GNU Linux-libre 4.19.304-gnu1
[releases.git] / drivers / acpi / ec.c
1 /*
2  *  ec.c - ACPI Embedded Controller Driver (v3)
3  *
4  *  Copyright (C) 2001-2015 Intel Corporation
5  *    Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com>
6  *            2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
7  *            2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *            2004       Luming Yu <luming.yu@intel.com>
9  *            2001, 2002 Andy Grover <andrew.grover@intel.com>
10  *            2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
11  *  Copyright (C) 2008      Alexey Starikovskiy <astarikovskiy@suse.de>
12  *
13  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14  *
15  *  This program is free software; you can redistribute it and/or modify
16  *  it under the terms of the GNU General Public License as published by
17  *  the Free Software Foundation; either version 2 of the License, or (at
18  *  your option) any later version.
19  *
20  *  This program is distributed in the hope that it will be useful, but
21  *  WITHOUT ANY WARRANTY; without even the implied warranty of
22  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  *  General Public License for more details.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 /* Uncomment next line to get verbose printout */
29 /* #define DEBUG */
30 #define pr_fmt(fmt) "ACPI: EC: " fmt
31
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/delay.h>
37 #include <linux/interrupt.h>
38 #include <linux/list.h>
39 #include <linux/spinlock.h>
40 #include <linux/slab.h>
41 #include <linux/acpi.h>
42 #include <linux/dmi.h>
43 #include <asm/io.h>
44
45 #include "internal.h"
46
47 #define ACPI_EC_CLASS                   "embedded_controller"
48 #define ACPI_EC_DEVICE_NAME             "Embedded Controller"
49 #define ACPI_EC_FILE_INFO               "info"
50
51 /* EC status register */
52 #define ACPI_EC_FLAG_OBF        0x01    /* Output buffer full */
53 #define ACPI_EC_FLAG_IBF        0x02    /* Input buffer full */
54 #define ACPI_EC_FLAG_CMD        0x08    /* Input buffer contains a command */
55 #define ACPI_EC_FLAG_BURST      0x10    /* burst mode */
56 #define ACPI_EC_FLAG_SCI        0x20    /* EC-SCI occurred */
57
58 /*
59  * The SCI_EVT clearing timing is not defined by the ACPI specification.
60  * This leads to lots of practical timing issues for the host EC driver.
61  * The following variations are defined (from the target EC firmware's
62  * perspective):
63  * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the
64  *         target can clear SCI_EVT at any time so long as the host can see
65  *         the indication by reading the status register (EC_SC). So the
66  *         host should re-check SCI_EVT after the first time the SCI_EVT
67  *         indication is seen, which is the same time the query request
68  *         (QR_EC) is written to the command register (EC_CMD). SCI_EVT set
69  *         at any later time could indicate another event. Normally such
70  *         kind of EC firmware has implemented an event queue and will
71  *         return 0x00 to indicate "no outstanding event".
72  * QUERY: After seeing the query request (QR_EC) written to the command
73  *        register (EC_CMD) by the host and having prepared the responding
74  *        event value in the data register (EC_DATA), the target can safely
75  *        clear SCI_EVT because the target can confirm that the current
76  *        event is being handled by the host. The host then should check
77  *        SCI_EVT right after reading the event response from the data
78  *        register (EC_DATA).
79  * EVENT: After seeing the event response read from the data register
80  *        (EC_DATA) by the host, the target can clear SCI_EVT. As the
81  *        target requires time to notice the change in the data register
82  *        (EC_DATA), the host may be required to wait additional guarding
83  *        time before checking the SCI_EVT again. Such guarding may not be
84  *        necessary if the host is notified via another IRQ.
85  */
86 #define ACPI_EC_EVT_TIMING_STATUS       0x00
87 #define ACPI_EC_EVT_TIMING_QUERY        0x01
88 #define ACPI_EC_EVT_TIMING_EVENT        0x02
89
90 /* EC commands */
91 enum ec_command {
92         ACPI_EC_COMMAND_READ = 0x80,
93         ACPI_EC_COMMAND_WRITE = 0x81,
94         ACPI_EC_BURST_ENABLE = 0x82,
95         ACPI_EC_BURST_DISABLE = 0x83,
96         ACPI_EC_COMMAND_QUERY = 0x84,
97 };
98
99 #define ACPI_EC_DELAY           500     /* Wait 500ms max. during EC ops */
100 #define ACPI_EC_UDELAY_GLK      1000    /* Wait 1ms max. to get global lock */
101 #define ACPI_EC_UDELAY_POLL     550     /* Wait 1ms for EC transaction polling */
102 #define ACPI_EC_CLEAR_MAX       100     /* Maximum number of events to query
103                                          * when trying to clear the EC */
104 #define ACPI_EC_MAX_QUERIES     16      /* Maximum number of parallel queries */
105
106 enum {
107         EC_FLAGS_QUERY_ENABLED,         /* Query is enabled */
108         EC_FLAGS_QUERY_PENDING,         /* Query is pending */
109         EC_FLAGS_QUERY_GUARDING,        /* Guard for SCI_EVT check */
110         EC_FLAGS_GPE_HANDLER_INSTALLED, /* GPE handler installed */
111         EC_FLAGS_EC_HANDLER_INSTALLED,  /* OpReg handler installed */
112         EC_FLAGS_EVT_HANDLER_INSTALLED, /* _Qxx handlers installed */
113         EC_FLAGS_STARTED,               /* Driver is started */
114         EC_FLAGS_STOPPED,               /* Driver is stopped */
115         EC_FLAGS_GPE_MASKED,            /* GPE masked */
116 };
117
118 #define ACPI_EC_COMMAND_POLL            0x01 /* Available for command byte */
119 #define ACPI_EC_COMMAND_COMPLETE        0x02 /* Completed last byte */
120
121 /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */
122 static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY;
123 module_param(ec_delay, uint, 0644);
124 MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes");
125
126 static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES;
127 module_param(ec_max_queries, uint, 0644);
128 MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations");
129
130 static bool ec_busy_polling __read_mostly;
131 module_param(ec_busy_polling, bool, 0644);
132 MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction");
133
134 static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL;
135 module_param(ec_polling_guard, uint, 0644);
136 MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes");
137
138 static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY;
139
140 /*
141  * If the number of false interrupts per one transaction exceeds
142  * this threshold, will think there is a GPE storm happened and
143  * will disable the GPE for normal transaction.
144  */
145 static unsigned int ec_storm_threshold  __read_mostly = 8;
146 module_param(ec_storm_threshold, uint, 0644);
147 MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm");
148
149 static bool ec_freeze_events __read_mostly = false;
150 module_param(ec_freeze_events, bool, 0644);
151 MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume");
152
153 static bool ec_no_wakeup __read_mostly;
154 module_param(ec_no_wakeup, bool, 0644);
155 MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle");
156
157 struct acpi_ec_query_handler {
158         struct list_head node;
159         acpi_ec_query_func func;
160         acpi_handle handle;
161         void *data;
162         u8 query_bit;
163         struct kref kref;
164 };
165
166 struct transaction {
167         const u8 *wdata;
168         u8 *rdata;
169         unsigned short irq_count;
170         u8 command;
171         u8 wi;
172         u8 ri;
173         u8 wlen;
174         u8 rlen;
175         u8 flags;
176 };
177
178 struct acpi_ec_query {
179         struct transaction transaction;
180         struct work_struct work;
181         struct acpi_ec_query_handler *handler;
182 };
183
184 static int acpi_ec_query(struct acpi_ec *ec, u8 *data);
185 static void advance_transaction(struct acpi_ec *ec);
186 static void acpi_ec_event_handler(struct work_struct *work);
187 static void acpi_ec_event_processor(struct work_struct *work);
188
189 struct acpi_ec *boot_ec, *first_ec;
190 EXPORT_SYMBOL(first_ec);
191 static bool boot_ec_is_ecdt = false;
192 static struct workqueue_struct *ec_query_wq;
193
194 static int EC_FLAGS_QUERY_HANDSHAKE; /* Needs QR_EC issued when SCI_EVT set */
195 static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */
196 static int EC_FLAGS_IGNORE_DSDT_GPE; /* Needs ECDT GPE as correction setting */
197 static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */
198
199 /* --------------------------------------------------------------------------
200  *                           Logging/Debugging
201  * -------------------------------------------------------------------------- */
202
203 /*
204  * Splitters used by the developers to track the boundary of the EC
205  * handling processes.
206  */
207 #ifdef DEBUG
208 #define EC_DBG_SEP      " "
209 #define EC_DBG_DRV      "+++++"
210 #define EC_DBG_STM      "====="
211 #define EC_DBG_REQ      "*****"
212 #define EC_DBG_EVT      "#####"
213 #else
214 #define EC_DBG_SEP      ""
215 #define EC_DBG_DRV
216 #define EC_DBG_STM
217 #define EC_DBG_REQ
218 #define EC_DBG_EVT
219 #endif
220
221 #define ec_log_raw(fmt, ...) \
222         pr_info(fmt "\n", ##__VA_ARGS__)
223 #define ec_dbg_raw(fmt, ...) \
224         pr_debug(fmt "\n", ##__VA_ARGS__)
225 #define ec_log(filter, fmt, ...) \
226         ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
227 #define ec_dbg(filter, fmt, ...) \
228         ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
229
230 #define ec_log_drv(fmt, ...) \
231         ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__)
232 #define ec_dbg_drv(fmt, ...) \
233         ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__)
234 #define ec_dbg_stm(fmt, ...) \
235         ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__)
236 #define ec_dbg_req(fmt, ...) \
237         ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__)
238 #define ec_dbg_evt(fmt, ...) \
239         ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__)
240 #define ec_dbg_ref(ec, fmt, ...) \
241         ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__)
242
243 /* --------------------------------------------------------------------------
244  *                           Device Flags
245  * -------------------------------------------------------------------------- */
246
247 static bool acpi_ec_started(struct acpi_ec *ec)
248 {
249         return test_bit(EC_FLAGS_STARTED, &ec->flags) &&
250                !test_bit(EC_FLAGS_STOPPED, &ec->flags);
251 }
252
253 static bool acpi_ec_event_enabled(struct acpi_ec *ec)
254 {
255         /*
256          * There is an OSPM early stage logic. During the early stages
257          * (boot/resume), OSPMs shouldn't enable the event handling, only
258          * the EC transactions are allowed to be performed.
