GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / acpi / cppc_acpi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33
34 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
35
36 #include <linux/cpufreq.h>
37 #include <linux/delay.h>
38 #include <linux/iopoll.h>
39 #include <linux/ktime.h>
40 #include <linux/rwsem.h>
41 #include <linux/wait.h>
42
43 #include <acpi/cppc_acpi.h>
44
45 struct cppc_pcc_data {
46         struct mbox_chan *pcc_channel;
47         void __iomem *pcc_comm_addr;
48         bool pcc_channel_acquired;
49         unsigned int deadline_us;
50         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51
52         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
53         bool platform_owns_pcc;         /* Ownership of PCC subspace */
54         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
55
56         /*
57          * Lock to provide controlled access to the PCC channel.
58          *
59          * For performance critical usecases(currently cppc_set_perf)
60          *      We need to take read_lock and check if channel belongs to OSPM
61          * before reading or writing to PCC subspace
62          *      We need to take write_lock before transferring the channel
63          * ownership to the platform via a Doorbell
64          *      This allows us to batch a number of CPPC requests if they happen
65          * to originate in about the same time
66          *
67          * For non-performance critical usecases(init)
68          *      Take write_lock for all purposes which gives exclusive access
69          */
70         struct rw_semaphore pcc_lock;
71
72         /* Wait queue for CPUs whose requests were batched */
73         wait_queue_head_t pcc_write_wait_q;
74         ktime_t last_cmd_cmpl_time;
75         ktime_t last_mpar_reset;
76         int mpar_count;
77         int refcount;
78 };
79
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84
85 /*
86  * The cpc_desc structure contains the ACPI register details
87  * as described in the per CPU _CPC tables. The details
88  * include the type of register (e.g. PCC, System IO, FFH etc.)
89  * and destination addresses which lets us READ/WRITE CPU performance
90  * information using the appropriate I/O methods.
91  */
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96                                                 0x8 + (offs))
97
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
100                                 (cpc)->cpc_entry.reg.space_id ==        \
101                                 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Evalutes to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105                                 (reg)->address == 0 &&                  \
106                                 (reg)->bit_width == 0 &&                \
107                                 (reg)->bit_offset == 0 &&               \
108                                 (reg)->access_width == 0)
109
110 /* Evalutes to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
112                                 !!(cpc)->cpc_entry.int_value :          \
113                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 /*
115  * Arbitrary Retries in case the remote processor is slow to respond
116  * to PCC commands. Keeping it high enough to cover emulators where
117  * the processors run painfully slow.
118  */
119 #define NUM_RETRIES 500ULL
120
121 #define define_one_cppc_ro(_name)               \
122 static struct kobj_attribute _name =            \
123 __ATTR(_name, 0444, show_##_name, NULL)
124
125 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
126
127 #define show_cppc_data(access_fn, struct_name, member_name)             \
128         static ssize_t show_##member_name(struct kobject *kobj,         \
129                                 struct kobj_attribute *attr, char *buf) \
130         {                                                               \
131                 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);           \
132                 struct struct_name st_name = {0};                       \
133                 int ret;                                                \
134                                                                         \
135                 ret = access_fn(cpc_ptr->cpu_id, &st_name);             \
136                 if (ret)                                                \
137                         return ret;                                     \
138                                                                         \
139                 return scnprintf(buf, PAGE_SIZE, "%llu\n",              \
140                                 (u64)st_name.member_name);              \
141         }                                                               \
142         define_one_cppc_ro(member_name)
143
144 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
145 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
146 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
147 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
148 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
149 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
150
151 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
152 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
153
154 static ssize_t show_feedback_ctrs(struct kobject *kobj,
155                 struct kobj_attribute *attr, char *buf)
156 {
157         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
158         struct cppc_perf_fb_ctrs fb_ctrs = {0};
159         int ret;
160
161         ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
162         if (ret)
163                 return ret;
164
165         return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
166                         fb_ctrs.reference, fb_ctrs.delivered);
167 }
168 define_one_cppc_ro(feedback_ctrs);
169
170 static struct attribute *cppc_attrs[] = {
171         &feedback_ctrs.attr,
172         &reference_perf.attr,
173         &wraparound_time.attr,
174         &highest_perf.attr,
175         &lowest_perf.attr,
176         &lowest_nonlinear_perf.attr,
177         &nominal_perf.attr,
178         &nominal_freq.attr,
179         &lowest_freq.attr,
180         NULL
181 };
182
183 static struct kobj_type cppc_ktype = {
184         .sysfs_ops = &kobj_sysfs_ops,
185         .default_attrs = cppc_attrs,
186 };
187
188 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
189 {
190         int ret, status;
191         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
192         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
193                 pcc_ss_data->pcc_comm_addr;
194
195         if (!pcc_ss_data->platform_owns_pcc)
196                 return 0;
197
198         /*
199          * Poll PCC status register every 3us(delay_us) for maximum of
200          * deadline_us(timeout_us) until PCC command complete bit is set(cond)
201          */
202         ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
203                                         status & PCC_CMD_COMPLETE_MASK, 3,
204                                         pcc_ss_data->deadline_us);
205
206         if (likely(!ret)) {
207                 pcc_ss_data->platform_owns_pcc = false;
208                 if (chk_err_bit && (status & PCC_ERROR_MASK))
209                         ret = -EIO;
210         }
211
212         if (unlikely(ret))
213                 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
214                        pcc_ss_id, ret);
215
216         return ret;
217 }
218
219 /*
220  * This function transfers the ownership of the PCC to the platform
221  * So it must be called while holding write_lock(pcc_lock)
