GNU Linux-libre 4.9.333-gnu1
[releases.git] / drivers / acpi / cppc_acpi.c
1 /*
2  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3  *
4  * (C) Copyright 2014, 2015 Linaro Ltd.
5  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * CPPC describes a few methods for controlling CPU performance using
13  * information from a per CPU table called CPC. This table is described in
14  * the ACPI v5.0+ specification. The table consists of a list of
15  * registers which may be memory mapped or hardware registers and also may
16  * include some static integer values.
17  *
18  * CPU performance is on an abstract continuous scale as against a discretized
19  * P-state scale which is tied to CPU frequency only. In brief, the basic
20  * operation involves:
21  *
22  * - OS makes a CPU performance request. (Can provide min and max bounds)
23  *
24  * - Platform (such as BMC) is free to optimize request within requested bounds
25  *   depending on power/thermal budgets etc.
26  *
27  * - Platform conveys its decision back to OS
28  *
29  * The communication between OS and platform occurs through another medium
30  * called (PCC) Platform Communication Channel. This is a generic mailbox like
31  * mechanism which includes doorbell semantics to indicate register updates.
32  * See drivers/mailbox/pcc.c for details on PCC.
33  *
34  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35  * above specifications.
36  */
37
38 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
39
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/ktime.h>
43 #include <linux/rwsem.h>
44 #include <linux/wait.h>
45
46 #include <acpi/cppc_acpi.h>
47
48 struct cppc_pcc_data {
49         struct mbox_chan *pcc_channel;
50         void __iomem *pcc_comm_addr;
51         int pcc_subspace_idx;
52         bool pcc_channel_acquired;
53         ktime_t deadline;
54         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55
56         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
57         bool platform_owns_pcc;         /* Ownership of PCC subspace */
58         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
59
60         /*
61          * Lock to provide controlled access to the PCC channel.
62          *
63          * For performance critical usecases(currently cppc_set_perf)
64          *      We need to take read_lock and check if channel belongs to OSPM
65          * before reading or writing to PCC subspace
66          *      We need to take write_lock before transferring the channel
67          * ownership to the platform via a Doorbell
68          *      This allows us to batch a number of CPPC requests if they happen
69          * to originate in about the same time
70          *
71          * For non-performance critical usecases(init)
72          *      Take write_lock for all purposes which gives exclusive access
73          */
74         struct rw_semaphore pcc_lock;
75
76         /* Wait queue for CPUs whose requests were batched */
77         wait_queue_head_t pcc_write_wait_q;
78 };
79
80 /* Structure to represent the single PCC channel */
81 static struct cppc_pcc_data pcc_data = {
82         .pcc_subspace_idx = -1,
83         .platform_owns_pcc = true,
84 };
85
86 /*
87  * The cpc_desc structure contains the ACPI register details
88  * as described in the per CPU _CPC tables. The details
89  * include the type of register (e.g. PCC, System IO, FFH etc.)
90  * and destination addresses which lets us READ/WRITE CPU performance
91  * information using the appropriate I/O methods.
92  */
93 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
94
95 /* pcc mapped address + header size + offset within PCC subspace */
96 #define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
97
98 /* Check if a CPC regsiter is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
100                                 (cpc)->cpc_entry.reg.space_id ==        \
101                                 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Evalutes to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105                                 (reg)->address == 0 &&                  \
106                                 (reg)->bit_width == 0 &&                \
107                                 (reg)->bit_offset == 0 &&               \
108                                 (reg)->access_width == 0)
109
110 /* Evalutes to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
112                                 !!(cpc)->cpc_entry.int_value :          \
113                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 /*
115  * Arbitrary Retries in case the remote processor is slow to respond
116  * to PCC commands. Keeping it high enough to cover emulators where
117  * the processors run painfully slow.
