GNU Linux-libre 4.4.289-gnu1
[releases.git] / drivers / atm / horizon.c
1 /*
2   Madge Horizon ATM Adapter driver.
3   Copyright (C) 1995-1999  Madge Networks Ltd.
4   
5   This program is free software; you can redistribute it and/or modify
6   it under the terms of the GNU General Public License as published by
7   the Free Software Foundation; either version 2 of the License, or
8   (at your option) any later version.
9   
10   This program is distributed in the hope that it will be useful,
11   but WITHOUT ANY WARRANTY; without even the implied warranty of
12   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13   GNU General Public License for more details.
14   
15   You should have received a copy of the GNU General Public License
16   along with this program; if not, write to the Free Software
17   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18   
19   The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20   system and in the file COPYING in the Linux kernel source.
21 */
22
23 /*
24   IMPORTANT NOTE: Madge Networks no longer makes the adapters
25   supported by this driver and makes no commitment to maintain it.
26 */
27
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/errno.h>
33 #include <linux/atm.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/skbuff.h>
37 #include <linux/time.h>
38 #include <linux/delay.h>
39 #include <linux/uio.h>
40 #include <linux/init.h>
41 #include <linux/interrupt.h>
42 #include <linux/ioport.h>
43 #include <linux/wait.h>
44 #include <linux/slab.h>
45
46 #include <asm/io.h>
47 #include <linux/atomic.h>
48 #include <asm/uaccess.h>
49 #include <asm/string.h>
50 #include <asm/byteorder.h>
51
52 #include "horizon.h"
53
54 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
55 #define description_string "Madge ATM Horizon [Ultra] driver"
56 #define version_string "1.2.1"
57
58 static inline void __init show_version (void) {
59   printk ("%s version %s\n", description_string, version_string);
60 }
61
62 /*
63   
64   CREDITS
65   
66   Driver and documentation by:
67   
68   Chris Aston        Madge Networks
69   Giuliano Procida   Madge Networks
70   Simon Benham       Madge Networks
71   Simon Johnson      Madge Networks
72   Various Others     Madge Networks
73   
74   Some inspiration taken from other drivers by:
75   
76   Alexandru Cucos    UTBv
77   Kari Mettinen      University of Helsinki
78   Werner Almesberger EPFL LRC
79   
80   Theory of Operation
81   
82   I Hardware, detection, initialisation and shutdown.
83   
84   1. Supported Hardware
85   
86   This driver should handle all variants of the PCI Madge ATM adapters
87   with the Horizon chipset. These are all PCI cards supporting PIO, BM
88   DMA and a form of MMIO (registers only, not internal RAM).
89   
90   The driver is only known to work with SONET and UTP Horizon Ultra
91   cards at 155Mb/s. However, code is in place to deal with both the
92   original Horizon and 25Mb/s operation.
93   
94   There are two revisions of the Horizon ASIC: the original and the
95   Ultra. Details of hardware bugs are in section III.
96   
97   The ASIC version can be distinguished by chip markings but is NOT
98   indicated by the PCI revision (all adapters seem to have PCI rev 1).
99   
100   I believe that:
101   
102   Horizon       => Collage  25 PCI Adapter (UTP and STP)
103   Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
104   Ambassador x  => Collage 155 PCI Server (completely different)
105   
106   Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
107   have a Madge B154 plus glue logic serializer. I have also found a
108   really ancient version of this with slightly different glue. It
109   comes with the revision 0 (140-025-01) ASIC.
110   
111   Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
112   output (UTP) or an HP HFBR 5205 output (SONET). It has either
113   Madge's SAMBA framer or a SUNI-lite device (early versions). It
114   comes with the revision 1 (140-027-01) ASIC.
115   
116   2. Detection
117   
118   All Horizon-based cards present with the same PCI Vendor and Device
119   IDs. The standard Linux 2.2 PCI API is used to locate any cards and
120   to enable bus-mastering (with appropriate latency).
121   
122   ATM_LAYER_STATUS in the control register distinguishes between the
123   two possible physical layers (25 and 155). It is not clear whether
124   the 155 cards can also operate at 25Mbps. We rely on the fact that a
125   card operates at 155 if and only if it has the newer Horizon Ultra
126   ASIC.
127   
128   For 155 cards the two possible framers are probed for and then set
129   up for loop-timing.
130   
131   3. Initialisation
132   
133   The card is reset and then put into a known state. The physical
134   layer is configured for normal operation at the appropriate speed;
135   in the case of the 155 cards, the framer is initialised with
136   line-based timing; the internal RAM is zeroed and the allocation of
137   buffers for RX and TX is made; the Burnt In Address is read and
138   copied to the ATM ESI; various policy settings for RX (VPI bits,
139   unknown VCs, oam cells) are made. Ideally all policy items should be
140   configurable at module load (if not actually on-demand), however,
141   only the vpi vs vci bit allocation can be specified at insmod.
142   
143   4. Shutdown
144   
145   This is in response to module_cleaup. No VCs are in use and the card
146   should be idle; it is reset.
147   
148   II Driver software (as it should be)
149   
150   0. Traffic Parameters
151   
152   The traffic classes (not an enumeration) are currently: ATM_NONE (no
153   traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
154   (compatible with everything). Together with (perhaps only some of)
155   the following items they make up the traffic specification.
156   
157   struct atm_trafprm {
158     unsigned char traffic_class; traffic class (ATM_UBR, ...)
159     int           max_pcr;       maximum PCR in cells per second
160     int           pcr;           desired PCR in cells per second
161     int           min_pcr;       minimum PCR in cells per second
162     int           max_cdv;       maximum CDV in microseconds
163     int           max_sdu;       maximum SDU in bytes
164   };
165   
166   Note that these denote bandwidth available not bandwidth used; the
167   possibilities according to ATMF are:
168   
169   Real Time (cdv and max CDT given)
170   
171   CBR(pcr)             pcr bandwidth always available
172   rtVBR(pcr,scr,mbs)   scr bandwidth always available, up to pcr at mbs too
173   
174   Non Real Time
175   
176   nrtVBR(pcr,scr,mbs)  scr bandwidth always available, up to pcr at mbs too
177   UBR()
178   ABR(mcr,pcr)         mcr bandwidth always available, up to pcr (depending) too
179   
180   mbs is max burst size (bucket)
181   pcr and scr have associated cdvt values
182   mcr is like scr but has no cdtv
183   cdtv may differ at each hop
184   
185   Some of the above items are qos items (as opposed to traffic
186   parameters). We have nothing to do with qos. All except ABR can have
187   their traffic parameters converted to GCRA parameters. The GCRA may
188   be implemented as a (real-number) leaky bucket. The GCRA can be used
189   in complicated ways by switches and in simpler ways by end-stations.
190   It can be used both to filter incoming cells and shape out-going
191   cells.
192   
193   ATM Linux actually supports:
194   
195   ATM_NONE() (no traffic in this direction)
196   ATM_UBR(max_frame_size)
197   ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
198   
199   0 or ATM_MAX_PCR are used to indicate maximum available PCR
200   
201   A traffic specification consists of the AAL type and separate
202   traffic specifications for either direction. In ATM Linux it is:
203   
204   struct atm_qos {
205   struct atm_trafprm txtp;
206   struct atm_trafprm rxtp;
207   unsigned char aal;
208   };
209   
210   AAL types are:
211   
212   ATM_NO_AAL    AAL not specified
213   ATM_AAL0      "raw" ATM cells
214   ATM_AAL1      AAL1 (CBR)
215   ATM_AAL2      AAL2 (VBR)
216   ATM_AAL34     AAL3/4 (data)
217   ATM_AAL5      AAL5 (data)
218   ATM_SAAL      signaling AAL
219   
220   The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
221   it does not implement AAL 3/4 SAR and it has a different notion of
222   "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
223   supported by this driver.
224   
225   The Horizon has limited support for ABR (including UBR), VBR and
226   CBR. Each TX channel has a bucket (containing up to 31 cell units)
227   and two timers (PCR and SCR) associated with it that can be used to
228   govern cell emissions and host notification (in the case of ABR this
229   is presumably so that RM cells may be emitted at appropriate times).
230   The timers may either be disabled or may be set to any of 240 values
231   (determined by the clock crystal, a fixed (?) per-device divider, a
232   configurable divider and a configurable timer preload value).
233   
234   At the moment only UBR and CBR are supported by the driver. VBR will
235   be supported as soon as ATM for Linux supports it. ABR support is
236   very unlikely as RM cell handling is completely up to the driver.
237   
238   1. TX (TX channel setup and TX transfer)
239   
240   The TX half of the driver owns the TX Horizon registers. The TX
241   component in the IRQ handler is the BM completion handler. This can
242   only be entered when tx_busy is true (enforced by hardware). The
243   other TX component can only be entered when tx_busy is false
244   (enforced by driver). So TX is single-threaded.
245   
246   Apart from a minor optimisation to not re-select the last channel,
247   the TX send component works as follows:
248   
249   Atomic test and set tx_busy until we succeed; we should implement
250   some sort of timeout so that tx_busy will never be stuck at true.
251   
252   If no TX channel is set up for this VC we wait for an idle one (if
253   necessary) and set it up.
254   
255   At this point we have a TX channel ready for use. We wait for enough
256   buffers to become available then start a TX transmit (set the TX
257   descriptor, schedule transfer, exit).
258   
259   The IRQ component handles TX completion (stats, free buffer, tx_busy
260   unset, exit). We also re-schedule further transfers for the same
261   frame if needed.
262   
263   TX setup in more detail:
264   
265   TX open is a nop, the relevant information is held in the hrz_vcc
266   (vcc->dev_data) structure and is "cached" on the card.
267   
268   TX close gets the TX lock and clears the channel from the "cache".
269   
270   2. RX (Data Available and RX transfer)
271   
272   The RX half of the driver owns the RX registers. There are two RX
273   components in the IRQ handler: the data available handler deals with
274   fresh data that has arrived on the card, the BM completion handler
275   is very similar to the TX completion handler. The data available
276   handler grabs the rx_lock and it is only released once the data has
277   been discarded or completely transferred to the host. The BM
278   completion handler only runs when the lock is held; the data
279   available handler is locked out over the same period.
280   
281   Data available on the card triggers an interrupt. If the data is not
282   suitable for our existing RX channels or we cannot allocate a buffer
283   it is flushed. Otherwise an RX receive is scheduled. Multiple RX
284   transfers may be scheduled for the same frame.
285   
286   RX setup in more detail:
287   
288   RX open...
289   RX close...
290   
291   III Hardware Bugs
292   
293   0. Byte vs Word addressing of adapter RAM.
294   
295   A design feature; see the .h file (especially the memory map).
296   
297   1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
298   
299   The host must not start a transmit direction transfer at a
300   non-four-byte boundary in host memory. Instead the host should
301   perform a byte, or a two byte, or one byte followed by two byte
302   transfer in order to start the rest of the transfer on a four byte
303   boundary. RX is OK.
304   
305   Simultaneous transmit and receive direction bus master transfers are
306   not allowed.