222  */
223 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
224 {
225         int ret = -EIO, i;
226         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
227         struct acpi_pcct_shared_memory *generic_comm_base =
228                 (struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
229         unsigned int time_delta;
230
231         /*
232          * For CMD_WRITE we know for a fact the caller should have checked
233          * the channel before writing to PCC space
234          */
235         if (cmd == CMD_READ) {
236                 /*
237                  * If there are pending cpc_writes, then we stole the channel
238                  * before write completion, so first send a WRITE command to
239                  * platform
240                  */
241                 if (pcc_ss_data->pending_pcc_write_cmd)
242                         send_pcc_cmd(pcc_ss_id, CMD_WRITE);
243
244                 ret = check_pcc_chan(pcc_ss_id, false);
245                 if (ret)
246                         goto end;
247         } else /* CMD_WRITE */
248                 pcc_ss_data->pending_pcc_write_cmd = FALSE;
249
250         /*
251          * Handle the Minimum Request Turnaround Time(MRTT)
252          * "The minimum amount of time that OSPM must wait after the completion
253          * of a command before issuing the next command, in microseconds"
254          */
255         if (pcc_ss_data->pcc_mrtt) {
256                 time_delta = ktime_us_delta(ktime_get(),
257                                             pcc_ss_data->last_cmd_cmpl_time);
258                 if (pcc_ss_data->pcc_mrtt > time_delta)
259                         udelay(pcc_ss_data->pcc_mrtt - time_delta);
260         }
261
262         /*
263          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
264          * "The maximum number of periodic requests that the subspace channel can
265          * support, reported in commands per minute. 0 indicates no limitation."
266          *
267          * This parameter should be ideally zero or large enough so that it can
268          * handle maximum number of requests that all the cores in the system can
269          * collectively generate. If it is not, we will follow the spec and just
270          * not send the request to the platform after hitting the MPAR limit in
271          * any 60s window
272          */
273         if (pcc_ss_data->pcc_mpar) {
274                 if (pcc_ss_data->mpar_count == 0) {
275                         time_delta = ktime_ms_delta(ktime_get(),
276                                                     pcc_ss_data->last_mpar_reset);
277                         if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
278                                 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
279                                          pcc_ss_id);
280                                 ret = -EIO;
281                                 goto end;
282                         }
283                         pcc_ss_data->last_mpar_reset = ktime_get();
284                         pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
285                 }
286                 pcc_ss_data->mpar_count--;
287         }
288
289         /* Write to the shared comm region. */
290         writew_relaxed(cmd, &generic_comm_base->command);
291
292         /* Flip CMD COMPLETE bit */
293         writew_relaxed(0, &generic_comm_base->status);
294
295         pcc_ss_data->platform_owns_pcc = true;
296
297         /* Ring doorbell */
298         ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
299         if (ret < 0) {
300                 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
301                        pcc_ss_id, cmd, ret);
302                 goto end;
303         }
304
305         /* wait for completion and check for PCC errro bit */
306         ret = check_pcc_chan(pcc_ss_id, true);
307
308         if (pcc_ss_data->pcc_mrtt)
309                 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
310
311         if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
312                 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
313         else
314                 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
315
316 end:
317         if (cmd == CMD_WRITE) {
318                 if (unlikely(ret)) {
319                         for_each_possible_cpu(i) {
320                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
321                                 if (!desc)
322                                         continue;
323
324                                 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
325                                         desc->write_cmd_status = ret;
326                         }
327                 }
328                 pcc_ss_data->pcc_write_cnt++;
329                 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
330         }
331
332         return ret;
333 }
334
335 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
336 {
337         if (ret < 0)
338                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
339                                 *(u16 *)msg, ret);
340         else
341                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
342                                 *(u16 *)msg, ret);
343 }
344
345 static struct mbox_client cppc_mbox_cl = {
346         .tx_done = cppc_chan_tx_done,
347         .knows_txdone = true,
348 };
349
350 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
351 {
352         int result = -EFAULT;
353         acpi_status status = AE_OK;
354         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
355         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
356         struct acpi_buffer state = {0, NULL};
357         union acpi_object  *psd = NULL;
358         struct acpi_psd_package *pdomain;
359
360         status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
361                                             &buffer, ACPI_TYPE_PACKAGE);
362         if (status == AE_NOT_FOUND)     /* _PSD is optional */
363                 return 0;
364         if (ACPI_FAILURE(status))
365                 return -ENODEV;
366
367         psd = buffer.pointer;
368         if (!psd || psd->package.count != 1) {
369                 pr_debug("Invalid _PSD data\n");
370                 goto end;
371         }
372
373         pdomain = &(cpc_ptr->domain_info);
374
375         state.length = sizeof(struct acpi_psd_package);
376         state.pointer = pdomain;
377
378         status = acpi_extract_package(&(psd->package.elements[0]),
379                 &format, &state);
380         if (ACPI_FAILURE(status)) {
381                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
382                 goto end;
383         }
384
385         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
386                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
387                 goto end;
388         }
389
390         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
391                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
392                 goto end;
393         }
394
395         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
396             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
397             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
398                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
399                 goto end;
400         }
401
402         result = 0;
403 end:
404         kfree(buffer.pointer);
405         return result;
406 }
407
408 /**
409  * acpi_get_psd_map - Map the CPUs in a common freq domain.
