GNU Linux-libre 4.4.289-gnu1
[releases.git] / drivers / atm / he.c
1 /*
2
3   he.c
4
5   ForeRunnerHE ATM Adapter driver for ATM on Linux
6   Copyright (C) 1999-2001  Naval Research Laboratory
7
8   This library is free software; you can redistribute it and/or
9   modify it under the terms of the GNU Lesser General Public
10   License as published by the Free Software Foundation; either
11   version 2.1 of the License, or (at your option) any later version.
12
13   This library is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16   Lesser General Public License for more details.
17
18   You should have received a copy of the GNU Lesser General Public
19   License along with this library; if not, write to the Free Software
20   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21
22 */
23
24 /*
25
26   he.c
27
28   ForeRunnerHE ATM Adapter driver for ATM on Linux
29   Copyright (C) 1999-2001  Naval Research Laboratory
30
31   Permission to use, copy, modify and distribute this software and its
32   documentation is hereby granted, provided that both the copyright
33   notice and this permission notice appear in all copies of the software,
34   derivative works or modified versions, and any portions thereof, and
35   that both notices appear in supporting documentation.
36
37   NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND
38   DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
39   RESULTING FROM THE USE OF THIS SOFTWARE.
40
41   This driver was written using the "Programmer's Reference Manual for
42   ForeRunnerHE(tm)", MANU0361-01 - Rev. A, 08/21/98.
43
44   AUTHORS:
45         chas williams <chas@cmf.nrl.navy.mil>
46         eric kinzie <ekinzie@cmf.nrl.navy.mil>
47
48   NOTES:
49         4096 supported 'connections'
50         group 0 is used for all traffic
51         interrupt queue 0 is used for all interrupts
52         aal0 support (based on work from ulrich.u.muller@nokia.com)
53
54  */
55
56 #include <linux/module.h>
57 #include <linux/kernel.h>
58 #include <linux/skbuff.h>
59 #include <linux/pci.h>
60 #include <linux/errno.h>
61 #include <linux/types.h>
62 #include <linux/string.h>
63 #include <linux/delay.h>
64 #include <linux/init.h>
65 #include <linux/mm.h>
66 #include <linux/sched.h>
67 #include <linux/timer.h>
68 #include <linux/interrupt.h>
69 #include <linux/dma-mapping.h>
70 #include <linux/bitmap.h>
71 #include <linux/slab.h>
72 #include <asm/io.h>
73 #include <asm/byteorder.h>
74 #include <asm/uaccess.h>
75
76 #include <linux/atmdev.h>
77 #include <linux/atm.h>
78 #include <linux/sonet.h>
79
80 #undef USE_SCATTERGATHER
81 #undef USE_CHECKSUM_HW                  /* still confused about this */
82 /* #undef HE_DEBUG */
83
84 #include "he.h"
85 #include "suni.h"
86 #include <linux/atm_he.h>
87
88 #define hprintk(fmt,args...)    printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args)
89
90 #ifdef HE_DEBUG
91 #define HPRINTK(fmt,args...)    printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args)
92 #else /* !HE_DEBUG */
93 #define HPRINTK(fmt,args...)    do { } while (0)
94 #endif /* HE_DEBUG */
95
96 /* declarations */
97
98 static int he_open(struct atm_vcc *vcc);
99 static void he_close(struct atm_vcc *vcc);
100 static int he_send(struct atm_vcc *vcc, struct sk_buff *skb);
101 static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg);
102 static irqreturn_t he_irq_handler(int irq, void *dev_id);
103 static void he_tasklet(unsigned long data);
104 static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page);
105 static int he_start(struct atm_dev *dev);
106 static void he_stop(struct he_dev *dev);
107 static void he_phy_put(struct atm_dev *, unsigned char, unsigned long);
108 static unsigned char he_phy_get(struct atm_dev *, unsigned long);
109
110 static u8 read_prom_byte(struct he_dev *he_dev, int addr);
111
112 /* globals */
113
114 static struct he_dev *he_devs;
115 static bool disable64;
116 static short nvpibits = -1;
117 static short nvcibits = -1;
118 static short rx_skb_reserve = 16;
119 static bool irq_coalesce = true;
120 static bool sdh;
121
122 /* Read from EEPROM = 0000 0011b */
123 static unsigned int readtab[] = {
124         CS_HIGH | CLK_HIGH,
125         CS_LOW | CLK_LOW,
126         CLK_HIGH,               /* 0 */
127         CLK_LOW,
128         CLK_HIGH,               /* 0 */
129         CLK_LOW,
130         CLK_HIGH,               /* 0 */
131         CLK_LOW,
132         CLK_HIGH,               /* 0 */
133         CLK_LOW,
134         CLK_HIGH,               /* 0 */
135         CLK_LOW,
136         CLK_HIGH,               /* 0 */
137         CLK_LOW | SI_HIGH,
138         CLK_HIGH | SI_HIGH,     /* 1 */
139         CLK_LOW | SI_HIGH,
140         CLK_HIGH | SI_HIGH      /* 1 */
141 };     
142  
143 /* Clock to read from/write to the EEPROM */
144 static unsigned int clocktab[] = {
145         CLK_LOW,
146         CLK_HIGH,
147         CLK_LOW,
148         CLK_HIGH,
149         CLK_LOW,
150         CLK_HIGH,
151         CLK_LOW,
152         CLK_HIGH,
153         CLK_LOW,
154         CLK_HIGH,
155         CLK_LOW,
156         CLK_HIGH,
157         CLK_LOW,
158         CLK_HIGH,
159         CLK_LOW,
160         CLK_HIGH,
161         CLK_LOW
162 };     
163
164 static struct atmdev_ops he_ops =
165 {
166         .open =         he_open,
167         .close =        he_close,       
168         .ioctl =        he_ioctl,       
169         .send =         he_send,
170         .phy_put =      he_phy_put,
171         .phy_get =      he_phy_get,
172         .proc_read =    he_proc_read,
173         .owner =        THIS_MODULE
174 };
175
176 #define he_writel(dev, val, reg)        do { writel(val, (dev)->membase + (reg)); wmb(); } while (0)
177 #define he_readl(dev, reg)              readl((dev)->membase + (reg))
178
179 /* section 2.12 connection memory access */
180
181 static __inline__ void
182 he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr,
183                                                                 unsigned flags)
184 {
185         he_writel(he_dev, val, CON_DAT);
186         (void) he_readl(he_dev, CON_DAT);               /* flush posted writes */
187         he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL);
188         while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
189 }
190
191 #define he_writel_rcm(dev, val, reg)                            \
192                         he_writel_internal(dev, val, reg, CON_CTL_RCM)
193
194 #define he_writel_tcm(dev, val, reg)                            \
195                         he_writel_internal(dev, val, reg, CON_CTL_TCM)
196
197 #define he_writel_mbox(dev, val, reg)                           \
198                         he_writel_internal(dev, val, reg, CON_CTL_MBOX)
199
200 static unsigned
201 he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags)
202 {
203         he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL);
204         while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
205         return he_readl(he_dev, CON_DAT);
206 }
207
208 #define he_readl_rcm(dev, reg) \
209                         he_readl_internal(dev, reg, CON_CTL_RCM)
210
211 #define he_readl_tcm(dev, reg) \
212                         he_readl_internal(dev, reg, CON_CTL_TCM)
213
214 #define he_readl_mbox(dev, reg) \
215                         he_readl_internal(dev, reg, CON_CTL_MBOX)
216
217
218 /* figure 2.2 connection id */
219
220 #define he_mkcid(dev, vpi, vci)         (((vpi << (dev)->vcibits) | vci) & 0x1fff)
221
222 /* 2.5.1 per connection transmit state registers */
223
224 #define he_writel_tsr0(dev, val, cid) \
225                 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0)
226 #define he_readl_tsr0(dev, cid) \
227                 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0)
228
229 #define he_writel_tsr1(dev, val, cid) \
230                 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1)
231
232 #define he_writel_tsr2(dev, val, cid) \
233                 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2)
234
235 #define he_writel_tsr3(dev, val, cid) \
236                 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3)
237
238 #define he_writel_tsr4(dev, val, cid) \
239                 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4)
240
241         /* from page 2-20
242          *
243          * NOTE While the transmit connection is active, bits 23 through 0
244          *      of this register must not be written by the host.  Byte
245          *      enables should be used during normal operation when writing
246          *      the most significant byte.
247          */
248
249 #define he_writel_tsr4_upper(dev, val, cid) \
250                 he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \
251                                                         CON_CTL_TCM \
252                                                         | CON_BYTE_DISABLE_2 \
253                                                         | CON_BYTE_DISABLE_1 \
254                                                         | CON_BYTE_DISABLE_0)
255
256 #define he_readl_tsr4(dev, cid) \
257                 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4)
258
259 #define he_writel_tsr5(dev, val, cid) \
260                 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5)
261
262 #define he_writel_tsr6(dev, val, cid) \
263                 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6)
264
265 #define he_writel_tsr7(dev, val, cid) \
266                 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7)
267
268
269 #define he_writel_tsr8(dev, val, cid) \
270                 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0)
271
272 #define he_writel_tsr9(dev, val, cid) \
273                 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1)
274
275 #define he_writel_tsr10(dev, val, cid) \
276                 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2)
277
278 #define he_writel_tsr11(dev, val, cid) \
279                 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3)
280
281
282 #define he_writel_tsr12(dev, val, cid) \
283                 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0)
284
285 #define he_writel_tsr13(dev, val, cid) \
286                 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1)
287
288
289 #define he_writel_tsr14(dev, val, cid) \
290                 he_writel_tcm(dev, val, CONFIG_TSRD | cid)
291
292 #define he_writel_tsr14_upper(dev, val, cid) \
293                 he_writel_internal(dev, val, CONFIG_TSRD | cid, \
294                                                         CON_CTL_TCM \
295                                                         | CON_BYTE_DISABLE_2 \
296                                                         | CON_BYTE_DISABLE_1 \
297                                                         | CON_BYTE_DISABLE_0)
298
299 /* 2.7.1 per connection receive state registers */
300
301 #define he_writel_rsr0(dev, val, cid) \
302                 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0)
303 #define he_readl_rsr0(dev, cid) \
304                 he_readl_rcm(dev, 0x00000 | (cid << 3) | 0)
305
306 #define he_writel_rsr1(dev, val, cid) \
307                 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1)
308
309 #define he_writel_rsr2(dev, val, cid) \
310                 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2)
311
312 #define he_writel_rsr3(dev, val, cid) \
313                 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3)
314
315 #define he_writel_rsr4(dev, val, cid) \
316                 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4)
317
318 #define he_writel_rsr5(dev, val, cid) \
319                 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5)
320
321 #define he_writel_rsr6(dev, val, cid) \
322                 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6)
323
324 #define he_writel_rsr7(dev, val, cid) \
325                 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7)
326
327 static __inline__ struct atm_vcc*
328 __find_vcc(struct he_dev *he_dev, unsigned cid)
329 {
330         struct hlist_head *head;
331         struct atm_vcc *vcc;
332         struct sock *s;
333         short vpi;
334         int vci;
335
336         vpi = cid >> he_dev->vcibits;
337         vci = cid & ((1 << he_dev->vcibits) - 1);
338         head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
339
340         sk_for_each(s, head) {
341                 vcc = atm_sk(s);
342                 if (vcc->dev == he_dev->atm_dev &&
343                     vcc->vci == vci && vcc->vpi == vpi &&
344                     vcc->qos.rxtp.traffic_class != ATM_NONE) {
345                                 return vcc;
346                 }
347         }
348         return NULL;
349 }
350
351 static int he_init_one(struct pci_dev *pci_dev,
352                        const struct pci_device_id *pci_ent)
353 {
354         struct atm_dev *atm_dev = NULL;
355         struct he_dev *he_dev = NULL;
356         int err = 0;
357
358         printk(KERN_INFO "ATM he driver\n");
359
360         if (pci_enable_device(pci_dev))
361                 return -EIO;
362         if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32)) != 0) {
363                 printk(KERN_WARNING "he: no suitable dma available\n");
364                 err = -EIO;
365                 goto init_one_failure;
366         }
367
368         atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL);
369         if (!atm_dev) {
370                 err = -ENODEV;
371                 goto init_one_failure;
372         }
373         pci_set_drvdata(pci_dev, atm_dev);
374
375         he_dev = kzalloc(sizeof(struct he_dev),
376                                                         GFP_KERNEL);
377         if (!he_dev) {
378                 err = -ENOMEM;
379                 goto init_one_failure;
380         }
381         he_dev->pci_dev = pci_dev;
382         he_dev->atm_dev = atm_dev;
383         he_dev->atm_dev->dev_data = he_dev;
384         atm_dev->dev_data = he_dev;
385         he_dev->number = atm_dev->number;
386         tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev);
387         spin_lock_init(&he_dev->global_lock);
388
389         if (he_start(atm_dev)) {
390                 he_stop(he_dev);