307   
308   The simplest solution to these two is to always do PIO (never DMA)
309   in the TX direction on the original Horizon. More complicated
310   solutions are likely to hurt my brain.
311   
312   2. Loss of buffer on close VC
313   
314   When a VC is being closed, the buffer associated with it is not
315   returned to the pool. The host must store the reference to this
316   buffer and when opening a new VC then give it to that new VC.
317   
318   The host intervention currently consists of stacking such a buffer
319   pointer at VC close and checking the stack at VC open.
320   
321   3. Failure to close a VC
322   
323   If a VC is currently receiving a frame then closing the VC may fail
324   and the frame continues to be received.
325   
326   The solution is to make sure any received frames are flushed when
327   ready. This is currently done just before the solution to 2.
328   
329   4. PCI bus (original Horizon only, fixed in Ultra)
330   
331   Reading from the data port prior to initialisation will hang the PCI
332   bus. Just don't do that then! We don't.
333   
334   IV To Do List
335   
336   . Timer code may be broken.
337   
338   . Allow users to specify buffer allocation split for TX and RX.
339   
340   . Deal once and for all with buggy VC close.
341   
342   . Handle interrupted and/or non-blocking operations.
343   
344   . Change some macros to functions and move from .h to .c.
345   
346   . Try to limit the number of TX frames each VC may have queued, in
347     order to reduce the chances of TX buffer exhaustion.
348   
349   . Implement VBR (bucket and timers not understood) and ABR (need to
350     do RM cells manually); also no Linux support for either.
351   
352   . Implement QoS changes on open VCs (involves extracting parts of VC open
353     and close into separate functions and using them to make changes).
354   
355 */
356
357 /********** globals **********/
358
359 static void do_housekeeping (unsigned long arg);
360
361 static unsigned short debug = 0;
362 static unsigned short vpi_bits = 0;
363 static int max_tx_size = 9000;
364 static int max_rx_size = 9000;
365 static unsigned char pci_lat = 0;
366
367 /********** access functions **********/
368
369 /* Read / Write Horizon registers */
370 static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
371   outl (cpu_to_le32 (data), dev->iobase + reg);
372 }
373
374 static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
375   return le32_to_cpu (inl (dev->iobase + reg));
376 }
377
378 static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
379   outw (cpu_to_le16 (data), dev->iobase + reg);
380 }
381
382 static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
383   return le16_to_cpu (inw (dev->iobase + reg));
384 }
385
386 static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
387   outsb (dev->iobase + reg, addr, len);
388 }
389
390 static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
391   insb (dev->iobase + reg, addr, len);
392 }
393
394 /* Read / Write to a given address in Horizon buffer memory.
395    Interrupts must be disabled between the address register and data
396    port accesses as these must form an atomic operation. */
397 static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
398   // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
399   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
400   wr_regl (dev, MEMORY_PORT_OFF, data);
401 }
402
403 static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
404   // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
405   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
406   return rd_regl (dev, MEMORY_PORT_OFF);
407 }
408
409 static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
410   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
411   wr_regl (dev, MEMORY_PORT_OFF, data);
412 }
413
414 static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
415   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
416   return rd_regl (dev, MEMORY_PORT_OFF);
417 }
418
419 /********** specialised access functions **********/
420
421 /* RX */
422
423 static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
424   wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
425   return;
426 }
427
428 static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
429   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
430     ;
431   return;
432 }
433
434 static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
435   wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
436   return;
437 }
438
439 static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
440   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
441     ;
442   return;
443 }
444
445 /* TX */
446
447 static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
448   wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
449   return;
450 }
451
452 /* Update or query one configuration parameter of a particular channel. */
453
454 static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
455   wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
456            chan * TX_CHANNEL_CONFIG_MULT | mode);
457     wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
458     return;
459 }
460
461 /********** dump functions **********/
462
463 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
464 #ifdef DEBUG_HORIZON
465   unsigned int i;
466   unsigned char * data = skb->data;
467   PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
468   for (i=0; i<skb->len && i < 256;i++)
469     PRINTDM (DBG_DATA, "%02x ", data[i]);
470   PRINTDE (DBG_DATA,"");
471 #else
472   (void) prefix;
473   (void) vc;
474   (void) skb;
475 #endif
476   return;
477 }
478
479 static inline void dump_regs (hrz_dev * dev) {
480 #ifdef DEBUG_HORIZON
481   PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
482   PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
483   PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
484   PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
485   PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
486   PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
487 #else
488   (void) dev;
489 #endif
490   return;
491 }
492
493 static inline void dump_framer (hrz_dev * dev) {
494 #ifdef DEBUG_HORIZON
495   unsigned int i;
496   PRINTDB (DBG_REGS, "framer registers:");
497   for (i = 0; i < 0x10; ++i)
498     PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
499   PRINTDE (DBG_REGS,"");
500 #else
501   (void) dev;
502 #endif
503   return;
504 }
505
506 /********** VPI/VCI <-> (RX) channel conversions **********/
507
508 /* RX channels are 10 bit integers, these fns are quite paranoid */
509
510 static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
511   unsigned short vci_bits = 10 - vpi_bits;
512   if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
513     *channel = vpi<<vci_bits | vci;
514     return *channel ? 0 : -EINVAL;
515   }
516   return -EINVAL;
517 }
518
519 /********** decode RX queue entries **********/
520
521 static inline u16 rx_q_entry_to_length (u32 x) {
522   return x & RX_Q_ENTRY_LENGTH_MASK;
523 }
524
525 static inline u16 rx_q_entry_to_rx_channel (u32 x) {
526   return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
527 }
528
529 /* Cell Transmit Rate Values
530  *
531  * the cell transmit rate (cells per sec) can be set to a variety of
532  * different values by specifying two parameters: a timer preload from
533  * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
534  * an exponent from 0 to 14; the special value 15 disables the timer).
535  *
536  * cellrate = baserate / (preload * 2^divider)
537  *
538  * The maximum cell rate that can be specified is therefore just the
539  * base rate. Halving the preload is equivalent to adding 1 to the
540  * divider and so values 1 to 8 of the preload are redundant except
541  * in the case of a maximal divider (14).
542  *
543  * Given a desired cell rate, an algorithm to determine the preload
544  * and divider is:
545  * 
546  * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
547  * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
548  *    if x <= 16 then set p = x, d = 0 (high rates), done
549  * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
550  *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
551  *    we find the range (n will be between 1 and 14), set d = n
552  * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
553  *
554  * The algorithm used below is a minor variant of the above.
555  *
556  * The base rate is derived from the oscillator frequency (Hz) using a
557  * fixed divider:
558  *
559  * baserate = freq / 32 in the case of some Unknown Card
560  * baserate = freq / 8  in the case of the Horizon        25
561  * baserate = freq / 8  in the case of the Horizon Ultra 155
562  *
563  * The Horizon cards have oscillators and base rates as follows:
564  *
565  * Card               Oscillator  Base Rate
566  * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
567  * Horizon        25  32 MHz      4       MHz
568  * Horizon Ultra 155  40 MHz      5       MHz
569  *
570  * The following defines give the base rates in Hz. These were
571  * previously a factor of 100 larger, no doubt someone was using
572  * cps*100.
573  */
574
575 #define BR_UKN 1031250l
576 #define BR_HRZ 4000000l
577 #define BR_ULT 5000000l
578
579 // d is an exponent
580 #define CR_MIND 0
581 #define CR_MAXD 14
582
583 // p ranges from 1 to a power of 2
584 #define CR_MAXPEXP 4
585  
586 static int make_rate (const hrz_dev * dev, u32 c, rounding r,
587                       u16 * bits, unsigned int * actual)
588 {
589         // note: rounding the rate down means rounding 'p' up
590         const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
591   
592         u32 div = CR_MIND;
593         u32 pre;
594   
595         // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
596         // the tests below. We could think harder about exact possibilities
597         // of failure...
598   
599         unsigned long br_man = br;
600         unsigned int br_exp = 0;
601   
602         PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
603                 r == round_up ? "up" : r == round_down ? "down" : "nearest");
604   
605         // avoid div by zero
606         if (!c) {
607                 PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
608                 return -EINVAL;
609         }
610   
611         while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
612                 br_man = br_man >> 1;
613                 ++br_exp;
614         }
615         // (br >>br_exp) <<br_exp == br and
616         // br_exp <= CR_MAXPEXP+CR_MIND
617   
618         if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
619                 // Equivalent to: B <= (c << (MAXPEXP+MIND))
620                 // take care of rounding
621                 switch (r) {
622                         case round_down:
623                                 pre = DIV_ROUND_UP(br, c<<div);
624                                 // but p must be non-zero
625                                 if (!pre)
626                                         pre = 1;
627                                 break;
628                         case round_nearest:
629                                 pre = DIV_ROUND_CLOSEST(br, c<<div);
630                                 // but p must be non-zero
631                                 if (!pre)
632                                         pre = 1;
633                                 break;
634                         default:        /* round_up */
635                                 pre = br/(c<<div);
636                                 // but p must be non-zero
637                                 if (!pre)
638                                         return -EINVAL;
639                 }
640                 PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
641                 goto got_it;
642         }
643   
644         // at this point we have
645         // d == MIND and (c << (MAXPEXP+MIND)) < B
646         while (div < CR_MAXD) {
647                 div++;
648                 if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
649                         // Equivalent to: B <= (c << (MAXPEXP+d))
650                         // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
651                         // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
652                         // MAXP/2 < B/c2^d <= MAXP
653                         // take care of rounding
654                         switch (r) {
655                                 case round_down:
656                                         pre = DIV_ROUND_UP(br, c<<div);
657                                         break;
658                                 case round_nearest:
659                                         pre = DIV_ROUND_CLOSEST(br, c<<div);
660                                         break;
661                                 default: /* round_up */
662                                         pre = br/(c<<div);
663                         }
664                         PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
665                         goto got_it;
666                 }
667         }
668         // at this point we have
669         // d == MAXD and (c << (MAXPEXP+MAXD)) < B
670         // but we cannot go any higher
671         // take care of rounding
672         if (r == round_down)
673                 return -EINVAL;
674         pre = 1 << CR_MAXPEXP;
675         PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
676 got_it:
677         // paranoia
678         if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
679                 PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
680                         div, pre);
681                 return -EINVAL;
682         } else {
683                 if (bits)
684                         *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
685                 if (actual) {
686                         *actual = DIV_ROUND_UP(br, pre<<div);
687                         PRINTD (DBG_QOS, "actual rate: %u", *actual);
688                 }
689                 return 0;
690         }
691 }
692
693 static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
694                                      u16 * bit_pattern, unsigned int * actual) {
695   unsigned int my_actual;
696   
697   PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
698           c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
699   
700   if (!actual)
701     // actual rate is not returned
702     actual = &my_actual;
703   
704   if (make_rate (dev, c, round_nearest, bit_pattern, actual))
705     // should never happen as round_nearest always succeeds
706     return -1;
707   
708   if (c - tol <= *actual && *actual <= c + tol)
709     // within tolerance
710     return 0;
711   else
712     // intolerant, try rounding instead
713     return make_rate (dev, c, r, bit_pattern, actual);
714 }
715
716 /********** Listen on a VC **********/
717
718 static int hrz_open_rx (hrz_dev * dev, u16 channel) {
719   // is there any guarantee that we don't get two simulataneous
720   // identical calls of this function from different processes? yes
721   // rate_lock
722   unsigned long flags;
723   u32 channel_type; // u16?
