GNU Linux-libre 5.10.219-gnu1
[releases.git] / drivers / base / devcoredump.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(c) 2014 Intel Mobile Communications GmbH
4  * Copyright(c) 2015 Intel Deutschland GmbH
5  *
6  * Contact Information:
7  *  Intel Linux Wireless <ilw@linux.intel.com>
8  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
9  *
10  * Author: Johannes Berg <johannes@sipsolutions.net>
11  */
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/devcoredump.h>
15 #include <linux/list.h>
16 #include <linux/slab.h>
17 #include <linux/fs.h>
18 #include <linux/workqueue.h>
19
20 static struct class devcd_class;
21
22 /* global disable flag, for security purposes */
23 static bool devcd_disabled;
24
25 /* if data isn't read by userspace after 5 minutes then delete it */
26 #define DEVCD_TIMEOUT   (HZ * 60 * 5)
27
28 struct devcd_entry {
29         struct device devcd_dev;
30         void *data;
31         size_t datalen;
32         /*
33          * Here, mutex is required to serialize the calls to del_wk work between
34          * user/kernel space which happens when devcd is added with device_add()
35          * and that sends uevent to user space. User space reads the uevents,
36          * and calls to devcd_data_write() which try to modify the work which is
37          * not even initialized/queued from devcoredump.
38          *
39          *
40          *
41          *        cpu0(X)                                 cpu1(Y)
42          *
43          *        dev_coredump() uevent sent to user space
44          *        device_add()  ======================> user space process Y reads the
45          *                                              uevents writes to devcd fd
46          *                                              which results into writes to
47          *
48          *                                             devcd_data_write()
49          *                                               mod_delayed_work()
50          *                                                 try_to_grab_pending()
51          *                                                   del_timer()
52          *                                                     debug_assert_init()
53          *       INIT_DELAYED_WORK()
54          *       schedule_delayed_work()
55          *
56          *
57          * Also, mutex alone would not be enough to avoid scheduling of
58          * del_wk work after it get flush from a call to devcd_free()
59          * mentioned as below.
60          *
61          *      disabled_store()
62          *        devcd_free()
63          *          mutex_lock()             devcd_data_write()
64          *          flush_delayed_work()
65          *          mutex_unlock()
66          *                                   mutex_lock()
67          *                                   mod_delayed_work()
68          *                                   mutex_unlock()
69          * So, delete_work flag is required.
70          */
71         struct mutex mutex;
72         bool delete_work;
73         struct module *owner;
74         ssize_t (*read)(char *buffer, loff_t offset, size_t count,
75                         void *data, size_t datalen);
76         void (*free)(void *data);
77         struct delayed_work del_wk;
78         struct device *failing_dev;
79 };
80
81 static struct devcd_entry *dev_to_devcd(struct device *dev)
82 {
83         return container_of(dev, struct devcd_entry, devcd_dev);
84 }
85
86 static void devcd_dev_release(struct device *dev)
87 {
88         struct devcd_entry *devcd = dev_to_devcd(dev);
89
90         devcd->free(devcd->data);
91         module_put(devcd->owner);
92
93         /*
94          * this seems racy, but I don't see a notifier or such on
95          * a struct device to know when it goes away?
96          */
97         if (devcd->failing_dev->kobj.sd)
98                 sysfs_delete_link(&devcd->failing_dev->kobj, &dev->kobj,
99                                   "devcoredump");
100
101         put_device(devcd->failing_dev);
102         kfree(devcd);
103 }
104
105 static void devcd_del(struct work_struct *wk)
106 {
107         struct devcd_entry *devcd;
108
109         devcd = container_of(wk, struct devcd_entry, del_wk.work);
110
111         device_del(&devcd->devcd_dev);
112         put_device(&devcd->devcd_dev);
113 }
114
115 static ssize_t devcd_data_read(struct file *filp, struct kobject *kobj,
116                                struct bin_attribute *bin_attr,
117                                char *buffer, loff_t offset, size_t count)
118 {
119         struct device *dev = kobj_to_dev(kobj);
120         struct devcd_entry *devcd = dev_to_devcd(dev);
121
122         return devcd->read(buffer, offset, count, devcd->data, devcd->datalen);
123 }
124
125 static ssize_t devcd_data_write(struct file *filp, struct kobject *kobj,
126                                 struct bin_attribute *bin_attr,
127                                 char *buffer, loff_t offset, size_t count)
128 {
129         struct device *dev = kobj_to_dev(kobj);
130         struct devcd_entry *devcd = dev_to_devcd(dev);
131
132         mutex_lock(&devcd->mutex);
133         if (!devcd->delete_work) {
134                 devcd->delete_work = true;
135                 mod_delayed_work(system_wq, &devcd->del_wk, 0);
136         }
137         mutex_unlock(&devcd->mutex);
138
139         return count;
140 }
141
142 static struct bin_attribute devcd_attr_data = {
143         .attr = { .name = "data", .mode = S_IRUSR | S_IWUSR, },
144         .size = 0,
145         .read = devcd_data_read,
146         .write = devcd_data_write,
147 };
148
149 static struct bin_attribute *devcd_dev_bin_attrs[] = {
150         &devcd_attr_data, NULL,
151 };
152
153 static const struct attribute_group devcd_dev_group = {
154         .bin_attrs = devcd_dev_bin_attrs,
155 };
156
157 static const struct attribute_group *devcd_dev_groups[] = {
158         &devcd_dev_group, NULL,
159 };
160
161 static int devcd_free(struct device *dev, void *data)
162 {
163         struct devcd_entry *devcd = dev_to_devcd(dev);
164
165         mutex_lock(&devcd->mutex);
166         if (!devcd->delete_work)
167                 devcd->delete_work = true;
168
169         flush_delayed_work(&devcd->del_wk);
170         mutex_unlock(&devcd->mutex);
171         return 0;
172 }
173
174 static ssize_t disabled_show(struct class *class, struct class_attribute *attr,
175                              char *buf)
176 {
177         return sysfs_emit(buf, "%d\n", devcd_disabled);
178 }
179
180 /*
181  *
182  *      disabled_store()                                        worker()
183  *       class_for_each_device(&devcd_class,
184  *              NULL, NULL, devcd_free)
185  *         ...