391                 err = -ENODEV;
392                 goto init_one_failure;
393         }
394         he_dev->next = NULL;
395         if (he_devs)
396                 he_dev->next = he_devs;
397         he_devs = he_dev;
398         return 0;
399
400 init_one_failure:
401         if (atm_dev)
402                 atm_dev_deregister(atm_dev);
403         kfree(he_dev);
404         pci_disable_device(pci_dev);
405         return err;
406 }
407
408 static void he_remove_one(struct pci_dev *pci_dev)
409 {
410         struct atm_dev *atm_dev;
411         struct he_dev *he_dev;
412
413         atm_dev = pci_get_drvdata(pci_dev);
414         he_dev = HE_DEV(atm_dev);
415
416         /* need to remove from he_devs */
417
418         he_stop(he_dev);
419         atm_dev_deregister(atm_dev);
420         kfree(he_dev);
421
422         pci_disable_device(pci_dev);
423 }
424
425
426 static unsigned
427 rate_to_atmf(unsigned rate)             /* cps to atm forum format */
428 {
429 #define NONZERO (1 << 14)
430
431         unsigned exp = 0;
432
433         if (rate == 0)
434                 return 0;
435
436         rate <<= 9;
437         while (rate > 0x3ff) {
438                 ++exp;
439                 rate >>= 1;
440         }
441
442         return (NONZERO | (exp << 9) | (rate & 0x1ff));
443 }
444
445 static void he_init_rx_lbfp0(struct he_dev *he_dev)
446 {
447         unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
448         unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
449         unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
450         unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row;
451         
452         lbufd_index = 0;
453         lbm_offset = he_readl(he_dev, RCMLBM_BA);
454
455         he_writel(he_dev, lbufd_index, RLBF0_H);
456
457         for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) {
458                 lbufd_index += 2;
459                 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
460
461                 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
462                 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
463
464                 if (++lbuf_count == lbufs_per_row) {
465                         lbuf_count = 0;
466                         row_offset += he_dev->bytes_per_row;
467                 }
468                 lbm_offset += 4;
469         }
470                 
471         he_writel(he_dev, lbufd_index - 2, RLBF0_T);
472         he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C);
473 }
474
475 static void he_init_rx_lbfp1(struct he_dev *he_dev)
476 {
477         unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
478         unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
479         unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
480         unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row;
481         
482         lbufd_index = 1;
483         lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
484
485         he_writel(he_dev, lbufd_index, RLBF1_H);
486
487         for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) {
488                 lbufd_index += 2;
489                 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
490
491                 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
492                 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
493
494                 if (++lbuf_count == lbufs_per_row) {
495                         lbuf_count = 0;
496                         row_offset += he_dev->bytes_per_row;
497                 }
498                 lbm_offset += 4;
499         }
500                 
501         he_writel(he_dev, lbufd_index - 2, RLBF1_T);
502         he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C);
503 }
504
505 static void he_init_tx_lbfp(struct he_dev *he_dev)
506 {
507         unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
508         unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
509         unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
510         unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row;
511         
512         lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs;
513         lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
514
515         he_writel(he_dev, lbufd_index, TLBF_H);
516
517         for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) {
518                 lbufd_index += 1;
519                 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
520
521                 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
522                 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
523
524                 if (++lbuf_count == lbufs_per_row) {
525                         lbuf_count = 0;
526                         row_offset += he_dev->bytes_per_row;
527                 }
528                 lbm_offset += 2;
529         }
530                 
531         he_writel(he_dev, lbufd_index - 1, TLBF_T);
532 }
533
534 static int he_init_tpdrq(struct he_dev *he_dev)
535 {
536         he_dev->tpdrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
537                                                  CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq),
538                                                  &he_dev->tpdrq_phys, GFP_KERNEL);
539         if (he_dev->tpdrq_base == NULL) {
540                 hprintk("failed to alloc tpdrq\n");
541                 return -ENOMEM;
542         }
543
544         he_dev->tpdrq_tail = he_dev->tpdrq_base;
545         he_dev->tpdrq_head = he_dev->tpdrq_base;
546
547         he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H);
548         he_writel(he_dev, 0, TPDRQ_T);  
549         he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S);
550
551         return 0;
552 }
553
554 static void he_init_cs_block(struct he_dev *he_dev)
555 {
556         unsigned clock, rate, delta;
557         int reg;
558
559         /* 5.1.7 cs block initialization */
560
561         for (reg = 0; reg < 0x20; ++reg)
562                 he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg);
563
564         /* rate grid timer reload values */
565
566         clock = he_is622(he_dev) ? 66667000 : 50000000;
567         rate = he_dev->atm_dev->link_rate;
568         delta = rate / 16 / 2;
569
570         for (reg = 0; reg < 0x10; ++reg) {
571                 /* 2.4 internal transmit function
572                  *
573                  * we initialize the first row in the rate grid.
574                  * values are period (in clock cycles) of timer
575                  */
576                 unsigned period = clock / rate;
577
578                 he_writel_mbox(he_dev, period, CS_TGRLD0 + reg);
579                 rate -= delta;
580         }
581
582         if (he_is622(he_dev)) {
583                 /* table 5.2 (4 cells per lbuf) */
584                 he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0);
585                 he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1);
586                 he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2);
587                 he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3);
588                 he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4);
589
590                 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */
591                 he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0);
592                 he_writel_mbox(he_dev, 0x1801, CS_ERCTL1);
593                 he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2);
594                 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
595                 he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1);
596                 he_writel_mbox(he_dev, 0x14585, CS_RTFWR);
597
598                 he_writel_mbox(he_dev, 0x4680, CS_RTATR);
599
600                 /* table 5.8 */
601                 he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET);
602                 he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX);
603                 he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN);
604                 he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC);
605                 he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC);
606                 he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL);
607
608                 /* table 5.9 */
609                 he_writel_mbox(he_dev, 0x5, CS_OTPPER);
610                 he_writel_mbox(he_dev, 0x14, CS_OTWPER);
611         } else {
612                 /* table 5.1 (4 cells per lbuf) */
613                 he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0);
614                 he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1);
615                 he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2);
616                 he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3);
617                 he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4);
618
619                 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */
620                 he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0);
621                 he_writel_mbox(he_dev, 0x4701, CS_ERCTL1);
622                 he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2);
623                 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
624                 he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1);
625                 he_writel_mbox(he_dev, 0xf424, CS_RTFWR);
626
627                 he_writel_mbox(he_dev, 0x4680, CS_RTATR);
628
629                 /* table 5.8 */
630                 he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET);
631                 he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX);
632                 he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN);
633                 he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC);
634                 he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC);
635                 he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL);
636
637                 /* table 5.9 */
638                 he_writel_mbox(he_dev, 0x6, CS_OTPPER);
639                 he_writel_mbox(he_dev, 0x1e, CS_OTWPER);
640         }
641
642         he_writel_mbox(he_dev, 0x8, CS_OTTLIM);
643
644         for (reg = 0; reg < 0x8; ++reg)
645                 he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg);
646
647 }
648
649 static int he_init_cs_block_rcm(struct he_dev *he_dev)
650 {
651         unsigned (*rategrid)[16][16];
652         unsigned rate, delta;
653         int i, j, reg;
654
655         unsigned rate_atmf, exp, man;
656         unsigned long long rate_cps;
657         int mult, buf, buf_limit = 4;
658
659         rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL);
660         if (!rategrid)
661                 return -ENOMEM;
662
663         /* initialize rate grid group table */
664
665         for (reg = 0x0; reg < 0xff; ++reg)
666                 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
667
668         /* initialize rate controller groups */
669
670         for (reg = 0x100; reg < 0x1ff; ++reg)
671                 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
672         
673         /* initialize tNrm lookup table */
674
675         /* the manual makes reference to a routine in a sample driver
676            for proper configuration; fortunately, we only need this
677            in order to support abr connection */
678         
679         /* initialize rate to group table */
680
681         rate = he_dev->atm_dev->link_rate;
682         delta = rate / 32;
683
684         /*
685          * 2.4 transmit internal functions
686          * 
687          * we construct a copy of the rate grid used by the scheduler
688          * in order to construct the rate to group table below
689          */
690
691         for (j = 0; j < 16; j++) {
692                 (*rategrid)[0][j] = rate;
693                 rate -= delta;
694         }
695
696         for (i = 1; i < 16; i++)
697                 for (j = 0; j < 16; j++)
698                         if (i > 14)
699                                 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4;
700                         else
701                                 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2;
702
703         /*
704          * 2.4 transmit internal function
705          *
706          * this table maps the upper 5 bits of exponent and mantissa
707          * of the atm forum representation of the rate into an index
708          * on rate grid  
709          */
710
711         rate_atmf = 0;
712         while (rate_atmf < 0x400) {
713                 man = (rate_atmf & 0x1f) << 4;
714                 exp = rate_atmf >> 5;
715
716                 /* 
717                         instead of '/ 512', use '>> 9' to prevent a call
718                         to divdu3 on x86 platforms
719                 */
720                 rate_cps = (unsigned long long) (1UL << exp) * (man + 512) >> 9;
721
722                 if (rate_cps < 10)
723                         rate_cps = 10;  /* 2.2.1 minimum payload rate is 10 cps */
724
725                 for (i = 255; i > 0; i--)
726                         if ((*rategrid)[i/16][i%16] >= rate_cps)
727                                 break;   /* pick nearest rate instead? */
728
729                 /*
730                  * each table entry is 16 bits: (rate grid index (8 bits)
731                  * and a buffer limit (8 bits)
732                  * there are two table entries in each 32-bit register
733                  */
734
735 #ifdef notdef
736                 buf = rate_cps * he_dev->tx_numbuffs /
737                                 (he_dev->atm_dev->link_rate * 2);
738 #else
739                 /* this is pretty, but avoids _divdu3 and is mostly correct */
740                 mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR;
741                 if (rate_cps > (272 * mult))
742                         buf = 4;
743                 else if (rate_cps > (204 * mult))
744                         buf = 3;
745                 else if (rate_cps > (136 * mult))
746                         buf = 2;
747                 else if (rate_cps > (68 * mult))
748                         buf = 1;
