode(const struct fwnode_handle *fwnode)
948 {
949         const char *pm;
950         int err, i;
951
952         err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
953         if (err < 0)
954                 err = fwnode_property_read_string(fwnode,
955                                                   "phy-connection-type", &pm);
956         if (err < 0)
957                 return err;
958
959         for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
960                 if (!strcasecmp(pm, phy_modes(i)))
961                         return i;
962
963         return -ENODEV;
964 }
965 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
966
967 /**
968  * device_get_phy_mode - Get phy mode for given device
969  * @dev:        Pointer to the given device
970  *
971  * The function gets phy interface string from property 'phy-mode' or
972  * 'phy-connection-type', and return its index in phy_modes table, or errno in
973  * error case.
974  */
975 int device_get_phy_mode(struct device *dev)
976 {
977         return fwnode_get_phy_mode(dev_fwnode(dev));
978 }
979 EXPORT_SYMBOL_GPL(device_get_phy_mode);
980
981 /**
982  * fwnode_iomap - Maps the memory mapped IO for a given fwnode
983  * @fwnode:     Pointer to the firmware node
984  * @index:      Index of the IO range
985  *
986  * Return: a pointer to the mapped memory.
987  */
988 void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
989 {
990         return fwnode_call_ptr_op(fwnode, iomap, index);
991 }
992 EXPORT_SYMBOL(fwnode_iomap);
993
994 /**
995  * fwnode_irq_get - Get IRQ directly from a fwnode
996  * @fwnode:     Pointer to the firmware node
997  * @index:      Zero-based index of the IRQ
998  *
999  * Return: Linux IRQ number on success. Negative errno on failure.
1000  */
1001 int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
1002 {
1003         int ret;
1004
1005         ret = fwnode_call_int_op(fwnode, irq_get, index);
1006         /* We treat mapping errors as invalid case */
1007         if (ret == 0)
1008                 return -EINVAL;
1009
1010         return ret;
1011 }
1012 EXPORT_SYMBOL(fwnode_irq_get);
1013
1014 /**
1015  * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
1016  * @fwnode:     Pointer to the firmware node
1017  * @name:       IRQ name
1018  *
1019  * Description:
1020  * Find a match to the string @name in the 'interrupt-names' string array
1021  * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
1022  * number of the IRQ resource corresponding to the index of the matched
1023  * string.
1024  *
1025  * Return: Linux IRQ number on success, or negative errno otherwise.
1026  */
1027 int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
1028 {
1029         int index;
1030
1031         if (!name)
1032                 return -EINVAL;
1033
1034         index = fwnode_property_match_string(fwnode, "interrupt-names",  name);
1035         if (index < 0)
1036                 return index;
1037
1038         return fwnode_irq_get(fwnode, index);
1039 }
1040 EXPORT_SYMBOL(fwnode_irq_get_byname);
1041
1042 /**
1043  * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1044  * @fwnode: Pointer to the parent firmware node
1045  * @prev: Previous endpoint node or %NULL to get the first
1046  *
1047  * The caller is responsible for calling fwnode_handle_put() on the returned
1048  * fwnode pointer. Note that this function also puts a reference to @prev
1049  * unconditionally.
1050  *
1051  * Return: an endpoint firmware node pointer or %NULL if no more endpoints
1052  * are available.
1053  */
1054 struct fwnode_handle *
1055 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1056                                struct fwnode_handle *prev)
1057 {
1058         struct fwnode_handle *ep, *port_parent = NULL;
1059         const struct fwnode_handle *parent;
1060
1061         /*
1062          * If this function is in a loop and the previous iteration returned
1063          * an endpoint from fwnode->secondary, then we need to use the secondary
1064          * as parent rather than @fwnode.
1065          */
1066         if (prev) {
1067                 port_parent = fwnode_graph_get_port_parent(prev);
1068                 parent = port_parent;
1069         } else {
1070                 parent = fwnode;
1071         }
1072         if (IS_ERR_OR_NULL(parent))
1073                 return NULL;
1074
1075         ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1076         if (ep)
1077                 goto out_put_port_parent;
1078
1079         ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1080
1081 out_put_port_parent:
1082         fwnode_handle_put(port_parent);
1083         return ep;
1084 }
1085 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1086
1087 /**
1088  * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1089  * @endpoint: Endpoint firmware node of the port
1090  *
1091  * The caller is responsible for calling fwnode_handle_put() on the returned
1092  * fwnode pointer.
1093  *
1094  * Return: the firmware node of the device the @endpoint belongs to.
1095  */
1096 struct fwnode_handle *
1097 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1098 {
1099         struct fwnode_handle *port, *parent;
1100
1101         port = fwnode_get_parent(endpoint);
1102         parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1103
1104         fwnode_handle_put(port);
1105
1106         return parent;
1107 }
1108 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1109
1110 /**
1111  * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1112  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1113  *
1114  * Extracts firmware node of a remote device the @fwnode points to.
