GNU Linux-libre 4.9.309-gnu1
[releases.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <asm/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "internal.h"
49
50 #define _COMPONENT              ACPI_OS_SERVICES
51 ACPI_MODULE_NAME("osl");
52
53 struct acpi_os_dpc {
54         acpi_osd_exec_callback function;
55         void *context;
56         struct work_struct work;
57 };
58
59 #ifdef ENABLE_DEBUGGER
60 #include <linux/kdb.h>
61
62 /* stuff for debugger support */
63 int acpi_in_debugger;
64 EXPORT_SYMBOL(acpi_in_debugger);
65 #endif                          /*ENABLE_DEBUGGER */
66
67 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68                                       u32 pm1b_ctrl);
69 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70                                       u32 val_b);
71
72 static acpi_osd_handler acpi_irq_handler;
73 static void *acpi_irq_context;
74 static struct workqueue_struct *kacpid_wq;
75 static struct workqueue_struct *kacpi_notify_wq;
76 static struct workqueue_struct *kacpi_hotplug_wq;
77 static bool acpi_os_initialized;
78 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79
80 /*
81  * This list of permanent mappings is for memory that may be accessed from
82  * interrupt context, where we can't do the ioremap().
83  */
84 struct acpi_ioremap {
85         struct list_head list;
86         void __iomem *virt;
87         acpi_physical_address phys;
88         acpi_size size;
89         unsigned long refcount;
90 };
91
92 static LIST_HEAD(acpi_ioremaps);
93 static DEFINE_MUTEX(acpi_ioremap_lock);
94
95 static void __init acpi_request_region (struct acpi_generic_address *gas,
96         unsigned int length, char *desc)
97 {
98         u64 addr;
99
100         /* Handle possible alignment issues */
101         memcpy(&addr, &gas->address, sizeof(addr));
102         if (!addr || !length)
103                 return;
104
105         /* Resources are never freed */
106         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
107                 request_region(addr, length, desc);
108         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
109                 request_mem_region(addr, length, desc);
110 }
111
112 static int __init acpi_reserve_resources(void)
113 {
114         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
115                 "ACPI PM1a_EVT_BLK");
116
117         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
118                 "ACPI PM1b_EVT_BLK");
119
120         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
121                 "ACPI PM1a_CNT_BLK");
122
123         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
124                 "ACPI PM1b_CNT_BLK");
125
126         if (acpi_gbl_FADT.pm_timer_length == 4)
127                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
128
129         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
130                 "ACPI PM2_CNT_BLK");
131
132         /* Length of GPE blocks must be a non-negative multiple of 2 */
133
134         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
135                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
136                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
137
138         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
139                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
140                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
141
142         return 0;
143 }
144 fs_initcall_sync(acpi_reserve_resources);
145
146 void acpi_os_printf(const char *fmt, ...)
147 {
148         va_list args;
149         va_start(args, fmt);
150         acpi_os_vprintf(fmt, args);
151         va_end(args);
152 }
153 EXPORT_SYMBOL(acpi_os_printf);
154
155 void acpi_os_vprintf(const char *fmt, va_list args)
156 {
157         static char buffer[512];
158
159         vsprintf(buffer, fmt, args);
160
161 #ifdef ENABLE_DEBUGGER
162         if (acpi_in_debugger) {
163                 kdb_printf("%s", buffer);
164         } else {
165                 if (printk_get_level(buffer))
166                         printk("%s", buffer);
167                 else
168                         printk(KERN_CONT "%s", buffer);
169         }
170 #else
171         if (acpi_debugger_write_log(buffer) < 0) {
172                 if (printk_get_level(buffer))
173                         printk("%s", buffer);
174                 else
175                         printk(KERN_CONT "%s", buffer);
176         }
177 #endif
178 }
179
180 #ifdef CONFIG_KEXEC
181 static unsigned long acpi_rsdp;
182 static int __init setup_acpi_rsdp(char *arg)
183 {
184         if (kstrtoul(arg, 16, &acpi_rsdp))
185                 return -EINVAL;
186         return 0;
187 }
188 early_param("acpi_rsdp", setup_acpi_rsdp);
189 #endif
190
191 acpi_physical_address __init acpi_os_get_root_pointer(void)
192 {
193 #ifdef CONFIG_KEXEC
194         if (acpi_rsdp)
195                 return acpi_rsdp;
196 #endif
197
198         if (efi_enabled(EFI_CONFIG_TABLES)) {
199                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
200                         return efi.acpi20;
201                 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
202                         return efi.acpi;
203                 else {
204                         printk(KERN_ERR PREFIX
205                                "System description tables not found\n");
206                         return 0;
207                 }
208         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
209                 acpi_physical_address pa = 0;
210
211                 acpi_find_root_pointer(&pa);
212                 return pa;
213         }
214
215         return 0;
216 }
217
218 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
219 static struct acpi_ioremap *
220 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
221 {
222         struct acpi_ioremap *map;
223
224         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
225                 if (map->phys <= phys &&
226                     phys + size <= map->phys + map->size)
227                         return map;
228
229         return NULL;
230 }
231
232 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
233 static void __iomem *
234 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
235 {
236         struct acpi_ioremap *map;
237
238         map = acpi_map_lookup(phys, size);
239         if (map)
240                 return map->virt + (phys - map->phys);
241
242         return NULL;
243 }
244
245 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
246 {
247         struct acpi_ioremap *map;
248         void __iomem *virt = NULL;
249
250         mutex_lock(&acpi_ioremap_lock);
251         map = acpi_map_lookup(phys, size);
252         if (map) {
253                 virt = map->virt + (phys - map->phys);
254                 map->refcount++;
255         }
256         mutex_unlock(&acpi_ioremap_lock);
257         return virt;
258 }
259 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
260
261 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
262 static struct acpi_ioremap *
263 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
264 {
265         struct acpi_ioremap *map;
266
267         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
268                 if (map->virt <= virt &&
269                     virt + size <= map->virt + map->size)
270                         return map;
271
272         return NULL;
273 }
274
275 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
276 /* ioremap will take care of cache attributes */
277 #define should_use_kmap(pfn)   0
278 #else
279 #define should_use_kmap(pfn)   page_is_ram(pfn)
280 #endif
281
282 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
283 {
284         unsigned long pfn;
285
286         pfn = pg_off >> PAGE_SHIFT;
287         if (should_use_kmap(pfn)) {
288                 if (pg_sz > PAGE_SIZE)
289                         return NULL;
290                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
291         } else
292                 return acpi_os_ioremap(pg_off, pg_sz);
293 }
294
295 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
296 {
297         unsigned long pfn;
298
299         pfn = pg_off >> PAGE_SHIFT;
300         if (should_use_kmap(pfn))
301                 kunmap(pfn_to_page(pfn));
302         else
303                 iounmap(vaddr);
304 }
305
306 /**
307  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
308  * @phys: Start of the physical address range to map.