186  *         ...
187  *         while ((dev = class_dev_iter_next(&iter))
188  *                                                             devcd_del()
189  *                                                               device_del()
190  *                                                                 put_device() <- last reference
191  *             error = fn(dev, data)                           devcd_dev_release()
192  *             devcd_free(dev, data)                           kfree(devcd)
193  *             mutex_lock(&devcd->mutex);
194  *
195  *
196  * In the above diagram, It looks like disabled_store() would be racing with parallely
197  * running devcd_del() and result in memory abort while acquiring devcd->mutex which
198  * is called after kfree of devcd memory  after dropping its last reference with
199  * put_device(). However, this will not happens as fn(dev, data) runs
200  * with its own reference to device via klist_node so it is not its last reference.
201  * so, above situation would not occur.
202  */
203
204 static ssize_t disabled_store(struct class *class, struct class_attribute *attr,
205                               const char *buf, size_t count)
206 {
207         long tmp = simple_strtol(buf, NULL, 10);
208
209         /*
210          * This essentially makes the attribute write-once, since you can't
211          * go back to not having it disabled. This is intentional, it serves
212          * as a system lockdown feature.
213          */
214         if (tmp != 1)
215                 return -EINVAL;
216
217         devcd_disabled = true;
218
219         class_for_each_device(&devcd_class, NULL, NULL, devcd_free);
220
221         return count;
222 }
223 static CLASS_ATTR_RW(disabled);
224
225 static struct attribute *devcd_class_attrs[] = {
226         &class_attr_disabled.attr,
227         NULL,
228 };
229 ATTRIBUTE_GROUPS(devcd_class);
230
231 static struct class devcd_class = {
232         .name           = "devcoredump",
233         .owner          = THIS_MODULE,
234         .dev_release    = devcd_dev_release,
235         .dev_groups     = devcd_dev_groups,
236         .class_groups   = devcd_class_groups,
237 };
238
239 static ssize_t devcd_readv(char *buffer, loff_t offset, size_t count,
240                            void *data, size_t datalen)
241 {
242         return memory_read_from_buffer(buffer, count, &offset, data, datalen);
243 }
244
245 static void devcd_freev(void *data)
246 {
247         vfree(data);
248 }
249
250 /**
251  * dev_coredumpv - create device coredump with vmalloc data
252  * @dev: the struct device for the crashed device
253  * @data: vmalloc data containing the device coredump
254  * @datalen: length of the data
255  * @gfp: allocation flags
256  *
257  * This function takes ownership of the vmalloc'ed data and will free
258  * it when it is no longer used. See dev_coredumpm() for more information.
259  */
260 void dev_coredumpv(struct device *dev, void *data, size_t datalen,
261                    gfp_t gfp)
262 {
263         dev_coredumpm(dev, NULL, data, datalen, gfp, devcd_readv, devcd_freev);
264 }
265 EXPORT_SYMBOL_GPL(dev_coredumpv);
266
267 static int devcd_match_failing(struct device *dev, const void *failing)
268 {
269         struct devcd_entry *devcd = dev_to_devcd(dev);
270
271         return devcd->failing_dev == failing;
272 }
273
274 /**
275  * devcd_free_sgtable - free all the memory of the given scatterlist table
276  * (i.e. both pages and scatterlist instances)
277  * NOTE: if two tables allocated with devcd_alloc_sgtable and then chained
278  * using the sg_chain function then that function should be called only once
279  * on the chained table
280  * @table: pointer to sg_table to free
281  */
282 static void devcd_free_sgtable(void *data)
283 {
284         _devcd_free_sgtable(data);
285 }
286
287 /**
288  * devcd_read_from_table - copy data from sg_table to a given buffer
289  * and return the number of bytes read
290  * @buffer: the buffer to copy the data to it
291  * @buf_len: the length of the buffer
292  * @data: the scatterlist table to copy from
293  * @offset: start copy from @offset@ bytes from the head of the data
294  *      in the given scatterlist
295  * @data_len: the length of the data in the sg_table
296  */
297 static ssize_t devcd_read_from_sgtable(char *buffer, loff_t offset,
298                                        size_t buf_len, void *data,
299                                        size_t data_len)
300 {
301         struct scatterlist *table = data;
302
303         if (offset > data_len)
304                 return -EINVAL;
305
306         if (offset + buf_len > data_len)
307                 buf_len = data_len - offset;
308         return sg_pcopy_to_buffer(table, sg_nents(table), buffer, buf_len,
309                                   offset);
310 }
311
312 /**
313  * dev_coredumpm - create device coredump with read/free methods
314  * @dev: the struct device for the crashed device
315  * @owner: the module that contains the read/free functions, use %THIS_MODULE
316  * @data: data cookie for the @read/@free functions
317  * @datalen: length of the data
318  * @gfp: allocation flags
319  * @read: function to read from the given buffer
320  * @free: function to free the given buffer
321  *
322  * Creates a new device coredump for the given device. If a previous one hasn't
323  * been read yet, the new coredump is discarded. The data lifetime is determined
324  * by the device coredump framework and when it is no longer needed the @free
325  * function will be called to free the data.