259          */
260         if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
261                 return false;
262         /*
263          * However, disabling the event handling is experimental for late
264          * stage (suspend), and is controlled by the boot parameter of
265          * "ec_freeze_events":
266          * 1. true:  The EC event handling is disabled before entering
267          *           the noirq stage.
268          * 2. false: The EC event handling is automatically disabled as
269          *           soon as the EC driver is stopped.
270          */
271         if (ec_freeze_events)
272                 return acpi_ec_started(ec);
273         else
274                 return test_bit(EC_FLAGS_STARTED, &ec->flags);
275 }
276
277 static bool acpi_ec_flushed(struct acpi_ec *ec)
278 {
279         return ec->reference_count == 1;
280 }
281
282 /* --------------------------------------------------------------------------
283  *                           EC Registers
284  * -------------------------------------------------------------------------- */
285
286 static inline u8 acpi_ec_read_status(struct acpi_ec *ec)
287 {
288         u8 x = inb(ec->command_addr);
289
290         ec_dbg_raw("EC_SC(R) = 0x%2.2x "
291                    "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d",
292                    x,
293                    !!(x & ACPI_EC_FLAG_SCI),
294                    !!(x & ACPI_EC_FLAG_BURST),
295                    !!(x & ACPI_EC_FLAG_CMD),
296                    !!(x & ACPI_EC_FLAG_IBF),
297                    !!(x & ACPI_EC_FLAG_OBF));
298         return x;
299 }
300
301 static inline u8 acpi_ec_read_data(struct acpi_ec *ec)
302 {
303         u8 x = inb(ec->data_addr);
304
305         ec->timestamp = jiffies;
306         ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x);
307         return x;
308 }
309
310 static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command)
311 {
312         ec_dbg_raw("EC_SC(W) = 0x%2.2x", command);
313         outb(command, ec->command_addr);
314         ec->timestamp = jiffies;
315 }
316
317 static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data)
318 {
319         ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data);
320         outb(data, ec->data_addr);
321         ec->timestamp = jiffies;
322 }
323
324 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
325 static const char *acpi_ec_cmd_string(u8 cmd)
326 {
327         switch (cmd) {
328         case 0x80:
329                 return "RD_EC";
330         case 0x81:
331                 return "WR_EC";
332         case 0x82:
333                 return "BE_EC";
334         case 0x83:
335                 return "BD_EC";
336         case 0x84:
337                 return "QR_EC";
338         }
339         return "UNKNOWN";
340 }
341 #else
342 #define acpi_ec_cmd_string(cmd)         "UNDEF"
343 #endif
344
345 /* --------------------------------------------------------------------------
346  *                           GPE Registers
347  * -------------------------------------------------------------------------- */
348
349 static inline bool acpi_ec_is_gpe_raised(struct acpi_ec *ec)
350 {
351         acpi_event_status gpe_status = 0;
352
353         (void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status);
354         return (gpe_status & ACPI_EVENT_FLAG_STATUS_SET) ? true : false;
355 }
356
357 static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open)
358 {
359         if (open)
360                 acpi_enable_gpe(NULL, ec->gpe);
361         else {
362                 BUG_ON(ec->reference_count < 1);
363                 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
364         }
365         if (acpi_ec_is_gpe_raised(ec)) {
366                 /*
367                  * On some platforms, EN=1 writes cannot trigger GPE. So
368                  * software need to manually trigger a pseudo GPE event on
369                  * EN=1 writes.
370                  */
371                 ec_dbg_raw("Polling quirk");
372                 advance_transaction(ec);
373         }
374 }
375
376 static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close)
377 {
378         if (close)
379                 acpi_disable_gpe(NULL, ec->gpe);
380         else {
381                 BUG_ON(ec->reference_count < 1);
382                 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
383         }
384 }
385
386 static inline void acpi_ec_clear_gpe(struct acpi_ec *ec)
387 {
388         /*
389          * GPE STS is a W1C register, which means:
390          * 1. Software can clear it without worrying about clearing other
391          *    GPEs' STS bits when the hardware sets them in parallel.
392          * 2. As long as software can ensure only clearing it when it is
393          *    set, hardware won't set it in parallel.
394          * So software can clear GPE in any contexts.
395          * Warning: do not move the check into advance_transaction() as the
396          * EC commands will be sent without GPE raised.
397          */
398         if (!acpi_ec_is_gpe_raised(ec))
399                 return;
400         acpi_clear_gpe(NULL, ec->gpe);
401 }
402
403 /* --------------------------------------------------------------------------
404  *                           Transaction Management
405  * -------------------------------------------------------------------------- */
406
407 static void acpi_ec_submit_request(struct acpi_ec *ec)
408 {
409         ec->reference_count++;
410         if (test_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags) &&
411             ec->reference_count == 1)
412                 acpi_ec_enable_gpe(ec, true);
413 }
414
415 static void acpi_ec_complete_request(struct acpi_ec *ec)
416 {
417         bool flushed = false;
418
419         ec->reference_count--;
420         if (test_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags) &&
421             ec->reference_count == 0)
422                 acpi_ec_disable_gpe(ec, true);
423         flushed = acpi_ec_flushed(ec);
424         if (flushed)
425                 wake_up(&ec->wait);
426 }
427
428 static void acpi_ec_mask_gpe(struct acpi_ec *ec)
429 {
430         if (!test_bit(EC_FLAGS_GPE_MASKED, &ec->flags)) {
431                 acpi_ec_disable_gpe(ec, false);
432                 ec_dbg_drv("Polling enabled");
433                 set_bit(EC_FLAGS_GPE_MASKED, &ec->flags);
434         }
435 }
436
437 static void acpi_ec_unmask_gpe(struct acpi_ec *ec)
438 {
439         if (test_bit(EC_FLAGS_GPE_MASKED, &ec->flags)) {
440                 clear_bit(EC_FLAGS_GPE_MASKED, &ec->flags);
441                 acpi_ec_enable_gpe(ec, false);
442                 ec_dbg_drv("Polling disabled");
443         }
444 }
445
446 /*
447  * acpi_ec_submit_flushable_request() - Increase the reference count unless
448  *                                      the flush operation is not in
449  *                                      progress
450  * @ec: the EC device
451  *
452  * This function must be used before taking a new action that should hold
453  * the reference count.  If this function returns false, then the action
454  * must be discarded or it will prevent the flush operation from being
455  * completed.
456  */
457 static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec)
458 {
459         if (!acpi_ec_started(ec))
460                 return false;
461         acpi_ec_submit_request(ec);
462         return true;
463 }
464
465 static void acpi_ec_submit_query(struct acpi_ec *ec)
466 {
467         acpi_ec_mask_gpe(ec);
468         if (!acpi_ec_event_enabled(ec))
469                 return;
470         if (!test_and_set_bit(EC_FLAGS_QUERY_PENDING, &ec->flags)) {
471                 ec_dbg_evt("Command(%s) submitted/blocked",
472                            acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
473                 ec->nr_pending_queries++;
474                 schedule_work(&ec->work);
475         }
476 }
477
478 static void acpi_ec_complete_query(struct acpi_ec *ec)
479 {
480         if (test_and_clear_bit(EC_FLAGS_QUERY_PENDING, &ec->flags))
481                 ec_dbg_evt("Command(%s) unblocked",
482                            acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
483         acpi_ec_unmask_gpe(ec);
484 }
485
486 static inline void __acpi_ec_enable_event(struct acpi_ec *ec)
487 {
488         if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
489                 ec_log_drv("event unblocked");
490         /*
491          * Unconditionally invoke this once after enabling the event
492          * handling mechanism to detect the pending events.
493          */
494         advance_transaction(ec);
495 }
496
497 static inline void __acpi_ec_disable_event(struct acpi_ec *ec)
498 {
499         if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
500                 ec_log_drv("event blocked");
501 }
502
503 /*
504  * Process _Q events that might have accumulated in the EC.
505  * Run with locked ec mutex.
506  */
507 static void acpi_ec_clear(struct acpi_ec *ec)
508 {
509         int i, status;
510         u8 value = 0;
511
512         for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) {
513                 status = acpi_ec_query(ec, &value);
514                 if (status || !value)
515                         break;
516         }
517         if (unlikely(i == ACPI_EC_CLEAR_MAX))
518                 pr_warn("Warning: Maximum of %d stale EC events cleared\n", i);
519         else
520                 pr_info("%d stale EC events cleared\n", i);
521 }
522
523 static void acpi_ec_enable_event(struct acpi_ec *ec)
524 {
525         unsigned long flags;
526
527         spin_lock_irqsave(&ec->lock, flags);
528         if (acpi_ec_started(ec))
529                 __acpi_ec_enable_event(ec);
530         spin_unlock_irqrestore(&ec->lock, flags);
531
532         /* Drain additional events if hardware requires that */
533         if (EC_FLAGS_CLEAR_ON_RESUME)
534                 acpi_ec_clear(ec);
535 }
536
537 #ifdef CONFIG_PM_SLEEP
538 static bool acpi_ec_query_flushed(struct acpi_ec *ec)
539 {
540         bool flushed;
541         unsigned long flags;
542
543         spin_lock_irqsave(&ec->lock, flags);
544         flushed = !ec->nr_pending_queries;
545         spin_unlock_irqrestore(&ec->lock, flags);
546         return flushed;
547 }
548
549 static void __acpi_ec_flush_event(struct acpi_ec *ec)
550 {
551         /*
552          * When ec_freeze_events is true, we need to flush events in
553          * the proper position before entering the noirq stage.
