GNU Linux-libre 4.19.263-gnu1
[releases.git] / drivers / acpi / cppc_acpi.c
1 /*
2  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3  *
4  * (C) Copyright 2014, 2015 Linaro Ltd.
5  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * CPPC describes a few methods for controlling CPU performance using
13  * information from a per CPU table called CPC. This table is described in
14  * the ACPI v5.0+ specification. The table consists of a list of
15  * registers which may be memory mapped or hardware registers and also may
16  * include some static integer values.
17  *
18  * CPU performance is on an abstract continuous scale as against a discretized
19  * P-state scale which is tied to CPU frequency only. In brief, the basic
20  * operation involves:
21  *
22  * - OS makes a CPU performance request. (Can provide min and max bounds)
23  *
24  * - Platform (such as BMC) is free to optimize request within requested bounds
25  *   depending on power/thermal budgets etc.
26  *
27  * - Platform conveys its decision back to OS
28  *
29  * The communication between OS and platform occurs through another medium
30  * called (PCC) Platform Communication Channel. This is a generic mailbox like
31  * mechanism which includes doorbell semantics to indicate register updates.
32  * See drivers/mailbox/pcc.c for details on PCC.
33  *
34  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35  * above specifications.
36  */
37
38 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
39
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/iopoll.h>
43 #include <linux/ktime.h>
44 #include <linux/rwsem.h>
45 #include <linux/wait.h>
46
47 #include <acpi/cppc_acpi.h>
48
49 struct cppc_pcc_data {
50         struct mbox_chan *pcc_channel;
51         void __iomem *pcc_comm_addr;
52         bool pcc_channel_acquired;
53         unsigned int deadline_us;
54         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55
56         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
57         bool platform_owns_pcc;         /* Ownership of PCC subspace */
58         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
59
60         /*
61          * Lock to provide controlled access to the PCC channel.
62          *
63          * For performance critical usecases(currently cppc_set_perf)
64          *      We need to take read_lock and check if channel belongs to OSPM
65          * before reading or writing to PCC subspace
66          *      We need to take write_lock before transferring the channel
67          * ownership to the platform via a Doorbell
68          *      This allows us to batch a number of CPPC requests if they happen
69          * to originate in about the same time
70          *
71          * For non-performance critical usecases(init)
72          *      Take write_lock for all purposes which gives exclusive access
73          */
74         struct rw_semaphore pcc_lock;
75
76         /* Wait queue for CPUs whose requests were batched */
77         wait_queue_head_t pcc_write_wait_q;
78         ktime_t last_cmd_cmpl_time;
79         ktime_t last_mpar_reset;
80         int mpar_count;
81         int refcount;
82 };
83
84 /* Array  to represent the PCC channel per subspace id */
85 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
86 /* The cpu_pcc_subspace_idx containsper CPU subspace id */
87 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
88
89 /*
90  * The cpc_desc structure contains the ACPI register details
91  * as described in the per CPU _CPC tables. The details
92  * include the type of register (e.g. PCC, System IO, FFH etc.)
93  * and destination addresses which lets us READ/WRITE CPU performance
94  * information using the appropriate I/O methods.
95  */
96 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
97
98 /* pcc mapped address + header size + offset within PCC subspace */
99 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
100                                                 0x8 + (offs))
101
102 /* Check if a CPC register is in PCC */
103 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
104                                 (cpc)->cpc_entry.reg.space_id ==        \
105                                 ACPI_ADR_SPACE_PLATFORM_COMM)
106
107 /* Evalutes to True if reg is a NULL register descriptor */
108 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
109                                 (reg)->address == 0 &&                  \
110                                 (reg)->bit_width == 0 &&                \
111                                 (reg)->bit_offset == 0 &&               \
112                                 (reg)->access_width == 0)
113
114 /* Evalutes to True if an optional cpc field is supported */
115 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
116                                 !!(cpc)->cpc_entry.int_value :          \
117                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
118 /*
119  * Arbitrary Retries in case the remote processor is slow to respond
120  * to PCC commands. Keeping it high enough to cover emulators where
121  * the processors run painfully slow.