326  */
327 void dev_coredumpm(struct device *dev, struct module *owner,
328                    void *data, size_t datalen, gfp_t gfp,
329                    ssize_t (*read)(char *buffer, loff_t offset, size_t count,
330                                    void *data, size_t datalen),
331                    void (*free)(void *data))
332 {
333         static atomic_t devcd_count = ATOMIC_INIT(0);
334         struct devcd_entry *devcd;
335         struct device *existing;
336
337         if (devcd_disabled)
338                 goto free;
339
340         existing = class_find_device(&devcd_class, NULL, dev,
341                                      devcd_match_failing);
342         if (existing) {
343                 put_device(existing);
344                 goto free;
345         }
346
347         if (!try_module_get(owner))
348                 goto free;
349
350         devcd = kzalloc(sizeof(*devcd), gfp);
351         if (!devcd)
352                 goto put_module;
353
354         devcd->owner = owner;
355         devcd->data = data;
356         devcd->datalen = datalen;
357         devcd->read = read;
358         devcd->free = free;
359         devcd->failing_dev = get_device(dev);
360         devcd->delete_work = false;
361
362         mutex_init(&devcd->mutex);
363         device_initialize(&devcd->devcd_dev);
364
365         dev_set_name(&devcd->devcd_dev, "devcd%d",
366                      atomic_inc_return(&devcd_count));
367         devcd->devcd_dev.class = &devcd_class;
368
369         mutex_lock(&devcd->mutex);
370         dev_set_uevent_suppress(&devcd->devcd_dev, true);
371         if (device_add(&devcd->devcd_dev))
372                 goto put_device;
373
374         if (sysfs_create_link(&devcd->devcd_dev.kobj, &dev->kobj,
375                               "failing_device"))
376                 /* nothing - symlink will be missing */;
377
378         if (sysfs_create_link(&dev->kobj, &devcd->devcd_dev.kobj,
379                               "devcoredump"))
380                 /* nothing - symlink will be missing */;
381
382         dev_set_uevent_suppress(&devcd->devcd_dev, false);
383         kobject_uevent(&devcd->devcd_dev.kobj, KOBJ_ADD);
384         INIT_DELAYED_WORK(&devcd->del_wk, devcd_del);
385         schedule_delayed_work(&devcd->del_wk, DEVCD_TIMEOUT);
386         mutex_unlock(&devcd->mutex);
387         return;
388  put_device:
389         put_device(&devcd->devcd_dev);
390         mutex_unlock(&devcd->mutex);
391  put_module:
392         module_put(owner);
393  free:
394         free(data);
395 }
396 EXPORT_SYMBOL_GPL(dev_coredumpm);
397
398 /**
399  * dev_coredumpsg - create device coredump that uses scatterlist as data
400  * parameter
401  * @dev: the struct device for the crashed device
402  * @table: the dump data
403  * @datalen: length of the data
404  * @gfp: allocation flags
405  *
406  * Creates a new device coredump for the given device. If a previous one hasn't
407  * been read yet, the new coredump is discarded. The data lifetime is determined
408  * by the device coredump framework and when it is no longer needed
409  * it will free the data.
410  */
411 void dev_coredumpsg(struct device *dev, struct scatterlist *table,
412                     size_t datalen, gfp_t gfp)
413 {
414         dev_coredumpm(dev, NULL, table, datalen, gfp, devcd_read_from_sgtable,
415                       devcd_free_sgtable);
416 }
417 EXPORT_SYMBOL_GPL(dev_coredumpsg);
418
419 static int __init devcoredump_init(void)
420 {
421         return class_register(&devcd_class);
422 }
423 __initcall(devcoredump_init);
424
425 static void __exit devcoredump_exit(void)
426 {
427         class_for_each_device(&devcd_class, NULL, NULL, devcd_free);
428         class_unregister(&devcd_class);
429 }
430 __exitcall(devcoredump_exit);