554          */
555         wait_event(ec->wait, acpi_ec_query_flushed(ec));
556         if (ec_query_wq)
557                 flush_workqueue(ec_query_wq);
558 }
559
560 static void acpi_ec_disable_event(struct acpi_ec *ec)
561 {
562         unsigned long flags;
563
564         spin_lock_irqsave(&ec->lock, flags);
565         __acpi_ec_disable_event(ec);
566         spin_unlock_irqrestore(&ec->lock, flags);
567         __acpi_ec_flush_event(ec);
568 }
569
570 void acpi_ec_flush_work(void)
571 {
572         if (first_ec)
573                 __acpi_ec_flush_event(first_ec);
574
575         flush_scheduled_work();
576 }
577 #endif /* CONFIG_PM_SLEEP */
578
579 static bool acpi_ec_guard_event(struct acpi_ec *ec)
580 {
581         bool guarded = true;
582         unsigned long flags;
583
584         spin_lock_irqsave(&ec->lock, flags);
585         /*
586          * If firmware SCI_EVT clearing timing is "event", we actually
587          * don't know when the SCI_EVT will be cleared by firmware after
588          * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an
589          * acceptable period.
590          *
591          * The guarding period begins when EC_FLAGS_QUERY_PENDING is
592          * flagged, which means SCI_EVT check has just been performed.
593          * But if the current transaction is ACPI_EC_COMMAND_QUERY, the
594          * guarding should have already been performed (via
595          * EC_FLAGS_QUERY_GUARDING) and should not be applied so that the
596          * ACPI_EC_COMMAND_QUERY transaction can be transitioned into
597          * ACPI_EC_COMMAND_POLL state immediately.
598          */
599         if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS ||
600             ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY ||
601             !test_bit(EC_FLAGS_QUERY_PENDING, &ec->flags) ||
602             (ec->curr && ec->curr->command == ACPI_EC_COMMAND_QUERY))
603                 guarded = false;
604         spin_unlock_irqrestore(&ec->lock, flags);
605         return guarded;
606 }
607
608 static int ec_transaction_polled(struct acpi_ec *ec)
609 {
610         unsigned long flags;
611         int ret = 0;
612
613         spin_lock_irqsave(&ec->lock, flags);
614         if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL))
615                 ret = 1;
616         spin_unlock_irqrestore(&ec->lock, flags);
617         return ret;
618 }
619
620 static int ec_transaction_completed(struct acpi_ec *ec)
621 {
622         unsigned long flags;
623         int ret = 0;
624
625         spin_lock_irqsave(&ec->lock, flags);
626         if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE))
627                 ret = 1;
628         spin_unlock_irqrestore(&ec->lock, flags);
629         return ret;
630 }
631
632 static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag)
633 {
634         ec->curr->flags |= flag;
635         if (ec->curr->command == ACPI_EC_COMMAND_QUERY) {
636                 if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS &&
637                     flag == ACPI_EC_COMMAND_POLL)
638                         acpi_ec_complete_query(ec);
639                 if (ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY &&
640                     flag == ACPI_EC_COMMAND_COMPLETE)
641                         acpi_ec_complete_query(ec);
642                 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
643                     flag == ACPI_EC_COMMAND_COMPLETE)
644                         set_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags);
645         }
646 }
647
648 static void advance_transaction(struct acpi_ec *ec)
649 {
650         struct transaction *t;
651         u8 status;
652         bool wakeup = false;
653
654         ec_dbg_stm("%s (%d)", in_interrupt() ? "IRQ" : "TASK",
655                    smp_processor_id());
656         /*
657          * By always clearing STS before handling all indications, we can
658          * ensure a hardware STS 0->1 change after this clearing can always
659          * trigger a GPE interrupt.
660          */
661         acpi_ec_clear_gpe(ec);
662         status = acpi_ec_read_status(ec);
663         t = ec->curr;
664         /*
665          * Another IRQ or a guarded polling mode advancement is detected,
666          * the next QR_EC submission is then allowed.
667          */
668         if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) {
669                 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
670                     (!ec->nr_pending_queries ||
671                      test_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags))) {
672                         clear_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags);
673                         acpi_ec_complete_query(ec);
674                 }
675         }
676         if (!t)
677                 goto err;
678         if (t->flags & ACPI_EC_COMMAND_POLL) {
679                 if (t->wlen > t->wi) {
680                         if ((status & ACPI_EC_FLAG_IBF) == 0)
681                                 acpi_ec_write_data(ec, t->wdata[t->wi++]);
682                         else
683                                 goto err;
684                 } else if (t->rlen > t->ri) {
685                         if ((status & ACPI_EC_FLAG_OBF) == 1) {
686                                 t->rdata[t->ri++] = acpi_ec_read_data(ec);
687                                 if (t->rlen == t->ri) {
688                                         ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
689                                         if (t->command == ACPI_EC_COMMAND_QUERY)
690                                                 ec_dbg_evt("Command(%s) completed by hardware",
691                                                            acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
692                                         wakeup = true;
693                                 }
694                         } else
695                                 goto err;
696                 } else if (t->wlen == t->wi &&
697                            (status & ACPI_EC_FLAG_IBF) == 0) {
698                         ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
699                         wakeup = true;
700                 }
701                 goto out;
702         } else {
703                 if (EC_FLAGS_QUERY_HANDSHAKE &&
704                     !(status & ACPI_EC_FLAG_SCI) &&
705                     (t->command == ACPI_EC_COMMAND_QUERY)) {
706                         ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL);
707                         t->rdata[t->ri++] = 0x00;
708                         ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
709                         ec_dbg_evt("Command(%s) completed by software",
710                                    acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
711                         wakeup = true;
712                 } else if ((status & ACPI_EC_FLAG_IBF) == 0) {
713                         acpi_ec_write_cmd(ec, t->command);
714                         ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL);
715                 } else
716                         goto err;
717                 goto out;
718         }
719 err:
720         /*
721          * If SCI bit is set, then don't think it's a false IRQ
722          * otherwise will take a not handled IRQ as a false one.
723          */
724         if (!(status & ACPI_EC_FLAG_SCI)) {
725                 if (in_interrupt() && t) {
726                         if (t->irq_count < ec_storm_threshold)
727                                 ++t->irq_count;
728                         /* Allow triggering on 0 threshold */
729                         if (t->irq_count == ec_storm_threshold)
730                                 acpi_ec_mask_gpe(ec);
731                 }
732         }
733 out:
734         if (status & ACPI_EC_FLAG_SCI)
735                 acpi_ec_submit_query(ec);
736         if (wakeup && in_interrupt())
737                 wake_up(&ec->wait);
738 }
739
740 static void start_transaction(struct acpi_ec *ec)
741 {
742         ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0;
743         ec->curr->flags = 0;
744 }
745
746 static int ec_guard(struct acpi_ec *ec)
747 {
748         unsigned long guard = usecs_to_jiffies(ec->polling_guard);
749         unsigned long timeout = ec->timestamp + guard;
750
751         /* Ensure guarding period before polling EC status */
752         do {
753                 if (ec->busy_polling) {
754                         /* Perform busy polling */
755                         if (ec_transaction_completed(ec))
756                                 return 0;
757                         udelay(jiffies_to_usecs(guard));
758                 } else {
759                         /*
760                          * Perform wait polling
761                          * 1. Wait the transaction to be completed by the
762                          *    GPE handler after the transaction enters
763                          *    ACPI_EC_COMMAND_POLL state.
764                          * 2. A special guarding logic is also required
765                          *    for event clearing mode "event" before the
766                          *    transaction enters ACPI_EC_COMMAND_POLL
767                          *    state.
