GNU Linux-libre 4.14.251-gnu1
[releases.git] / drivers / acpi / cppc_acpi.c
1 /*
2  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3  *
4  * (C) Copyright 2014, 2015 Linaro Ltd.
5  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * CPPC describes a few methods for controlling CPU performance using
13  * information from a per CPU table called CPC. This table is described in
14  * the ACPI v5.0+ specification. The table consists of a list of
15  * registers which may be memory mapped or hardware registers and also may
16  * include some static integer values.
17  *
18  * CPU performance is on an abstract continuous scale as against a discretized
19  * P-state scale which is tied to CPU frequency only. In brief, the basic
20  * operation involves:
21  *
22  * - OS makes a CPU performance request. (Can provide min and max bounds)
23  *
24  * - Platform (such as BMC) is free to optimize request within requested bounds
25  *   depending on power/thermal budgets etc.
26  *
27  * - Platform conveys its decision back to OS
28  *
29  * The communication between OS and platform occurs through another medium
30  * called (PCC) Platform Communication Channel. This is a generic mailbox like
31  * mechanism which includes doorbell semantics to indicate register updates.
32  * See drivers/mailbox/pcc.c for details on PCC.
33  *
34  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35  * above specifications.
36  */
37
38 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
39
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/ktime.h>
43 #include <linux/rwsem.h>
44 #include <linux/wait.h>
45
46 #include <acpi/cppc_acpi.h>
47
48 struct cppc_pcc_data {
49         struct mbox_chan *pcc_channel;
50         void __iomem *pcc_comm_addr;
51         int pcc_subspace_idx;
52         bool pcc_channel_acquired;
53         ktime_t deadline;
54         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55
56         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
57         bool platform_owns_pcc;         /* Ownership of PCC subspace */
58         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
59
60         /*
61          * Lock to provide controlled access to the PCC channel.
62          *
63          * For performance critical usecases(currently cppc_set_perf)
64          *      We need to take read_lock and check if channel belongs to OSPM
65          * before reading or writing to PCC subspace
66          *      We need to take write_lock before transferring the channel
67          * ownership to the platform via a Doorbell
68          *      This allows us to batch a number of CPPC requests if they happen
69          * to originate in about the same time
70          *
71          * For non-performance critical usecases(init)
72          *      Take write_lock for all purposes which gives exclusive access
73          */
74         struct rw_semaphore pcc_lock;
75
76         /* Wait queue for CPUs whose requests were batched */
77         wait_queue_head_t pcc_write_wait_q;
78 };
79
80 /* Structure to represent the single PCC channel */
81 static struct cppc_pcc_data pcc_data = {
82         .pcc_subspace_idx = -1,
83         .platform_owns_pcc = true,
84 };
85
86 /*
87  * The cpc_desc structure contains the ACPI register details
88  * as described in the per CPU _CPC tables. The details
89  * include the type of register (e.g. PCC, System IO, FFH etc.)
90  * and destination addresses which lets us READ/WRITE CPU performance
91  * information using the appropriate I/O methods.
92  */
93 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
94
95 /* pcc mapped address + header size + offset within PCC subspace */
96 #define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
97
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
100                                 (cpc)->cpc_entry.reg.space_id ==        \
101                                 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Evalutes to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105                                 (reg)->address == 0 &&                  \
106                                 (reg)->bit_width == 0 &&                \
107                                 (reg)->bit_offset == 0 &&               \
108                                 (reg)->access_width == 0)
109
110 /* Evalutes to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
112                                 !!(cpc)->cpc_entry.int_value :          \
113                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 /*
115  * Arbitrary Retries in case the remote processor is slow to respond
116  * to PCC commands. Keeping it high enough to cover emulators where
117  * the processors run painfully slow.