749                 else
750                         buf = 0;
751 #endif
752                 if (buf > buf_limit)
753                         buf = buf_limit;
754                 reg = (reg << 16) | ((i << 8) | buf);
755
756 #define RTGTBL_OFFSET 0x400
757           
758                 if (rate_atmf & 0x1)
759                         he_writel_rcm(he_dev, reg,
760                                 CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1));
761
762                 ++rate_atmf;
763         }
764
765         kfree(rategrid);
766         return 0;
767 }
768
769 static int he_init_group(struct he_dev *he_dev, int group)
770 {
771         struct he_buff *heb, *next;
772         dma_addr_t mapping;
773         int i;
774
775         he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
776         he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
777         he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
778         he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
779                   G0_RBPS_BS + (group * 32));
780
781         /* bitmap table */
782         he_dev->rbpl_table = kmalloc(BITS_TO_LONGS(RBPL_TABLE_SIZE)
783                                      * sizeof(unsigned long), GFP_KERNEL);
784         if (!he_dev->rbpl_table) {
785                 hprintk("unable to allocate rbpl bitmap table\n");
786                 return -ENOMEM;
787         }
788         bitmap_zero(he_dev->rbpl_table, RBPL_TABLE_SIZE);
789
790         /* rbpl_virt 64-bit pointers */
791         he_dev->rbpl_virt = kmalloc(RBPL_TABLE_SIZE
792                                     * sizeof(struct he_buff *), GFP_KERNEL);
793         if (!he_dev->rbpl_virt) {
794                 hprintk("unable to allocate rbpl virt table\n");
795                 goto out_free_rbpl_table;
796         }
797
798         /* large buffer pool */
799         he_dev->rbpl_pool = dma_pool_create("rbpl", &he_dev->pci_dev->dev,
800                                             CONFIG_RBPL_BUFSIZE, 64, 0);
801         if (he_dev->rbpl_pool == NULL) {
802                 hprintk("unable to create rbpl pool\n");
803                 goto out_free_rbpl_virt;
804         }
805
806         he_dev->rbpl_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
807                                                 CONFIG_RBPL_SIZE * sizeof(struct he_rbp),
808                                                 &he_dev->rbpl_phys, GFP_KERNEL);
809         if (he_dev->rbpl_base == NULL) {
810                 hprintk("failed to alloc rbpl_base\n");
811                 goto out_destroy_rbpl_pool;
812         }
813
814         INIT_LIST_HEAD(&he_dev->rbpl_outstanding);
815
816         for (i = 0; i < CONFIG_RBPL_SIZE; ++i) {
817
818                 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL, &mapping);
819                 if (!heb)
820                         goto out_free_rbpl;
821                 heb->mapping = mapping;
822                 list_add(&heb->entry, &he_dev->rbpl_outstanding);
823
824                 set_bit(i, he_dev->rbpl_table);
825                 he_dev->rbpl_virt[i] = heb;
826                 he_dev->rbpl_hint = i + 1;
827                 he_dev->rbpl_base[i].idx =  i << RBP_IDX_OFFSET;
828                 he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data);
829         }
830         he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1];
831
832         he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32));
833         he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail),
834                                                 G0_RBPL_T + (group * 32));
835         he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4,
836                                                 G0_RBPL_BS + (group * 32));
837         he_writel(he_dev,
838                         RBP_THRESH(CONFIG_RBPL_THRESH) |
839                         RBP_QSIZE(CONFIG_RBPL_SIZE - 1) |
840                         RBP_INT_ENB,
841                                                 G0_RBPL_QI + (group * 32));
842
843         /* rx buffer ready queue */
844
845         he_dev->rbrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
846                                                 CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
847                                                 &he_dev->rbrq_phys, GFP_KERNEL);
848         if (he_dev->rbrq_base == NULL) {
849                 hprintk("failed to allocate rbrq\n");
850                 goto out_free_rbpl;
851         }
852
853         he_dev->rbrq_head = he_dev->rbrq_base;
854         he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16));
855         he_writel(he_dev, 0, G0_RBRQ_H + (group * 16));
856         he_writel(he_dev,
857                 RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1),
858                                                 G0_RBRQ_Q + (group * 16));
859         if (irq_coalesce) {
860                 hprintk("coalescing interrupts\n");
861                 he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7),
862                                                 G0_RBRQ_I + (group * 16));
863         } else
864                 he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1),
865                                                 G0_RBRQ_I + (group * 16));
866
867         /* tx buffer ready queue */
868
869         he_dev->tbrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
870                                                 CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
871                                                 &he_dev->tbrq_phys, GFP_KERNEL);
872         if (he_dev->tbrq_base == NULL) {
873                 hprintk("failed to allocate tbrq\n");
874                 goto out_free_rbpq_base;
875         }
876
877         he_dev->tbrq_head = he_dev->tbrq_base;
878
879         he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16));
880         he_writel(he_dev, 0, G0_TBRQ_H + (group * 16));
881         he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16));
882         he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16));
883
884         return 0;
885
886 out_free_rbpq_base:
887         dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE *
888                           sizeof(struct he_rbrq), he_dev->rbrq_base,
889                           he_dev->rbrq_phys);
890 out_free_rbpl:
891         list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
892                 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
893
894         dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE *
895                           sizeof(struct he_rbp), he_dev->rbpl_base,
896                           he_dev->rbpl_phys);
897 out_destroy_rbpl_pool:
898         dma_pool_destroy(he_dev->rbpl_pool);
899 out_free_rbpl_virt:
900         kfree(he_dev->rbpl_virt);
901 out_free_rbpl_table:
902         kfree(he_dev->rbpl_table);
903
904         return -ENOMEM;
905 }
906
907 static int he_init_irq(struct he_dev *he_dev)
908 {
909         int i;
910
911         /* 2.9.3.5  tail offset for each interrupt queue is located after the
912                     end of the interrupt queue */
913
914         he_dev->irq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
915                                                (CONFIG_IRQ_SIZE + 1)
916                                                * sizeof(struct he_irq),
917                                                &he_dev->irq_phys,
918                                                GFP_KERNEL);
919         if (he_dev->irq_base == NULL) {
920                 hprintk("failed to allocate irq\n");
921                 return -ENOMEM;
922         }
923         he_dev->irq_tailoffset = (unsigned *)
924                                         &he_dev->irq_base[CONFIG_IRQ_SIZE];
925         *he_dev->irq_tailoffset = 0;
926         he_dev->irq_head = he_dev->irq_base;
927         he_dev->irq_tail = he_dev->irq_base;
928
929         for (i = 0; i < CONFIG_IRQ_SIZE; ++i)
930                 he_dev->irq_base[i].isw = ITYPE_INVALID;
931
932         he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE);
933         he_writel(he_dev,
934                 IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH),
935                                                                 IRQ0_HEAD);
936         he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL);
937         he_writel(he_dev, 0x0, IRQ0_DATA);
938
939         he_writel(he_dev, 0x0, IRQ1_BASE);
940         he_writel(he_dev, 0x0, IRQ1_HEAD);
941         he_writel(he_dev, 0x0, IRQ1_CNTL);
942         he_writel(he_dev, 0x0, IRQ1_DATA);
943
944         he_writel(he_dev, 0x0, IRQ2_BASE);
945         he_writel(he_dev, 0x0, IRQ2_HEAD);
946         he_writel(he_dev, 0x0, IRQ2_CNTL);
947         he_writel(he_dev, 0x0, IRQ2_DATA);
948
949         he_writel(he_dev, 0x0, IRQ3_BASE);
950         he_writel(he_dev, 0x0, IRQ3_HEAD);
951         he_writel(he_dev, 0x0, IRQ3_CNTL);
952         he_writel(he_dev, 0x0, IRQ3_DATA);
953
954         /* 2.9.3.2 interrupt queue mapping registers */
955
956         he_writel(he_dev, 0x0, GRP_10_MAP);
957         he_writel(he_dev, 0x0, GRP_32_MAP);
958         he_writel(he_dev, 0x0, GRP_54_MAP);
959         he_writel(he_dev, 0x0, GRP_76_MAP);
960
961         if (request_irq(he_dev->pci_dev->irq,
962                         he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) {
963                 hprintk("irq %d already in use\n", he_dev->pci_dev->irq);
964                 return -EINVAL;
965         }   
966
967         he_dev->irq = he_dev->pci_dev->irq;
968
969         return 0;
970 }
971
972 static int he_start(struct atm_dev *dev)
973 {
974         struct he_dev *he_dev;
975         struct pci_dev *pci_dev;
976         unsigned long membase;
977
978         u16 command;
979         u32 gen_cntl_0, host_cntl, lb_swap;
980         u8 cache_size, timer;
981         
982         unsigned err;
983         unsigned int status, reg;
984         int i, group;
985
986         he_dev = HE_DEV(dev);
987         pci_dev = he_dev->pci_dev;
988
989         membase = pci_resource_start(pci_dev, 0);
990         HPRINTK("membase = 0x%lx  irq = %d.\n", membase, pci_dev->irq);
991
992         /*
993          * pci bus controller initialization 
994          */
995
996         /* 4.3 pci bus controller-specific initialization */
997         if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) {
998                 hprintk("can't read GEN_CNTL_0\n");
999                 return -EINVAL;
1000         }
1001         gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT);
1002         if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) {
1003                 hprintk("can't write GEN_CNTL_0.\n");
1004                 return -EINVAL;
1005         }
1006
1007         if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) {
1008                 hprintk("can't read PCI_COMMAND.\n");
1009                 return -EINVAL;
1010         }
1011
1012         command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE);
1013         if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) {
1014                 hprintk("can't enable memory.\n");
1015                 return -EINVAL;
1016         }
1017
1018         if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) {
1019                 hprintk("can't read cache line size?\n");
1020                 return -EINVAL;
1021         }
1022
1023         if (cache_size < 16) {
1024                 cache_size = 16;
1025                 if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size))
1026                         hprintk("can't set cache line size to %d\n", cache_size);
1027         }
1028
1029         if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) {
1030                 hprintk("can't read latency timer?\n");
1031                 return -EINVAL;
1032         }
1033
1034         /* from table 3.9
1035          *
1036          * LAT_TIMER = 1 + AVG_LAT + BURST_SIZE/BUS_SIZE
1037          * 
1038          * AVG_LAT: The average first data read/write latency [maximum 16 clock cycles]
1039          * BURST_SIZE: 1536 bytes (read) for 622, 768 bytes (read) for 155 [192 clock cycles]
1040          *
1041          */ 
1042 #define LAT_TIMER 209
1043         if (timer < LAT_TIMER) {
1044                 HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER);
1045                 timer = LAT_TIMER;
1046                 if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer))
1047                         hprintk("can't set latency timer to %d\n", timer);
1048         }
1049
1050         if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) {
1051                 hprintk("can't set up page mapping\n");
1052                 return -EINVAL;
1053         }
1054
1055         /* 4.4 card reset */
1056         he_writel(he_dev, 0x0, RESET_CNTL);
1057         he_writel(he_dev, 0xff, RESET_CNTL);
1058
1059         msleep(16);     /* 16 ms */
1060         status = he_readl(he_dev, RESET_CNTL);
1061         if ((status & BOARD_RST_STATUS) == 0) {
1062                 hprintk("reset failed\n");
1063                 return -EINVAL;
1064         }
1065
1066         /* 4.5 set bus width */
1067         host_cntl = he_readl(he_dev, HOST_CNTL);
1068         if (host_cntl & PCI_BUS_SIZE64)
1069                 gen_cntl_0 |= ENBL_64;
1070         else
1071                 gen_cntl_0 &= ~ENBL_64;
1072
1073         if (disable64 == 1) {
1074                 hprintk("disabling 64-bit pci bus transfers\n");
1075                 gen_cntl_0 &= ~ENBL_64;
1076         }
1077
1078         if (gen_cntl_0 & ENBL_64)
1079                 hprintk("64-bit transfers enabled\n");
1080
1081         pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1082
1083         /* 4.7 read prom contents */
1084         for (i = 0; i < PROD_ID_LEN; ++i)
1085                 he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i);
1086
1087         he_dev->media = read_prom_byte(he_dev, MEDIA);
1088
1089         for (i = 0; i < 6; ++i)
1090                 dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i);
1091
1092         hprintk("%s%s, %pM\n", he_dev->prod_id,
1093                 he_dev->media & 0x40 ? "SM" : "MM", dev->esi);
1094         he_dev->atm_dev->link_rate = he_is622(he_dev) ?
