GNU Linux-libre 4.14.313-gnu1
[releases.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "acpica/accommon.h"
49 #include "acpica/acnamesp.h"
50 #include "internal.h"
51
52 #define _COMPONENT              ACPI_OS_SERVICES
53 ACPI_MODULE_NAME("osl");
54
55 struct acpi_os_dpc {
56         acpi_osd_exec_callback function;
57         void *context;
58         struct work_struct work;
59 };
60
61 #ifdef ENABLE_DEBUGGER
62 #include <linux/kdb.h>
63
64 /* stuff for debugger support */
65 int acpi_in_debugger;
66 EXPORT_SYMBOL(acpi_in_debugger);
67 #endif                          /*ENABLE_DEBUGGER */
68
69 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
70                                       u32 pm1b_ctrl);
71 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
72                                       u32 val_b);
73
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77 static struct workqueue_struct *kacpi_notify_wq;
78 static struct workqueue_struct *kacpi_hotplug_wq;
79 static bool acpi_os_initialized;
80 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
81 bool acpi_permanent_mmap = false;
82
83 /*
84  * This list of permanent mappings is for memory that may be accessed from
85  * interrupt context, where we can't do the ioremap().
86  */
87 struct acpi_ioremap {
88         struct list_head list;
89         void __iomem *virt;
90         acpi_physical_address phys;
91         acpi_size size;
92         unsigned long refcount;
93 };
94
95 static LIST_HEAD(acpi_ioremaps);
96 static DEFINE_MUTEX(acpi_ioremap_lock);
97
98 static void __init acpi_request_region (struct acpi_generic_address *gas,
99         unsigned int length, char *desc)
100 {
101         u64 addr;
102
103         /* Handle possible alignment issues */
104         memcpy(&addr, &gas->address, sizeof(addr));
105         if (!addr || !length)
106                 return;
107
108         /* Resources are never freed */
109         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
110                 request_region(addr, length, desc);
111         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
112                 request_mem_region(addr, length, desc);
113 }
114
115 static int __init acpi_reserve_resources(void)
116 {
117         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
118                 "ACPI PM1a_EVT_BLK");
119
120         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
121                 "ACPI PM1b_EVT_BLK");
122
123         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
124                 "ACPI PM1a_CNT_BLK");
125
126         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
127                 "ACPI PM1b_CNT_BLK");
128
129         if (acpi_gbl_FADT.pm_timer_length == 4)
130                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
131
132         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
133                 "ACPI PM2_CNT_BLK");
134
135         /* Length of GPE blocks must be a non-negative multiple of 2 */
136
137         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
138                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
139                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
140
141         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
142                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
143                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
144
145         return 0;
146 }
147 fs_initcall_sync(acpi_reserve_resources);
148
149 void acpi_os_printf(const char *fmt, ...)
150 {
151         va_list args;
152         va_start(args, fmt);
153         acpi_os_vprintf(fmt, args);
154         va_end(args);
155 }
156 EXPORT_SYMBOL(acpi_os_printf);
157
158 void acpi_os_vprintf(const char *fmt, va_list args)
159 {
160         static char buffer[512];
161
162         vsprintf(buffer, fmt, args);
163
164 #ifdef ENABLE_DEBUGGER
165         if (acpi_in_debugger) {
166                 kdb_printf("%s", buffer);
167         } else {
168                 if (printk_get_level(buffer))
169                         printk("%s", buffer);
170                 else
171                         printk(KERN_CONT "%s", buffer);
172         }
173 #else
174         if (acpi_debugger_write_log(buffer) < 0) {
175                 if (printk_get_level(buffer))
176                         printk("%s", buffer);
177                 else
178                         printk(KERN_CONT "%s", buffer);
179         }
180 #endif
181 }
182
183 #ifdef CONFIG_KEXEC
184 static unsigned long acpi_rsdp;
185 static int __init setup_acpi_rsdp(char *arg)
186 {
187         return kstrtoul(arg, 16, &acpi_rsdp);
188 }
189 early_param("acpi_rsdp", setup_acpi_rsdp);
190 #endif
191
192 acpi_physical_address __init acpi_os_get_root_pointer(void)
193 {
194         acpi_physical_address pa = 0;
195
196 #ifdef CONFIG_KEXEC
197         if (acpi_rsdp)
198                 return acpi_rsdp;
199 #endif
200
201         if (efi_enabled(EFI_CONFIG_TABLES)) {
202                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
203                         return efi.acpi20;
204                 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
205                         return efi.acpi;
206                 pr_err(PREFIX "System description tables not found\n");
207         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
208                 acpi_find_root_pointer(&pa);
209         }
210
211         return pa;
212 }
213
214 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
215 static struct acpi_ioremap *
216 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
217 {
218         struct acpi_ioremap *map;
219
220         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
221                 if (map->phys <= phys &&
222                     phys + size <= map->phys + map->size)
223                         return map;
224
225         return NULL;
226 }
227
228 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
229 static void __iomem *
230 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
231 {
232         struct acpi_ioremap *map;
233
234         map = acpi_map_lookup(phys, size);
235         if (map)
236                 return map->virt + (phys - map->phys);
237
238         return NULL;
239 }
240
241 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
242 {
243         struct acpi_ioremap *map;
244         void __iomem *virt = NULL;
245
246         mutex_lock(&acpi_ioremap_lock);
247         map = acpi_map_lookup(phys, size);
248         if (map) {
249                 virt = map->virt + (phys - map->phys);
250                 map->refcount++;
251         }
252         mutex_unlock(&acpi_ioremap_lock);
253         return virt;
254 }
255 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
256
257 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
258 static struct acpi_ioremap *
259 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
260 {
261         struct acpi_ioremap *map;
262
263         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
264                 if (map->virt <= virt &&
265                     virt + size <= map->virt + map->size)
266                         return map;
267
268         return NULL;
269 }
270
271 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
272 /* ioremap will take care of cache attributes */
273 #define should_use_kmap(pfn)   0
274 #else
275 #define should_use_kmap(pfn)   page_is_ram(pfn)
276 #endif
277
278 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
279 {
280         unsigned long pfn;
281
282         pfn = pg_off >> PAGE_SHIFT;
283         if (should_use_kmap(pfn)) {
284                 if (pg_sz > PAGE_SIZE)
285                         return NULL;
286                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
287         } else
288                 return acpi_os_ioremap(pg_off, pg_sz);
289 }
290
291 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
292 {
293         unsigned long pfn;
294
295         pfn = pg_off >> PAGE_SHIFT;
296         if (should_use_kmap(pfn))
297                 kunmap(pfn_to_page(pfn));
298         else
299                 iounmap(vaddr);
300 }
301
302 /**
303  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
304  * @phys: Start of the physical address range to map.