122  */
123 #define NUM_RETRIES 500ULL
124
125 #define define_one_cppc_ro(_name)               \
126 static struct kobj_attribute _name =            \
127 __ATTR(_name, 0444, show_##_name, NULL)
128
129 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
130
131 #define show_cppc_data(access_fn, struct_name, member_name)             \
132         static ssize_t show_##member_name(struct kobject *kobj,         \
133                                 struct kobj_attribute *attr, char *buf) \
134         {                                                               \
135                 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);           \
136                 struct struct_name st_name = {0};                       \
137                 int ret;                                                \
138                                                                         \
139                 ret = access_fn(cpc_ptr->cpu_id, &st_name);             \
140                 if (ret)                                                \
141                         return ret;                                     \
142                                                                         \
143                 return scnprintf(buf, PAGE_SIZE, "%llu\n",              \
144                                 (u64)st_name.member_name);              \
145         }                                                               \
146         define_one_cppc_ro(member_name)
147
148 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
149 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
150 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
151 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
152 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
153 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
154
155 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
156 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
157
158 static ssize_t show_feedback_ctrs(struct kobject *kobj,
159                 struct kobj_attribute *attr, char *buf)
160 {
161         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
162         struct cppc_perf_fb_ctrs fb_ctrs = {0};
163         int ret;
164
165         ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
166         if (ret)
167                 return ret;
168
169         return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
170                         fb_ctrs.reference, fb_ctrs.delivered);
171 }
172 define_one_cppc_ro(feedback_ctrs);
173
174 static struct attribute *cppc_attrs[] = {
175         &feedback_ctrs.attr,
176         &reference_perf.attr,
177         &wraparound_time.attr,
178         &highest_perf.attr,
179         &lowest_perf.attr,
180         &lowest_nonlinear_perf.attr,
181         &nominal_perf.attr,
182         &nominal_freq.attr,
183         &lowest_freq.attr,
184         NULL
185 };
186
187 static struct kobj_type cppc_ktype = {
188         .sysfs_ops = &kobj_sysfs_ops,
189         .default_attrs = cppc_attrs,
190 };
191
192 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
193 {
194         int ret, status;
195         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
196         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
197                 pcc_ss_data->pcc_comm_addr;
198
199         if (!pcc_ss_data->platform_owns_pcc)
200                 return 0;
201
202         /*
203          * Poll PCC status register every 3us(delay_us) for maximum of
204          * deadline_us(timeout_us) until PCC command complete bit is set(cond)
205          */
206         ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
207                                         status & PCC_CMD_COMPLETE_MASK, 3,
208                                         pcc_ss_data->deadline_us);
209
210         if (likely(!ret)) {
211                 pcc_ss_data->platform_owns_pcc = false;
212                 if (chk_err_bit && (status & PCC_ERROR_MASK))
213                         ret = -EIO;
214         }
215
216         if (unlikely(ret))
217                 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
218                        pcc_ss_id, ret);
219
220         return ret;
221 }
222
223 /*
224  * This function transfers the ownership of the PCC to the platform
225  * So it must be called while holding write_lock(pcc_lock)
226  */
227 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
228 {
229         int ret = -EIO, i;
230         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
231         struct acpi_pcct_shared_memory *generic_comm_base =
232                 (struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
233         unsigned int time_delta;
234
235         /*
236          * For CMD_WRITE we know for a fact the caller should have checked
237          * the channel before writing to PCC space
238          */
239         if (cmd == CMD_READ) {
240                 /*
241                  * If there are pending cpc_writes, then we stole the channel
242                  * before write completion, so first send a WRITE command to
243                  * platform
244                  */
245                 if (pcc_ss_data->pending_pcc_write_cmd)
246                         send_pcc_cmd(pcc_ss_id, CMD_WRITE);
247
248                 ret = check_pcc_chan(pcc_ss_id, false);
249                 if (ret)
250                         goto end;
251         } else /* CMD_WRITE */
252                 pcc_ss_data->pending_pcc_write_cmd = FALSE;
253
254         /*
255          * Handle the Minimum Request Turnaround Time(MRTT)
256          * "The minimum amount of time that OSPM must wait after the completion
257          * of a command before issuing the next command, in microseconds"
258          */
259         if (pcc_ss_data->pcc_mrtt) {
260                 time_delta = ktime_us_delta(ktime_get(),
261                                             pcc_ss_data->last_cmd_cmpl_time);
262                 if (pcc_ss_data->pcc_mrtt > time_delta)
263                         udelay(pcc_ss_data->pcc_mrtt - time_delta);
264         }
265
266         /*
267          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
268          * "The maximum number of periodic requests that the subspace channel can
269          * support, reported in commands per minute. 0 indicates no limitation."
270          *
271          * This parameter should be ideally zero or large enough so that it can
272          * handle maximum number of requests that all the cores in the system can
273          * collectively generate. If it is not, we will follow the spec and just
274          * not send the request to the platform after hitting the MPAR limit in
275          * any 60s window
276          */
277         if (pcc_ss_data->pcc_mpar) {
278                 if (pcc_ss_data->mpar_count == 0) {
279                         time_delta = ktime_ms_delta(ktime_get(),
280                                                     pcc_ss_data->last_mpar_reset);
281                         if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
282                                 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
283                                          pcc_ss_id);
284                                 ret = -EIO;
285                                 goto end;
286                         }
287                         pcc_ss_data->last_mpar_reset = ktime_get();
288                         pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
289                 }
290                 pcc_ss_data->mpar_count--;
291         }
292
293         /* Write to the shared comm region. */
294         writew_relaxed(cmd, &generic_comm_base->command);
295
296         /* Flip CMD COMPLETE bit */
297         writew_relaxed(0, &generic_comm_base->status);
298
299         pcc_ss_data->platform_owns_pcc = true;
300
301         /* Ring doorbell */
302         ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
303         if (ret < 0) {
304                 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
305                        pcc_ss_id, cmd, ret);
306                 goto end;
307         }
308
309         /* wait for completion and check for PCC errro bit */
310         ret = check_pcc_chan(pcc_ss_id, true);
311
312         if (pcc_ss_data->pcc_mrtt)
313                 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
314
315         if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
316                 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
317         else
318                 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
319
320 end:
321         if (cmd == CMD_WRITE) {
322                 if (unlikely(ret)) {
323                         for_each_possible_cpu(i) {
324                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
325                                 if (!desc)
326                                         continue;
327
