GNU Linux-libre 6.1.24-gnu
[releases.git] / drivers / base / cacheinfo.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <sudeep.holla@arm.com>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of_device.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)       (&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)       (ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)  (ci_cacheinfo(cpu)->info_list)
28 #define per_cpu_cacheinfo_idx(cpu, idx)         \
29                                 (per_cpu_cacheinfo(cpu) + (idx))
30
31 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
32 {
33         return ci_cacheinfo(cpu);
34 }
35
36 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
37                                            struct cacheinfo *sib_leaf)
38 {
39         /*
40          * For non DT/ACPI systems, assume unique level 1 caches,
41          * system-wide shared caches for all other levels. This will be used
42          * only if arch specific code has not populated shared_cpu_map
43          */
44         if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)))
45                 return !(this_leaf->level == 1);
46
47         if ((sib_leaf->attributes & CACHE_ID) &&
48             (this_leaf->attributes & CACHE_ID))
49                 return sib_leaf->id == this_leaf->id;
50
51         return sib_leaf->fw_token == this_leaf->fw_token;
52 }
53
54 bool last_level_cache_is_valid(unsigned int cpu)
55 {
56         struct cacheinfo *llc;
57
58         if (!cache_leaves(cpu))
59                 return false;
60
61         llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
62
63         return (llc->attributes & CACHE_ID) || !!llc->fw_token;
64
65 }
66
67 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
68 {
69         struct cacheinfo *llc_x, *llc_y;
70
71         if (!last_level_cache_is_valid(cpu_x) ||
72             !last_level_cache_is_valid(cpu_y))
73                 return false;
74
75         llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
76         llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
77
78         return cache_leaves_are_shared(llc_x, llc_y);
79 }
80
81 #ifdef CONFIG_OF
82 /* OF properties to query for a given cache type */
83 struct cache_type_info {
84         const char *size_prop;
85         const char *line_size_props[2];
86         const char *nr_sets_prop;
87 };
88
89 static const struct cache_type_info cache_type_info[] = {
90         {
91                 .size_prop       = "cache-size",
92                 .line_size_props = { "cache-line-size",
93                                      "cache-block-size", },
94                 .nr_sets_prop    = "cache-sets",
95         }, {
96                 .size_prop       = "i-cache-size",
97                 .line_size_props = { "i-cache-line-size",
98                                      "i-cache-block-size", },
99                 .nr_sets_prop    = "i-cache-sets",
100         }, {
101                 .size_prop       = "d-cache-size",
102                 .line_size_props = { "d-cache-line-size",
103                                      "d-cache-block-size", },
104                 .nr_sets_prop    = "d-cache-sets",
105         },
106 };
107
108 static inline int get_cacheinfo_idx(enum cache_type type)
109 {
110         if (type == CACHE_TYPE_UNIFIED)
111                 return 0;
112         return type;
113 }
114
115 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
116 {
117         const char *propname;
118         int ct_idx;
119
120         ct_idx = get_cacheinfo_idx(this_leaf->type);
121         propname = cache_type_info[ct_idx].size_prop;
122
123         of_property_read_u32(np, propname, &this_leaf->size);
124 }
125
126 /* not cache_line_size() because that's a macro in include/linux/cache.h */
127 static void cache_get_line_size(struct cacheinfo *this_leaf,
128                                 struct device_node *np)
129 {
130         int i, lim, ct_idx;
131
132         ct_idx = get_cacheinfo_idx(this_leaf->type);
133         lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
134
135         for (i = 0; i < lim; i++) {
136                 int ret;
137                 u32 line_size;
138                 const char *propname;
139
140                 propname = cache_type_info[ct_idx].line_size_props[i];
141                 ret = of_property_read_u32(np, propname, &line_size);
142                 if (!ret) {
143                         this_leaf->coherency_line_size = line_size;
144                         break;
145                 }
146         }
147 }
148
149 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
150 {
151         const char *propname;
152         int ct_idx;
153
154         ct_idx = get_cacheinfo_idx(this_leaf->type);
155         propname = cache_type_info[ct_idx].nr_sets_prop;
156
157         of_property_read_u32(np, propname, &this_leaf->number_of_sets);
158 }
159
160 static void cache_associativity(struct cacheinfo *this_leaf)
161 {
162         unsigned int line_size = this_leaf->coherency_line_size;
163         unsigned int nr_sets = this_leaf->number_of_sets;
164         unsigned int size = this_leaf->size;
165
166         /*
167          * If the cache is fully associative, there is no need to
168          * check the other properties.
