GNU Linux-libre 4.14.313-gnu1
[releases.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  */
26 #define pr_fmt(fmt) "ACPI: " fmt
27
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h>       /* need_resched() */
32 #include <linux/sort.h>
33 #include <linux/tick.h>
34 #include <linux/cpuidle.h>
35 #include <linux/cpu.h>
36 #include <acpi/processor.h>
37
38 /*
39  * Include the apic definitions for x86 to have the APIC timer related defines
40  * available also for UP (on SMP it gets magically included via linux/smp.h).
41  * asm/acpi.h is not an option, as it would require more include magic. Also
42  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
43  */
44 #ifdef CONFIG_X86
45 #include <asm/apic.h>
46 #endif
47
48 #define ACPI_PROCESSOR_CLASS            "processor"
49 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
50 ACPI_MODULE_NAME("processor_idle");
51
52 #define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
53
54 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
55 module_param(max_cstate, uint, 0000);
56 static unsigned int nocst __read_mostly;
57 module_param(nocst, uint, 0000);
58 static int bm_check_disable __read_mostly;
59 module_param(bm_check_disable, uint, 0000);
60
61 static unsigned int latency_factor __read_mostly = 2;
62 module_param(latency_factor, uint, 0644);
63
64 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
65
66 struct cpuidle_driver acpi_idle_driver = {
67         .name =         "acpi_idle",
68         .owner =        THIS_MODULE,
69 };
70
71 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
72 static
73 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
74
75 static int disabled_by_idle_boot_param(void)
76 {
77         return boot_option_idle_override == IDLE_POLL ||
78                 boot_option_idle_override == IDLE_HALT;
79 }
80
81 /*
82  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
83  * For now disable this. Probably a bug somewhere else.
84  *
85  * To skip this limit, boot/load with a large max_cstate limit.
86  */
87 static int set_max_cstate(const struct dmi_system_id *id)
88 {
89         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
90                 return 0;
91
92         pr_notice("%s detected - limiting to C%ld max_cstate."
93                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
94                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
95
96         max_cstate = (long)id->driver_data;
97
98         return 0;
99 }
100
101 static const struct dmi_system_id processor_power_dmi_table[] = {
102         { set_max_cstate, "Clevo 5600D", {
103           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
104           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
105          (void *)2},
106         { set_max_cstate, "Pavilion zv5000", {
107           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
108           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
109          (void *)1},
110         { set_max_cstate, "Asus L8400B", {
111           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
112           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
113          (void *)1},
114         {},
115 };
116
117
118 /*
119  * Callers should disable interrupts before the call and enable
120  * interrupts after return.
121  */
122 static void __cpuidle acpi_safe_halt(void)
123 {
124         if (!tif_need_resched()) {
125                 safe_halt();
126                 local_irq_disable();
127         }
128 }
129
130 #ifdef ARCH_APICTIMER_STOPS_ON_C3
131
132 /*
133  * Some BIOS implementations switch to C3 in the published C2 state.
134  * This seems to be a common problem on AMD boxen, but other vendors
135  * are affected too. We pick the most conservative approach: we assume
136  * that the local APIC stops in both C2 and C3.
137  */
138 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
139                                    struct acpi_processor_cx *cx)
140 {
141         struct acpi_processor_power *pwr = &pr->power;
142         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
143
144         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
145                 return;
146
147         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
148                 type = ACPI_STATE_C1;
149
150         /*
151          * Check, if one of the previous states already marked the lapic
152          * unstable
153          */
154         if (pwr->timer_broadcast_on_state < state)
155                 return;
156
157         if (cx->type >= type)
158                 pr->power.timer_broadcast_on_state = state;
159 }
160
161 static void __lapic_timer_propagate_broadcast(void *arg)
162 {
163         struct acpi_processor *pr = (struct acpi_processor *) arg;
164
165         if (pr->power.timer_broadcast_on_state < INT_MAX)
166                 tick_broadcast_enable();
167         else
168                 tick_broadcast_disable();
169 }
170
171 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
172 {
173         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
174                                  (void *)pr, 1);
175 }
176
177 /* Power(C) State timer broadcast control */
178 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
179                                        struct acpi_processor_cx *cx,
180                                        int broadcast)
181 {
182         int state = cx - pr->power.states;
183
184         if (state >= pr->power.timer_broadcast_on_state) {
185                 if (broadcast)
186                         tick_broadcast_enter();
187                 else
188                         tick_broadcast_exit();
189         }
190 }
191
192 #else
193
194 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
195                                    struct acpi_processor_cx *cstate) { }
196 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
197 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
198                                        struct acpi_processor_cx *cx,
199                                        int broadcast)
200 {
201 }
202
203 #endif
204
205 #if defined(CONFIG_X86)
206 static void tsc_check_state(int state)
207 {
208         switch (boot_cpu_data.x86_vendor) {
209         case X86_VENDOR_AMD:
210         case X86_VENDOR_INTEL:
211                 /*
212                  * AMD Fam10h TSC will tick in all
213                  * C/P/S0/S1 states when this bit is set.