768                          */
769                         if (!ec_transaction_polled(ec) &&
770                             !acpi_ec_guard_event(ec))
771                                 break;
772                         if (wait_event_timeout(ec->wait,
773                                                ec_transaction_completed(ec),
774                                                guard))
775                                 return 0;
776                 }
777         } while (time_before(jiffies, timeout));
778         return -ETIME;
779 }
780
781 static int ec_poll(struct acpi_ec *ec)
782 {
783         unsigned long flags;
784         int repeat = 5; /* number of command restarts */
785
786         while (repeat--) {
787                 unsigned long delay = jiffies +
788                         msecs_to_jiffies(ec_delay);
789                 do {
790                         if (!ec_guard(ec))
791                                 return 0;
792                         spin_lock_irqsave(&ec->lock, flags);
793                         advance_transaction(ec);
794                         spin_unlock_irqrestore(&ec->lock, flags);
795                 } while (time_before(jiffies, delay));
796                 pr_debug("controller reset, restart transaction\n");
797                 spin_lock_irqsave(&ec->lock, flags);
798                 start_transaction(ec);
799                 spin_unlock_irqrestore(&ec->lock, flags);
800         }
801         return -ETIME;
802 }
803
804 static int acpi_ec_transaction_unlocked(struct acpi_ec *ec,
805                                         struct transaction *t)
806 {
807         unsigned long tmp;
808         int ret = 0;
809
810         /* start transaction */
811         spin_lock_irqsave(&ec->lock, tmp);
812         /* Enable GPE for command processing (IBF=0/OBF=1) */
813         if (!acpi_ec_submit_flushable_request(ec)) {
814                 ret = -EINVAL;
815                 goto unlock;
816         }
817         ec_dbg_ref(ec, "Increase command");
818         /* following two actions should be kept atomic */
819         ec->curr = t;
820         ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command));
821         start_transaction(ec);
822         spin_unlock_irqrestore(&ec->lock, tmp);
823
824         ret = ec_poll(ec);
825
826         spin_lock_irqsave(&ec->lock, tmp);
827         if (t->irq_count == ec_storm_threshold)
828                 acpi_ec_unmask_gpe(ec);
829         ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command));
830         ec->curr = NULL;
831         /* Disable GPE for command processing (IBF=0/OBF=1) */
832         acpi_ec_complete_request(ec);
833         ec_dbg_ref(ec, "Decrease command");
834 unlock:
835         spin_unlock_irqrestore(&ec->lock, tmp);
836         return ret;
837 }
838
839 static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t)
840 {
841         int status;
842         u32 glk;
843
844         if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata))
845                 return -EINVAL;
846         if (t->rdata)
847                 memset(t->rdata, 0, t->rlen);
848
849         mutex_lock(&ec->mutex);
850         if (ec->global_lock) {
851                 status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
852                 if (ACPI_FAILURE(status)) {
853                         status = -ENODEV;
854                         goto unlock;
855                 }
856         }
857
858         status = acpi_ec_transaction_unlocked(ec, t);
859
860         if (ec->global_lock)
861                 acpi_release_global_lock(glk);
862 unlock:
863         mutex_unlock(&ec->mutex);
864         return status;
865 }
866
867 static int acpi_ec_burst_enable(struct acpi_ec *ec)
868 {
869         u8 d;
870         struct transaction t = {.command = ACPI_EC_BURST_ENABLE,
871                                 .wdata = NULL, .rdata = &d,
872                                 .wlen = 0, .rlen = 1};
873
874         return acpi_ec_transaction(ec, &t);
875 }
876
877 static int acpi_ec_burst_disable(struct acpi_ec *ec)
878 {
879         struct transaction t = {.command = ACPI_EC_BURST_DISABLE,
880                                 .wdata = NULL, .rdata = NULL,
881                                 .wlen = 0, .rlen = 0};
882
883         return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ?
884                                 acpi_ec_transaction(ec, &t) : 0;
885 }
886
887 static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data)
888 {
889         int result;
890         u8 d;
891         struct transaction t = {.command = ACPI_EC_COMMAND_READ,
892                                 .wdata = &address, .rdata = &d,
893                                 .wlen = 1, .rlen = 1};
894
895         result = acpi_ec_transaction(ec, &t);
896         *data = d;
897         return result;
898 }
899
900 static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data)
901 {
902         u8 wdata[2] = { address, data };
903         struct transaction t = {.command = ACPI_EC_COMMAND_WRITE,
904                                 .wdata = wdata, .rdata = NULL,
905                                 .wlen = 2, .rlen = 0};
906
907         return acpi_ec_transaction(ec, &t);
908 }
909
910 int ec_read(u8 addr, u8 *val)
911 {
912         int err;
913         u8 temp_data;
914
915         if (!first_ec)
916                 return -ENODEV;
917
918         err = acpi_ec_read(first_ec, addr, &temp_data);
919
920         if (!err) {
921                 *val = temp_data;
922                 return 0;
923         }
924         return err;
925 }
926 EXPORT_SYMBOL(ec_read);
927
928 int ec_write(u8 addr, u8 val)
929 {
930         int err;
931
932         if (!first_ec)
933                 return -ENODEV;
934
935         err = acpi_ec_write(first_ec, addr, val);
936
937         return err;
938 }
939 EXPORT_SYMBOL(ec_write);
940
941 int ec_transaction(u8 command,
942                    const u8 *wdata, unsigned wdata_len,
943                    u8 *rdata, unsigned rdata_len)
944 {
945         struct transaction t = {.command = command,
946                                 .wdata = wdata, .rdata = rdata,
947                                 .wlen = wdata_len, .rlen = rdata_len};
948
949         if (!first_ec)
950                 return -ENODEV;
951
952         return acpi_ec_transaction(first_ec, &t);
953 }
954 EXPORT_SYMBOL(ec_transaction);
955
956 /* Get the handle to the EC device */
957 acpi_handle ec_get_handle(void)
958 {
959         if (!first_ec)
960                 return NULL;
961         return first_ec->handle;
962 }
963 EXPORT_SYMBOL(ec_get_handle);
964
965 static void acpi_ec_start(struct acpi_ec *ec, bool resuming)
966 {
967         unsigned long flags;
968
969         spin_lock_irqsave(&ec->lock, flags);
970         if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) {
971                 ec_dbg_drv("Starting EC");
972                 /* Enable GPE for event processing (SCI_EVT=1) */
973                 if (!resuming) {
974                         acpi_ec_submit_request(ec);
975                         ec_dbg_ref(ec, "Increase driver");
976                 }
977                 ec_log_drv("EC started");
978         }
979         spin_unlock_irqrestore(&ec->lock, flags);
980 }
981
982 static bool acpi_ec_stopped(struct acpi_ec *ec)
983 {
984         unsigned long flags;
985         bool flushed;
986
987         spin_lock_irqsave(&ec->lock, flags);
988         flushed = acpi_ec_flushed(ec);
989         spin_unlock_irqrestore(&ec->lock, flags);
990         return flushed;
991 }
992
993 static void acpi_ec_stop(struct acpi_ec *ec, bool suspending)
994 {
995         unsigned long flags;
996
997         spin_lock_irqsave(&ec->lock, flags);
998         if (acpi_ec_started(ec)) {
999                 ec_dbg_drv("Stopping EC");
1000                 set_bit(EC_FLAGS_STOPPED, &ec->flags);
1001                 spin_unlock_irqrestore(&ec->lock, flags);
1002                 wait_event(ec->wait, acpi_ec_stopped(ec));
1003                 spin_lock_irqsave(&ec->lock, flags);
1004                 /* Disable GPE for event processing (SCI_EVT=1) */
1005                 if (!suspending) {
1006                         acpi_ec_complete_request(ec);
1007                         ec_dbg_ref(ec, "Decrease driver");
1008                 } else if (!ec_freeze_events)
1009                         __acpi_ec_disable_event(ec);
1010                 clear_bit(EC_FLAGS_STARTED, &ec->flags);
1011                 clear_bit(EC_FLAGS_STOPPED, &ec->flags);
1012                 ec_log_drv("EC stopped");
1013         }
1014         spin_unlock_irqrestore(&ec->lock, flags);
1015 }
1016
1017 static void acpi_ec_enter_noirq(struct acpi_ec *ec)
1018 {
1019         unsigned long flags;
1020
1021         spin_lock_irqsave(&ec->lock, flags);
1022         ec->busy_polling = true;
1023         ec->polling_guard = 0;
1024         ec_log_drv("interrupt blocked");
1025         spin_unlock_irqrestore(&ec->lock, flags);
1026 }
1027
1028 static void acpi_ec_leave_noirq(struct acpi_ec *ec)
1029 {
1030         unsigned long flags;
1031
1032         spin_lock_irqsave(&ec->lock, flags);
1033         ec->busy_polling = ec_busy_polling;
1034         ec->polling_guard = ec_polling_guard;
1035         ec_log_drv("interrupt unblocked");
1036         spin_unlock_irqrestore(&ec->lock, flags);
1037 }
1038
1039 void acpi_ec_block_transactions(void)
1040 {
1041         struct acpi_ec *ec = first_ec;
1042
1043         if (!ec)
1044                 return;
1045
1046         mutex_lock(&ec->mutex);
1047         /* Prevent transactions from being carried out */
1048         acpi_ec_stop(ec, true);
1049         mutex_unlock(&ec->mutex);
1050 }
1051
1052 void acpi_ec_unblock_transactions(void)
1053 {
1054         /*
1055          * Allow transactions to happen again (this function is called from
1056          * atomic context during wakeup, so we don't need to acquire the mutex).