410  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
411  *
412  *      Return: 0 for success or negative value for err.
413  */
414 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
415 {
416         int count_target;
417         int retval = 0;
418         unsigned int i, j;
419         cpumask_var_t covered_cpus;
420         struct cppc_cpudata *pr, *match_pr;
421         struct acpi_psd_package *pdomain;
422         struct acpi_psd_package *match_pdomain;
423         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
424
425         if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
426                 return -ENOMEM;
427
428         /*
429          * Now that we have _PSD data from all CPUs, let's setup P-state
430          * domain info.
431          */
432         for_each_possible_cpu(i) {
433                 if (cpumask_test_cpu(i, covered_cpus))
434                         continue;
435
436                 pr = all_cpu_data[i];
437                 cpc_ptr = per_cpu(cpc_desc_ptr, i);
438                 if (!cpc_ptr) {
439                         retval = -EFAULT;
440                         goto err_ret;
441                 }
442
443                 pdomain = &(cpc_ptr->domain_info);
444                 cpumask_set_cpu(i, pr->shared_cpu_map);
445                 cpumask_set_cpu(i, covered_cpus);
446                 if (pdomain->num_processors <= 1)
447                         continue;
448
449                 /* Validate the Domain info */
450                 count_target = pdomain->num_processors;
451                 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
452                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
453                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
454                         pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
455                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
456                         pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
457
458                 for_each_possible_cpu(j) {
459                         if (i == j)
460                                 continue;
461
462                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
463                         if (!match_cpc_ptr) {
464                                 retval = -EFAULT;
465                                 goto err_ret;
466                         }
467
468                         match_pdomain = &(match_cpc_ptr->domain_info);
469                         if (match_pdomain->domain != pdomain->domain)
470                                 continue;
471
472                         /* Here i and j are in the same domain */
473                         if (match_pdomain->num_processors != count_target) {
474                                 retval = -EFAULT;
475                                 goto err_ret;
476                         }
477
478                         if (pdomain->coord_type != match_pdomain->coord_type) {
479                                 retval = -EFAULT;
480                                 goto err_ret;
481                         }
482
483                         cpumask_set_cpu(j, covered_cpus);
484                         cpumask_set_cpu(j, pr->shared_cpu_map);
485                 }
486
487                 for_each_cpu(j, pr->shared_cpu_map) {
488                         if (i == j)
489                                 continue;
490
491                         match_pr = all_cpu_data[j];
492                         match_pr->shared_type = pr->shared_type;
493                         cpumask_copy(match_pr->shared_cpu_map,
494                                      pr->shared_cpu_map);
495                 }
496         }
497         goto out;
498
499 err_ret:
500         for_each_possible_cpu(i) {
501                 pr = all_cpu_data[i];
502
503                 /* Assume no coordination on any error parsing domain info */
504                 cpumask_clear(pr->shared_cpu_map);
505                 cpumask_set_cpu(i, pr->shared_cpu_map);
506                 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
507         }
508 out:
509         free_cpumask_var(covered_cpus);
510         return retval;
511 }
512 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
513
514 static int register_pcc_channel(int pcc_ss_idx)
515 {
516         struct acpi_pcct_hw_reduced *cppc_ss;
517         u64 usecs_lat;
518
519         if (pcc_ss_idx >= 0) {
520                 pcc_data[pcc_ss_idx]->pcc_channel =
521                         pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
522
523                 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
524                         pr_err("Failed to find PCC channel for subspace %d\n",
525                                pcc_ss_idx);
526                         return -ENODEV;
527                 }
528
529                 /*
530                  * The PCC mailbox controller driver should
531                  * have parsed the PCCT (global table of all
532                  * PCC channels) and stored pointers to the
533                  * subspace communication region in con_priv.
534                  */
535                 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
536
537                 if (!cppc_ss) {
538                         pr_err("No PCC subspace found for %d CPPC\n",
539                                pcc_ss_idx);
540                         return -ENODEV;
541                 }
542
543                 /*
544                  * cppc_ss->latency is just a Nominal value. In reality
545                  * the remote processor could be much slower to reply.
546                  * So add an arbitrary amount of wait on top of Nominal.