724   
725   u16 buf_ptr = RX_CHANNEL_IDLE;
726   
727   rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
728   
729   PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
730   
731   spin_lock_irqsave (&dev->mem_lock, flags);
732   channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
733   spin_unlock_irqrestore (&dev->mem_lock, flags);
734   
735   // very serious error, should never occur
736   if (channel_type != RX_CHANNEL_DISABLED) {
737     PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
738     return -EBUSY; // clean up?
739   }
740   
741   // Give back spare buffer
742   if (dev->noof_spare_buffers) {
743     buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
744     PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
745     // should never occur
746     if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
747       // but easy to recover from
748       PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
749       buf_ptr = RX_CHANNEL_IDLE;
750     }
751   } else {
752     PRINTD (DBG_VCC, "using IDLE buffer pointer");
753   }
754   
755   // Channel is currently disabled so change its status to idle
756   
757   // do we really need to save the flags again?
758   spin_lock_irqsave (&dev->mem_lock, flags);
759   
760   wr_mem (dev, &rx_desc->wr_buf_type,
761           buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
762   if (buf_ptr != RX_CHANNEL_IDLE)
763     wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
764   
765   spin_unlock_irqrestore (&dev->mem_lock, flags);
766   
767   // rxer->rate = make_rate (qos->peak_cells);
768   
769   PRINTD (DBG_FLOW, "hrz_open_rx ok");
770   
771   return 0;
772 }
773
774 #if 0
775 /********** change vc rate for a given vc **********/
776
777 static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
778   rxer->rate = make_rate (qos->peak_cells);
779 }
780 #endif
781
782 /********** free an skb (as per ATM device driver documentation) **********/
783
784 static void hrz_kfree_skb (struct sk_buff * skb) {
785   if (ATM_SKB(skb)->vcc->pop) {
786     ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
787   } else {
788     dev_kfree_skb_any (skb);
789   }
790 }
791
792 /********** cancel listen on a VC **********/
793
794 static void hrz_close_rx (hrz_dev * dev, u16 vc) {
795   unsigned long flags;
796   
797   u32 value;
798   
799   u32 r1, r2;
800   
801   rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
802   
803   int was_idle = 0;
804   
805   spin_lock_irqsave (&dev->mem_lock, flags);
806   value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
807   spin_unlock_irqrestore (&dev->mem_lock, flags);
808   
809   if (value == RX_CHANNEL_DISABLED) {
810     // I suppose this could happen once we deal with _NONE traffic properly
811     PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
812     return;
813   }
814   if (value == RX_CHANNEL_IDLE)
815     was_idle = 1;
816   
817   spin_lock_irqsave (&dev->mem_lock, flags);
818   
819   for (;;) {
820     wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
821     
822     if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
823       break;
824     
825     was_idle = 0;
826   }
827   
828   if (was_idle) {
829     spin_unlock_irqrestore (&dev->mem_lock, flags);
830     return;
831   }
832   
833   WAIT_FLUSH_RX_COMPLETE(dev);
834   
835   // XXX Is this all really necessary? We can rely on the rx_data_av
836   // handler to discard frames that remain queued for delivery. If the
837   // worry is that immediately reopening the channel (perhaps by a
838   // different process) may cause some data to be mis-delivered then
839   // there may still be a simpler solution (such as busy-waiting on
840   // rx_busy once the channel is disabled or before a new one is
841   // opened - does this leave any holes?). Arguably setting up and
842   // tearing down the TX and RX halves of each virtual circuit could
843   // most safely be done within ?x_busy protected regions.
844   
845   // OK, current changes are that Simon's marker is disabled and we DO
846   // look for NULL rxer elsewhere. The code here seems flush frames
847   // and then remember the last dead cell belonging to the channel
848   // just disabled - the cell gets relinked at the next vc_open.
849   // However, when all VCs are closed or only a few opened there are a
850   // handful of buffers that are unusable.
851   
852   // Does anyone feel like documenting spare_buffers properly?
853   // Does anyone feel like fixing this in a nicer way?
854   
855   // Flush any data which is left in the channel
856   for (;;) {
857     // Change the rx channel port to something different to the RX
858     // channel we are trying to close to force Horizon to flush the rx
859     // channel read and write pointers.
860     
861     u16 other = vc^(RX_CHANS/2);
862     
863     SELECT_RX_CHANNEL (dev, other);
864     WAIT_UPDATE_COMPLETE (dev);
865     
866     r1 = rd_mem (dev, &rx_desc->rd_buf_type);
867     
868     // Select this RX channel. Flush doesn't seem to work unless we
869     // select an RX channel before hand
870     
871     SELECT_RX_CHANNEL (dev, vc);
872     WAIT_UPDATE_COMPLETE (dev);
873     
874     // Attempt to flush a frame on this RX channel
875     
876     FLUSH_RX_CHANNEL (dev, vc);
877     WAIT_FLUSH_RX_COMPLETE (dev);
878     
879     // Force Horizon to flush rx channel read and write pointers as before
880     
881     SELECT_RX_CHANNEL (dev, other);
882     WAIT_UPDATE_COMPLETE (dev);
883     
884     r2 = rd_mem (dev, &rx_desc->rd_buf_type);
885     
886     PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
887     
888     if (r1 == r2) {
889       dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
890       break;
891     }
892   }
893   
894 #if 0
895   {
896     rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
897     rx_q_entry * rd_ptr = dev->rx_q_entry;
898     
899     PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
900     
901     while (rd_ptr != wr_ptr) {
902       u32 x = rd_mem (dev, (HDW *) rd_ptr);
903       
904       if (vc == rx_q_entry_to_rx_channel (x)) {
905         x |= SIMONS_DODGEY_MARKER;
906         
907         PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
908         
909         wr_mem (dev, (HDW *) rd_ptr, x);
910       }
911       
912       if (rd_ptr == dev->rx_q_wrap)
913         rd_ptr = dev->rx_q_reset;
914       else
915         rd_ptr++;
916     }
917   }
918 #endif
919   
920   spin_unlock_irqrestore (&dev->mem_lock, flags);
921   
922   return;
923 }
924
925 /********** schedule RX transfers **********/
926
927 // Note on tail recursion: a GCC developer said that it is not likely
928 // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
929 // are sure it does as you may otherwise overflow the kernel stack.
930
931 // giving this fn a return value would help GCC, allegedly
932
933 static void rx_schedule (hrz_dev * dev, int irq) {
934   unsigned int rx_bytes;
935   
936   int pio_instead = 0;
937 #ifndef TAILRECURSIONWORKS
938   pio_instead = 1;
939   while (pio_instead) {
940 #endif
941     // bytes waiting for RX transfer
942     rx_bytes = dev->rx_bytes;
943     
944 #if 0
945     spin_count = 0;
946     while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
947       PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
948       if (++spin_count > 10) {
949         PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
950         wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
951         clear_bit (rx_busy, &dev->flags);
952         hrz_kfree_skb (dev->rx_skb);
953         return;
954       }
955     }
956 #endif
957     
958     // this code follows the TX code but (at the moment) there is only
959     // one region - the skb itself. I don't know if this will change,
960     // but it doesn't hurt to have the code here, disabled.
961     
962     if (rx_bytes) {
963       // start next transfer within same region
964       if (rx_bytes <= MAX_PIO_COUNT) {
965         PRINTD (DBG_RX|DBG_BUS, "(pio)");
966         pio_instead = 1;
967       }
968       if (rx_bytes <= MAX_TRANSFER_COUNT) {
969         PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
970         dev->rx_bytes = 0;
971       } else {
972         PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
973         dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
974         rx_bytes = MAX_TRANSFER_COUNT;
975       }
976     } else {
977       // rx_bytes == 0 -- we're between regions
978       // regions remaining to transfer
979 #if 0
980       unsigned int rx_regions = dev->rx_regions;
981 #else
982       unsigned int rx_regions = 0;
983 #endif
984       
985       if (rx_regions) {
986 #if 0
987         // start a new region
988         dev->rx_addr = dev->rx_iovec->iov_base;
989         rx_bytes = dev->rx_iovec->iov_len;
990         ++dev->rx_iovec;
991         dev->rx_regions = rx_regions - 1;
992         
993         if (rx_bytes <= MAX_PIO_COUNT) {
994           PRINTD (DBG_RX|DBG_BUS, "(pio)");
995           pio_instead = 1;
996         }
997         if (rx_bytes <= MAX_TRANSFER_COUNT) {
998           PRINTD (DBG_RX|DBG_BUS, "(full region)");
999           dev->rx_bytes = 0;
1000         } else {
1001           PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1002           dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1003           rx_bytes = MAX_TRANSFER_COUNT;
1004         }
1005 #endif
1006       } else {
1007         // rx_regions == 0
1008         // that's all folks - end of frame
1009         struct sk_buff * skb = dev->rx_skb;
1010         // dev->rx_iovec = 0;
1011         
1012         FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1013         
1014         dump_skb ("<<<", dev->rx_channel, skb);
1015         
1016         PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1017         
1018         {
1019           struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1020           // VC layer stats
1021           atomic_inc(&vcc->stats->rx);
1022           __net_timestamp(skb);
1023           // end of our responsibility
1024           vcc->push (vcc, skb);
1025         }
1026       }
1027     }
1028     
1029     // note: writing RX_COUNT clears any interrupt condition
1030     if (rx_bytes) {
1031       if (pio_instead) {
1032         if (irq)
1033           wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1034         rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1035       } else {
1036         wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1037         wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1038       }
1039       dev->rx_addr += rx_bytes;
1040     } else {
1041       if (irq)
1042         wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1043       // allow another RX thread to start
1044       YELLOW_LED_ON(dev);
1045       clear_bit (rx_busy, &dev->flags);
1046       PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1047     }
1048     
1049 #ifdef TAILRECURSIONWORKS
1050     // and we all bless optimised tail calls
1051     if (pio_instead)
1052       return rx_schedule (dev, 0);
1053     return;
1054 #else
1055     // grrrrrrr!