309  * @size: Size of the physical address range to map.
310  *
311  * Look up the given physical address range in the list of existing ACPI memory
312  * mappings.  If found, get a reference to it and return a pointer to it (its
313  * virtual address).  If not found, map it, add it to that list and return a
314  * pointer to it.
315  *
316  * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
317  * routine simply calls __acpi_map_table() to get the job done.
318  */
319 void __iomem *__ref
320 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
321 {
322         struct acpi_ioremap *map;
323         void __iomem *virt;
324         acpi_physical_address pg_off;
325         acpi_size pg_sz;
326
327         if (phys > ULONG_MAX) {
328                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
329                 return NULL;
330         }
331
332         if (!acpi_gbl_permanent_mmap)
333                 return __acpi_map_table((unsigned long)phys, size);
334
335         mutex_lock(&acpi_ioremap_lock);
336         /* Check if there's a suitable mapping already. */
337         map = acpi_map_lookup(phys, size);
338         if (map) {
339                 map->refcount++;
340                 goto out;
341         }
342
343         map = kzalloc(sizeof(*map), GFP_KERNEL);
344         if (!map) {
345                 mutex_unlock(&acpi_ioremap_lock);
346                 return NULL;
347         }
348
349         pg_off = round_down(phys, PAGE_SIZE);
350         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
351         virt = acpi_map(pg_off, pg_sz);
352         if (!virt) {
353                 mutex_unlock(&acpi_ioremap_lock);
354                 kfree(map);
355                 return NULL;
356         }
357
358         INIT_LIST_HEAD(&map->list);
359         map->virt = virt;
360         map->phys = pg_off;
361         map->size = pg_sz;
362         map->refcount = 1;
363
364         list_add_tail_rcu(&map->list, &acpi_ioremaps);
365
366 out:
367         mutex_unlock(&acpi_ioremap_lock);
368         return map->virt + (phys - map->phys);
369 }
370 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
371
372 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
373 {
374         return (void *)acpi_os_map_iomem(phys, size);
375 }
376 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
377
378 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
379 static unsigned long acpi_os_drop_map_ref(struct acpi_ioremap *map)
380 {
381         unsigned long refcount = --map->refcount;
382
383         if (!refcount)
384                 list_del_rcu(&map->list);
385         return refcount;
386 }
387
388 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
389 {
390         synchronize_rcu_expedited();
391         acpi_unmap(map->phys, map->virt);
392         kfree(map);
393 }
394
395 /**
396  * acpi_os_unmap_iomem - Drop a memory mapping reference.
397  * @virt: Start of the address range to drop a reference to.
398  * @size: Size of the address range to drop a reference to.
399  *
400  * Look up the given virtual address range in the list of existing ACPI memory
401  * mappings, drop a reference to it and unmap it if there are no more active
402  * references to it.
403  *
404  * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
405  * routine simply calls __acpi_unmap_table() to get the job done.  Since
406  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
407  * here.