1115  *
1116  * The caller is responsible for calling fwnode_handle_put() on the returned
1117  * fwnode pointer.
1118  */
1119 struct fwnode_handle *
1120 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1121 {
1122         struct fwnode_handle *endpoint, *parent;
1123
1124         endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1125         parent = fwnode_graph_get_port_parent(endpoint);
1126
1127         fwnode_handle_put(endpoint);
1128
1129         return parent;
1130 }
1131 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1132
1133 /**
1134  * fwnode_graph_get_remote_port - Return fwnode of a remote port
1135  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1136  *
1137  * Extracts firmware node of a remote port the @fwnode points to.
1138  *
1139  * The caller is responsible for calling fwnode_handle_put() on the returned
1140  * fwnode pointer.
1141  */
1142 struct fwnode_handle *
1143 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1144 {
1145         return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1146 }
1147 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1148
1149 /**
1150  * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1151  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1152  *
1153  * Extracts firmware node of a remote endpoint the @fwnode points to.
1154  *
1155  * The caller is responsible for calling fwnode_handle_put() on the returned
1156  * fwnode pointer.
1157  */
1158 struct fwnode_handle *
1159 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1160 {
1161         return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1162 }
1163 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1164
1165 static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1166 {
1167         struct fwnode_handle *dev_node;
1168         bool available;
1169
1170         dev_node = fwnode_graph_get_remote_port_parent(ep);
1171         available = fwnode_device_is_available(dev_node);
1172         fwnode_handle_put(dev_node);
1173
1174         return available;
1175 }
1176
1177 /**
1178  * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1179  * @fwnode: parent fwnode_handle containing the graph
1180  * @port: identifier of the port node
1181  * @endpoint: identifier of the endpoint node under the port node
1182  * @flags: fwnode lookup flags
1183  *
1184  * The caller is responsible for calling fwnode_handle_put() on the returned
1185  * fwnode pointer.
1186  *
1187  * Return: the fwnode handle of the local endpoint corresponding the port and
1188  * endpoint IDs or %NULL if not found.
1189  *
1190  * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1191  * has not been found, look for the closest endpoint ID greater than the
1192  * specified one and return the endpoint that corresponds to it, if present.
1193  *
1194  * Does not return endpoints that belong to disabled devices or endpoints that
1195  * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1196  */
1197 struct fwnode_handle *
1198 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1199                                 u32 port, u32 endpoint, unsigned long flags)
1200 {
1201         struct fwnode_handle *ep, *best_ep = NULL;
1202         unsigned int best_ep_id = 0;
1203         bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1204         bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1205
1206         fwnode_graph_for_each_endpoint(fwnode, ep) {
1207                 struct fwnode_endpoint fwnode_ep = { 0 };
1208                 int ret;
1209
1210                 if (enabled_only && !fwnode_graph_remote_available(ep))
1211                         continue;
1212
1213                 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1214                 if (ret < 0)
1215                         continue;
1216
1217                 if (fwnode_ep.port != port)
1218                         continue;
1219
1220                 if (fwnode_ep.id == endpoint)
1221                         return ep;
1222
1223                 if (!endpoint_next)
1224                         continue;
1225
1226                 /*
1227                  * If the endpoint that has just been found is not the first
1228                  * matching one and the ID of the one found previously is closer
1229                  * to the requested endpoint ID, skip it.
1230                  */
1231                 if (fwnode_ep.id < endpoint ||
1232                     (best_ep && best_ep_id < fwnode_ep.id))
1233                         continue;
1234
1235                 fwnode_handle_put(best_ep);
1236                 best_ep = fwnode_handle_get(ep);
1237                 best_ep_id = fwnode_ep.id;
1238         }
1239
1240         return best_ep;
1241 }
1242 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1243
1244 /**
1245  * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1246  * @fwnode: The node related to a device
1247  * @flags: fwnode lookup flags
1248  * Count endpoints in a device node.
1249  *
1250  * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1251  * and endpoints connected to disabled devices are counted.
1252  */
1253 unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode,
1254                                              unsigned long flags)
1255 {
1256         struct fwnode_handle *ep;
1257         unsigned int count = 0;
1258
1259         fwnode_graph_for_each_endpoint(fwnode, ep) {
1260                 if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1261                     fwnode_graph_remote_available(ep))
1262                         count++;
1263         }
1264
1265         return count;
1266 }
1267 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1268
1269 /**
1270  * fwnode_graph_parse_endpoint - parse common endpoint node properties
1271  * @fwnode: pointer to endpoint fwnode_handle
1272  * @endpoint: pointer to the fwnode endpoint data structure
1273  *
1274  * Parse @fwnode representing a graph endpoint node and store the
1275  * information in @endpoint. The caller must hold a reference to
1276  * @fwnode.