547                  */
548                 usecs_lat = NUM_RETRIES * cppc_ss->latency;
549                 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
550                 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
551                 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
552                 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
553
554                 pcc_data[pcc_ss_idx]->pcc_comm_addr =
555                         acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
556                 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
557                         pr_err("Failed to ioremap PCC comm region mem for %d\n",
558                                pcc_ss_idx);
559                         return -ENOMEM;
560                 }
561
562                 /* Set flag so that we don't come here for each CPU. */
563                 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
564         }
565
566         return 0;
567 }
568
569 /**
570  * cpc_ffh_supported() - check if FFH reading supported
571  *
572  * Check if the architecture has support for functional fixed hardware
573  * read/write capability.
574  *
575  * Return: true for supported, false for not supported
576  */
577 bool __weak cpc_ffh_supported(void)
578 {
579         return false;
580 }
581
582 /**
583  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
584  *
585  * Check and allocate the cppc_pcc_data memory.
586  * In some processor configurations it is possible that same subspace
587  * is shared between multiple CPUs. This is seen especially in CPUs
588  * with hardware multi-threading support.
589  *
590  * Return: 0 for success, errno for failure
591  */
592 static int pcc_data_alloc(int pcc_ss_id)
593 {
594         if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
595                 return -EINVAL;
596
597         if (pcc_data[pcc_ss_id]) {
598                 pcc_data[pcc_ss_id]->refcount++;
599         } else {
600                 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
601                                               GFP_KERNEL);
602                 if (!pcc_data[pcc_ss_id])
603                         return -ENOMEM;
604                 pcc_data[pcc_ss_id]->refcount++;
605         }
606
607         return 0;
608 }
609
610 /*
611  * An example CPC table looks like the following.
612  *
613  *      Name(_CPC, Package()
614  *                      {
615  *                      17,
616  *                      NumEntries
617  *                      1,
618  *                      // Revision
619  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
620  *                      // Highest Performance
621  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
622  *                      // Nominal Performance
623  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
624  *                      // Lowest Nonlinear Performance
625  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
626  *                      // Lowest Performance
627  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
628  *                      // Guaranteed Performance Register
629  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
630  *                      // Desired Performance Register
631  *                      ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
632  *                      ..
633  *                      ..
634  *                      ..
635  *
636  *              }
637  * Each Register() encodes how to access that specific register.
638  * e.g. a sample PCC entry has the following encoding:
639  *
640  *      Register (
641  *              PCC,
642  *              AddressSpaceKeyword
643  *              8,
644  *              //RegisterBitWidth
645  *              8,
646  *              //RegisterBitOffset
647  *              0x30,
648  *              //RegisterAddress
649  *              9
650  *              //AccessSize (subspace ID)
651  *              0
652  *              )
653  *      }
654  */
655
656 /**
657  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
658  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
659  *
660  *      Return: 0 for success or negative value for err.
661  */
662 int acpi_cppc_processor_probe(struct acpi_processor *pr)
663 {
664         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
665         union acpi_object *out_obj, *cpc_obj;
666         struct cpc_desc *cpc_ptr;
667         struct cpc_reg *gas_t;
668         struct device *cpu_dev;
669         acpi_handle handle = pr->handle;
670         unsigned int num_ent, i, cpc_rev;
671         int pcc_subspace_id = -1;
672         acpi_status status;
673         int ret = -EFAULT;
674
675         /* Parse the ACPI _CPC table for this CPU. */
676         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
677                         ACPI_TYPE_PACKAGE);
678         if (ACPI_FAILURE(status)) {
679                 ret = -ENODEV;
680                 goto out_buf_free;
681         }
682
683         out_obj = (union acpi_object *) output.pointer;
684
685         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
686         if (!cpc_ptr) {
687                 ret = -ENOMEM;
688                 goto out_buf_free;
689         }
690
691         /* First entry is NumEntries. */
692         cpc_obj = &out_obj->package.elements[0];
693         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
694                 num_ent = cpc_obj->integer.value;
695                 if (num_ent <= 1) {
696                         pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
697                                  num_ent, pr->id);
698                         goto out_free;
699                 }
700         } else {
701                 pr_debug("Unexpected entry type(%d) for NumEntries\n",
702                                 cpc_obj->type);
703                 goto out_free;
704         }
705
706         /* Second entry should be revision. */
707         cpc_obj = &out_obj->package.elements[1];
708         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
709                 cpc_rev = cpc_obj->integer.value;
710         } else {
711                 pr_debug("Unexpected entry type(%d) for Revision\n",
712                                 cpc_obj->type);
713                 goto out_free;
714         }
715
716         if (cpc_rev < CPPC_V2_REV) {
717                 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
718                          pr->id);
719                 goto out_free;
720         }
721
722         /*
723          * Disregard _CPC if the number of entries in the return pachage is not
724          * as expected, but support future revisions being proper supersets of
725          * the v3 and only causing more entries to be returned by _CPC.