408  */
409 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
410 {
411         struct acpi_ioremap *map;
412         unsigned long refcount;
413
414         if (!acpi_gbl_permanent_mmap) {
415                 __acpi_unmap_table(virt, size);
416                 return;
417         }
418
419         mutex_lock(&acpi_ioremap_lock);
420         map = acpi_map_lookup_virt(virt, size);
421         if (!map) {
422                 mutex_unlock(&acpi_ioremap_lock);
423                 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
424                 return;
425         }
426         refcount = acpi_os_drop_map_ref(map);
427         mutex_unlock(&acpi_ioremap_lock);
428
429         if (!refcount)
430                 acpi_os_map_cleanup(map);
431 }
432 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
433
434 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
435 {
436         return acpi_os_unmap_iomem((void __iomem *)virt, size);
437 }
438 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
439
440 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
441 {
442         if (!acpi_gbl_permanent_mmap)
443                 __acpi_unmap_table(virt, size);
444 }
445
446 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
447 {
448         u64 addr;
449         void __iomem *virt;
450
451         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
452                 return 0;
453
454         /* Handle possible alignment issues */
455         memcpy(&addr, &gas->address, sizeof(addr));
456         if (!addr || !gas->bit_width)
457                 return -EINVAL;
458
459         virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
460         if (!virt)
461                 return -EIO;
462
463         return 0;
464 }
465 EXPORT_SYMBOL(acpi_os_map_generic_address);
466
467 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
468 {
469         u64 addr;
470         struct acpi_ioremap *map;
471         unsigned long refcount;
472
473         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474                 return;
475
476         /* Handle possible alignment issues */
477         memcpy(&addr, &gas->address, sizeof(addr));
478         if (!addr || !gas->bit_width)
479                 return;
480
481         mutex_lock(&acpi_ioremap_lock);
482         map = acpi_map_lookup(addr, gas->bit_width / 8);
483         if (!map) {
484                 mutex_unlock(&acpi_ioremap_lock);
485                 return;
486         }
487         refcount = acpi_os_drop_map_ref(map);
488         mutex_unlock(&acpi_ioremap_lock);
489
490         if (!refcount)
491                 acpi_os_map_cleanup(map);
492 }
493 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
494
495 #ifdef ACPI_FUTURE_USAGE
496 acpi_status
497 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
498 {
499         if (!phys || !virt)
500                 return AE_BAD_PARAMETER;
501
502         *phys = virt_to_phys(virt);
503
504         return AE_OK;
505 }
506 #endif
507
508 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
509 static bool acpi_rev_override;
510
511 int __init acpi_rev_override_setup(char *str)
512 {
513         acpi_rev_override = true;
514         return 1;
515 }
516 __setup("acpi_rev_override", acpi_rev_override_setup);
517 #else
518 #define acpi_rev_override       false
519 #endif
520
521 #define ACPI_MAX_OVERRIDE_LEN 100
522
523 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
524
525 acpi_status
526 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
527                             acpi_string *new_val)
528 {
529         if (!init_val || !new_val)
530                 return AE_BAD_PARAMETER;
531
532         *new_val = NULL;
533         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
534                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
535                        acpi_os_name);
536                 *new_val = acpi_os_name;
537         }
538
539         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
540                 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
541                 *new_val = (char *)5;
542         }
543
544         return AE_OK;
545 }
546
547 static irqreturn_t acpi_irq(int irq, void *dev_id)
548 {
549         u32 handled;
550
551         handled = (*acpi_irq_handler) (acpi_irq_context);
552
553         if (handled) {
554                 acpi_irq_handled++;
555                 return IRQ_HANDLED;
556         } else {
557                 acpi_irq_not_handled++;
558                 return IRQ_NONE;
559         }
560 }
561
562 acpi_status
563 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
564                                   void *context)
565 {
566         unsigned int irq;
567
568         acpi_irq_stats_init();
569
570         /*
571          * ACPI interrupts different from the SCI in our copy of the FADT are
572          * not supported.
573          */
574         if (gsi != acpi_gbl_FADT.sci_interrupt)
575                 return AE_BAD_PARAMETER;
576
577         if (acpi_irq_handler)
578                 return AE_ALREADY_ACQUIRED;
579
580         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
581                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
582                        gsi);
583                 return AE_OK;
584         }
585
586         acpi_irq_handler = handler;
587         acpi_irq_context = context;
588         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
589                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
590                 acpi_irq_handler = NULL;
591                 return AE_NOT_ACQUIRED;
592         }
593         acpi_sci_irq = irq;
594
595         return AE_OK;
596 }
597
598 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
599 {
600         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
601                 return AE_BAD_PARAMETER;
602
603         free_irq(acpi_sci_irq, acpi_irq);
604         acpi_irq_handler = NULL;
605         acpi_sci_irq = INVALID_ACPI_IRQ;
606
607         return AE_OK;
608 }
609
610 /*
611  * Running in interpreter thread context, safe to sleep
612  */
613
614 void acpi_os_sleep(u64 ms)
615 {
616         msleep(ms);
617 }
618
619 void acpi_os_stall(u32 us)
620 {
621         while (us) {
622                 u32 delay = 1000;
623
624                 if (delay > us)
625                         delay = us;
626                 udelay(delay);
627                 touch_nmi_watchdog();
628                 us -= delay;
629         }
630 }
631
632 /*
633  * Support ACPI 3.0 AML Timer operand
634  * Returns 64-bit free-running, monotonically increasing timer
635  * with 100ns granularity
636  */
637 u64 acpi_os_get_timer(void)
638 {
639         u64 time_ns = ktime_to_ns(ktime_get());
640         do_div(time_ns, 100);
641         return time_ns;
642 }
643
644 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
645 {
646         u32 dummy;
647
648         if (!value)
649                 value = &dummy;
650
651         *value = 0;
652         if (width <= 8) {
653                 *(u8 *) value = inb(port);
654         } else if (width <= 16) {
655                 *(u16 *) value = inw(port);
