GNU Linux-libre 5.10.217-gnu1
[releases.git] / drivers / android / binder_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* binder_alloc.c
3  *
4  * Android IPC Subsystem
5  *
6  * Copyright (C) 2007-2017 Google, Inc.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/list.h>
12 #include <linux/sched/mm.h>
13 #include <linux/module.h>
14 #include <linux/rtmutex.h>
15 #include <linux/rbtree.h>
16 #include <linux/seq_file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/list_lru.h>
21 #include <linux/ratelimit.h>
22 #include <asm/cacheflush.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/sizes.h>
26 #include "binder_alloc.h"
27 #include "binder_trace.h"
28
29 struct list_lru binder_alloc_lru;
30
31 static DEFINE_MUTEX(binder_alloc_mmap_lock);
32
33 enum {
34         BINDER_DEBUG_USER_ERROR             = 1U << 0,
35         BINDER_DEBUG_OPEN_CLOSE             = 1U << 1,
36         BINDER_DEBUG_BUFFER_ALLOC           = 1U << 2,
37         BINDER_DEBUG_BUFFER_ALLOC_ASYNC     = 1U << 3,
38 };
39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
40
41 module_param_named(debug_mask, binder_alloc_debug_mask,
42                    uint, 0644);
43
44 #define binder_alloc_debug(mask, x...) \
45         do { \
46                 if (binder_alloc_debug_mask & mask) \
47                         pr_info_ratelimited(x); \
48         } while (0)
49
50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
51 {
52         return list_entry(buffer->entry.next, struct binder_buffer, entry);
53 }
54
55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
56 {
57         return list_entry(buffer->entry.prev, struct binder_buffer, entry);
58 }
59
60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
61                                        struct binder_buffer *buffer)
62 {
63         if (list_is_last(&buffer->entry, &alloc->buffers))
64                 return alloc->buffer + alloc->buffer_size - buffer->user_data;
65         return binder_buffer_next(buffer)->user_data - buffer->user_data;
66 }
67
68 static void binder_insert_free_buffer(struct binder_alloc *alloc,
69                                       struct binder_buffer *new_buffer)
70 {
71         struct rb_node **p = &alloc->free_buffers.rb_node;
72         struct rb_node *parent = NULL;
73         struct binder_buffer *buffer;
74         size_t buffer_size;
75         size_t new_buffer_size;
76
77         BUG_ON(!new_buffer->free);
78
79         new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
80
81         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
82                      "%d: add free buffer, size %zd, at %pK\n",
83                       alloc->pid, new_buffer_size, new_buffer);
84
85         while (*p) {
86                 parent = *p;
87                 buffer = rb_entry(parent, struct binder_buffer, rb_node);
88                 BUG_ON(!buffer->free);
89
90                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
91
92                 if (new_buffer_size < buffer_size)
93                         p = &parent->rb_left;
94                 else
95                         p = &parent->rb_right;
96         }
97         rb_link_node(&new_buffer->rb_node, parent, p);
98         rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
99 }
100
101 static void binder_insert_allocated_buffer_locked(
102                 struct binder_alloc *alloc, struct binder_buffer *new_buffer)
103 {
104         struct rb_node **p = &alloc->allocated_buffers.rb_node;
105         struct rb_node *parent = NULL;
106         struct binder_buffer *buffer;
107
108         BUG_ON(new_buffer->free);
109
110         while (*p) {
111                 parent = *p;
112                 buffer = rb_entry(parent, struct binder_buffer, rb_node);
113                 BUG_ON(buffer->free);
114
115                 if (new_buffer->user_data < buffer->user_data)
116                         p = &parent->rb_left;
117                 else if (new_buffer->user_data > buffer->user_data)
118                         p = &parent->rb_right;
119                 else
120                         BUG();
121         }
122         rb_link_node(&new_buffer->rb_node, parent, p);
123         rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
124 }
125
126 static struct binder_buffer *binder_alloc_prepare_to_free_locked(
127                 struct binder_alloc *alloc,
128                 uintptr_t user_ptr)
129 {
130         struct rb_node *n = alloc->allocated_buffers.rb_node;
131         struct binder_buffer *buffer;
132         void __user *uptr;
133
134         uptr = (void __user *)user_ptr;
135
136         while (n) {
137                 buffer = rb_entry(n, struct binder_buffer, rb_node);
138                 BUG_ON(buffer->free);
139
140                 if (uptr < buffer->user_data)
141                         n = n->rb_left;
142                 else if (uptr > buffer->user_data)
143                         n = n->rb_right;
144                 else {
145                         /*
146                          * Guard against user threads attempting to
147                          * free the buffer when in use by kernel or
148                          * after it's already been freed.
149                          */
150                         if (!buffer->allow_user_free)
151                                 return ERR_PTR(-EPERM);
152                         buffer->allow_user_free = 0;
153                         return buffer;
154                 }
155         }
156         return NULL;
157 }
158
159 /**
160  * binder_alloc_prepare_to_free() - get buffer given user ptr
161  * @alloc:      binder_alloc for this proc
162  * @user_ptr:   User pointer to buffer data
163  *
164  * Validate userspace pointer to buffer data and return buffer corresponding to
165  * that user pointer. Search the rb tree for buffer that matches user data
166  * pointer.