118  */
119 #define NUM_RETRIES 500
120
121 struct cppc_attr {
122         struct attribute attr;
123         ssize_t (*show)(struct kobject *kobj,
124                         struct attribute *attr, char *buf);
125         ssize_t (*store)(struct kobject *kobj,
126                         struct attribute *attr, const char *c, ssize_t count);
127 };
128
129 #define define_one_cppc_ro(_name)               \
130 static struct cppc_attr _name =                 \
131 __ATTR(_name, 0444, show_##_name, NULL)
132
133 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
134
135 static ssize_t show_feedback_ctrs(struct kobject *kobj,
136                 struct attribute *attr, char *buf)
137 {
138         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
139         struct cppc_perf_fb_ctrs fb_ctrs = {0};
140
141         cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
142
143         return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
144                         fb_ctrs.reference, fb_ctrs.delivered);
145 }
146 define_one_cppc_ro(feedback_ctrs);
147
148 static ssize_t show_reference_perf(struct kobject *kobj,
149                 struct attribute *attr, char *buf)
150 {
151         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
152         struct cppc_perf_fb_ctrs fb_ctrs = {0};
153
154         cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
155
156         return scnprintf(buf, PAGE_SIZE, "%llu\n",
157                         fb_ctrs.reference_perf);
158 }
159 define_one_cppc_ro(reference_perf);
160
161 static ssize_t show_wraparound_time(struct kobject *kobj,
162                                 struct attribute *attr, char *buf)
163 {
164         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
165         struct cppc_perf_fb_ctrs fb_ctrs = {0};
166
167         cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
168
169         return scnprintf(buf, PAGE_SIZE, "%llu\n", fb_ctrs.ctr_wrap_time);
170
171 }
172 define_one_cppc_ro(wraparound_time);
173
174 static struct attribute *cppc_attrs[] = {
175         &feedback_ctrs.attr,
176         &reference_perf.attr,
177         &wraparound_time.attr,
178         NULL
179 };
180
181 static struct kobj_type cppc_ktype = {
182         .sysfs_ops = &kobj_sysfs_ops,
183         .default_attrs = cppc_attrs,
184 };
185
186 static int check_pcc_chan(bool chk_err_bit)
187 {
188         int ret = -EIO, status = 0;
189         struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
190         ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
191
192         if (!pcc_data.platform_owns_pcc)
193                 return 0;
194
195         /* Retry in case the remote processor was too slow to catch up. */
196         while (!ktime_after(ktime_get(), next_deadline)) {
197                 /*
198                  * Per spec, prior to boot the PCC space wil be initialized by
199                  * platform and should have set the command completion bit when
200                  * PCC can be used by OSPM
201                  */
202                 status = readw_relaxed(&generic_comm_base->status);
203                 if (status & PCC_CMD_COMPLETE_MASK) {
204                         ret = 0;
205                         if (chk_err_bit && (status & PCC_ERROR_MASK))
206                                 ret = -EIO;
207                         break;
208                 }
209                 /*
210                  * Reducing the bus traffic in case this loop takes longer than
211                  * a few retries.
212                  */
213                 udelay(3);
214         }
215
216         if (likely(!ret))
217                 pcc_data.platform_owns_pcc = false;
218         else
219                 pr_err("PCC check channel failed. Status=%x\n", status);
220
221         return ret;
222 }
223
224 /*
225  * This function transfers the ownership of the PCC to the platform
226  * So it must be called while holding write_lock(pcc_lock)
227  */
228 static int send_pcc_cmd(u16 cmd)
229 {
230         int ret = -EIO, i;
231         struct acpi_pcct_shared_memory *generic_comm_base =
232                 (struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
233         static ktime_t last_cmd_cmpl_time, last_mpar_reset;
234         static int mpar_count;
235         unsigned int time_delta;
236
237         /*
238          * For CMD_WRITE we know for a fact the caller should have checked
239          * the channel before writing to PCC space
240          */
241         if (cmd == CMD_READ) {
242                 /*
243                  * If there are pending cpc_writes, then we stole the channel
244                  * before write completion, so first send a WRITE command to
245                  * platform
246                  */
247                 if (pcc_data.pending_pcc_write_cmd)
248                         send_pcc_cmd(CMD_WRITE);
249
250                 ret = check_pcc_chan(false);
251                 if (ret)
252                         goto end;
253         } else /* CMD_WRITE */
254                 pcc_data.pending_pcc_write_cmd = FALSE;
255
256         /*
257          * Handle the Minimum Request Turnaround Time(MRTT)
258          * "The minimum amount of time that OSPM must wait after the completion
259          * of a command before issuing the next command, in microseconds"
260          */
261         if (pcc_data.pcc_mrtt) {
262                 time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
263                 if (pcc_data.pcc_mrtt > time_delta)
264                         udelay(pcc_data.pcc_mrtt - time_delta);
265         }
266
267         /*
268          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
269          * "The maximum number of periodic requests that the subspace channel can
270          * support, reported in commands per minute. 0 indicates no limitation."