328                                 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
329                                         desc->write_cmd_status = ret;
330                         }
331                 }
332                 pcc_ss_data->pcc_write_cnt++;
333                 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
334         }
335
336         return ret;
337 }
338
339 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
340 {
341         if (ret < 0)
342                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
343                                 *(u16 *)msg, ret);
344         else
345                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
346                                 *(u16 *)msg, ret);
347 }
348
349 struct mbox_client cppc_mbox_cl = {
350         .tx_done = cppc_chan_tx_done,
351         .knows_txdone = true,
352 };
353
354 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
355 {
356         int result = -EFAULT;
357         acpi_status status = AE_OK;
358         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
359         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
360         struct acpi_buffer state = {0, NULL};
361         union acpi_object  *psd = NULL;
362         struct acpi_psd_package *pdomain;
363
364         status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
365                                             &buffer, ACPI_TYPE_PACKAGE);
366         if (status == AE_NOT_FOUND)     /* _PSD is optional */
367                 return 0;
368         if (ACPI_FAILURE(status))
369                 return -ENODEV;
370
371         psd = buffer.pointer;
372         if (!psd || psd->package.count != 1) {
373                 pr_debug("Invalid _PSD data\n");
374                 goto end;
375         }
376
377         pdomain = &(cpc_ptr->domain_info);
378
379         state.length = sizeof(struct acpi_psd_package);
380         state.pointer = pdomain;
381
382         status = acpi_extract_package(&(psd->package.elements[0]),
383                 &format, &state);
384         if (ACPI_FAILURE(status)) {
385                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
386                 goto end;
387         }
388
389         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
390                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
391                 goto end;
392         }
393
394         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
395                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
396                 goto end;
397         }
398
399         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
400             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
401             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
402                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
403                 goto end;
404         }
405
406         result = 0;
407 end:
408         kfree(buffer.pointer);
409         return result;
410 }
411
412 /**
413  * acpi_get_psd_map - Map the CPUs in a common freq domain.
414  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
415  *
416  *      Return: 0 for success or negative value for err.
417  */
418 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
419 {
420         int count_target;
421         int retval = 0;
422         unsigned int i, j;
423         cpumask_var_t covered_cpus;
424         struct cppc_cpudata *pr, *match_pr;
425         struct acpi_psd_package *pdomain;
426         struct acpi_psd_package *match_pdomain;
427         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
428
429         if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
430                 return -ENOMEM;
431
432         /*
433          * Now that we have _PSD data from all CPUs, lets setup P-state
434          * domain info.
435          */
436         for_each_possible_cpu(i) {
437                 pr = all_cpu_data[i];
438                 if (!pr)
439                         continue;
440
441                 if (cpumask_test_cpu(i, covered_cpus))
442                         continue;
443
444                 cpc_ptr = per_cpu(cpc_desc_ptr, i);
445                 if (!cpc_ptr) {
446                         retval = -EFAULT;
447                         goto err_ret;
448                 }
449
450                 pdomain = &(cpc_ptr->domain_info);
451                 cpumask_set_cpu(i, pr->shared_cpu_map);
452                 cpumask_set_cpu(i, covered_cpus);
453                 if (pdomain->num_processors <= 1)
454                         continue;
455
456                 /* Validate the Domain info */
457                 count_target = pdomain->num_processors;
458                 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
459                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
460                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
461                         pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
462                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
463                         pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
464
465                 for_each_possible_cpu(j) {
466                         if (i == j)
467                                 continue;
468
469                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
470                         if (!match_cpc_ptr) {
471                                 retval = -EFAULT;
472                                 goto err_ret;
473                         }
474
475                         match_pdomain = &(match_cpc_ptr->domain_info);
476                         if (match_pdomain->domain != pdomain->domain)
477                                 continue;
478
479                         /* Here i and j are in the same domain */
480                         if (match_pdomain->num_processors != count_target) {
481                                 retval = -EFAULT;
482                                 goto err_ret;
483                         }
484
485                         if (pdomain->coord_type != match_pdomain->coord_type) {
486                                 retval = -EFAULT;
487                                 goto err_ret;
488                         }
489
490                         cpumask_set_cpu(j, covered_cpus);
491                         cpumask_set_cpu(j, pr->shared_cpu_map);
492                 }
493
494                 for_each_possible_cpu(j) {
495                         if (i == j)
496                                 continue;
497
498                         match_pr = all_cpu_data[j];
499                         if (!match_pr)
500                                 continue;
501
502                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
503                         if (!match_cpc_ptr) {
504                                 retval = -EFAULT;
505                                 goto err_ret;
506                         }
507
508                         match_pdomain = &(match_cpc_ptr->domain_info);
509                         if (match_pdomain->domain != pdomain->domain)
510                                 continue;
511
512                         match_pr->shared_type = pr->shared_type;
513                         cpumask_copy(match_pr->shared_cpu_map,
514                                      pr->shared_cpu_map);
515                 }
516         }
517
518 err_ret:
519         for_each_possible_cpu(i) {
520                 pr = all_cpu_data[i];
521                 if (!pr)
522                         continue;
523
524                 /* Assume no coordination on any error parsing domain info */
525                 if (retval) {
526                         cpumask_clear(pr->shared_cpu_map);
527                         cpumask_set_cpu(i, pr->shared_cpu_map);
528                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
529                 }
530         }
531
532         free_cpumask_var(covered_cpus);
533         return retval;
534 }
535 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
536
537 static int register_pcc_channel(int pcc_ss_idx)
538 {
539         struct acpi_pcct_hw_reduced *cppc_ss;
540         u64 usecs_lat;
541
542         if (pcc_ss_idx >= 0) {
543                 pcc_data[pcc_ss_idx]->pcc_channel =
544                         pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
545
546                 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
547                         pr_err("Failed to find PCC channel for subspace %d\n",
548                                pcc_ss_idx);
549                         return -ENODEV;
550                 }
551
552                 /*
553                  * The PCC mailbox controller driver should
554                  * have parsed the PCCT (global table of all
555                  * PCC channels) and stored pointers to the
556                  * subspace communication region in con_priv.