726          */
727         if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
728             (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
729             (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
730                 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
731                          num_ent, pr->id);
732                 goto out_free;
733         }
734         if (cpc_rev > CPPC_V3_REV) {
735                 num_ent = CPPC_V3_NUM_ENT;
736                 cpc_rev = CPPC_V3_REV;
737         }
738
739         cpc_ptr->num_entries = num_ent;
740         cpc_ptr->version = cpc_rev;
741
742         /* Iterate through remaining entries in _CPC */
743         for (i = 2; i < num_ent; i++) {
744                 cpc_obj = &out_obj->package.elements[i];
745
746                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
747                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
748                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
749                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
750                         gas_t = (struct cpc_reg *)
751                                 cpc_obj->buffer.pointer;
752
753                         /*
754                          * The PCC Subspace index is encoded inside
755                          * the CPC table entries. The same PCC index
756                          * will be used for all the PCC entries,
757                          * so extract it only once.
758                          */
759                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
760                                 if (pcc_subspace_id < 0) {
761                                         pcc_subspace_id = gas_t->access_width;
762                                         if (pcc_data_alloc(pcc_subspace_id))
763                                                 goto out_free;
764                                 } else if (pcc_subspace_id != gas_t->access_width) {
765                                         pr_debug("Mismatched PCC ids.\n");
766                                         goto out_free;
767                                 }
768                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
769                                 if (gas_t->address) {
770                                         void __iomem *addr;
771
772                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
773                                         if (!addr)
774                                                 goto out_free;
775                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
776                                 }
777                         } else {
778                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
779                                         /* Support only PCC ,SYS MEM and FFH type regs */
780                                         pr_debug("Unsupported register type: %d\n", gas_t->space_id);
781                                         goto out_free;
782                                 }
783                         }
784
785                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
786                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
787                 } else {
788                         pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
789                         goto out_free;
790                 }
791         }
792         per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
793
794         /*
795          * Initialize the remaining cpc_regs as unsupported.
796          * Example: In case FW exposes CPPC v2, the below loop will initialize
797          * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
798          */
799         for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
800                 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
801                 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
802         }
803
804
805         /* Store CPU Logical ID */
806         cpc_ptr->cpu_id = pr->id;
807
808         /* Parse PSD data for this CPU */
809         ret = acpi_get_psd(cpc_ptr, handle);
810         if (ret)
811                 goto out_free;
812
813         /* Register PCC channel once for all PCC subspace ID. */
814         if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
815                 ret = register_pcc_channel(pcc_subspace_id);
816                 if (ret)
817                         goto out_free;
818
819                 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
820                 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
821         }
822
823         /* Everything looks okay */
824         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
825
826         /* Add per logical CPU nodes for reading its feedback counters. */
827         cpu_dev = get_cpu_device(pr->id);
828         if (!cpu_dev) {
829                 ret = -EINVAL;
830                 goto out_free;
831         }
832
833         /* Plug PSD data into this CPU's CPC descriptor. */
834         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
835
836         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
837                         "acpi_cppc");
838         if (ret) {
839                 per_cpu(cpc_desc_ptr, pr->id) = NULL;
840                 kobject_put(&cpc_ptr->kobj);
841                 goto out_free;
842         }
843
844         kfree(output.pointer);
845         return 0;
846
847 out_free:
848         /* Free all the mapped sys mem areas for this CPU */
849         for (i = 2; i < cpc_ptr->num_entries; i++) {
850                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
851
852                 if (addr)
853                         iounmap(addr);
854         }
855         kfree(cpc_ptr);
856
857 out_buf_free:
858         kfree(output.pointer);
859         return ret;
860 }
861 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
862
863 /**
864  * acpi_cppc_processor_exit - Cleanup CPC structs.
865  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
866  *
867  * Return: Void
868  */
869 void acpi_cppc_processor_exit(struct acpi_processor *pr)
870 {
871         struct cpc_desc *cpc_ptr;
872         unsigned int i;
873         void __iomem *addr;
874         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
875
876         if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
877                 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
878                         pcc_data[pcc_ss_id]->refcount--;
879                         if (!pcc_data[pcc_ss_id]->refcount) {
880                                 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
881                                 kfree(pcc_data[pcc_ss_id]);
882                                 pcc_data[pcc_ss_id] = NULL;
883                         }
884                 }
885         }
886
887         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
888         if (!cpc_ptr)
889                 return;
890
891         /* Free all the mapped sys mem areas for this CPU */
892         for (i = 2; i < cpc_ptr->num_entries; i++) {
893                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
894                 if (addr)
895                         iounmap(addr);
896         }
897
898         kobject_put(&cpc_ptr->kobj);
899         kfree(cpc_ptr);
900 }
901 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
902
903 /**
904  * cpc_read_ffh() - Read FFH register
905  * @cpunum:     CPU number to read
906  * @reg:        cppc register information
907  * @val:        place holder for return value
908  *
909  * Read bit_width bits from a specified address and bit_offset
910  *
911  * Return: 0 for success and error code
912  */
913 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
914 {
915         return -ENOTSUPP;
916 }
917
918 /**
919  * cpc_write_ffh() - Write FFH register
920  * @cpunum:     CPU number to write
921  * @reg:        cppc register information
922  * @val:        value to write
923  *
924  * Write value of bit_width bits to a specified address and bit_offset
925  *
926  * Return: 0 for success and error code
927  */
928 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
929 {
930         return -ENOTSUPP;
931 }
932
933 /*
934  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
935  * as fast as possible. We have already mapped the PCC subspace during init, so
936  * we can directly write to it.