271          *
272          * This parameter should be ideally zero or large enough so that it can
273          * handle maximum number of requests that all the cores in the system can
274          * collectively generate. If it is not, we will follow the spec and just
275          * not send the request to the platform after hitting the MPAR limit in
276          * any 60s window
277          */
278         if (pcc_data.pcc_mpar) {
279                 if (mpar_count == 0) {
280                         time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
281                         if (time_delta < 60 * MSEC_PER_SEC) {
282                                 pr_debug("PCC cmd not sent due to MPAR limit");
283                                 ret = -EIO;
284                                 goto end;
285                         }
286                         last_mpar_reset = ktime_get();
287                         mpar_count = pcc_data.pcc_mpar;
288                 }
289                 mpar_count--;
290         }
291
292         /* Write to the shared comm region. */
293         writew_relaxed(cmd, &generic_comm_base->command);
294
295         /* Flip CMD COMPLETE bit */
296         writew_relaxed(0, &generic_comm_base->status);
297
298         pcc_data.platform_owns_pcc = true;
299
300         /* Ring doorbell */
301         ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
302         if (ret < 0) {
303                 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
304                                 cmd, ret);
305                 goto end;
306         }
307
308         /* wait for completion and check for PCC errro bit */
309         ret = check_pcc_chan(true);
310
311         if (pcc_data.pcc_mrtt)
312                 last_cmd_cmpl_time = ktime_get();
313
314         if (pcc_data.pcc_channel->mbox->txdone_irq)
315                 mbox_chan_txdone(pcc_data.pcc_channel, ret);
316         else
317                 mbox_client_txdone(pcc_data.pcc_channel, ret);
318
319 end:
320         if (cmd == CMD_WRITE) {
321                 if (unlikely(ret)) {
322                         for_each_possible_cpu(i) {
323                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
324                                 if (!desc)
325                                         continue;
326
327                                 if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
328                                         desc->write_cmd_status = ret;
329                         }
330                 }
331                 pcc_data.pcc_write_cnt++;
332                 wake_up_all(&pcc_data.pcc_write_wait_q);
333         }
334
335         return ret;
336 }
337
338 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
339 {
340         if (ret < 0)
341                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
342                                 *(u16 *)msg, ret);
343         else
344                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
345                                 *(u16 *)msg, ret);
346 }
347
348 struct mbox_client cppc_mbox_cl = {
349         .tx_done = cppc_chan_tx_done,
350         .knows_txdone = true,
351 };
352
353 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
354 {
355         int result = -EFAULT;
356         acpi_status status = AE_OK;
357         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
358         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
359         struct acpi_buffer state = {0, NULL};
360         union acpi_object  *psd = NULL;
361         struct acpi_psd_package *pdomain;
362
363         status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
364                                             &buffer, ACPI_TYPE_PACKAGE);
365         if (status == AE_NOT_FOUND)     /* _PSD is optional */
366                 return 0;
367         if (ACPI_FAILURE(status))
368                 return -ENODEV;
369
370         psd = buffer.pointer;
371         if (!psd || psd->package.count != 1) {
372                 pr_debug("Invalid _PSD data\n");
373                 goto end;
374         }
375
376         pdomain = &(cpc_ptr->domain_info);
377
378         state.length = sizeof(struct acpi_psd_package);
379         state.pointer = pdomain;
380
381         status = acpi_extract_package(&(psd->package.elements[0]),
382                 &format, &state);
383         if (ACPI_FAILURE(status)) {
384                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
385                 goto end;
386         }
387
388         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
389                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
390                 goto end;
391         }
392
393         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
394                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
395                 goto end;
396         }
397
398         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
399             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
400             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
401                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
402                 goto end;
403         }
404
405         result = 0;
406 end:
407         kfree(buffer.pointer);
408         return result;
409 }
410
411 /**
412  * acpi_get_psd_map - Map the CPUs in a common freq domain.
413  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
414  *
415  *      Return: 0 for success or negative value for err.
416  */
417 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
418 {
419         int count_target;
420         int retval = 0;
421         unsigned int i, j;
422         cpumask_var_t covered_cpus;
423         struct cppc_cpudata *pr, *match_pr;
424         struct acpi_psd_package *pdomain;
425         struct acpi_psd_package *match_pdomain;
426         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
427
428         if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
429                 return -ENOMEM;
430
431         /*
432          * Now that we have _PSD data from all CPUs, lets setup P-state
433          * domain info.