305  * @size: Size of the physical address range to map.
306  *
307  * Look up the given physical address range in the list of existing ACPI memory
308  * mappings.  If found, get a reference to it and return a pointer to it (its
309  * virtual address).  If not found, map it, add it to that list and return a
310  * pointer to it.
311  *
312  * During early init (when acpi_permanent_mmap has not been set yet) this
313  * routine simply calls __acpi_map_table() to get the job done.
314  */
315 void __iomem *__ref
316 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
317 {
318         struct acpi_ioremap *map;
319         void __iomem *virt;
320         acpi_physical_address pg_off;
321         acpi_size pg_sz;
322
323         if (phys > ULONG_MAX) {
324                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
325                 return NULL;
326         }
327
328         if (!acpi_permanent_mmap)
329                 return __acpi_map_table((unsigned long)phys, size);
330
331         mutex_lock(&acpi_ioremap_lock);
332         /* Check if there's a suitable mapping already. */
333         map = acpi_map_lookup(phys, size);
334         if (map) {
335                 map->refcount++;
336                 goto out;
337         }
338
339         map = kzalloc(sizeof(*map), GFP_KERNEL);
340         if (!map) {
341                 mutex_unlock(&acpi_ioremap_lock);
342                 return NULL;
343         }
344
345         pg_off = round_down(phys, PAGE_SIZE);
346         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
347         virt = acpi_map(pg_off, pg_sz);
348         if (!virt) {
349                 mutex_unlock(&acpi_ioremap_lock);
350                 kfree(map);
351                 return NULL;
352         }
353
354         INIT_LIST_HEAD(&map->list);
355         map->virt = virt;
356         map->phys = pg_off;
357         map->size = pg_sz;
358         map->refcount = 1;
359
360         list_add_tail_rcu(&map->list, &acpi_ioremaps);
361
362 out:
363         mutex_unlock(&acpi_ioremap_lock);
364         return map->virt + (phys - map->phys);
365 }
366 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
367
368 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
369 {
370         return (void *)acpi_os_map_iomem(phys, size);
371 }
372 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
373
374 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
375 static unsigned long acpi_os_drop_map_ref(struct acpi_ioremap *map)
376 {
377         unsigned long refcount = --map->refcount;
378
379         if (!refcount)
380                 list_del_rcu(&map->list);
381         return refcount;
382 }
383
384 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
385 {
386         synchronize_rcu_expedited();
387         acpi_unmap(map->phys, map->virt);
388         kfree(map);
389 }
390
391 /**
392  * acpi_os_unmap_iomem - Drop a memory mapping reference.
393  * @virt: Start of the address range to drop a reference to.
394  * @size: Size of the address range to drop a reference to.
395  *
396  * Look up the given virtual address range in the list of existing ACPI memory
397  * mappings, drop a reference to it and unmap it if there are no more active
398  * references to it.
399  *
400  * During early init (when acpi_permanent_mmap has not been set yet) this
401  * routine simply calls __acpi_unmap_table() to get the job done.  Since
402  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
403  * here.
404  */
405 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
406 {
407         struct acpi_ioremap *map;
408         unsigned long refcount;
409
410         if (!acpi_permanent_mmap) {
411                 __acpi_unmap_table(virt, size);
412                 return;
413         }
414
415         mutex_lock(&acpi_ioremap_lock);
416         map = acpi_map_lookup_virt(virt, size);
417         if (!map) {
418                 mutex_unlock(&acpi_ioremap_lock);
419                 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
420                 return;
421         }
422         refcount = acpi_os_drop_map_ref(map);
423         mutex_unlock(&acpi_ioremap_lock);
424
425         if (!refcount)
426                 acpi_os_map_cleanup(map);
427 }
428 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
429
430 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
431 {
432         return acpi_os_unmap_iomem((void __iomem *)virt, size);
433 }
434 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
435
436 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
437 {
438         u64 addr;
439         void __iomem *virt;
440
441         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
442                 return 0;
443
444         /* Handle possible alignment issues */
445         memcpy(&addr, &gas->address, sizeof(addr));
446         if (!addr || !gas->bit_width)
447                 return -EINVAL;
448
449         virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
450         if (!virt)
451                 return -EIO;
452
453         return 0;
454 }
455 EXPORT_SYMBOL(acpi_os_map_generic_address);
456
457 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
458 {
459         u64 addr;
460         struct acpi_ioremap *map;
461         unsigned long refcount;
462
463         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
464                 return;
465
466         /* Handle possible alignment issues */
467         memcpy(&addr, &gas->address, sizeof(addr));
468         if (!addr || !gas->bit_width)
469                 return;
470
471         mutex_lock(&acpi_ioremap_lock);
472         map = acpi_map_lookup(addr, gas->bit_width / 8);
473         if (!map) {
474                 mutex_unlock(&acpi_ioremap_lock);
475                 return;
476         }
477         refcount = acpi_os_drop_map_ref(map);
478         mutex_unlock(&acpi_ioremap_lock);
479
480         if (!refcount)
481                 acpi_os_map_cleanup(map);
482 }
483 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
484
485 #ifdef ACPI_FUTURE_USAGE
486 acpi_status
487 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
488 {
489         if (!phys || !virt)
490                 return AE_BAD_PARAMETER;
491
492         *phys = virt_to_phys(virt);
493
494         return AE_OK;
495 }
496 #endif
497
498 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
499 static bool acpi_rev_override;
500
501 int __init acpi_rev_override_setup(char *str)
502 {
503         acpi_rev_override = true;
504         return 1;
505 }
506 __setup("acpi_rev_override", acpi_rev_override_setup);
507 #else
508 #define acpi_rev_override       false
509 #endif
510
511 #define ACPI_MAX_OVERRIDE_LEN 100
512
513 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
514
515 acpi_status
516 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
517                             acpi_string *new_val)
518 {
519         if (!init_val || !new_val)
520                 return AE_BAD_PARAMETER;
521
522         *new_val = NULL;
523         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
524                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
525                        acpi_os_name);
526                 *new_val = acpi_os_name;
527         }
528
529         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
530                 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
531                 *new_val = (char *)5;
532         }
533
534         return AE_OK;
535 }
536
537 static irqreturn_t acpi_irq(int irq, void *dev_id)
538 {
539         u32 handled;
540
541         handled = (*acpi_irq_handler) (acpi_irq_context);
542
543         if (handled) {
544                 acpi_irq_handled++;
545                 return IRQ_HANDLED;
546         } else {
547                 acpi_irq_not_handled++;
548                 return IRQ_NONE;
549         }
550 }
551
552 acpi_status
553 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
554                                   void *context)
555 {
556         unsigned int irq;
557
558         acpi_irq_stats_init();
559
560         /*
561          * ACPI interrupts different from the SCI in our copy of the FADT are
562          * not supported.
