GNU Linux-libre 4.9.317-gnu1
[releases.git] / drivers / acpi / acpi_pad.c
1 /*
2  * acpi_pad.c ACPI Processor Aggregator Driver
3  *
4  * Copyright (c) 2009, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/cpumask.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/cpu.h>
25 #include <linux/tick.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <asm/mwait.h>
29 #include <xen/xen.h>
30
31 #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
32 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
33 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
34 static DEFINE_MUTEX(isolated_cpus_lock);
35 static DEFINE_MUTEX(round_robin_lock);
36
37 static unsigned long power_saving_mwait_eax;
38
39 static unsigned char tsc_detected_unstable;
40 static unsigned char tsc_marked_unstable;
41
42 static void power_saving_mwait_init(void)
43 {
44         unsigned int eax, ebx, ecx, edx;
45         unsigned int highest_cstate = 0;
46         unsigned int highest_subcstate = 0;
47         int i;
48
49         if (!boot_cpu_has(X86_FEATURE_MWAIT))
50                 return;
51         if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
52                 return;
53
54         cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
55
56         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
57             !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
58                 return;
59
60         edx >>= MWAIT_SUBSTATE_SIZE;
61         for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
62                 if (edx & MWAIT_SUBSTATE_MASK) {
63                         highest_cstate = i;
64                         highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
65                 }
66         }
67         power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
68                 (highest_subcstate - 1);
69
70 #if defined(CONFIG_X86)
71         switch (boot_cpu_data.x86_vendor) {
72         case X86_VENDOR_AMD:
73         case X86_VENDOR_INTEL:
74                 /*
75                  * AMD Fam10h TSC will tick in all
76                  * C/P/S0/S1 states when this bit is set.
77                  */
78                 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
79                         tsc_detected_unstable = 1;
80                 break;
81         default:
82                 /* TSC could halt in idle */
83                 tsc_detected_unstable = 1;
84         }
85 #endif
86 }
87
88 static unsigned long cpu_weight[NR_CPUS];
89 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
90 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
91 static void round_robin_cpu(unsigned int tsk_index)
92 {
93         struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
94         cpumask_var_t tmp;
95         int cpu;
96         unsigned long min_weight = -1;
97         unsigned long uninitialized_var(preferred_cpu);
98
99         if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
100                 return;
101
102         mutex_lock(&round_robin_lock);
103         cpumask_clear(tmp);
104         for_each_cpu(cpu, pad_busy_cpus)
105                 cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
106         cpumask_andnot(tmp, cpu_online_mask, tmp);
107         /* avoid HT sibilings if possible */
108         if (cpumask_empty(tmp))
109                 cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
110         if (cpumask_empty(tmp)) {
111                 mutex_unlock(&round_robin_lock);
112                 free_cpumask_var(tmp);
113                 return;
114         }
115         for_each_cpu(cpu, tmp) {
116                 if (cpu_weight[cpu] < min_weight) {
117                         min_weight = cpu_weight[cpu];
118                         preferred_cpu = cpu;
119                 }
120         }
121
122         if (tsk_in_cpu[tsk_index] != -1)
123                 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
124         tsk_in_cpu[tsk_index] = preferred_cpu;
125         cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
126         cpu_weight[preferred_cpu]++;
127         mutex_unlock(&round_robin_lock);
128
129         set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
130
131         free_cpumask_var(tmp);
132 }
133
134 static void exit_round_robin(unsigned int tsk_index)
135 {
136         struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
137         cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
138         tsk_in_cpu[tsk_index] = -1;
139 }
140
141 static unsigned int idle_pct = 5; /* percentage */
142 static unsigned int round_robin_time = 1; /* second */
143 static int power_saving_thread(void *data)
144 {
145         struct sched_param param = {.sched_priority = 1};
146         int do_sleep;
147         unsigned int tsk_index = (unsigned long)data;
148         u64 last_jiffies = 0;
149
150         sched_setscheduler(current, SCHED_RR, &param);
151
152         while (!kthread_should_stop()) {
153                 unsigned long expire_time;
154
155                 /* round robin to cpus */
156                 expire_time = last_jiffies + round_robin_time * HZ;
157                 if (time_before(expire_time, jiffies)) {
158                         last_jiffies = jiffies;
159                         round_robin_cpu(tsk_index);
160                 }
161
162                 do_sleep = 0;
163
164                 expire_time = jiffies + HZ * (100 - idle_pct) / 100;
165
166                 while (!need_resched()) {
167                         if (tsc_detected_unstable && !tsc_marked_unstable) {
168                                 /* TSC could halt in idle, so notify users */
169                                 mark_tsc_unstable("TSC halts in idle");
170                                 tsc_marked_unstable = 1;
171                         }
172                         local_irq_disable();
173                         tick_broadcast_enable();
174                         tick_broadcast_enter();
175                         stop_critical_timings();
176
177                         mwait_idle_with_hints(power_saving_mwait_eax, 1);
178
179                         start_critical_timings();
180                         tick_broadcast_exit();
181                         local_irq_enable();
182
183                         if (time_before(expire_time, jiffies)) {
184                                 do_sleep = 1;
185                                 break;
186                         }
187                 }
188
189                 /*
190                  * current sched_rt has threshold for rt task running time.