118  */
119 #define NUM_RETRIES 500
120
121 #define define_one_cppc_ro(_name)               \
122 static struct kobj_attribute _name =            \
123 __ATTR(_name, 0444, show_##_name, NULL)
124
125 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
126
127 #define show_cppc_data(access_fn, struct_name, member_name)             \
128         static ssize_t show_##member_name(struct kobject *kobj,         \
129                                 struct kobj_attribute *attr, char *buf) \
130         {                                                               \
131                 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);           \
132                 struct struct_name st_name = {0};                       \
133                 int ret;                                                \
134                                                                         \
135                 ret = access_fn(cpc_ptr->cpu_id, &st_name);             \
136                 if (ret)                                                \
137                         return ret;                                     \
138                                                                         \
139                 return scnprintf(buf, PAGE_SIZE, "%llu\n",              \
140                                 (u64)st_name.member_name);              \
141         }                                                               \
142         define_one_cppc_ro(member_name)
143
144 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
145 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
146 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
147 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
148 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
149 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
150
151 static ssize_t show_feedback_ctrs(struct kobject *kobj,
152                 struct kobj_attribute *attr, char *buf)
153 {
154         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
155         struct cppc_perf_fb_ctrs fb_ctrs = {0};
156         int ret;
157
158         ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
159         if (ret)
160                 return ret;
161
162         return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
163                         fb_ctrs.reference, fb_ctrs.delivered);
164 }
165 define_one_cppc_ro(feedback_ctrs);
166
167 static struct attribute *cppc_attrs[] = {
168         &feedback_ctrs.attr,
169         &reference_perf.attr,
170         &wraparound_time.attr,
171         &highest_perf.attr,
172         &lowest_perf.attr,
173         &lowest_nonlinear_perf.attr,
174         &nominal_perf.attr,
175         NULL
176 };
177
178 static struct kobj_type cppc_ktype = {
179         .sysfs_ops = &kobj_sysfs_ops,
180         .default_attrs = cppc_attrs,
181 };
182
183 static int check_pcc_chan(bool chk_err_bit)
184 {
185         int ret = -EIO, status = 0;
186         struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
187         ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
188
189         if (!pcc_data.platform_owns_pcc)
190                 return 0;
191
192         /* Retry in case the remote processor was too slow to catch up. */
193         while (!ktime_after(ktime_get(), next_deadline)) {
194                 /*
195                  * Per spec, prior to boot the PCC space wil be initialized by
196                  * platform and should have set the command completion bit when
197                  * PCC can be used by OSPM
198                  */
199                 status = readw_relaxed(&generic_comm_base->status);
200                 if (status & PCC_CMD_COMPLETE_MASK) {
201                         ret = 0;
202                         if (chk_err_bit && (status & PCC_ERROR_MASK))
203                                 ret = -EIO;
204                         break;
205                 }
206                 /*
207                  * Reducing the bus traffic in case this loop takes longer than
208                  * a few retries.
209                  */
210                 udelay(3);
211         }
212
213         if (likely(!ret))
214                 pcc_data.platform_owns_pcc = false;
215         else
216                 pr_err("PCC check channel failed. Status=%x\n", status);
217
218         return ret;
219 }
220
221 /*
222  * This function transfers the ownership of the PCC to the platform
223  * So it must be called while holding write_lock(pcc_lock)
224  */
225 static int send_pcc_cmd(u16 cmd)
226 {
227         int ret = -EIO, i;
228         struct acpi_pcct_shared_memory *generic_comm_base =
229                 (struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
230         static ktime_t last_cmd_cmpl_time, last_mpar_reset;
231         static int mpar_count;
232         unsigned int time_delta;
233
234         /*
235          * For CMD_WRITE we know for a fact the caller should have checked
236          * the channel before writing to PCC space
237          */
238         if (cmd == CMD_READ) {
239                 /*
240                  * If there are pending cpc_writes, then we stole the channel
241                  * before write completion, so first send a WRITE command to
242                  * platform
243                  */
244                 if (pcc_data.pending_pcc_write_cmd)
245                         send_pcc_cmd(CMD_WRITE);
246
247                 ret = check_pcc_chan(false);
248                 if (ret)
249                         goto end;
250         } else /* CMD_WRITE */
251                 pcc_data.pending_pcc_write_cmd = FALSE;
252
253         /*
254          * Handle the Minimum Request Turnaround Time(MRTT)
255          * "The minimum amount of time that OSPM must wait after the completion
256          * of a command before issuing the next command, in microseconds"
257          */
258         if (pcc_data.pcc_mrtt) {
259                 time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
260                 if (pcc_data.pcc_mrtt > time_delta)
261                         udelay(pcc_data.pcc_mrtt - time_delta);
262         }
263
264         /*
265          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
266          * "The maximum number of periodic requests that the subspace channel can
267          * support, reported in commands per minute. 0 indicates no limitation."