1057          */
1058         if (first_ec)
1059                 acpi_ec_start(first_ec, true);
1060 }
1061
1062 void acpi_ec_mark_gpe_for_wake(void)
1063 {
1064         if (first_ec && !ec_no_wakeup)
1065                 acpi_mark_gpe_for_wake(NULL, first_ec->gpe);
1066 }
1067
1068 void acpi_ec_set_gpe_wake_mask(u8 action)
1069 {
1070         if (first_ec && !ec_no_wakeup)
1071                 acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action);
1072 }
1073
1074 void acpi_ec_dispatch_gpe(void)
1075 {
1076         if (first_ec)
1077                 acpi_dispatch_gpe(NULL, first_ec->gpe);
1078 }
1079
1080 /* --------------------------------------------------------------------------
1081                                 Event Management
1082    -------------------------------------------------------------------------- */
1083 static struct acpi_ec_query_handler *
1084 acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value)
1085 {
1086         struct acpi_ec_query_handler *handler;
1087
1088         mutex_lock(&ec->mutex);
1089         list_for_each_entry(handler, &ec->list, node) {
1090                 if (value == handler->query_bit) {
1091                         kref_get(&handler->kref);
1092                         mutex_unlock(&ec->mutex);
1093                         return handler;
1094                 }
1095         }
1096         mutex_unlock(&ec->mutex);
1097         return NULL;
1098 }
1099
1100 static void acpi_ec_query_handler_release(struct kref *kref)
1101 {
1102         struct acpi_ec_query_handler *handler =
1103                 container_of(kref, struct acpi_ec_query_handler, kref);
1104
1105         kfree(handler);
1106 }
1107
1108 static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler)
1109 {
1110         kref_put(&handler->kref, acpi_ec_query_handler_release);
1111 }
1112
1113 int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit,
1114                               acpi_handle handle, acpi_ec_query_func func,
1115                               void *data)
1116 {
1117         struct acpi_ec_query_handler *handler =
1118             kzalloc(sizeof(struct acpi_ec_query_handler), GFP_KERNEL);
1119
1120         if (!handler)
1121                 return -ENOMEM;
1122
1123         handler->query_bit = query_bit;
1124         handler->handle = handle;
1125         handler->func = func;
1126         handler->data = data;
1127         mutex_lock(&ec->mutex);
1128         kref_init(&handler->kref);
1129         list_add(&handler->node, &ec->list);
1130         mutex_unlock(&ec->mutex);
1131         return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler);
1134
1135 static void acpi_ec_remove_query_handlers(struct acpi_ec *ec,
1136                                           bool remove_all, u8 query_bit)
1137 {
1138         struct acpi_ec_query_handler *handler, *tmp;
1139         LIST_HEAD(free_list);
1140
1141         mutex_lock(&ec->mutex);
1142         list_for_each_entry_safe(handler, tmp, &ec->list, node) {
1143                 if (remove_all || query_bit == handler->query_bit) {
1144                         list_del_init(&handler->node);
1145                         list_add(&handler->node, &free_list);
1146                 }
1147         }
1148         mutex_unlock(&ec->mutex);
1149         list_for_each_entry_safe(handler, tmp, &free_list, node)
1150                 acpi_ec_put_query_handler(handler);
1151 }
1152
1153 void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit)
1154 {
1155         acpi_ec_remove_query_handlers(ec, false, query_bit);
1156         flush_workqueue(ec_query_wq);
1157 }
1158 EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler);
1159
1160 static struct acpi_ec_query *acpi_ec_create_query(u8 *pval)
1161 {
1162         struct acpi_ec_query *q;
1163         struct transaction *t;
1164
1165         q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL);
1166         if (!q)
1167                 return NULL;
1168         INIT_WORK(&q->work, acpi_ec_event_processor);
1169         t = &q->transaction;
1170         t->command = ACPI_EC_COMMAND_QUERY;
1171         t->rdata = pval;
1172         t->rlen = 1;
1173         return q;
1174 }
1175
1176 static void acpi_ec_delete_query(struct acpi_ec_query *q)
1177 {
1178         if (q) {
1179                 if (q->handler)
1180                         acpi_ec_put_query_handler(q->handler);
1181                 kfree(q);
1182         }
1183 }
1184
1185 static void acpi_ec_event_processor(struct work_struct *work)
1186 {
1187         struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work);
1188         struct acpi_ec_query_handler *handler = q->handler;
1189
1190         ec_dbg_evt("Query(0x%02x) started", handler->query_bit);
1191         if (handler->func)
1192                 handler->func(handler->data);
1193         else if (handler->handle)
1194                 acpi_evaluate_object(handler->handle, NULL, NULL, NULL);
1195         ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit);
1196         acpi_ec_delete_query(q);
1197 }
1198
1199 static int acpi_ec_query(struct acpi_ec *ec, u8 *data)
1200 {
1201         u8 value = 0;
1202         int result;
1203         struct acpi_ec_query *q;
1204
1205         q = acpi_ec_create_query(&value);
1206         if (!q)
1207                 return -ENOMEM;
1208
1209         /*
1210          * Query the EC to find out which _Qxx method we need to evaluate.
1211          * Note that successful completion of the query causes the ACPI_EC_SCI
1212          * bit to be cleared (and thus clearing the interrupt source).
1213          */
1214         result = acpi_ec_transaction(ec, &q->transaction);
1215         if (!value)
1216                 result = -ENODATA;
1217         if (result)
1218                 goto err_exit;
1219
1220         q->handler = acpi_ec_get_query_handler_by_value(ec, value);
1221         if (!q->handler) {
1222                 result = -ENODATA;
1223                 goto err_exit;
1224         }
1225
1226         /*
1227          * It is reported that _Qxx are evaluated in a parallel way on
1228          * Windows:
1229          * https://bugzilla.kernel.org/show_bug.cgi?id=94411
1230          *
1231          * Put this log entry before schedule_work() in order to make
1232          * it appearing before any other log entries occurred during the
1233          * work queue execution.
1234          */
1235         ec_dbg_evt("Query(0x%02x) scheduled", value);
1236         if (!queue_work(ec_query_wq, &q->work)) {
1237                 ec_dbg_evt("Query(0x%02x) overlapped", value);
1238                 result = -EBUSY;
1239         }
1240
1241 err_exit:
1242         if (result)
1243                 acpi_ec_delete_query(q);
1244         if (data)
1245                 *data = value;
1246         return result;
1247 }
1248
1249 static void acpi_ec_check_event(struct acpi_ec *ec)
1250 {
1251         unsigned long flags;
1252
1253         if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) {
1254                 if (ec_guard(ec)) {
1255                         spin_lock_irqsave(&ec->lock, flags);
1256                         /*
1257                          * Take care of the SCI_EVT unless no one else is
1258                          * taking care of it.
1259                          */
1260                         if (!ec->curr)
1261                                 advance_transaction(ec);
1262                         spin_unlock_irqrestore(&ec->lock, flags);
1263                 }
1264         }
1265 }
1266
1267 static void acpi_ec_event_handler(struct work_struct *work)
1268 {
1269         unsigned long flags;
1270         struct acpi_ec *ec = container_of(work, struct acpi_ec, work);
1271
1272         ec_dbg_evt("Event started");
1273
1274         spin_lock_irqsave(&ec->lock, flags);
1275         while (ec->nr_pending_queries) {
1276                 spin_unlock_irqrestore(&ec->lock, flags);
1277                 (void)acpi_ec_query(ec, NULL);
1278                 spin_lock_irqsave(&ec->lock, flags);
1279                 ec->nr_pending_queries--;
1280                 /*
1281                  * Before exit, make sure that this work item can be
1282                  * scheduled again. There might be QR_EC failures, leaving
1283                  * EC_FLAGS_QUERY_PENDING uncleared and preventing this work
1284                  * item from being scheduled again.
1285                  */
1286                 if (!ec->nr_pending_queries) {
1287                         if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS ||
1288                             ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY)
1289                                 acpi_ec_complete_query(ec);
1290                 }
1291         }
1292         spin_unlock_irqrestore(&ec->lock, flags);
1293
1294         ec_dbg_evt("Event stopped");
1295
1296         acpi_ec_check_event(ec);
1297 }
1298
1299 static u32 acpi_ec_gpe_handler(acpi_handle gpe_device,
1300         u32 gpe_number, void *data)
1301 {
1302         unsigned long flags;
1303         struct acpi_ec *ec = data;
1304
1305         spin_lock_irqsave(&ec->lock, flags);
1306         advance_transaction(ec);
1307         spin_unlock_irqrestore(&ec->lock, flags);
1308         return ACPI_INTERRUPT_HANDLED;
1309 }
1310
1311 /* --------------------------------------------------------------------------
1312  *                           Address Space Management
1313  * -------------------------------------------------------------------------- */
1314
1315 static acpi_status
1316 acpi_ec_space_handler(u32 function, acpi_physical_address address,
1317                       u32 bits, u64 *value64,
1318                       void *handler_context, void *region_context)
1319 {
1320         struct acpi_ec *ec = handler_context;
1321         int result = 0, i, bytes = bits / 8;
1322         u8 *value = (u8 *)value64;
1323
1324         if ((address > 0xFF) || !value || !handler_context)
1325                 return AE_BAD_PARAMETER;
1326
1327         if (function != ACPI_READ && function != ACPI_WRITE)
1328                 return AE_BAD_PARAMETER;
1329
1330         if (ec->busy_polling || bits > 8)
1331                 acpi_ec_burst_enable(ec);
1332
1333         for (i = 0; i < bytes; ++i, ++address, ++value)
1334                 result = (function == ACPI_READ) ?