434          */
435         for_each_possible_cpu(i) {
436                 pr = all_cpu_data[i];
437                 if (!pr)
438                         continue;
439
440                 if (cpumask_test_cpu(i, covered_cpus))
441                         continue;
442
443                 cpc_ptr = per_cpu(cpc_desc_ptr, i);
444                 if (!cpc_ptr) {
445                         retval = -EFAULT;
446                         goto err_ret;
447                 }
448
449                 pdomain = &(cpc_ptr->domain_info);
450                 cpumask_set_cpu(i, pr->shared_cpu_map);
451                 cpumask_set_cpu(i, covered_cpus);
452                 if (pdomain->num_processors <= 1)
453                         continue;
454
455                 /* Validate the Domain info */
456                 count_target = pdomain->num_processors;
457                 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
458                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
459                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
460                         pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
461                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
462                         pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
463
464                 for_each_possible_cpu(j) {
465                         if (i == j)
466                                 continue;
467
468                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
469                         if (!match_cpc_ptr) {
470                                 retval = -EFAULT;
471                                 goto err_ret;
472                         }
473
474                         match_pdomain = &(match_cpc_ptr->domain_info);
475                         if (match_pdomain->domain != pdomain->domain)
476                                 continue;
477
478                         /* Here i and j are in the same domain */
479                         if (match_pdomain->num_processors != count_target) {
480                                 retval = -EFAULT;
481                                 goto err_ret;
482                         }
483
484                         if (pdomain->coord_type != match_pdomain->coord_type) {
485                                 retval = -EFAULT;
486                                 goto err_ret;
487                         }
488
489                         cpumask_set_cpu(j, covered_cpus);
490                         cpumask_set_cpu(j, pr->shared_cpu_map);
491                 }
492
493                 for_each_possible_cpu(j) {
494                         if (i == j)
495                                 continue;
496
497                         match_pr = all_cpu_data[j];
498                         if (!match_pr)
499                                 continue;
500
501                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
502                         if (!match_cpc_ptr) {
503                                 retval = -EFAULT;
504                                 goto err_ret;
505                         }
506
507                         match_pdomain = &(match_cpc_ptr->domain_info);
508                         if (match_pdomain->domain != pdomain->domain)
509                                 continue;
510
511                         match_pr->shared_type = pr->shared_type;
512                         cpumask_copy(match_pr->shared_cpu_map,
513                                      pr->shared_cpu_map);
514                 }
515         }
516
517 err_ret:
518         for_each_possible_cpu(i) {
519                 pr = all_cpu_data[i];
520                 if (!pr)
521                         continue;
522
523                 /* Assume no coordination on any error parsing domain info */
524                 if (retval) {
525                         cpumask_clear(pr->shared_cpu_map);
526                         cpumask_set_cpu(i, pr->shared_cpu_map);
527                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
528                 }
529         }
530
531         free_cpumask_var(covered_cpus);
532         return retval;
533 }
534 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
535
536 static int register_pcc_channel(int pcc_subspace_idx)
537 {
538         struct acpi_pcct_hw_reduced *cppc_ss;
539         u64 usecs_lat;
540
541         if (pcc_subspace_idx >= 0) {
542                 pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
543                                 pcc_subspace_idx);
544
545                 if (IS_ERR(pcc_data.pcc_channel)) {
546                         pr_err("Failed to find PCC communication channel\n");
547                         return -ENODEV;
548                 }
549
550                 /*
551                  * The PCC mailbox controller driver should
552                  * have parsed the PCCT (global table of all
553                  * PCC channels) and stored pointers to the
554                  * subspace communication region in con_priv.
555                  */
556                 cppc_ss = (pcc_data.pcc_channel)->con_priv;
557
558                 if (!cppc_ss) {
559                         pr_err("No PCC subspace found for CPPC\n");
560                         return -ENODEV;
561                 }
562
563                 /*
564                  * cppc_ss->latency is just a Nominal value. In reality
565                  * the remote processor could be much slower to reply.
566                  * So add an arbitrary amount of wait on top of Nominal.
567                  */
568                 usecs_lat = NUM_RETRIES * cppc_ss->latency;
569                 pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
570                 pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
571                 pcc_data.pcc_mpar = cppc_ss->max_access_rate;
572                 pcc_data.pcc_nominal = cppc_ss->latency;
573
574                 pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
575                 if (!pcc_data.pcc_comm_addr) {
576                         pr_err("Failed to ioremap PCC comm region mem\n");
577                         return -ENOMEM;
578                 }
579
580                 /* Set flag so that we dont come here for each CPU. */
581                 pcc_data.pcc_channel_acquired = true;
582         }
583
584         return 0;
585 }
586
587 /**
588  * cpc_ffh_supported() - check if FFH reading supported
589  *
590  * Check if the architecture has support for functional fixed hardware
591  * read/write capability.
592  *
593  * Return: true for supported, false for not supported
594  */
595 bool __weak cpc_ffh_supported(void)
596 {
597         return false;
598 }
599
600 /*
601  * An example CPC table looks like the following.
602  *
603  *      Name(_CPC, Package()
604  *                      {
605  *                      17,
606  *                      NumEntries
607  *                      1,
608  *                      // Revision
609  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
610  *                      // Highest Performance
611  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
612  *                      // Nominal Performance
613  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
614  *                      // Lowest Nonlinear Performance
615  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
616  *                      // Lowest Performance
617  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
618  *                      // Guaranteed Performance Register
619  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
620  *                      // Desired Performance Register
621  *                      ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
622  *                      ..
623  *                      ..
624  *                      ..
625  *
626  *              }
627  * Each Register() encodes how to access that specific register.
628  * e.g. a sample PCC entry has the following encoding:
629  *
630  *      Register (
631  *              PCC,
632  *              AddressSpaceKeyword
633  *              8,
634  *              //RegisterBitWidth
635  *              8,
636  *              //RegisterBitOffset
637  *              0x30,
638  *              //RegisterAddress
639  *              9
640  *              //AccessSize (subspace ID)
641  *              0
642  *              )
643  *      }
644  */
645
646 /**
647  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
648  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
649  *
650  *      Return: 0 for success or negative value for err.