214                  */
215                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
216                         return;
217
218                 /*FALL THROUGH*/
219         default:
220                 /* TSC could halt in idle, so notify users */
221                 if (state > ACPI_STATE_C1)
222                         mark_tsc_unstable("TSC halts in idle");
223         }
224 }
225 #else
226 static void tsc_check_state(int state) { return; }
227 #endif
228
229 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
230 {
231
232         if (!pr->pblk)
233                 return -ENODEV;
234
235         /* if info is obtained from pblk/fadt, type equals state */
236         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
237         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
238
239 #ifndef CONFIG_HOTPLUG_CPU
240         /*
241          * Check for P_LVL2_UP flag before entering C2 and above on
242          * an SMP system.
243          */
244         if ((num_online_cpus() > 1) &&
245             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
246                 return -ENODEV;
247 #endif
248
249         /* determine C2 and C3 address from pblk */
250         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
251         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
252
253         /* determine latencies from FADT */
254         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
255         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
256
257         /*
258          * FADT specified C2 latency must be less than or equal to
259          * 100 microseconds.
260          */
261         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
262                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
263                         "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
264                 /* invalidate C2 */
265                 pr->power.states[ACPI_STATE_C2].address = 0;
266         }
267
268         /*
269          * FADT supplied C3 latency must be less than or equal to
270          * 1000 microseconds.
271          */
272         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
273                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
274                         "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
275                 /* invalidate C3 */
276                 pr->power.states[ACPI_STATE_C3].address = 0;
277         }
278
279         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
280                           "lvl2[0x%08x] lvl3[0x%08x]\n",
281                           pr->power.states[ACPI_STATE_C2].address,
282                           pr->power.states[ACPI_STATE_C3].address));
283
284         return 0;
285 }
286
287 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
288 {
289         if (!pr->power.states[ACPI_STATE_C1].valid) {
290                 /* set the first C-State to C1 */
291                 /* all processors need to support C1 */
292                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
293                 pr->power.states[ACPI_STATE_C1].valid = 1;
294                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
295         }
296         /* the C0 state only exists as a filler in our array */
297         pr->power.states[ACPI_STATE_C0].valid = 1;
298         return 0;
299 }
300
301 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
302 {
303         acpi_status status;
304         u64 count;
305         int current_count;
306         int i, ret = 0;
307         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
308         union acpi_object *cst;
309
310         if (nocst)
311                 return -ENODEV;
312
313         current_count = 0;
314
315         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
316         if (ACPI_FAILURE(status)) {
317                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
318                 return -ENODEV;
319         }
320
321         cst = buffer.pointer;
322
323         /* There must be at least 2 elements */
324         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
325                 pr_err("not enough elements in _CST\n");
326                 ret = -EFAULT;
327                 goto end;
328         }
329
330         count = cst->package.elements[0].integer.value;
331
332         /* Validate number of power states. */
333         if (count < 1 || count != cst->package.count - 1) {
334                 pr_err("count given by _CST is not valid\n");
335                 ret = -EFAULT;
336                 goto end;
337         }
338
339         /* Tell driver that at least _CST is supported. */
340         pr->flags.has_cst = 1;
341
342         for (i = 1; i <= count; i++) {
343                 union acpi_object *element;
344                 union acpi_object *obj;
345                 struct acpi_power_register *reg;
346                 struct acpi_processor_cx cx;
347
348                 memset(&cx, 0, sizeof(cx));
349
350                 element = &(cst->package.elements[i]);
351                 if (element->type != ACPI_TYPE_PACKAGE)
352                         continue;
353
354                 if (element->package.count != 4)
355                         continue;
356
357                 obj = &(element->package.elements[0]);
358
359                 if (obj->type != ACPI_TYPE_BUFFER)
360                         continue;
361
362                 reg = (struct acpi_power_register *)obj->buffer.pointer;
363
364                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
365                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
366                         continue;
367
368                 /* There should be an easy way to extract an integer... */
369                 obj = &(element->package.elements[1]);
370                 if (obj->type != ACPI_TYPE_INTEGER)
371                         continue;
372
373                 cx.type = obj->integer.value;
374                 /*
375                  * Some buggy BIOSes won't list C1 in _CST -
376                  * Let acpi_processor_get_power_info_default() handle them later
377                  */
378                 if (i == 1 && cx.type != ACPI_STATE_C1)
379                         current_count++;
380
381                 cx.address = reg->address;
382                 cx.index = current_count + 1;
383
384                 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
385                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
386                         if (acpi_processor_ffh_cstate_probe
387                                         (pr->id, &cx, reg) == 0) {
388                                 cx.entry_method = ACPI_CSTATE_FFH;
389                         } else if (cx.type == ACPI_STATE_C1) {
390                                 /*
391                                  * C1 is a special case where FIXED_HARDWARE
392                                  * can be handled in non-MWAIT way as well.
393                                  * In that case, save this _CST entry info.
394                                  * Otherwise, ignore this info and continue.
395                                  */
396                                 cx.entry_method = ACPI_CSTATE_HALT;
397                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
398                         } else {
399                                 continue;
400                         }
401                         if (cx.type == ACPI_STATE_C1 &&
402                             (boot_option_idle_override == IDLE_NOMWAIT)) {
403                                 /*
404                                  * In most cases the C1 space_id obtained from
405                                  * _CST object is FIXED_HARDWARE access mode.
406                                  * But when the option of idle=halt is added,
407                                  * the entry_method type should be changed from
408                                  * CSTATE_FFH to CSTATE_HALT.
409                                  * When the option of idle=nomwait is added,
410                                  * the C1 entry_method type should be
411                                  * CSTATE_HALT.