1095                                                 ATM_OC12_PCR : ATM_OC3_PCR;
1096
1097         /* 4.6 set host endianess */
1098         lb_swap = he_readl(he_dev, LB_SWAP);
1099         if (he_is622(he_dev))
1100                 lb_swap &= ~XFER_SIZE;          /* 4 cells */
1101         else
1102                 lb_swap |= XFER_SIZE;           /* 8 cells */
1103 #ifdef __BIG_ENDIAN
1104         lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST;
1105 #else
1106         lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST |
1107                         DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP);
1108 #endif /* __BIG_ENDIAN */
1109         he_writel(he_dev, lb_swap, LB_SWAP);
1110
1111         /* 4.8 sdram controller initialization */
1112         he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL);
1113
1114         /* 4.9 initialize rnum value */
1115         lb_swap |= SWAP_RNUM_MAX(0xf);
1116         he_writel(he_dev, lb_swap, LB_SWAP);
1117
1118         /* 4.10 initialize the interrupt queues */
1119         if ((err = he_init_irq(he_dev)) != 0)
1120                 return err;
1121
1122         /* 4.11 enable pci bus controller state machines */
1123         host_cntl |= (OUTFF_ENB | CMDFF_ENB |
1124                                 QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB);
1125         he_writel(he_dev, host_cntl, HOST_CNTL);
1126
1127         gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB;
1128         pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1129
1130         /*
1131          * atm network controller initialization
1132          */
1133
1134         /* 5.1.1 generic configuration state */
1135
1136         /*
1137          *              local (cell) buffer memory map
1138          *                    
1139          *             HE155                          HE622
1140          *                                                      
1141          *        0 ____________1023 bytes  0 _______________________2047 bytes
1142          *         |            |            |                   |   |
1143          *         |  utility   |            |        rx0        |   |
1144          *        5|____________|         255|___________________| u |
1145          *        6|            |         256|                   | t |
1146          *         |            |            |                   | i |
1147          *         |    rx0     |     row    |        tx         | l |
1148          *         |            |            |                   | i |
1149          *         |            |         767|___________________| t |
1150          *      517|____________|         768|                   | y |
1151          * row  518|            |            |        rx1        |   |
1152          *         |            |        1023|___________________|___|
1153          *         |            |
1154          *         |    tx      |
1155          *         |            |
1156          *         |            |
1157          *     1535|____________|
1158          *     1536|            |
1159          *         |    rx1     |
1160          *     2047|____________|
1161          *
1162          */
1163
1164         /* total 4096 connections */
1165         he_dev->vcibits = CONFIG_DEFAULT_VCIBITS;
1166         he_dev->vpibits = CONFIG_DEFAULT_VPIBITS;
1167
1168         if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) {
1169                 hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS);
1170                 return -ENODEV;
1171         }
1172
1173         if (nvpibits != -1) {
1174                 he_dev->vpibits = nvpibits;
1175                 he_dev->vcibits = HE_MAXCIDBITS - nvpibits;
1176         }
1177
1178         if (nvcibits != -1) {
1179                 he_dev->vcibits = nvcibits;
1180                 he_dev->vpibits = HE_MAXCIDBITS - nvcibits;
1181         }
1182
1183
1184         if (he_is622(he_dev)) {
1185                 he_dev->cells_per_row = 40;
1186                 he_dev->bytes_per_row = 2048;
1187                 he_dev->r0_numrows = 256;
1188                 he_dev->tx_numrows = 512;
1189                 he_dev->r1_numrows = 256;
1190                 he_dev->r0_startrow = 0;
1191                 he_dev->tx_startrow = 256;
1192                 he_dev->r1_startrow = 768;
1193         } else {
1194                 he_dev->cells_per_row = 20;
1195                 he_dev->bytes_per_row = 1024;
1196                 he_dev->r0_numrows = 512;
1197                 he_dev->tx_numrows = 1018;
1198                 he_dev->r1_numrows = 512;
1199                 he_dev->r0_startrow = 6;
1200                 he_dev->tx_startrow = 518;
1201                 he_dev->r1_startrow = 1536;
1202         }
1203
1204         he_dev->cells_per_lbuf = 4;
1205         he_dev->buffer_limit = 4;
1206         he_dev->r0_numbuffs = he_dev->r0_numrows *
1207                                 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1208         if (he_dev->r0_numbuffs > 2560)
1209                 he_dev->r0_numbuffs = 2560;
1210
1211         he_dev->r1_numbuffs = he_dev->r1_numrows *
1212                                 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1213         if (he_dev->r1_numbuffs > 2560)
1214                 he_dev->r1_numbuffs = 2560;
1215
1216         he_dev->tx_numbuffs = he_dev->tx_numrows *
1217                                 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1218         if (he_dev->tx_numbuffs > 5120)
1219                 he_dev->tx_numbuffs = 5120;
1220
1221         /* 5.1.2 configure hardware dependent registers */
1222
1223         he_writel(he_dev, 
1224                 SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) |
1225                 RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) |
1226                 (he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) |
1227                 (he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)),
1228                                                                 LBARB);
1229
1230         he_writel(he_dev, BANK_ON |
1231                 (he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)),
1232                                                                 SDRAMCON);
1233
1234         he_writel(he_dev,
1235                 (he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) |
1236                                                 RM_RW_WAIT(1), RCMCONFIG);
1237         he_writel(he_dev,
1238                 (he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) |
1239                                                 TM_RW_WAIT(1), TCMCONFIG);
1240
1241         he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG);
1242
1243         he_writel(he_dev, 
1244                 (he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) |
1245                 (he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) |
1246                 RX_VALVP(he_dev->vpibits) |
1247                 RX_VALVC(he_dev->vcibits),                       RC_CONFIG);
1248
1249         he_writel(he_dev, DRF_THRESH(0x20) |
1250                 (he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) |
1251                 TX_VCI_MASK(he_dev->vcibits) |
1252                 LBFREE_CNT(he_dev->tx_numbuffs),                TX_CONFIG);
1253
1254         he_writel(he_dev, 0x0, TXAAL5_PROTO);
1255
1256         he_writel(he_dev, PHY_INT_ENB |
1257                 (he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)),
1258                                                                 RH_CONFIG);
1259
1260         /* 5.1.3 initialize connection memory */
1261
1262         for (i = 0; i < TCM_MEM_SIZE; ++i)
1263                 he_writel_tcm(he_dev, 0, i);
1264
1265         for (i = 0; i < RCM_MEM_SIZE; ++i)
1266                 he_writel_rcm(he_dev, 0, i);
1267
1268         /*
1269          *      transmit connection memory map
1270          *
1271          *                  tx memory
1272          *          0x0 ___________________
1273          *             |                   |
1274          *             |                   |
1275          *             |       TSRa        |
1276          *             |                   |
1277          *             |                   |
1278          *       0x8000|___________________|
1279          *             |                   |
1280          *             |       TSRb        |
1281          *       0xc000|___________________|
1282          *             |                   |
1283          *             |       TSRc        |
1284          *       0xe000|___________________|
1285          *             |       TSRd        |
1286          *       0xf000|___________________|
1287          *             |       tmABR       |
1288          *      0x10000|___________________|
1289          *             |                   |
1290          *             |       tmTPD       |
1291          *             |___________________|
1292          *             |                   |
1293          *                      ....
1294          *      0x1ffff|___________________|
1295          *
1296          *
1297          */
1298
1299         he_writel(he_dev, CONFIG_TSRB, TSRB_BA);
1300         he_writel(he_dev, CONFIG_TSRC, TSRC_BA);
1301         he_writel(he_dev, CONFIG_TSRD, TSRD_BA);
1302         he_writel(he_dev, CONFIG_TMABR, TMABR_BA);
1303         he_writel(he_dev, CONFIG_TPDBA, TPD_BA);
1304
1305
1306         /*
1307          *      receive connection memory map
1308          *
1309          *          0x0 ___________________
1310          *             |                   |
1311          *             |                   |
1312          *             |       RSRa        |
1313          *             |                   |
1314          *             |                   |
1315          *       0x8000|___________________|
1316          *             |                   |
1317          *             |             rx0/1 |
1318          *             |       LBM         |   link lists of local
1319          *             |             tx    |   buffer memory 
1320          *             |                   |
1321          *       0xd000|___________________|
1322          *             |                   |
1323          *             |      rmABR        |
1324          *       0xe000|___________________|
1325          *             |                   |
1326          *             |       RSRb        |
1327          *             |___________________|
1328          *             |                   |
1329          *                      ....
1330          *       0xffff|___________________|
1331          */
1332
1333         he_writel(he_dev, 0x08000, RCMLBM_BA);
1334         he_writel(he_dev, 0x0e000, RCMRSRB_BA);
1335         he_writel(he_dev, 0x0d800, RCMABR_BA);
1336
1337         /* 5.1.4 initialize local buffer free pools linked lists */
1338
1339         he_init_rx_lbfp0(he_dev);
1340         he_init_rx_lbfp1(he_dev);
1341
1342         he_writel(he_dev, 0x0, RLBC_H);
1343         he_writel(he_dev, 0x0, RLBC_T);
1344         he_writel(he_dev, 0x0, RLBC_H2);
1345
1346         he_writel(he_dev, 512, RXTHRSH);        /* 10% of r0+r1 buffers */
1347         he_writel(he_dev, 256, LITHRSH);        /* 5% of r0+r1 buffers */
1348
1349         he_init_tx_lbfp(he_dev);
1350
1351         he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA);
1352
1353         /* 5.1.5 initialize intermediate receive queues */
1354
1355         if (he_is622(he_dev)) {
1356                 he_writel(he_dev, 0x000f, G0_INMQ_S);
1357                 he_writel(he_dev, 0x200f, G0_INMQ_L);
1358
1359                 he_writel(he_dev, 0x001f, G1_INMQ_S);
1360                 he_writel(he_dev, 0x201f, G1_INMQ_L);
1361
1362                 he_writel(he_dev, 0x002f, G2_INMQ_S);
1363                 he_writel(he_dev, 0x202f, G2_INMQ_L);
1364
1365                 he_writel(he_dev, 0x003f, G3_INMQ_S);
1366                 he_writel(he_dev, 0x203f, G3_INMQ_L);
1367
1368                 he_writel(he_dev, 0x004f, G4_INMQ_S);
1369                 he_writel(he_dev, 0x204f, G4_INMQ_L);
1370
1371                 he_writel(he_dev, 0x005f, G5_INMQ_S);
1372                 he_writel(he_dev, 0x205f, G5_INMQ_L);
1373
1374                 he_writel(he_dev, 0x006f, G6_INMQ_S);
1375                 he_writel(he_dev, 0x206f, G6_INMQ_L);
1376
1377                 he_writel(he_dev, 0x007f, G7_INMQ_S);
1378                 he_writel(he_dev, 0x207f, G7_INMQ_L);
1379         } else {
1380                 he_writel(he_dev, 0x0000, G0_INMQ_S);
1381                 he_writel(he_dev, 0x0008, G0_INMQ_L);
1382
1383                 he_writel(he_dev, 0x0001, G1_INMQ_S);
1384                 he_writel(he_dev, 0x0009, G1_INMQ_L);
1385
1386                 he_writel(he_dev, 0x0002, G2_INMQ_S);
1387                 he_writel(he_dev, 0x000a, G2_INMQ_L);
1388
1389                 he_writel(he_dev, 0x0003, G3_INMQ_S);
1390                 he_writel(he_dev, 0x000b, G3_INMQ_L);
1391
1392                 he_writel(he_dev, 0x0004, G4_INMQ_S);
1393                 he_writel(he_dev, 0x000c, G4_INMQ_L);
1394
1395                 he_writel(he_dev, 0x0005, G5_INMQ_S);
1396                 he_writel(he_dev, 0x000d, G5_INMQ_L);
1397
1398                 he_writel(he_dev, 0x0006, G6_INMQ_S);
1399                 he_writel(he_dev, 0x000e, G6_INMQ_L);
1400
1401                 he_writel(he_dev, 0x0007, G7_INMQ_S);
1402                 he_writel(he_dev, 0x000f, G7_INMQ_L);
1403         }
1404
1405         /* 5.1.6 application tunable parameters */
1406
1407         he_writel(he_dev, 0x0, MCC);
1408         he_writel(he_dev, 0x0, OEC);
1409         he_writel(he_dev, 0x0, DCC);
1410         he_writel(he_dev, 0x0, CEC);
1411         
1412         /* 5.1.7 cs block initialization */
1413
1414         he_init_cs_block(he_dev);
1415
1416         /* 5.1.8 cs block connection memory initialization */
1417         
1418         if (he_init_cs_block_rcm(he_dev) < 0)
1419                 return -ENOMEM;
1420
1421         /* 5.1.10 initialize host structures */
1422
1423         he_init_tpdrq(he_dev);
1424
1425         he_dev->tpd_pool = dma_pool_create("tpd", &he_dev->pci_dev->dev,
1426                                            sizeof(struct he_tpd), TPD_ALIGNMENT, 0);
1427         if (he_dev->tpd_pool == NULL) {
1428                 hprintk("unable to create tpd dma_pool\n");
1429                 return -ENOMEM;         
1430         }
1431
1432         INIT_LIST_HEAD(&he_dev->outstanding_tpds);
1433
1434         if (he_init_group(he_dev, 0) != 0)
1435                 return -ENOMEM;
1436
1437         for (group = 1; group < HE_NUM_GROUPS; ++group) {
1438                 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
1439                 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
1440                 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
1441                 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1442                                                 G0_RBPS_BS + (group * 32));
1443
1444                 he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32));
1445                 he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32));
1446                 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1447                                                 G0_RBPL_QI + (group * 32));