651  */
652 int acpi_cppc_processor_probe(struct acpi_processor *pr)
653 {
654         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
655         union acpi_object *out_obj, *cpc_obj;
656         struct cpc_desc *cpc_ptr;
657         struct cpc_reg *gas_t;
658         struct device *cpu_dev;
659         acpi_handle handle = pr->handle;
660         unsigned int num_ent, i, cpc_rev;
661         acpi_status status;
662         int ret = -EFAULT;
663
664         /* Parse the ACPI _CPC table for this cpu. */
665         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
666                         ACPI_TYPE_PACKAGE);
667         if (ACPI_FAILURE(status)) {
668                 ret = -ENODEV;
669                 goto out_buf_free;
670         }
671
672         out_obj = (union acpi_object *) output.pointer;
673
674         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
675         if (!cpc_ptr) {
676                 ret = -ENOMEM;
677                 goto out_buf_free;
678         }
679
680         /* First entry is NumEntries. */
681         cpc_obj = &out_obj->package.elements[0];
682         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
683                 num_ent = cpc_obj->integer.value;
684                 if (num_ent <= 1) {
685                         pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
686                                  num_ent, pr->id);
687                         goto out_free;
688                 }
689         } else {
690                 pr_debug("Unexpected entry type(%d) for NumEntries\n",
691                                 cpc_obj->type);
692                 goto out_free;
693         }
694
695         /* Only support CPPCv2. Bail otherwise. */
696         if (num_ent != CPPC_NUM_ENT) {
697                 pr_debug("Firmware exports %d entries. Expected: %d\n",
698                                 num_ent, CPPC_NUM_ENT);
699                 goto out_free;
700         }
701
702         cpc_ptr->num_entries = num_ent;
703
704         /* Second entry should be revision. */
705         cpc_obj = &out_obj->package.elements[1];
706         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
707                 cpc_rev = cpc_obj->integer.value;
708         } else {
709                 pr_debug("Unexpected entry type(%d) for Revision\n",
710                                 cpc_obj->type);
711                 goto out_free;
712         }
713
714         if (cpc_rev != CPPC_REV) {
715                 pr_debug("Firmware exports revision:%d. Expected:%d\n",
716                                 cpc_rev, CPPC_REV);
717                 goto out_free;
718         }
719
720         /* Iterate through remaining entries in _CPC */
721         for (i = 2; i < num_ent; i++) {
722                 cpc_obj = &out_obj->package.elements[i];
723
724                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
725                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
726                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
727                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
728                         gas_t = (struct cpc_reg *)
729                                 cpc_obj->buffer.pointer;
730
731                         /*
732                          * The PCC Subspace index is encoded inside
733                          * the CPC table entries. The same PCC index
734                          * will be used for all the PCC entries,
735                          * so extract it only once.
736                          */
737                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
738                                 if (pcc_data.pcc_subspace_idx < 0)
739                                         pcc_data.pcc_subspace_idx = gas_t->access_width;
740                                 else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
741                                         pr_debug("Mismatched PCC ids.\n");
742                                         goto out_free;
743                                 }
744                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
745                                 if (gas_t->address) {
746                                         void __iomem *addr;
747
748                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
749                                         if (!addr)
750                                                 goto out_free;
751                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
752                                 }
753                         } else {
754                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
755                                         /* Support only PCC ,SYS MEM and FFH type regs */
756                                         pr_debug("Unsupported register type: %d\n", gas_t->space_id);
757                                         goto out_free;
758                                 }
759                         }
760
761                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
762                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
763                 } else {
764                         pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
765                         goto out_free;
766                 }
767         }
768         /* Store CPU Logical ID */
769         cpc_ptr->cpu_id = pr->id;
770
771         /* Parse PSD data for this CPU */
772         ret = acpi_get_psd(cpc_ptr, handle);
773         if (ret)
774                 goto out_free;
775
776         /* Register PCC channel once for all CPUs. */
777         if (!pcc_data.pcc_channel_acquired) {
778                 ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
779                 if (ret)
780                         goto out_free;
781
782                 init_rwsem(&pcc_data.pcc_lock);
783                 init_waitqueue_head(&pcc_data.pcc_write_wait_q);
784         }
785
786         /* Plug PSD data into this CPUs CPC descriptor. */
787         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
788
789         /* Everything looks okay */
790         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
791
792         /* Add per logical CPU nodes for reading its feedback counters. */
793         cpu_dev = get_cpu_device(pr->id);
794         if (!cpu_dev) {
795                 ret = -EINVAL;
796                 goto out_free;
797         }
798
799         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
800                         "acpi_cppc");
801         if (ret) {
802                 kobject_put(&cpc_ptr->kobj);
803                 goto out_free;
804         }
805
806         kfree(output.pointer);
807         return 0;
808
809 out_free:
810         /* Free all the mapped sys mem areas for this CPU */
811         for (i = 2; i < cpc_ptr->num_entries; i++) {
812                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
813
814                 if (addr)
815                         iounmap(addr);
816         }
817         kfree(cpc_ptr);
818
819 out_buf_free:
820         kfree(output.pointer);
821         return ret;
822 }
823 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
824
825 /**
826  * acpi_cppc_processor_exit - Cleanup CPC structs.