1056     irq = 0;
1057   }
1058   return;
1059 #endif
1060 }
1061
1062 /********** handle RX bus master complete events **********/
1063
1064 static void rx_bus_master_complete_handler (hrz_dev * dev) {
1065   if (test_bit (rx_busy, &dev->flags)) {
1066     rx_schedule (dev, 1);
1067   } else {
1068     PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1069     // clear interrupt condition on adapter
1070     wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1071   }
1072   return;
1073 }
1074
1075 /********** (queue to) become the next TX thread **********/
1076
1077 static int tx_hold (hrz_dev * dev) {
1078   PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1079   wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1080   PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1081   if (signal_pending (current))
1082     return -1;
1083   PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1084   return 0;
1085 }
1086
1087 /********** allow another TX thread to start **********/
1088
1089 static inline void tx_release (hrz_dev * dev) {
1090   clear_bit (tx_busy, &dev->flags);
1091   PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1092   wake_up_interruptible (&dev->tx_queue);
1093 }
1094
1095 /********** schedule TX transfers **********/
1096
1097 static void tx_schedule (hrz_dev * const dev, int irq) {
1098   unsigned int tx_bytes;
1099   
1100   int append_desc = 0;
1101   
1102   int pio_instead = 0;
1103 #ifndef TAILRECURSIONWORKS
1104   pio_instead = 1;
1105   while (pio_instead) {
1106 #endif
1107     // bytes in current region waiting for TX transfer
1108     tx_bytes = dev->tx_bytes;
1109     
1110 #if 0
1111     spin_count = 0;
1112     while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1113       PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1114       if (++spin_count > 10) {
1115         PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1116         wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1117         tx_release (dev);
1118         hrz_kfree_skb (dev->tx_skb);
1119         return;
1120       }
1121     }
1122 #endif
1123     
1124     if (tx_bytes) {
1125       // start next transfer within same region
1126       if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1127         PRINTD (DBG_TX|DBG_BUS, "(pio)");
1128         pio_instead = 1;
1129       }
1130       if (tx_bytes <= MAX_TRANSFER_COUNT) {
1131         PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1132         if (!dev->tx_iovec) {
1133           // end of last region
1134           append_desc = 1;
1135         }
1136         dev->tx_bytes = 0;
1137       } else {
1138         PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1139         dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1140         tx_bytes = MAX_TRANSFER_COUNT;
1141       }
1142     } else {
1143       // tx_bytes == 0 -- we're between regions
1144       // regions remaining to transfer
1145       unsigned int tx_regions = dev->tx_regions;
1146       
1147       if (tx_regions) {
1148         // start a new region
1149         dev->tx_addr = dev->tx_iovec->iov_base;
1150         tx_bytes = dev->tx_iovec->iov_len;
1151         ++dev->tx_iovec;
1152         dev->tx_regions = tx_regions - 1;
1153         
1154         if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1155           PRINTD (DBG_TX|DBG_BUS, "(pio)");
1156           pio_instead = 1;
1157         }
1158         if (tx_bytes <= MAX_TRANSFER_COUNT) {
1159           PRINTD (DBG_TX|DBG_BUS, "(full region)");
1160           dev->tx_bytes = 0;
1161         } else {
1162           PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1163           dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1164           tx_bytes = MAX_TRANSFER_COUNT;
1165         }
1166       } else {
1167         // tx_regions == 0
1168         // that's all folks - end of frame
1169         struct sk_buff * skb = dev->tx_skb;
1170         dev->tx_iovec = NULL;
1171         
1172         // VC layer stats
1173         atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1174         
1175         // free the skb
1176         hrz_kfree_skb (skb);
1177       }
1178     }
1179     
1180     // note: writing TX_COUNT clears any interrupt condition
1181     if (tx_bytes) {
1182       if (pio_instead) {
1183         if (irq)
1184           wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1185         wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1186         if (append_desc)
1187           wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1188       } else {
1189         wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1190         if (append_desc)
1191           wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1192         wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1193                  append_desc
1194                  ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1195                  : tx_bytes);
1196       }
1197       dev->tx_addr += tx_bytes;
1198     } else {
1199       if (irq)
1200         wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1201       YELLOW_LED_ON(dev);
1202       tx_release (dev);
1203     }
1204     
1205 #ifdef TAILRECURSIONWORKS
1206     // and we all bless optimised tail calls
1207     if (pio_instead)
1208       return tx_schedule (dev, 0);
1209     return;
1210 #else
1211     // grrrrrrr!
1212     irq = 0;
1213   }
1214   return;
1215 #endif
1216 }
1217
1218 /********** handle TX bus master complete events **********/
1219
1220 static void tx_bus_master_complete_handler (hrz_dev * dev) {
1221   if (test_bit (tx_busy, &dev->flags)) {
1222     tx_schedule (dev, 1);
1223   } else {
1224     PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1225     // clear interrupt condition on adapter
1226     wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1227   }
1228   return;
1229 }
1230
1231 /********** move RX Q pointer to next item in circular buffer **********/
1232
1233 // called only from IRQ sub-handler
1234 static u32 rx_queue_entry_next (hrz_dev * dev) {
1235   u32 rx_queue_entry;
1236   spin_lock (&dev->mem_lock);
1237   rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1238   if (dev->rx_q_entry == dev->rx_q_wrap)
1239     dev->rx_q_entry = dev->rx_q_reset;
1240   else
1241     dev->rx_q_entry++;
1242   wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1243   spin_unlock (&dev->mem_lock);
1244   return rx_queue_entry;
1245 }
1246
1247 /********** handle RX data received by device **********/
1248
1249 // called from IRQ handler
1250 static void rx_data_av_handler (hrz_dev * dev) {
1251   u32 rx_queue_entry;
1252   u32 rx_queue_entry_flags;
1253   u16 rx_len;
1254   u16 rx_channel;
1255   
1256   PRINTD (DBG_FLOW, "hrz_data_av_handler");
1257   
1258   // try to grab rx lock (not possible during RX bus mastering)
1259   if (test_and_set_bit (rx_busy, &dev->flags)) {
1260     PRINTD (DBG_RX, "locked out of rx lock");
1261     return;
1262   }
1263   PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1264   // lock is cleared if we fail now, o/w after bus master completion
1265   
1266   YELLOW_LED_OFF(dev);
1267   
1268   rx_queue_entry = rx_queue_entry_next (dev);
1269   
1270   rx_len = rx_q_entry_to_length (rx_queue_entry);
1271   rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1272   
1273   WAIT_FLUSH_RX_COMPLETE (dev);
1274   
1275   SELECT_RX_CHANNEL (dev, rx_channel);
1276   
1277   PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1278   rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1279   
1280   if (!rx_len) {
1281     // (at least) bus-mastering breaks if we try to handle a
1282     // zero-length frame, besides AAL5 does not support them
1283     PRINTK (KERN_ERR, "zero-length frame!");
1284     rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1285   }
1286   
1287   if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1288     PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1289   }
1290   if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1291     struct atm_vcc * atm_vcc;
1292     
1293     PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1294     
1295     atm_vcc = dev->rxer[rx_channel];
1296     // if no vcc is assigned to this channel, we should drop the frame
1297     // (is this what SIMONS etc. was trying to achieve?)
1298     
1299     if (atm_vcc) {
1300       
1301       if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1302         
1303         if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1304             
1305           struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1306           if (skb) {
1307             // remember this so we can push it later
1308             dev->rx_skb = skb;
1309             // remember this so we can flush it later
1310             dev->rx_channel = rx_channel;
1311             
1312             // prepare socket buffer
1313             skb_put (skb, rx_len);
1314             ATM_SKB(skb)->vcc = atm_vcc;
1315             
1316             // simple transfer
1317             // dev->rx_regions = 0;
1318             // dev->rx_iovec = 0;
1319             dev->rx_bytes = rx_len;
1320             dev->rx_addr = skb->data;
1321             PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1322                     skb->data, rx_len);
1323             
1324             // do the business
1325             rx_schedule (dev, 0);
1326             return;
1327             
1328           } else {
1329             PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1330           }
1331           
1332         } else {
1333           PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1334           // do we count this?
1335         }
1336         
1337       } else {
1338         PRINTK (KERN_WARNING, "dropped over-size frame");
1339         // do we count this?
1340       }
1341       
1342     } else {
1343       PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1344       // do we count this?
1345     }
1346     
1347   } else {
1348     // Wait update complete ? SPONG
1349   }
1350   
1351   // RX was aborted
1352   YELLOW_LED_ON(dev);
1353   
1354   FLUSH_RX_CHANNEL (dev,rx_channel);
1355   clear_bit (rx_busy, &dev->flags);
1356   
1357   return;
1358 }
1359
1360 /********** interrupt handler **********/
1361
1362 static irqreturn_t interrupt_handler(int irq, void *dev_id)
1363 {
1364   hrz_dev *dev = dev_id;
1365   u32 int_source;
1366   unsigned int irq_ok;
1367   
1368   PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1369   
1370   // definitely for us
1371   irq_ok = 0;
1372   while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1373           & INTERESTING_INTERRUPTS)) {
1374     // In the interests of fairness, the handlers below are
1375     // called in sequence and without immediate return to the head of
1376     // the while loop. This is only of issue for slow hosts (or when
1377     // debugging messages are on). Really slow hosts may find a fast
1378     // sender keeps them permanently in the IRQ handler. :(
1379     
1380     // (only an issue for slow hosts) RX completion goes before
1381     // rx_data_av as the former implies rx_busy and so the latter
1382     // would just abort. If it reschedules another transfer
1383     // (continuing the same frame) then it will not clear rx_busy.
1384     
1385     // (only an issue for slow hosts) TX completion goes before RX
1386     // data available as it is a much shorter routine - there is the
1387     // chance that any further transfers it schedules will be complete
1388     // by the time of the return to the head of the while loop
1389     
1390     if (int_source & RX_BUS_MASTER_COMPLETE) {
1391       ++irq_ok;
1392       PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1393       rx_bus_master_complete_handler (dev);
1394     }
1395     if (int_source & TX_BUS_MASTER_COMPLETE) {
1396       ++irq_ok;
1397       PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1398       tx_bus_master_complete_handler (dev);
1399     }
1400     if (int_source & RX_DATA_AV) {
1401       ++irq_ok;
1402       PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1403       rx_data_av_handler (dev);
1404     }
1405   }
1406   if (irq_ok) {
1407     PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1408   } else {
1409     PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1410   }
1411   
1412   PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1413   if (irq_ok)
1414         return IRQ_HANDLED;
1415   return IRQ_NONE;
1416 }
1417
1418 /********** housekeeping **********/
1419
1420 static void do_housekeeping (unsigned long arg) {
1421   // just stats at the moment
1422   hrz_dev * dev = (hrz_dev *) arg;
1423
1424   // collect device-specific (not driver/atm-linux) stats here
1425   dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1426   dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1427   dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1428   dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1429
1430   mod_timer (&dev->housekeeping, jiffies + HZ/10);
1431
1432   return;
1433 }
1434
1435 /********** find an idle channel for TX and set it up **********/
1436
1437 // called with tx_busy set
1438 static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1439   unsigned short idle_channels;
1440   short tx_channel = -1;
1441   unsigned int spin_count;
1442   PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1443   
1444   // better would be to fail immediately, the caller can then decide whether
1445   // to wait or drop (depending on whether this is UBR etc.)