191                  * When a rt task uses 95% CPU time, the rt thread will be
192                  * scheduled out for 5% CPU time to not starve other tasks. But
193                  * the mechanism only works when all CPUs have RT task running,
194                  * as if one CPU hasn't RT task, RT task from other CPUs will
195                  * borrow CPU time from this CPU and cause RT task use > 95%
196                  * CPU time. To make 'avoid starvation' work, takes a nap here.
197                  */
198                 if (unlikely(do_sleep))
199                         schedule_timeout_killable(HZ * idle_pct / 100);
200
201                 /* If an external event has set the need_resched flag, then
202                  * we need to deal with it, or this loop will continue to
203                  * spin without calling __mwait().
204                  */
205                 if (unlikely(need_resched()))
206                         schedule();
207         }
208
209         exit_round_robin(tsk_index);
210         return 0;
211 }
212
213 static struct task_struct *ps_tsks[NR_CPUS];
214 static unsigned int ps_tsk_num;
215 static int create_power_saving_task(void)
216 {
217         int rc;
218
219         ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
220                 (void *)(unsigned long)ps_tsk_num,
221                 "acpi_pad/%d", ps_tsk_num);
222
223         if (IS_ERR(ps_tsks[ps_tsk_num])) {
224                 rc = PTR_ERR(ps_tsks[ps_tsk_num]);
225                 ps_tsks[ps_tsk_num] = NULL;
226         } else {
227                 rc = 0;
228                 ps_tsk_num++;
229         }
230
231         return rc;
232 }
233
234 static void destroy_power_saving_task(void)
235 {
236         if (ps_tsk_num > 0) {
237                 ps_tsk_num--;
238                 kthread_stop(ps_tsks[ps_tsk_num]);
239                 ps_tsks[ps_tsk_num] = NULL;
240         }
241 }
242
243 static void set_power_saving_task_num(unsigned int num)
244 {
245         if (num > ps_tsk_num) {
246                 while (ps_tsk_num < num) {
247                         if (create_power_saving_task())
248                                 return;
249                 }
250         } else if (num < ps_tsk_num) {
251                 while (ps_tsk_num > num)
252                         destroy_power_saving_task();
253         }
254 }
255
256 static void acpi_pad_idle_cpus(unsigned int num_cpus)
257 {
258         get_online_cpus();
259
260         num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
261         set_power_saving_task_num(num_cpus);
262
263         put_online_cpus();
264 }
265
266 static uint32_t acpi_pad_idle_cpus_num(void)
267 {
268         return ps_tsk_num;
269 }
270
271 static ssize_t acpi_pad_rrtime_store(struct device *dev,
272         struct device_attribute *attr, const char *buf, size_t count)
273 {
274         unsigned long num;
275         if (kstrtoul(buf, 0, &num))
276                 return -EINVAL;
277         if (num < 1 || num >= 100)
278                 return -EINVAL;
279         mutex_lock(&isolated_cpus_lock);
280         round_robin_time = num;
281         mutex_unlock(&isolated_cpus_lock);
282         return count;
283 }
284
285 static ssize_t acpi_pad_rrtime_show(struct device *dev,
286         struct device_attribute *attr, char *buf)
287 {
288         return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
289 }
290 static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
291         acpi_pad_rrtime_show,
292         acpi_pad_rrtime_store);
293
294 static ssize_t acpi_pad_idlepct_store(struct device *dev,
295         struct device_attribute *attr, const char *buf, size_t count)
296 {
297         unsigned long num;
298         if (kstrtoul(buf, 0, &num))
299                 return -EINVAL;
300         if (num < 1 || num >= 100)
301                 return -EINVAL;
302         mutex_lock(&isolated_cpus_lock);
303         idle_pct = num;
304         mutex_unlock(&isolated_cpus_lock);
305         return count;
306 }
307
308 static ssize_t acpi_pad_idlepct_show(struct device *dev,
309         struct device_attribute *attr, char *buf)
310 {
311         return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
312 }
313 static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
314         acpi_pad_idlepct_show,
315         acpi_pad_idlepct_store);
316
317 static ssize_t acpi_pad_idlecpus_store(struct device *dev,
318         struct device_attribute *attr, const char *buf, size_t count)
319 {
320         unsigned long num;
321         if (kstrtoul(buf, 0, &num))
322                 return -EINVAL;
323         mutex_lock(&isolated_cpus_lock);
324         acpi_pad_idle_cpus(num);
325         mutex_unlock(&isolated_cpus_lock);
326         return count;
327 }
328
329 static ssize_t acpi_pad_idlecpus_show(struct device *dev,
330         struct device_attribute *attr, char *buf)
331 {
332         return cpumap_print_to_pagebuf(false, buf,
333                                        to_cpumask(pad_busy_cpus_bits));
334 }
335
336 static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
337         acpi_pad_idlecpus_show,
338         acpi_pad_idlecpus_store);
339
340 static int acpi_pad_add_sysfs(struct acpi_device *device)
341 {
342         int result;
343
344         result = device_create_file(&device->dev, &dev_attr_idlecpus);
