GNU Linux-libre 4.9.282-gnu1
[releases.git] / drivers / acpi / cppc_acpi.c
1 /*
2  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3  *
4  * (C) Copyright 2014, 2015 Linaro Ltd.
5  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * CPPC describes a few methods for controlling CPU performance using
13  * information from a per CPU table called CPC. This table is described in
14  * the ACPI v5.0+ specification. The table consists of a list of
15  * registers which may be memory mapped or hardware registers and also may
16  * include some static integer values.
17  *
18  * CPU performance is on an abstract continuous scale as against a discretized
19  * P-state scale which is tied to CPU frequency only. In brief, the basic
20  * operation involves:
21  *
22  * - OS makes a CPU performance request. (Can provide min and max bounds)
23  *
24  * - Platform (such as BMC) is free to optimize request within requested bounds
25  *   depending on power/thermal budgets etc.
26  *
27  * - Platform conveys its decision back to OS
28  *
29  * The communication between OS and platform occurs through another medium
30  * called (PCC) Platform Communication Channel. This is a generic mailbox like
31  * mechanism which includes doorbell semantics to indicate register updates.
32  * See drivers/mailbox/pcc.c for details on PCC.
33  *
34  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35  * above specifications.
36  */
37
38 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
39
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/ktime.h>
43 #include <linux/rwsem.h>
44 #include <linux/wait.h>
45
46 #include <acpi/cppc_acpi.h>
47
48 struct cppc_pcc_data {
49         struct mbox_chan *pcc_channel;
50         void __iomem *pcc_comm_addr;
51         int pcc_subspace_idx;
52         bool pcc_channel_acquired;
53         ktime_t deadline;
54         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55
56         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
57         bool platform_owns_pcc;         /* Ownership of PCC subspace */
58         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
59
60         /*
61          * Lock to provide controlled access to the PCC channel.
62          *
63          * For performance critical usecases(currently cppc_set_perf)
64          *      We need to take read_lock and check if channel belongs to OSPM
65          * before reading or writing to PCC subspace
66          *      We need to take write_lock before transferring the channel
67          * ownership to the platform via a Doorbell
68          *      This allows us to batch a number of CPPC requests if they happen
69          * to originate in about the same time
70          *
71          * For non-performance critical usecases(init)
72          *      Take write_lock for all purposes which gives exclusive access
73          */
74         struct rw_semaphore pcc_lock;
75
76         /* Wait queue for CPUs whose requests were batched */
77         wait_queue_head_t pcc_write_wait_q;
78 };
79
80 /* Structure to represent the single PCC channel */
81 static struct cppc_pcc_data pcc_data = {
82         .pcc_subspace_idx = -1,
83         .platform_owns_pcc = true,
84 };
85
86 /*
87  * The cpc_desc structure contains the ACPI register details
88  * as described in the per CPU _CPC tables. The details
89  * include the type of register (e.g. PCC, System IO, FFH etc.)
90  * and destination addresses which lets us READ/WRITE CPU performance
91  * information using the appropriate I/O methods.
92  */
93 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
94
95 /* pcc mapped address + header size + offset within PCC subspace */
96 #define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
97
98 /* Check if a CPC regsiter is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
100                                 (cpc)->cpc_entry.reg.space_id ==        \
101                                 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Evalutes to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105                                 (reg)->address == 0 &&                  \
106                                 (reg)->bit_width == 0 &&                \
107                                 (reg)->bit_offset == 0 &&               \
108                                 (reg)->access_width == 0)
109
110 /* Evalutes to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
112                                 !!(cpc)->cpc_entry.int_value :          \
113                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 /*
115  * Arbitrary Retries in case the remote processor is slow to respond
116  * to PCC commands. Keeping it high enough to cover emulators where
117  * the processors run painfully slow.