557                  */
558                 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
559
560                 if (!cppc_ss) {
561                         pr_err("No PCC subspace found for %d CPPC\n",
562                                pcc_ss_idx);
563                         return -ENODEV;
564                 }
565
566                 /*
567                  * cppc_ss->latency is just a Nominal value. In reality
568                  * the remote processor could be much slower to reply.
569                  * So add an arbitrary amount of wait on top of Nominal.
570                  */
571                 usecs_lat = NUM_RETRIES * cppc_ss->latency;
572                 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
573                 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
574                 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
575                 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
576
577                 pcc_data[pcc_ss_idx]->pcc_comm_addr =
578                         acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
579                 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
580                         pr_err("Failed to ioremap PCC comm region mem for %d\n",
581                                pcc_ss_idx);
582                         return -ENOMEM;
583                 }
584
585                 /* Set flag so that we dont come here for each CPU. */
586                 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
587         }
588
589         return 0;
590 }
591
592 /**
593  * cpc_ffh_supported() - check if FFH reading supported
594  *
595  * Check if the architecture has support for functional fixed hardware
596  * read/write capability.
597  *
598  * Return: true for supported, false for not supported
599  */
600 bool __weak cpc_ffh_supported(void)
601 {
602         return false;
603 }
604
605 /**
606  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
607  *
608  * Check and allocate the cppc_pcc_data memory.
609  * In some processor configurations it is possible that same subspace
610  * is shared between multiple CPU's. This is seen especially in CPU's
611  * with hardware multi-threading support.
612  *
613  * Return: 0 for success, errno for failure
614  */
615 int pcc_data_alloc(int pcc_ss_id)
616 {
617         if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
618                 return -EINVAL;
619
620         if (pcc_data[pcc_ss_id]) {
621                 pcc_data[pcc_ss_id]->refcount++;
622         } else {
623                 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
624                                               GFP_KERNEL);
625                 if (!pcc_data[pcc_ss_id])
626                         return -ENOMEM;
627                 pcc_data[pcc_ss_id]->refcount++;
628         }
629
630         return 0;
631 }
632
633 /*
634  * An example CPC table looks like the following.
635  *
636  *      Name(_CPC, Package()
637  *                      {
638  *                      17,
639  *                      NumEntries
640  *                      1,
641  *                      // Revision
642  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
643  *                      // Highest Performance
644  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
645  *                      // Nominal Performance
646  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
647  *                      // Lowest Nonlinear Performance
648  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
649  *                      // Lowest Performance
650  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
651  *                      // Guaranteed Performance Register
652  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
653  *                      // Desired Performance Register
654  *                      ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
655  *                      ..
656  *                      ..
657  *                      ..
658  *
659  *              }
660  * Each Register() encodes how to access that specific register.
661  * e.g. a sample PCC entry has the following encoding:
662  *
663  *      Register (
664  *              PCC,
665  *              AddressSpaceKeyword
666  *              8,
667  *              //RegisterBitWidth
668  *              8,
669  *              //RegisterBitOffset
670  *              0x30,
671  *              //RegisterAddress
672  *              9
673  *              //AccessSize (subspace ID)
674  *              0
675  *              )
676  *      }
677  */
678
679 /**
680  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
681  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
682  *
683  *      Return: 0 for success or negative value for err.