268          *
269          * This parameter should be ideally zero or large enough so that it can
270          * handle maximum number of requests that all the cores in the system can
271          * collectively generate. If it is not, we will follow the spec and just
272          * not send the request to the platform after hitting the MPAR limit in
273          * any 60s window
274          */
275         if (pcc_data.pcc_mpar) {
276                 if (mpar_count == 0) {
277                         time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
278                         if (time_delta < 60 * MSEC_PER_SEC) {
279                                 pr_debug("PCC cmd not sent due to MPAR limit");
280                                 ret = -EIO;
281                                 goto end;
282                         }
283                         last_mpar_reset = ktime_get();
284                         mpar_count = pcc_data.pcc_mpar;
285                 }
286                 mpar_count--;
287         }
288
289         /* Write to the shared comm region. */
290         writew_relaxed(cmd, &generic_comm_base->command);
291
292         /* Flip CMD COMPLETE bit */
293         writew_relaxed(0, &generic_comm_base->status);
294
295         pcc_data.platform_owns_pcc = true;
296
297         /* Ring doorbell */
298         ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
299         if (ret < 0) {
300                 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
301                                 cmd, ret);
302                 goto end;
303         }
304
305         /* wait for completion and check for PCC errro bit */
306         ret = check_pcc_chan(true);
307
308         if (pcc_data.pcc_mrtt)
309                 last_cmd_cmpl_time = ktime_get();
310
311         if (pcc_data.pcc_channel->mbox->txdone_irq)
312                 mbox_chan_txdone(pcc_data.pcc_channel, ret);
313         else
314                 mbox_client_txdone(pcc_data.pcc_channel, ret);
315
316 end:
317         if (cmd == CMD_WRITE) {
318                 if (unlikely(ret)) {
319                         for_each_possible_cpu(i) {
320                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
321                                 if (!desc)
322                                         continue;
323
324                                 if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
325                                         desc->write_cmd_status = ret;
326                         }
327                 }
328                 pcc_data.pcc_write_cnt++;
329                 wake_up_all(&pcc_data.pcc_write_wait_q);
330         }
331
332         return ret;
333 }
334
335 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
336 {
337         if (ret < 0)
338                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
339                                 *(u16 *)msg, ret);
340         else
341                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
342                                 *(u16 *)msg, ret);
343 }
344
345 struct mbox_client cppc_mbox_cl = {
346         .tx_done = cppc_chan_tx_done,
347         .knows_txdone = true,
348 };
349
350 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
351 {
352         int result = -EFAULT;
353         acpi_status status = AE_OK;
354         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
355         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
356         struct acpi_buffer state = {0, NULL};
357         union acpi_object  *psd = NULL;
358         struct acpi_psd_package *pdomain;
359
360         status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
361                                             &buffer, ACPI_TYPE_PACKAGE);
362         if (status == AE_NOT_FOUND)     /* _PSD is optional */
363                 return 0;
364         if (ACPI_FAILURE(status))
365                 return -ENODEV;
366
367         psd = buffer.pointer;
368         if (!psd || psd->package.count != 1) {
369                 pr_debug("Invalid _PSD data\n");
370                 goto end;
371         }
372
373         pdomain = &(cpc_ptr->domain_info);
374
375         state.length = sizeof(struct acpi_psd_package);
376         state.pointer = pdomain;
377
378         status = acpi_extract_package(&(psd->package.elements[0]),
379                 &format, &state);
380         if (ACPI_FAILURE(status)) {
381                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
382                 goto end;
383         }
384
385         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
386                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
387                 goto end;
388         }
389
390         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
391                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
392                 goto end;
393         }
394
395         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
396             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
397             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
398                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
399                 goto end;
400         }
401
402         result = 0;
403 end:
404         kfree(buffer.pointer);
405         return result;
406 }
407
408 /**
409  * acpi_get_psd_map - Map the CPUs in a common freq domain.
410  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
411  *
412  *      Return: 0 for success or negative value for err.
413  */
414 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
415 {
416         int count_target;
417         int retval = 0;
418         unsigned int i, j;
419         cpumask_var_t covered_cpus;
420         struct cppc_cpudata *pr, *match_pr;
421         struct acpi_psd_package *pdomain;
422         struct acpi_psd_package *match_pdomain;
423         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
424
425         if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
426                 return -ENOMEM;
427
428         /*
429          * Now that we have _PSD data from all CPUs, lets setup P-state
430          * domain info.