1448                 he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32));
1449
1450                 he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16));
1451                 he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16));
1452                 he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0),
1453                                                 G0_RBRQ_Q + (group * 16));
1454                 he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16));
1455
1456                 he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16));
1457                 he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16));
1458                 he_writel(he_dev, TBRQ_THRESH(0x1),
1459                                                 G0_TBRQ_THRESH + (group * 16));
1460                 he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16));
1461         }
1462
1463         /* host status page */
1464
1465         he_dev->hsp = dma_zalloc_coherent(&he_dev->pci_dev->dev,
1466                                           sizeof(struct he_hsp),
1467                                           &he_dev->hsp_phys, GFP_KERNEL);
1468         if (he_dev->hsp == NULL) {
1469                 hprintk("failed to allocate host status page\n");
1470                 return -ENOMEM;
1471         }
1472         he_writel(he_dev, he_dev->hsp_phys, HSP_BA);
1473
1474         /* initialize framer */
1475
1476 #ifdef CONFIG_ATM_HE_USE_SUNI
1477         if (he_isMM(he_dev))
1478                 suni_init(he_dev->atm_dev);
1479         if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start)
1480                 he_dev->atm_dev->phy->start(he_dev->atm_dev);
1481 #endif /* CONFIG_ATM_HE_USE_SUNI */
1482
1483         if (sdh) {
1484                 /* this really should be in suni.c but for now... */
1485                 int val;
1486
1487                 val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM);
1488                 val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT);
1489                 he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM);
1490                 he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP);
1491         }
1492
1493         /* 5.1.12 enable transmit and receive */
1494
1495         reg = he_readl_mbox(he_dev, CS_ERCTL0);
1496         reg |= TX_ENABLE|ER_ENABLE;
1497         he_writel_mbox(he_dev, reg, CS_ERCTL0);
1498
1499         reg = he_readl(he_dev, RC_CONFIG);
1500         reg |= RX_ENABLE;
1501         he_writel(he_dev, reg, RC_CONFIG);
1502
1503         for (i = 0; i < HE_NUM_CS_STPER; ++i) {
1504                 he_dev->cs_stper[i].inuse = 0;
1505                 he_dev->cs_stper[i].pcr = -1;
1506         }
1507         he_dev->total_bw = 0;
1508
1509
1510         /* atm linux initialization */
1511
1512         he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits;
1513         he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits;
1514
1515         he_dev->irq_peak = 0;
1516         he_dev->rbrq_peak = 0;
1517         he_dev->rbpl_peak = 0;
1518         he_dev->tbrq_peak = 0;
1519
1520         HPRINTK("hell bent for leather!\n");
1521
1522         return 0;
1523 }
1524
1525 static void
1526 he_stop(struct he_dev *he_dev)
1527 {
1528         struct he_buff *heb, *next;
1529         struct pci_dev *pci_dev;
1530         u32 gen_cntl_0, reg;
1531         u16 command;
1532
1533         pci_dev = he_dev->pci_dev;
1534
1535         /* disable interrupts */
1536
1537         if (he_dev->membase) {
1538                 pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0);
1539                 gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB);
1540                 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1541
1542                 tasklet_disable(&he_dev->tasklet);
1543
1544                 /* disable recv and transmit */
1545
1546                 reg = he_readl_mbox(he_dev, CS_ERCTL0);
1547                 reg &= ~(TX_ENABLE|ER_ENABLE);
1548                 he_writel_mbox(he_dev, reg, CS_ERCTL0);
1549
1550                 reg = he_readl(he_dev, RC_CONFIG);
1551                 reg &= ~(RX_ENABLE);
1552                 he_writel(he_dev, reg, RC_CONFIG);
1553         }
1554
1555 #ifdef CONFIG_ATM_HE_USE_SUNI
1556         if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop)
1557                 he_dev->atm_dev->phy->stop(he_dev->atm_dev);
1558 #endif /* CONFIG_ATM_HE_USE_SUNI */
1559
1560         if (he_dev->irq)
1561                 free_irq(he_dev->irq, he_dev);
1562
1563         if (he_dev->irq_base)
1564                 dma_free_coherent(&he_dev->pci_dev->dev, (CONFIG_IRQ_SIZE + 1)
1565                                   * sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys);
1566
1567         if (he_dev->hsp)
1568                 dma_free_coherent(&he_dev->pci_dev->dev, sizeof(struct he_hsp),
1569                                   he_dev->hsp, he_dev->hsp_phys);
1570
1571         if (he_dev->rbpl_base) {
1572                 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
1573                         dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1574
1575                 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE
1576                                   * sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys);
1577         }
1578
1579         kfree(he_dev->rbpl_virt);
1580         kfree(he_dev->rbpl_table);
1581         dma_pool_destroy(he_dev->rbpl_pool);
1582
1583         if (he_dev->rbrq_base)
1584                 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
1585                                   he_dev->rbrq_base, he_dev->rbrq_phys);
1586
1587         if (he_dev->tbrq_base)
1588                 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1589                                   he_dev->tbrq_base, he_dev->tbrq_phys);
1590
1591         if (he_dev->tpdrq_base)
1592                 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1593                                   he_dev->tpdrq_base, he_dev->tpdrq_phys);
1594
1595         dma_pool_destroy(he_dev->tpd_pool);
1596
1597         if (he_dev->pci_dev) {
1598                 pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command);
1599                 command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
1600                 pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command);
1601         }
1602         
1603         if (he_dev->membase)
1604                 iounmap(he_dev->membase);
1605 }
1606
1607 static struct he_tpd *
1608 __alloc_tpd(struct he_dev *he_dev)
1609 {
1610         struct he_tpd *tpd;
1611         dma_addr_t mapping;
1612
1613         tpd = dma_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC, &mapping);
1614         if (tpd == NULL)
1615                 return NULL;
1616                         
1617         tpd->status = TPD_ADDR(mapping);
1618         tpd->reserved = 0; 
1619         tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0;
1620         tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0;
1621         tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0;
1622
1623         return tpd;
1624 }
1625
1626 #define AAL5_LEN(buf,len)                                               \
1627                         ((((unsigned char *)(buf))[(len)-6] << 8) |     \
1628                                 (((unsigned char *)(buf))[(len)-5]))
1629
1630 /* 2.10.1.2 receive
1631  *
1632  * aal5 packets can optionally return the tcp checksum in the lower
1633  * 16 bits of the crc (RSR0_TCP_CKSUM)
1634  */
1635
1636 #define TCP_CKSUM(buf,len)                                              \
1637                         ((((unsigned char *)(buf))[(len)-2] << 8) |     \
1638                                 (((unsigned char *)(buf))[(len-1)]))
1639
1640 static int
1641 he_service_rbrq(struct he_dev *he_dev, int group)
1642 {
1643         struct he_rbrq *rbrq_tail = (struct he_rbrq *)
1644                                 ((unsigned long)he_dev->rbrq_base |
1645                                         he_dev->hsp->group[group].rbrq_tail);
1646         unsigned cid, lastcid = -1;
1647         struct sk_buff *skb;
1648         struct atm_vcc *vcc = NULL;
1649         struct he_vcc *he_vcc;
1650         struct he_buff *heb, *next;
1651         int i;
1652         int pdus_assembled = 0;
1653         int updated = 0;
1654
1655         read_lock(&vcc_sklist_lock);
1656         while (he_dev->rbrq_head != rbrq_tail) {
1657                 ++updated;
1658
1659                 HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n",
1660                         he_dev->rbrq_head, group,
1661                         RBRQ_ADDR(he_dev->rbrq_head),
1662                         RBRQ_BUFLEN(he_dev->rbrq_head),
1663                         RBRQ_CID(he_dev->rbrq_head),
1664                         RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "",
1665                         RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "",
1666                         RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "",
1667                         RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "",
1668                         RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "",
1669                         RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : "");
1670
1671                 i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET;
1672                 heb = he_dev->rbpl_virt[i];
1673
1674                 cid = RBRQ_CID(he_dev->rbrq_head);
1675                 if (cid != lastcid)
1676                         vcc = __find_vcc(he_dev, cid);
1677                 lastcid = cid;
1678
1679                 if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) {
1680                         hprintk("vcc/he_vcc == NULL  (cid 0x%x)\n", cid);
1681                         if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1682                                 clear_bit(i, he_dev->rbpl_table);
1683                                 list_del(&heb->entry);
1684                                 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1685                         }
1686                                         
1687                         goto next_rbrq_entry;
1688                 }
1689
1690                 if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1691                         hprintk("HBUF_ERR!  (cid 0x%x)\n", cid);
1692                                 atomic_inc(&vcc->stats->rx_drop);
1693                         goto return_host_buffers;
1694                 }
1695
1696                 heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4;
1697                 clear_bit(i, he_dev->rbpl_table);
1698                 list_move_tail(&heb->entry, &he_vcc->buffers);
1699                 he_vcc->pdu_len += heb->len;
1700
1701                 if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) {
1702                         lastcid = -1;
1703                         HPRINTK("wake_up rx_waitq  (cid 0x%x)\n", cid);
1704                         wake_up(&he_vcc->rx_waitq);
1705                         goto return_host_buffers;
1706                 }
1707
1708                 if (!RBRQ_END_PDU(he_dev->rbrq_head))
1709                         goto next_rbrq_entry;
1710
1711                 if (RBRQ_LEN_ERR(he_dev->rbrq_head)
1712                                 || RBRQ_CRC_ERR(he_dev->rbrq_head)) {
1713                         HPRINTK("%s%s (%d.%d)\n",
1714                                 RBRQ_CRC_ERR(he_dev->rbrq_head)
1715                                                         ? "CRC_ERR " : "",
1716                                 RBRQ_LEN_ERR(he_dev->rbrq_head)
1717                                                         ? "LEN_ERR" : "",
1718                                                         vcc->vpi, vcc->vci);
1719                         atomic_inc(&vcc->stats->rx_err);
1720                         goto return_host_buffers;
1721                 }
1722
1723                 skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve,
1724                                                         GFP_ATOMIC);
1725                 if (!skb) {
1726                         HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci);
1727                         goto return_host_buffers;
1728                 }
1729
1730                 if (rx_skb_reserve > 0)
1731                         skb_reserve(skb, rx_skb_reserve);
1732
1733                 __net_timestamp(skb);
1734
1735                 list_for_each_entry(heb, &he_vcc->buffers, entry)
1736                         memcpy(skb_put(skb, heb->len), &heb->data, heb->len);
1737
1738                 switch (vcc->qos.aal) {
1739                         case ATM_AAL0:
1740                                 /* 2.10.1.5 raw cell receive */
1741                                 skb->len = ATM_AAL0_SDU;
1742                                 skb_set_tail_pointer(skb, skb->len);
1743                                 break;
1744                         case ATM_AAL5:
1745                                 /* 2.10.1.2 aal5 receive */
1746
1747                                 skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len);
1748                                 skb_set_tail_pointer(skb, skb->len);
1749 #ifdef USE_CHECKSUM_HW
1750                                 if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) {
1751                                         skb->ip_summed = CHECKSUM_COMPLETE;
1752                                         skb->csum = TCP_CKSUM(skb->data,
1753                                                         he_vcc->pdu_len);
1754                                 }
1755 #endif
1756                                 break;
1757                 }
1758
1759 #ifdef should_never_happen
1760                 if (skb->len > vcc->qos.rxtp.max_sdu)
1761                         hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)!  cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid);
1762 #endif
1763
1764 #ifdef notdef
1765                 ATM_SKB(skb)->vcc = vcc;
1766 #endif
1767                 spin_unlock(&he_dev->global_lock);
1768                 vcc->push(vcc, skb);
1769                 spin_lock(&he_dev->global_lock);
1770
1771                 atomic_inc(&vcc->stats->rx);
1772
1773 return_host_buffers:
1774                 ++pdus_assembled;
1775
1776                 list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry)
1777                         dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1778                 INIT_LIST_HEAD(&he_vcc->buffers);
1779                 he_vcc->pdu_len = 0;
1780
1781 next_rbrq_entry:
1782                 he_dev->rbrq_head = (struct he_rbrq *)
1783                                 ((unsigned long) he_dev->rbrq_base |
1784                                         RBRQ_MASK(he_dev->rbrq_head + 1));
1785
1786         }
1787         read_unlock(&vcc_sklist_lock);
1788
1789         if (updated) {
1790                 if (updated > he_dev->rbrq_peak)
1791                         he_dev->rbrq_peak = updated;
1792
1793                 he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head),
1794                                                 G0_RBRQ_H + (group * 16));
1795         }
1796
1797         return pdus_assembled;
1798 }
1799
1800 static void
1801 he_service_tbrq(struct he_dev *he_dev, int group)