1335                         acpi_ec_read(ec, address, value) :
1336                         acpi_ec_write(ec, address, *value);
1337
1338         if (ec->busy_polling || bits > 8)
1339                 acpi_ec_burst_disable(ec);
1340
1341         switch (result) {
1342         case -EINVAL:
1343                 return AE_BAD_PARAMETER;
1344         case -ENODEV:
1345                 return AE_NOT_FOUND;
1346         case -ETIME:
1347                 return AE_TIME;
1348         default:
1349                 return AE_OK;
1350         }
1351 }
1352
1353 /* --------------------------------------------------------------------------
1354  *                             Driver Interface
1355  * -------------------------------------------------------------------------- */
1356
1357 static acpi_status
1358 ec_parse_io_ports(struct acpi_resource *resource, void *context);
1359
1360 static void acpi_ec_free(struct acpi_ec *ec)
1361 {
1362         if (first_ec == ec)
1363                 first_ec = NULL;
1364         if (boot_ec == ec)
1365                 boot_ec = NULL;
1366         kfree(ec);
1367 }
1368
1369 static struct acpi_ec *acpi_ec_alloc(void)
1370 {
1371         struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL);
1372
1373         if (!ec)
1374                 return NULL;
1375         mutex_init(&ec->mutex);
1376         init_waitqueue_head(&ec->wait);
1377         INIT_LIST_HEAD(&ec->list);
1378         spin_lock_init(&ec->lock);
1379         INIT_WORK(&ec->work, acpi_ec_event_handler);
1380         ec->timestamp = jiffies;
1381         ec->busy_polling = true;
1382         ec->polling_guard = 0;
1383         return ec;
1384 }
1385
1386 static acpi_status
1387 acpi_ec_register_query_methods(acpi_handle handle, u32 level,
1388                                void *context, void **return_value)
1389 {
1390         char node_name[5];
1391         struct acpi_buffer buffer = { sizeof(node_name), node_name };
1392         struct acpi_ec *ec = context;
1393         int value = 0;
1394         acpi_status status;
1395
1396         status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
1397
1398         if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1)
1399                 acpi_ec_add_query_handler(ec, value, handle, NULL, NULL);
1400         return AE_OK;
1401 }
1402
1403 static acpi_status
1404 ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval)
1405 {
1406         acpi_status status;
1407         unsigned long long tmp = 0;
1408         struct acpi_ec *ec = context;
1409
1410         /* clear addr values, ec_parse_io_ports depend on it */
1411         ec->command_addr = ec->data_addr = 0;
1412
1413         status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1414                                      ec_parse_io_ports, ec);
1415         if (ACPI_FAILURE(status))
1416                 return status;
1417         if (ec->data_addr == 0 || ec->command_addr == 0)
1418                 return AE_OK;
1419
1420         if (boot_ec && boot_ec_is_ecdt && EC_FLAGS_IGNORE_DSDT_GPE) {
1421                 /*
1422                  * Always inherit the GPE number setting from the ECDT
1423                  * EC.
1424                  */
1425                 ec->gpe = boot_ec->gpe;
1426         } else {
1427                 /* Get GPE bit assignment (EC events). */
1428                 /* TODO: Add support for _GPE returning a package */
1429                 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
1430                 if (ACPI_FAILURE(status))
1431                         return status;
1432                 ec->gpe = tmp;
1433         }
1434         /* Use the global lock for all EC transactions? */
1435         tmp = 0;
1436         acpi_evaluate_integer(handle, "_GLK", NULL, &tmp);
1437         ec->global_lock = tmp;
1438         ec->handle = handle;
1439         return AE_CTRL_TERMINATE;
1440 }
1441
1442 /*
1443  * Note: This function returns an error code only when the address space
1444  *       handler is not installed, which means "not able to handle
1445  *       transactions".
1446  */
1447 static int ec_install_handlers(struct acpi_ec *ec, bool handle_events)
1448 {
1449         acpi_status status;
1450
1451         acpi_ec_start(ec, false);
1452
1453         if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1454                 acpi_ec_enter_noirq(ec);
1455                 status = acpi_install_address_space_handler(ec->handle,
1456                                                             ACPI_ADR_SPACE_EC,
1457                                                             &acpi_ec_space_handler,
1458                                                             NULL, ec);
1459                 if (ACPI_FAILURE(status)) {
1460                         if (status == AE_NOT_FOUND) {
1461                                 /*
1462                                  * Maybe OS fails in evaluating the _REG
1463                                  * object. The AE_NOT_FOUND error will be
1464                                  * ignored and OS * continue to initialize
1465                                  * EC.
1466                                  */
1467                                 pr_err("Fail in evaluating the _REG object"
1468                                         " of EC device. Broken bios is suspected.\n");
1469                         } else {
1470                                 acpi_ec_stop(ec, false);
1471                                 return -ENODEV;
1472                         }
1473                 }
1474                 set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1475         }
1476
1477         if (!handle_events)
1478                 return 0;
1479
1480         if (!test_bit(EC_FLAGS_EVT_HANDLER_INSTALLED, &ec->flags)) {
1481                 /* Find and register all query methods */
1482                 acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1,
1483                                     acpi_ec_register_query_methods,
1484                                     NULL, ec, NULL);
1485                 set_bit(EC_FLAGS_EVT_HANDLER_INSTALLED, &ec->flags);
1486         }
1487         if (!test_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags)) {
1488                 status = acpi_install_gpe_raw_handler(NULL, ec->gpe,
1489                                           ACPI_GPE_EDGE_TRIGGERED,
1490                                           &acpi_ec_gpe_handler, ec);
1491                 /* This is not fatal as we can poll EC events */
1492                 if (ACPI_SUCCESS(status)) {
1493                         set_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags);
1494                         acpi_ec_leave_noirq(ec);
1495                         if (test_bit(EC_FLAGS_STARTED, &ec->flags) &&
1496                             ec->reference_count >= 1)
1497                                 acpi_ec_enable_gpe(ec, true);
1498                 }
1499         }
1500         /* EC is fully operational, allow queries */
1501         acpi_ec_enable_event(ec);
1502
1503         return 0;
1504 }
1505
1506 static void ec_remove_handlers(struct acpi_ec *ec)
1507 {
1508         if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1509                 if (ACPI_FAILURE(acpi_remove_address_space_handler(ec->handle,
1510                                         ACPI_ADR_SPACE_EC, &acpi_ec_space_handler)))
1511                         pr_err("failed to remove space handler\n");
1512                 clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1513         }
1514
1515         /*
1516          * Stops handling the EC transactions after removing the operation
1517          * region handler. This is required because _REG(DISCONNECT)
1518          * invoked during the removal can result in new EC transactions.
1519          *
1520          * Flushes the EC requests and thus disables the GPE before
1521          * removing the GPE handler. This is required by the current ACPICA
1522          * GPE core. ACPICA GPE core will automatically disable a GPE when
1523          * it is indicated but there is no way to handle it. So the drivers
1524          * must disable the GPEs prior to removing the GPE handlers.
1525          */
1526         acpi_ec_stop(ec, false);
1527
1528         if (test_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags)) {
1529                 if (ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe,
1530                                         &acpi_ec_gpe_handler)))
1531                         pr_err("failed to remove gpe handler\n");
1532                 clear_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags);
1533         }
1534         if (test_bit(EC_FLAGS_EVT_HANDLER_INSTALLED, &ec->flags)) {
1535                 acpi_ec_remove_query_handlers(ec, true, 0);
1536                 clear_bit(EC_FLAGS_EVT_HANDLER_INSTALLED, &ec->flags);
1537         }
1538 }
1539
1540 static int acpi_ec_setup(struct acpi_ec *ec, bool handle_events)
1541 {
1542         int ret;
1543
1544         ret = ec_install_handlers(ec, handle_events);
1545         if (ret)
1546                 return ret;
1547
1548         /* First EC capable of handling transactions */
1549         if (!first_ec) {
1550                 first_ec = ec;
1551                 acpi_handle_info(first_ec->handle, "Used as first EC\n");
1552         }
1553
1554         acpi_handle_info(ec->handle,
1555                          "GPE=0x%x, EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n",
1556                          ec->gpe, ec->command_addr, ec->data_addr);
1557         return ret;
1558 }
1559
1560 static int acpi_config_boot_ec(struct acpi_ec *ec, acpi_handle handle,
1561                                bool handle_events, bool is_ecdt)
1562 {
1563         int ret;
1564
1565         /*
1566          * Changing the ACPI handle results in a re-configuration of the
1567          * boot EC. And if it happens after the namespace initialization,
1568          * it causes _REG evaluations.
1569          */
1570         if (boot_ec && boot_ec->handle != handle)
1571                 ec_remove_handlers(boot_ec);
1572
1573         /* Unset old boot EC */
1574         if (boot_ec != ec)
1575                 acpi_ec_free(boot_ec);
1576
1577         /*
1578          * ECDT device creation is split into acpi_ec_ecdt_probe() and
1579          * acpi_ec_ecdt_start(). This function takes care of completing the
1580          * ECDT parsing logic as the handle update should be performed
1581          * between the installation/uninstallation of the handlers.
1582          */
1583         if (ec->handle != handle)
1584                 ec->handle = handle;
1585
1586         ret = acpi_ec_setup(ec, handle_events);
1587         if (ret)
1588                 return ret;
1589
1590         /* Set new boot EC */
1591         if (!boot_ec) {
1592                 boot_ec = ec;
1593                 boot_ec_is_ecdt = is_ecdt;
1594         }
1595
1596         acpi_handle_info(boot_ec->handle,
1597                          "Used as boot %s EC to handle transactions%s\n",
1598                          is_ecdt ? "ECDT" : "DSDT",
1599                          handle_events ? " and events" : "");
1600         return ret;
1601 }
1602
1603 static bool acpi_ec_ecdt_get_handle(acpi_handle *phandle)
1604 {
1605         struct acpi_table_ecdt *ecdt_ptr;
1606         acpi_status status;
1607         acpi_handle handle;
1608
1609         status = acpi_get_table(ACPI_SIG_ECDT, 1,
1610                                 (struct acpi_table_header **)&ecdt_ptr);
1611         if (ACPI_FAILURE(status))
1612                 return false;
1613
1614         status = acpi_get_handle(NULL, ecdt_ptr->id, &handle);
1615         if (ACPI_FAILURE(status))
1616                 return false;
1617
1618         *phandle = handle;
1619         return true;
1620 }
1621
1622 static bool acpi_is_boot_ec(struct acpi_ec *ec)
1623 {
1624         if (!boot_ec)
1625                 return false;
1626         if (ec->command_addr == boot_ec->command_addr &&
1627             ec->data_addr == boot_ec->data_addr)
1628                 return true;
1629         return false;
1630 }
1631
1632 static int acpi_ec_add(struct acpi_device *device)
1633 {
1634         struct acpi_ec *ec = NULL;
1635         int ret;
1636         bool is_ecdt = false;
1637         acpi_status status;
1638
1639         strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME);
1640         strcpy(acpi_device_class(device), ACPI_EC_CLASS);
1641
1642         if (!strcmp(acpi_device_hid(device), ACPI_ECDT_HID)) {
1643                 is_ecdt = true;
1644                 ec = boot_ec;
1645         } else {
1646                 ec = acpi_ec_alloc();
1647                 if (!ec)
1648                         return -ENOMEM;
1649                 status = ec_parse_device(device->handle, 0, ec, NULL);
1650                 if (status != AE_CTRL_TERMINATE) {
1651                         ret = -EINVAL;
1652                         goto err_alloc;
1653                 }
1654         }
1655
1656         if (acpi_is_boot_ec(ec)) {
1657                 boot_ec_is_ecdt = is_ecdt;
1658                 if (!is_ecdt) {
1659                         /*
1660                          * Trust PNP0C09 namespace location rather than
1661                          * ECDT ID. But trust ECDT GPE rather than _GPE
1662                          * because of ASUS quirks, so do not change
1663                          * boot_ec->gpe to ec->gpe.