656         } else if (width <= 32) {
657                 *(u32 *) value = inl(port);
658         } else {
659                 BUG();
660         }
661
662         return AE_OK;
663 }
664
665 EXPORT_SYMBOL(acpi_os_read_port);
666
667 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
668 {
669         if (width <= 8) {
670                 outb(value, port);
671         } else if (width <= 16) {
672                 outw(value, port);
673         } else if (width <= 32) {
674                 outl(value, port);
675         } else {
676                 BUG();
677         }
678
679         return AE_OK;
680 }
681
682 EXPORT_SYMBOL(acpi_os_write_port);
683
684 acpi_status
685 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
686 {
687         void __iomem *virt_addr;
688         unsigned int size = width / 8;
689         bool unmap = false;
690         u64 dummy;
691
692         rcu_read_lock();
693         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
694         if (!virt_addr) {
695                 rcu_read_unlock();
696                 virt_addr = acpi_os_ioremap(phys_addr, size);
697                 if (!virt_addr)
698                         return AE_BAD_ADDRESS;
699                 unmap = true;
700         }
701
702         if (!value)
703                 value = &dummy;
704
705         switch (width) {
706         case 8:
707                 *(u8 *) value = readb(virt_addr);
708                 break;
709         case 16:
710                 *(u16 *) value = readw(virt_addr);
711                 break;
712         case 32:
713                 *(u32 *) value = readl(virt_addr);
714                 break;
715         case 64:
716                 *(u64 *) value = readq(virt_addr);
717                 break;
718         default:
719                 BUG();
720         }
721
722         if (unmap)
723                 iounmap(virt_addr);
724         else
725                 rcu_read_unlock();
726
727         return AE_OK;
728 }
729
730 acpi_status
731 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
732 {
733         void __iomem *virt_addr;
734         unsigned int size = width / 8;
735         bool unmap = false;
736
737         rcu_read_lock();
738         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
739         if (!virt_addr) {
740                 rcu_read_unlock();
741                 virt_addr = acpi_os_ioremap(phys_addr, size);
742                 if (!virt_addr)
743                         return AE_BAD_ADDRESS;
744                 unmap = true;
745         }
746
747         switch (width) {
748         case 8:
749                 writeb(value, virt_addr);
750                 break;
751         case 16:
752                 writew(value, virt_addr);
753                 break;
754         case 32:
755                 writel(value, virt_addr);
756                 break;
757         case 64:
758                 writeq(value, virt_addr);
759                 break;
760         default:
761                 BUG();
762         }
763
764         if (unmap)
765                 iounmap(virt_addr);
766         else
767                 rcu_read_unlock();
768
769         return AE_OK;
770 }
771
772 acpi_status
773 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
774                                u64 *value, u32 width)
775 {
776         int result, size;
777         u32 value32;
778
779         if (!value)
780                 return AE_BAD_PARAMETER;
781
782         switch (width) {
783         case 8:
784                 size = 1;
785                 break;
786         case 16:
787                 size = 2;
788                 break;
789         case 32:
790                 size = 4;
791                 break;
792         default:
793                 return AE_ERROR;
794         }
795
796         result = raw_pci_read(pci_id->segment, pci_id->bus,
797                                 PCI_DEVFN(pci_id->device, pci_id->function),
798                                 reg, size, &value32);
799         *value = value32;
800
801         return (result ? AE_ERROR : AE_OK);
802 }
803
804 acpi_status
805 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
806                                 u64 value, u32 width)
807 {
808         int result, size;
809
810         switch (width) {
811         case 8:
812                 size = 1;
813                 break;
814         case 16:
815                 size = 2;
816                 break;
817         case 32:
818                 size = 4;
819                 break;
820         default:
821                 return AE_ERROR;
822         }
823
824         result = raw_pci_write(pci_id->segment, pci_id->bus,
825                                 PCI_DEVFN(pci_id->device, pci_id->function),
826                                 reg, size, value);
827
828         return (result ? AE_ERROR : AE_OK);
829 }
830
831 static void acpi_os_execute_deferred(struct work_struct *work)
832 {
833         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
834
835         dpc->function(dpc->context);
836         kfree(dpc);
837 }
838
839 #ifdef CONFIG_ACPI_DEBUGGER
840 static struct acpi_debugger acpi_debugger;
841 static bool acpi_debugger_initialized;
842
843 int acpi_register_debugger(struct module *owner,
844                            const struct acpi_debugger_ops *ops)
845 {
846         int ret = 0;
847
848         mutex_lock(&acpi_debugger.lock);
849         if (acpi_debugger.ops) {
850                 ret = -EBUSY;
851                 goto err_lock;
852         }
853
854         acpi_debugger.owner = owner;
855         acpi_debugger.ops = ops;
856
857 err_lock:
858         mutex_unlock(&acpi_debugger.lock);
859         return ret;
860 }
861 EXPORT_SYMBOL(acpi_register_debugger);
862
863 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
864 {
865         mutex_lock(&acpi_debugger.lock);
866         if (ops == acpi_debugger.ops) {
867                 acpi_debugger.ops = NULL;
868                 acpi_debugger.owner = NULL;
869         }
870         mutex_unlock(&acpi_debugger.lock);
871 }
872 EXPORT_SYMBOL(acpi_unregister_debugger);
873
874 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
875 {
876         int ret;
877         int (*func)(acpi_osd_exec_callback, void *);
878         struct module *owner;
879
880         if (!acpi_debugger_initialized)
881                 return -ENODEV;
882         mutex_lock(&acpi_debugger.lock);
883         if (!acpi_debugger.ops) {
884                 ret = -ENODEV;
885                 goto err_lock;
886         }
887         if (!try_module_get(acpi_debugger.owner)) {
888                 ret = -ENODEV;
889                 goto err_lock;
890         }
891         func = acpi_debugger.ops->create_thread;
892         owner = acpi_debugger.owner;
893         mutex_unlock(&acpi_debugger.lock);
894
895         ret = func(function, context);
896
897         mutex_lock(&acpi_debugger.lock);
898         module_put(owner);
899 err_lock:
900         mutex_unlock(&acpi_debugger.lock);
901         return ret;
902 }
903
904 ssize_t acpi_debugger_write_log(const char *msg)
905 {
906         ssize_t ret;
907         ssize_t (*func)(const char *);