169          */
170         if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
171                 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
172 }
173
174 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
175                                   struct device_node *np)
176 {
177         return of_property_read_bool(np, "cache-unified");
178 }
179
180 static void cache_of_set_props(struct cacheinfo *this_leaf,
181                                struct device_node *np)
182 {
183         /*
184          * init_cache_level must setup the cache level correctly
185          * overriding the architecturally specified levels, so
186          * if type is NONE at this stage, it should be unified
187          */
188         if (this_leaf->type == CACHE_TYPE_NOCACHE &&
189             cache_node_is_unified(this_leaf, np))
190                 this_leaf->type = CACHE_TYPE_UNIFIED;
191         cache_size(this_leaf, np);
192         cache_get_line_size(this_leaf, np);
193         cache_nr_sets(this_leaf, np);
194         cache_associativity(this_leaf);
195 }
196
197 static int cache_setup_of_node(unsigned int cpu)
198 {
199         struct device_node *np;
200         struct cacheinfo *this_leaf;
201         unsigned int index = 0;
202
203         np = of_cpu_device_node_get(cpu);
204         if (!np) {
205                 pr_err("Failed to find cpu%d device node\n", cpu);
206                 return -ENOENT;
207         }
208
209         while (index < cache_leaves(cpu)) {
210                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
211                 if (this_leaf->level != 1)
212                         np = of_find_next_cache_node(np);
213                 else
214                         np = of_node_get(np);/* cpu node itself */
215                 if (!np)
216                         break;
217                 cache_of_set_props(this_leaf, np);
218                 this_leaf->fw_token = np;
219                 index++;
220         }
221
222         if (index != cache_leaves(cpu)) /* not all OF nodes populated */
223                 return -ENOENT;
224
225         return 0;
226 }
227 #else
228 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
229 #endif
230
231 int __weak cache_setup_acpi(unsigned int cpu)
232 {
233         return -ENOTSUPP;
234 }
235
236 unsigned int coherency_max_size;
237
238 static int cache_setup_properties(unsigned int cpu)
239 {
240         int ret = 0;
241
242         if (of_have_populated_dt())
243                 ret = cache_setup_of_node(cpu);
244         else if (!acpi_disabled)
245                 ret = cache_setup_acpi(cpu);
246
247         return ret;
248 }
249
250 static int cache_shared_cpu_map_setup(unsigned int cpu)
251 {
252         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
253         struct cacheinfo *this_leaf, *sib_leaf;
254         unsigned int index, sib_index;
255         int ret = 0;
256
257         if (this_cpu_ci->cpu_map_populated)
258                 return 0;
259
260         /*
261          * skip setting up cache properties if LLC is valid, just need
262          * to update the shared cpu_map if the cache attributes were
263          * populated early before all the cpus are brought online
264          */
265         if (!last_level_cache_is_valid(cpu)) {
266                 ret = cache_setup_properties(cpu);
267                 if (ret)
268                         return ret;
269         }
270
271         for (index = 0; index < cache_leaves(cpu); index++) {
272                 unsigned int i;
273
274                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
275
276                 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
277                 for_each_online_cpu(i) {
278                         struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
279
280                         if (i == cpu || !sib_cpu_ci->info_list)
281                                 continue;/* skip if itself or no cacheinfo */
282                         for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
283                                 sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
284                                 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
285                                         cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
286                                         cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
287                                         break;
288                                 }
289                         }
290                 }
291                 /* record the maximum cache line size */
292                 if (this_leaf->coherency_line_size > coherency_max_size)
293                         coherency_max_size = this_leaf->coherency_line_size;
294         }
295
296         return 0;
297 }
298
299 static void cache_shared_cpu_map_remove(unsigned int cpu)
300 {
301         struct cacheinfo *this_leaf, *sib_leaf;
302         unsigned int sibling, index, sib_index;
303
304         for (index = 0; index < cache_leaves(cpu); index++) {
305                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
306                 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
307                         struct cpu_cacheinfo *sib_cpu_ci =
308                                                 get_cpu_cacheinfo(sibling);
309
310                         if (sibling == cpu || !sib_cpu_ci->info_list)
311                                 continue;/* skip if itself or no cacheinfo */
312
313                         for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
314                                 sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
315                                 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
316                                         cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
317                                         cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
318                                         break;
319                                 }
320                         }
321                 }
322                 if (of_have_populated_dt())
323                         of_node_put(this_leaf->fw_token);
324         }
325 }
326
327 static void free_cache_attributes(unsigned int cpu)
328 {
329         if (!per_cpu_cacheinfo(cpu))
330                 return;
331
332         cache_shared_cpu_map_remove(cpu);
333
334         kfree(per_cpu_cacheinfo(cpu));
335         per_cpu_cacheinfo(cpu) = NULL;
336         cache_leaves(cpu) = 0;
337 }
338
339 int __weak init_cache_level(unsigned int cpu)
340 {
341         return -ENOENT;
342 }
343
344 int __weak populate_cache_leaves(unsigned int cpu)
345 {
346         return -ENOENT;
347 }
348
349 int detect_cache_attributes(unsigned int cpu)
350 {
351         int ret;
352
353         /* Since early detection of the cacheinfo is allowed via this
354          * function and this also gets called as CPU hotplug callbacks via
355          * cacheinfo_cpu_online, the initialisation can be skipped and only
356          * CPU maps can be updated as the CPU online status would be update
357          * if called via cacheinfo_cpu_online path.