937  */
938
939 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
940 {
941         int ret_val = 0;
942         void __iomem *vaddr = 0;
943         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
944         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
945
946         if (reg_res->type == ACPI_TYPE_INTEGER) {
947                 *val = reg_res->cpc_entry.int_value;
948                 return ret_val;
949         }
950
951         *val = 0;
952         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
953                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
954         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
955                 vaddr = reg_res->sys_mem_vaddr;
956         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
957                 return cpc_read_ffh(cpu, reg, val);
958         else
959                 return acpi_os_read_memory((acpi_physical_address)reg->address,
960                                 val, reg->bit_width);
961
962         switch (reg->bit_width) {
963                 case 8:
964                         *val = readb_relaxed(vaddr);
965                         break;
966                 case 16:
967                         *val = readw_relaxed(vaddr);
968                         break;
969                 case 32:
970                         *val = readl_relaxed(vaddr);
971                         break;
972                 case 64:
973                         *val = readq_relaxed(vaddr);
974                         break;
975                 default:
976                         pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
977                                  reg->bit_width, pcc_ss_id);
978                         ret_val = -EFAULT;
979         }
980
981         return ret_val;
982 }
983
984 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
985 {
986         int ret_val = 0;
987         void __iomem *vaddr = 0;
988         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
989         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
990
991         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
992                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
993         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
994                 vaddr = reg_res->sys_mem_vaddr;
995         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
996                 return cpc_write_ffh(cpu, reg, val);
997         else
998                 return acpi_os_write_memory((acpi_physical_address)reg->address,
999                                 val, reg->bit_width);
1000
1001         switch (reg->bit_width) {
1002                 case 8:
1003                         writeb_relaxed(val, vaddr);
1004                         break;
1005                 case 16:
1006                         writew_relaxed(val, vaddr);
1007                         break;
1008                 case 32:
1009                         writel_relaxed(val, vaddr);
1010                         break;
1011                 case 64:
1012                         writeq_relaxed(val, vaddr);
1013                         break;
1014                 default:
1015                         pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1016                                  reg->bit_width, pcc_ss_id);
1017                         ret_val = -EFAULT;
1018                         break;
1019         }
1020
1021         return ret_val;
1022 }
1023
1024 /**
1025  * cppc_get_desired_perf - Get the value of desired performance register.
1026  * @cpunum: CPU from which to get desired performance.
1027  * @desired_perf: address of a variable to store the returned desired performance
1028  *
1029  * Return: 0 for success, -EIO otherwise.
1030  */
1031 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1032 {
1033         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1034         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1035         struct cpc_register_resource *desired_reg;
1036         struct cppc_pcc_data *pcc_ss_data = NULL;
1037
1038         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1039
1040         if (CPC_IN_PCC(desired_reg)) {
1041                 int ret = 0;
1042
1043                 if (pcc_ss_id < 0)
1044                         return -EIO;
1045
1046                 pcc_ss_data = pcc_data[pcc_ss_id];
1047
1048                 down_write(&pcc_ss_data->pcc_lock);
1049
1050                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1051                         cpc_read(cpunum, desired_reg, desired_perf);
1052                 else
1053                         ret = -EIO;
1054
1055                 up_write(&pcc_ss_data->pcc_lock);
1056
1057                 return ret;
1058         }
1059
1060         cpc_read(cpunum, desired_reg, desired_perf);
1061
1062         return 0;
1063 }
1064 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1065
1066 /**
1067  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1068  * @cpunum: CPU from which to get capabilities info.
1069  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1070  *
1071  * Return: 0 for success with perf_caps populated else -ERRNO.
1072  */
1073 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1074 {
1075         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1076         struct cpc_register_resource *highest_reg, *lowest_reg,
1077                 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1078                 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1079         u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1080         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1081         struct cppc_pcc_data *pcc_ss_data = NULL;
1082         int ret = 0, regs_in_pcc = 0;
1083
1084         if (!cpc_desc) {
1085                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1086                 return -ENODEV;
1087         }
1088
1089         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1090         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1091         lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1092         nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1093         low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1094         nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1095         guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1096
1097         /* Are any of the regs PCC ?*/
1098         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1099                 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1100                 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1101                 if (pcc_ss_id < 0) {
1102                         pr_debug("Invalid pcc_ss_id\n");
1103                         return -ENODEV;
1104                 }
1105                 pcc_ss_data = pcc_data[pcc_ss_id];
1106                 regs_in_pcc = 1;
1107                 down_write(&pcc_ss_data->pcc_lock);
1108                 /* Ring doorbell once to update PCC subspace */
1109                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1110                         ret = -EIO;
1111                         goto out_err;
1112                 }
1113         }
1114
1115         cpc_read(cpunum, highest_reg, &high);
1116         perf_caps->highest_perf = high;
1117
1118         cpc_read(cpunum, lowest_reg, &low);
1119         perf_caps->lowest_perf = low;
1120
1121         cpc_read(cpunum, nominal_reg, &nom);
1122         perf_caps->nominal_perf = nom;
1123
1124         if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1125             IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1126                 perf_caps->guaranteed_perf = 0;
1127         } else {
1128                 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1129                 perf_caps->guaranteed_perf = guaranteed;
1130         }
1131
1132         cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1133         perf_caps->lowest_nonlinear_perf = min_nonlinear;
1134
1135         if (!high || !low || !nom || !min_nonlinear)
1136                 ret = -EFAULT;
1137
1138         /* Read optional lowest and nominal frequencies if present */
1139         if (CPC_SUPPORTED(low_freq_reg))
1140                 cpc_read(cpunum, low_freq_reg, &low_f);
1141
1142         if (CPC_SUPPORTED(nom_freq_reg))
1143                 cpc_read(cpunum, nom_freq_reg, &nom_f);
1144
1145         perf_caps->lowest_freq = low_f;
1146         perf_caps->nominal_freq = nom_f;
1147
1148
1149 out_err:
1150         if (regs_in_pcc)
1151                 up_write(&pcc_ss_data->pcc_lock);
1152         return ret;
1153 }
1154 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1155
1156 /**
1157  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1158  * @cpunum: CPU from which to read counters.