563          */
564         if (gsi != acpi_gbl_FADT.sci_interrupt)
565                 return AE_BAD_PARAMETER;
566
567         if (acpi_irq_handler)
568                 return AE_ALREADY_ACQUIRED;
569
570         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
571                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
572                        gsi);
573                 return AE_OK;
574         }
575
576         acpi_irq_handler = handler;
577         acpi_irq_context = context;
578         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
579                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
580                 acpi_irq_handler = NULL;
581                 return AE_NOT_ACQUIRED;
582         }
583         acpi_sci_irq = irq;
584
585         return AE_OK;
586 }
587
588 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
589 {
590         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
591                 return AE_BAD_PARAMETER;
592
593         free_irq(acpi_sci_irq, acpi_irq);
594         acpi_irq_handler = NULL;
595         acpi_sci_irq = INVALID_ACPI_IRQ;
596
597         return AE_OK;
598 }
599
600 /*
601  * Running in interpreter thread context, safe to sleep
602  */
603
604 void acpi_os_sleep(u64 ms)
605 {
606         msleep(ms);
607 }
608
609 void acpi_os_stall(u32 us)
610 {
611         while (us) {
612                 u32 delay = 1000;
613
614                 if (delay > us)
615                         delay = us;
616                 udelay(delay);
617                 touch_nmi_watchdog();
618                 us -= delay;
619         }
620 }
621
622 /*
623  * Support ACPI 3.0 AML Timer operand
624  * Returns 64-bit free-running, monotonically increasing timer
625  * with 100ns granularity
626  */
627 u64 acpi_os_get_timer(void)
628 {
629         u64 time_ns = ktime_to_ns(ktime_get());
630         do_div(time_ns, 100);
631         return time_ns;
632 }
633
634 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
635 {
636         u32 dummy;
637
638         if (!value)
639                 value = &dummy;
640
641         *value = 0;
642         if (width <= 8) {
643                 *(u8 *) value = inb(port);
644         } else if (width <= 16) {
645                 *(u16 *) value = inw(port);
646         } else if (width <= 32) {
647                 *(u32 *) value = inl(port);
648         } else {
649                 BUG();
650         }
651
652         return AE_OK;
653 }
654
655 EXPORT_SYMBOL(acpi_os_read_port);
656
657 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
658 {
659         if (width <= 8) {
660                 outb(value, port);
661         } else if (width <= 16) {
662                 outw(value, port);
663         } else if (width <= 32) {
664                 outl(value, port);
665         } else {
666                 BUG();
667         }
668
669         return AE_OK;
670 }
671
672 EXPORT_SYMBOL(acpi_os_write_port);
673
674 acpi_status
675 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
676 {
677         void __iomem *virt_addr;
678         unsigned int size = width / 8;
679         bool unmap = false;
680         u64 dummy;
681
682         rcu_read_lock();
683         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
684         if (!virt_addr) {
685                 rcu_read_unlock();
686                 virt_addr = acpi_os_ioremap(phys_addr, size);
687                 if (!virt_addr)
688                         return AE_BAD_ADDRESS;
689                 unmap = true;
690         }
691
692         if (!value)
693                 value = &dummy;
694
695         switch (width) {
696         case 8:
697                 *(u8 *) value = readb(virt_addr);
698                 break;
699         case 16:
700                 *(u16 *) value = readw(virt_addr);
701                 break;
702         case 32:
703                 *(u32 *) value = readl(virt_addr);
704                 break;
705         case 64:
706                 *(u64 *) value = readq(virt_addr);
707                 break;
708         default:
709                 BUG();
710         }
711
712         if (unmap)
713                 iounmap(virt_addr);
714         else
715                 rcu_read_unlock();
716
717         return AE_OK;
718 }
719
720 acpi_status
721 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
722 {
723         void __iomem *virt_addr;
724         unsigned int size = width / 8;
725         bool unmap = false;
726
727         rcu_read_lock();
728         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
729         if (!virt_addr) {
730                 rcu_read_unlock();
731                 virt_addr = acpi_os_ioremap(phys_addr, size);
732                 if (!virt_addr)
733                         return AE_BAD_ADDRESS;
734                 unmap = true;
735         }
736
737         switch (width) {
738         case 8:
739                 writeb(value, virt_addr);
740                 break;
741         case 16:
742                 writew(value, virt_addr);
743                 break;
744         case 32:
745                 writel(value, virt_addr);
746                 break;
747         case 64:
748                 writeq(value, virt_addr);
749                 break;
750         default:
751                 BUG();
752         }
753
754         if (unmap)
755                 iounmap(virt_addr);
756         else
757                 rcu_read_unlock();
758
759         return AE_OK;
760 }
761
762 acpi_status
763 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
764                                u64 *value, u32 width)
765 {
766         int result, size;
767         u32 value32;
768
769         if (!value)
770                 return AE_BAD_PARAMETER;
771
772         switch (width) {
773         case 8:
774                 size = 1;
775                 break;
776         case 16:
777                 size = 2;
778                 break;
779         case 32:
780                 size = 4;
781                 break;
782         default:
783                 return AE_ERROR;
784         }
785
786         result = raw_pci_read(pci_id->segment, pci_id->bus,
787                                 PCI_DEVFN(pci_id->device, pci_id->function),
788                                 reg, size, &value32);