827  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
828  *
829  * Return: Void
830  */
831 void acpi_cppc_processor_exit(struct acpi_processor *pr)
832 {
833         struct cpc_desc *cpc_ptr;
834         unsigned int i;
835         void __iomem *addr;
836
837         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
838
839         /* Free all the mapped sys mem areas for this CPU */
840         for (i = 2; i < cpc_ptr->num_entries; i++) {
841                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
842                 if (addr)
843                         iounmap(addr);
844         }
845
846         kobject_put(&cpc_ptr->kobj);
847         kfree(cpc_ptr);
848 }
849 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
850
851 /**
852  * cpc_read_ffh() - Read FFH register
853  * @cpunum:     cpu number to read
854  * @reg:        cppc register information
855  * @val:        place holder for return value
856  *
857  * Read bit_width bits from a specified address and bit_offset
858  *
859  * Return: 0 for success and error code
860  */
861 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
862 {
863         return -ENOTSUPP;
864 }
865
866 /**
867  * cpc_write_ffh() - Write FFH register
868  * @cpunum:     cpu number to write
869  * @reg:        cppc register information
870  * @val:        value to write
871  *
872  * Write value of bit_width bits to a specified address and bit_offset
873  *
874  * Return: 0 for success and error code
875  */
876 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
877 {
878         return -ENOTSUPP;
879 }
880
881 /*
882  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
883  * as fast as possible. We have already mapped the PCC subspace during init, so
884  * we can directly write to it.
885  */
886
887 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
888 {
889         int ret_val = 0;
890         void __iomem *vaddr = 0;
891         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
892
893         if (reg_res->type == ACPI_TYPE_INTEGER) {
894                 *val = reg_res->cpc_entry.int_value;
895                 return ret_val;
896         }
897
898         *val = 0;
899         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
900                 vaddr = GET_PCC_VADDR(reg->address);
901         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
902                 vaddr = reg_res->sys_mem_vaddr;
903         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
904                 return cpc_read_ffh(cpu, reg, val);
905         else
906                 return acpi_os_read_memory((acpi_physical_address)reg->address,
907                                 val, reg->bit_width);
908
909         switch (reg->bit_width) {
910                 case 8:
911                         *val = readb_relaxed(vaddr);
912                         break;
913                 case 16:
914                         *val = readw_relaxed(vaddr);
915                         break;
916                 case 32:
917                         *val = readl_relaxed(vaddr);
918                         break;
919                 case 64:
920                         *val = readq_relaxed(vaddr);
921                         break;
922                 default:
923                         pr_debug("Error: Cannot read %u bit width from PCC\n",
924                                         reg->bit_width);
925                         ret_val = -EFAULT;
926         }
927
928         return ret_val;
929 }
930
931 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
932 {
933         int ret_val = 0;
934         void __iomem *vaddr = 0;
935         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
936
937         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
938                 vaddr = GET_PCC_VADDR(reg->address);
939         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
940                 vaddr = reg_res->sys_mem_vaddr;
941         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
942                 return cpc_write_ffh(cpu, reg, val);
943         else
944                 return acpi_os_write_memory((acpi_physical_address)reg->address,
945                                 val, reg->bit_width);
946
947         switch (reg->bit_width) {
948                 case 8:
949                         writeb_relaxed(val, vaddr);
950                         break;
951                 case 16:
952                         writew_relaxed(val, vaddr);
953                         break;
954                 case 32:
955                         writel_relaxed(val, vaddr);
956                         break;
957                 case 64:
958                         writeq_relaxed(val, vaddr);
959                         break;
960                 default:
961                         pr_debug("Error: Cannot write %u bit width to PCC\n",
962                                         reg->bit_width);
963                         ret_val = -EFAULT;
964                         break;
965         }
966
967         return ret_val;
968 }
969
970 /**
971  * cppc_get_perf_caps - Get a CPUs performance capabilities.
972  * @cpunum: CPU from which to get capabilities info.
973  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
974  *
975  * Return: 0 for success with perf_caps populated else -ERRNO.