1159  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1160  *
1161  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1162  */
1163 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1164 {
1165         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1166         struct cpc_register_resource *delivered_reg, *reference_reg,
1167                 *ref_perf_reg, *ctr_wrap_reg;
1168         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1169         struct cppc_pcc_data *pcc_ss_data = NULL;
1170         u64 delivered, reference, ref_perf, ctr_wrap_time;
1171         int ret = 0, regs_in_pcc = 0;
1172
1173         if (!cpc_desc) {
1174                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1175                 return -ENODEV;
1176         }
1177
1178         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1179         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1180         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1181         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1182
1183         /*
1184          * If reference perf register is not supported then we should
1185          * use the nominal perf value
1186          */
1187         if (!CPC_SUPPORTED(ref_perf_reg))
1188                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1189
1190         /* Are any of the regs PCC ?*/
1191         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1192                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1193                 if (pcc_ss_id < 0) {
1194                         pr_debug("Invalid pcc_ss_id\n");
1195                         return -ENODEV;
1196                 }
1197                 pcc_ss_data = pcc_data[pcc_ss_id];
1198                 down_write(&pcc_ss_data->pcc_lock);
1199                 regs_in_pcc = 1;
1200                 /* Ring doorbell once to update PCC subspace */
1201                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1202                         ret = -EIO;
1203                         goto out_err;
1204                 }
1205         }
1206
1207         cpc_read(cpunum, delivered_reg, &delivered);
1208         cpc_read(cpunum, reference_reg, &reference);
1209         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1210
1211         /*
1212          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1213          * performance counters are assumed to never wrap during the lifetime of
1214          * platform
1215          */
1216         ctr_wrap_time = (u64)(~((u64)0));
1217         if (CPC_SUPPORTED(ctr_wrap_reg))
1218                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1219
1220         if (!delivered || !reference || !ref_perf) {
1221                 ret = -EFAULT;
1222                 goto out_err;
1223         }
1224
1225         perf_fb_ctrs->delivered = delivered;
1226         perf_fb_ctrs->reference = reference;
1227         perf_fb_ctrs->reference_perf = ref_perf;
1228         perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1229 out_err:
1230         if (regs_in_pcc)
1231                 up_write(&pcc_ss_data->pcc_lock);
1232         return ret;
1233 }
1234 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1235
1236 /**
1237  * cppc_set_perf - Set a CPU's performance controls.
1238  * @cpu: CPU for which to set performance controls.
1239  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1240  *
1241  * Return: 0 for success, -ERRNO otherwise.
1242  */
1243 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1244 {
1245         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1246         struct cpc_register_resource *desired_reg;
1247         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1248         struct cppc_pcc_data *pcc_ss_data = NULL;
1249         int ret = 0;
1250
1251         if (!cpc_desc) {
1252                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1253                 return -ENODEV;
1254         }
1255
1256         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1257
1258         /*
1259          * This is Phase-I where we want to write to CPC registers
1260          * -> We want all CPUs to be able to execute this phase in parallel
1261          *
1262          * Since read_lock can be acquired by multiple CPUs simultaneously we
1263          * achieve that goal here
1264          */
1265         if (CPC_IN_PCC(desired_reg)) {
1266                 if (pcc_ss_id < 0) {
1267                         pr_debug("Invalid pcc_ss_id\n");
1268                         return -ENODEV;
1269                 }
1270                 pcc_ss_data = pcc_data[pcc_ss_id];
1271                 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1272                 if (pcc_ss_data->platform_owns_pcc) {
1273                         ret = check_pcc_chan(pcc_ss_id, false);
1274                         if (ret) {
1275                                 up_read(&pcc_ss_data->pcc_lock);
1276                                 return ret;
1277                         }
1278                 }
1279                 /*
1280                  * Update the pending_write to make sure a PCC CMD_READ will not
1281                  * arrive and steal the channel during the switch to write lock
1282                  */
1283                 pcc_ss_data->pending_pcc_write_cmd = true;
1284                 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1285                 cpc_desc->write_cmd_status = 0;
1286         }
1287
1288         /*
1289          * Skip writing MIN/MAX until Linux knows how to come up with
1290          * useful values.