358          */
359         if (per_cpu_cacheinfo(cpu))
360                 goto update_cpu_map;
361
362         if (init_cache_level(cpu) || !cache_leaves(cpu))
363                 return -ENOENT;
364
365         per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
366                                          sizeof(struct cacheinfo), GFP_ATOMIC);
367         if (per_cpu_cacheinfo(cpu) == NULL) {
368                 cache_leaves(cpu) = 0;
369                 return -ENOMEM;
370         }
371
372         /*
373          * populate_cache_leaves() may completely setup the cache leaves and
374          * shared_cpu_map or it may leave it partially setup.
375          */
376         ret = populate_cache_leaves(cpu);
377         if (ret)
378                 goto free_ci;
379
380 update_cpu_map:
381         /*
382          * For systems using DT for cache hierarchy, fw_token
383          * and shared_cpu_map will be set up here only if they are
384          * not populated already
385          */
386         ret = cache_shared_cpu_map_setup(cpu);
387         if (ret) {
388                 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
389                 goto free_ci;
390         }
391
392         return 0;
393
394 free_ci:
395         free_cache_attributes(cpu);
396         return ret;
397 }
398
399 /* pointer to cpuX/cache device */
400 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
401 #define per_cpu_cache_dev(cpu)  (per_cpu(ci_cache_dev, cpu))
402
403 static cpumask_t cache_dev_map;
404
405 /* pointer to array of devices for cpuX/cache/indexY */
406 static DEFINE_PER_CPU(struct device **, ci_index_dev);
407 #define per_cpu_index_dev(cpu)  (per_cpu(ci_index_dev, cpu))
408 #define per_cache_index_dev(cpu, idx)   ((per_cpu_index_dev(cpu))[idx])
409
410 #define show_one(file_name, object)                             \
411 static ssize_t file_name##_show(struct device *dev,             \
412                 struct device_attribute *attr, char *buf)       \
413 {                                                               \
414         struct cacheinfo *this_leaf = dev_get_drvdata(dev);     \
415         return sysfs_emit(buf, "%u\n", this_leaf->object);      \
416 }
417
418 show_one(id, id);
419 show_one(level, level);
420 show_one(coherency_line_size, coherency_line_size);
421 show_one(number_of_sets, number_of_sets);
422 show_one(physical_line_partition, physical_line_partition);
423 show_one(ways_of_associativity, ways_of_associativity);
424
425 static ssize_t size_show(struct device *dev,
426                          struct device_attribute *attr, char *buf)
427 {
428         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
429
430         return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
431 }
432
433 static ssize_t shared_cpu_map_show(struct device *dev,
434                                    struct device_attribute *attr, char *buf)
435 {
436         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
437         const struct cpumask *mask = &this_leaf->shared_cpu_map;
438
439         return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
440 }
441
442 static ssize_t shared_cpu_list_show(struct device *dev,
443                                     struct device_attribute *attr, char *buf)
444 {
445         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
446         const struct cpumask *mask = &this_leaf->shared_cpu_map;
447
448         return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
449 }
450
451 static ssize_t type_show(struct device *dev,
452                          struct device_attribute *attr, char *buf)
453 {
454         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
455         const char *output;
456
457         switch (this_leaf->type) {
458         case CACHE_TYPE_DATA:
459                 output = "Data";
460                 break;
461         case CACHE_TYPE_INST:
462                 output = "Instruction";
463                 break;
464         case CACHE_TYPE_UNIFIED:
465                 output = "Unified";
466                 break;
467         default:
468                 return -EINVAL;
469         }
470
471         return sysfs_emit(buf, "%s\n", output);
472 }
473
474 static ssize_t allocation_policy_show(struct device *dev,
475                                       struct device_attribute *attr, char *buf)
476 {
477         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