976  */
977 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
978 {
979         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
980         struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
981                                                                  *nom_perf;
982         u64 high, low, nom;
983         int ret = 0, regs_in_pcc = 0;
984
985         if (!cpc_desc) {
986                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
987                 return -ENODEV;
988         }
989
990         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
991         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
992         ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
993         nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];
994
995         /* Are any of the regs PCC ?*/
996         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
997                 CPC_IN_PCC(ref_perf) || CPC_IN_PCC(nom_perf)) {
998                 regs_in_pcc = 1;
999                 down_write(&pcc_data.pcc_lock);
1000                 /* Ring doorbell once to update PCC subspace */
1001                 if (send_pcc_cmd(CMD_READ) < 0) {
1002                         ret = -EIO;
1003                         goto out_err;
1004                 }
1005         }
1006
1007         cpc_read(cpunum, highest_reg, &high);
1008         perf_caps->highest_perf = high;
1009
1010         cpc_read(cpunum, lowest_reg, &low);
1011         perf_caps->lowest_perf = low;
1012
1013         cpc_read(cpunum, nom_perf, &nom);
1014         perf_caps->nominal_perf = nom;
1015
1016         if (!high || !low || !nom)
1017                 ret = -EFAULT;
1018
1019 out_err:
1020         if (regs_in_pcc)
1021                 up_write(&pcc_data.pcc_lock);
1022         return ret;
1023 }
1024 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1025
1026 /**
1027  * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1028  * @cpunum: CPU from which to read counters.
1029  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1030  *
1031  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1032  */
1033 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1034 {
1035         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1036         struct cpc_register_resource *delivered_reg, *reference_reg,
1037                 *ref_perf_reg, *ctr_wrap_reg;
1038         u64 delivered, reference, ref_perf, ctr_wrap_time;
1039         int ret = 0, regs_in_pcc = 0;
1040
1041         if (!cpc_desc) {
1042                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1043                 return -ENODEV;
1044         }
1045
1046         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1047         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1048         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1049         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1050
1051         /*
1052          * If refernce perf register is not supported then we should
1053          * use the nominal perf value
1054          */
1055         if (!CPC_SUPPORTED(ref_perf_reg))
1056                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1057
1058         /* Are any of the regs PCC ?*/
1059         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1060                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1061                 down_write(&pcc_data.pcc_lock);
1062                 regs_in_pcc = 1;
1063                 /* Ring doorbell once to update PCC subspace */
1064                 if (send_pcc_cmd(CMD_READ) < 0) {
1065                         ret = -EIO;
1066                         goto out_err;
1067                 }
1068         }
1069
1070         cpc_read(cpunum, delivered_reg, &delivered);
1071         cpc_read(cpunum, reference_reg, &reference);
1072         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1073
1074         /*
1075          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1076          * performance counters are assumed to never wrap during the lifetime of
1077          * platform
1078          */
1079         ctr_wrap_time = (u64)(~((u64)0));
1080         if (CPC_SUPPORTED(ctr_wrap_reg))
1081                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1082
1083         if (!delivered || !reference || !ref_perf) {
1084                 ret = -EFAULT;
1085                 goto out_err;
1086         }
1087
1088         perf_fb_ctrs->delivered = delivered;
1089         perf_fb_ctrs->reference = reference;
1090         perf_fb_ctrs->reference_perf = ref_perf;
1091         perf_fb_ctrs->ctr_wrap_time = ctr_wrap_time;
1092 out_err:
1093         if (regs_in_pcc)
1094                 up_write(&pcc_data.pcc_lock);
1095         return ret;
1096 }
1097 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1098
1099 /**
1100  * cppc_set_perf - Set a CPUs performance controls.
1101  * @cpu: CPU for which to set performance controls.
1102  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1103  *
1104  * Return: 0 for success, -ERRNO otherwise.
1105  */
1106 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1107 {
1108         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1109         struct cpc_register_resource *desired_reg;
1110         int ret = 0;
1111
1112         if (!cpc_desc) {
1113                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1114                 return -ENODEV;
1115         }
1116
1117         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1118
1119         /*
1120          * This is Phase-I where we want to write to CPC registers
1121          * -> We want all CPUs to be able to execute this phase in parallel
1122          *
1123          * Since read_lock can be acquired by multiple CPUs simultaneously we
1124          * achieve that goal here
1125          */
1126         if (CPC_IN_PCC(desired_reg)) {
1127                 down_read(&pcc_data.pcc_lock);  /* BEGIN Phase-I */
1128                 if (pcc_data.platform_owns_pcc) {
1129                         ret = check_pcc_chan(false);
1130                         if (ret) {
1131                                 up_read(&pcc_data.pcc_lock);
1132                                 return ret;
1133                         }
1134                 }
1135                 /*
1136                  * Update the pending_write to make sure a PCC CMD_READ will not
1137                  * arrive and steal the channel during the switch to write lock
1138                  */
1139                 pcc_data.pending_pcc_write_cmd = true;
1140                 cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
1141                 cpc_desc->write_cmd_status = 0;
1142         }
1143
1144         /*
1145          * Skip writing MIN/MAX until Linux knows how to come up with
1146          * useful values.