412                                  */
413                                 cx.entry_method = ACPI_CSTATE_HALT;
414                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
415                         }
416                 } else {
417                         snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
418                                  cx.address);
419                 }
420
421                 if (cx.type == ACPI_STATE_C1) {
422                         cx.valid = 1;
423                 }
424
425                 obj = &(element->package.elements[2]);
426                 if (obj->type != ACPI_TYPE_INTEGER)
427                         continue;
428
429                 cx.latency = obj->integer.value;
430
431                 obj = &(element->package.elements[3]);
432                 if (obj->type != ACPI_TYPE_INTEGER)
433                         continue;
434
435                 current_count++;
436                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
437
438                 /*
439                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
440                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
441                  */
442                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
443                         pr_warn("Limiting number of power states to max (%d)\n",
444                                 ACPI_PROCESSOR_MAX_POWER);
445                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
446                         break;
447                 }
448         }
449
450         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
451                           current_count));
452
453         /* Validate number of power states discovered */
454         if (current_count < 2)
455                 ret = -EFAULT;
456
457       end:
458         kfree(buffer.pointer);
459
460         return ret;
461 }
462
463 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
464                                            struct acpi_processor_cx *cx)
465 {
466         static int bm_check_flag = -1;
467         static int bm_control_flag = -1;
468
469
470         if (!cx->address)
471                 return;
472
473         /*
474          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
475          * DMA transfers are used by any ISA device to avoid livelock.
476          * Note that we could disable Type-F DMA (as recommended by
477          * the erratum), but this is known to disrupt certain ISA
478          * devices thus we take the conservative approach.
479          */
480         else if (errata.piix4.fdma) {
481                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
482                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
483                 return;
484         }
485
486         /* All the logic here assumes flags.bm_check is same across all CPUs */
487         if (bm_check_flag == -1) {
488                 /* Determine whether bm_check is needed based on CPU  */
489                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
490                 bm_check_flag = pr->flags.bm_check;
491                 bm_control_flag = pr->flags.bm_control;
492         } else {
493                 pr->flags.bm_check = bm_check_flag;
494                 pr->flags.bm_control = bm_control_flag;
495         }
496
497         if (pr->flags.bm_check) {
498                 if (!pr->flags.bm_control) {
499                         if (pr->flags.has_cst != 1) {
500                                 /* bus mastering control is necessary */
501                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
502                                         "C3 support requires BM control\n"));
503                                 return;
504                         } else {
505                                 /* Here we enter C3 without bus mastering */
506                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
507                                         "C3 support without BM control\n"));
508                         }
509                 }
510         } else {
511                 /*
512                  * WBINVD should be set in fadt, for C3 state to be
513                  * supported on when bm_check is not required.
514                  */
515                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
516                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
517                                           "Cache invalidation should work properly"
518                                           " for C3 to be enabled on SMP systems\n"));
519                         return;
520                 }
521         }
522
523         /*
524          * Otherwise we've met all of our C3 requirements.
525          * Normalize the C3 latency to expidite policy.  Enable
526          * checking of bus mastering status (bm_check) so we can
527          * use this in our C3 policy
528          */
529         cx->valid = 1;
530
531         /*
532          * On older chipsets, BM_RLD needs to be set
533          * in order for Bus Master activity to wake the
534          * system from C3.  Newer chipsets handle DMA
535          * during C3 automatically and BM_RLD is a NOP.
536          * In either case, the proper way to
537          * handle BM_RLD is to set it and leave it set.
538          */
539         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
540
541         return;
542 }
543
544 static int acpi_cst_latency_cmp(const void *a, const void *b)
545 {
546         const struct acpi_processor_cx *x = a, *y = b;
547
548         if (!(x->valid && y->valid))
549                 return 0;
550         if (x->latency > y->latency)
551                 return 1;
552         if (x->latency < y->latency)
553                 return -1;
554         return 0;
555 }
556 static void acpi_cst_latency_swap(void *a, void *b, int n)
557 {
558         struct acpi_processor_cx *x = a, *y = b;
559         u32 tmp;
560
561         if (!(x->valid && y->valid))
562                 return;
563         tmp = x->latency;
564         x->latency = y->latency;
565         y->latency = tmp;
566 }
567
568 static int acpi_processor_power_verify(struct acpi_processor *pr)
569 {
570         unsigned int i;
571         unsigned int working = 0;
572         unsigned int last_latency = 0;
573         unsigned int last_type = 0;
574         bool buggy_latency = false;
575
576         pr->power.timer_broadcast_on_state = INT_MAX;
577
578         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
579                 struct acpi_processor_cx *cx = &pr->power.states[i];
580
581                 switch (cx->type) {