431          */
432         for_each_possible_cpu(i) {
433                 pr = all_cpu_data[i];
434                 if (!pr)
435                         continue;
436
437                 if (cpumask_test_cpu(i, covered_cpus))
438                         continue;
439
440                 cpc_ptr = per_cpu(cpc_desc_ptr, i);
441                 if (!cpc_ptr) {
442                         retval = -EFAULT;
443                         goto err_ret;
444                 }
445
446                 pdomain = &(cpc_ptr->domain_info);
447                 cpumask_set_cpu(i, pr->shared_cpu_map);
448                 cpumask_set_cpu(i, covered_cpus);
449                 if (pdomain->num_processors <= 1)
450                         continue;
451
452                 /* Validate the Domain info */
453                 count_target = pdomain->num_processors;
454                 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
455                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
456                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
457                         pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
458                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
459                         pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
460
461                 for_each_possible_cpu(j) {
462                         if (i == j)
463                                 continue;
464
465                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
466                         if (!match_cpc_ptr) {
467                                 retval = -EFAULT;
468                                 goto err_ret;
469                         }
470
471                         match_pdomain = &(match_cpc_ptr->domain_info);
472                         if (match_pdomain->domain != pdomain->domain)
473                                 continue;
474
475                         /* Here i and j are in the same domain */
476                         if (match_pdomain->num_processors != count_target) {
477                                 retval = -EFAULT;
478                                 goto err_ret;
479                         }
480
481                         if (pdomain->coord_type != match_pdomain->coord_type) {
482                                 retval = -EFAULT;
483                                 goto err_ret;
484                         }
485
486                         cpumask_set_cpu(j, covered_cpus);
487                         cpumask_set_cpu(j, pr->shared_cpu_map);
488                 }
489
490                 for_each_possible_cpu(j) {
491                         if (i == j)
492                                 continue;
493
494                         match_pr = all_cpu_data[j];
495                         if (!match_pr)
496                                 continue;
497
498                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
499                         if (!match_cpc_ptr) {
500                                 retval = -EFAULT;
501                                 goto err_ret;
502                         }
503
504                         match_pdomain = &(match_cpc_ptr->domain_info);
505                         if (match_pdomain->domain != pdomain->domain)
506                                 continue;
507
508                         match_pr->shared_type = pr->shared_type;
509                         cpumask_copy(match_pr->shared_cpu_map,
510                                      pr->shared_cpu_map);
511                 }
512         }
513
514 err_ret:
515         for_each_possible_cpu(i) {
516                 pr = all_cpu_data[i];
517                 if (!pr)
518                         continue;
519
520                 /* Assume no coordination on any error parsing domain info */
521                 if (retval) {
522                         cpumask_clear(pr->shared_cpu_map);
523                         cpumask_set_cpu(i, pr->shared_cpu_map);
524                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
525                 }
526         }
527
528         free_cpumask_var(covered_cpus);
529         return retval;
530 }
531 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
532
533 static int register_pcc_channel(int pcc_subspace_idx)
534 {
535         struct acpi_pcct_hw_reduced *cppc_ss;
536         u64 usecs_lat;
537
538         if (pcc_subspace_idx >= 0) {
539                 pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
540                                 pcc_subspace_idx);
541
542                 if (IS_ERR(pcc_data.pcc_channel)) {
543                         pr_err("Failed to find PCC communication channel\n");
544                         return -ENODEV;
545                 }
546
547                 /*
548                  * The PCC mailbox controller driver should
549                  * have parsed the PCCT (global table of all
550                  * PCC channels) and stored pointers to the
551                  * subspace communication region in con_priv.
552                  */
553                 cppc_ss = (pcc_data.pcc_channel)->con_priv;
554
555                 if (!cppc_ss) {
556                         pr_err("No PCC subspace found for CPPC\n");
557                         return -ENODEV;
558                 }
559
560                 /*
561                  * cppc_ss->latency is just a Nominal value. In reality
562                  * the remote processor could be much slower to reply.
563                  * So add an arbitrary amount of wait on top of Nominal.
564                  */
565                 usecs_lat = NUM_RETRIES * cppc_ss->latency;
566                 pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
567                 pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
568                 pcc_data.pcc_mpar = cppc_ss->max_access_rate;
569                 pcc_data.pcc_nominal = cppc_ss->latency;
570
571                 pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
572                 if (!pcc_data.pcc_comm_addr) {
573                         pr_err("Failed to ioremap PCC comm region mem\n");
574                         return -ENOMEM;
575                 }
576
577                 /* Set flag so that we dont come here for each CPU. */
578                 pcc_data.pcc_channel_acquired = true;
579         }
580
581         return 0;
582 }
583
584 /**
585  * cpc_ffh_supported() - check if FFH reading supported
586  *
587  * Check if the architecture has support for functional fixed hardware
588  * read/write capability.
589  *
590  * Return: true for supported, false for not supported
591  */
592 bool __weak cpc_ffh_supported(void)
593 {
594         return false;
595 }
596
597 /*
598  * An example CPC table looks like the following.
599  *
600  *      Name(_CPC, Package()
601  *                      {
602  *                      17,
603  *                      NumEntries
604  *                      1,
605  *                      // Revision
606  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
607  *                      // Highest Performance
608  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
609  *                      // Nominal Performance
610  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
611  *                      // Lowest Nonlinear Performance
612  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
613  *                      // Lowest Performance
614  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
615  *                      // Guaranteed Performance Register
616  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
617  *                      // Desired Performance Register
618  *                      ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
619  *                      ..
620  *                      ..
621  *                      ..
622  *
623  *              }
624  * Each Register() encodes how to access that specific register.
625  * e.g. a sample PCC entry has the following encoding:
626  *
627  *      Register (
628  *              PCC,
629  *              AddressSpaceKeyword
630  *              8,
631  *              //RegisterBitWidth
632  *              8,
633  *              //RegisterBitOffset
634  *              0x30,
635  *              //RegisterAddress
636  *              9
637  *              //AccessSize (subspace ID)
638  *              0
639  *              )
640  *      }
641  */
642
643 /**
644  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
645  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
646  *
647  *      Return: 0 for success or negative value for err.