908         struct module *owner;
909
910         if (!acpi_debugger_initialized)
911                 return -ENODEV;
912         mutex_lock(&acpi_debugger.lock);
913         if (!acpi_debugger.ops) {
914                 ret = -ENODEV;
915                 goto err_lock;
916         }
917         if (!try_module_get(acpi_debugger.owner)) {
918                 ret = -ENODEV;
919                 goto err_lock;
920         }
921         func = acpi_debugger.ops->write_log;
922         owner = acpi_debugger.owner;
923         mutex_unlock(&acpi_debugger.lock);
924
925         ret = func(msg);
926
927         mutex_lock(&acpi_debugger.lock);
928         module_put(owner);
929 err_lock:
930         mutex_unlock(&acpi_debugger.lock);
931         return ret;
932 }
933
934 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
935 {
936         ssize_t ret;
937         ssize_t (*func)(char *, size_t);
938         struct module *owner;
939
940         if (!acpi_debugger_initialized)
941                 return -ENODEV;
942         mutex_lock(&acpi_debugger.lock);
943         if (!acpi_debugger.ops) {
944                 ret = -ENODEV;
945                 goto err_lock;
946         }
947         if (!try_module_get(acpi_debugger.owner)) {
948                 ret = -ENODEV;
949                 goto err_lock;
950         }
951         func = acpi_debugger.ops->read_cmd;
952         owner = acpi_debugger.owner;
953         mutex_unlock(&acpi_debugger.lock);
954
955         ret = func(buffer, buffer_length);
956
957         mutex_lock(&acpi_debugger.lock);
958         module_put(owner);
959 err_lock:
960         mutex_unlock(&acpi_debugger.lock);
961         return ret;
962 }
963
964 int acpi_debugger_wait_command_ready(void)
965 {
966         int ret;
967         int (*func)(bool, char *, size_t);
968         struct module *owner;
969
970         if (!acpi_debugger_initialized)
971                 return -ENODEV;
972         mutex_lock(&acpi_debugger.lock);
973         if (!acpi_debugger.ops) {
974                 ret = -ENODEV;
975                 goto err_lock;
976         }
977         if (!try_module_get(acpi_debugger.owner)) {
978                 ret = -ENODEV;
979                 goto err_lock;
980         }
981         func = acpi_debugger.ops->wait_command_ready;
982         owner = acpi_debugger.owner;
983         mutex_unlock(&acpi_debugger.lock);
984
985         ret = func(acpi_gbl_method_executing,
986                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
987
988         mutex_lock(&acpi_debugger.lock);
989         module_put(owner);
990 err_lock:
991         mutex_unlock(&acpi_debugger.lock);
992         return ret;
993 }
994
995 int acpi_debugger_notify_command_complete(void)
996 {
997         int ret;
998         int (*func)(void);
999         struct module *owner;
1000
1001         if (!acpi_debugger_initialized)
1002                 return -ENODEV;
1003         mutex_lock(&acpi_debugger.lock);
1004         if (!acpi_debugger.ops) {
1005                 ret = -ENODEV;
1006                 goto err_lock;
1007         }
1008         if (!try_module_get(acpi_debugger.owner)) {
1009                 ret = -ENODEV;
1010                 goto err_lock;
1011         }
1012         func = acpi_debugger.ops->notify_command_complete;
1013         owner = acpi_debugger.owner;
1014         mutex_unlock(&acpi_debugger.lock);
1015
1016         ret = func();
1017
1018         mutex_lock(&acpi_debugger.lock);
1019         module_put(owner);
1020 err_lock:
1021         mutex_unlock(&acpi_debugger.lock);
1022         return ret;
1023 }
1024
1025 int __init acpi_debugger_init(void)
1026 {
1027         mutex_init(&acpi_debugger.lock);
1028         acpi_debugger_initialized = true;
1029         return 0;
1030 }
1031 #endif
1032
1033 /*******************************************************************************
1034  *
1035  * FUNCTION:    acpi_os_execute
1036  *
1037  * PARAMETERS:  Type               - Type of the callback
1038  *              Function           - Function to be executed
1039  *              Context            - Function parameters
1040  *
1041  * RETURN:      Status
1042  *
1043  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1044  *              immediately executes function on a separate thread.
1045  *
1046  ******************************************************************************/
1047
1048 acpi_status acpi_os_execute(acpi_execute_type type,
1049                             acpi_osd_exec_callback function, void *context)
1050 {
1051         acpi_status status = AE_OK;
1052         struct acpi_os_dpc *dpc;
1053         struct workqueue_struct *queue;
1054         int ret;
1055         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1056                           "Scheduling function [%p(%p)] for deferred execution.\n",
1057                           function, context));
1058
1059         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1060                 ret = acpi_debugger_create_thread(function, context);
1061                 if (ret) {
1062                         pr_err("Call to kthread_create() failed.\n");
1063                         status = AE_ERROR;
1064                 }
1065                 goto out_thread;
1066         }
1067
1068         /*
1069          * Allocate/initialize DPC structure.  Note that this memory will be
1070          * freed by the callee.  The kernel handles the work_struct list  in a
1071          * way that allows us to also free its memory inside the callee.
1072          * Because we may want to schedule several tasks with different
1073          * parameters we can't use the approach some kernel code uses of
1074          * having a static work_struct.
1075          */
1076
1077         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1078         if (!dpc)
1079                 return AE_NO_MEMORY;
1080
1081         dpc->function = function;
1082         dpc->context = context;
1083
1084         /*
1085          * To prevent lockdep from complaining unnecessarily, make sure that
1086          * there is a different static lockdep key for each workqueue by using
1087          * INIT_WORK() for each of them separately.
1088          */
1089         if (type == OSL_NOTIFY_HANDLER) {
1090                 queue = kacpi_notify_wq;
1091                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1092         } else if (type == OSL_GPE_HANDLER) {
1093                 queue = kacpid_wq;
1094                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1095         } else {
1096                 pr_err("Unsupported os_execute type %d.\n", type);
1097                 status = AE_ERROR;
1098         }
1099
1100         if (ACPI_FAILURE(status))
1101                 goto err_workqueue;
1102
1103         /*
1104          * On some machines, a software-initiated SMI causes corruption unless
1105          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1106          * typically it's done in GPE-related methods that are run via
1107          * workqueues, so we can avoid the known corruption cases by always
1108          * queueing on CPU 0.