118  */
119 #define NUM_RETRIES 500
120
121 struct cppc_attr {
122         struct attribute attr;
123         ssize_t (*show)(struct kobject *kobj,
124                         struct attribute *attr, char *buf);
125         ssize_t (*store)(struct kobject *kobj,
126                         struct attribute *attr, const char *c, ssize_t count);
127 };
128
129 #define define_one_cppc_ro(_name)               \
130 static struct cppc_attr _name =                 \
131 __ATTR(_name, 0444, show_##_name, NULL)
132
133 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
134
135 static ssize_t show_feedback_ctrs(struct kobject *kobj,
136                 struct attribute *attr, char *buf)
137 {
138         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
139         struct cppc_perf_fb_ctrs fb_ctrs = {0};
140
141         cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
142
143         return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
144                         fb_ctrs.reference, fb_ctrs.delivered);
145 }
146 define_one_cppc_ro(feedback_ctrs);
147
148 static ssize_t show_reference_perf(struct kobject *kobj,
149                 struct attribute *attr, char *buf)
150 {
151         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
152         struct cppc_perf_fb_ctrs fb_ctrs = {0};
153
154         cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
155
156         return scnprintf(buf, PAGE_SIZE, "%llu\n",
157                         fb_ctrs.reference_perf);
158 }
159 define_one_cppc_ro(reference_perf);
160
161 static ssize_t show_wraparound_time(struct kobject *kobj,
162                                 struct attribute *attr, char *buf)
163 {
164         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
165         struct cppc_perf_fb_ctrs fb_ctrs = {0};
166
167         cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
168
169         return scnprintf(buf, PAGE_SIZE, "%llu\n", fb_ctrs.ctr_wrap_time);
170
171 }
172 define_one_cppc_ro(wraparound_time);
173
174 static struct attribute *cppc_attrs[] = {
175         &feedback_ctrs.attr,
176         &reference_perf.attr,
177         &wraparound_time.attr,
178         NULL
179 };
180
181 static struct kobj_type cppc_ktype = {
182         .sysfs_ops = &kobj_sysfs_ops,
183         .default_attrs = cppc_attrs,
184 };
185
186 static int check_pcc_chan(bool chk_err_bit)
187 {
188         int ret = -EIO, status = 0;
189         struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
190         ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
191
192         if (!pcc_data.platform_owns_pcc)
193                 return 0;
194
195         /* Retry in case the remote processor was too slow to catch up. */
196         while (!ktime_after(ktime_get(), next_deadline)) {
197                 /*
198                  * Per spec, prior to boot the PCC space wil be initialized by
199                  * platform and should have set the command completion bit when
200                  * PCC can be used by OSPM
201                  */
202                 status = readw_relaxed(&generic_comm_base->status);
203                 if (status & PCC_CMD_COMPLETE_MASK) {
204                         ret = 0;
205                         if (chk_err_bit && (status & PCC_ERROR_MASK))
206                                 ret = -EIO;
207                         break;
208                 }
209                 /*
210                  * Reducing the bus traffic in case this loop takes longer than
211                  * a few retries.
212                  */
213                 udelay(3);
214         }
215
216         if (likely(!ret))
217                 pcc_data.platform_owns_pcc = false;
218         else
219                 pr_err("PCC check channel failed. Status=%x\n", status);
220
221         return ret;
222 }
223
224 /*
225  * This function transfers the ownership of the PCC to the platform
226  * So it must be called while holding write_lock(pcc_lock)
227  */
228 static int send_pcc_cmd(u16 cmd)
229 {
230         int ret = -EIO, i;
231         struct acpi_pcct_shared_memory *generic_comm_base =
232                 (struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
233         static ktime_t last_cmd_cmpl_time, last_mpar_reset;
234         static int mpar_count;
235         unsigned int time_delta;
236
237         /*
238          * For CMD_WRITE we know for a fact the caller should have checked
239          * the channel before writing to PCC space
240          */
241         if (cmd == CMD_READ) {
242                 /*
243                  * If there are pending cpc_writes, then we stole the channel
244                  * before write completion, so first send a WRITE command to
245                  * platform
246                  */
247                 if (pcc_data.pending_pcc_write_cmd)
248                         send_pcc_cmd(CMD_WRITE);
249
250                 ret = check_pcc_chan(false);
251                 if (ret)
252                         goto end;
253         } else /* CMD_WRITE */
254                 pcc_data.pending_pcc_write_cmd = FALSE;
255
256         /*
257          * Handle the Minimum Request Turnaround Time(MRTT)
258          * "The minimum amount of time that OSPM must wait after the completion
259          * of a command before issuing the next command, in microseconds"
260          */
261         if (pcc_data.pcc_mrtt) {
262                 time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
263                 if (pcc_data.pcc_mrtt > time_delta)
264                         udelay(pcc_data.pcc_mrtt - time_delta);
265         }
266
267         /*
268          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
269          * "The maximum number of periodic requests that the subspace channel can
270          * support, reported in commands per minute. 0 indicates no limitation."