1664                          */
1665                         boot_ec->handle = ec->handle;
1666                         acpi_handle_debug(ec->handle, "duplicated.\n");
1667                         acpi_ec_free(ec);
1668                         ec = boot_ec;
1669                 }
1670                 ret = acpi_config_boot_ec(ec, ec->handle, true, is_ecdt);
1671         } else
1672                 ret = acpi_ec_setup(ec, true);
1673         if (ret)
1674                 goto err_query;
1675
1676         device->driver_data = ec;
1677
1678         ret = !!request_region(ec->data_addr, 1, "EC data");
1679         WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr);
1680         ret = !!request_region(ec->command_addr, 1, "EC cmd");
1681         WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr);
1682
1683         if (!is_ecdt) {
1684                 /* Reprobe devices depending on the EC */
1685                 acpi_walk_dep_device_list(ec->handle);
1686         }
1687         acpi_handle_debug(ec->handle, "enumerated.\n");
1688         return 0;
1689
1690 err_query:
1691         if (ec != boot_ec)
1692                 acpi_ec_remove_query_handlers(ec, true, 0);
1693 err_alloc:
1694         if (ec != boot_ec)
1695                 acpi_ec_free(ec);
1696         return ret;
1697 }
1698
1699 static int acpi_ec_remove(struct acpi_device *device)
1700 {
1701         struct acpi_ec *ec;
1702
1703         if (!device)
1704                 return -EINVAL;
1705
1706         ec = acpi_driver_data(device);
1707         release_region(ec->data_addr, 1);
1708         release_region(ec->command_addr, 1);
1709         device->driver_data = NULL;
1710         if (ec != boot_ec) {
1711                 ec_remove_handlers(ec);
1712                 acpi_ec_free(ec);
1713         }
1714         return 0;
1715 }
1716
1717 static acpi_status
1718 ec_parse_io_ports(struct acpi_resource *resource, void *context)
1719 {
1720         struct acpi_ec *ec = context;
1721
1722         if (resource->type != ACPI_RESOURCE_TYPE_IO)
1723                 return AE_OK;
1724
1725         /*
1726          * The first address region returned is the data port, and
1727          * the second address region returned is the status/command
1728          * port.
1729          */
1730         if (ec->data_addr == 0)
1731                 ec->data_addr = resource->data.io.minimum;
1732         else if (ec->command_addr == 0)
1733                 ec->command_addr = resource->data.io.minimum;
1734         else
1735                 return AE_CTRL_TERMINATE;
1736
1737         return AE_OK;
1738 }
1739
1740 static const struct acpi_device_id ec_device_ids[] = {
1741         {"PNP0C09", 0},
1742         {ACPI_ECDT_HID, 0},
1743         {"", 0},
1744 };
1745
1746 /*
1747  * This function is not Windows-compatible as Windows never enumerates the
1748  * namespace EC before the main ACPI device enumeration process. It is
1749  * retained for historical reason and will be deprecated in the future.
1750  */
1751 int __init acpi_ec_dsdt_probe(void)
1752 {
1753         acpi_status status;
1754         struct acpi_ec *ec;
1755         int ret;
1756
1757         /*
1758          * If a platform has ECDT, there is no need to proceed as the
1759          * following probe is not a part of the ACPI device enumeration,
1760          * executing _STA is not safe, and thus this probe may risk of
1761          * picking up an invalid EC device.
1762          */
1763         if (boot_ec)
1764                 return -ENODEV;
1765
1766         ec = acpi_ec_alloc();
1767         if (!ec)
1768                 return -ENOMEM;
1769         /*
1770          * At this point, the namespace is initialized, so start to find
1771          * the namespace objects.
1772          */
1773         status = acpi_get_devices(ec_device_ids[0].id,
1774                                   ec_parse_device, ec, NULL);
1775         if (ACPI_FAILURE(status) || !ec->handle) {
1776                 ret = -ENODEV;
1777                 goto error;
1778         }
1779         /*
1780          * When the DSDT EC is available, always re-configure boot EC to
1781          * have _REG evaluated. _REG can only be evaluated after the
1782          * namespace initialization.
1783          * At this point, the GPE is not fully initialized, so do not to
1784          * handle the events.
1785          */
1786         ret = acpi_config_boot_ec(ec, ec->handle, false, false);
1787 error:
1788         if (ret)
1789                 acpi_ec_free(ec);
1790         return ret;
1791 }
1792
1793 /*
1794  * If the DSDT EC is not functioning, we still need to prepare a fully
1795  * functioning ECDT EC first in order to handle the events.
1796  * https://bugzilla.kernel.org/show_bug.cgi?id=115021
1797  */
1798 static int __init acpi_ec_ecdt_start(void)
1799 {
1800         acpi_handle handle;
1801
1802         if (!boot_ec)
1803                 return -ENODEV;
1804         /* In case acpi_ec_ecdt_start() is called after acpi_ec_add() */
1805         if (!boot_ec_is_ecdt)
1806                 return -ENODEV;
1807
1808         /*
1809          * At this point, the namespace and the GPE is initialized, so
1810          * start to find the namespace objects and handle the events.
1811          *
1812          * Note: ec->handle can be valid if this function is called after
1813          * acpi_ec_add(), hence the fast path.
1814          */
1815         if (boot_ec->handle == ACPI_ROOT_OBJECT) {
1816                 if (!acpi_ec_ecdt_get_handle(&handle))
1817                         return -ENODEV;
1818                 boot_ec->handle = handle;
1819         }
1820
1821         /* Register to ACPI bus with PM ops attached */
1822         return acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC);
1823 }
1824
1825 #if 0
1826 /*
1827  * Some EC firmware variations refuses to respond QR_EC when SCI_EVT is not
1828  * set, for which case, we complete the QR_EC without issuing it to the
1829  * firmware.
1830  * https://bugzilla.kernel.org/show_bug.cgi?id=82611
1831  * https://bugzilla.kernel.org/show_bug.cgi?id=97381
1832  */
1833 static int ec_flag_query_handshake(const struct dmi_system_id *id)
1834 {
1835         pr_debug("Detected the EC firmware requiring QR_EC issued when SCI_EVT set\n");
1836         EC_FLAGS_QUERY_HANDSHAKE = 1;
1837         return 0;
1838 }
1839 #endif
1840
1841 /*
1842  * On some hardware it is necessary to clear events accumulated by the EC during
1843  * sleep. These ECs stop reporting GPEs until they are manually polled, if too
1844  * many events are accumulated. (e.g. Samsung Series 5/9 notebooks)
1845  *
1846  * https://bugzilla.kernel.org/show_bug.cgi?id=44161
1847  *
1848  * Ideally, the EC should also be instructed NOT to accumulate events during
1849  * sleep (which Windows seems to do somehow), but the interface to control this
1850  * behaviour is not known at this time.
1851  *
1852  * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx,
1853  * however it is very likely that other Samsung models are affected.
1854  *
1855  * On systems which don't accumulate _Q events during sleep, this extra check
1856  * should be harmless.
1857  */
1858 static int ec_clear_on_resume(const struct dmi_system_id *id)
1859 {
1860         pr_debug("Detected system needing EC poll on resume.\n");
1861         EC_FLAGS_CLEAR_ON_RESUME = 1;
1862         ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
1863         return 0;
1864 }
1865
1866 /*
1867  * Some ECDTs contain wrong register addresses.
1868  * MSI MS-171F
1869  * https://bugzilla.kernel.org/show_bug.cgi?id=12461
1870  */
1871 static int ec_correct_ecdt(const struct dmi_system_id *id)
1872 {
1873         pr_debug("Detected system needing ECDT address correction.\n");
1874         EC_FLAGS_CORRECT_ECDT = 1;
1875         return 0;
1876 }
1877
1878 /*
1879  * Some DSDTs contain wrong GPE setting.