1291          */
1292         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1293
1294         if (CPC_IN_PCC(desired_reg))
1295                 up_read(&pcc_ss_data->pcc_lock);        /* END Phase-I */
1296         /*
1297          * This is Phase-II where we transfer the ownership of PCC to Platform
1298          *
1299          * Short Summary: Basically if we think of a group of cppc_set_perf
1300          * requests that happened in short overlapping interval. The last CPU to
1301          * come out of Phase-I will enter Phase-II and ring the doorbell.
1302          *
1303          * We have the following requirements for Phase-II:
1304          *     1. We want to execute Phase-II only when there are no CPUs
1305          * currently executing in Phase-I
1306          *     2. Once we start Phase-II we want to avoid all other CPUs from
1307          * entering Phase-I.
1308          *     3. We want only one CPU among all those who went through Phase-I
1309          * to run phase-II
1310          *
1311          * If write_trylock fails to get the lock and doesn't transfer the
1312          * PCC ownership to the platform, then one of the following will be TRUE
1313          *     1. There is at-least one CPU in Phase-I which will later execute
1314          * write_trylock, so the CPUs in Phase-I will be responsible for
1315          * executing the Phase-II.
1316          *     2. Some other CPU has beaten this CPU to successfully execute the
1317          * write_trylock and has already acquired the write_lock. We know for a
1318          * fact it (other CPU acquiring the write_lock) couldn't have happened
1319          * before this CPU's Phase-I as we held the read_lock.
1320          *     3. Some other CPU executing pcc CMD_READ has stolen the
1321          * down_write, in which case, send_pcc_cmd will check for pending
1322          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1323          * So this CPU can be certain that its request will be delivered
1324          *    So in all cases, this CPU knows that its request will be delivered
1325          * by another CPU and can return
1326          *
1327          * After getting the down_write we still need to check for
1328          * pending_pcc_write_cmd to take care of the following scenario
1329          *    The thread running this code could be scheduled out between
1330          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1331          * could have delivered the request to Platform by triggering the
1332          * doorbell and transferred the ownership of PCC to platform. So this
1333          * avoids triggering an unnecessary doorbell and more importantly before
1334          * triggering the doorbell it makes sure that the PCC channel ownership
1335          * is still with OSPM.
1336          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1337          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1338          * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1339          * case during a CMD_READ and if there are pending writes it delivers
1340          * the write command before servicing the read command
1341          */
1342         if (CPC_IN_PCC(desired_reg)) {
1343                 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1344                         /* Update only if there are pending write commands */
1345                         if (pcc_ss_data->pending_pcc_write_cmd)
1346                                 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1347                         up_write(&pcc_ss_data->pcc_lock);       /* END Phase-II */
1348                 } else
1349                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1350                         wait_event(pcc_ss_data->pcc_write_wait_q,
1351                                    cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1352
1353                 /* send_pcc_cmd updates the status in case of failure */
1354                 ret = cpc_desc->write_cmd_status;
1355         }
1356         return ret;
1357 }
1358 EXPORT_SYMBOL_GPL(cppc_set_perf);
1359
1360 /**
1361  * cppc_get_transition_latency - returns frequency transition latency in ns
1362  *
1363  * ACPI CPPC does not explicitly specifiy how a platform can specify the
1364  * transition latency for perfromance change requests. The closest we have
1365  * is the timing information from the PCCT tables which provides the info
1366  * on the number and frequency of PCC commands the platform can handle.
1367  */
1368 unsigned int cppc_get_transition_latency(int cpu_num)
1369 {
1370         /*
1371          * Expected transition latency is based on the PCCT timing values
1372          * Below are definition from ACPI spec:
1373          * pcc_nominal- Expected latency to process a command, in microseconds
1374          * pcc_mpar   - The maximum number of periodic requests that the subspace
1375          *              channel can support, reported in commands per minute. 0
1376          *              indicates no limitation.
1377          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1378          *              completion of a command before issuing the next command,
1379          *              in microseconds.
1380          */
1381         unsigned int latency_ns = 0;
1382         struct cpc_desc *cpc_desc;
1383         struct cpc_register_resource *desired_reg;
1384         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1385         struct cppc_pcc_data *pcc_ss_data;
1386
1387         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1388         if (!cpc_desc)
1389                 return CPUFREQ_ETERNAL;
1390
1391         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1392         if (!CPC_IN_PCC(desired_reg))
1393                 return CPUFREQ_ETERNAL;
1394
1395         if (pcc_ss_id < 0)
1396                 return CPUFREQ_ETERNAL;
1397
1398         pcc_ss_data = pcc_data[pcc_ss_id];
1399         if (pcc_ss_data->pcc_mpar)
1400                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1401
1402         latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1403         latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1404
1405         return latency_ns;
1406 }
1407 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);