789         *value = value32;
790
791         return (result ? AE_ERROR : AE_OK);
792 }
793
794 acpi_status
795 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
796                                 u64 value, u32 width)
797 {
798         int result, size;
799
800         switch (width) {
801         case 8:
802                 size = 1;
803                 break;
804         case 16:
805                 size = 2;
806                 break;
807         case 32:
808                 size = 4;
809                 break;
810         default:
811                 return AE_ERROR;
812         }
813
814         result = raw_pci_write(pci_id->segment, pci_id->bus,
815                                 PCI_DEVFN(pci_id->device, pci_id->function),
816                                 reg, size, value);
817
818         return (result ? AE_ERROR : AE_OK);
819 }
820
821 static void acpi_os_execute_deferred(struct work_struct *work)
822 {
823         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
824
825         dpc->function(dpc->context);
826         kfree(dpc);
827 }
828
829 #ifdef CONFIG_ACPI_DEBUGGER
830 static struct acpi_debugger acpi_debugger;
831 static bool acpi_debugger_initialized;
832
833 int acpi_register_debugger(struct module *owner,
834                            const struct acpi_debugger_ops *ops)
835 {
836         int ret = 0;
837
838         mutex_lock(&acpi_debugger.lock);
839         if (acpi_debugger.ops) {
840                 ret = -EBUSY;
841                 goto err_lock;
842         }
843
844         acpi_debugger.owner = owner;
845         acpi_debugger.ops = ops;
846
847 err_lock:
848         mutex_unlock(&acpi_debugger.lock);
849         return ret;
850 }
851 EXPORT_SYMBOL(acpi_register_debugger);
852
853 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
854 {
855         mutex_lock(&acpi_debugger.lock);
856         if (ops == acpi_debugger.ops) {
857                 acpi_debugger.ops = NULL;
858                 acpi_debugger.owner = NULL;
859         }
860         mutex_unlock(&acpi_debugger.lock);
861 }
862 EXPORT_SYMBOL(acpi_unregister_debugger);
863
864 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
865 {
866         int ret;
867         int (*func)(acpi_osd_exec_callback, void *);
868         struct module *owner;
869
870         if (!acpi_debugger_initialized)
871                 return -ENODEV;
872         mutex_lock(&acpi_debugger.lock);
873         if (!acpi_debugger.ops) {
874                 ret = -ENODEV;
875                 goto err_lock;
876         }
877         if (!try_module_get(acpi_debugger.owner)) {
878                 ret = -ENODEV;
879                 goto err_lock;
880         }
881         func = acpi_debugger.ops->create_thread;
882         owner = acpi_debugger.owner;
883         mutex_unlock(&acpi_debugger.lock);
884
885         ret = func(function, context);
886
887         mutex_lock(&acpi_debugger.lock);
888         module_put(owner);
889 err_lock:
890         mutex_unlock(&acpi_debugger.lock);
891         return ret;
892 }
893
894 ssize_t acpi_debugger_write_log(const char *msg)
895 {
896         ssize_t ret;
897         ssize_t (*func)(const char *);
898         struct module *owner;
899
900         if (!acpi_debugger_initialized)
901                 return -ENODEV;
902         mutex_lock(&acpi_debugger.lock);
903         if (!acpi_debugger.ops) {
904                 ret = -ENODEV;
905                 goto err_lock;
906         }
907         if (!try_module_get(acpi_debugger.owner)) {
908                 ret = -ENODEV;
909                 goto err_lock;
910         }
911         func = acpi_debugger.ops->write_log;
912         owner = acpi_debugger.owner;
913         mutex_unlock(&acpi_debugger.lock);
914
915         ret = func(msg);
916
917         mutex_lock(&acpi_debugger.lock);
918         module_put(owner);
919 err_lock:
920         mutex_unlock(&acpi_debugger.lock);
921         return ret;
922 }
923
924 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
925 {
926         ssize_t ret;
927         ssize_t (*func)(char *, size_t);
928         struct module *owner;
929
930         if (!acpi_debugger_initialized)
931                 return -ENODEV;
932         mutex_lock(&acpi_debugger.lock);
933         if (!acpi_debugger.ops) {
934                 ret = -ENODEV;
935                 goto err_lock;
936         }
937         if (!try_module_get(acpi_debugger.owner)) {
938                 ret = -ENODEV;
939                 goto err_lock;
940         }
941         func = acpi_debugger.ops->read_cmd;
942         owner = acpi_debugger.owner;
943         mutex_unlock(&acpi_debugger.lock);
944
945         ret = func(buffer, buffer_length);
946
947         mutex_lock(&acpi_debugger.lock);
948         module_put(owner);
949 err_lock:
950         mutex_unlock(&acpi_debugger.lock);
951         return ret;
952 }
953
954 int acpi_debugger_wait_command_ready(void)
955 {
956         int ret;
957         int (*func)(bool, char *, size_t);
958         struct module *owner;
959
960         if (!acpi_debugger_initialized)
961                 return -ENODEV;
962         mutex_lock(&acpi_debugger.lock);
963         if (!acpi_debugger.ops) {
964                 ret = -ENODEV;
965                 goto err_lock;
966         }
967         if (!try_module_get(acpi_debugger.owner)) {
968                 ret = -ENODEV;
969                 goto err_lock;
970         }
971         func = acpi_debugger.ops->wait_command_ready;
972         owner = acpi_debugger.owner;
973         mutex_unlock(&acpi_debugger.lock);
974
975         ret = func(acpi_gbl_method_executing,
976                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
977
978         mutex_lock(&acpi_debugger.lock);
979         module_put(owner);
980 err_lock:
981         mutex_unlock(&acpi_debugger.lock);
982         return ret;
983 }
984
985 int acpi_debugger_notify_command_complete(void)
986 {
987         int ret;
988         int (*func)(void);
989         struct module *owner;
990
991         if (!acpi_debugger_initialized)
992                 return -ENODEV;
993         mutex_lock(&acpi_debugger.lock);
994         if (!acpi_debugger.ops) {
995                 ret = -ENODEV;
996                 goto err_lock;