684  */
685 int acpi_cppc_processor_probe(struct acpi_processor *pr)
686 {
687         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
688         union acpi_object *out_obj, *cpc_obj;
689         struct cpc_desc *cpc_ptr;
690         struct cpc_reg *gas_t;
691         struct device *cpu_dev;
692         acpi_handle handle = pr->handle;
693         unsigned int num_ent, i, cpc_rev;
694         int pcc_subspace_id = -1;
695         acpi_status status;
696         int ret = -EFAULT;
697
698         /* Parse the ACPI _CPC table for this cpu. */
699         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
700                         ACPI_TYPE_PACKAGE);
701         if (ACPI_FAILURE(status)) {
702                 ret = -ENODEV;
703                 goto out_buf_free;
704         }
705
706         out_obj = (union acpi_object *) output.pointer;
707
708         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
709         if (!cpc_ptr) {
710                 ret = -ENOMEM;
711                 goto out_buf_free;
712         }
713
714         /* First entry is NumEntries. */
715         cpc_obj = &out_obj->package.elements[0];
716         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
717                 num_ent = cpc_obj->integer.value;
718                 if (num_ent <= 1) {
719                         pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
720                                  num_ent, pr->id);
721                         goto out_free;
722                 }
723         } else {
724                 pr_debug("Unexpected entry type(%d) for NumEntries\n",
725                                 cpc_obj->type);
726                 goto out_free;
727         }
728
729         /* Second entry should be revision. */
730         cpc_obj = &out_obj->package.elements[1];
731         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
732                 cpc_rev = cpc_obj->integer.value;
733         } else {
734                 pr_debug("Unexpected entry type(%d) for Revision\n",
735                                 cpc_obj->type);
736                 goto out_free;
737         }
738
739         if (cpc_rev < CPPC_V2_REV) {
740                 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
741                          pr->id);
742                 goto out_free;
743         }
744
745         /*
746          * Disregard _CPC if the number of entries in the return pachage is not
747          * as expected, but support future revisions being proper supersets of
748          * the v3 and only causing more entries to be returned by _CPC.
749          */
750         if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
751             (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
752             (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
753                 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
754                          num_ent, pr->id);
755                 goto out_free;
756         }
757         if (cpc_rev > CPPC_V3_REV) {
758                 num_ent = CPPC_V3_NUM_ENT;
759                 cpc_rev = CPPC_V3_REV;
760         }
761
762         cpc_ptr->num_entries = num_ent;
763         cpc_ptr->version = cpc_rev;
764
765         /* Iterate through remaining entries in _CPC */
766         for (i = 2; i < num_ent; i++) {
767                 cpc_obj = &out_obj->package.elements[i];
768
769                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
770                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
771                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
772                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
773                         gas_t = (struct cpc_reg *)
774                                 cpc_obj->buffer.pointer;
775
776                         /*
777                          * The PCC Subspace index is encoded inside
778                          * the CPC table entries. The same PCC index
779                          * will be used for all the PCC entries,
780                          * so extract it only once.
781                          */
782                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
783                                 if (pcc_subspace_id < 0) {
784                                         pcc_subspace_id = gas_t->access_width;
785                                         if (pcc_data_alloc(pcc_subspace_id))
786                                                 goto out_free;
787                                 } else if (pcc_subspace_id != gas_t->access_width) {
788                                         pr_debug("Mismatched PCC ids.\n");
789                                         goto out_free;
790                                 }
791                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
792                                 if (gas_t->address) {
793                                         void __iomem *addr;
794
795                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
796                                         if (!addr)
797                                                 goto out_free;
798                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
799                                 }
800                         } else {
801                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
802                                         /* Support only PCC ,SYS MEM and FFH type regs */
803                                         pr_debug("Unsupported register type: %d\n", gas_t->space_id);
804                                         goto out_free;
805                                 }
806                         }
807
808                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
809                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
810                 } else {
811                         pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
812                         goto out_free;
813                 }
814         }
815         per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
816
817         /*
818          * Initialize the remaining cpc_regs as unsupported.
819          * Example: In case FW exposes CPPC v2, the below loop will initialize
820          * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
821          */
822         for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
823                 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
824                 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
825         }
826
827
828         /* Store CPU Logical ID */
829         cpc_ptr->cpu_id = pr->id;
830
831         /* Parse PSD data for this CPU */
832         ret = acpi_get_psd(cpc_ptr, handle);
833         if (ret)
834                 goto out_free;
835
836         /* Register PCC channel once for all PCC subspace id. */
837         if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
838                 ret = register_pcc_channel(pcc_subspace_id);
839                 if (ret)
840                         goto out_free;
841
842                 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
843                 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
844         }
845
846         /* Everything looks okay */
847         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
848
849         /* Add per logical CPU nodes for reading its feedback counters. */
850         cpu_dev = get_cpu_device(pr->id);
851         if (!cpu_dev) {
852                 ret = -EINVAL;
853                 goto out_free;
854         }
855
856         /* Plug PSD data into this CPUs CPC descriptor. */
857         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
858
859         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
860                         "acpi_cppc");
861         if (ret) {
862                 per_cpu(cpc_desc_ptr, pr->id) = NULL;
863                 kobject_put(&cpc_ptr->kobj);
864                 goto out_free;
865         }
866
867         kfree(output.pointer);
868         return 0;
869
870 out_free:
871         /* Free all the mapped sys mem areas for this CPU */
872         for (i = 2; i < cpc_ptr->num_entries; i++) {
873                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
874
875                 if (addr)
876                         iounmap(addr);
877         }
878         kfree(cpc_ptr);
879
880 out_buf_free:
881         kfree(output.pointer);
882         return ret;
883 }
884 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
885
886 /**
887  * acpi_cppc_processor_exit - Cleanup CPC structs.