478         unsigned int ci_attr = this_leaf->attributes;
479         const char *output;
480
481         if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
482                 output = "ReadWriteAllocate";
483         else if (ci_attr & CACHE_READ_ALLOCATE)
484                 output = "ReadAllocate";
485         else if (ci_attr & CACHE_WRITE_ALLOCATE)
486                 output = "WriteAllocate";
487         else
488                 return 0;
489
490         return sysfs_emit(buf, "%s\n", output);
491 }
492
493 static ssize_t write_policy_show(struct device *dev,
494                                  struct device_attribute *attr, char *buf)
495 {
496         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
497         unsigned int ci_attr = this_leaf->attributes;
498         int n = 0;
499
500         if (ci_attr & CACHE_WRITE_THROUGH)
501                 n = sysfs_emit(buf, "WriteThrough\n");
502         else if (ci_attr & CACHE_WRITE_BACK)
503                 n = sysfs_emit(buf, "WriteBack\n");
504         return n;
505 }
506
507 static DEVICE_ATTR_RO(id);
508 static DEVICE_ATTR_RO(level);
509 static DEVICE_ATTR_RO(type);
510 static DEVICE_ATTR_RO(coherency_line_size);
511 static DEVICE_ATTR_RO(ways_of_associativity);
512 static DEVICE_ATTR_RO(number_of_sets);
513 static DEVICE_ATTR_RO(size);
514 static DEVICE_ATTR_RO(allocation_policy);
515 static DEVICE_ATTR_RO(write_policy);
516 static DEVICE_ATTR_RO(shared_cpu_map);
517 static DEVICE_ATTR_RO(shared_cpu_list);
518 static DEVICE_ATTR_RO(physical_line_partition);
519
520 static struct attribute *cache_default_attrs[] = {
521         &dev_attr_id.attr,
522         &dev_attr_type.attr,
523         &dev_attr_level.attr,
524         &dev_attr_shared_cpu_map.attr,
525         &dev_attr_shared_cpu_list.attr,
526         &dev_attr_coherency_line_size.attr,
527         &dev_attr_ways_of_associativity.attr,
528         &dev_attr_number_of_sets.attr,
529         &dev_attr_size.attr,
530         &dev_attr_allocation_policy.attr,
531         &dev_attr_write_policy.attr,
532         &dev_attr_physical_line_partition.attr,
533         NULL
534 };
535
536 static umode_t
537 cache_default_attrs_is_visible(struct kobject *kobj,
538                                struct attribute *attr, int unused)
539 {
540         struct device *dev = kobj_to_dev(kobj);
541         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
542         const struct cpumask *mask = &this_leaf->shared_cpu_map;
543         umode_t mode = attr->mode;
544
545         if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
546                 return mode;
547         if ((attr == &dev_attr_type.attr) && this_leaf->type)
548                 return mode;
549         if ((attr == &dev_attr_level.attr) && this_leaf->level)
550                 return mode;
551         if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
552                 return mode;
553         if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
554                 return mode;
555         if ((attr == &dev_attr_coherency_line_size.attr) &&
556             this_leaf->coherency_line_size)
557                 return mode;
558         if ((attr == &dev_attr_ways_of_associativity.attr) &&
559             this_leaf->size) /* allow 0 = full associativity */
560                 return mode;
561         if ((attr == &dev_attr_number_of_sets.attr) &&
562             this_leaf->number_of_sets)
563                 return mode;
564         if ((attr == &dev_attr_size.attr) && this_leaf->size)
565                 return mode;
566         if ((attr == &dev_attr_write_policy.attr) &&
567             (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
568                 return mode;
569         if ((attr == &dev_attr_allocation_policy.attr) &&
570             (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
571                 return mode;
572         if ((attr == &dev_attr_physical_line_partition.attr) &&
573             this_leaf->physical_line_partition)
574                 return mode;
575
576         return 0;
577 }
578
579 static const struct attribute_group cache_default_group = {
580         .attrs = cache_default_attrs,
581         .is_visible = cache_default_attrs_is_visible,
582 };
583
584 static const struct attribute_group *cache_default_groups[] = {
585         &cache_default_group,
586         NULL,
587 };
588
589 static const struct attribute_group *cache_private_groups[] = {