1147          */
1148         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1149
1150         if (CPC_IN_PCC(desired_reg))
1151                 up_read(&pcc_data.pcc_lock);    /* END Phase-I */
1152         /*
1153          * This is Phase-II where we transfer the ownership of PCC to Platform
1154          *
1155          * Short Summary: Basically if we think of a group of cppc_set_perf
1156          * requests that happened in short overlapping interval. The last CPU to
1157          * come out of Phase-I will enter Phase-II and ring the doorbell.
1158          *
1159          * We have the following requirements for Phase-II:
1160          *     1. We want to execute Phase-II only when there are no CPUs
1161          * currently executing in Phase-I
1162          *     2. Once we start Phase-II we want to avoid all other CPUs from
1163          * entering Phase-I.
1164          *     3. We want only one CPU among all those who went through Phase-I
1165          * to run phase-II
1166          *
1167          * If write_trylock fails to get the lock and doesn't transfer the
1168          * PCC ownership to the platform, then one of the following will be TRUE
1169          *     1. There is at-least one CPU in Phase-I which will later execute
1170          * write_trylock, so the CPUs in Phase-I will be responsible for
1171          * executing the Phase-II.
1172          *     2. Some other CPU has beaten this CPU to successfully execute the
1173          * write_trylock and has already acquired the write_lock. We know for a
1174          * fact it(other CPU acquiring the write_lock) couldn't have happened
1175          * before this CPU's Phase-I as we held the read_lock.
1176          *     3. Some other CPU executing pcc CMD_READ has stolen the
1177          * down_write, in which case, send_pcc_cmd will check for pending
1178          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1179          * So this CPU can be certain that its request will be delivered
1180          *    So in all cases, this CPU knows that its request will be delivered
1181          * by another CPU and can return
1182          *
1183          * After getting the down_write we still need to check for
1184          * pending_pcc_write_cmd to take care of the following scenario
1185          *    The thread running this code could be scheduled out between
1186          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1187          * could have delivered the request to Platform by triggering the
1188          * doorbell and transferred the ownership of PCC to platform. So this
1189          * avoids triggering an unnecessary doorbell and more importantly before
1190          * triggering the doorbell it makes sure that the PCC channel ownership
1191          * is still with OSPM.
1192          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1193          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1194          * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1195          * case during a CMD_READ and if there are pending writes it delivers
1196          * the write command before servicing the read command
1197          */
1198         if (CPC_IN_PCC(desired_reg)) {
1199                 if (down_write_trylock(&pcc_data.pcc_lock)) {   /* BEGIN Phase-II */
1200                         /* Update only if there are pending write commands */
1201                         if (pcc_data.pending_pcc_write_cmd)
1202                                 send_pcc_cmd(CMD_WRITE);
1203                         up_write(&pcc_data.pcc_lock);           /* END Phase-II */
1204                 } else
1205                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1206                         wait_event(pcc_data.pcc_write_wait_q,
1207                                 cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
1208
1209                 /* send_pcc_cmd updates the status in case of failure */
1210                 ret = cpc_desc->write_cmd_status;
1211         }
1212         return ret;
1213 }
1214 EXPORT_SYMBOL_GPL(cppc_set_perf);
1215
1216 /**
1217  * cppc_get_transition_latency - returns frequency transition latency in ns
1218  *
1219  * ACPI CPPC does not explicitly specifiy how a platform can specify the
1220  * transition latency for perfromance change requests. The closest we have
1221  * is the timing information from the PCCT tables which provides the info
1222  * on the number and frequency of PCC commands the platform can handle.
1223  */
1224 unsigned int cppc_get_transition_latency(int cpu_num)
1225 {
1226         /*
1227          * Expected transition latency is based on the PCCT timing values
1228          * Below are definition from ACPI spec:
1229          * pcc_nominal- Expected latency to process a command, in microseconds
1230          * pcc_mpar   - The maximum number of periodic requests that the subspace
1231          *              channel can support, reported in commands per minute. 0
1232          *              indicates no limitation.
1233          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1234          *              completion of a command before issuing the next command,
1235          *              in microseconds.
1236          */
1237         unsigned int latency_ns = 0;
1238         struct cpc_desc *cpc_desc;
1239         struct cpc_register_resource *desired_reg;
1240
1241         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1242         if (!cpc_desc)
1243                 return CPUFREQ_ETERNAL;
1244
1245         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1246         if (!CPC_IN_PCC(desired_reg))
1247                 return CPUFREQ_ETERNAL;
1248
1249         if (pcc_data.pcc_mpar)
1250                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
1251
1252         latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
1253         latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
1254
1255         return latency_ns;
1256 }
1257 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);