1446   spin_count = 0;
1447   while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1448     PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1449     // delay a bit here
1450     if (++spin_count > 100) {
1451       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1452       return -EBUSY;
1453     }
1454   }
1455   
1456   // got an idle channel
1457   {
1458     // tx_idle ensures we look for idle channels in RR order
1459     int chan = dev->tx_idle;
1460     
1461     int keep_going = 1;
1462     while (keep_going) {
1463       if (idle_channels & (1<<chan)) {
1464         tx_channel = chan;
1465         keep_going = 0;
1466       }
1467       ++chan;
1468       if (chan == TX_CHANS)
1469         chan = 0;
1470     }
1471     
1472     dev->tx_idle = chan;
1473   }
1474   
1475   // set up the channel we found
1476   {
1477     // Initialise the cell header in the transmit channel descriptor
1478     // a.k.a. prepare the channel and remember that we have done so.
1479     
1480     tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1481     u32 rd_ptr;
1482     u32 wr_ptr;
1483     u16 channel = vcc->channel;
1484     
1485     unsigned long flags;
1486     spin_lock_irqsave (&dev->mem_lock, flags);
1487     
1488     // Update the transmit channel record.
1489     dev->tx_channel_record[tx_channel] = channel;
1490     
1491     // xBR channel
1492     update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1493                               vcc->tx_xbr_bits);
1494     
1495     // Update the PCR counter preload value etc.
1496     update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1497                               vcc->tx_pcr_bits);
1498
1499 #if 0
1500     if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1501       // SCR timer
1502       update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1503                                 vcc->tx_scr_bits);
1504       
1505       // Bucket size...
1506       update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1507                                 vcc->tx_bucket_bits);
1508       
1509       // ... and fullness
1510       update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1511                                 vcc->tx_bucket_bits);
1512     }
1513 #endif
1514
1515     // Initialise the read and write buffer pointers
1516     rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1517     wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1518     
1519     // idle TX channels should have identical pointers
1520     if (rd_ptr != wr_ptr) {
1521       PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1522       // spin_unlock... return -E...
1523       // I wonder if gcc would get rid of one of the pointer aliases
1524     }
1525     PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1526             rd_ptr, wr_ptr);
1527     
1528     switch (vcc->aal) {
1529       case aal0:
1530         PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1531         rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1532         wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1533         break;
1534       case aal34:
1535         PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1536         rd_ptr |= CHANNEL_TYPE_AAL3_4;
1537         wr_ptr |= CHANNEL_TYPE_AAL3_4;
1538         break;
1539       case aal5:
1540         rd_ptr |= CHANNEL_TYPE_AAL5;
1541         wr_ptr |= CHANNEL_TYPE_AAL5;
1542         // Initialise the CRC
1543         wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1544         break;
1545     }
1546     
1547     wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1548     wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1549     
1550     // Write the Cell Header
1551     // Payload Type, CLP and GFC would go here if non-zero
1552     wr_mem (dev, &tx_desc->cell_header, channel);
1553     
1554     spin_unlock_irqrestore (&dev->mem_lock, flags);
1555   }
1556   
1557   return tx_channel;
1558 }
1559
1560 /********** send a frame **********/
1561
1562 static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1563   unsigned int spin_count;
1564   int free_buffers;
1565   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1566   hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1567   u16 channel = vcc->channel;
1568   
1569   u32 buffers_required;
1570   
1571   /* signed for error return */
1572   short tx_channel;
1573   
1574   PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1575           channel, skb->data, skb->len);
1576   
1577   dump_skb (">>>", channel, skb);
1578   
1579   if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1580     PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1581     hrz_kfree_skb (skb);
1582     return -EIO;
1583   }
1584   
1585   // don't understand this
1586   ATM_SKB(skb)->vcc = atm_vcc;
1587   
1588   if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1589     PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1590     hrz_kfree_skb (skb);
1591     return -EIO;
1592   }
1593   
1594   if (!channel) {
1595     PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1596     hrz_kfree_skb (skb);
1597     return -EIO;
1598   }
1599   
1600 #if 0
1601   {
1602     // where would be a better place for this? housekeeping?
1603     u16 status;
1604     pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1605     if (status & PCI_STATUS_REC_MASTER_ABORT) {
1606       PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1607       status &= ~PCI_STATUS_REC_MASTER_ABORT;
1608       pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1609       if (test_bit (tx_busy, &dev->flags)) {
1610         hrz_kfree_skb (dev->tx_skb);
1611         tx_release (dev);
1612       }
1613     }
1614   }
1615 #endif
1616   
1617 #ifdef DEBUG_HORIZON
1618   /* wey-hey! */
1619   if (channel == 1023) {
1620     unsigned int i;
1621     unsigned short d = 0;
1622     char * s = skb->data;
1623     if (*s++ == 'D') {
1624         for (i = 0; i < 4; ++i)
1625                 d = (d << 4) | hex_to_bin(*s++);
1626       PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1627     }
1628   }
1629 #endif
1630   
1631   // wait until TX is free and grab lock
1632   if (tx_hold (dev)) {
1633     hrz_kfree_skb (skb);
1634     return -ERESTARTSYS;
1635   }
1636  
1637   // Wait for enough space to be available in transmit buffer memory.
1638   
1639   // should be number of cells needed + 2 (according to hardware docs)
1640   // = ((framelen+8)+47) / 48 + 2
1641   // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1642   buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1643   
1644   // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1645   spin_count = 0;
1646   while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1647     PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1648             free_buffers, buffers_required);
1649     // what is the appropriate delay? implement a timeout? (depending on line speed?)
1650     // mdelay (1);
1651     // what happens if we kill (current_pid, SIGKILL) ?
1652     schedule();
1653     if (++spin_count > 1000) {
1654       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1655               free_buffers, buffers_required);
1656       tx_release (dev);
1657       hrz_kfree_skb (skb);
1658       return -ERESTARTSYS;
1659     }
1660   }
1661   
1662   // Select a channel to transmit the frame on.
1663   if (channel == dev->last_vc) {
1664     PRINTD (DBG_TX, "last vc hack: hit");
1665     tx_channel = dev->tx_last;
1666   } else {
1667     PRINTD (DBG_TX, "last vc hack: miss");
1668     // Are we currently transmitting this VC on one of the channels?
1669     for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1670       if (dev->tx_channel_record[tx_channel] == channel) {
1671         PRINTD (DBG_TX, "vc already on channel: hit");
1672         break;
1673       }
1674     if (tx_channel == TX_CHANS) { 
1675       PRINTD (DBG_TX, "vc already on channel: miss");
1676       // Find and set up an idle channel.
1677       tx_channel = setup_idle_tx_channel (dev, vcc);
1678       if (tx_channel < 0) {
1679         PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1680         tx_release (dev);
1681         return tx_channel;
1682       }
1683     }
1684     
1685     PRINTD (DBG_TX, "got channel");
1686     SELECT_TX_CHANNEL(dev, tx_channel);
1687     
1688     dev->last_vc = channel;
1689     dev->tx_last = tx_channel;
1690   }
1691   
1692   PRINTD (DBG_TX, "using channel %u", tx_channel);
1693   
1694   YELLOW_LED_OFF(dev);
1695   
1696   // TX start transfer
1697   
1698   {
1699     unsigned int tx_len = skb->len;
1700     unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1701     // remember this so we can free it later
1702     dev->tx_skb = skb;
1703     
1704     if (tx_iovcnt) {
1705       // scatter gather transfer
1706       dev->tx_regions = tx_iovcnt;
1707       dev->tx_iovec = NULL;             /* @@@ needs rewritten */
1708       dev->tx_bytes = 0;
1709       PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1710               skb->data, tx_len);
1711       tx_release (dev);
1712       hrz_kfree_skb (skb);
1713       return -EIO;
1714     } else {
1715       // simple transfer
1716       dev->tx_regions = 0;
1717       dev->tx_iovec = NULL;
1718       dev->tx_bytes = tx_len;
1719       dev->tx_addr = skb->data;
1720       PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1721               skb->data, tx_len);
1722     }
1723     
1724     // and do the business
1725     tx_schedule (dev, 0);
1726     
1727   }
1728   
1729   return 0;
1730 }
1731
1732 /********** reset a card **********/
1733
1734 static void hrz_reset (const hrz_dev * dev) {
1735   u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1736   
1737   // why not set RESET_HORIZON to one and wait for the card to
1738   // reassert that bit as zero? Like so:
1739   control_0_reg = control_0_reg & RESET_HORIZON;
1740   wr_regl (dev, CONTROL_0_REG, control_0_reg);
1741   while (control_0_reg & RESET_HORIZON)
1742     control_0_reg = rd_regl (dev, CONTROL_0_REG);
1743   
1744   // old reset code retained:
1745   wr_regl (dev, CONTROL_0_REG, control_0_reg |
1746            RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1747   // just guessing here
1748   udelay (1000);
1749   
1750   wr_regl (dev, CONTROL_0_REG, control_0_reg);
1751 }
1752
1753 /********** read the burnt in address **********/
1754
1755 static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1756 {
1757         wr_regl (dev, CONTROL_0_REG, ctrl);
1758         udelay (5);
1759 }
1760   
1761 static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1762 {
1763         // DI must be valid around rising SK edge
1764         WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1765         WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1766 }
1767
1768 static u16 read_bia(const hrz_dev *dev, u16 addr)
1769 {
1770   u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1771   
1772   const unsigned int addr_bits = 6;
1773   const unsigned int data_bits = 16;
1774   
1775   unsigned int i;
1776   
1777   u16 res;
1778   
1779   ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1780   WRITE_IT_WAIT(dev, ctrl);
1781   
1782   // wake Serial EEPROM and send 110 (READ) command
1783   ctrl |=  (SEEPROM_CS | SEEPROM_DI);
1784   CLOCK_IT(dev, ctrl);
1785   
1786   ctrl |= SEEPROM_DI;
1787   CLOCK_IT(dev, ctrl);
1788   
1789   ctrl &= ~SEEPROM_DI;
1790   CLOCK_IT(dev, ctrl);
1791   
1792   for (i=0; i<addr_bits; i++) {
1793     if (addr & (1 << (addr_bits-1)))
1794       ctrl |= SEEPROM_DI;
1795     else
1796       ctrl &= ~SEEPROM_DI;
1797     
1798     CLOCK_IT(dev, ctrl);
1799     
1800     addr = addr << 1;
1801   }
1802   
1803   // we could check that we have DO = 0 here
1804   ctrl &= ~SEEPROM_DI;
1805   
1806   res = 0;
1807   for (i=0;i<data_bits;i++) {
1808     res = res >> 1;
1809     
1810     CLOCK_IT(dev, ctrl);
1811     
1812     if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1813       res |= (1 << (data_bits-1));
1814   }
1815   
1816   ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1817   WRITE_IT_WAIT(dev, ctrl);
1818   
1819   return res;
1820 }
1821
1822 /********** initialise a card **********/
1823
1824 static int hrz_init(hrz_dev *dev)
1825 {
1826   int onefivefive;
1827   
1828   u16 chan;
1829   
1830   int buff_count;
1831   
1832   HDW * mem;
1833   
1834   cell_buf * tx_desc;
1835   cell_buf * rx_desc;
1836   
1837   u32 ctrl;
1838   
1839   ctrl = rd_regl (dev, CONTROL_0_REG);
1840   PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1841   onefivefive = ctrl & ATM_LAYER_STATUS;
1842   
1843   if (onefivefive)
1844     printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1845   else
1846     printk (DEV_LABEL ": Horizon (at 25 MBps)");
1847   
1848   printk (":");
1849   // Reset the card to get everything in a known state
1850   
1851   printk (" reset");
1852   hrz_reset (dev);
1853   
1854   // Clear all the buffer memory
1855   
1856   printk (" clearing memory");
1857   
1858   for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1859     wr_mem (dev, mem, 0);
1860   
1861   printk (" tx channels");
1862   
1863   // All transmit eight channels are set up as AAL5 ABR channels with
1864   // a 16us cell spacing. Why?