345         if (result)
346                 return -ENODEV;
347         result = device_create_file(&device->dev, &dev_attr_idlepct);
348         if (result) {
349                 device_remove_file(&device->dev, &dev_attr_idlecpus);
350                 return -ENODEV;
351         }
352         result = device_create_file(&device->dev, &dev_attr_rrtime);
353         if (result) {
354                 device_remove_file(&device->dev, &dev_attr_idlecpus);
355                 device_remove_file(&device->dev, &dev_attr_idlepct);
356                 return -ENODEV;
357         }
358         return 0;
359 }
360
361 static void acpi_pad_remove_sysfs(struct acpi_device *device)
362 {
363         device_remove_file(&device->dev, &dev_attr_idlecpus);
364         device_remove_file(&device->dev, &dev_attr_idlepct);
365         device_remove_file(&device->dev, &dev_attr_rrtime);
366 }
367
368 /*
369  * Query firmware how many CPUs should be idle
370  * return -1 on failure
371  */
372 static int acpi_pad_pur(acpi_handle handle)
373 {
374         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
375         union acpi_object *package;
376         int num = -1;
377
378         if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
379                 return num;
380
381         if (!buffer.length || !buffer.pointer)
382                 return num;
383
384         package = buffer.pointer;
385
386         if (package->type == ACPI_TYPE_PACKAGE &&
387                 package->package.count == 2 &&
388                 package->package.elements[0].integer.value == 1) /* rev 1 */
389
390                 num = package->package.elements[1].integer.value;
391
392         kfree(buffer.pointer);
393         return num;
394 }
395
396 static void acpi_pad_handle_notify(acpi_handle handle)
397 {
398         int num_cpus;
399         uint32_t idle_cpus;
400         struct acpi_buffer param = {
401                 .length = 4,
402                 .pointer = (void *)&idle_cpus,
403         };
404
405         mutex_lock(&isolated_cpus_lock);
406         num_cpus = acpi_pad_pur(handle);
407         if (num_cpus < 0) {
408                 mutex_unlock(&isolated_cpus_lock);
409                 return;
410         }
411         acpi_pad_idle_cpus(num_cpus);
412         idle_cpus = acpi_pad_idle_cpus_num();
413         acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
414         mutex_unlock(&isolated_cpus_lock);
415 }
416
417 static void acpi_pad_notify(acpi_handle handle, u32 event,
418         void *data)
419 {
420         struct acpi_device *device = data;
421
422         switch (event) {
423         case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
424                 acpi_pad_handle_notify(handle);
425                 acpi_bus_generate_netlink_event(device->pnp.device_class,
426                         dev_name(&device->dev), event, 0);
427                 break;
428         default:
429                 pr_warn("Unsupported event [0x%x]\n", event);
430                 break;
431         }
432 }
433
434 static int acpi_pad_add(struct acpi_device *device)
435 {
436         acpi_status status;
437
438         strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
439         strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
440
441         if (acpi_pad_add_sysfs(device))
442                 return -ENODEV;
443
444         status = acpi_install_notify_handler(device->handle,
445                 ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
446         if (ACPI_FAILURE(status)) {
447                 acpi_pad_remove_sysfs(device);
448                 return -ENODEV;
449         }
450
451         return 0;
452 }
453
454 static int acpi_pad_remove(struct acpi_device *device)
455 {
456         mutex_lock(&isolated_cpus_lock);
457         acpi_pad_idle_cpus(0);
458         mutex_unlock(&isolated_cpus_lock);
459
460         acpi_remove_notify_handler(device->handle,
461                 ACPI_DEVICE_NOTIFY, acpi_pad_notify);
462         acpi_pad_remove_sysfs(device);
463         return 0;
464 }
465
466 static const struct acpi_device_id pad_device_ids[] = {
467         {"ACPI000C", 0},
468         {"", 0},
469 };
470 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
471
472 static struct acpi_driver acpi_pad_driver = {
473         .name = "processor_aggregator",
474         .class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
475         .ids = pad_device_ids,
476         .ops = {
477                 .add = acpi_pad_add,
478                 .remove = acpi_pad_remove,
479         },
480 };
481
482 static int __init acpi_pad_init(void)
483 {
484         /* Xen ACPI PAD is used when running as Xen Dom0. */
485         if (xen_initial_domain())
486                 return -ENODEV;
487
488         power_saving_mwait_init();
489         if (power_saving_mwait_eax == 0)
490                 return -EINVAL;
491
492         return acpi_bus_register_driver(&acpi_pad_driver);
493 }
494
495 static void __exit acpi_pad_exit(void)
496 {
497         acpi_bus_unregister_driver(&acpi_pad_driver);
498 }
499
500 module_init(acpi_pad_init);
501 module_exit(acpi_pad_exit);
502 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
503 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
504 MODULE_LICENSE("GPL");