1802 {
1803         struct he_tbrq *tbrq_tail = (struct he_tbrq *)
1804                                 ((unsigned long)he_dev->tbrq_base |
1805                                         he_dev->hsp->group[group].tbrq_tail);
1806         struct he_tpd *tpd;
1807         int slot, updated = 0;
1808         struct he_tpd *__tpd;
1809
1810         /* 2.1.6 transmit buffer return queue */
1811
1812         while (he_dev->tbrq_head != tbrq_tail) {
1813                 ++updated;
1814
1815                 HPRINTK("tbrq%d 0x%x%s%s\n",
1816                         group,
1817                         TBRQ_TPD(he_dev->tbrq_head), 
1818                         TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "",
1819                         TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : "");
1820                 tpd = NULL;
1821                 list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) {
1822                         if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) {
1823                                 tpd = __tpd;
1824                                 list_del(&__tpd->entry);
1825                                 break;
1826                         }
1827                 }
1828
1829                 if (tpd == NULL) {
1830                         hprintk("unable to locate tpd for dma buffer %x\n",
1831                                                 TBRQ_TPD(he_dev->tbrq_head));
1832                         goto next_tbrq_entry;
1833                 }
1834
1835                 if (TBRQ_EOS(he_dev->tbrq_head)) {
1836                         HPRINTK("wake_up(tx_waitq) cid 0x%x\n",
1837                                 he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci));
1838                         if (tpd->vcc)
1839                                 wake_up(&HE_VCC(tpd->vcc)->tx_waitq);
1840
1841                         goto next_tbrq_entry;
1842                 }
1843
1844                 for (slot = 0; slot < TPD_MAXIOV; ++slot) {
1845                         if (tpd->iovec[slot].addr)
1846                                 dma_unmap_single(&he_dev->pci_dev->dev,
1847                                         tpd->iovec[slot].addr,
1848                                         tpd->iovec[slot].len & TPD_LEN_MASK,
1849                                                         DMA_TO_DEVICE);
1850                         if (tpd->iovec[slot].len & TPD_LST)
1851                                 break;
1852                                 
1853                 }
1854
1855                 if (tpd->skb) { /* && !TBRQ_MULTIPLE(he_dev->tbrq_head) */
1856                         if (tpd->vcc && tpd->vcc->pop)
1857                                 tpd->vcc->pop(tpd->vcc, tpd->skb);
1858                         else
1859                                 dev_kfree_skb_any(tpd->skb);
1860                 }
1861
1862 next_tbrq_entry:
1863                 if (tpd)
1864                         dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
1865                 he_dev->tbrq_head = (struct he_tbrq *)
1866                                 ((unsigned long) he_dev->tbrq_base |
1867                                         TBRQ_MASK(he_dev->tbrq_head + 1));
1868         }
1869
1870         if (updated) {
1871                 if (updated > he_dev->tbrq_peak)
1872                         he_dev->tbrq_peak = updated;
1873
1874                 he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head),
1875                                                 G0_TBRQ_H + (group * 16));
1876         }
1877 }
1878
1879 static void
1880 he_service_rbpl(struct he_dev *he_dev, int group)
1881 {
1882         struct he_rbp *new_tail;
1883         struct he_rbp *rbpl_head;
1884         struct he_buff *heb;
1885         dma_addr_t mapping;
1886         int i;
1887         int moved = 0;
1888
1889         rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1890                                         RBPL_MASK(he_readl(he_dev, G0_RBPL_S)));
1891
1892         for (;;) {
1893                 new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1894                                                 RBPL_MASK(he_dev->rbpl_tail+1));
1895
1896                 /* table 3.42 -- rbpl_tail should never be set to rbpl_head */
1897                 if (new_tail == rbpl_head)
1898                         break;
1899
1900                 i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint);
1901                 if (i > (RBPL_TABLE_SIZE - 1)) {
1902                         i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE);
1903                         if (i > (RBPL_TABLE_SIZE - 1))
1904                                 break;
1905                 }
1906                 he_dev->rbpl_hint = i + 1;
1907
1908                 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC, &mapping);
1909                 if (!heb)
1910                         break;
1911                 heb->mapping = mapping;
1912                 list_add(&heb->entry, &he_dev->rbpl_outstanding);
1913                 he_dev->rbpl_virt[i] = heb;
1914                 set_bit(i, he_dev->rbpl_table);
1915                 new_tail->idx = i << RBP_IDX_OFFSET;
1916                 new_tail->phys = mapping + offsetof(struct he_buff, data);
1917
1918                 he_dev->rbpl_tail = new_tail;
1919                 ++moved;
1920         } 
1921
1922         if (moved)
1923                 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T);
1924 }
1925
1926 static void
1927 he_tasklet(unsigned long data)
1928 {
1929         unsigned long flags;
1930         struct he_dev *he_dev = (struct he_dev *) data;
1931         int group, type;
1932         int updated = 0;
1933
1934         HPRINTK("tasklet (0x%lx)\n", data);
1935         spin_lock_irqsave(&he_dev->global_lock, flags);
1936
1937         while (he_dev->irq_head != he_dev->irq_tail) {
1938                 ++updated;
1939
1940                 type = ITYPE_TYPE(he_dev->irq_head->isw);
1941                 group = ITYPE_GROUP(he_dev->irq_head->isw);
1942
1943                 switch (type) {
1944                         case ITYPE_RBRQ_THRESH:
1945                                 HPRINTK("rbrq%d threshold\n", group);
1946                                 /* fall through */
1947                         case ITYPE_RBRQ_TIMER:
1948                                 if (he_service_rbrq(he_dev, group))
1949                                         he_service_rbpl(he_dev, group);
1950                                 break;
1951                         case ITYPE_TBRQ_THRESH:
1952                                 HPRINTK("tbrq%d threshold\n", group);
1953                                 /* fall through */
1954                         case ITYPE_TPD_COMPLETE:
1955                                 he_service_tbrq(he_dev, group);
1956                                 break;
1957                         case ITYPE_RBPL_THRESH:
1958                                 he_service_rbpl(he_dev, group);
1959                                 break;
1960                         case ITYPE_RBPS_THRESH:
1961                                 /* shouldn't happen unless small buffers enabled */
1962                                 break;
1963                         case ITYPE_PHY:
1964                                 HPRINTK("phy interrupt\n");
1965 #ifdef CONFIG_ATM_HE_USE_SUNI
1966                                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
1967                                 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt)
1968                                         he_dev->atm_dev->phy->interrupt(he_dev->atm_dev);
1969                                 spin_lock_irqsave(&he_dev->global_lock, flags);
1970 #endif
1971                                 break;
1972                         case ITYPE_OTHER:
1973                                 switch (type|group) {
1974                                         case ITYPE_PARITY:
1975                                                 hprintk("parity error\n");
1976                                                 break;
1977                                         case ITYPE_ABORT:
1978                                                 hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR));
1979                                                 break;
1980                                 }
1981                                 break;
1982                         case ITYPE_TYPE(ITYPE_INVALID):
1983                                 /* see 8.1.1 -- check all queues */
1984
1985                                 HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw);
1986
1987                                 he_service_rbrq(he_dev, 0);
1988                                 he_service_rbpl(he_dev, 0);
1989                                 he_service_tbrq(he_dev, 0);
1990                                 break;
1991                         default:
1992                                 hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw);
1993                 }
1994
1995                 he_dev->irq_head->isw = ITYPE_INVALID;
1996
1997                 he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK);
1998         }
1999
2000         if (updated) {
2001                 if (updated > he_dev->irq_peak)
2002                         he_dev->irq_peak = updated;
2003
2004                 he_writel(he_dev,
2005                         IRQ_SIZE(CONFIG_IRQ_SIZE) |
2006                         IRQ_THRESH(CONFIG_IRQ_THRESH) |
2007                         IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD);
2008                 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata; flush posted writes */
2009         }
2010         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2011 }
2012
2013 static irqreturn_t
2014 he_irq_handler(int irq, void *dev_id)
2015 {
2016         unsigned long flags;
2017         struct he_dev *he_dev = (struct he_dev * )dev_id;
2018         int handled = 0;
2019
2020         if (he_dev == NULL)
2021                 return IRQ_NONE;
2022
2023         spin_lock_irqsave(&he_dev->global_lock, flags);
2024
2025         he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) |
2026                                                 (*he_dev->irq_tailoffset << 2));
2027
2028         if (he_dev->irq_tail == he_dev->irq_head) {
2029                 HPRINTK("tailoffset not updated?\n");
2030                 he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base |
2031                         ((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2));
2032                 (void) he_readl(he_dev, INT_FIFO);      /* 8.1.2 controller errata */
2033         }
2034
2035 #ifdef DEBUG
2036         if (he_dev->irq_head == he_dev->irq_tail /* && !IRQ_PENDING */)
2037                 hprintk("spurious (or shared) interrupt?\n");
2038 #endif
2039
2040         if (he_dev->irq_head != he_dev->irq_tail) {
2041                 handled = 1;
2042                 tasklet_schedule(&he_dev->tasklet);
2043                 he_writel(he_dev, INT_CLEAR_A, INT_FIFO);       /* clear interrupt */
2044                 (void) he_readl(he_dev, INT_FIFO);              /* flush posted writes */
2045         }
2046         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2047         return IRQ_RETVAL(handled);
2048
2049 }
2050
2051 static __inline__ void
2052 __enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid)
2053 {
2054         struct he_tpdrq *new_tail;
2055
2056         HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n",
2057                                         tpd, cid, he_dev->tpdrq_tail);
2058
2059         /* new_tail = he_dev->tpdrq_tail; */
2060         new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base |
2061                                         TPDRQ_MASK(he_dev->tpdrq_tail+1));
2062
2063         /*
2064          * check to see if we are about to set the tail == head
2065          * if true, update the head pointer from the adapter
2066          * to see if this is really the case (reading the queue
2067          * head for every enqueue would be unnecessarily slow)
2068          */
2069
2070         if (new_tail == he_dev->tpdrq_head) {
2071                 he_dev->tpdrq_head = (struct he_tpdrq *)
2072                         (((unsigned long)he_dev->tpdrq_base) |
2073                                 TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H)));
2074
2075                 if (new_tail == he_dev->tpdrq_head) {
2076                         int slot;
2077
2078                         hprintk("tpdrq full (cid 0x%x)\n", cid);
2079                         /*
2080                          * FIXME
2081                          * push tpd onto a transmit backlog queue
2082                          * after service_tbrq, service the backlog
2083                          * for now, we just drop the pdu
2084                          */
2085                         for (slot = 0; slot < TPD_MAXIOV; ++slot) {
2086                                 if (tpd->iovec[slot].addr)
2087                                         dma_unmap_single(&he_dev->pci_dev->dev,
2088                                                 tpd->iovec[slot].addr,
2089                                                 tpd->iovec[slot].len & TPD_LEN_MASK,
2090                                                                 DMA_TO_DEVICE);
2091                         }
2092                         if (tpd->skb) {
2093                                 if (tpd->vcc->pop)
2094                                         tpd->vcc->pop(tpd->vcc, tpd->skb);
2095                                 else
2096                                         dev_kfree_skb_any(tpd->skb);
2097                                 atomic_inc(&tpd->vcc->stats->tx_err);
2098                         }
2099                         dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
2100                         return;
2101                 }
2102         }
2103
2104         /* 2.1.5 transmit packet descriptor ready queue */
2105         list_add_tail(&tpd->entry, &he_dev->outstanding_tpds);
2106         he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status);
2107         he_dev->tpdrq_tail->cid = cid;
2108         wmb();
2109
2110         he_dev->tpdrq_tail = new_tail;
2111
2112         he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T);
2113         (void) he_readl(he_dev, TPDRQ_T);               /* flush posted writes */
2114 }
2115
2116 static int
2117 he_open(struct atm_vcc *vcc)
2118 {
2119         unsigned long flags;
2120         struct he_dev *he_dev = HE_DEV(vcc->dev);
2121         struct he_vcc *he_vcc;
2122         int err = 0;
2123         unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock;
2124         short vpi = vcc->vpi;
2125         int vci = vcc->vci;
2126
2127         if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC)
2128                 return 0;
2129
2130         HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci);
2131
2132         set_bit(ATM_VF_ADDR, &vcc->flags);
2133
2134         cid = he_mkcid(he_dev, vpi, vci);
2135
2136         he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC);
2137         if (he_vcc == NULL) {
2138                 hprintk("unable to allocate he_vcc during open\n");
2139                 return -ENOMEM;
2140         }
2141
2142         INIT_LIST_HEAD(&he_vcc->buffers);