888  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
889  *
890  * Return: Void
891  */
892 void acpi_cppc_processor_exit(struct acpi_processor *pr)
893 {
894         struct cpc_desc *cpc_ptr;
895         unsigned int i;
896         void __iomem *addr;
897         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
898
899         if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
900                 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
901                         pcc_data[pcc_ss_id]->refcount--;
902                         if (!pcc_data[pcc_ss_id]->refcount) {
903                                 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
904                                 kfree(pcc_data[pcc_ss_id]);
905                                 pcc_data[pcc_ss_id] = NULL;
906                         }
907                 }
908         }
909
910         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
911         if (!cpc_ptr)
912                 return;
913
914         /* Free all the mapped sys mem areas for this CPU */
915         for (i = 2; i < cpc_ptr->num_entries; i++) {
916                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
917                 if (addr)
918                         iounmap(addr);
919         }
920
921         kobject_put(&cpc_ptr->kobj);
922         kfree(cpc_ptr);
923 }
924 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
925
926 /**
927  * cpc_read_ffh() - Read FFH register
928  * @cpunum:     cpu number to read
929  * @reg:        cppc register information
930  * @val:        place holder for return value
931  *
932  * Read bit_width bits from a specified address and bit_offset
933  *
934  * Return: 0 for success and error code
935  */
936 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
937 {
938         return -ENOTSUPP;
939 }
940
941 /**
942  * cpc_write_ffh() - Write FFH register
943  * @cpunum:     cpu number to write
944  * @reg:        cppc register information
945  * @val:        value to write
946  *
947  * Write value of bit_width bits to a specified address and bit_offset
948  *
949  * Return: 0 for success and error code
950  */
951 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
952 {
953         return -ENOTSUPP;
954 }
955
956 /*
957  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
958  * as fast as possible. We have already mapped the PCC subspace during init, so
959  * we can directly write to it.
960  */
961
962 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
963 {
964         int ret_val = 0;
965         void __iomem *vaddr = 0;
966         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
967         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
968
969         if (reg_res->type == ACPI_TYPE_INTEGER) {
970                 *val = reg_res->cpc_entry.int_value;
971                 return ret_val;
972         }
973
974         *val = 0;
975         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
976                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
977         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
978                 vaddr = reg_res->sys_mem_vaddr;
979         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
980                 return cpc_read_ffh(cpu, reg, val);
981         else
982                 return acpi_os_read_memory((acpi_physical_address)reg->address,
983                                 val, reg->bit_width);
984
985         switch (reg->bit_width) {
986                 case 8:
987                         *val = readb_relaxed(vaddr);
988                         break;
989                 case 16:
990                         *val = readw_relaxed(vaddr);
991                         break;
992                 case 32:
993                         *val = readl_relaxed(vaddr);
994                         break;
995                 case 64:
996                         *val = readq_relaxed(vaddr);
997                         break;
998                 default:
999                         pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1000                                  reg->bit_width, pcc_ss_id);
1001                         ret_val = -EFAULT;
1002         }
1003
1004         return ret_val;
1005 }
1006
1007 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1008 {
1009         int ret_val = 0;
1010         void __iomem *vaddr = 0;
1011         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1012         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1013
1014         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1015                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1016         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1017                 vaddr = reg_res->sys_mem_vaddr;
1018         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1019                 return cpc_write_ffh(cpu, reg, val);
1020         else
1021                 return acpi_os_write_memory((acpi_physical_address)reg->address,
1022                                 val, reg->bit_width);
1023
1024         switch (reg->bit_width) {
1025                 case 8:
1026                         writeb_relaxed(val, vaddr);
1027                         break;
1028                 case 16:
1029                         writew_relaxed(val, vaddr);
1030                         break;
1031                 case 32:
1032                         writel_relaxed(val, vaddr);
1033                         break;
1034                 case 64:
1035                         writeq_relaxed(val, vaddr);
1036                         break;
1037                 default:
1038                         pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1039                                  reg->bit_width, pcc_ss_id);
1040                         ret_val = -EFAULT;
1041                         break;
1042         }
1043
1044         return ret_val;
1045 }
1046
1047 /**
1048  * cppc_get_perf_caps - Get a CPUs performance capabilities.
1049  * @cpunum: CPU from which to get capabilities info.
1050  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1051  *
1052  * Return: 0 for success with perf_caps populated else -ERRNO.