271          *
272          * This parameter should be ideally zero or large enough so that it can
273          * handle maximum number of requests that all the cores in the system can
274          * collectively generate. If it is not, we will follow the spec and just
275          * not send the request to the platform after hitting the MPAR limit in
276          * any 60s window
277          */
278         if (pcc_data.pcc_mpar) {
279                 if (mpar_count == 0) {
280                         time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
281                         if (time_delta < 60 * MSEC_PER_SEC) {
282                                 pr_debug("PCC cmd not sent due to MPAR limit");
283                                 ret = -EIO;
284                                 goto end;
285                         }
286                         last_mpar_reset = ktime_get();
287                         mpar_count = pcc_data.pcc_mpar;
288                 }
289                 mpar_count--;
290         }
291
292         /* Write to the shared comm region. */
293         writew_relaxed(cmd, &generic_comm_base->command);
294
295         /* Flip CMD COMPLETE bit */
296         writew_relaxed(0, &generic_comm_base->status);
297
298         pcc_data.platform_owns_pcc = true;
299
300         /* Ring doorbell */
301         ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
302         if (ret < 0) {
303                 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
304                                 cmd, ret);
305                 goto end;
306         }
307
308         /* wait for completion and check for PCC errro bit */
309         ret = check_pcc_chan(true);
310
311         if (pcc_data.pcc_mrtt)
312                 last_cmd_cmpl_time = ktime_get();
313
314         if (pcc_data.pcc_channel->mbox->txdone_irq)
315                 mbox_chan_txdone(pcc_data.pcc_channel, ret);
316         else
317                 mbox_client_txdone(pcc_data.pcc_channel, ret);
318
319 end:
320         if (cmd == CMD_WRITE) {
321                 if (unlikely(ret)) {
322                         for_each_possible_cpu(i) {
323                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
324                                 if (!desc)
325                                         continue;
326
327                                 if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
328                                         desc->write_cmd_status = ret;
329                         }
330                 }
331                 pcc_data.pcc_write_cnt++;
332                 wake_up_all(&pcc_data.pcc_write_wait_q);
333         }
334
335         return ret;
336 }
337
338 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
339 {
340         if (ret < 0)
341                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
342                                 *(u16 *)msg, ret);
343         else
344                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
345                                 *(u16 *)msg, ret);
346 }
347
348 struct mbox_client cppc_mbox_cl = {
349         .tx_done = cppc_chan_tx_done,
350         .knows_txdone = true,
351 };
352
353 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
354 {
355         int result = -EFAULT;
356         acpi_status status = AE_OK;
357         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
358         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
359         struct acpi_buffer state = {0, NULL};
360         union acpi_object  *psd = NULL;
361         struct acpi_psd_package *pdomain;
362
363         status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
364                                             &buffer, ACPI_TYPE_PACKAGE);
365         if (status == AE_NOT_FOUND)     /* _PSD is optional */
366                 return 0;
367         if (ACPI_FAILURE(status))
368                 return -ENODEV;
369
370         psd = buffer.pointer;
371         if (!psd || psd->package.count != 1) {
372                 pr_debug("Invalid _PSD data\n");
373                 goto end;
374         }
375
376         pdomain = &(cpc_ptr->domain_info);
377
378         state.length = sizeof(struct acpi_psd_package);
379         state.pointer = pdomain;
380
381         status = acpi_extract_package(&(psd->package.elements[0]),
382                 &format, &state);
383         if (ACPI_FAILURE(status)) {
384                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
385                 goto end;
386         }
387
388         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
389                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
390                 goto end;
391         }
392
393         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
394                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
395                 goto end;
396         }
397
398         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
399             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
400             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
401                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
402                 goto end;
403         }
404
405         result = 0;
406 end:
407         kfree(buffer.pointer);
408         return result;
409 }
410
411 /**
412  * acpi_get_psd_map - Map the CPUs in a common freq domain.
413  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
414  *
415  *      Return: 0 for success or negative value for err.
416  */
417 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
418 {
419         int count_target;
420         int retval = 0;
421         unsigned int i, j;
422         cpumask_var_t covered_cpus;
423         struct cppc_cpudata *pr, *match_pr;
424         struct acpi_psd_package *pdomain;
425         struct acpi_psd_package *match_pdomain;
426         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
427
428         if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
429                 return -ENOMEM;
430
431         /*
432          * Now that we have _PSD data from all CPUs, lets setup P-state
433          * domain info.