167  *
168  * Return:      Pointer to buffer or NULL
169  */
170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
171                                                    uintptr_t user_ptr)
172 {
173         struct binder_buffer *buffer;
174
175         mutex_lock(&alloc->mutex);
176         buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
177         mutex_unlock(&alloc->mutex);
178         return buffer;
179 }
180
181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
182                                     void __user *start, void __user *end)
183 {
184         void __user *page_addr;
185         unsigned long user_page_addr;
186         struct binder_lru_page *page;
187         struct vm_area_struct *vma = NULL;
188         struct mm_struct *mm = NULL;
189         bool need_mm = false;
190
191         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
192                      "%d: %s pages %pK-%pK\n", alloc->pid,
193                      allocate ? "allocate" : "free", start, end);
194
195         if (end <= start)
196                 return 0;
197
198         trace_binder_update_page_range(alloc, allocate, start, end);
199
200         if (allocate == 0)
201                 goto free_range;
202
203         for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
204                 page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
205                 if (!page->page_ptr) {
206                         need_mm = true;
207                         break;
208                 }
209         }
210
211         if (need_mm && mmget_not_zero(alloc->vma_vm_mm))
212                 mm = alloc->vma_vm_mm;
213
214         if (mm) {
215                 mmap_write_lock(mm);
216                 vma = alloc->vma;
217         }
218
219         if (!vma && need_mm) {
220                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
221                                    "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
222                                    alloc->pid);
223                 goto err_no_vma;
224         }
225
226         for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
227                 int ret;
228                 bool on_lru;
229                 size_t index;
230
231                 index = (page_addr - alloc->buffer) / PAGE_SIZE;
232                 page = &alloc->pages[index];
233
234                 if (page->page_ptr) {
235                         trace_binder_alloc_lru_start(alloc, index);
236
237                         on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
238                         WARN_ON(!on_lru);
239
240                         trace_binder_alloc_lru_end(alloc, index);
241                         continue;
242                 }
243
244                 if (WARN_ON(!vma))
245                         goto err_page_ptr_cleared;
246
247                 trace_binder_alloc_page_start(alloc, index);
248                 page->page_ptr = alloc_page(GFP_KERNEL |
249                                             __GFP_HIGHMEM |
250                                             __GFP_ZERO);
251                 if (!page->page_ptr) {
252                         pr_err("%d: binder_alloc_buf failed for page at %pK\n",
253                                 alloc->pid, page_addr);
254                         goto err_alloc_page_failed;
255                 }
256                 page->alloc = alloc;
257                 INIT_LIST_HEAD(&page->lru);
258
259                 user_page_addr = (uintptr_t)page_addr;
260                 ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
261                 if (ret) {
262                         pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
263                                alloc->pid, user_page_addr);
264                         goto err_vm_insert_page_failed;
265                 }
266
267                 if (index + 1 > alloc->pages_high)
268                         alloc->pages_high = index + 1;
269
270                 trace_binder_alloc_page_end(alloc, index);
271         }
272         if (mm) {
273                 mmap_write_unlock(mm);
274                 mmput_async(mm);
275         }
276         return 0;
277
278 free_range:
279         for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) {
280                 bool ret;
281                 size_t index;
282
283                 index = (page_addr - alloc->buffer) / PAGE_SIZE;
284                 page = &alloc->pages[index];
285
286                 trace_binder_free_lru_start(alloc, index);
287
288                 ret = list_lru_add(&binder_alloc_lru, &page->lru);
289                 WARN_ON(!ret);
290
291                 trace_binder_free_lru_end(alloc, index);
292                 if (page_addr == start)
293                         break;
294                 continue;
295
296 err_vm_insert_page_failed:
297                 __free_page(page->page_ptr);
298                 page->page_ptr = NULL;
299 err_alloc_page_failed:
300 err_page_ptr_cleared:
301                 if (page_addr == start)
302                         break;
303         }
304 err_no_vma:
305         if (mm) {
306                 mmap_write_unlock(mm);
307                 mmput_async(mm);
308         }
309         return vma ? -ENOMEM : -ESRCH;
310 }
311
312
313 static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
314                 struct vm_area_struct *vma)
315 {
316         if (vma)
317                 alloc->vma_vm_mm = vma->vm_mm;
318         /*
319          * If we see alloc->vma is not NULL, buffer data structures set up
320          * completely. Look at smp_rmb side binder_alloc_get_vma.
321          * We also want to guarantee new alloc->vma_vm_mm is always visible
322          * if alloc->vma is set.
323          */
324         smp_wmb();
325         alloc->vma = vma;
326 }
327
328 static inline struct vm_area_struct *binder_alloc_get_vma(
329                 struct binder_alloc *alloc)
330 {
331         struct vm_area_struct *vma = NULL;
332
333         if (alloc->vma) {
334                 /* Look at description in binder_alloc_set_vma */
335                 smp_rmb();
336                 vma = alloc->vma;
337         }
338         return vma;
339 }
340
341 static void debug_low_async_space_locked(struct binder_alloc *alloc, int pid)
342 {
343         /*
344          * Find the amount and size of buffers allocated by the current caller;
345          * The idea is that once we cross the threshold, whoever is responsible
346          * for the low async space is likely to try to send another async txn,
347          * and at some point we'll catch them in the act. This is more efficient
348          * than keeping a map per pid.