590         &cache_default_group,
591         NULL, /* Place holder for private group */
592         NULL,
593 };
594
595 const struct attribute_group *
596 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
597 {
598         return NULL;
599 }
600
601 static const struct attribute_group **
602 cache_get_attribute_groups(struct cacheinfo *this_leaf)
603 {
604         const struct attribute_group *priv_group =
605                         cache_get_priv_group(this_leaf);
606
607         if (!priv_group)
608                 return cache_default_groups;
609
610         if (!cache_private_groups[1])
611                 cache_private_groups[1] = priv_group;
612
613         return cache_private_groups;
614 }
615
616 /* Add/Remove cache interface for CPU device */
617 static void cpu_cache_sysfs_exit(unsigned int cpu)
618 {
619         int i;
620         struct device *ci_dev;
621
622         if (per_cpu_index_dev(cpu)) {
623                 for (i = 0; i < cache_leaves(cpu); i++) {
624                         ci_dev = per_cache_index_dev(cpu, i);
625                         if (!ci_dev)
626                                 continue;
627                         device_unregister(ci_dev);
628                 }
629                 kfree(per_cpu_index_dev(cpu));
630                 per_cpu_index_dev(cpu) = NULL;
631         }
632         device_unregister(per_cpu_cache_dev(cpu));
633         per_cpu_cache_dev(cpu) = NULL;
634 }
635
636 static int cpu_cache_sysfs_init(unsigned int cpu)
637 {
638         struct device *dev = get_cpu_device(cpu);
639
640         if (per_cpu_cacheinfo(cpu) == NULL)
641                 return -ENOENT;
642
643         per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
644         if (IS_ERR(per_cpu_cache_dev(cpu)))
645                 return PTR_ERR(per_cpu_cache_dev(cpu));
646
647         /* Allocate all required memory */
648         per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
649                                          sizeof(struct device *), GFP_KERNEL);
650         if (unlikely(per_cpu_index_dev(cpu) == NULL))
651                 goto err_out;
652
653         return 0;
654
655 err_out:
656         cpu_cache_sysfs_exit(cpu);
657         return -ENOMEM;
658 }
659
660 static int cache_add_dev(unsigned int cpu)
661 {
662         unsigned int i;
663         int rc;
664         struct device *ci_dev, *parent;
665         struct cacheinfo *this_leaf;
666         const struct attribute_group **cache_groups;
667
668         rc = cpu_cache_sysfs_init(cpu);
669         if (unlikely(rc < 0))
670                 return rc;
671
672         parent = per_cpu_cache_dev(cpu);
673         for (i = 0; i < cache_leaves(cpu); i++) {
674                 this_leaf = per_cpu_cacheinfo_idx(cpu, i);
675                 if (this_leaf->disable_sysfs)
676                         continue;
677                 if (this_leaf->type == CACHE_TYPE_NOCACHE)
678                         break;
679                 cache_groups = cache_get_attribute_groups(this_leaf);
680                 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
681                                            "index%1u", i);
682                 if (IS_ERR(ci_dev)) {
683                         rc = PTR_ERR(ci_dev);
684                         goto err;
685                 }
686                 per_cache_index_dev(cpu, i) = ci_dev;
687         }
688         cpumask_set_cpu(cpu, &cache_dev_map);
689
690         return 0;
691 err:
692         cpu_cache_sysfs_exit(cpu);
693         return rc;
694 }
695
696 static int cacheinfo_cpu_online(unsigned int cpu)
697 {
698         int rc = detect_cache_attributes(cpu);
699
700         if (rc)
701                 return rc;
702         rc = cache_add_dev(cpu);
703         if (rc)
704                 free_cache_attributes(cpu);
705         return rc;
706 }
707
708 static int cacheinfo_cpu_pre_down(unsigned int cpu)
709 {
710         if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
711                 cpu_cache_sysfs_exit(cpu);
712
713         free_cache_attributes(cpu);
714         return 0;
715 }
716
717 static int __init cacheinfo_sysfs_init(void)
718 {
719         return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
720                                  "base/cacheinfo:online",
721                                  cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
722 }
723 device_initcall(cacheinfo_sysfs_init);