648  */
649 int acpi_cppc_processor_probe(struct acpi_processor *pr)
650 {
651         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
652         union acpi_object *out_obj, *cpc_obj;
653         struct cpc_desc *cpc_ptr;
654         struct cpc_reg *gas_t;
655         struct device *cpu_dev;
656         acpi_handle handle = pr->handle;
657         unsigned int num_ent, i, cpc_rev;
658         acpi_status status;
659         int ret = -EFAULT;
660
661         /* Parse the ACPI _CPC table for this cpu. */
662         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
663                         ACPI_TYPE_PACKAGE);
664         if (ACPI_FAILURE(status)) {
665                 ret = -ENODEV;
666                 goto out_buf_free;
667         }
668
669         out_obj = (union acpi_object *) output.pointer;
670
671         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
672         if (!cpc_ptr) {
673                 ret = -ENOMEM;
674                 goto out_buf_free;
675         }
676
677         /* First entry is NumEntries. */
678         cpc_obj = &out_obj->package.elements[0];
679         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
680                 num_ent = cpc_obj->integer.value;
681         } else {
682                 pr_debug("Unexpected entry type(%d) for NumEntries\n",
683                                 cpc_obj->type);
684                 goto out_free;
685         }
686
687         /* Only support CPPCv2. Bail otherwise. */
688         if (num_ent != CPPC_NUM_ENT) {
689                 pr_debug("Firmware exports %d entries. Expected: %d\n",
690                                 num_ent, CPPC_NUM_ENT);
691                 goto out_free;
692         }
693
694         cpc_ptr->num_entries = num_ent;
695
696         /* Second entry should be revision. */
697         cpc_obj = &out_obj->package.elements[1];
698         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
699                 cpc_rev = cpc_obj->integer.value;
700         } else {
701                 pr_debug("Unexpected entry type(%d) for Revision\n",
702                                 cpc_obj->type);
703                 goto out_free;
704         }
705
706         if (cpc_rev != CPPC_REV) {
707                 pr_debug("Firmware exports revision:%d. Expected:%d\n",
708                                 cpc_rev, CPPC_REV);
709                 goto out_free;
710         }
711
712         /* Iterate through remaining entries in _CPC */
713         for (i = 2; i < num_ent; i++) {
714                 cpc_obj = &out_obj->package.elements[i];
715
716                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
717                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
718                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
719                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
720                         gas_t = (struct cpc_reg *)
721                                 cpc_obj->buffer.pointer;
722
723                         /*
724                          * The PCC Subspace index is encoded inside
725                          * the CPC table entries. The same PCC index
726                          * will be used for all the PCC entries,
727                          * so extract it only once.
728                          */
729                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
730                                 if (pcc_data.pcc_subspace_idx < 0)
731                                         pcc_data.pcc_subspace_idx = gas_t->access_width;
732                                 else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
733                                         pr_debug("Mismatched PCC ids.\n");
734                                         goto out_free;
735                                 }
736                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
737                                 if (gas_t->address) {
738                                         void __iomem *addr;
739
740                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
741                                         if (!addr)
742                                                 goto out_free;
743                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
744                                 }
745                         } else {
746                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
747                                         /* Support only PCC ,SYS MEM and FFH type regs */
748                                         pr_debug("Unsupported register type: %d\n", gas_t->space_id);
749                                         goto out_free;
750                                 }
751                         }
752
753                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
754                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
755                 } else {
756                         pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
757                         goto out_free;
758                 }
759         }
760         /* Store CPU Logical ID */
761         cpc_ptr->cpu_id = pr->id;
762
763         /* Parse PSD data for this CPU */
764         ret = acpi_get_psd(cpc_ptr, handle);
765         if (ret)
766                 goto out_free;
767
768         /* Register PCC channel once for all CPUs. */
769         if (!pcc_data.pcc_channel_acquired) {
770                 ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
771                 if (ret)
772                         goto out_free;
773
774                 init_rwsem(&pcc_data.pcc_lock);
775                 init_waitqueue_head(&pcc_data.pcc_write_wait_q);
776         }
777
778         /* Everything looks okay */
779         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
780
781         /* Add per logical CPU nodes for reading its feedback counters. */
782         cpu_dev = get_cpu_device(pr->id);
783         if (!cpu_dev) {
784                 ret = -EINVAL;
785                 goto out_free;
786         }
787
788         /* Plug PSD data into this CPUs CPC descriptor. */
789         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
790
791         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
792                         "acpi_cppc");
793         if (ret) {
794                 per_cpu(cpc_desc_ptr, pr->id) = NULL;
795                 kobject_put(&cpc_ptr->kobj);
796                 goto out_free;
797         }
798
799         kfree(output.pointer);
800         return 0;
801
802 out_free:
803         /* Free all the mapped sys mem areas for this CPU */
804         for (i = 2; i < cpc_ptr->num_entries; i++) {
805                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
806
807                 if (addr)
808                         iounmap(addr);
809         }
810         kfree(cpc_ptr);
811
812 out_buf_free:
813         kfree(output.pointer);
814         return ret;
815 }
816 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
817
818 /**
819  * acpi_cppc_processor_exit - Cleanup CPC structs.