1865   
1866   // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1867   // buffer at 110h etc.
1868   
1869   for (chan = 0; chan < TX_CHANS; ++chan) {
1870     tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1871     cell_buf * buf = &memmap->inittxbufs[chan];
1872     
1873     // initialise the read and write buffer pointers
1874     wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1875     wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1876     
1877     // set the status of the initial buffers to empty
1878     wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1879   }
1880   
1881   // Use space bufn3 at the moment for tx buffers
1882   
1883   printk (" tx buffers");
1884   
1885   tx_desc = memmap->bufn3;
1886   
1887   wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1888   
1889   for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1890     wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1891     tx_desc++;
1892   }
1893   
1894   wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1895   
1896   // Initialise the transmit free buffer count
1897   wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1898   
1899   printk (" rx channels");
1900   
1901   // Initialise all of the receive channels to be AAL5 disabled with
1902   // an interrupt threshold of 0
1903   
1904   for (chan = 0; chan < RX_CHANS; ++chan) {
1905     rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1906     
1907     wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1908   }
1909   
1910   printk (" rx buffers");
1911   
1912   // Use space bufn4 at the moment for rx buffers
1913   
1914   rx_desc = memmap->bufn4;
1915   
1916   wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1917   
1918   for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1919     wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1920     
1921     rx_desc++;
1922   }
1923   
1924   wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1925   
1926   // Initialise the receive free buffer count
1927   wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1928   
1929   // Initialize Horizons registers
1930   
1931   // TX config
1932   wr_regw (dev, TX_CONFIG_OFF,
1933            ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1934   
1935   // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1936   wr_regw (dev, RX_CONFIG_OFF,
1937            DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1938   
1939   // RX line config
1940   wr_regw (dev, RX_LINE_CONFIG_OFF,
1941            LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1942   
1943   // Set the max AAL5 cell count to be just enough to contain the
1944   // largest AAL5 frame that the user wants to receive
1945   wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1946            DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1947   
1948   // Enable receive
1949   wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1950   
1951   printk (" control");
1952   
1953   // Drive the OE of the LEDs then turn the green LED on
1954   ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1955   wr_regl (dev, CONTROL_0_REG, ctrl);
1956   
1957   // Test for a 155-capable card
1958   
1959   if (onefivefive) {
1960     // Select 155 mode... make this a choice (or: how do we detect
1961     // external line speed and switch?)
1962     ctrl |= ATM_LAYER_SELECT;
1963     wr_regl (dev, CONTROL_0_REG, ctrl);
1964     
1965     // test SUNI-lite vs SAMBA
1966     
1967     // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1968     // they will always be zero for the SAMBA.  Ha!  Bloody hardware
1969     // engineers.  It'll never work.
1970     
1971     if (rd_framer (dev, 0) & 0x00f0) {
1972       // SUNI
1973       printk (" SUNI");
1974       
1975       // Reset, just in case
1976       wr_framer (dev, 0x00, 0x0080);
1977       wr_framer (dev, 0x00, 0x0000);
1978       
1979       // Configure transmit FIFO
1980       wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
1981       
1982       // Set line timed mode
1983       wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
1984     } else {
1985       // SAMBA
1986       printk (" SAMBA");
1987       
1988       // Reset, just in case
1989       wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
1990       wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
1991       
1992       // Turn off diagnostic loopback and enable line-timed mode
1993       wr_framer (dev, 0, 0x0002);
1994       
1995       // Turn on transmit outputs
1996       wr_framer (dev, 2, 0x0B80);
1997     }
1998   } else {
1999     // Select 25 mode
2000     ctrl &= ~ATM_LAYER_SELECT;
2001     
2002     // Madge B154 setup
2003     // none required?
2004   }
2005   
2006   printk (" LEDs");
2007   
2008   GREEN_LED_ON(dev);
2009   YELLOW_LED_ON(dev);
2010   
2011   printk (" ESI=");
2012   
2013   {
2014     u16 b = 0;
2015     int i;
2016     u8 * esi = dev->atm_dev->esi;
2017     
2018     // in the card I have, EEPROM
2019     // addresses 0, 1, 2 contain 0
2020     // addresess 5, 6 etc. contain ffff
2021     // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2022     // the read_bia routine gets the BIA in Ethernet bit order
2023     
2024     for (i=0; i < ESI_LEN; ++i) {
2025       if (i % 2 == 0)
2026         b = read_bia (dev, i/2 + 2);
2027       else
2028         b = b >> 8;
2029       esi[i] = b & 0xFF;
2030       printk ("%02x", esi[i]);
2031     }
2032   }
2033   
2034   // Enable RX_Q and ?X_COMPLETE interrupts only
2035   wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2036   printk (" IRQ on");
2037   
2038   printk (".\n");
2039   
2040   return onefivefive;
2041 }
2042
2043 /********** check max_sdu **********/
2044
2045 static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2046   PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2047   
2048   switch (aal) {
2049     case aal0:
2050       if (!(tp->max_sdu)) {
2051         PRINTD (DBG_QOS, "defaulting max_sdu");
2052         tp->max_sdu = ATM_AAL0_SDU;
2053       } else if (tp->max_sdu != ATM_AAL0_SDU) {
2054         PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2055         return -EINVAL;
2056       }
2057       break;
2058     case aal34:
2059       if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2060         PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2061         tp->max_sdu = ATM_MAX_AAL34_PDU;
2062       }
2063       break;
2064     case aal5:
2065       if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2066         PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2067         tp->max_sdu = max_frame_size;
2068       }
2069       break;
2070   }
2071   return 0;
2072 }
2073
2074 /********** check pcr **********/
2075
2076 // something like this should be part of ATM Linux
2077 static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2078   // we are assuming non-UBR, and non-special values of pcr
2079   if (tp->min_pcr == ATM_MAX_PCR)
2080     PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2081   else if (tp->min_pcr < 0)
2082     PRINTD (DBG_QOS, "luser gave negative min_pcr");
2083   else if (tp->min_pcr && tp->min_pcr > pcr)
2084     PRINTD (DBG_QOS, "pcr less than min_pcr");
2085   else
2086     // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2087     // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2088     // [this would get rid of next two conditionals]
2089     if ((0) && tp->max_pcr == ATM_MAX_PCR)
2090       PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2091     else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2092       PRINTD (DBG_QOS, "luser gave negative max_pcr");
2093     else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2094       PRINTD (DBG_QOS, "pcr greater than max_pcr");
2095     else {
2096       // each limit unspecified or not violated
2097       PRINTD (DBG_QOS, "xBR(pcr) OK");
2098       return 0;
2099     }
2100   PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2101           pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2102   return -EINVAL;
2103 }
2104
2105 /********** open VC **********/
2106
2107 static int hrz_open (struct atm_vcc *atm_vcc)
2108 {
2109   int error;
2110   u16 channel;
2111   
2112   struct atm_qos * qos;
2113   struct atm_trafprm * txtp;
2114   struct atm_trafprm * rxtp;
2115   
2116   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2117   hrz_vcc vcc;
2118   hrz_vcc * vccp; // allocated late
2119   short vpi = atm_vcc->vpi;
2120   int vci = atm_vcc->vci;
2121   PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2122   
2123 #ifdef ATM_VPI_UNSPEC
2124   // UNSPEC is deprecated, remove this code eventually
2125   if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2126     PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2127     return -EINVAL;
2128   }
2129 #endif
2130   
2131   error = vpivci_to_channel (&channel, vpi, vci);
2132   if (error) {
2133     PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2134     return error;
2135   }
2136   
2137   vcc.channel = channel;
2138   // max speed for the moment
2139   vcc.tx_rate = 0x0;
2140   
2141   qos = &atm_vcc->qos;
2142   
2143   // check AAL and remember it
2144   switch (qos->aal) {
2145     case ATM_AAL0:
2146       // we would if it were 48 bytes and not 52!
2147       PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2148       vcc.aal = aal0;
2149       break;
2150     case ATM_AAL34:
2151       // we would if I knew how do the SAR!
2152       PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2153       vcc.aal = aal34;
2154       break;
2155     case ATM_AAL5:
2156       PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2157       vcc.aal = aal5;
2158       break;
2159     default:
2160       PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2161       return -EINVAL;
2162   }
2163   
2164   // TX traffic parameters
2165   
2166   // there are two, interrelated problems here: 1. the reservation of
2167   // PCR is not a binary choice, we are given bounds and/or a
2168   // desirable value; 2. the device is only capable of certain values,
2169   // most of which are not integers. It is almost certainly acceptable
2170   // to be off by a maximum of 1 to 10 cps.
2171   
2172   // Pragmatic choice: always store an integral PCR as that which has
2173   // been allocated, even if we allocate a little (or a lot) less,
2174   // after rounding. The actual allocation depends on what we can
2175   // manage with our rate selection algorithm. The rate selection
2176   // algorithm is given an integral PCR and a tolerance and told
2177   // whether it should round the value up or down if the tolerance is
2178   // exceeded; it returns: a) the actual rate selected (rounded up to
2179   // the nearest integer), b) a bit pattern to feed to the timer
2180   // register, and c) a failure value if no applicable rate exists.
2181   
2182   // Part of the job is done by atm_pcr_goal which gives us a PCR
2183   // specification which says: EITHER grab the maximum available PCR
2184   // (and perhaps a lower bound which we musn't pass), OR grab this
2185   // amount, rounding down if you have to (and perhaps a lower bound
2186   // which we musn't pass) OR grab this amount, rounding up if you
2187   // have to (and perhaps an upper bound which we musn't pass). If any
2188   // bounds ARE passed we fail. Note that rounding is only rounding to
2189   // match device limitations, we do not round down to satisfy
2190   // bandwidth availability even if this would not violate any given
2191   // lower bound.
2192   
2193   // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2194   // (say) so this is not even a binary fixpoint cell rate (but this
2195   // device can do it). To avoid this sort of hassle we use a
2196   // tolerance parameter (currently fixed at 10 cps).
2197   
2198   PRINTD (DBG_QOS, "TX:");
2199   
2200   txtp = &qos->txtp;
2201   
2202   // set up defaults for no traffic
2203   vcc.tx_rate = 0;
2204   // who knows what would actually happen if you try and send on this?