434          */
435         for_each_possible_cpu(i) {
436                 pr = all_cpu_data[i];
437                 if (!pr)
438                         continue;
439
440                 if (cpumask_test_cpu(i, covered_cpus))
441                         continue;
442
443                 cpc_ptr = per_cpu(cpc_desc_ptr, i);
444                 if (!cpc_ptr) {
445                         retval = -EFAULT;
446                         goto err_ret;
447                 }
448
449                 pdomain = &(cpc_ptr->domain_info);
450                 cpumask_set_cpu(i, pr->shared_cpu_map);
451                 cpumask_set_cpu(i, covered_cpus);
452                 if (pdomain->num_processors <= 1)
453                         continue;
454
455                 /* Validate the Domain info */
456                 count_target = pdomain->num_processors;
457                 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
458                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
459                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
460                         pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
461                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
462                         pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
463
464                 for_each_possible_cpu(j) {
465                         if (i == j)
466                                 continue;
467
468                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
469                         if (!match_cpc_ptr) {
470                                 retval = -EFAULT;
471                                 goto err_ret;
472                         }
473
474                         match_pdomain = &(match_cpc_ptr->domain_info);
475                         if (match_pdomain->domain != pdomain->domain)
476                                 continue;
477
478                         /* Here i and j are in the same domain */
479                         if (match_pdomain->num_processors != count_target) {
480                                 retval = -EFAULT;
481                                 goto err_ret;
482                         }
483
484                         if (pdomain->coord_type != match_pdomain->coord_type) {
485                                 retval = -EFAULT;
486                                 goto err_ret;
487                         }
488
489                         cpumask_set_cpu(j, covered_cpus);
490                         cpumask_set_cpu(j, pr->shared_cpu_map);
491                 }
492
493                 for_each_possible_cpu(j) {
494                         if (i == j)
495                                 continue;
496
497                         match_pr = all_cpu_data[j];
498                         if (!match_pr)
499                                 continue;
500
501                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
502                         if (!match_cpc_ptr) {
503                                 retval = -EFAULT;
504                                 goto err_ret;
505                         }
506
507                         match_pdomain = &(match_cpc_ptr->domain_info);
508                         if (match_pdomain->domain != pdomain->domain)
509                                 continue;
510
511                         match_pr->shared_type = pr->shared_type;
512                         cpumask_copy(match_pr->shared_cpu_map,
513                                      pr->shared_cpu_map);
514                 }
515         }
516
517 err_ret:
518         for_each_possible_cpu(i) {
519                 pr = all_cpu_data[i];
520                 if (!pr)
521                         continue;
522
523                 /* Assume no coordination on any error parsing domain info */
524                 if (retval) {
525                         cpumask_clear(pr->shared_cpu_map);
526                         cpumask_set_cpu(i, pr->shared_cpu_map);
527                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
528                 }
529         }
530
531         free_cpumask_var(covered_cpus);
532         return retval;
533 }
534 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
535
536 static int register_pcc_channel(int pcc_subspace_idx)
537 {
538         struct acpi_pcct_hw_reduced *cppc_ss;
539         u64 usecs_lat;
540
541         if (pcc_subspace_idx >= 0) {
542                 pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
543                                 pcc_subspace_idx);
544
545                 if (IS_ERR(pcc_data.pcc_channel)) {
546                         pr_err("Failed to find PCC communication channel\n");
547                         return -ENODEV;
548                 }
549
550                 /*
551                  * The PCC mailbox controller driver should
552                  * have parsed the PCCT (global table of all
553                  * PCC channels) and stored pointers to the
554                  * subspace communication region in con_priv.
555                  */
556                 cppc_ss = (pcc_data.pcc_channel)->con_priv;
557
558                 if (!cppc_ss) {
559                         pr_err("No PCC subspace found for CPPC\n");
560                         return -ENODEV;
561                 }
562
563                 /*
564                  * cppc_ss->latency is just a Nominal value. In reality
565                  * the remote processor could be much slower to reply.
566                  * So add an arbitrary amount of wait on top of Nominal.
567                  */
568                 usecs_lat = NUM_RETRIES * cppc_ss->latency;
569                 pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
570                 pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
571                 pcc_data.pcc_mpar = cppc_ss->max_access_rate;
572                 pcc_data.pcc_nominal = cppc_ss->latency;
573
574                 pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
575                 if (!pcc_data.pcc_comm_addr) {
576                         pr_err("Failed to ioremap PCC comm region mem\n");
577                         return -ENOMEM;
578                 }
579
580                 /* Set flag so that we dont come here for each CPU. */
581                 pcc_data.pcc_channel_acquired = true;
582         }
583
584         return 0;
585 }
586
587 /**
588  * cpc_ffh_supported() - check if FFH reading supported
589  *
590  * Check if the architecture has support for functional fixed hardware
591  * read/write capability.
592  *
593  * Return: true for supported, false for not supported
594  */
595 bool __weak cpc_ffh_supported(void)
596 {
597         return false;
598 }
599
600 /*
601  * An example CPC table looks like the following.
602  *
603  *      Name(_CPC, Package()
604  *                      {
605  *                      17,
606  *                      NumEntries
607  *                      1,
608  *                      // Revision
609  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
610  *                      // Highest Performance
611  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
612  *                      // Nominal Performance
613  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
614  *                      // Lowest Nonlinear Performance
615  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
616  *                      // Lowest Performance
617  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
618  *                      // Guaranteed Performance Register
619  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
620  *                      // Desired Performance Register
621  *                      ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
622  *                      ..
623  *                      ..
624  *                      ..
625  *
626  *              }
627  * Each Register() encodes how to access that specific register.
628  * e.g. a sample PCC entry has the following encoding:
629  *
630  *      Register (
631  *              PCC,
632  *              AddressSpaceKeyword
633  *              8,
634  *              //RegisterBitWidth
635  *              8,
636  *              //RegisterBitOffset
637  *              0x30,
638  *              //RegisterAddress
639  *              9
640  *              //AccessSize (subspace ID)
641  *              0
642  *              )
643  *      }
644  */
645
646 /**
647  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
648  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
649  *
650  *      Return: 0 for success or negative value for err.