349          */
350         struct rb_node *n;
351         struct binder_buffer *buffer;
352         size_t total_alloc_size = 0;
353         size_t num_buffers = 0;
354
355         for (n = rb_first(&alloc->allocated_buffers); n != NULL;
356                  n = rb_next(n)) {
357                 buffer = rb_entry(n, struct binder_buffer, rb_node);
358                 if (buffer->pid != pid)
359                         continue;
360                 if (!buffer->async_transaction)
361                         continue;
362                 total_alloc_size += binder_alloc_buffer_size(alloc, buffer);
363                 num_buffers++;
364         }
365
366         /*
367          * Warn if this pid has more than 50 transactions, or more than 50% of
368          * async space (which is 25% of total buffer size).
369          */
370         if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
371                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
372                              "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
373                               alloc->pid, pid, num_buffers, total_alloc_size);
374         }
375 }
376
377 static struct binder_buffer *binder_alloc_new_buf_locked(
378                                 struct binder_alloc *alloc,
379                                 size_t data_size,
380                                 size_t offsets_size,
381                                 size_t extra_buffers_size,
382                                 int is_async,
383                                 int pid)
384 {
385         struct rb_node *n = alloc->free_buffers.rb_node;
386         struct binder_buffer *buffer;
387         size_t buffer_size;
388         struct rb_node *best_fit = NULL;
389         void __user *has_page_addr;
390         void __user *end_page_addr;
391         size_t size, data_offsets_size;
392         int ret;
393
394         if (!binder_alloc_get_vma(alloc)) {
395                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
396                                    "%d: binder_alloc_buf, no vma\n",
397                                    alloc->pid);
398                 return ERR_PTR(-ESRCH);
399         }
400
401         data_offsets_size = ALIGN(data_size, sizeof(void *)) +
402                 ALIGN(offsets_size, sizeof(void *));
403
404         if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
405                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
406                                 "%d: got transaction with invalid size %zd-%zd\n",
407                                 alloc->pid, data_size, offsets_size);
408                 return ERR_PTR(-EINVAL);
409         }
410         size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
411         if (size < data_offsets_size || size < extra_buffers_size) {
412                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
413                                 "%d: got transaction with invalid extra_buffers_size %zd\n",
414                                 alloc->pid, extra_buffers_size);
415                 return ERR_PTR(-EINVAL);
416         }
417
418         /* Pad 0-size buffers so they get assigned unique addresses */
419         size = max(size, sizeof(void *));
420
421         if (is_async && alloc->free_async_space < size) {
422                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
423                              "%d: binder_alloc_buf size %zd failed, no async space left\n",
424                               alloc->pid, size);
425                 return ERR_PTR(-ENOSPC);
426         }
427
428         while (n) {
429                 buffer = rb_entry(n, struct binder_buffer, rb_node);
430                 BUG_ON(!buffer->free);
431                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
432
433                 if (size < buffer_size) {
434                         best_fit = n;
435                         n = n->rb_left;
436                 } else if (size > buffer_size)
437                         n = n->rb_right;
438                 else {
439                         best_fit = n;
440                         break;
441                 }
442         }
443         if (best_fit == NULL) {
444                 size_t allocated_buffers = 0;
445                 size_t largest_alloc_size = 0;
446                 size_t total_alloc_size = 0;
447                 size_t free_buffers = 0;
448                 size_t largest_free_size = 0;
449                 size_t total_free_size = 0;
450
451                 for (n = rb_first(&alloc->allocated_buffers); n != NULL;
452                      n = rb_next(n)) {
453                         buffer = rb_entry(n, struct binder_buffer, rb_node);
454                         buffer_size = binder_alloc_buffer_size(alloc, buffer);
455                         allocated_buffers++;
456                         total_alloc_size += buffer_size;
457                         if (buffer_size > largest_alloc_size)
458                                 largest_alloc_size = buffer_size;
459                 }
460                 for (n = rb_first(&alloc->free_buffers); n != NULL;
461                      n = rb_next(n)) {
462                         buffer = rb_entry(n, struct binder_buffer, rb_node);
463                         buffer_size = binder_alloc_buffer_size(alloc, buffer);
464                         free_buffers++;
465                         total_free_size += buffer_size;
466                         if (buffer_size > largest_free_size)
467                                 largest_free_size = buffer_size;
468                 }
469                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
470                                    "%d: binder_alloc_buf size %zd failed, no address space\n",
471                                    alloc->pid, size);
472                 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
473                                    "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
474                                    total_alloc_size, allocated_buffers,
475                                    largest_alloc_size, total_free_size,
476                                    free_buffers, largest_free_size);
477                 return ERR_PTR(-ENOSPC);
478         }
479         if (n == NULL) {
480                 buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
481                 buffer_size = binder_alloc_buffer_size(alloc, buffer);
482         }
483
484         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
485                      "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
486                       alloc->pid, size, buffer, buffer_size);
487
488         has_page_addr = (void __user *)
489                 (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK);
490         WARN_ON(n && buffer_size != size);
491         end_page_addr =
492                 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
493         if (end_page_addr > has_page_addr)
494                 end_page_addr = has_page_addr;
495         ret = binder_update_page_range(alloc, 1, (void __user *)
496                 PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr);
497         if (ret)
498                 return ERR_PTR(ret);
499
500         if (buffer_size != size) {
501                 struct binder_buffer *new_buffer;
502
503                 new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
504                 if (!new_buffer) {
505                         pr_err("%s: %d failed to alloc new buffer struct\n",
506                                __func__, alloc->pid);
507                         goto err_alloc_buf_struct_failed;
508                 }
509                 new_buffer->user_data = (u8 __user *)buffer->user_data + size;
510                 list_add(&new_buffer->entry, &buffer->entry);
511                 new_buffer->free = 1;
512                 binder_insert_free_buffer(alloc, new_buffer);
513         }
514
515         rb_erase(best_fit, &alloc->free_buffers);
516         buffer->free = 0;
517         buffer->allow_user_free = 0;
518         binder_insert_allocated_buffer_locked(alloc, buffer);
519         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
520                      "%d: binder_alloc_buf size %zd got %pK\n",
521                       alloc->pid, size, buffer);
522         buffer->data_size = data_size;
523         buffer->offsets_size = offsets_size;
524         buffer->async_transaction = is_async;
525         buffer->extra_buffers_size = extra_buffers_size;
526         buffer->pid = pid;
527         if (is_async) {
528                 alloc->free_async_space -= size;
529                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
530                              "%d: binder_alloc_buf size %zd async free %zd\n",
531                               alloc->pid, size, alloc->free_async_space);
532                 if (alloc->free_async_space < alloc->buffer_size / 10) {
533                         /*
534                          * Start detecting spammers once we have less than 20%
535                          * of async space left (which is less than 10% of total
536                          * buffer size).