582                 case ACPI_STATE_C1:
583                         cx->valid = 1;
584                         break;
585
586                 case ACPI_STATE_C2:
587                         if (!cx->address)
588                                 break;
589                         cx->valid = 1;
590                         break;
591
592                 case ACPI_STATE_C3:
593                         acpi_processor_power_verify_c3(pr, cx);
594                         break;
595                 }
596                 if (!cx->valid)
597                         continue;
598                 if (cx->type >= last_type && cx->latency < last_latency)
599                         buggy_latency = true;
600                 last_latency = cx->latency;
601                 last_type = cx->type;
602
603                 lapic_timer_check_state(i, pr, cx);
604                 tsc_check_state(cx->type);
605                 working++;
606         }
607
608         if (buggy_latency) {
609                 pr_notice("FW issue: working around C-state latencies out of order\n");
610                 sort(&pr->power.states[1], max_cstate,
611                      sizeof(struct acpi_processor_cx),
612                      acpi_cst_latency_cmp,
613                      acpi_cst_latency_swap);
614         }
615
616         lapic_timer_propagate_broadcast(pr);
617
618         return (working);
619 }
620
621 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
622 {
623         unsigned int i;
624         int result;
625
626
627         /* NOTE: the idle thread may not be running while calling
628          * this function */
629
630         /* Zero initialize all the C-states info. */
631         memset(pr->power.states, 0, sizeof(pr->power.states));
632
633         result = acpi_processor_get_power_info_cst(pr);
634         if (result == -ENODEV)
635                 result = acpi_processor_get_power_info_fadt(pr);
636
637         if (result)
638                 return result;
639
640         acpi_processor_get_power_info_default(pr);
641
642         pr->power.count = acpi_processor_power_verify(pr);
643
644         /*
645          * if one state of type C2 or C3 is available, mark this
646          * CPU as being "idle manageable"
647          */
648         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
649                 if (pr->power.states[i].valid) {
650                         pr->power.count = i;
651                         if (pr->power.states[i].type >= ACPI_STATE_C2)
652                                 pr->flags.power = 1;
653                 }
654         }
655
656         return 0;
657 }
658
659 /**
660  * acpi_idle_bm_check - checks if bus master activity was detected
661  */
662 static int acpi_idle_bm_check(void)
663 {
664         u32 bm_status = 0;
665
666         if (bm_check_disable)
667                 return 0;
668
669         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
670         if (bm_status)
671                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
672         /*
673          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
674          * the true state of bus mastering activity; forcing us to
675          * manually check the BMIDEA bit of each IDE channel.
676          */
677         else if (errata.piix4.bmisx) {
678                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
679                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
680                         bm_status = 1;
681         }
682         return bm_status;
683 }
684
685 /**
686  * acpi_idle_do_entry - enter idle state using the appropriate method
687  * @cx: cstate data
688  *
689  * Caller disables interrupt before call and enables interrupt after return.
690  */
691 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
692 {
693         if (cx->entry_method == ACPI_CSTATE_FFH) {
694                 /* Call into architectural FFH based C-state */
695                 acpi_processor_ffh_cstate_enter(cx);
696         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
697                 acpi_safe_halt();
698         } else {
699                 /* IO port based C-state */
700                 inb(cx->address);
701                 /* Dummy wait op - must do something useless after P_LVL2 read
702                    because chipsets cannot guarantee that STPCLK# signal
703                    gets asserted in time to freeze execution properly. */
704                 inl(acpi_gbl_FADT.xpm_timer_block.address);
705         }
706 }
707
708 /**
709  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
710  * @dev: the target CPU
711  * @index: the index of suggested state
712  */
713 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
714 {
715         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
716
717         ACPI_FLUSH_CPU_CACHE();
718
719         while (1) {
720
721                 if (cx->entry_method == ACPI_CSTATE_HALT)
722                         safe_halt();
723                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
724                         inb(cx->address);
725                         /* See comment in acpi_idle_do_entry() */
726                         inl(acpi_gbl_FADT.xpm_timer_block.address);
727                 } else
728                         return -ENODEV;
729         }
730
731         /* Never reached */
732         return 0;
733 }
734
735 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
736 {
737         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
738                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
739 }
740
741 static int c3_cpu_count;
742 static DEFINE_RAW_SPINLOCK(c3_lock);
743
744 /**
745  * acpi_idle_enter_bm - enters C3 with proper BM handling
746  * @pr: Target processor
747  * @cx: Target state context
748  * @timer_bc: Whether or not to change timer mode to broadcast
749  */
750 static void acpi_idle_enter_bm(struct acpi_processor *pr,
751                                struct acpi_processor_cx *cx, bool timer_bc)
752 {
753         acpi_unlazy_tlb(smp_processor_id());
754
755         /*
756          * Must be done before busmaster disable as we might need to
757          * access HPET !
758          */
759         if (timer_bc)
760                 lapic_timer_state_broadcast(pr, cx, 1);
761
762         /*
763          * disable bus master
764          * bm_check implies we need ARB_DIS
765          * bm_control implies whether we can do ARB_DIS
766          *
767          * That leaves a case where bm_check is set and bm_control is
768          * not set. In that case we cannot do much, we enter C3
769          * without doing anything.