1880  * Asus FX502VD/VE, GL702VMK, X550VXK, X580VD
1881  * https://bugzilla.kernel.org/show_bug.cgi?id=195651
1882  */
1883 static int ec_honor_ecdt_gpe(const struct dmi_system_id *id)
1884 {
1885         pr_debug("Detected system needing ignore DSDT GPE setting.\n");
1886         EC_FLAGS_IGNORE_DSDT_GPE = 1;
1887         return 0;
1888 }
1889
1890 static const struct dmi_system_id ec_dmi_table[] __initconst = {
1891         {
1892         ec_correct_ecdt, "MSI MS-171F", {
1893         DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"),
1894         DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"),}, NULL},
1895         {
1896         ec_honor_ecdt_gpe, "ASUS FX502VD", {
1897         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1898         DMI_MATCH(DMI_PRODUCT_NAME, "FX502VD"),}, NULL},
1899         {
1900         ec_honor_ecdt_gpe, "ASUS FX502VE", {
1901         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1902         DMI_MATCH(DMI_PRODUCT_NAME, "FX502VE"),}, NULL},
1903         {
1904         ec_honor_ecdt_gpe, "ASUS GL702VMK", {
1905         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1906         DMI_MATCH(DMI_PRODUCT_NAME, "GL702VMK"),}, NULL},
1907         {
1908         ec_honor_ecdt_gpe, "ASUSTeK COMPUTER INC. X505BA", {
1909         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1910         DMI_MATCH(DMI_PRODUCT_NAME, "X505BA"),}, NULL},
1911         {
1912         ec_honor_ecdt_gpe, "ASUSTeK COMPUTER INC. X505BP", {
1913         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1914         DMI_MATCH(DMI_PRODUCT_NAME, "X505BP"),}, NULL},
1915         {
1916         ec_honor_ecdt_gpe, "ASUSTeK COMPUTER INC. X542BA", {
1917         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1918         DMI_MATCH(DMI_PRODUCT_NAME, "X542BA"),}, NULL},
1919         {
1920         ec_honor_ecdt_gpe, "ASUSTeK COMPUTER INC. X542BP", {
1921         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1922         DMI_MATCH(DMI_PRODUCT_NAME, "X542BP"),}, NULL},
1923         {
1924         ec_honor_ecdt_gpe, "ASUS X550VXK", {
1925         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1926         DMI_MATCH(DMI_PRODUCT_NAME, "X550VXK"),}, NULL},
1927         {
1928         ec_honor_ecdt_gpe, "ASUS X580VD", {
1929         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
1930         DMI_MATCH(DMI_PRODUCT_NAME, "X580VD"),}, NULL},
1931         {
1932         ec_clear_on_resume, "Samsung hardware", {
1933         DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD.")}, NULL},
1934         {},
1935 };
1936
1937 int __init acpi_ec_ecdt_probe(void)
1938 {
1939         int ret;
1940         acpi_status status;
1941         struct acpi_table_ecdt *ecdt_ptr;
1942         struct acpi_ec *ec;
1943
1944         ec = acpi_ec_alloc();
1945         if (!ec)
1946                 return -ENOMEM;
1947         /*
1948          * Generate a boot ec context
1949          */
1950         dmi_check_system(ec_dmi_table);
1951         status = acpi_get_table(ACPI_SIG_ECDT, 1,
1952                                 (struct acpi_table_header **)&ecdt_ptr);
1953         if (ACPI_FAILURE(status)) {
1954                 ret = -ENODEV;
1955                 goto error;
1956         }
1957
1958         if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) {
1959                 /*
1960                  * Asus X50GL:
1961                  * https://bugzilla.kernel.org/show_bug.cgi?id=11880
1962                  */
1963                 ret = -ENODEV;
1964                 goto error;
1965         }
1966
1967         if (EC_FLAGS_CORRECT_ECDT) {
1968                 ec->command_addr = ecdt_ptr->data.address;
1969                 ec->data_addr = ecdt_ptr->control.address;
1970         } else {
1971                 ec->command_addr = ecdt_ptr->control.address;
1972                 ec->data_addr = ecdt_ptr->data.address;
1973         }
1974         ec->gpe = ecdt_ptr->gpe;
1975
1976         /*
1977          * At this point, the namespace is not initialized, so do not find
1978          * the namespace objects, or handle the events.
1979          */
1980         ret = acpi_config_boot_ec(ec, ACPI_ROOT_OBJECT, false, true);
1981 error:
1982         if (ret)
1983                 acpi_ec_free(ec);
1984         return ret;
1985 }
1986
1987 #ifdef CONFIG_PM_SLEEP
1988 static int acpi_ec_suspend(struct device *dev)
1989 {
1990         struct acpi_ec *ec =
1991                 acpi_driver_data(to_acpi_device(dev));
1992
1993         if (acpi_sleep_no_ec_events() && ec_freeze_events)
1994                 acpi_ec_disable_event(ec);
1995         return 0;
1996 }
1997
1998 static int acpi_ec_suspend_noirq(struct device *dev)
1999 {
2000         struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
2001
2002         /*
2003          * The SCI handler doesn't run at this point, so the GPE can be
2004          * masked at the low level without side effects.
2005          */
2006         if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
2007             ec->reference_count >= 1)
2008                 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
2009
2010         if (acpi_sleep_no_ec_events())
2011                 acpi_ec_enter_noirq(ec);
2012
2013         return 0;
2014 }
2015
2016 static int acpi_ec_resume_noirq(struct device *dev)
2017 {
2018         struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
2019
2020         if (acpi_sleep_no_ec_events())
2021                 acpi_ec_leave_noirq(ec);
2022
2023         if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
2024             ec->reference_count >= 1)
2025                 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
2026
2027         return 0;
2028 }
2029
2030 static int acpi_ec_resume(struct device *dev)
2031 {
2032         struct acpi_ec *ec =
2033                 acpi_driver_data(to_acpi_device(dev));
2034
2035         acpi_ec_enable_event(ec);
2036         return 0;
2037 }
2038 #endif
2039
2040 static const struct dev_pm_ops acpi_ec_pm = {
2041         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq)
2042         SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume)
2043 };
2044
2045 static int param_set_event_clearing(const char *val,
2046                                     const struct kernel_param *kp)
2047 {
2048         int result = 0;
2049
2050         if (!strncmp(val, "status", sizeof("status") - 1)) {
2051                 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
2052                 pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n");
2053         } else if (!strncmp(val, "query", sizeof("query") - 1)) {
2054                 ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY;
2055                 pr_info("Assuming SCI_EVT clearing on QR_EC writes\n");
2056         } else if (!strncmp(val, "event", sizeof("event") - 1)) {
2057                 ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT;
2058                 pr_info("Assuming SCI_EVT clearing on event reads\n");
2059         } else
2060                 result = -EINVAL;
2061         return result;
2062 }
2063
2064 static int param_get_event_clearing(char *buffer,
2065                                     const struct kernel_param *kp)
2066 {
2067         switch (ec_event_clearing) {
2068         case ACPI_EC_EVT_TIMING_STATUS:
2069                 return sprintf(buffer, "status");
2070         case ACPI_EC_EVT_TIMING_QUERY:
2071                 return sprintf(buffer, "query");
2072         case ACPI_EC_EVT_TIMING_EVENT:
2073                 return sprintf(buffer, "event");
2074         default:
2075                 return sprintf(buffer, "invalid");
2076         }
2077         return 0;
2078 }
2079
2080 module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing,
2081                   NULL, 0644);
2082 MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing");
2083
2084 static struct acpi_driver acpi_ec_driver = {
2085         .name = "ec",
2086         .class = ACPI_EC_CLASS,
2087         .ids = ec_device_ids,
2088         .ops = {
2089                 .add = acpi_ec_add,
2090                 .remove = acpi_ec_remove,
2091                 },
2092         .drv.pm = &acpi_ec_pm,
2093 };
2094
2095 static inline int acpi_ec_query_init(void)
2096 {
2097         if (!ec_query_wq) {
2098                 ec_query_wq = alloc_workqueue("kec_query", 0,
2099                                               ec_max_queries);
2100                 if (!ec_query_wq)
2101                         return -ENODEV;
2102         }
2103         return 0;
2104 }
2105
2106 static inline void acpi_ec_query_exit(void)
2107 {
2108         if (ec_query_wq) {
2109                 destroy_workqueue(ec_query_wq);
2110                 ec_query_wq = NULL;
2111         }
2112 }
2113
2114 static const struct dmi_system_id acpi_ec_no_wakeup[] = {
2115         {
2116                 .ident = "Thinkpad X1 Carbon 6th",
2117                 .matches = {
2118                         DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2119                         DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"),
2120                 },
2121         },
2122         {
2123                 .ident = "ThinkPad X1 Yoga 3rd",
2124                 .matches = {
2125                         DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2126                         DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"),
2127                 },
2128         },
2129         { },
2130 };
2131
2132 int __init acpi_ec_init(void)
2133 {
2134         int result;
2135         int ecdt_fail, dsdt_fail;
2136
2137         /* register workqueue for _Qxx evaluations */
2138         result = acpi_ec_query_init();
2139         if (result)
2140                 return result;
2141
2142         /*
2143          * Disable EC wakeup on following systems to prevent periodic
2144          * wakeup from EC GPE.
2145          */
2146         if (dmi_check_system(acpi_ec_no_wakeup)) {
2147                 ec_no_wakeup = true;
2148                 pr_debug("Disabling EC wakeup on suspend-to-idle\n");
2149         }
2150
2151         /* Drivers must be started after acpi_ec_query_init() */
2152         dsdt_fail = acpi_bus_register_driver(&acpi_ec_driver);
2153         /*
2154          * Register ECDT to ACPI bus only when PNP0C09 probe fails. This is
2155          * useful for platforms (confirmed on ASUS X550ZE) with valid ECDT
2156          * settings but invalid DSDT settings.
2157          * https://bugzilla.kernel.org/show_bug.cgi?id=196847
2158          */
2159         ecdt_fail = acpi_ec_ecdt_start();
2160         return ecdt_fail && dsdt_fail ? -ENODEV : 0;
2161 }
2162
2163 /* EC driver currently not unloadable */
2164 #if 0
2165 static void __exit acpi_ec_exit(void)
2166 {
2167
2168         acpi_bus_unregister_driver(&acpi_ec_driver);
2169         acpi_ec_query_exit();
2170 }
2171 #endif  /* 0 */