537                          */
538                         debug_low_async_space_locked(alloc, pid);
539                 }
540         }
541         return buffer;
542
543 err_alloc_buf_struct_failed:
544         binder_update_page_range(alloc, 0, (void __user *)
545                                  PAGE_ALIGN((uintptr_t)buffer->user_data),
546                                  end_page_addr);
547         return ERR_PTR(-ENOMEM);
548 }
549
550 /**
551  * binder_alloc_new_buf() - Allocate a new binder buffer
552  * @alloc:              binder_alloc for this proc
553  * @data_size:          size of user data buffer
554  * @offsets_size:       user specified buffer offset
555  * @extra_buffers_size: size of extra space for meta-data (eg, security context)
556  * @is_async:           buffer for async transaction
557  * @pid:                                pid to attribute allocation to (used for debugging)
558  *
559  * Allocate a new buffer given the requested sizes. Returns
560  * the kernel version of the buffer pointer. The size allocated
561  * is the sum of the three given sizes (each rounded up to
562  * pointer-sized boundary)
563  *
564  * Return:      The allocated buffer or %ERR_PTR(-errno) if error
565  */
566 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
567                                            size_t data_size,
568                                            size_t offsets_size,
569                                            size_t extra_buffers_size,
570                                            int is_async,
571                                            int pid)
572 {
573         struct binder_buffer *buffer;
574
575         mutex_lock(&alloc->mutex);
576         buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
577                                              extra_buffers_size, is_async, pid);
578         mutex_unlock(&alloc->mutex);
579         return buffer;
580 }
581
582 static void __user *buffer_start_page(struct binder_buffer *buffer)
583 {
584         return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK);
585 }
586
587 static void __user *prev_buffer_end_page(struct binder_buffer *buffer)
588 {
589         return (void __user *)
590                 (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK);
591 }
592
593 static void binder_delete_free_buffer(struct binder_alloc *alloc,
594                                       struct binder_buffer *buffer)
595 {
596         struct binder_buffer *prev, *next = NULL;
597         bool to_free = true;
598
599         BUG_ON(alloc->buffers.next == &buffer->entry);
600         prev = binder_buffer_prev(buffer);
601         BUG_ON(!prev->free);
602         if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
603                 to_free = false;
604                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
605                                    "%d: merge free, buffer %pK share page with %pK\n",
606                                    alloc->pid, buffer->user_data,
607                                    prev->user_data);
608         }
609
610         if (!list_is_last(&buffer->entry, &alloc->buffers)) {
611                 next = binder_buffer_next(buffer);
612                 if (buffer_start_page(next) == buffer_start_page(buffer)) {
613                         to_free = false;
614                         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
615                                            "%d: merge free, buffer %pK share page with %pK\n",
616                                            alloc->pid,
617                                            buffer->user_data,
618                                            next->user_data);
619                 }
620         }
621
622         if (PAGE_ALIGNED(buffer->user_data)) {
623                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
624                                    "%d: merge free, buffer start %pK is page aligned\n",
625                                    alloc->pid, buffer->user_data);
626                 to_free = false;
627         }
628
629         if (to_free) {
630                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
631                                    "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
632                                    alloc->pid, buffer->user_data,
633                                    prev->user_data,
634                                    next ? next->user_data : NULL);
635                 binder_update_page_range(alloc, 0, buffer_start_page(buffer),
636                                          buffer_start_page(buffer) + PAGE_SIZE);
637         }
638         list_del(&buffer->entry);
639         kfree(buffer);
640 }
641
642 static void binder_free_buf_locked(struct binder_alloc *alloc,
643                                    struct binder_buffer *buffer)
644 {
645         size_t size, buffer_size;
646
647         buffer_size = binder_alloc_buffer_size(alloc, buffer);
648
649         size = ALIGN(buffer->data_size, sizeof(void *)) +
650                 ALIGN(buffer->offsets_size, sizeof(void *)) +
651                 ALIGN(buffer->extra_buffers_size, sizeof(void *));
652
653         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
654                      "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
655                       alloc->pid, buffer, size, buffer_size);
656
657         BUG_ON(buffer->free);
658         BUG_ON(size > buffer_size);
659         BUG_ON(buffer->transaction != NULL);
660         BUG_ON(buffer->user_data < alloc->buffer);
661         BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
662
663         if (buffer->async_transaction) {
664                 alloc->free_async_space += buffer_size;
665                 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