770          */
771         if (pr->flags.bm_control) {
772                 raw_spin_lock(&c3_lock);
773                 c3_cpu_count++;
774                 /* Disable bus master arbitration when all CPUs are in C3 */
775                 if (c3_cpu_count == num_online_cpus())
776                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
777                 raw_spin_unlock(&c3_lock);
778         }
779
780         acpi_idle_do_entry(cx);
781
782         /* Re-enable bus master arbitration */
783         if (pr->flags.bm_control) {
784                 raw_spin_lock(&c3_lock);
785                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
786                 c3_cpu_count--;
787                 raw_spin_unlock(&c3_lock);
788         }
789
790         if (timer_bc)
791                 lapic_timer_state_broadcast(pr, cx, 0);
792 }
793
794 static int acpi_idle_enter(struct cpuidle_device *dev,
795                            struct cpuidle_driver *drv, int index)
796 {
797         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
798         struct acpi_processor *pr;
799
800         pr = __this_cpu_read(processors);
801         if (unlikely(!pr))
802                 return -EINVAL;
803
804         if (cx->type != ACPI_STATE_C1) {
805                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
806                         index = ACPI_IDLE_STATE_START;
807                         cx = per_cpu(acpi_cstate[index], dev->cpu);
808                 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
809                         if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
810                                 acpi_idle_enter_bm(pr, cx, true);
811                                 return index;
812                         } else if (drv->safe_state_index >= 0) {
813                                 index = drv->safe_state_index;
814                                 cx = per_cpu(acpi_cstate[index], dev->cpu);
815                         } else {
816                                 acpi_safe_halt();
817                                 return -EBUSY;
818                         }
819                 }
820         }
821
822         lapic_timer_state_broadcast(pr, cx, 1);
823
824         if (cx->type == ACPI_STATE_C3)
825                 ACPI_FLUSH_CPU_CACHE();
826
827         acpi_idle_do_entry(cx);
828
829         lapic_timer_state_broadcast(pr, cx, 0);
830
831         return index;
832 }
833
834 static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
835                                    struct cpuidle_driver *drv, int index)
836 {
837         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
838
839         if (cx->type == ACPI_STATE_C3) {
840                 struct acpi_processor *pr = __this_cpu_read(processors);
841
842                 if (unlikely(!pr))
843                         return;
844
845                 if (pr->flags.bm_check) {
846                         acpi_idle_enter_bm(pr, cx, false);
847                         return;
848                 } else {
849                         ACPI_FLUSH_CPU_CACHE();
850                 }
851         }
852         acpi_idle_do_entry(cx);
853 }
854
855 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
856                                            struct cpuidle_device *dev)
857 {
858         int i, count = ACPI_IDLE_STATE_START;
859         struct acpi_processor_cx *cx;
860
861         if (max_cstate == 0)
862                 max_cstate = 1;
863
864         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
865                 cx = &pr->power.states[i];
866
867                 if (!cx->valid)
868                         continue;
869
870                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
871
872                 count++;
873                 if (count == CPUIDLE_STATE_MAX)
874                         break;
875         }
876
877         if (!count)
878                 return -EINVAL;
879
880         return 0;
881 }
882
883 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
884 {
885         int i, count;
886         struct acpi_processor_cx *cx;
887         struct cpuidle_state *state;
888         struct cpuidle_driver *drv = &acpi_idle_driver;
889
890         if (max_cstate == 0)
891                 max_cstate = 1;
892
893         if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
894                 cpuidle_poll_state_init(drv);
895                 count = 1;
896         } else {
897                 count = 0;
898         }
899
900         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
901                 cx = &pr->power.states[i];
902
903                 if (!cx->valid)
904                         continue;
905
906                 state = &drv->states[count];
907                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
908                 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
909                 state->exit_latency = cx->latency;
910                 state->target_residency = cx->latency * latency_factor;
911                 state->enter = acpi_idle_enter;
912
913                 state->flags = 0;
914                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
915                         state->enter_dead = acpi_idle_play_dead;
916                         drv->safe_state_index = count;
917                 }
918                 /*
919                  * Halt-induced C1 is not good for ->enter_s2idle, because it
920                  * re-enables interrupts on exit.  Moreover, C1 is generally not
921                  * particularly interesting from the suspend-to-idle angle, so
922                  * avoid C1 and the situations in which we may need to fall back
923                  * to it altogether.
924                  */
925                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
926                         state->enter_s2idle = acpi_idle_enter_s2idle;
927
928                 count++;
929                 if (count == CPUIDLE_STATE_MAX)
930                         break;
931         }
932
933         drv->state_count = count;
934
935         if (!count)
936                 return -EINVAL;
937
938         return 0;
939 }
940
941 static inline void acpi_processor_cstate_first_run_checks(void)
942 {
943         acpi_status status;
944         static int first_run;
945
946         if (first_run)
947                 return;
948         dmi_check_system(processor_power_dmi_table);
949         max_cstate = acpi_processor_cstate_check(max_cstate);
950         if (max_cstate < ACPI_C_STATES_MAX)
951                 pr_notice("ACPI: processor limited to max C-state %d\n",
952                           max_cstate);
953         first_run++;
954
955         if (acpi_gbl_FADT.cst_control && !nocst) {
956                 status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
957                                             acpi_gbl_FADT.cst_control, 8);
958                 if (ACPI_FAILURE(status))
959                         ACPI_EXCEPTION((AE_INFO, status,
960                                         "Notifying BIOS of _CST ability failed"));