2205   vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2206   vcc.tx_pcr_bits = CLOCK_DISABLE;
2207 #if 0
2208   vcc.tx_scr_bits = CLOCK_DISABLE;
2209   vcc.tx_bucket_bits = 0;
2210 #endif
2211   
2212   if (txtp->traffic_class != ATM_NONE) {
2213     error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2214     if (error) {
2215       PRINTD (DBG_QOS, "TX max_sdu check failed");
2216       return error;
2217     }
2218     
2219     switch (txtp->traffic_class) {
2220       case ATM_UBR: {
2221         // we take "the PCR" as a rate-cap
2222         // not reserved
2223         vcc.tx_rate = 0;
2224         make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2225         vcc.tx_xbr_bits = ABR_RATE_TYPE;
2226         break;
2227       }
2228 #if 0
2229       case ATM_ABR: {
2230         // reserve min, allow up to max
2231         vcc.tx_rate = 0; // ?
2232         make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2233         vcc.tx_xbr_bits = ABR_RATE_TYPE;
2234         break;
2235       }
2236 #endif
2237       case ATM_CBR: {
2238         int pcr = atm_pcr_goal (txtp);
2239         rounding r;
2240         if (!pcr) {
2241           // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2242           // should really have: once someone gets unlimited bandwidth
2243           // that no more non-UBR channels can be opened until the
2244           // unlimited one closes?? For the moment, round_down means
2245           // greedy people actually get something and not nothing
2246           r = round_down;
2247           // slight race (no locking) here so we may get -EAGAIN
2248           // later; the greedy bastards would deserve it :)
2249           PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2250           pcr = dev->tx_avail;
2251         } else if (pcr < 0) {
2252           r = round_down;
2253           pcr = -pcr;
2254         } else {
2255           r = round_up;
2256         }
2257         error = make_rate_with_tolerance (dev, pcr, r, 10,
2258                                           &vcc.tx_pcr_bits, &vcc.tx_rate);
2259         if (error) {
2260           PRINTD (DBG_QOS, "could not make rate from TX PCR");
2261           return error;
2262         }
2263         // not really clear what further checking is needed
2264         error = atm_pcr_check (txtp, vcc.tx_rate);
2265         if (error) {
2266           PRINTD (DBG_QOS, "TX PCR failed consistency check");
2267           return error;
2268         }
2269         vcc.tx_xbr_bits = CBR_RATE_TYPE;
2270         break;
2271       }
2272 #if 0
2273       case ATM_VBR: {
2274         int pcr = atm_pcr_goal (txtp);
2275         // int scr = atm_scr_goal (txtp);
2276         int scr = pcr/2; // just for fun
2277         unsigned int mbs = 60; // just for fun
2278         rounding pr;
2279         rounding sr;
2280         unsigned int bucket;
2281         if (!pcr) {
2282           pr = round_nearest;
2283           pcr = 1<<30;
2284         } else if (pcr < 0) {
2285           pr = round_down;
2286           pcr = -pcr;
2287         } else {
2288           pr = round_up;
2289         }
2290         error = make_rate_with_tolerance (dev, pcr, pr, 10,
2291                                           &vcc.tx_pcr_bits, 0);
2292         if (!scr) {
2293           // see comments for PCR with CBR above
2294           sr = round_down;
2295           // slight race (no locking) here so we may get -EAGAIN
2296           // later; the greedy bastards would deserve it :)
2297           PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2298           scr = dev->tx_avail;
2299         } else if (scr < 0) {
2300           sr = round_down;
2301           scr = -scr;
2302         } else {
2303           sr = round_up;
2304         }
2305         error = make_rate_with_tolerance (dev, scr, sr, 10,
2306                                           &vcc.tx_scr_bits, &vcc.tx_rate);
2307         if (error) {
2308           PRINTD (DBG_QOS, "could not make rate from TX SCR");
2309           return error;
2310         }
2311         // not really clear what further checking is needed
2312         // error = atm_scr_check (txtp, vcc.tx_rate);
2313         if (error) {
2314           PRINTD (DBG_QOS, "TX SCR failed consistency check");
2315           return error;
2316         }
2317         // bucket calculations (from a piece of paper...) cell bucket
2318         // capacity must be largest integer smaller than m(p-s)/p + 1
2319         // where m = max burst size, p = pcr, s = scr
2320         bucket = mbs*(pcr-scr)/pcr;
2321         if (bucket*pcr != mbs*(pcr-scr))
2322           bucket += 1;
2323         if (bucket > BUCKET_MAX_SIZE) {
2324           PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2325                   bucket, BUCKET_MAX_SIZE);
2326           bucket = BUCKET_MAX_SIZE;
2327         }
2328         vcc.tx_xbr_bits = VBR_RATE_TYPE;
2329         vcc.tx_bucket_bits = bucket;
2330         break;
2331       }
2332 #endif
2333       default: {
2334         PRINTD (DBG_QOS, "unsupported TX traffic class");
2335         return -EINVAL;
2336       }
2337     }
2338   }
2339   
2340   // RX traffic parameters
2341   
2342   PRINTD (DBG_QOS, "RX:");
2343   
2344   rxtp = &qos->rxtp;
2345   
2346   // set up defaults for no traffic
2347   vcc.rx_rate = 0;
2348   
2349   if (rxtp->traffic_class != ATM_NONE) {
2350     error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2351     if (error) {
2352       PRINTD (DBG_QOS, "RX max_sdu check failed");
2353       return error;
2354     }
2355     switch (rxtp->traffic_class) {
2356       case ATM_UBR: {
2357         // not reserved
2358         break;
2359       }
2360 #if 0
2361       case ATM_ABR: {
2362         // reserve min
2363         vcc.rx_rate = 0; // ?
2364         break;
2365       }
2366 #endif
2367       case ATM_CBR: {
2368         int pcr = atm_pcr_goal (rxtp);
2369         if (!pcr) {
2370           // slight race (no locking) here so we may get -EAGAIN
2371           // later; the greedy bastards would deserve it :)
2372           PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2373           pcr = dev->rx_avail;
2374         } else if (pcr < 0) {
2375           pcr = -pcr;
2376         }
2377         vcc.rx_rate = pcr;
2378         // not really clear what further checking is needed
2379         error = atm_pcr_check (rxtp, vcc.rx_rate);
2380         if (error) {
2381           PRINTD (DBG_QOS, "RX PCR failed consistency check");
2382           return error;
2383         }
2384         break;
2385       }
2386 #if 0
2387       case ATM_VBR: {
2388         // int scr = atm_scr_goal (rxtp);
2389         int scr = 1<<16; // just for fun
2390         if (!scr) {
2391           // slight race (no locking) here so we may get -EAGAIN
2392           // later; the greedy bastards would deserve it :)
2393           PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2394           scr = dev->rx_avail;
2395         } else if (scr < 0) {
2396           scr = -scr;
2397         }
2398         vcc.rx_rate = scr;
2399         // not really clear what further checking is needed
2400         // error = atm_scr_check (rxtp, vcc.rx_rate);
2401         if (error) {
2402           PRINTD (DBG_QOS, "RX SCR failed consistency check");
2403           return error;
2404         }
2405         break;
2406       }
2407 #endif
2408       default: {
2409         PRINTD (DBG_QOS, "unsupported RX traffic class");
2410         return -EINVAL;
2411       }
2412     }
2413   }
2414   
2415   
2416   // late abort useful for diagnostics
2417   if (vcc.aal != aal5) {
2418     PRINTD (DBG_QOS, "AAL not supported");
2419     return -EINVAL;
2420   }
2421   
2422   // get space for our vcc stuff and copy parameters into it
2423   vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2424   if (!vccp) {
2425     PRINTK (KERN_ERR, "out of memory!");
2426     return -ENOMEM;
2427   }
2428   *vccp = vcc;
2429   
2430   // clear error and grab cell rate resource lock
2431   error = 0;
2432   spin_lock (&dev->rate_lock);
2433   
2434   if (vcc.tx_rate > dev->tx_avail) {
2435     PRINTD (DBG_QOS, "not enough TX PCR left");
2436     error = -EAGAIN;
2437   }
2438   
2439   if (vcc.rx_rate > dev->rx_avail) {
2440     PRINTD (DBG_QOS, "not enough RX PCR left");
2441     error = -EAGAIN;
2442   }
2443   
2444   if (!error) {
2445     // really consume cell rates
2446     dev->tx_avail -= vcc.tx_rate;
2447     dev->rx_avail -= vcc.rx_rate;
2448     PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2449             vcc.tx_rate, vcc.rx_rate);
2450   }
2451   
2452   // release lock and exit on error
2453   spin_unlock (&dev->rate_lock);
2454   if (error) {
2455     PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2456     kfree (vccp);
2457     return error;
2458   }
2459   
2460   // this is "immediately before allocating the connection identifier
2461   // in hardware" - so long as the next call does not fail :)
2462   set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2463   
2464   // any errors here are very serious and should never occur
2465   
2466   if (rxtp->traffic_class != ATM_NONE) {
2467     if (dev->rxer[channel]) {
2468       PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2469       error = -EBUSY;
2470     }
2471     if (!error)
2472       error = hrz_open_rx (dev, channel);
2473     if (error) {
2474       kfree (vccp);
2475       return error;
2476     }
2477     // this link allows RX frames through
2478     dev->rxer[channel] = atm_vcc;
2479   }
2480   
2481   // success, set elements of atm_vcc
2482   atm_vcc->dev_data = (void *) vccp;
2483   
2484   // indicate readiness
2485   set_bit(ATM_VF_READY,&atm_vcc->flags);
2486   
2487   return 0;
2488 }
2489
2490 /********** close VC **********/
2491
2492 static void hrz_close (struct atm_vcc * atm_vcc) {
2493   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2494   hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2495   u16 channel = vcc->channel;
2496   PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2497   
2498   // indicate unreadiness
2499   clear_bit(ATM_VF_READY,&atm_vcc->flags);
2500
2501   if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2502     unsigned int i;
2503     
2504     // let any TX on this channel that has started complete
2505     // no restart, just keep trying
2506     while (tx_hold (dev))
2507       ;
2508     // remove record of any tx_channel having been setup for this channel
2509     for (i = 0; i < TX_CHANS; ++i)
2510       if (dev->tx_channel_record[i] == channel) {
2511         dev->tx_channel_record[i] = -1;
2512         break;
2513       }
2514     if (dev->last_vc == channel)
2515       dev->tx_last = -1;
2516     tx_release (dev);
2517   }
2518
2519   if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2520     // disable RXing - it tries quite hard
2521     hrz_close_rx (dev, channel);
2522     // forget the vcc - no more skbs will be pushed
2523     if (atm_vcc != dev->rxer[channel])
2524       PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2525               "arghhh! we're going to die!",
2526               atm_vcc, dev->rxer[channel]);
2527     dev->rxer[channel] = NULL;
2528   }
2529   
2530   // atomically release our rate reservation
2531   spin_lock (&dev->rate_lock);
2532   PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2533           vcc->tx_rate, vcc->rx_rate);
2534   dev->tx_avail += vcc->tx_rate;
2535   dev->rx_avail += vcc->rx_rate;
2536   spin_unlock (&dev->rate_lock);
2537   
2538   // free our structure
2539   kfree (vcc);
2540   // say the VPI/VCI is free again
2541   clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2542 }
2543
2544 #if 0
2545 static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2546                            void *optval, int optlen) {
2547   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2548   PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2549   switch (level) {
2550     case SOL_SOCKET:
2551       switch (optname) {
2552 //      case SO_BCTXOPT:
2553 //        break;
2554 //      case SO_BCRXOPT:
2555 //        break;
2556         default:
2557           return -ENOPROTOOPT;
2558       };