997         }
998         if (!try_module_get(acpi_debugger.owner)) {
999                 ret = -ENODEV;
1000                 goto err_lock;
1001         }
1002         func = acpi_debugger.ops->notify_command_complete;
1003         owner = acpi_debugger.owner;
1004         mutex_unlock(&acpi_debugger.lock);
1005
1006         ret = func();
1007
1008         mutex_lock(&acpi_debugger.lock);
1009         module_put(owner);
1010 err_lock:
1011         mutex_unlock(&acpi_debugger.lock);
1012         return ret;
1013 }
1014
1015 int __init acpi_debugger_init(void)
1016 {
1017         mutex_init(&acpi_debugger.lock);
1018         acpi_debugger_initialized = true;
1019         return 0;
1020 }
1021 #endif
1022
1023 /*******************************************************************************
1024  *
1025  * FUNCTION:    acpi_os_execute
1026  *
1027  * PARAMETERS:  Type               - Type of the callback
1028  *              Function           - Function to be executed
1029  *              Context            - Function parameters
1030  *
1031  * RETURN:      Status
1032  *
1033  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1034  *              immediately executes function on a separate thread.
1035  *
1036  ******************************************************************************/
1037
1038 acpi_status acpi_os_execute(acpi_execute_type type,
1039                             acpi_osd_exec_callback function, void *context)
1040 {
1041         acpi_status status = AE_OK;
1042         struct acpi_os_dpc *dpc;
1043         struct workqueue_struct *queue;
1044         int ret;
1045         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1046                           "Scheduling function [%p(%p)] for deferred execution.\n",
1047                           function, context));
1048
1049         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1050                 ret = acpi_debugger_create_thread(function, context);
1051                 if (ret) {
1052                         pr_err("Call to kthread_create() failed.\n");
1053                         status = AE_ERROR;
1054                 }
1055                 goto out_thread;
1056         }
1057
1058         /*
1059          * Allocate/initialize DPC structure.  Note that this memory will be
1060          * freed by the callee.  The kernel handles the work_struct list  in a
1061          * way that allows us to also free its memory inside the callee.
1062          * Because we may want to schedule several tasks with different
1063          * parameters we can't use the approach some kernel code uses of
1064          * having a static work_struct.
1065          */
1066
1067         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1068         if (!dpc)
1069                 return AE_NO_MEMORY;
1070
1071         dpc->function = function;
1072         dpc->context = context;
1073
1074         /*
1075          * To prevent lockdep from complaining unnecessarily, make sure that
1076          * there is a different static lockdep key for each workqueue by using
1077          * INIT_WORK() for each of them separately.
1078          */
1079         if (type == OSL_NOTIFY_HANDLER) {
1080                 queue = kacpi_notify_wq;
1081                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1082         } else if (type == OSL_GPE_HANDLER) {
1083                 queue = kacpid_wq;
1084                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1085         } else {
1086                 pr_err("Unsupported os_execute type %d.\n", type);
1087                 status = AE_ERROR;
1088         }
1089
1090         if (ACPI_FAILURE(status))
1091                 goto err_workqueue;
1092
1093         /*
1094          * On some machines, a software-initiated SMI causes corruption unless
1095          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1096          * typically it's done in GPE-related methods that are run via
1097          * workqueues, so we can avoid the known corruption cases by always
1098          * queueing on CPU 0.
1099          */
1100         ret = queue_work_on(0, queue, &dpc->work);
1101         if (!ret) {
1102                 printk(KERN_ERR PREFIX
1103                           "Call to queue_work() failed.\n");
1104                 status = AE_ERROR;
1105         }
1106 err_workqueue:
1107         if (ACPI_FAILURE(status))
1108                 kfree(dpc);
1109 out_thread:
1110         return status;
1111 }
1112 EXPORT_SYMBOL(acpi_os_execute);
1113
1114 void acpi_os_wait_events_complete(void)
1115 {
1116         /*
1117          * Make sure the GPE handler or the fixed event handler is not used
1118          * on another CPU after removal.
1119          */
1120         if (acpi_sci_irq_valid())
1121                 synchronize_hardirq(acpi_sci_irq);
1122         flush_workqueue(kacpid_wq);
1123         flush_workqueue(kacpi_notify_wq);
1124 }
1125 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1126
1127 struct acpi_hp_work {
1128         struct work_struct work;
1129         struct acpi_device *adev;
1130         u32 src;
1131 };
1132
1133 static void acpi_hotplug_work_fn(struct work_struct *work)
1134 {
1135         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1136
1137         acpi_os_wait_events_complete();
1138         acpi_device_hotplug(hpw->adev, hpw->src);
1139         kfree(hpw);
1140 }
1141
1142 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1143 {
1144         struct acpi_hp_work *hpw;
1145
1146         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1147                   "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1148                   adev, src));
1149
1150         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1151         if (!hpw)
1152                 return AE_NO_MEMORY;
1153
1154         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1155         hpw->adev = adev;
1156         hpw->src = src;
1157         /*
1158          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1159          * the hotplug code may call driver .remove() functions, which may
1160          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1161          * these workqueues.