1109          */
1110         ret = queue_work_on(0, queue, &dpc->work);
1111         if (!ret) {
1112                 printk(KERN_ERR PREFIX
1113                           "Call to queue_work() failed.\n");
1114                 status = AE_ERROR;
1115         }
1116 err_workqueue:
1117         if (ACPI_FAILURE(status))
1118                 kfree(dpc);
1119 out_thread:
1120         return status;
1121 }
1122 EXPORT_SYMBOL(acpi_os_execute);
1123
1124 void acpi_os_wait_events_complete(void)
1125 {
1126         /*
1127          * Make sure the GPE handler or the fixed event handler is not used
1128          * on another CPU after removal.
1129          */
1130         if (acpi_sci_irq_valid())
1131                 synchronize_hardirq(acpi_sci_irq);
1132         flush_workqueue(kacpid_wq);
1133         flush_workqueue(kacpi_notify_wq);
1134 }
1135 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1136
1137 struct acpi_hp_work {
1138         struct work_struct work;
1139         struct acpi_device *adev;
1140         u32 src;
1141 };
1142
1143 static void acpi_hotplug_work_fn(struct work_struct *work)
1144 {
1145         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1146
1147         acpi_os_wait_events_complete();
1148         acpi_device_hotplug(hpw->adev, hpw->src);
1149         kfree(hpw);
1150 }
1151
1152 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1153 {
1154         struct acpi_hp_work *hpw;
1155
1156         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1157                   "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1158                   adev, src));
1159
1160         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1161         if (!hpw)
1162                 return AE_NO_MEMORY;
1163
1164         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1165         hpw->adev = adev;
1166         hpw->src = src;
1167         /*
1168          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1169          * the hotplug code may call driver .remove() functions, which may
1170          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1171          * these workqueues.
1172          */
1173         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1174                 kfree(hpw);
1175                 return AE_ERROR;
1176         }
1177         return AE_OK;
1178 }
1179
1180 bool acpi_queue_hotplug_work(struct work_struct *work)
1181 {
1182         return queue_work(kacpi_hotplug_wq, work);
1183 }
1184
1185 acpi_status
1186 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1187 {
1188         struct semaphore *sem = NULL;
1189
1190         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1191         if (!sem)
1192                 return AE_NO_MEMORY;
1193
1194         sema_init(sem, initial_units);
1195
1196         *handle = (acpi_handle *) sem;
1197
1198         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1199                           *handle, initial_units));
1200
1201         return AE_OK;
1202 }
1203
1204 /*
1205  * TODO: A better way to delete semaphores?  Linux doesn't have a
1206  * 'delete_semaphore()' function -- may result in an invalid
1207  * pointer dereference for non-synchronized consumers.  Should
1208  * we at least check for blocked threads and signal/cancel them?
1209  */
1210
1211 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1212 {
1213         struct semaphore *sem = (struct semaphore *)handle;
1214
1215         if (!sem)
1216                 return AE_BAD_PARAMETER;
1217
1218         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1219
1220         BUG_ON(!list_empty(&sem->wait_list));
1221         kfree(sem);
1222         sem = NULL;
1223
1224         return AE_OK;
1225 }
1226
1227 /*
1228  * TODO: Support for units > 1?
1229  */
1230 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1231 {
1232         acpi_status status = AE_OK;
1233         struct semaphore *sem = (struct semaphore *)handle;
1234         long jiffies;
1235         int ret = 0;
1236
1237         if (!acpi_os_initialized)
1238                 return AE_OK;
1239
1240         if (!sem || (units < 1))
1241                 return AE_BAD_PARAMETER;
1242
1243         if (units > 1)
1244                 return AE_SUPPORT;
1245
1246         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1247                           handle, units, timeout));
1248
1249         if (timeout == ACPI_WAIT_FOREVER)
1250                 jiffies = MAX_SCHEDULE_TIMEOUT;
1251         else
1252                 jiffies = msecs_to_jiffies(timeout);
1253
1254         ret = down_timeout(sem, jiffies);
1255         if (ret)
1256                 status = AE_TIME;
1257
1258         if (ACPI_FAILURE(status)) {
1259                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1260                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1261                                   handle, units, timeout,
1262                                   acpi_format_exception(status)));
1263         } else {
1264                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1265                                   "Acquired semaphore[%p|%d|%d]", handle,
1266                                   units, timeout));
1267         }
1268
1269         return status;
1270 }
1271
1272 /*
1273  * TODO: Support for units > 1?