666                              "%d: binder_free_buf size %zd async free %zd\n",
667                               alloc->pid, size, alloc->free_async_space);
668         }
669
670         binder_update_page_range(alloc, 0,
671                 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data),
672                 (void __user *)(((uintptr_t)
673                           buffer->user_data + buffer_size) & PAGE_MASK));
674
675         rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
676         buffer->free = 1;
677         if (!list_is_last(&buffer->entry, &alloc->buffers)) {
678                 struct binder_buffer *next = binder_buffer_next(buffer);
679
680                 if (next->free) {
681                         rb_erase(&next->rb_node, &alloc->free_buffers);
682                         binder_delete_free_buffer(alloc, next);
683                 }
684         }
685         if (alloc->buffers.next != &buffer->entry) {
686                 struct binder_buffer *prev = binder_buffer_prev(buffer);
687
688                 if (prev->free) {
689                         binder_delete_free_buffer(alloc, buffer);
690                         rb_erase(&prev->rb_node, &alloc->free_buffers);
691                         buffer = prev;
692                 }
693         }
694         binder_insert_free_buffer(alloc, buffer);
695 }
696
697 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
698                                    struct binder_buffer *buffer);
699 /**
700  * binder_alloc_free_buf() - free a binder buffer
701  * @alloc:      binder_alloc for this proc
702  * @buffer:     kernel pointer to buffer
703  *
704  * Free the buffer allocated via binder_alloc_new_buf()
705  */
706 void binder_alloc_free_buf(struct binder_alloc *alloc,
707                             struct binder_buffer *buffer)
708 {
709         /*
710          * We could eliminate the call to binder_alloc_clear_buf()
711          * from binder_alloc_deferred_release() by moving this to
712          * binder_free_buf_locked(). However, that could
713          * increase contention for the alloc mutex if clear_on_free
714          * is used frequently for large buffers. The mutex is not
715          * needed for correctness here.
716          */
717         if (buffer->clear_on_free) {
718                 binder_alloc_clear_buf(alloc, buffer);
719                 buffer->clear_on_free = false;
720         }
721         mutex_lock(&alloc->mutex);
722         binder_free_buf_locked(alloc, buffer);
723         mutex_unlock(&alloc->mutex);
724 }
725
726 /**
727  * binder_alloc_mmap_handler() - map virtual address space for proc
728  * @alloc:      alloc structure for this proc
729  * @vma:        vma passed to mmap()
730  *
731  * Called by binder_mmap() to initialize the space specified in
732  * vma for allocating binder buffers
733  *
734  * Return:
735  *      0 = success
736  *      -EBUSY = address space already mapped
737  *      -ENOMEM = failed to map memory to given address space
738  */
739 int binder_alloc_mmap_handler(struct binder_alloc *alloc,
740                               struct vm_area_struct *vma)
741 {
742         int ret;
743         const char *failure_string;
744         struct binder_buffer *buffer;
745
746         mutex_lock(&binder_alloc_mmap_lock);
747         if (alloc->buffer_size) {
748                 ret = -EBUSY;
749                 failure_string = "already mapped";
750                 goto err_already_mapped;
751         }
752         alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
753                                    SZ_4M);
754         mutex_unlock(&binder_alloc_mmap_lock);
755
756         alloc->buffer = (void __user *)vma->vm_start;
757
758         alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
759                                sizeof(alloc->pages[0]),
760                                GFP_KERNEL);
761         if (alloc->pages == NULL) {
762                 ret = -ENOMEM;
763                 failure_string = "alloc page array";
764                 goto err_alloc_pages_failed;
765         }
766
767         buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
768         if (!buffer) {
769                 ret = -ENOMEM;
770                 failure_string = "alloc buffer struct";
771                 goto err_alloc_buf_struct_failed;
772         }
773
774         buffer->user_data = alloc->buffer;
775         list_add(&buffer->entry, &alloc->buffers);
776         buffer->free = 1;
777         binder_insert_free_buffer(alloc, buffer);
778         alloc->free_async_space = alloc->buffer_size / 2;
779         binder_alloc_set_vma(alloc, vma);
780         mmgrab(alloc->vma_vm_mm);
781
782         return 0;
783
784 err_alloc_buf_struct_failed:
785         kfree(alloc->pages);
786         alloc->pages = NULL;
787 err_alloc_pages_failed:
788         alloc->buffer = NULL;
789         mutex_lock(&binder_alloc_mmap_lock);
790         alloc->buffer_size = 0;
791 err_already_mapped:
792         mutex_unlock(&binder_alloc_mmap_lock);
793         binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
794                            "%s: %d %lx-%lx %s failed %d\n", __func__,
795                            alloc->pid, vma->vm_start, vma->vm_end,
796                            failure_string, ret);
797         return ret;
798 }
799
800
801 void binder_alloc_deferred_release(struct binder_alloc *alloc)
802 {
803         struct rb_node *n;
804         int buffers, page_count;
805         struct binder_buffer *buffer;
806
807         buffers = 0;
808         mutex_lock(&alloc->mutex);
809         BUG_ON(alloc->vma);
810
811         while ((n = rb_first(&alloc->allocated_buffers))) {
812                 buffer = rb_entry(n, struct binder_buffer, rb_node);
813
814                 /* Transaction should already have been freed */
815                 BUG_ON(buffer->transaction);
816