1162          */
1163         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1164                 kfree(hpw);
1165                 return AE_ERROR;
1166         }
1167         return AE_OK;
1168 }
1169
1170 bool acpi_queue_hotplug_work(struct work_struct *work)
1171 {
1172         return queue_work(kacpi_hotplug_wq, work);
1173 }
1174
1175 acpi_status
1176 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1177 {
1178         struct semaphore *sem = NULL;
1179
1180         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1181         if (!sem)
1182                 return AE_NO_MEMORY;
1183
1184         sema_init(sem, initial_units);
1185
1186         *handle = (acpi_handle *) sem;
1187
1188         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1189                           *handle, initial_units));
1190
1191         return AE_OK;
1192 }
1193
1194 /*
1195  * TODO: A better way to delete semaphores?  Linux doesn't have a
1196  * 'delete_semaphore()' function -- may result in an invalid
1197  * pointer dereference for non-synchronized consumers.  Should
1198  * we at least check for blocked threads and signal/cancel them?
1199  */
1200
1201 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1202 {
1203         struct semaphore *sem = (struct semaphore *)handle;
1204
1205         if (!sem)
1206                 return AE_BAD_PARAMETER;
1207
1208         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1209
1210         BUG_ON(!list_empty(&sem->wait_list));
1211         kfree(sem);
1212         sem = NULL;
1213
1214         return AE_OK;
1215 }
1216
1217 /*
1218  * TODO: Support for units > 1?
1219  */
1220 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1221 {
1222         acpi_status status = AE_OK;
1223         struct semaphore *sem = (struct semaphore *)handle;
1224         long jiffies;
1225         int ret = 0;
1226
1227         if (!acpi_os_initialized)
1228                 return AE_OK;
1229
1230         if (!sem || (units < 1))
1231                 return AE_BAD_PARAMETER;
1232
1233         if (units > 1)
1234                 return AE_SUPPORT;
1235
1236         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1237                           handle, units, timeout));
1238
1239         if (timeout == ACPI_WAIT_FOREVER)
1240                 jiffies = MAX_SCHEDULE_TIMEOUT;
1241         else
1242                 jiffies = msecs_to_jiffies(timeout);
1243
1244         ret = down_timeout(sem, jiffies);
1245         if (ret)
1246                 status = AE_TIME;
1247
1248         if (ACPI_FAILURE(status)) {
1249                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1250                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1251                                   handle, units, timeout,
1252                                   acpi_format_exception(status)));
1253         } else {
1254                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1255                                   "Acquired semaphore[%p|%d|%d]", handle,
1256                                   units, timeout));
1257         }
1258
1259         return status;
1260 }
1261
1262 /*
1263  * TODO: Support for units > 1?
1264  */
1265 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1266 {
1267         struct semaphore *sem = (struct semaphore *)handle;
1268
1269         if (!acpi_os_initialized)
1270                 return AE_OK;
1271
1272         if (!sem || (units < 1))
1273                 return AE_BAD_PARAMETER;
1274
1275         if (units > 1)
1276                 return AE_SUPPORT;
1277
1278         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1279                           units));
1280
1281         up(sem);
1282
1283         return AE_OK;
1284 }
1285
1286 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1287 {
1288 #ifdef ENABLE_DEBUGGER
1289         if (acpi_in_debugger) {
1290                 u32 chars;
1291
1292                 kdb_read(buffer, buffer_length);
1293
1294                 /* remove the CR kdb includes */
1295                 chars = strlen(buffer) - 1;
1296                 buffer[chars] = '\0';
1297         }
1298 #else
1299         int ret;
1300
1301         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1302         if (ret < 0)
1303                 return AE_ERROR;
1304         if (bytes_read)
1305                 *bytes_read = ret;
1306 #endif
1307
1308         return AE_OK;
1309 }
1310 EXPORT_SYMBOL(acpi_os_get_line);
1311
1312 acpi_status acpi_os_wait_command_ready(void)
1313 {
1314         int ret;
1315
1316         ret = acpi_debugger_wait_command_ready();
1317         if (ret < 0)
1318                 return AE_ERROR;
1319         return AE_OK;
1320 }
1321
1322 acpi_status acpi_os_notify_command_complete(void)
1323 {
1324         int ret;
1325
1326         ret = acpi_debugger_notify_command_complete();
1327         if (ret < 0)
1328                 return AE_ERROR;
1329         return AE_OK;
1330 }
1331
1332 acpi_status acpi_os_signal(u32 function, void *info)
1333 {
1334         switch (function) {
1335         case ACPI_SIGNAL_FATAL:
1336                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1337                 break;
1338         case ACPI_SIGNAL_BREAKPOINT:
1339                 /*
1340                  * AML Breakpoint
1341                  * ACPI spec. says to treat it as a NOP unless
1342                  * you are debugging.  So if/when we integrate
1343                  * AML debugger into the kernel debugger its
1344                  * hook will go here.  But until then it is
1345                  * not useful to print anything on breakpoints.
1346                  */
1347                 break;
1348         default:
1349                 break;
1350         }
1351
1352         return AE_OK;
1353 }
1354
1355 static int __init acpi_os_name_setup(char *str)
1356 {
1357         char *p = acpi_os_name;
1358         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1359
1360         if (!str || !*str)
1361                 return 0;
1362
1363         for (; count-- && *str; str++) {
1364                 if (isalnum(*str) || *str == ' ' || *str == ':')
1365                         *p++ = *str;
1366                 else if (*str == '\'' || *str == '"')
1367                         continue;
1368                 else
1369                         break;
1370         }
1371         *p = 0;
1372
1373         return 1;
1374
1375 }
1376
1377 __setup("acpi_os_name=", acpi_os_name_setup);
1378
1379 /*
1380  * Disable the auto-serialization of named objects creation methods.
1381  *
1382  * This feature is enabled by default.  It marks the AML control methods
1383  * that contain the opcodes to create named objects as "Serialized".