1274  */
1275 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1276 {
1277         struct semaphore *sem = (struct semaphore *)handle;
1278
1279         if (!acpi_os_initialized)
1280                 return AE_OK;
1281
1282         if (!sem || (units < 1))
1283                 return AE_BAD_PARAMETER;
1284
1285         if (units > 1)
1286                 return AE_SUPPORT;
1287
1288         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1289                           units));
1290
1291         up(sem);
1292
1293         return AE_OK;
1294 }
1295
1296 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1297 {
1298 #ifdef ENABLE_DEBUGGER
1299         if (acpi_in_debugger) {
1300                 u32 chars;
1301
1302                 kdb_read(buffer, buffer_length);
1303
1304                 /* remove the CR kdb includes */
1305                 chars = strlen(buffer) - 1;
1306                 buffer[chars] = '\0';
1307         }
1308 #else
1309         int ret;
1310
1311         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1312         if (ret < 0)
1313                 return AE_ERROR;
1314         if (bytes_read)
1315                 *bytes_read = ret;
1316 #endif
1317
1318         return AE_OK;
1319 }
1320 EXPORT_SYMBOL(acpi_os_get_line);
1321
1322 acpi_status acpi_os_wait_command_ready(void)
1323 {
1324         int ret;
1325
1326         ret = acpi_debugger_wait_command_ready();
1327         if (ret < 0)
1328                 return AE_ERROR;
1329         return AE_OK;
1330 }
1331
1332 acpi_status acpi_os_notify_command_complete(void)
1333 {
1334         int ret;
1335
1336         ret = acpi_debugger_notify_command_complete();
1337         if (ret < 0)
1338                 return AE_ERROR;
1339         return AE_OK;
1340 }
1341
1342 acpi_status acpi_os_signal(u32 function, void *info)
1343 {
1344         switch (function) {
1345         case ACPI_SIGNAL_FATAL:
1346                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1347                 break;
1348         case ACPI_SIGNAL_BREAKPOINT:
1349                 /*
1350                  * AML Breakpoint
1351                  * ACPI spec. says to treat it as a NOP unless
1352                  * you are debugging.  So if/when we integrate
1353                  * AML debugger into the kernel debugger its
1354                  * hook will go here.  But until then it is
1355                  * not useful to print anything on breakpoints.
1356                  */
1357                 break;
1358         default:
1359                 break;
1360         }
1361
1362         return AE_OK;
1363 }
1364
1365 static int __init acpi_os_name_setup(char *str)
1366 {
1367         char *p = acpi_os_name;
1368         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1369
1370         if (!str || !*str)
1371                 return 0;
1372
1373         for (; count-- && *str; str++) {
1374                 if (isalnum(*str) || *str == ' ' || *str == ':')
1375                         *p++ = *str;
1376                 else if (*str == '\'' || *str == '"')
1377                         continue;
1378                 else
1379                         break;
1380         }
1381         *p = 0;
1382
1383         return 1;
1384
1385 }
1386
1387 __setup("acpi_os_name=", acpi_os_name_setup);
1388
1389 /*
1390  * Disable the auto-serialization of named objects creation methods.
1391  *
1392  * This feature is enabled by default.  It marks the AML control methods
1393  * that contain the opcodes to create named objects as "Serialized".
1394  */
1395 static int __init acpi_no_auto_serialize_setup(char *str)
1396 {
1397         acpi_gbl_auto_serialize_methods = FALSE;
1398         pr_info("ACPI: auto-serialization disabled\n");
1399
1400         return 1;
1401 }
1402
1403 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1404
1405 /* Check of resource interference between native drivers and ACPI
1406  * OperationRegions (SystemIO and System Memory only).
1407  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1408  * in arbitrary AML code and can interfere with legacy drivers.
1409  * acpi_enforce_resources= can be set to:
1410  *
1411  *   - strict (default) (2)
1412  *     -> further driver trying to access the resources will not load
1413  *   - lax              (1)
1414  *     -> further driver trying to access the resources will load, but you
1415  *     get a system message that something might go wrong...
1416  *
1417  *   - no               (0)
1418  *     -> ACPI Operation Region resources will not be registered
1419  *
1420  */
1421 #define ENFORCE_RESOURCES_STRICT 2
1422 #define ENFORCE_RESOURCES_LAX    1
1423 #define ENFORCE_RESOURCES_NO     0
1424
1425 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1426
1427 static int __init acpi_enforce_resources_setup(char *str)
1428 {
1429         if (str == NULL || *str == '\0')
1430                 return 0;
1431
1432         if (!strcmp("strict", str))
1433                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1434         else if (!strcmp("lax", str))
1435                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1436         else if (!strcmp("no", str))
1437                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1438
1439         return 1;
1440 }
1441
1442 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1443
1444 /* Check for resource conflicts between ACPI OperationRegions and native
1445  * drivers */
1446 int acpi_check_resource_conflict(const struct resource *res)
1447 {
1448         acpi_adr_space_type space_id;
1449         acpi_size length;
1450         u8 warn = 0;
1451         int clash = 0;
1452
1453         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1454                 return 0;
1455         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1456                 return 0;
1457
1458         if (res->flags & IORESOURCE_IO)
1459                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1460         else
1461                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1462
1463         length = resource_size(res);
1464         if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1465                 warn = 1;
1466         clash = acpi_check_address_range(space_id, res->start, length, warn);
1467
1468         if (clash) {
1469                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1470                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1471                                 printk(KERN_NOTICE "ACPI: This conflict may"
1472                                        " cause random problems and system"
1473                                        " instability\n");
1474                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1475                                " for this device, you should use it instead of"
1476                                " the native driver\n");
1477                 }
1478                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1479                         return -EBUSY;
1480         }
1481         return 0;
1482 }
1483 EXPORT_SYMBOL(acpi_check_resource_conflict);
1484
1485 int acpi_check_region(resource_size_t start, resource_size_t n,
1486                       const char *name)
1487 {
1488         struct resource res = {
1489                 .start = start,
1490                 .end   = start + n - 1,
1491                 .name  = name,
1492                 .flags = IORESOURCE_IO,
1493         };
1494
1495         return acpi_check_resource_conflict(&res);
1496 }
1497 EXPORT_SYMBOL(acpi_check_region);
1498
1499 /*
1500  * Let drivers know whether the resource checks are effective
1501  */
1502 int acpi_resources_are_enforced(void)
1503 {
1504         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1505 }
1506 EXPORT_SYMBOL(acpi_resources_are_enforced);
1507
1508 /*
1509  * Deallocate the memory for a spinlock.
1510  */
1511 void acpi_os_delete_lock(acpi_spinlock handle)
1512 {
1513         ACPI_FREE(handle);
1514 }
1515
1516 /*
1517  * Acquire a spinlock.