961         }
962 }
963 #else
964
965 static inline int disabled_by_idle_boot_param(void) { return 0; }
966 static inline void acpi_processor_cstate_first_run_checks(void) { }
967 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
968 {
969         return -ENODEV;
970 }
971
972 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
973                                            struct cpuidle_device *dev)
974 {
975         return -EINVAL;
976 }
977
978 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
979 {
980         return -EINVAL;
981 }
982
983 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
984
985 struct acpi_lpi_states_array {
986         unsigned int size;
987         unsigned int composite_states_size;
988         struct acpi_lpi_state *entries;
989         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
990 };
991
992 static int obj_get_integer(union acpi_object *obj, u32 *value)
993 {
994         if (obj->type != ACPI_TYPE_INTEGER)
995                 return -EINVAL;
996
997         *value = obj->integer.value;
998         return 0;
999 }
1000
1001 static int acpi_processor_evaluate_lpi(acpi_handle handle,
1002                                        struct acpi_lpi_states_array *info)
1003 {
1004         acpi_status status;
1005         int ret = 0;
1006         int pkg_count, state_idx = 1, loop;
1007         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1008         union acpi_object *lpi_data;
1009         struct acpi_lpi_state *lpi_state;
1010
1011         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
1012         if (ACPI_FAILURE(status)) {
1013                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
1014                 return -ENODEV;
1015         }
1016
1017         lpi_data = buffer.pointer;
1018
1019         /* There must be at least 4 elements = 3 elements + 1 package */
1020         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
1021             lpi_data->package.count < 4) {
1022                 pr_debug("not enough elements in _LPI\n");
1023                 ret = -ENODATA;
1024                 goto end;
1025         }
1026
1027         pkg_count = lpi_data->package.elements[2].integer.value;
1028
1029         /* Validate number of power states. */
1030         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
1031                 pr_debug("count given by _LPI is not valid\n");
1032                 ret = -ENODATA;
1033                 goto end;
1034         }
1035
1036         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
1037         if (!lpi_state) {
1038                 ret = -ENOMEM;
1039                 goto end;
1040         }
1041
1042         info->size = pkg_count;
1043         info->entries = lpi_state;
1044
1045         /* LPI States start at index 3 */
1046         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
1047                 union acpi_object *element, *pkg_elem, *obj;
1048
1049                 element = &lpi_data->package.elements[loop];
1050                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1051                         continue;
1052
1053                 pkg_elem = element->package.elements;
1054
1055                 obj = pkg_elem + 6;
1056                 if (obj->type == ACPI_TYPE_BUFFER) {
1057                         struct acpi_power_register *reg;
1058
1059                         reg = (struct acpi_power_register *)obj->buffer.pointer;
1060                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1061                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1062                                 continue;
1063
1064                         lpi_state->address = reg->address;
1065                         lpi_state->entry_method =
1066                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1067                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1068                 } else if (obj->type == ACPI_TYPE_INTEGER) {
1069                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1070                         lpi_state->address = obj->integer.value;
1071                 } else {
1072                         continue;
1073                 }
1074
1075                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1076
1077                 obj = pkg_elem + 9;
1078                 if (obj->type == ACPI_TYPE_STRING)
1079                         strlcpy(lpi_state->desc, obj->string.pointer,
1080                                 ACPI_CX_DESC_LEN);
1081
1082                 lpi_state->index = state_idx;
1083                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1084                         pr_debug("No min. residency found, assuming 10 us\n");
1085                         lpi_state->min_residency = 10;
1086                 }
1087
1088                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1089                         pr_debug("No wakeup residency found, assuming 10 us\n");
1090                         lpi_state->wake_latency = 10;
1091                 }
1092
1093                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1094                         lpi_state->flags = 0;
1095
1096                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1097                         lpi_state->arch_flags = 0;
1098
1099                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1100                         lpi_state->res_cnt_freq = 1;
1101
1102                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1103                         lpi_state->enable_parent_state = 0;
1104         }
1105
1106         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1107 end:
1108         kfree(buffer.pointer);
1109         return ret;
1110 }
1111
1112 /*
1113  * flat_state_cnt - the number of composite LPI states after the process of flattening
1114  */
1115 static int flat_state_cnt;
1116
1117 /**
1118  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1119  *
1120  * @local: local LPI state
1121  * @parent: parent LPI state
1122  * @result: composite LPI state
1123  */
1124 static bool combine_lpi_states(struct acpi_lpi_state *local,
1125                                struct acpi_lpi_state *parent,
1126                                struct acpi_lpi_state *result)
1127 {
1128         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1129                 if (!parent->address) /* 0 means autopromotable */
1130                         return false;
1131                 result->address = local->address + parent->address;
1132         } else {
1133                 result->address = parent->address;
1134         }
1135
1136         result->min_residency = max(local->min_residency, parent->min_residency);
1137         result->wake_latency = local->wake_latency + parent->wake_latency;
1138         result->enable_parent_state = parent->enable_parent_state;
1139         result->entry_method = local->entry_method;
1140
1141         result->flags = parent->flags;
1142         result->arch_flags = parent->arch_flags;