820  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
821  *
822  * Return: Void
823  */
824 void acpi_cppc_processor_exit(struct acpi_processor *pr)
825 {
826         struct cpc_desc *cpc_ptr;
827         unsigned int i;
828         void __iomem *addr;
829
830         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
831         if (!cpc_ptr)
832                 return;
833
834         /* Free all the mapped sys mem areas for this CPU */
835         for (i = 2; i < cpc_ptr->num_entries; i++) {
836                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
837                 if (addr)
838                         iounmap(addr);
839         }
840
841         kobject_put(&cpc_ptr->kobj);
842         kfree(cpc_ptr);
843 }
844 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
845
846 /**
847  * cpc_read_ffh() - Read FFH register
848  * @cpunum:     cpu number to read
849  * @reg:        cppc register information
850  * @val:        place holder for return value
851  *
852  * Read bit_width bits from a specified address and bit_offset
853  *
854  * Return: 0 for success and error code
855  */
856 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
857 {
858         return -ENOTSUPP;
859 }
860
861 /**
862  * cpc_write_ffh() - Write FFH register
863  * @cpunum:     cpu number to write
864  * @reg:        cppc register information
865  * @val:        value to write
866  *
867  * Write value of bit_width bits to a specified address and bit_offset
868  *
869  * Return: 0 for success and error code
870  */
871 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
872 {
873         return -ENOTSUPP;
874 }
875
876 /*
877  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
878  * as fast as possible. We have already mapped the PCC subspace during init, so
879  * we can directly write to it.
880  */
881
882 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
883 {
884         int ret_val = 0;
885         void __iomem *vaddr = 0;
886         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
887
888         if (reg_res->type == ACPI_TYPE_INTEGER) {
889                 *val = reg_res->cpc_entry.int_value;
890                 return ret_val;
891         }
892
893         *val = 0;
894         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
895                 vaddr = GET_PCC_VADDR(reg->address);
896         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
897                 vaddr = reg_res->sys_mem_vaddr;
898         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
899                 return cpc_read_ffh(cpu, reg, val);
900         else
901                 return acpi_os_read_memory((acpi_physical_address)reg->address,
902                                 val, reg->bit_width);
903
904         switch (reg->bit_width) {
905                 case 8:
906                         *val = readb_relaxed(vaddr);
907                         break;
908                 case 16:
909                         *val = readw_relaxed(vaddr);
910                         break;
911                 case 32:
912                         *val = readl_relaxed(vaddr);
913                         break;
914                 case 64:
915                         *val = readq_relaxed(vaddr);
916                         break;
917                 default:
918                         pr_debug("Error: Cannot read %u bit width from PCC\n",
919                                         reg->bit_width);
920                         ret_val = -EFAULT;
921         }
922
923         return ret_val;
924 }
925
926 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
927 {
928         int ret_val = 0;
929         void __iomem *vaddr = 0;
930         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
931
932         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
933                 vaddr = GET_PCC_VADDR(reg->address);
934         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
935                 vaddr = reg_res->sys_mem_vaddr;
936         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
937                 return cpc_write_ffh(cpu, reg, val);
938         else
939                 return acpi_os_write_memory((acpi_physical_address)reg->address,
940                                 val, reg->bit_width);
941
942         switch (reg->bit_width) {
943                 case 8:
944                         writeb_relaxed(val, vaddr);
945                         break;
946                 case 16:
947                         writew_relaxed(val, vaddr);
948                         break;
949                 case 32:
950                         writel_relaxed(val, vaddr);
951                         break;
952                 case 64:
953                         writeq_relaxed(val, vaddr);
954                         break;
955                 default:
956                         pr_debug("Error: Cannot write %u bit width to PCC\n",
957                                         reg->bit_width);
958                         ret_val = -EFAULT;
959                         break;
960         }
961
962         return ret_val;
963 }
964
965 /**
966  * cppc_get_perf_caps - Get a CPUs performance capabilities.
967  * @cpunum: CPU from which to get capabilities info.
968  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
969  *
970  * Return: 0 for success with perf_caps populated else -ERRNO.