2559       break;
2560   }
2561   return -EINVAL;
2562 }
2563
2564 static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2565                            void *optval, unsigned int optlen) {
2566   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2567   PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2568   switch (level) {
2569     case SOL_SOCKET:
2570       switch (optname) {
2571 //      case SO_BCTXOPT:
2572 //        break;
2573 //      case SO_BCRXOPT:
2574 //        break;
2575         default:
2576           return -ENOPROTOOPT;
2577       };
2578       break;
2579   }
2580   return -EINVAL;
2581 }
2582 #endif
2583
2584 #if 0
2585 static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2586   hrz_dev * dev = HRZ_DEV(atm_dev);
2587   PRINTD (DBG_FLOW, "hrz_ioctl");
2588   return -1;
2589 }
2590
2591 unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2592   hrz_dev * dev = HRZ_DEV(atm_dev);
2593   PRINTD (DBG_FLOW, "hrz_phy_get");
2594   return 0;
2595 }
2596
2597 static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2598                          unsigned long addr) {
2599   hrz_dev * dev = HRZ_DEV(atm_dev);
2600   PRINTD (DBG_FLOW, "hrz_phy_put");
2601 }
2602
2603 static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2604   hrz_dev * dev = HRZ_DEV(vcc->dev);
2605   PRINTD (DBG_FLOW, "hrz_change_qos");
2606   return -1;
2607 }
2608 #endif
2609
2610 /********** proc file contents **********/
2611
2612 static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2613   hrz_dev * dev = HRZ_DEV(atm_dev);
2614   int left = *pos;
2615   PRINTD (DBG_FLOW, "hrz_proc_read");
2616   
2617   /* more diagnostics here? */
2618   
2619 #if 0
2620   if (!left--) {
2621     unsigned int count = sprintf (page, "vbr buckets:");
2622     unsigned int i;
2623     for (i = 0; i < TX_CHANS; ++i)
2624       count += sprintf (page, " %u/%u",
2625                         query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2626                         query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2627     count += sprintf (page+count, ".\n");
2628     return count;
2629   }
2630 #endif
2631   
2632   if (!left--)
2633     return sprintf (page,
2634                     "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2635                     dev->tx_cell_count, dev->rx_cell_count,
2636                     dev->hec_error_count, dev->unassigned_cell_count);
2637   
2638   if (!left--)
2639     return sprintf (page,
2640                     "free cell buffers: TX %hu, RX %hu+%hu.\n",
2641                     rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2642                     rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2643                     dev->noof_spare_buffers);
2644   
2645   if (!left--)
2646     return sprintf (page,
2647                     "cps remaining: TX %u, RX %u\n",
2648                     dev->tx_avail, dev->rx_avail);
2649   
2650   return 0;
2651 }
2652
2653 static const struct atmdev_ops hrz_ops = {
2654   .open = hrz_open,
2655   .close        = hrz_close,
2656   .send = hrz_send,
2657   .proc_read    = hrz_proc_read,
2658   .owner        = THIS_MODULE,
2659 };
2660
2661 static int hrz_probe(struct pci_dev *pci_dev,
2662                      const struct pci_device_id *pci_ent)
2663 {
2664         hrz_dev * dev;
2665         int err = 0;
2666
2667         // adapter slot free, read resources from PCI configuration space
2668         u32 iobase = pci_resource_start (pci_dev, 0);
2669         u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2670         unsigned int irq;
2671         unsigned char lat;
2672
2673         PRINTD (DBG_FLOW, "hrz_probe");
2674
2675         if (pci_enable_device(pci_dev))
2676                 return -EINVAL;
2677
2678         /* XXX DEV_LABEL is a guess */
2679         if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2680                 err = -EINVAL;
2681                 goto out_disable;
2682         }
2683
2684         dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2685         if (!dev) {
2686                 // perhaps we should be nice: deregister all adapters and abort?
2687                 PRINTD(DBG_ERR, "out of memory");
2688                 err = -ENOMEM;
2689                 goto out_release;
2690         }
2691
2692         pci_set_drvdata(pci_dev, dev);
2693
2694         // grab IRQ and install handler - move this someplace more sensible
2695         irq = pci_dev->irq;
2696         if (request_irq(irq,
2697                         interrupt_handler,
2698                         IRQF_SHARED, /* irqflags guess */
2699                         DEV_LABEL, /* name guess */
2700                         dev)) {
2701                 PRINTD(DBG_WARN, "request IRQ failed!");
2702                 err = -EINVAL;
2703                 goto out_free;
2704         }
2705
2706         PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2707                iobase, irq, membase);
2708
2709         dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2710                                         NULL);
2711         if (!(dev->atm_dev)) {
2712                 PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2713                 err = -EINVAL;
2714                 goto out_free_irq;
2715         }
2716
2717         PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2718                dev->atm_dev->number, dev, dev->atm_dev);
2719         dev->atm_dev->dev_data = (void *) dev;
2720         dev->pci_dev = pci_dev; 
2721
2722         // enable bus master accesses
2723         pci_set_master(pci_dev);
2724
2725         // frobnicate latency (upwards, usually)
2726         pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2727         if (pci_lat) {
2728                 PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2729                        "changing", lat, pci_lat);
2730                 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2731         } else if (lat < MIN_PCI_LATENCY) {
2732                 PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2733                        "increasing", lat, MIN_PCI_LATENCY);
2734                 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2735         }
2736
2737         dev->iobase = iobase;
2738         dev->irq = irq; 
2739         dev->membase = membase; 
2740
2741         dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2742         dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
2743
2744         // these next three are performance hacks
2745         dev->last_vc = -1;
2746         dev->tx_last = -1;
2747         dev->tx_idle = 0;
2748
2749         dev->tx_regions = 0;
2750         dev->tx_bytes = 0;
2751         dev->tx_skb = NULL;
2752         dev->tx_iovec = NULL;
2753
2754         dev->tx_cell_count = 0;
2755         dev->rx_cell_count = 0;
2756         dev->hec_error_count = 0;
2757         dev->unassigned_cell_count = 0;
2758
2759         dev->noof_spare_buffers = 0;
2760
2761         {
2762                 unsigned int i;
2763                 for (i = 0; i < TX_CHANS; ++i)
2764                         dev->tx_channel_record[i] = -1;
2765         }
2766
2767         dev->flags = 0;
2768
2769         // Allocate cell rates and remember ASIC version
2770         // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2771         // Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2772         // Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2773
2774         if (hrz_init(dev)) {
2775                 // to be really pedantic, this should be ATM_OC3c_PCR
2776                 dev->tx_avail = ATM_OC3_PCR;
2777                 dev->rx_avail = ATM_OC3_PCR;
2778                 set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2779         } else {
2780                 dev->tx_avail = ((25600000/8)*26)/(27*53);
2781                 dev->rx_avail = ((25600000/8)*26)/(27*53);
2782                 PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2783         }
2784
2785         // rate changes spinlock
2786         spin_lock_init(&dev->rate_lock);
2787
2788         // on-board memory access spinlock; we want atomic reads and
2789         // writes to adapter memory (handles IRQ and SMP)
2790         spin_lock_init(&dev->mem_lock);
2791
2792         init_waitqueue_head(&dev->tx_queue);
2793
2794         // vpi in 0..4, vci in 6..10
2795         dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2796         dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2797
2798         init_timer(&dev->housekeeping);
2799         dev->housekeeping.function = do_housekeeping;
2800         dev->housekeeping.data = (unsigned long) dev;
2801         mod_timer(&dev->housekeeping, jiffies);
2802
2803 out:
2804         return err;
2805
2806 out_free_irq:
2807         free_irq(irq, dev);
2808 out_free:
2809         kfree(dev);
2810 out_release:
2811         release_region(iobase, HRZ_IO_EXTENT);
2812 out_disable:
2813         pci_disable_device(pci_dev);
2814         goto out;
2815 }
2816
2817 static void hrz_remove_one(struct pci_dev *pci_dev)
2818 {
2819         hrz_dev *dev;
2820
2821         dev = pci_get_drvdata(pci_dev);
2822
2823         PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2824         del_timer_sync(&dev->housekeeping);
2825         hrz_reset(dev);
2826         atm_dev_deregister(dev->atm_dev);
2827         free_irq(dev->irq, dev);
2828         release_region(dev->iobase, HRZ_IO_EXTENT);
2829         kfree(dev);
2830
2831         pci_disable_device(pci_dev);
2832 }
2833
2834 static void __init hrz_check_args (void) {
2835 #ifdef DEBUG_HORIZON
2836   PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2837 #else
2838   if (debug)
2839     PRINTK (KERN_NOTICE, "no debug support in this image");
2840 #endif
2841   
2842   if (vpi_bits > HRZ_MAX_VPI)
2843     PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2844             vpi_bits = HRZ_MAX_VPI);
2845   
2846   if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2847     PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2848             max_tx_size = TX_AAL5_LIMIT);
2849   
2850   if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2851     PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2852             max_rx_size = RX_AAL5_LIMIT);
2853   
2854   return;
2855 }
2856
2857 MODULE_AUTHOR(maintainer_string);
2858 MODULE_DESCRIPTION(description_string);
2859 MODULE_LICENSE("GPL");
2860 module_param(debug, ushort, 0644);
2861 module_param(vpi_bits, ushort, 0);
2862 module_param(max_tx_size, int, 0);
2863 module_param(max_rx_size, int, 0);
2864 module_param(pci_lat, byte, 0);
2865 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2866 MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2867 MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2868 MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2869 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2870
2871 static struct pci_device_id hrz_pci_tbl[] = {
2872         { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2873           0, 0, 0 },
2874         { 0, }
2875 };
2876
2877 MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2878
2879 static struct pci_driver hrz_driver = {
2880         .name =         "horizon",
2881         .probe =        hrz_probe,
2882         .remove =       hrz_remove_one,
2883         .id_table =     hrz_pci_tbl,
2884 };
2885
2886 /********** module entry **********/
2887
2888 static int __init hrz_module_init (void) {
2889   // sanity check - cast is needed since printk does not support %Zu
2890   if (sizeof(struct MEMMAP) != 128*1024/4) {
2891     PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2892             (unsigned long) sizeof(struct MEMMAP));
2893     return -ENOMEM;
2894   }
2895   
2896   show_version();
2897   
2898   // check arguments
2899   hrz_check_args();
2900   
2901   // get the juice
2902   return pci_register_driver(&hrz_driver);
2903 }
2904
2905 /********** module exit **********/
2906
2907 static void __exit hrz_module_exit (void) {
2908   PRINTD (DBG_FLOW, "cleanup_module");
2909
2910   pci_unregister_driver(&hrz_driver);
2911 }
2912
2913 module_init(hrz_module_init);
2914 module_exit(hrz_module_exit);