1384  */
1385 static int __init acpi_no_auto_serialize_setup(char *str)
1386 {
1387         acpi_gbl_auto_serialize_methods = FALSE;
1388         pr_info("ACPI: auto-serialization disabled\n");
1389
1390         return 1;
1391 }
1392
1393 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1394
1395 /* Check of resource interference between native drivers and ACPI
1396  * OperationRegions (SystemIO and System Memory only).
1397  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1398  * in arbitrary AML code and can interfere with legacy drivers.
1399  * acpi_enforce_resources= can be set to:
1400  *
1401  *   - strict (default) (2)
1402  *     -> further driver trying to access the resources will not load
1403  *   - lax              (1)
1404  *     -> further driver trying to access the resources will load, but you
1405  *     get a system message that something might go wrong...
1406  *
1407  *   - no               (0)
1408  *     -> ACPI Operation Region resources will not be registered
1409  *
1410  */
1411 #define ENFORCE_RESOURCES_STRICT 2
1412 #define ENFORCE_RESOURCES_LAX    1
1413 #define ENFORCE_RESOURCES_NO     0
1414
1415 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1416
1417 static int __init acpi_enforce_resources_setup(char *str)
1418 {
1419         if (str == NULL || *str == '\0')
1420                 return 0;
1421
1422         if (!strcmp("strict", str))
1423                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1424         else if (!strcmp("lax", str))
1425                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1426         else if (!strcmp("no", str))
1427                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1428
1429         return 1;
1430 }
1431
1432 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1433
1434 /* Check for resource conflicts between ACPI OperationRegions and native
1435  * drivers */
1436 int acpi_check_resource_conflict(const struct resource *res)
1437 {
1438         acpi_adr_space_type space_id;
1439         acpi_size length;
1440         u8 warn = 0;
1441         int clash = 0;
1442
1443         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1444                 return 0;
1445         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1446                 return 0;
1447
1448         if (res->flags & IORESOURCE_IO)
1449                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1450         else
1451                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1452
1453         length = resource_size(res);
1454         if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1455                 warn = 1;
1456         clash = acpi_check_address_range(space_id, res->start, length, warn);
1457
1458         if (clash) {
1459                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1460                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1461                                 printk(KERN_NOTICE "ACPI: This conflict may"
1462                                        " cause random problems and system"
1463                                        " instability\n");
1464                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1465                                " for this device, you should use it instead of"
1466                                " the native driver\n");
1467                 }
1468                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1469                         return -EBUSY;
1470         }
1471         return 0;
1472 }
1473 EXPORT_SYMBOL(acpi_check_resource_conflict);
1474
1475 int acpi_check_region(resource_size_t start, resource_size_t n,
1476                       const char *name)
1477 {
1478         struct resource res = {
1479                 .start = start,
1480                 .end   = start + n - 1,
1481                 .name  = name,
1482                 .flags = IORESOURCE_IO,
1483         };
1484
1485         return acpi_check_resource_conflict(&res);
1486 }
1487 EXPORT_SYMBOL(acpi_check_region);
1488
1489 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1490                                               void *_res, void **return_value)
1491 {
1492         struct acpi_mem_space_context **mem_ctx;
1493         union acpi_operand_object *handler_obj;
1494         union acpi_operand_object *region_obj2;
1495         union acpi_operand_object *region_obj;
1496         struct resource *res = _res;
1497         acpi_status status;
1498
1499         region_obj = acpi_ns_get_attached_object(handle);
1500         if (!region_obj)
1501                 return AE_OK;
1502
1503         handler_obj = region_obj->region.handler;
1504         if (!handler_obj)
1505                 return AE_OK;
1506
1507         if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1508                 return AE_OK;
1509
1510         if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1511                 return AE_OK;
1512
1513         region_obj2 = acpi_ns_get_secondary_object(region_obj);
1514         if (!region_obj2)
1515                 return AE_OK;
1516
1517         mem_ctx = (void *)&region_obj2->extra.region_context;
1518
1519         if (!(mem_ctx[0]->address >= res->start &&
1520               mem_ctx[0]->address < res->end))
1521                 return AE_OK;
1522
1523         status = handler_obj->address_space.setup(region_obj,
1524                                                   ACPI_REGION_DEACTIVATE,
1525                                                   NULL, (void **)mem_ctx);
1526         if (ACPI_SUCCESS(status))
1527                 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1528
1529         return status;
1530 }
1531
1532 /**
1533  * acpi_release_memory - Release any mappings done to a memory region
1534  * @handle: Handle to namespace node
1535  * @res: Memory resource
1536  * @level: A level that terminates the search
1537  *
1538  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1539  * overlap with @res and that have already been activated (mapped).
1540  *
1541  * This is a helper that allows drivers to place special requirements on memory
1542  * region that may overlap with operation regions, primarily allowing them to
1543  * safely map the region as non-cached memory.
1544  *
1545  * The unmapped Operation Regions will be automatically remapped next time they
1546  * are called, so the drivers do not need to do anything else.
1547  */
1548 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1549                                 u32 level)
1550 {
1551         if (!(res->flags & IORESOURCE_MEM))
1552                 return AE_TYPE;
1553
1554         return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1555                                    acpi_deactivate_mem_region, NULL, res, NULL);
1556 }
1557 EXPORT_SYMBOL_GPL(acpi_release_memory);
1558
1559 /*
1560  * Let drivers know whether the resource checks are effective
1561  */
1562 int acpi_resources_are_enforced(void)
1563 {
1564         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1565 }
1566 EXPORT_SYMBOL(acpi_resources_are_enforced);
1567
1568 /*
1569  * Deallocate the memory for a spinlock.
1570  */
1571 void acpi_os_delete_lock(acpi_spinlock handle)
1572 {
1573         ACPI_FREE(handle);
1574 }
1575
1576 /*
1577  * Acquire a spinlock.
1578  *
1579  * handle is a pointer to the spinlock_t.
1580  */
1581
1582 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1583 {
1584         acpi_cpu_flags flags;
1585         spin_lock_irqsave(lockp, flags);
1586         return flags;
1587 }
1588
1589 /*
1590  * Release a spinlock. See above.