651  */
652 int acpi_cppc_processor_probe(struct acpi_processor *pr)
653 {
654         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
655         union acpi_object *out_obj, *cpc_obj;
656         struct cpc_desc *cpc_ptr;
657         struct cpc_reg *gas_t;
658         struct device *cpu_dev;
659         acpi_handle handle = pr->handle;
660         unsigned int num_ent, i, cpc_rev;
661         acpi_status status;
662         int ret = -EFAULT;
663
664         /* Parse the ACPI _CPC table for this cpu. */
665         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
666                         ACPI_TYPE_PACKAGE);
667         if (ACPI_FAILURE(status)) {
668                 ret = -ENODEV;
669                 goto out_buf_free;
670         }
671
672         out_obj = (union acpi_object *) output.pointer;
673
674         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
675         if (!cpc_ptr) {
676                 ret = -ENOMEM;
677                 goto out_buf_free;
678         }
679
680         /* First entry is NumEntries. */
681         cpc_obj = &out_obj->package.elements[0];
682         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
683                 num_ent = cpc_obj->integer.value;
684         } else {
685                 pr_debug("Unexpected entry type(%d) for NumEntries\n",
686                                 cpc_obj->type);
687                 goto out_free;
688         }
689
690         /* Only support CPPCv2. Bail otherwise. */
691         if (num_ent != CPPC_NUM_ENT) {
692                 pr_debug("Firmware exports %d entries. Expected: %d\n",
693                                 num_ent, CPPC_NUM_ENT);
694                 goto out_free;
695         }
696
697         cpc_ptr->num_entries = num_ent;
698
699         /* Second entry should be revision. */
700         cpc_obj = &out_obj->package.elements[1];
701         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
702                 cpc_rev = cpc_obj->integer.value;
703         } else {
704                 pr_debug("Unexpected entry type(%d) for Revision\n",
705                                 cpc_obj->type);
706                 goto out_free;
707         }
708
709         if (cpc_rev != CPPC_REV) {
710                 pr_debug("Firmware exports revision:%d. Expected:%d\n",
711                                 cpc_rev, CPPC_REV);
712                 goto out_free;
713         }
714
715         /* Iterate through remaining entries in _CPC */
716         for (i = 2; i < num_ent; i++) {
717                 cpc_obj = &out_obj->package.elements[i];
718
719                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
720                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
721                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
722                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
723                         gas_t = (struct cpc_reg *)
724                                 cpc_obj->buffer.pointer;
725
726                         /*
727                          * The PCC Subspace index is encoded inside
728                          * the CPC table entries. The same PCC index
729                          * will be used for all the PCC entries,
730                          * so extract it only once.
731                          */
732                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
733                                 if (pcc_data.pcc_subspace_idx < 0)
734                                         pcc_data.pcc_subspace_idx = gas_t->access_width;
735                                 else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
736                                         pr_debug("Mismatched PCC ids.\n");
737                                         goto out_free;
738                                 }
739                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
740                                 if (gas_t->address) {
741                                         void __iomem *addr;
742
743                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
744                                         if (!addr)
745                                                 goto out_free;
746                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
747                                 }
748                         } else {
749                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
750                                         /* Support only PCC ,SYS MEM and FFH type regs */
751                                         pr_debug("Unsupported register type: %d\n", gas_t->space_id);
752                                         goto out_free;
753                                 }
754                         }
755
756                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
757                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
758                 } else {
759                         pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
760                         goto out_free;
761                 }
762         }
763         /* Store CPU Logical ID */
764         cpc_ptr->cpu_id = pr->id;
765
766         /* Parse PSD data for this CPU */
767         ret = acpi_get_psd(cpc_ptr, handle);
768         if (ret)
769                 goto out_free;
770
771         /* Register PCC channel once for all CPUs. */
772         if (!pcc_data.pcc_channel_acquired) {
773                 ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
774                 if (ret)
775                         goto out_free;
776
777                 init_rwsem(&pcc_data.pcc_lock);
778                 init_waitqueue_head(&pcc_data.pcc_write_wait_q);
779         }
780
781         /* Plug PSD data into this CPUs CPC descriptor. */
782         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
783
784         /* Everything looks okay */
785         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
786
787         /* Add per logical CPU nodes for reading its feedback counters. */
788         cpu_dev = get_cpu_device(pr->id);
789         if (!cpu_dev) {
790                 ret = -EINVAL;
791                 goto out_free;
792         }
793
794         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
795                         "acpi_cppc");
796         if (ret) {
797                 kobject_put(&cpc_ptr->kobj);
798                 goto out_free;
799         }
800
801         kfree(output.pointer);
802         return 0;
803
804 out_free:
805         /* Free all the mapped sys mem areas for this CPU */
806         for (i = 2; i < cpc_ptr->num_entries; i++) {
807                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
808
809                 if (addr)
810                         iounmap(addr);
811         }
812         kfree(cpc_ptr);
813
814 out_buf_free:
815         kfree(output.pointer);
816         return ret;
817 }
818 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
819
820 /**
821  * acpi_cppc_processor_exit - Cleanup CPC structs.