2143         he_vcc->pdu_len = 0;
2144         he_vcc->rc_index = -1;
2145
2146         init_waitqueue_head(&he_vcc->rx_waitq);
2147         init_waitqueue_head(&he_vcc->tx_waitq);
2148
2149         vcc->dev_data = he_vcc;
2150
2151         if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2152                 int pcr_goal;
2153
2154                 pcr_goal = atm_pcr_goal(&vcc->qos.txtp);
2155                 if (pcr_goal == 0)
2156                         pcr_goal = he_dev->atm_dev->link_rate;
2157                 if (pcr_goal < 0)       /* means round down, technically */
2158                         pcr_goal = -pcr_goal;
2159
2160                 HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal);
2161
2162                 switch (vcc->qos.aal) {
2163                         case ATM_AAL5:
2164                                 tsr0_aal = TSR0_AAL5;
2165                                 tsr4 = TSR4_AAL5;
2166                                 break;
2167                         case ATM_AAL0:
2168                                 tsr0_aal = TSR0_AAL0_SDU;
2169                                 tsr4 = TSR4_AAL0_SDU;
2170                                 break;
2171                         default:
2172                                 err = -EINVAL;
2173                                 goto open_failed;
2174                 }
2175
2176                 spin_lock_irqsave(&he_dev->global_lock, flags);
2177                 tsr0 = he_readl_tsr0(he_dev, cid);
2178                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2179
2180                 if (TSR0_CONN_STATE(tsr0) != 0) {
2181                         hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0);
2182                         err = -EBUSY;
2183                         goto open_failed;
2184                 }
2185
2186                 switch (vcc->qos.txtp.traffic_class) {
2187                         case ATM_UBR:
2188                                 /* 2.3.3.1 open connection ubr */
2189
2190                                 tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal |
2191                                         TSR0_USE_WMIN | TSR0_UPDATE_GER;
2192                                 break;
2193
2194                         case ATM_CBR:
2195                                 /* 2.3.3.2 open connection cbr */
2196
2197                                 /* 8.2.3 cbr scheduler wrap problem -- limit to 90% total link rate */
2198                                 if ((he_dev->total_bw + pcr_goal)
2199                                         > (he_dev->atm_dev->link_rate * 9 / 10))
2200                                 {
2201                                         err = -EBUSY;
2202                                         goto open_failed;
2203                                 }
2204
2205                                 spin_lock_irqsave(&he_dev->global_lock, flags);                 /* also protects he_dev->cs_stper[] */
2206
2207                                 /* find an unused cs_stper register */
2208                                 for (reg = 0; reg < HE_NUM_CS_STPER; ++reg)
2209                                         if (he_dev->cs_stper[reg].inuse == 0 || 
2210                                             he_dev->cs_stper[reg].pcr == pcr_goal)
2211                                                         break;
2212
2213                                 if (reg == HE_NUM_CS_STPER) {
2214                                         err = -EBUSY;
2215                                         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2216                                         goto open_failed;
2217                                 }
2218
2219                                 he_dev->total_bw += pcr_goal;
2220
2221                                 he_vcc->rc_index = reg;
2222                                 ++he_dev->cs_stper[reg].inuse;
2223                                 he_dev->cs_stper[reg].pcr = pcr_goal;
2224
2225                                 clock = he_is622(he_dev) ? 66667000 : 50000000;
2226                                 period = clock / pcr_goal;
2227                                 
2228                                 HPRINTK("rc_index = %d period = %d\n",
2229                                                                 reg, period);
2230
2231                                 he_writel_mbox(he_dev, rate_to_atmf(period/2),
2232                                                         CS_STPER0 + reg);
2233                                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2234
2235                                 tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal |
2236                                                         TSR0_RC_INDEX(reg);
2237
2238                                 break;
2239                         default:
2240                                 err = -EINVAL;
2241                                 goto open_failed;
2242                 }
2243
2244                 spin_lock_irqsave(&he_dev->global_lock, flags);
2245
2246                 he_writel_tsr0(he_dev, tsr0, cid);
2247                 he_writel_tsr4(he_dev, tsr4 | 1, cid);
2248                 he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) |
2249                                         TSR1_PCR(rate_to_atmf(pcr_goal)), cid);
2250                 he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid);
2251                 he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid);
2252
2253                 he_writel_tsr3(he_dev, 0x0, cid);
2254                 he_writel_tsr5(he_dev, 0x0, cid);
2255                 he_writel_tsr6(he_dev, 0x0, cid);
2256                 he_writel_tsr7(he_dev, 0x0, cid);
2257                 he_writel_tsr8(he_dev, 0x0, cid);
2258                 he_writel_tsr10(he_dev, 0x0, cid);
2259                 he_writel_tsr11(he_dev, 0x0, cid);
2260                 he_writel_tsr12(he_dev, 0x0, cid);
2261                 he_writel_tsr13(he_dev, 0x0, cid);
2262                 he_writel_tsr14(he_dev, 0x0, cid);
2263                 (void) he_readl_tsr0(he_dev, cid);              /* flush posted writes */
2264                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2265         }
2266
2267         if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2268                 unsigned aal;
2269
2270                 HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid,
2271                                                 &HE_VCC(vcc)->rx_waitq);
2272
2273                 switch (vcc->qos.aal) {
2274                         case ATM_AAL5:
2275                                 aal = RSR0_AAL5;
2276                                 break;
2277                         case ATM_AAL0:
2278                                 aal = RSR0_RAWCELL;
2279                                 break;
2280                         default:
2281                                 err = -EINVAL;
2282                                 goto open_failed;
2283                 }
2284
2285                 spin_lock_irqsave(&he_dev->global_lock, flags);
2286
2287                 rsr0 = he_readl_rsr0(he_dev, cid);
2288                 if (rsr0 & RSR0_OPEN_CONN) {
2289                         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2290
2291                         hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0);
2292                         err = -EBUSY;
2293                         goto open_failed;
2294                 }
2295
2296                 rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY;
2297                 rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY;
2298                 rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ? 
2299                                 (RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0;
2300
2301 #ifdef USE_CHECKSUM_HW
2302                 if (vpi == 0 && vci >= ATM_NOT_RSV_VCI)
2303                         rsr0 |= RSR0_TCP_CKSUM;
2304 #endif
2305
2306                 he_writel_rsr4(he_dev, rsr4, cid);
2307                 he_writel_rsr1(he_dev, rsr1, cid);
2308                 /* 5.1.11 last parameter initialized should be
2309                           the open/closed indication in rsr0 */
2310                 he_writel_rsr0(he_dev,
2311                         rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid);
2312                 (void) he_readl_rsr0(he_dev, cid);              /* flush posted writes */
2313
2314                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2315         }
2316
2317 open_failed:
2318
2319         if (err) {
2320                 kfree(he_vcc);
2321                 clear_bit(ATM_VF_ADDR, &vcc->flags);
2322         }
2323         else
2324                 set_bit(ATM_VF_READY, &vcc->flags);
2325
2326         return err;
2327 }
2328
2329 static void
2330 he_close(struct atm_vcc *vcc)
2331 {
2332         unsigned long flags;
2333         DECLARE_WAITQUEUE(wait, current);
2334         struct he_dev *he_dev = HE_DEV(vcc->dev);
2335         struct he_tpd *tpd;
2336         unsigned cid;
2337         struct he_vcc *he_vcc = HE_VCC(vcc);
2338 #define MAX_RETRY 30
2339         int retry = 0, sleep = 1, tx_inuse;
2340
2341         HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci);
2342
2343         clear_bit(ATM_VF_READY, &vcc->flags);
2344         cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2345
2346         if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2347                 int timeout;
2348
2349                 HPRINTK("close rx cid 0x%x\n", cid);
2350
2351                 /* 2.7.2.2 close receive operation */
2352
2353                 /* wait for previous close (if any) to finish */
2354
2355                 spin_lock_irqsave(&he_dev->global_lock, flags);
2356                 while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) {
2357                         HPRINTK("close cid 0x%x RCC_BUSY\n", cid);
2358                         udelay(250);
2359                 }
2360
2361                 set_current_state(TASK_UNINTERRUPTIBLE);
2362                 add_wait_queue(&he_vcc->rx_waitq, &wait);
2363
2364                 he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid);
2365                 (void) he_readl_rsr0(he_dev, cid);              /* flush posted writes */
2366                 he_writel_mbox(he_dev, cid, RXCON_CLOSE);
2367                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2368
2369                 timeout = schedule_timeout(30*HZ);
2370
2371                 remove_wait_queue(&he_vcc->rx_waitq, &wait);
2372                 set_current_state(TASK_RUNNING);
2373
2374                 if (timeout == 0)
2375                         hprintk("close rx timeout cid 0x%x\n", cid);
2376
2377                 HPRINTK("close rx cid 0x%x complete\n", cid);
2378
2379         }
2380
2381         if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2382                 volatile unsigned tsr4, tsr0;
2383                 int timeout;
2384
2385                 HPRINTK("close tx cid 0x%x\n", cid);
2386                 
2387                 /* 2.1.2
2388                  *
2389                  * ... the host must first stop queueing packets to the TPDRQ
2390                  * on the connection to be closed, then wait for all outstanding
2391                  * packets to be transmitted and their buffers returned to the
2392                  * TBRQ. When the last packet on the connection arrives in the
2393                  * TBRQ, the host issues the close command to the adapter.
2394                  */
2395
2396                 while (((tx_inuse = atomic_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) &&
2397                        (retry < MAX_RETRY)) {
2398                         msleep(sleep);
2399                         if (sleep < 250)
2400                                 sleep = sleep * 2;
2401
2402                         ++retry;
2403                 }
2404
2405                 if (tx_inuse > 1)
2406                         hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse);
2407
2408                 /* 2.3.1.1 generic close operations with flush */
2409
2410                 spin_lock_irqsave(&he_dev->global_lock, flags);
2411                 he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid);
2412                                         /* also clears TSR4_SESSION_ENDED */
2413
2414                 switch (vcc->qos.txtp.traffic_class) {
2415                         case ATM_UBR:
2416                                 he_writel_tsr1(he_dev, 
2417                                         TSR1_MCR(rate_to_atmf(200000))
2418                                         | TSR1_PCR(0), cid);
2419                                 break;
2420                         case ATM_CBR:
2421                                 he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid);
2422                                 break;
2423                 }
2424                 (void) he_readl_tsr4(he_dev, cid);              /* flush posted writes */
2425
2426                 tpd = __alloc_tpd(he_dev);
2427                 if (tpd == NULL) {
2428                         hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid);
2429                         goto close_tx_incomplete;
2430                 }
2431                 tpd->status |= TPD_EOS | TPD_INT;
2432                 tpd->skb = NULL;
2433                 tpd->vcc = vcc;
2434                 wmb();
2435
2436                 set_current_state(TASK_UNINTERRUPTIBLE);
2437                 add_wait_queue(&he_vcc->tx_waitq, &wait);
2438                 __enqueue_tpd(he_dev, tpd, cid);
2439                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2440
2441                 timeout = schedule_timeout(30*HZ);
2442
2443                 remove_wait_queue(&he_vcc->tx_waitq, &wait);
2444                 set_current_state(TASK_RUNNING);
2445
2446                 spin_lock_irqsave(&he_dev->global_lock, flags);
2447
2448                 if (timeout == 0) {
2449                         hprintk("close tx timeout cid 0x%x\n", cid);
2450                         goto close_tx_incomplete;
2451                 }
2452
2453                 while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) {
2454                         HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4);
2455                         udelay(250);
2456                 }
2457
2458                 while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) {
2459                         HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0);
2460                         udelay(250);
2461                 }
2462
2463 close_tx_incomplete:
2464
2465                 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
2466                         int reg = he_vcc->rc_index;
2467
2468                         HPRINTK("cs_stper reg = %d\n", reg);
2469
2470                         if (he_dev->cs_stper[reg].inuse == 0)
2471                                 hprintk("cs_stper[%d].inuse = 0!\n", reg);
2472                         else
2473                                 --he_dev->cs_stper[reg].inuse;
2474
2475                         he_dev->total_bw -= he_dev->cs_stper[reg].pcr;
2476                 }
2477                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2478
2479                 HPRINTK("close tx cid 0x%x complete\n", cid);
2480         }
2481
2482         kfree(he_vcc);
2483