1591  */
1592
1593 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1594 {
1595         spin_unlock_irqrestore(lockp, flags);
1596 }
1597
1598 #ifndef ACPI_USE_LOCAL_CACHE
1599
1600 /*******************************************************************************
1601  *
1602  * FUNCTION:    acpi_os_create_cache
1603  *
1604  * PARAMETERS:  name      - Ascii name for the cache
1605  *              size      - Size of each cached object
1606  *              depth     - Maximum depth of the cache (in objects) <ignored>
1607  *              cache     - Where the new cache object is returned
1608  *
1609  * RETURN:      status
1610  *
1611  * DESCRIPTION: Create a cache object
1612  *
1613  ******************************************************************************/
1614
1615 acpi_status
1616 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1617 {
1618         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1619         if (*cache == NULL)
1620                 return AE_ERROR;
1621         else
1622                 return AE_OK;
1623 }
1624
1625 /*******************************************************************************
1626  *
1627  * FUNCTION:    acpi_os_purge_cache
1628  *
1629  * PARAMETERS:  Cache           - Handle to cache object
1630  *
1631  * RETURN:      Status
1632  *
1633  * DESCRIPTION: Free all objects within the requested cache.
1634  *
1635  ******************************************************************************/
1636
1637 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1638 {
1639         kmem_cache_shrink(cache);
1640         return (AE_OK);
1641 }
1642
1643 /*******************************************************************************
1644  *
1645  * FUNCTION:    acpi_os_delete_cache
1646  *
1647  * PARAMETERS:  Cache           - Handle to cache object
1648  *
1649  * RETURN:      Status
1650  *
1651  * DESCRIPTION: Free all objects within the requested cache and delete the
1652  *              cache object.
1653  *
1654  ******************************************************************************/
1655
1656 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1657 {
1658         kmem_cache_destroy(cache);
1659         return (AE_OK);
1660 }
1661
1662 /*******************************************************************************
1663  *
1664  * FUNCTION:    acpi_os_release_object
1665  *
1666  * PARAMETERS:  Cache       - Handle to cache object
1667  *              Object      - The object to be released
1668  *
1669  * RETURN:      None
1670  *
1671  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1672  *              the object is deleted.
1673  *
1674  ******************************************************************************/
1675
1676 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1677 {
1678         kmem_cache_free(cache, object);
1679         return (AE_OK);
1680 }
1681 #endif
1682
1683 static int __init acpi_no_static_ssdt_setup(char *s)
1684 {
1685         acpi_gbl_disable_ssdt_table_install = TRUE;
1686         pr_info("ACPI: static SSDT installation disabled\n");
1687
1688         return 0;
1689 }
1690
1691 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1692
1693 static int __init acpi_disable_return_repair(char *s)
1694 {
1695         printk(KERN_NOTICE PREFIX
1696                "ACPI: Predefined validation mechanism disabled\n");
1697         acpi_gbl_disable_auto_repair = TRUE;
1698
1699         return 1;
1700 }
1701
1702 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1703
1704 acpi_status __init acpi_os_initialize(void)
1705 {
1706         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1707         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1708         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1709         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1710         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1711                 /*
1712                  * Use acpi_os_map_generic_address to pre-map the reset
1713                  * register if it's in system memory.
1714                  */
1715                 int rv;
1716
1717                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1718                 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1719         }
1720         acpi_os_initialized = true;
1721
1722         return AE_OK;
1723 }
1724
1725 acpi_status __init acpi_os_initialize1(void)
1726 {
1727         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1728         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1729         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1730         BUG_ON(!kacpid_wq);
1731         BUG_ON(!kacpi_notify_wq);
1732         BUG_ON(!kacpi_hotplug_wq);
1733         acpi_osi_init();
1734         return AE_OK;
1735 }
1736
1737 acpi_status acpi_os_terminate(void)
1738 {
1739         if (acpi_irq_handler) {
1740                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1741                                                  acpi_irq_handler);
1742         }
1743
1744         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1745         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1746         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1747         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1748         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1749                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1750
1751         destroy_workqueue(kacpid_wq);
1752         destroy_workqueue(kacpi_notify_wq);
1753         destroy_workqueue(kacpi_hotplug_wq);
1754
1755         return AE_OK;
1756 }
1757
1758 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1759                                   u32 pm1b_control)
1760 {
1761         int rc = 0;
1762         if (__acpi_os_prepare_sleep)
1763                 rc = __acpi_os_prepare_sleep(sleep_state,
1764                                              pm1a_control, pm1b_control);
1765         if (rc < 0)
1766                 return AE_ERROR;
1767         else if (rc > 0)
1768                 return AE_CTRL_TERMINATE;
1769
1770         return AE_OK;
1771 }
1772
1773 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1774                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1775 {
1776         __acpi_os_prepare_sleep = func;
1777 }
1778
1779 #if (ACPI_REDUCED_HARDWARE)
1780 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1781                                   u32 val_b)
1782 {
1783         int rc = 0;
1784         if (__acpi_os_prepare_extended_sleep)
1785                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1786                                              val_a, val_b);
1787         if (rc < 0)
1788                 return AE_ERROR;
1789         else if (rc > 0)
1790                 return AE_CTRL_TERMINATE;
1791
1792         return AE_OK;
1793 }
1794 #else
1795 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1796                                   u32 val_b)
1797 {
1798         return AE_OK;
1799 }
1800 #endif
1801
1802 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1803                                u32 val_a, u32 val_b))
1804 {
1805         __acpi_os_prepare_extended_sleep = func;
1806 }
1807
1808 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1809                                 u32 reg_a_value, u32 reg_b_value)
1810 {
1811         acpi_status status;
1812
1813         if (acpi_gbl_reduced_hardware)
1814                 status = acpi_os_prepare_extended_sleep(sleep_state,
1815                                                         reg_a_value,
1816                                                         reg_b_value);
1817         else
1818                 status = acpi_os_prepare_sleep(sleep_state,
1819                                                reg_a_value, reg_b_value);
1820         return status;
1821 }