817                 if (buffer->clear_on_free) {
818                         binder_alloc_clear_buf(alloc, buffer);
819                         buffer->clear_on_free = false;
820                 }
821                 binder_free_buf_locked(alloc, buffer);
822                 buffers++;
823         }
824
825         while (!list_empty(&alloc->buffers)) {
826                 buffer = list_first_entry(&alloc->buffers,
827                                           struct binder_buffer, entry);
828                 WARN_ON(!buffer->free);
829
830                 list_del(&buffer->entry);
831                 WARN_ON_ONCE(!list_empty(&alloc->buffers));
832                 kfree(buffer);
833         }
834
835         page_count = 0;
836         if (alloc->pages) {
837                 int i;
838
839                 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
840                         void __user *page_addr;
841                         bool on_lru;
842
843                         if (!alloc->pages[i].page_ptr)
844                                 continue;
845
846                         on_lru = list_lru_del(&binder_alloc_lru,
847                                               &alloc->pages[i].lru);
848                         page_addr = alloc->buffer + i * PAGE_SIZE;
849                         binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
850                                      "%s: %d: page %d at %pK %s\n",
851                                      __func__, alloc->pid, i, page_addr,
852                                      on_lru ? "on lru" : "active");
853                         __free_page(alloc->pages[i].page_ptr);
854                         page_count++;
855                 }
856                 kfree(alloc->pages);
857         }
858         mutex_unlock(&alloc->mutex);
859         if (alloc->vma_vm_mm)
860                 mmdrop(alloc->vma_vm_mm);
861
862         binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
863                      "%s: %d buffers %d, pages %d\n",
864                      __func__, alloc->pid, buffers, page_count);
865 }
866
867 static void print_binder_buffer(struct seq_file *m, const char *prefix,
868                                 struct binder_buffer *buffer)
869 {
870         seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
871                    prefix, buffer->debug_id, buffer->user_data,
872                    buffer->data_size, buffer->offsets_size,
873                    buffer->extra_buffers_size,
874                    buffer->transaction ? "active" : "delivered");
875 }
876
877 /**
878  * binder_alloc_print_allocated() - print buffer info
879  * @m:     seq_file for output via seq_printf()
880  * @alloc: binder_alloc for this proc
881  *
882  * Prints information about every buffer associated with
883  * the binder_alloc state to the given seq_file
884  */
885 void binder_alloc_print_allocated(struct seq_file *m,
886                                   struct binder_alloc *alloc)
887 {
888         struct rb_node *n;
889
890         mutex_lock(&alloc->mutex);
891         for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
892                 print_binder_buffer(m, "  buffer",
893                                     rb_entry(n, struct binder_buffer, rb_node));
894         mutex_unlock(&alloc->mutex);
895 }
896
897 /**
898  * binder_alloc_print_pages() - print page usage
899  * @m:     seq_file for output via seq_printf()
900  * @alloc: binder_alloc for this proc
901  */
902 void binder_alloc_print_pages(struct seq_file *m,
903                               struct binder_alloc *alloc)
904 {
905         struct binder_lru_page *page;
906         int i;
907         int active = 0;
908         int lru = 0;
909         int free = 0;
910
911         mutex_lock(&alloc->mutex);
912         /*
913          * Make sure the binder_alloc is fully initialized, otherwise we might
914          * read inconsistent state.
915          */
916         if (binder_alloc_get_vma(alloc) != NULL) {
917                 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
918                         page = &alloc->pages[i];
919                         if (!page->page_ptr)
920                                 free++;
921                         else if (list_empty(&page->lru))
922                                 active++;
923                         else
924                                 lru++;
925                 }
926         }
927         mutex_unlock(&alloc->mutex);
928         seq_printf(m, "  pages: %d:%d:%d\n", active, lru, free);
929         seq_printf(m, "  pages high watermark: %zu\n", alloc->pages_high);
930 }
931
932 /**
933  * binder_alloc_get_allocated_count() - return count of buffers
934  * @alloc: binder_alloc for this proc
935  *
936  * Return: count of allocated buffers
937  */
938 int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
939 {
940         struct rb_node *n;
941         int count = 0;
942
943         mutex_lock(&alloc->mutex);
944         for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
945                 count++;
946         mutex_unlock(&alloc->mutex);
947         return count;
948 }
949
950
951 /**
952  * binder_alloc_vma_close() - invalidate address space
953  * @alloc: binder_alloc for this proc
954  *
955  * Called from binder_vma_close() when releasing address space.
956  * Clears alloc->vma to prevent new incoming transactions from
957  * allocating more buffers.
958  */
959 void binder_alloc_vma_close(struct binder_alloc *alloc)
960 {
961         binder_alloc_set_vma(alloc, NULL);
962 }
963
964 /**
965  * binder_alloc_free_page() - shrinker callback to free pages
966  * @item:   item to free
967  * @lock:   lock protecting the item
968  * @cb_arg: callback argument
969  *
970  * Called from list_lru_walk() in binder_shrink_scan() to free
971  * up pages when the system is under memory pressure.