822  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
823  *
824  * Return: Void
825  */
826 void acpi_cppc_processor_exit(struct acpi_processor *pr)
827 {
828         struct cpc_desc *cpc_ptr;
829         unsigned int i;
830         void __iomem *addr;
831
832         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
833
834         /* Free all the mapped sys mem areas for this CPU */
835         for (i = 2; i < cpc_ptr->num_entries; i++) {
836                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
837                 if (addr)
838                         iounmap(addr);
839         }
840
841         kobject_put(&cpc_ptr->kobj);
842         kfree(cpc_ptr);
843 }
844 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
845
846 /**
847  * cpc_read_ffh() - Read FFH register
848  * @cpunum:     cpu number to read
849  * @reg:        cppc register information
850  * @val:        place holder for return value
851  *
852  * Read bit_width bits from a specified address and bit_offset
853  *
854  * Return: 0 for success and error code
855  */
856 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
857 {
858         return -ENOTSUPP;
859 }
860
861 /**
862  * cpc_write_ffh() - Write FFH register
863  * @cpunum:     cpu number to write
864  * @reg:        cppc register information
865  * @val:        value to write
866  *
867  * Write value of bit_width bits to a specified address and bit_offset
868  *
869  * Return: 0 for success and error code
870  */
871 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
872 {
873         return -ENOTSUPP;
874 }
875
876 /*
877  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
878  * as fast as possible. We have already mapped the PCC subspace during init, so
879  * we can directly write to it.
880  */
881
882 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
883 {
884         int ret_val = 0;
885         void __iomem *vaddr = 0;
886         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
887
888         if (reg_res->type == ACPI_TYPE_INTEGER) {
889                 *val = reg_res->cpc_entry.int_value;
890                 return ret_val;
891         }
892
893         *val = 0;
894         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
895                 vaddr = GET_PCC_VADDR(reg->address);
896         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
897                 vaddr = reg_res->sys_mem_vaddr;
898         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
899                 return cpc_read_ffh(cpu, reg, val);
900         else
901                 return acpi_os_read_memory((acpi_physical_address)reg->address,
902                                 val, reg->bit_width);
903
904         switch (reg->bit_width) {
905                 case 8:
906                         *val = readb_relaxed(vaddr);
907                         break;
908                 case 16:
909                         *val = readw_relaxed(vaddr);
910                         break;
911                 case 32:
912                         *val = readl_relaxed(vaddr);
913                         break;
914                 case 64:
915                         *val = readq_relaxed(vaddr);
916                         break;
917                 default:
918                         pr_debug("Error: Cannot read %u bit width from PCC\n",
919                                         reg->bit_width);
920                         ret_val = -EFAULT;
921         }
922
923         return ret_val;
924 }
925
926 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
927 {
928         int ret_val = 0;
929         void __iomem *vaddr = 0;
930         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
931
932         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
933                 vaddr = GET_PCC_VADDR(reg->address);
934         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
935                 vaddr = reg_res->sys_mem_vaddr;
936         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
937                 return cpc_write_ffh(cpu, reg, val);
938         else
939                 return acpi_os_write_memory((acpi_physical_address)reg->address,
940                                 val, reg->bit_width);
941
942         switch (reg->bit_width) {
943                 case 8:
944                         writeb_relaxed(val, vaddr);
945                         break;
946                 case 16:
947                         writew_relaxed(val, vaddr);
948                         break;
949                 case 32:
950                         writel_relaxed(val, vaddr);
951                         break;
952                 case 64:
953                         writeq_relaxed(val, vaddr);
954                         break;
955                 default:
956                         pr_debug("Error: Cannot write %u bit width to PCC\n",
957                                         reg->bit_width);
958                         ret_val = -EFAULT;
959                         break;
960         }
961
962         return ret_val;
963 }
964
965 /**
966  * cppc_get_perf_caps - Get a CPUs performance capabilities.
967  * @cpunum: CPU from which to get capabilities info.
968  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
969  *
970  * Return: 0 for success with perf_caps populated else -ERRNO.