1053  */
1054 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1055 {
1056         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1057         struct cpc_register_resource *highest_reg, *lowest_reg,
1058                 *lowest_non_linear_reg, *nominal_reg,
1059                 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1060         u64 high, low, nom, min_nonlinear, low_f = 0, nom_f = 0;
1061         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1062         struct cppc_pcc_data *pcc_ss_data = NULL;
1063         int ret = 0, regs_in_pcc = 0;
1064
1065         if (!cpc_desc) {
1066                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1067                 return -ENODEV;
1068         }
1069
1070         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1071         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1072         lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1073         nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1074         low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1075         nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1076
1077         /* Are any of the regs PCC ?*/
1078         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1079                 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1080                 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1081                 if (pcc_ss_id < 0) {
1082                         pr_debug("Invalid pcc_ss_id\n");
1083                         return -ENODEV;
1084                 }
1085                 pcc_ss_data = pcc_data[pcc_ss_id];
1086                 regs_in_pcc = 1;
1087                 down_write(&pcc_ss_data->pcc_lock);
1088                 /* Ring doorbell once to update PCC subspace */
1089                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1090                         ret = -EIO;
1091                         goto out_err;
1092                 }
1093         }
1094
1095         cpc_read(cpunum, highest_reg, &high);
1096         perf_caps->highest_perf = high;
1097
1098         cpc_read(cpunum, lowest_reg, &low);
1099         perf_caps->lowest_perf = low;
1100
1101         cpc_read(cpunum, nominal_reg, &nom);
1102         perf_caps->nominal_perf = nom;
1103
1104         cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1105         perf_caps->lowest_nonlinear_perf = min_nonlinear;
1106
1107         if (!high || !low || !nom || !min_nonlinear)
1108                 ret = -EFAULT;
1109
1110         /* Read optional lowest and nominal frequencies if present */
1111         if (CPC_SUPPORTED(low_freq_reg))
1112                 cpc_read(cpunum, low_freq_reg, &low_f);
1113
1114         if (CPC_SUPPORTED(nom_freq_reg))
1115                 cpc_read(cpunum, nom_freq_reg, &nom_f);
1116
1117         perf_caps->lowest_freq = low_f;
1118         perf_caps->nominal_freq = nom_f;
1119
1120
1121 out_err:
1122         if (regs_in_pcc)
1123                 up_write(&pcc_ss_data->pcc_lock);
1124         return ret;
1125 }
1126 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1127
1128 /**
1129  * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1130  * @cpunum: CPU from which to read counters.
1131  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1132  *
1133  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1134  */
1135 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1136 {
1137         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1138         struct cpc_register_resource *delivered_reg, *reference_reg,
1139                 *ref_perf_reg, *ctr_wrap_reg;
1140         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1141         struct cppc_pcc_data *pcc_ss_data = NULL;
1142         u64 delivered, reference, ref_perf, ctr_wrap_time;
1143         int ret = 0, regs_in_pcc = 0;
1144
1145         if (!cpc_desc) {
1146                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1147                 return -ENODEV;
1148         }
1149
1150         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1151         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1152         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1153         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1154
1155         /*
1156          * If refernce perf register is not supported then we should
1157          * use the nominal perf value
1158          */
1159         if (!CPC_SUPPORTED(ref_perf_reg))
1160                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1161
1162         /* Are any of the regs PCC ?*/
1163         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1164                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1165                 if (pcc_ss_id < 0) {
1166                         pr_debug("Invalid pcc_ss_id\n");
1167                         return -ENODEV;
1168                 }
1169                 pcc_ss_data = pcc_data[pcc_ss_id];
1170                 down_write(&pcc_ss_data->pcc_lock);
1171                 regs_in_pcc = 1;
1172                 /* Ring doorbell once to update PCC subspace */
1173                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1174                         ret = -EIO;
1175                         goto out_err;
1176                 }
1177         }
1178
1179         cpc_read(cpunum, delivered_reg, &delivered);
1180         cpc_read(cpunum, reference_reg, &reference);
1181         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1182
1183         /*
1184          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1185          * performance counters are assumed to never wrap during the lifetime of
1186          * platform
1187          */
1188         ctr_wrap_time = (u64)(~((u64)0));
1189         if (CPC_SUPPORTED(ctr_wrap_reg))
1190                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1191
1192         if (!delivered || !reference || !ref_perf) {
1193                 ret = -EFAULT;
1194                 goto out_err;
1195         }
1196
1197         perf_fb_ctrs->delivered = delivered;
1198         perf_fb_ctrs->reference = reference;
1199         perf_fb_ctrs->reference_perf = ref_perf;
1200         perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1201 out_err:
1202         if (regs_in_pcc)
1203                 up_write(&pcc_ss_data->pcc_lock);
1204         return ret;
1205 }
1206 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1207
1208 /**
1209  * cppc_set_perf - Set a CPUs performance controls.
1210  * @cpu: CPU for which to set performance controls.
1211  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1212  *
1213  * Return: 0 for success, -ERRNO otherwise.
1214  */
1215 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1216 {
1217         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1218         struct cpc_register_resource *desired_reg;
1219         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1220         struct cppc_pcc_data *pcc_ss_data = NULL;
1221         int ret = 0;
1222
1223         if (!cpc_desc) {
1224                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1225                 return -ENODEV;
1226         }
1227
1228         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1229
1230         /*
1231          * This is Phase-I where we want to write to CPC registers
1232          * -> We want all CPUs to be able to execute this phase in parallel
1233          *
1234          * Since read_lock can be acquired by multiple CPUs simultaneously we
1235          * achieve that goal here
1236          */
1237         if (CPC_IN_PCC(desired_reg)) {
1238                 if (pcc_ss_id < 0) {
1239                         pr_debug("Invalid pcc_ss_id\n");
1240                         return -ENODEV;
1241                 }
1242                 pcc_ss_data = pcc_data[pcc_ss_id];
1243                 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1244                 if (pcc_ss_data->platform_owns_pcc) {
1245                         ret = check_pcc_chan(pcc_ss_id, false);
1246                         if (ret) {
1247                                 up_read(&pcc_ss_data->pcc_lock);
1248                                 return ret;
1249                         }
1250                 }
1251                 /*
1252                  * Update the pending_write to make sure a PCC CMD_READ will not
1253                  * arrive and steal the channel during the switch to write lock
1254                  */
1255                 pcc_ss_data->pending_pcc_write_cmd = true;
1256                 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1257                 cpc_desc->write_cmd_status = 0;
1258         }
1259
1260         /*
1261          * Skip writing MIN/MAX until Linux knows how to come up with
1262          * useful values.