971  */
972 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
973 {
974         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
975         struct cpc_register_resource *highest_reg, *lowest_reg,
976                 *lowest_non_linear_reg, *nominal_reg;
977         u64 high, low, nom, min_nonlinear;
978         int ret = 0, regs_in_pcc = 0;
979
980         if (!cpc_desc) {
981                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
982                 return -ENODEV;
983         }
984
985         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
986         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
987         lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
988         nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
989
990         /* Are any of the regs PCC ?*/
991         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
992                 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg)) {
993                 regs_in_pcc = 1;
994                 down_write(&pcc_data.pcc_lock);
995                 /* Ring doorbell once to update PCC subspace */
996                 if (send_pcc_cmd(CMD_READ) < 0) {
997                         ret = -EIO;
998                         goto out_err;
999                 }
1000         }
1001
1002         cpc_read(cpunum, highest_reg, &high);
1003         perf_caps->highest_perf = high;
1004
1005         cpc_read(cpunum, lowest_reg, &low);
1006         perf_caps->lowest_perf = low;
1007
1008         cpc_read(cpunum, nominal_reg, &nom);
1009         perf_caps->nominal_perf = nom;
1010
1011         cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1012         perf_caps->lowest_nonlinear_perf = min_nonlinear;
1013
1014         if (!high || !low || !nom || !min_nonlinear)
1015                 ret = -EFAULT;
1016
1017 out_err:
1018         if (regs_in_pcc)
1019                 up_write(&pcc_data.pcc_lock);
1020         return ret;
1021 }
1022 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1023
1024 /**
1025  * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1026  * @cpunum: CPU from which to read counters.
1027  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1028  *
1029  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1030  */
1031 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1032 {
1033         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1034         struct cpc_register_resource *delivered_reg, *reference_reg,
1035                 *ref_perf_reg, *ctr_wrap_reg;
1036         u64 delivered, reference, ref_perf, ctr_wrap_time;
1037         int ret = 0, regs_in_pcc = 0;
1038
1039         if (!cpc_desc) {
1040                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1041                 return -ENODEV;
1042         }
1043
1044         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1045         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1046         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1047         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1048
1049         /*
1050          * If refernce perf register is not supported then we should
1051          * use the nominal perf value
1052          */
1053         if (!CPC_SUPPORTED(ref_perf_reg))
1054                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1055
1056         /* Are any of the regs PCC ?*/
1057         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1058                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1059                 down_write(&pcc_data.pcc_lock);
1060                 regs_in_pcc = 1;
1061                 /* Ring doorbell once to update PCC subspace */
1062                 if (send_pcc_cmd(CMD_READ) < 0) {
1063                         ret = -EIO;
1064                         goto out_err;
1065                 }
1066         }
1067
1068         cpc_read(cpunum, delivered_reg, &delivered);
1069         cpc_read(cpunum, reference_reg, &reference);
1070         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1071
1072         /*
1073          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1074          * performance counters are assumed to never wrap during the lifetime of
1075          * platform
1076          */
1077         ctr_wrap_time = (u64)(~((u64)0));
1078         if (CPC_SUPPORTED(ctr_wrap_reg))
1079                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1080
1081         if (!delivered || !reference || !ref_perf) {
1082                 ret = -EFAULT;
1083                 goto out_err;
1084         }
1085
1086         perf_fb_ctrs->delivered = delivered;
1087         perf_fb_ctrs->reference = reference;
1088         perf_fb_ctrs->reference_perf = ref_perf;
1089         perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1090 out_err:
1091         if (regs_in_pcc)
1092                 up_write(&pcc_data.pcc_lock);
1093         return ret;
1094 }
1095 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1096
1097 /**
1098  * cppc_set_perf - Set a CPUs performance controls.
1099  * @cpu: CPU for which to set performance controls.
1100  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1101  *
1102  * Return: 0 for success, -ERRNO otherwise.
1103  */
1104 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1105 {
1106         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1107         struct cpc_register_resource *desired_reg;
1108         int ret = 0;
1109
1110         if (!cpc_desc) {
1111                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1112                 return -ENODEV;
1113         }
1114
1115         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1116
1117         /*
1118          * This is Phase-I where we want to write to CPC registers
1119          * -> We want all CPUs to be able to execute this phase in parallel
1120          *
1121          * Since read_lock can be acquired by multiple CPUs simultaneously we
1122          * achieve that goal here
1123          */
1124         if (CPC_IN_PCC(desired_reg)) {
1125                 down_read(&pcc_data.pcc_lock);  /* BEGIN Phase-I */
1126                 if (pcc_data.platform_owns_pcc) {
1127                         ret = check_pcc_chan(false);
1128                         if (ret) {
1129                                 up_read(&pcc_data.pcc_lock);
1130                                 return ret;
1131                         }
1132                 }
1133                 /*
1134                  * Update the pending_write to make sure a PCC CMD_READ will not
1135                  * arrive and steal the channel during the switch to write lock
1136                  */
1137                 pcc_data.pending_pcc_write_cmd = true;
1138                 cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
1139                 cpc_desc->write_cmd_status = 0;
1140         }
1141
1142         /*
1143          * Skip writing MIN/MAX until Linux knows how to come up with
1144          * useful values.