2484         clear_bit(ATM_VF_ADDR, &vcc->flags);
2485 }
2486
2487 static int
2488 he_send(struct atm_vcc *vcc, struct sk_buff *skb)
2489 {
2490         unsigned long flags;
2491         struct he_dev *he_dev = HE_DEV(vcc->dev);
2492         unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2493         struct he_tpd *tpd;
2494 #ifdef USE_SCATTERGATHER
2495         int i, slot = 0;
2496 #endif
2497
2498 #define HE_TPD_BUFSIZE 0xffff
2499
2500         HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci);
2501
2502         if ((skb->len > HE_TPD_BUFSIZE) ||
2503             ((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) {
2504                 hprintk("buffer too large (or small) -- %d bytes\n", skb->len );
2505                 if (vcc->pop)
2506                         vcc->pop(vcc, skb);
2507                 else
2508                         dev_kfree_skb_any(skb);
2509                 atomic_inc(&vcc->stats->tx_err);
2510                 return -EINVAL;
2511         }
2512
2513 #ifndef USE_SCATTERGATHER
2514         if (skb_shinfo(skb)->nr_frags) {
2515                 hprintk("no scatter/gather support\n");
2516                 if (vcc->pop)
2517                         vcc->pop(vcc, skb);
2518                 else
2519                         dev_kfree_skb_any(skb);
2520                 atomic_inc(&vcc->stats->tx_err);
2521                 return -EINVAL;
2522         }
2523 #endif
2524         spin_lock_irqsave(&he_dev->global_lock, flags);
2525
2526         tpd = __alloc_tpd(he_dev);
2527         if (tpd == NULL) {
2528                 if (vcc->pop)
2529                         vcc->pop(vcc, skb);
2530                 else
2531                         dev_kfree_skb_any(skb);
2532                 atomic_inc(&vcc->stats->tx_err);
2533                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2534                 return -ENOMEM;
2535         }
2536
2537         if (vcc->qos.aal == ATM_AAL5)
2538                 tpd->status |= TPD_CELLTYPE(TPD_USERCELL);
2539         else {
2540                 char *pti_clp = (void *) (skb->data + 3);
2541                 int clp, pti;
2542
2543                 pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; 
2544                 clp = (*pti_clp & ATM_HDR_CLP);
2545                 tpd->status |= TPD_CELLTYPE(pti);
2546                 if (clp)
2547                         tpd->status |= TPD_CLP;
2548
2549                 skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD);
2550         }
2551
2552 #ifdef USE_SCATTERGATHER
2553         tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, skb->data,
2554                                 skb_headlen(skb), DMA_TO_DEVICE);
2555         tpd->iovec[slot].len = skb_headlen(skb);
2556         ++slot;
2557
2558         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2559                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2560
2561                 if (slot == TPD_MAXIOV) {       /* queue tpd; start new tpd */
2562                         tpd->vcc = vcc;
2563                         tpd->skb = NULL;        /* not the last fragment
2564                                                    so dont ->push() yet */
2565                         wmb();
2566
2567                         __enqueue_tpd(he_dev, tpd, cid);
2568                         tpd = __alloc_tpd(he_dev);
2569                         if (tpd == NULL) {
2570                                 if (vcc->pop)
2571                                         vcc->pop(vcc, skb);
2572                                 else
2573                                         dev_kfree_skb_any(skb);
2574                                 atomic_inc(&vcc->stats->tx_err);
2575                                 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2576                                 return -ENOMEM;
2577                         }
2578                         tpd->status |= TPD_USERCELL;
2579                         slot = 0;
2580                 }
2581
2582                 tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev,
2583                         (void *) page_address(frag->page) + frag->page_offset,
2584                                 frag->size, DMA_TO_DEVICE);
2585                 tpd->iovec[slot].len = frag->size;
2586                 ++slot;
2587
2588         }
2589
2590         tpd->iovec[slot - 1].len |= TPD_LST;
2591 #else
2592         tpd->address0 = dma_map_single(&he_dev->pci_dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
2593         tpd->length0 = skb->len | TPD_LST;
2594 #endif
2595         tpd->status |= TPD_INT;
2596
2597         tpd->vcc = vcc;
2598         tpd->skb = skb;
2599         wmb();
2600         ATM_SKB(skb)->vcc = vcc;
2601
2602         __enqueue_tpd(he_dev, tpd, cid);
2603         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2604
2605         atomic_inc(&vcc->stats->tx);
2606
2607         return 0;
2608 }
2609
2610 static int
2611 he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg)
2612 {
2613         unsigned long flags;
2614         struct he_dev *he_dev = HE_DEV(atm_dev);
2615         struct he_ioctl_reg reg;
2616         int err = 0;
2617
2618         switch (cmd) {
2619                 case HE_GET_REG:
2620                         if (!capable(CAP_NET_ADMIN))
2621                                 return -EPERM;
2622
2623                         if (copy_from_user(&reg, arg,
2624                                            sizeof(struct he_ioctl_reg)))
2625                                 return -EFAULT;
2626
2627                         spin_lock_irqsave(&he_dev->global_lock, flags);
2628                         switch (reg.type) {
2629                                 case HE_REGTYPE_PCI:
2630                                         if (reg.addr >= HE_REGMAP_SIZE) {
2631                                                 err = -EINVAL;
2632                                                 break;
2633                                         }
2634
2635                                         reg.val = he_readl(he_dev, reg.addr);
2636                                         break;
2637                                 case HE_REGTYPE_RCM:
2638                                         reg.val =
2639                                                 he_readl_rcm(he_dev, reg.addr);
2640                                         break;
2641                                 case HE_REGTYPE_TCM:
2642                                         reg.val =
2643                                                 he_readl_tcm(he_dev, reg.addr);
2644                                         break;
2645                                 case HE_REGTYPE_MBOX:
2646                                         reg.val =
2647                                                 he_readl_mbox(he_dev, reg.addr);
2648                                         break;
2649                                 default:
2650                                         err = -EINVAL;
2651                                         break;
2652                         }
2653                         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2654                         if (err == 0)
2655                                 if (copy_to_user(arg, &reg,
2656                                                         sizeof(struct he_ioctl_reg)))
2657                                         return -EFAULT;
2658                         break;
2659                 default:
2660 #ifdef CONFIG_ATM_HE_USE_SUNI
2661                         if (atm_dev->phy && atm_dev->phy->ioctl)
2662                                 err = atm_dev->phy->ioctl(atm_dev, cmd, arg);
2663 #else /* CONFIG_ATM_HE_USE_SUNI */
2664                         err = -EINVAL;
2665 #endif /* CONFIG_ATM_HE_USE_SUNI */
2666                         break;
2667         }
2668
2669         return err;
2670 }
2671
2672 static void
2673 he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr)
2674 {
2675         unsigned long flags;
2676         struct he_dev *he_dev = HE_DEV(atm_dev);
2677
2678         HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr);
2679
2680         spin_lock_irqsave(&he_dev->global_lock, flags);
2681         he_writel(he_dev, val, FRAMER + (addr*4));
2682         (void) he_readl(he_dev, FRAMER + (addr*4));             /* flush posted writes */
2683         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2684 }
2685  
2686         
2687 static unsigned char
2688 he_phy_get(struct atm_dev *atm_dev, unsigned long addr)
2689
2690         unsigned long flags;
2691         struct he_dev *he_dev = HE_DEV(atm_dev);
2692         unsigned reg;
2693
2694         spin_lock_irqsave(&he_dev->global_lock, flags);
2695         reg = he_readl(he_dev, FRAMER + (addr*4));
2696         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2697
2698         HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg);
2699         return reg;
2700 }
2701
2702 static int
2703 he_proc_read(struct atm_dev *dev, loff_t *pos, char *page)
2704 {
2705         unsigned long flags;
2706         struct he_dev *he_dev = HE_DEV(dev);
2707         int left, i;
2708 #ifdef notdef
2709         struct he_rbrq *rbrq_tail;
2710         struct he_tpdrq *tpdrq_head;
2711         int rbpl_head, rbpl_tail;
2712 #endif
2713         static long mcc = 0, oec = 0, dcc = 0, cec = 0;
2714
2715
2716         left = *pos;
2717         if (!left--)
2718                 return sprintf(page, "ATM he driver\n");
2719
2720         if (!left--)
2721                 return sprintf(page, "%s%s\n\n",
2722                         he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM");
2723
2724         if (!left--)
2725                 return sprintf(page, "Mismatched Cells  VPI/VCI Not Open  Dropped Cells  RCM Dropped Cells\n");
2726
2727         spin_lock_irqsave(&he_dev->global_lock, flags);
2728         mcc += he_readl(he_dev, MCC);
2729         oec += he_readl(he_dev, OEC);
2730         dcc += he_readl(he_dev, DCC);
2731         cec += he_readl(he_dev, CEC);
2732         spin_unlock_irqrestore(&he_dev->global_lock, flags);
2733
2734         if (!left--)
2735                 return sprintf(page, "%16ld  %16ld  %13ld  %17ld\n\n", 
2736                                                         mcc, oec, dcc, cec);
2737
2738         if (!left--)
2739                 return sprintf(page, "irq_size = %d  inuse = ?  peak = %d\n",
2740                                 CONFIG_IRQ_SIZE, he_dev->irq_peak);
2741
2742         if (!left--)
2743                 return sprintf(page, "tpdrq_size = %d  inuse = ?\n",
2744                                                 CONFIG_TPDRQ_SIZE);
2745
2746         if (!left--)
2747                 return sprintf(page, "rbrq_size = %d  inuse = ?  peak = %d\n",
2748                                 CONFIG_RBRQ_SIZE, he_dev->rbrq_peak);
2749
2750         if (!left--)
2751                 return sprintf(page, "tbrq_size = %d  peak = %d\n",
2752                                         CONFIG_TBRQ_SIZE, he_dev->tbrq_peak);
2753
2754
2755 #ifdef notdef
2756         rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S));
2757         rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T));
2758
2759         inuse = rbpl_head - rbpl_tail;
2760         if (inuse < 0)
2761                 inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp);
2762         inuse /= sizeof(struct he_rbp);
2763
2764         if (!left--)
2765                 return sprintf(page, "rbpl_size = %d  inuse = %d\n\n",
2766                                                 CONFIG_RBPL_SIZE, inuse);
2767 #endif
2768
2769         if (!left--)
2770                 return sprintf(page, "rate controller periods (cbr)\n                 pcr  #vc\n");
2771
2772         for (i = 0; i < HE_NUM_CS_STPER; ++i)
2773                 if (!left--)
2774                         return sprintf(page, "cs_stper%-2d  %8ld  %3d\n", i,
2775                                                 he_dev->cs_stper[i].pcr,
2776                                                 he_dev->cs_stper[i].inuse);
2777
2778         if (!left--)
2779                 return sprintf(page, "total bw (cbr): %d  (limit %d)\n",
2780                         he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9);
2781
2782         return 0;
2783 }
2784
2785 /* eeprom routines  -- see 4.7 */
2786
2787 static u8 read_prom_byte(struct he_dev *he_dev, int addr)
2788 {
2789         u32 val = 0, tmp_read = 0;
2790         int i, j = 0;
2791         u8 byte_read = 0;
2792
2793         val = readl(he_dev->membase + HOST_CNTL);
2794         val &= 0xFFFFE0FF;
2795        
2796         /* Turn on write enable */
2797         val |= 0x800;
2798         he_writel(he_dev, val, HOST_CNTL);
2799        
2800         /* Send READ instruction */
2801         for (i = 0; i < ARRAY_SIZE(readtab); i++) {
2802                 he_writel(he_dev, val | readtab[i], HOST_CNTL);
2803                 udelay(EEPROM_DELAY);
2804         }
2805        
2806         /* Next, we need to send the byte address to read from */
2807         for (i = 7; i >= 0; i--) {
2808                 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2809                 udelay(EEPROM_DELAY);
2810                 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2811                 udelay(EEPROM_DELAY);
2812         }
2813        
2814         j = 0;
2815
2816         val &= 0xFFFFF7FF;      /* Turn off write enable */
2817         he_writel(he_dev, val, HOST_CNTL);
2818        
2819         /* Now, we can read data from the EEPROM by clocking it in */
2820         for (i = 7; i >= 0; i--) {
2821                 he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2822                 udelay(EEPROM_DELAY);
2823                 tmp_read = he_readl(he_dev, HOST_CNTL);
2824                 byte_read |= (unsigned char)
2825                            ((tmp_read & ID_DOUT) >> ID_DOFFSET << i);
2826                 he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2827                 udelay(EEPROM_DELAY);
2828         }
2829        
2830         he_writel(he_dev, val | ID_CS, HOST_CNTL);
2831         udelay(EEPROM_DELAY);
2832
2833         return byte_read;
2834 }
2835
2836 MODULE_LICENSE("GPL");
2837 MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>");
2838 MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver");
2839 module_param(disable64, bool, 0);
2840 MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers");
2841 module_param(nvpibits, short, 0);
2842 MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)");
2843 module_param(nvcibits, short, 0);
2844 MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)");
2845 module_param(rx_skb_reserve, short, 0);
2846 MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)");
2847 module_param(irq_coalesce, bool, 0);
2848 MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)");
2849 module_param(sdh, bool, 0);
2850 MODULE_PARM_DESC(sdh, "use SDH framing (default 0)");
2851
2852 static struct pci_device_id he_pci_tbl[] = {
2853         { PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 },
2854         { 0, }
2855 };
2856
2857 MODULE_DEVICE_TABLE(pci, he_pci_tbl);
2858
2859 static struct pci_driver he_driver = {
2860         .name =         "he",
2861         .probe =        he_init_one,
2862         .remove =       he_remove_one,
2863         .id_table =     he_pci_tbl,
2864 };
2865
2866 module_pci_driver(he_driver);