1277  */
1278 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1279                                 struct fwnode_endpoint *endpoint)
1280 {
1281         memset(endpoint, 0, sizeof(*endpoint));
1282
1283         return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1284 }
1285 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1286
1287 const void *device_get_match_data(const struct device *dev)
1288 {
1289         return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1290 }
1291 EXPORT_SYMBOL_GPL(device_get_match_data);
1292
1293 static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1294                                                 const char *con_id, void *data,
1295                                                 devcon_match_fn_t match,
1296                                                 void **matches,
1297                                                 unsigned int matches_len)
1298 {
1299         struct fwnode_handle *node;
1300         struct fwnode_handle *ep;
1301         unsigned int count = 0;
1302         void *ret;
1303
1304         fwnode_graph_for_each_endpoint(fwnode, ep) {
1305                 if (matches && count >= matches_len) {
1306                         fwnode_handle_put(ep);
1307                         break;
1308                 }
1309
1310                 node = fwnode_graph_get_remote_port_parent(ep);
1311                 if (!fwnode_device_is_available(node)) {
1312                         fwnode_handle_put(node);
1313                         continue;
1314                 }
1315
1316                 ret = match(node, con_id, data);
1317                 fwnode_handle_put(node);
1318                 if (ret) {
1319                         if (matches)
1320                                 matches[count] = ret;
1321                         count++;
1322                 }
1323         }
1324         return count;
1325 }
1326
1327 static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1328                                           const char *con_id, void *data,
1329                                           devcon_match_fn_t match,
1330                                           void **matches,
1331                                           unsigned int matches_len)
1332 {
1333         struct fwnode_handle *node;
1334         unsigned int count = 0;
1335         unsigned int i;
1336         void *ret;
1337
1338         for (i = 0; ; i++) {
1339                 if (matches && count >= matches_len)
1340                         break;
1341
1342                 node = fwnode_find_reference(fwnode, con_id, i);
1343                 if (IS_ERR(node))
1344                         break;
1345
1346                 ret = match(node, NULL, data);
1347                 fwnode_handle_put(node);
1348                 if (ret) {
1349                         if (matches)
1350                                 matches[count] = ret;
1351                         count++;
1352                 }
1353         }
1354
1355         return count;
1356 }
1357
1358 /**
1359  * fwnode_connection_find_match - Find connection from a device node
1360  * @fwnode: Device node with the connection
1361  * @con_id: Identifier for the connection
1362  * @data: Data for the match function
1363  * @match: Function to check and convert the connection description
1364  *
1365  * Find a connection with unique identifier @con_id between @fwnode and another
1366  * device node. @match will be used to convert the connection description to
1367  * data the caller is expecting to be returned.
1368  */
1369 void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1370                                    const char *con_id, void *data,
1371                                    devcon_match_fn_t match)
1372 {
1373         unsigned int count;
1374         void *ret;
1375
1376         if (!fwnode || !match)
1377                 return NULL;
1378
1379         count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1380         if (count)
1381                 return ret;
1382
1383         count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1384         return count ? ret : NULL;
1385 }
1386 EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1387
1388 /**
1389  * fwnode_connection_find_matches - Find connections from a device node
1390  * @fwnode: Device node with the connection
1391  * @con_id: Identifier for the connection
1392  * @data: Data for the match function
1393  * @match: Function to check and convert the connection description
1394  * @matches: (Optional) array of pointers to fill with matches
1395  * @matches_len: Length of @matches
1396  *
1397  * Find up to @matches_len connections with unique identifier @con_id between
1398  * @fwnode and other device nodes. @match will be used to convert the
1399  * connection description to data the caller is expecting to be returned
1400  * through the @matches array.
1401  *
1402  * If @matches is %NULL @matches_len is ignored and the total number of resolved
1403  * matches is returned.
1404  *
1405  * Return: Number of matches resolved, or negative errno.
1406  */
1407 int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1408                                    const char *con_id, void *data,
1409                                    devcon_match_fn_t match,
1410                                    void **matches, unsigned int matches_len)
1411 {
1412         unsigned int count_graph;
1413         unsigned int count_ref;
1414
1415         if (!fwnode || !match)
1416                 return -EINVAL;
1417
1418         count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1419                                                   matches, matches_len);
1420
1421         if (matches) {
1422                 matches += count_graph;
1423                 matches_len -= count_graph;
1424         }
1425
1426         count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1427                                           matches, matches_len);
1428
1429         return count_graph + count_ref;
1430 }
1431 EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);