1145          */
1146         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1147
1148         if (CPC_IN_PCC(desired_reg))
1149                 up_read(&pcc_data.pcc_lock);    /* END Phase-I */
1150         /*
1151          * This is Phase-II where we transfer the ownership of PCC to Platform
1152          *
1153          * Short Summary: Basically if we think of a group of cppc_set_perf
1154          * requests that happened in short overlapping interval. The last CPU to
1155          * come out of Phase-I will enter Phase-II and ring the doorbell.
1156          *
1157          * We have the following requirements for Phase-II:
1158          *     1. We want to execute Phase-II only when there are no CPUs
1159          * currently executing in Phase-I
1160          *     2. Once we start Phase-II we want to avoid all other CPUs from
1161          * entering Phase-I.
1162          *     3. We want only one CPU among all those who went through Phase-I
1163          * to run phase-II
1164          *
1165          * If write_trylock fails to get the lock and doesn't transfer the
1166          * PCC ownership to the platform, then one of the following will be TRUE
1167          *     1. There is at-least one CPU in Phase-I which will later execute
1168          * write_trylock, so the CPUs in Phase-I will be responsible for
1169          * executing the Phase-II.
1170          *     2. Some other CPU has beaten this CPU to successfully execute the
1171          * write_trylock and has already acquired the write_lock. We know for a
1172          * fact it(other CPU acquiring the write_lock) couldn't have happened
1173          * before this CPU's Phase-I as we held the read_lock.
1174          *     3. Some other CPU executing pcc CMD_READ has stolen the
1175          * down_write, in which case, send_pcc_cmd will check for pending
1176          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1177          * So this CPU can be certain that its request will be delivered
1178          *    So in all cases, this CPU knows that its request will be delivered
1179          * by another CPU and can return
1180          *
1181          * After getting the down_write we still need to check for
1182          * pending_pcc_write_cmd to take care of the following scenario
1183          *    The thread running this code could be scheduled out between
1184          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1185          * could have delivered the request to Platform by triggering the
1186          * doorbell and transferred the ownership of PCC to platform. So this
1187          * avoids triggering an unnecessary doorbell and more importantly before
1188          * triggering the doorbell it makes sure that the PCC channel ownership
1189          * is still with OSPM.
1190          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1191          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1192          * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1193          * case during a CMD_READ and if there are pending writes it delivers
1194          * the write command before servicing the read command
1195          */
1196         if (CPC_IN_PCC(desired_reg)) {
1197                 if (down_write_trylock(&pcc_data.pcc_lock)) {   /* BEGIN Phase-II */
1198                         /* Update only if there are pending write commands */
1199                         if (pcc_data.pending_pcc_write_cmd)
1200                                 send_pcc_cmd(CMD_WRITE);
1201                         up_write(&pcc_data.pcc_lock);           /* END Phase-II */
1202                 } else
1203                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1204                         wait_event(pcc_data.pcc_write_wait_q,
1205                                 cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
1206
1207                 /* send_pcc_cmd updates the status in case of failure */
1208                 ret = cpc_desc->write_cmd_status;
1209         }
1210         return ret;
1211 }
1212 EXPORT_SYMBOL_GPL(cppc_set_perf);
1213
1214 /**
1215  * cppc_get_transition_latency - returns frequency transition latency in ns
1216  *
1217  * ACPI CPPC does not explicitly specifiy how a platform can specify the
1218  * transition latency for perfromance change requests. The closest we have
1219  * is the timing information from the PCCT tables which provides the info
1220  * on the number and frequency of PCC commands the platform can handle.
1221  */
1222 unsigned int cppc_get_transition_latency(int cpu_num)
1223 {
1224         /*
1225          * Expected transition latency is based on the PCCT timing values
1226          * Below are definition from ACPI spec:
1227          * pcc_nominal- Expected latency to process a command, in microseconds
1228          * pcc_mpar   - The maximum number of periodic requests that the subspace
1229          *              channel can support, reported in commands per minute. 0
1230          *              indicates no limitation.
1231          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1232          *              completion of a command before issuing the next command,
1233          *              in microseconds.
1234          */
1235         unsigned int latency_ns = 0;
1236         struct cpc_desc *cpc_desc;
1237         struct cpc_register_resource *desired_reg;
1238
1239         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1240         if (!cpc_desc)
1241                 return CPUFREQ_ETERNAL;
1242
1243         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1244         if (!CPC_IN_PCC(desired_reg))
1245                 return CPUFREQ_ETERNAL;
1246
1247         if (pcc_data.pcc_mpar)
1248                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
1249
1250         latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
1251         latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
1252
1253         return latency_ns;
1254 }
1255 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);