972  */
973 enum lru_status binder_alloc_free_page(struct list_head *item,
974                                        struct list_lru_one *lru,
975                                        spinlock_t *lock,
976                                        void *cb_arg)
977         __must_hold(lock)
978 {
979         struct mm_struct *mm = NULL;
980         struct binder_lru_page *page = container_of(item,
981                                                     struct binder_lru_page,
982                                                     lru);
983         struct binder_alloc *alloc;
984         uintptr_t page_addr;
985         size_t index;
986         struct vm_area_struct *vma;
987
988         alloc = page->alloc;
989         if (!mutex_trylock(&alloc->mutex))
990                 goto err_get_alloc_mutex_failed;
991
992         if (!page->page_ptr)
993                 goto err_page_already_freed;
994
995         index = page - alloc->pages;
996         page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
997
998         mm = alloc->vma_vm_mm;
999         if (!mmget_not_zero(mm))
1000                 goto err_mmget;
1001         if (!mmap_read_trylock(mm))
1002                 goto err_mmap_read_lock_failed;
1003         vma = find_vma(mm, page_addr);
1004         if (vma && vma != binder_alloc_get_vma(alloc))
1005                 goto err_invalid_vma;
1006
1007         list_lru_isolate(lru, item);
1008         spin_unlock(lock);
1009
1010         if (vma) {
1011                 trace_binder_unmap_user_start(alloc, index);
1012
1013                 zap_page_range(vma, page_addr, PAGE_SIZE);
1014
1015                 trace_binder_unmap_user_end(alloc, index);
1016         }
1017         mmap_read_unlock(mm);
1018         mmput_async(mm);
1019
1020         trace_binder_unmap_kernel_start(alloc, index);
1021
1022         __free_page(page->page_ptr);
1023         page->page_ptr = NULL;
1024
1025         trace_binder_unmap_kernel_end(alloc, index);
1026
1027         spin_lock(lock);
1028         mutex_unlock(&alloc->mutex);
1029         return LRU_REMOVED_RETRY;
1030
1031 err_invalid_vma:
1032         mmap_read_unlock(mm);
1033 err_mmap_read_lock_failed:
1034         mmput_async(mm);
1035 err_mmget:
1036 err_page_already_freed:
1037         mutex_unlock(&alloc->mutex);
1038 err_get_alloc_mutex_failed:
1039         return LRU_SKIP;
1040 }
1041
1042 static unsigned long
1043 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1044 {
1045         unsigned long ret = list_lru_count(&binder_alloc_lru);
1046         return ret;
1047 }
1048
1049 static unsigned long
1050 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1051 {
1052         unsigned long ret;
1053
1054         ret = list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
1055                             NULL, sc->nr_to_scan);
1056         return ret;
1057 }
1058
1059 static struct shrinker binder_shrinker = {
1060         .count_objects = binder_shrink_count,
1061         .scan_objects = binder_shrink_scan,
1062         .seeks = DEFAULT_SEEKS,
1063 };
1064
1065 /**
1066  * binder_alloc_init() - called by binder_open() for per-proc initialization
1067  * @alloc: binder_alloc for this proc
1068  *
1069  * Called from binder_open() to initialize binder_alloc fields for
1070  * new binder proc
1071  */
1072 void binder_alloc_init(struct binder_alloc *alloc)
1073 {
1074         alloc->pid = current->group_leader->pid;
1075         mutex_init(&alloc->mutex);
1076         INIT_LIST_HEAD(&alloc->buffers);
1077 }
1078
1079 int binder_alloc_shrinker_init(void)
1080 {
1081         int ret = list_lru_init(&binder_alloc_lru);
1082
1083         if (ret == 0) {
1084                 ret = register_shrinker(&binder_shrinker);
1085                 if (ret)
1086                         list_lru_destroy(&binder_alloc_lru);
1087         }
1088         return ret;
1089 }
1090
1091 void binder_alloc_shrinker_exit(void)
1092 {
1093         unregister_shrinker(&binder_shrinker);
1094         list_lru_destroy(&binder_alloc_lru);
1095 }
1096
1097 /**
1098  * check_buffer() - verify that buffer/offset is safe to access
1099  * @alloc: binder_alloc for this proc
1100  * @buffer: binder buffer to be accessed
1101  * @offset: offset into @buffer data
1102  * @bytes: bytes to access from offset
1103  *
1104  * Check that the @offset/@bytes are within the size of the given
1105  * @buffer and that the buffer is currently active and not freeable.
1106  * Offsets must also be multiples of sizeof(u32). The kernel is
1107  * allowed to touch the buffer in two cases:
1108  *
1109  * 1) when the buffer is being created:
1110  *     (buffer->free == 0 && buffer->allow_user_free == 0)
1111  * 2) when the buffer is being torn down:
1112  *     (buffer->free == 0 && buffer->transaction == NULL).
1113  *
1114  * Return: true if the buffer is safe to access
1115  */
1116 static inline bool check_buffer(struct binder_alloc *alloc,
1117                                 struct binder_buffer *buffer,
1118                                 binder_size_t offset, size_t bytes)
1119 {
1120         size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1121
1122         return buffer_size >= bytes &&
1123                 offset <= buffer_size - bytes &&
1124                 IS_ALIGNED(offset, sizeof(u32)) &&
1125                 !buffer->free &&
1126                 (!buffer->allow_user_free || !buffer->transaction);
1127 }
1128
1129 /**
1130  * binder_alloc_get_page() - get kernel pointer for given buffer offset
1131  * @alloc: binder_alloc for this proc
1132  * @buffer: binder buffer to be accessed
1133  * @buffer_offset: offset into @buffer data
1134  * @pgoffp: address to copy final page offset to
1135  *
1136  * Lookup the struct page corresponding to the address
1137  * at @buffer_offset into @buffer->user_data. If @pgoffp is not
1138  * NULL, the byte-offset into the page is written there.