1518  *
1519  * handle is a pointer to the spinlock_t.
1520  */
1521
1522 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1523 {
1524         acpi_cpu_flags flags;
1525         spin_lock_irqsave(lockp, flags);
1526         return flags;
1527 }
1528
1529 /*
1530  * Release a spinlock. See above.
1531  */
1532
1533 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1534 {
1535         spin_unlock_irqrestore(lockp, flags);
1536 }
1537
1538 #ifndef ACPI_USE_LOCAL_CACHE
1539
1540 /*******************************************************************************
1541  *
1542  * FUNCTION:    acpi_os_create_cache
1543  *
1544  * PARAMETERS:  name      - Ascii name for the cache
1545  *              size      - Size of each cached object
1546  *              depth     - Maximum depth of the cache (in objects) <ignored>
1547  *              cache     - Where the new cache object is returned
1548  *
1549  * RETURN:      status
1550  *
1551  * DESCRIPTION: Create a cache object
1552  *
1553  ******************************************************************************/
1554
1555 acpi_status
1556 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1557 {
1558         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1559         if (*cache == NULL)
1560                 return AE_ERROR;
1561         else
1562                 return AE_OK;
1563 }
1564
1565 /*******************************************************************************
1566  *
1567  * FUNCTION:    acpi_os_purge_cache
1568  *
1569  * PARAMETERS:  Cache           - Handle to cache object
1570  *
1571  * RETURN:      Status
1572  *
1573  * DESCRIPTION: Free all objects within the requested cache.
1574  *
1575  ******************************************************************************/
1576
1577 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1578 {
1579         kmem_cache_shrink(cache);
1580         return (AE_OK);
1581 }
1582
1583 /*******************************************************************************
1584  *
1585  * FUNCTION:    acpi_os_delete_cache
1586  *
1587  * PARAMETERS:  Cache           - Handle to cache object
1588  *
1589  * RETURN:      Status
1590  *
1591  * DESCRIPTION: Free all objects within the requested cache and delete the
1592  *              cache object.
1593  *
1594  ******************************************************************************/
1595
1596 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1597 {
1598         kmem_cache_destroy(cache);
1599         return (AE_OK);
1600 }
1601
1602 /*******************************************************************************
1603  *
1604  * FUNCTION:    acpi_os_release_object
1605  *
1606  * PARAMETERS:  Cache       - Handle to cache object
1607  *              Object      - The object to be released
1608  *
1609  * RETURN:      None
1610  *
1611  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1612  *              the object is deleted.
1613  *
1614  ******************************************************************************/
1615
1616 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1617 {
1618         kmem_cache_free(cache, object);
1619         return (AE_OK);
1620 }
1621 #endif
1622
1623 static int __init acpi_no_static_ssdt_setup(char *s)
1624 {
1625         acpi_gbl_disable_ssdt_table_install = TRUE;
1626         pr_info("ACPI: static SSDT installation disabled\n");
1627
1628         return 0;
1629 }
1630
1631 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1632
1633 static int __init acpi_disable_return_repair(char *s)
1634 {
1635         printk(KERN_NOTICE PREFIX
1636                "ACPI: Predefined validation mechanism disabled\n");
1637         acpi_gbl_disable_auto_repair = TRUE;
1638
1639         return 1;
1640 }
1641
1642 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1643
1644 acpi_status __init acpi_os_initialize(void)
1645 {
1646         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1647         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1648         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1649         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1650         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1651                 /*
1652                  * Use acpi_os_map_generic_address to pre-map the reset
1653                  * register if it's in system memory.
1654                  */
1655                 int rv;
1656
1657                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1658                 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1659         }
1660         acpi_os_initialized = true;
1661
1662         return AE_OK;
1663 }
1664
1665 acpi_status __init acpi_os_initialize1(void)
1666 {
1667         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1668         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1669         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1670         BUG_ON(!kacpid_wq);
1671         BUG_ON(!kacpi_notify_wq);
1672         BUG_ON(!kacpi_hotplug_wq);
1673         acpi_osi_init();
1674         return AE_OK;
1675 }
1676
1677 acpi_status acpi_os_terminate(void)
1678 {
1679         if (acpi_irq_handler) {
1680                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1681                                                  acpi_irq_handler);
1682         }
1683
1684         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1685         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1686         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1687         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1688         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1689                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1690
1691         destroy_workqueue(kacpid_wq);
1692         destroy_workqueue(kacpi_notify_wq);
1693         destroy_workqueue(kacpi_hotplug_wq);
1694
1695         return AE_OK;
1696 }
1697
1698 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1699                                   u32 pm1b_control)
1700 {
1701         int rc = 0;
1702         if (__acpi_os_prepare_sleep)
1703                 rc = __acpi_os_prepare_sleep(sleep_state,
1704                                              pm1a_control, pm1b_control);
1705         if (rc < 0)
1706                 return AE_ERROR;
1707         else if (rc > 0)
1708                 return AE_CTRL_SKIP;
1709
1710         return AE_OK;
1711 }
1712
1713 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1714                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1715 {
1716         __acpi_os_prepare_sleep = func;
1717 }
1718
1719 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1720                                   u32 val_b)
1721 {
1722         int rc = 0;
1723         if (__acpi_os_prepare_extended_sleep)
1724                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1725                                              val_a, val_b);
1726         if (rc < 0)
1727                 return AE_ERROR;
1728         else if (rc > 0)
1729                 return AE_CTRL_SKIP;
1730
1731         return AE_OK;
1732 }
1733
1734 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1735                                u32 val_a, u32 val_b))
1736 {
1737         __acpi_os_prepare_extended_sleep = func;
1738 }