1143         result->index = parent->index;
1144
1145         strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1146         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1147         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1148         return true;
1149 }
1150
1151 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
1152
1153 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1154                                   struct acpi_lpi_state *t)
1155 {
1156         curr_level->composite_states[curr_level->composite_states_size++] = t;
1157 }
1158
1159 static int flatten_lpi_states(struct acpi_processor *pr,
1160                               struct acpi_lpi_states_array *curr_level,
1161                               struct acpi_lpi_states_array *prev_level)
1162 {
1163         int i, j, state_count = curr_level->size;
1164         struct acpi_lpi_state *p, *t = curr_level->entries;
1165
1166         curr_level->composite_states_size = 0;
1167         for (j = 0; j < state_count; j++, t++) {
1168                 struct acpi_lpi_state *flpi;
1169
1170                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1171                         continue;
1172
1173                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1174                         pr_warn("Limiting number of LPI states to max (%d)\n",
1175                                 ACPI_PROCESSOR_MAX_POWER);
1176                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1177                         break;
1178                 }
1179
1180                 flpi = &pr->power.lpi_states[flat_state_cnt];
1181
1182                 if (!prev_level) { /* leaf/processor node */
1183                         memcpy(flpi, t, sizeof(*t));
1184                         stash_composite_state(curr_level, flpi);
1185                         flat_state_cnt++;
1186                         continue;
1187                 }
1188
1189                 for (i = 0; i < prev_level->composite_states_size; i++) {
1190                         p = prev_level->composite_states[i];
1191                         if (t->index <= p->enable_parent_state &&
1192                             combine_lpi_states(p, t, flpi)) {
1193                                 stash_composite_state(curr_level, flpi);
1194                                 flat_state_cnt++;
1195                                 flpi++;
1196                         }
1197                 }
1198         }
1199
1200         kfree(curr_level->entries);
1201         return 0;
1202 }
1203
1204 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1205 {
1206         int ret, i;
1207         acpi_status status;
1208         acpi_handle handle = pr->handle, pr_ahandle;
1209         struct acpi_device *d = NULL;
1210         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1211
1212         if (!osc_pc_lpi_support_confirmed)
1213                 return -EOPNOTSUPP;
1214
1215         if (!acpi_has_method(handle, "_LPI"))
1216                 return -EINVAL;
1217
1218         flat_state_cnt = 0;
1219         prev = &info[0];
1220         curr = &info[1];
1221         handle = pr->handle;
1222         ret = acpi_processor_evaluate_lpi(handle, prev);
1223         if (ret)
1224                 return ret;
1225         flatten_lpi_states(pr, prev, NULL);
1226
1227         status = acpi_get_parent(handle, &pr_ahandle);
1228         while (ACPI_SUCCESS(status)) {
1229                 acpi_bus_get_device(pr_ahandle, &d);
1230                 handle = pr_ahandle;
1231
1232                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1233                         break;
1234
1235                 /* can be optional ? */
1236                 if (!acpi_has_method(handle, "_LPI"))
1237                         break;
1238
1239                 ret = acpi_processor_evaluate_lpi(handle, curr);
1240                 if (ret)
1241                         break;
1242
1243                 /* flatten all the LPI states in this level of hierarchy */
1244                 flatten_lpi_states(pr, curr, prev);
1245
1246                 tmp = prev, prev = curr, curr = tmp;
1247
1248                 status = acpi_get_parent(handle, &pr_ahandle);
1249         }
1250
1251         pr->power.count = flat_state_cnt;
1252         /* reset the index after flattening */
1253         for (i = 0; i < pr->power.count; i++)
1254                 pr->power.lpi_states[i].index = i;
1255
1256         /* Tell driver that _LPI is supported. */
1257         pr->flags.has_lpi = 1;
1258         pr->flags.power = 1;
1259
1260         return 0;
1261 }
1262
1263 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1264 {
1265         return -ENODEV;
1266 }
1267
1268 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1269 {
1270         return -ENODEV;
1271 }
1272
1273 /**
1274  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1275  * @dev: the target CPU
1276  * @drv: cpuidle driver containing cpuidle state info
1277  * @index: index of target state
1278  *
1279  * Return: 0 for success or negative value for error
1280  */
1281 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1282                                struct cpuidle_driver *drv, int index)
1283 {
1284         struct acpi_processor *pr;
1285         struct acpi_lpi_state *lpi;
1286
1287         pr = __this_cpu_read(processors);
1288
1289         if (unlikely(!pr))
1290                 return -EINVAL;
1291
1292         lpi = &pr->power.lpi_states[index];
1293         if (lpi->entry_method == ACPI_CSTATE_FFH)
1294                 return acpi_processor_ffh_lpi_enter(lpi);
1295
1296         return -EINVAL;
1297 }
1298
1299 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1300 {
1301         int i;
1302         struct acpi_lpi_state *lpi;
1303         struct cpuidle_state *state;
1304         struct cpuidle_driver *drv = &acpi_idle_driver;
1305
1306         if (!pr->flags.has_lpi)
1307                 return -EOPNOTSUPP;
1308
1309         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1310                 lpi = &pr->power.lpi_states[i];
1311
1312                 state = &drv->states[i];
1313                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1314                 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1315                 state->exit_latency = lpi->wake_latency;
1316                 state->target_residency = lpi->min_residency;
1317                 if (lpi->arch_flags)
1318                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1319                 state->enter = acpi_idle_lpi_enter;
1320                 drv->safe_state_index = i;
1321         }
1322
1323         drv->state_count = i;
1324
1325         return 0;
1326 }
1327
1328 /**
1329  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1330  * global state data i.e. idle routines
1331  *
1332  * @pr: the ACPI processor
1333  */
1334 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1335 {
1336         int i;
1337         struct cpuidle_driver *drv = &acpi_idle_driver;
1338
1339         if (!pr->flags.power_setup_done || !pr->flags.power)