1139  *
1140  * The caller is responsible to ensure that the offset points
1141  * to a valid address within the @buffer and that @buffer is
1142  * not freeable by the user. Since it can't be freed, we are
1143  * guaranteed that the corresponding elements of @alloc->pages[]
1144  * cannot change.
1145  *
1146  * Return: struct page
1147  */
1148 static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
1149                                           struct binder_buffer *buffer,
1150                                           binder_size_t buffer_offset,
1151                                           pgoff_t *pgoffp)
1152 {
1153         binder_size_t buffer_space_offset = buffer_offset +
1154                 (buffer->user_data - alloc->buffer);
1155         pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
1156         size_t index = buffer_space_offset >> PAGE_SHIFT;
1157         struct binder_lru_page *lru_page;
1158
1159         lru_page = &alloc->pages[index];
1160         *pgoffp = pgoff;
1161         return lru_page->page_ptr;
1162 }
1163
1164 /**
1165  * binder_alloc_clear_buf() - zero out buffer
1166  * @alloc: binder_alloc for this proc
1167  * @buffer: binder buffer to be cleared
1168  *
1169  * memset the given buffer to 0
1170  */
1171 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
1172                                    struct binder_buffer *buffer)
1173 {
1174         size_t bytes = binder_alloc_buffer_size(alloc, buffer);
1175         binder_size_t buffer_offset = 0;
1176
1177         while (bytes) {
1178                 unsigned long size;
1179                 struct page *page;
1180                 pgoff_t pgoff;
1181                 void *kptr;
1182
1183                 page = binder_alloc_get_page(alloc, buffer,
1184                                              buffer_offset, &pgoff);
1185                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1186                 kptr = kmap(page) + pgoff;
1187                 memset(kptr, 0, size);
1188                 kunmap(page);
1189                 bytes -= size;
1190                 buffer_offset += size;
1191         }
1192 }
1193
1194 /**
1195  * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1196  * @alloc: binder_alloc for this proc
1197  * @buffer: binder buffer to be accessed
1198  * @buffer_offset: offset into @buffer data
1199  * @from: userspace pointer to source buffer
1200  * @bytes: bytes to copy
1201  *
1202  * Copy bytes from source userspace to target buffer.
1203  *
1204  * Return: bytes remaining to be copied
1205  */
1206 unsigned long
1207 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1208                                  struct binder_buffer *buffer,
1209                                  binder_size_t buffer_offset,
1210                                  const void __user *from,
1211                                  size_t bytes)
1212 {
1213         if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1214                 return bytes;
1215
1216         while (bytes) {
1217                 unsigned long size;
1218                 unsigned long ret;
1219                 struct page *page;
1220                 pgoff_t pgoff;
1221                 void *kptr;
1222
1223                 page = binder_alloc_get_page(alloc, buffer,
1224                                              buffer_offset, &pgoff);
1225                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1226                 kptr = kmap(page) + pgoff;
1227                 ret = copy_from_user(kptr, from, size);
1228                 kunmap(page);
1229                 if (ret)
1230                         return bytes - size + ret;
1231                 bytes -= size;
1232                 from += size;
1233                 buffer_offset += size;
1234         }
1235         return 0;
1236 }
1237
1238 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1239                                        bool to_buffer,
1240                                        struct binder_buffer *buffer,
1241                                        binder_size_t buffer_offset,
1242                                        void *ptr,
1243                                        size_t bytes)
1244 {
1245         /* All copies must be 32-bit aligned and 32-bit size */
1246         if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1247                 return -EINVAL;
1248
1249         while (bytes) {
1250                 unsigned long size;
1251                 struct page *page;
1252                 pgoff_t pgoff;
1253                 void *tmpptr;
1254                 void *base_ptr;
1255
1256                 page = binder_alloc_get_page(alloc, buffer,
1257                                              buffer_offset, &pgoff);
1258                 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1259                 base_ptr = kmap_atomic(page);
1260                 tmpptr = base_ptr + pgoff;
1261                 if (to_buffer)
1262                         memcpy(tmpptr, ptr, size);
1263                 else
1264                         memcpy(ptr, tmpptr, size);
1265                 /*
1266                  * kunmap_atomic() takes care of flushing the cache
1267                  * if this device has VIVT cache arch
1268                  */
1269                 kunmap_atomic(base_ptr);
1270                 bytes -= size;
1271                 pgoff = 0;
1272                 ptr = ptr + size;
1273                 buffer_offset += size;
1274         }
1275         return 0;
1276 }
1277
1278 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1279                                 struct binder_buffer *buffer,
1280                                 binder_size_t buffer_offset,
1281                                 void *src,
1282                                 size_t bytes)
1283 {
1284         return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1285                                            src, bytes);
1286 }
1287
1288 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1289                                   void *dest,
1290                                   struct binder_buffer *buffer,
1291                                   binder_size_t buffer_offset,
1292                                   size_t bytes)
1293 {
1294         return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1295                                            dest, bytes);
1296 }
1297