1263          */
1264         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1265
1266         if (CPC_IN_PCC(desired_reg))
1267                 up_read(&pcc_ss_data->pcc_lock);        /* END Phase-I */
1268         /*
1269          * This is Phase-II where we transfer the ownership of PCC to Platform
1270          *
1271          * Short Summary: Basically if we think of a group of cppc_set_perf
1272          * requests that happened in short overlapping interval. The last CPU to
1273          * come out of Phase-I will enter Phase-II and ring the doorbell.
1274          *
1275          * We have the following requirements for Phase-II:
1276          *     1. We want to execute Phase-II only when there are no CPUs
1277          * currently executing in Phase-I
1278          *     2. Once we start Phase-II we want to avoid all other CPUs from
1279          * entering Phase-I.
1280          *     3. We want only one CPU among all those who went through Phase-I
1281          * to run phase-II
1282          *
1283          * If write_trylock fails to get the lock and doesn't transfer the
1284          * PCC ownership to the platform, then one of the following will be TRUE
1285          *     1. There is at-least one CPU in Phase-I which will later execute
1286          * write_trylock, so the CPUs in Phase-I will be responsible for
1287          * executing the Phase-II.
1288          *     2. Some other CPU has beaten this CPU to successfully execute the
1289          * write_trylock and has already acquired the write_lock. We know for a
1290          * fact it(other CPU acquiring the write_lock) couldn't have happened
1291          * before this CPU's Phase-I as we held the read_lock.
1292          *     3. Some other CPU executing pcc CMD_READ has stolen the
1293          * down_write, in which case, send_pcc_cmd will check for pending
1294          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1295          * So this CPU can be certain that its request will be delivered
1296          *    So in all cases, this CPU knows that its request will be delivered
1297          * by another CPU and can return
1298          *
1299          * After getting the down_write we still need to check for
1300          * pending_pcc_write_cmd to take care of the following scenario
1301          *    The thread running this code could be scheduled out between
1302          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1303          * could have delivered the request to Platform by triggering the
1304          * doorbell and transferred the ownership of PCC to platform. So this
1305          * avoids triggering an unnecessary doorbell and more importantly before
1306          * triggering the doorbell it makes sure that the PCC channel ownership
1307          * is still with OSPM.
1308          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1309          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1310          * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1311          * case during a CMD_READ and if there are pending writes it delivers
1312          * the write command before servicing the read command
1313          */
1314         if (CPC_IN_PCC(desired_reg)) {
1315                 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1316                         /* Update only if there are pending write commands */
1317                         if (pcc_ss_data->pending_pcc_write_cmd)
1318                                 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1319                         up_write(&pcc_ss_data->pcc_lock);       /* END Phase-II */
1320                 } else
1321                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1322                         wait_event(pcc_ss_data->pcc_write_wait_q,
1323                                    cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1324
1325                 /* send_pcc_cmd updates the status in case of failure */
1326                 ret = cpc_desc->write_cmd_status;
1327         }
1328         return ret;
1329 }
1330 EXPORT_SYMBOL_GPL(cppc_set_perf);
1331
1332 /**
1333  * cppc_get_transition_latency - returns frequency transition latency in ns
1334  *
1335  * ACPI CPPC does not explicitly specifiy how a platform can specify the
1336  * transition latency for perfromance change requests. The closest we have
1337  * is the timing information from the PCCT tables which provides the info
1338  * on the number and frequency of PCC commands the platform can handle.
1339  */
1340 unsigned int cppc_get_transition_latency(int cpu_num)
1341 {
1342         /*
1343          * Expected transition latency is based on the PCCT timing values
1344          * Below are definition from ACPI spec:
1345          * pcc_nominal- Expected latency to process a command, in microseconds
1346          * pcc_mpar   - The maximum number of periodic requests that the subspace
1347          *              channel can support, reported in commands per minute. 0
1348          *              indicates no limitation.
1349          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1350          *              completion of a command before issuing the next command,
1351          *              in microseconds.
1352          */
1353         unsigned int latency_ns = 0;
1354         struct cpc_desc *cpc_desc;
1355         struct cpc_register_resource *desired_reg;
1356         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1357         struct cppc_pcc_data *pcc_ss_data;
1358
1359         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1360         if (!cpc_desc)
1361                 return CPUFREQ_ETERNAL;
1362
1363         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1364         if (!CPC_IN_PCC(desired_reg))
1365                 return CPUFREQ_ETERNAL;
1366
1367         if (pcc_ss_id < 0)
1368                 return CPUFREQ_ETERNAL;
1369
1370         pcc_ss_data = pcc_data[pcc_ss_id];
1371         if (pcc_ss_data->pcc_mpar)
1372                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1373
1374         latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1375         latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1376
1377         return latency_ns;
1378 }
1379 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);