1340                 return -EINVAL;
1341
1342         drv->safe_state_index = -1;
1343         for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1344                 drv->states[i].name[0] = '\0';
1345                 drv->states[i].desc[0] = '\0';
1346         }
1347
1348         if (pr->flags.has_lpi)
1349                 return acpi_processor_setup_lpi_states(pr);
1350
1351         return acpi_processor_setup_cstates(pr);
1352 }
1353
1354 /**
1355  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1356  * device i.e. per-cpu data
1357  *
1358  * @pr: the ACPI processor
1359  * @dev : the cpuidle device
1360  */
1361 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1362                                             struct cpuidle_device *dev)
1363 {
1364         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1365                 return -EINVAL;
1366
1367         dev->cpu = pr->id;
1368         if (pr->flags.has_lpi)
1369                 return acpi_processor_ffh_lpi_probe(pr->id);
1370
1371         return acpi_processor_setup_cpuidle_cx(pr, dev);
1372 }
1373
1374 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1375 {
1376         int ret;
1377
1378         ret = acpi_processor_get_lpi_info(pr);
1379         if (ret)
1380                 ret = acpi_processor_get_cstate_info(pr);
1381
1382         return ret;
1383 }
1384
1385 int acpi_processor_hotplug(struct acpi_processor *pr)
1386 {
1387         int ret = 0;
1388         struct cpuidle_device *dev;
1389
1390         if (disabled_by_idle_boot_param())
1391                 return 0;
1392
1393         if (!pr->flags.power_setup_done)
1394                 return -ENODEV;
1395
1396         dev = per_cpu(acpi_cpuidle_device, pr->id);
1397         cpuidle_pause_and_lock();
1398         cpuidle_disable_device(dev);
1399         ret = acpi_processor_get_power_info(pr);
1400         if (!ret && pr->flags.power) {
1401                 acpi_processor_setup_cpuidle_dev(pr, dev);
1402                 ret = cpuidle_enable_device(dev);
1403         }
1404         cpuidle_resume_and_unlock();
1405
1406         return ret;
1407 }
1408
1409 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1410 {
1411         int cpu;
1412         struct acpi_processor *_pr;
1413         struct cpuidle_device *dev;
1414
1415         if (disabled_by_idle_boot_param())
1416                 return 0;
1417
1418         if (!pr->flags.power_setup_done)
1419                 return -ENODEV;
1420
1421         /*
1422          * FIXME:  Design the ACPI notification to make it once per
1423          * system instead of once per-cpu.  This condition is a hack
1424          * to make the code that updates C-States be called once.
1425          */
1426
1427         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1428
1429                 /* Protect against cpu-hotplug */
1430                 get_online_cpus();
1431                 cpuidle_pause_and_lock();
1432
1433                 /* Disable all cpuidle devices */
1434                 for_each_online_cpu(cpu) {
1435                         _pr = per_cpu(processors, cpu);
1436                         if (!_pr || !_pr->flags.power_setup_done)
1437                                 continue;
1438                         dev = per_cpu(acpi_cpuidle_device, cpu);
1439                         cpuidle_disable_device(dev);
1440                 }
1441
1442                 /* Populate Updated C-state information */
1443                 acpi_processor_get_power_info(pr);
1444                 acpi_processor_setup_cpuidle_states(pr);
1445
1446                 /* Enable all cpuidle devices */
1447                 for_each_online_cpu(cpu) {
1448                         _pr = per_cpu(processors, cpu);
1449                         if (!_pr || !_pr->flags.power_setup_done)
1450                                 continue;
1451                         acpi_processor_get_power_info(_pr);
1452                         if (_pr->flags.power) {
1453                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1454                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1455                                 cpuidle_enable_device(dev);
1456                         }
1457                 }
1458                 cpuidle_resume_and_unlock();
1459                 put_online_cpus();
1460         }
1461
1462         return 0;
1463 }
1464
1465 static int acpi_processor_registered;
1466
1467 int acpi_processor_power_init(struct acpi_processor *pr)
1468 {
1469         int retval;
1470         struct cpuidle_device *dev;
1471
1472         if (disabled_by_idle_boot_param())
1473                 return 0;
1474
1475         acpi_processor_cstate_first_run_checks();
1476
1477         if (!acpi_processor_get_power_info(pr))
1478                 pr->flags.power_setup_done = 1;
1479
1480         /*
1481          * Install the idle handler if processor power management is supported.
1482          * Note that we use previously set idle handler will be used on
1483          * platforms that only support C1.
1484          */
1485         if (pr->flags.power) {
1486                 /* Register acpi_idle_driver if not already registered */
1487                 if (!acpi_processor_registered) {
1488                         acpi_processor_setup_cpuidle_states(pr);
1489                         retval = cpuidle_register_driver(&acpi_idle_driver);
1490                         if (retval)
1491                                 return retval;
1492                         pr_debug("%s registered with cpuidle\n",
1493                                  acpi_idle_driver.name);
1494                 }
1495
1496                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1497                 if (!dev)
1498                         return -ENOMEM;
1499                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1500
1501                 acpi_processor_setup_cpuidle_dev(pr, dev);
1502
1503                 /* Register per-cpu cpuidle_device. Cpuidle driver
1504                  * must already be registered before registering device
1505                  */
1506                 retval = cpuidle_register_device(dev);
1507                 if (retval) {
1508                         if (acpi_processor_registered == 0)
1509                                 cpuidle_unregister_driver(&acpi_idle_driver);
1510                         return retval;
1511                 }
1512                 acpi_processor_registered++;
1513         }
1514         return 0;
1515 }
1516
1517 int acpi_processor_power_exit(struct acpi_processor *pr)
1518 {
1519         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1520
1521         if (disabled_by_idle_boot_param())
1522                 return 0;
1523
1524         if (pr->flags.power) {
1525                 cpuidle_unregister_device(dev);
1526                 acpi_processor_registered--;
1527                 if (acpi_processor_registered == 0)
1528                         cpuidle_unregister_driver(&acpi_idle_driver);
1529         }
1530
1531         pr->flags.power_setup_done = 0;
1532         return 0;
1533 }