971  */
972 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
973 {
974         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
975         struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
976                                                                  *nom_perf;
977         u64 high, low, nom;
978         int ret = 0, regs_in_pcc = 0;
979
980         if (!cpc_desc) {
981                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
982                 return -ENODEV;
983         }
984
985         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
986         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
987         ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
988         nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];
989
990         /* Are any of the regs PCC ?*/
991         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
992                 CPC_IN_PCC(ref_perf) || CPC_IN_PCC(nom_perf)) {
993                 regs_in_pcc = 1;
994                 down_write(&pcc_data.pcc_lock);
995                 /* Ring doorbell once to update PCC subspace */
996                 if (send_pcc_cmd(CMD_READ) < 0) {
997                         ret = -EIO;
998                         goto out_err;
999                 }
1000         }
1001
1002         cpc_read(cpunum, highest_reg, &high);
1003         perf_caps->highest_perf = high;
1004
1005         cpc_read(cpunum, lowest_reg, &low);
1006         perf_caps->lowest_perf = low;
1007
1008         cpc_read(cpunum, nom_perf, &nom);
1009         perf_caps->nominal_perf = nom;
1010
1011         if (!high || !low || !nom)
1012                 ret = -EFAULT;
1013
1014 out_err:
1015         if (regs_in_pcc)
1016                 up_write(&pcc_data.pcc_lock);
1017         return ret;
1018 }
1019 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1020
1021 /**
1022  * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1023  * @cpunum: CPU from which to read counters.
1024  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1025  *
1026  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1027  */
1028 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1029 {
1030         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1031         struct cpc_register_resource *delivered_reg, *reference_reg,
1032                 *ref_perf_reg, *ctr_wrap_reg;
1033         u64 delivered, reference, ref_perf, ctr_wrap_time;
1034         int ret = 0, regs_in_pcc = 0;
1035
1036         if (!cpc_desc) {
1037                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1038                 return -ENODEV;
1039         }
1040
1041         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1042         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1043         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1044         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1045
1046         /*
1047          * If refernce perf register is not supported then we should
1048          * use the nominal perf value
1049          */
1050         if (!CPC_SUPPORTED(ref_perf_reg))
1051                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1052
1053         /* Are any of the regs PCC ?*/
1054         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1055                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1056                 down_write(&pcc_data.pcc_lock);
1057                 regs_in_pcc = 1;
1058                 /* Ring doorbell once to update PCC subspace */
1059                 if (send_pcc_cmd(CMD_READ) < 0) {
1060                         ret = -EIO;
1061                         goto out_err;
1062                 }
1063         }
1064
1065         cpc_read(cpunum, delivered_reg, &delivered);
1066         cpc_read(cpunum, reference_reg, &reference);
1067         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1068
1069         /*
1070          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1071          * performance counters are assumed to never wrap during the lifetime of
1072          * platform
1073          */
1074         ctr_wrap_time = (u64)(~((u64)0));
1075         if (CPC_SUPPORTED(ctr_wrap_reg))
1076                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1077
1078         if (!delivered || !reference || !ref_perf) {
1079                 ret = -EFAULT;
1080                 goto out_err;
1081         }
1082
1083         perf_fb_ctrs->delivered = delivered;
1084         perf_fb_ctrs->reference = reference;
1085         perf_fb_ctrs->reference_perf = ref_perf;
1086         perf_fb_ctrs->ctr_wrap_time = ctr_wrap_time;
1087 out_err:
1088         if (regs_in_pcc)
1089                 up_write(&pcc_data.pcc_lock);
1090         return ret;
1091 }
1092 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1093
1094 /**
1095  * cppc_set_perf - Set a CPUs performance controls.
1096  * @cpu: CPU for which to set performance controls.
1097  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1098  *
1099  * Return: 0 for success, -ERRNO otherwise.
1100  */
1101 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1102 {
1103         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1104         struct cpc_register_resource *desired_reg;
1105         int ret = 0;
1106
1107         if (!cpc_desc) {
1108                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1109                 return -ENODEV;
1110         }
1111
1112         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1113
1114         /*
1115          * This is Phase-I where we want to write to CPC registers
1116          * -> We want all CPUs to be able to execute this phase in parallel
1117          *
1118          * Since read_lock can be acquired by multiple CPUs simultaneously we
1119          * achieve that goal here
1120          */
1121         if (CPC_IN_PCC(desired_reg)) {
1122                 down_read(&pcc_data.pcc_lock);  /* BEGIN Phase-I */
1123                 if (pcc_data.platform_owns_pcc) {
1124                         ret = check_pcc_chan(false);
1125                         if (ret) {
1126                                 up_read(&pcc_data.pcc_lock);
1127                                 return ret;
1128                         }
1129                 }
1130                 /*
1131                  * Update the pending_write to make sure a PCC CMD_READ will not
1132                  * arrive and steal the channel during the switch to write lock
1133                  */
1134                 pcc_data.pending_pcc_write_cmd = true;
1135                 cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
1136                 cpc_desc->write_cmd_status = 0;
1137         }
1138
1139         /*
1140          * Skip writing MIN/MAX until Linux knows how to come up with
1141          * useful values.
1142          */
1143         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1144
1145         if (CPC_IN_PCC(desired_reg))
1146                 up_read(&pcc_data.pcc_lock);    /* END Phase-I */
1147         /*
1148          * This is Phase-II where we transfer the ownership of PCC to Platform
1149          *
1150          * Short Summary: Basically if we think of a group of cppc_set_perf
1151          * requests that happened in short overlapping interval. The last CPU to
1152          * come out of Phase-I will enter Phase-II and ring the doorbell.
1153          *
1154          * We have the following requirements for Phase-II:
1155          *     1. We want to execute Phase-II only when there are no CPUs
1156          * currently executing in Phase-I
1157          *     2. Once we start Phase-II we want to avoid all other CPUs from
1158          * entering Phase-I.
1159          *     3. We want only one CPU among all those who went through Phase-I
1160          * to run phase-II
1161          *
1162          * If write_trylock fails to get the lock and doesn't transfer the
1163          * PCC ownership to the platform, then one of the following will be TRUE
1164          *     1. There is at-least one CPU in Phase-I which will later execute
1165          * write_trylock, so the CPUs in Phase-I will be responsible for
1166          * executing the Phase-II.
1167          *     2. Some other CPU has beaten this CPU to successfully execute the
1168          * write_trylock and has already acquired the write_lock. We know for a
1169          * fact it(other CPU acquiring the write_lock) couldn't have happened
1170          * before this CPU's Phase-I as we held the read_lock.
1171          *     3. Some other CPU executing pcc CMD_READ has stolen the
1172          * down_write, in which case, send_pcc_cmd will check for pending
1173          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1174          * So this CPU can be certain that its request will be delivered
1175          *    So in all cases, this CPU knows that its request will be delivered
1176          * by another CPU and can return
1177          *
1178          * After getting the down_write we still need to check for
1179          * pending_pcc_write_cmd to take care of the following scenario
1180          *    The thread running this code could be scheduled out between
1181          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1182          * could have delivered the request to Platform by triggering the
1183          * doorbell and transferred the ownership of PCC to platform. So this
1184          * avoids triggering an unnecessary doorbell and more importantly before
1185          * triggering the doorbell it makes sure that the PCC channel ownership
1186          * is still with OSPM.
1187          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1188          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1189          * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1190          * case during a CMD_READ and if there are pending writes it delivers
1191          * the write command before servicing the read command
1192          */
1193         if (CPC_IN_PCC(desired_reg)) {
1194                 if (down_write_trylock(&pcc_data.pcc_lock)) {   /* BEGIN Phase-II */
1195                         /* Update only if there are pending write commands */
1196                         if (pcc_data.pending_pcc_write_cmd)
1197                                 send_pcc_cmd(CMD_WRITE);
1198                         up_write(&pcc_data.pcc_lock);           /* END Phase-II */
1199                 } else
1200                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1201                         wait_event(pcc_data.pcc_write_wait_q,
1202                                 cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
1203
1204                 /* send_pcc_cmd updates the status in case of failure */
1205                 ret = cpc_desc->write_cmd_status;
1206         }
1207         return ret;
1208 }
1209 EXPORT_SYMBOL_GPL(cppc_set_perf);
1210
1211 /**
1212  * cppc_get_transition_latency - returns frequency transition latency in ns
1213  *
1214  * ACPI CPPC does not explicitly specifiy how a platform can specify the
1215  * transition latency for perfromance change requests. The closest we have
1216  * is the timing information from the PCCT tables which provides the info
1217  * on the number and frequency of PCC commands the platform can handle.
1218  */
1219 unsigned int cppc_get_transition_latency(int cpu_num)
1220 {
1221         /*
1222          * Expected transition latency is based on the PCCT timing values
1223          * Below are definition from ACPI spec:
1224          * pcc_nominal- Expected latency to process a command, in microseconds
1225          * pcc_mpar   - The maximum number of periodic requests that the subspace
1226          *              channel can support, reported in commands per minute. 0
1227          *              indicates no limitation.
1228          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1229          *              completion of a command before issuing the next command,
1230          *              in microseconds.
1231          */
1232         unsigned int latency_ns = 0;
1233         struct cpc_desc *cpc_desc;
1234         struct cpc_register_resource *desired_reg;
1235
1236         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1237         if (!cpc_desc)
1238                 return CPUFREQ_ETERNAL;
1239
1240         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1241         if (!CPC_IN_PCC(desired_reg))
1242                 return CPUFREQ_ETERNAL;
1243
1244         if (pcc_data.pcc_mpar)
1245                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
1246
1247         latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
1248         latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
1249
1250         return latency_ns;
1251 }
1252 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);