GNU Linux-libre 4.19.207-gnu1
[releases.git] / drivers / acpi / acpi_lpss.c
1 /*
2  * ACPI support for Intel Lynxpoint LPSS.
3  *
4  * Copyright (C) 2013, Intel Corporation
5  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
6  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/acpi.h>
14 #include <linux/clkdev.h>
15 #include <linux/clk-provider.h>
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/mutex.h>
19 #include <linux/pci.h>
20 #include <linux/platform_device.h>
21 #include <linux/platform_data/clk-lpss.h>
22 #include <linux/platform_data/x86/pmc_atom.h>
23 #include <linux/pm_domain.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pwm.h>
26 #include <linux/suspend.h>
27 #include <linux/delay.h>
28
29 #include "internal.h"
30
31 ACPI_MODULE_NAME("acpi_lpss");
32
33 #ifdef CONFIG_X86_INTEL_LPSS
34
35 #include <asm/cpu_device_id.h>
36 #include <asm/intel-family.h>
37 #include <asm/iosf_mbi.h>
38
39 #define LPSS_ADDR(desc) ((unsigned long)&desc)
40
41 #define LPSS_CLK_SIZE   0x04
42 #define LPSS_LTR_SIZE   0x18
43
44 /* Offsets relative to LPSS_PRIVATE_OFFSET */
45 #define LPSS_CLK_DIVIDER_DEF_MASK       (BIT(1) | BIT(16))
46 #define LPSS_RESETS                     0x04
47 #define LPSS_RESETS_RESET_FUNC          BIT(0)
48 #define LPSS_RESETS_RESET_APB           BIT(1)
49 #define LPSS_GENERAL                    0x08
50 #define LPSS_GENERAL_LTR_MODE_SW        BIT(2)
51 #define LPSS_GENERAL_UART_RTS_OVRD      BIT(3)
52 #define LPSS_SW_LTR                     0x10
53 #define LPSS_AUTO_LTR                   0x14
54 #define LPSS_LTR_SNOOP_REQ              BIT(15)
55 #define LPSS_LTR_SNOOP_MASK             0x0000FFFF
56 #define LPSS_LTR_SNOOP_LAT_1US          0x800
57 #define LPSS_LTR_SNOOP_LAT_32US         0xC00
58 #define LPSS_LTR_SNOOP_LAT_SHIFT        5
59 #define LPSS_LTR_SNOOP_LAT_CUTOFF       3000
60 #define LPSS_LTR_MAX_VAL                0x3FF
61 #define LPSS_TX_INT                     0x20
62 #define LPSS_TX_INT_MASK                BIT(1)
63
64 #define LPSS_PRV_REG_COUNT              9
65
66 /* LPSS Flags */
67 #define LPSS_CLK                        BIT(0)
68 #define LPSS_CLK_GATE                   BIT(1)
69 #define LPSS_CLK_DIVIDER                BIT(2)
70 #define LPSS_LTR                        BIT(3)
71 #define LPSS_SAVE_CTX                   BIT(4)
72 #define LPSS_NO_D3_DELAY                BIT(5)
73
74 /* Crystal Cove PMIC shares same ACPI ID between different platforms */
75 #define BYT_CRC_HRV                     2
76 #define CHT_CRC_HRV                     3
77
78 struct lpss_private_data;
79
80 struct lpss_device_desc {
81         unsigned int flags;
82         const char *clk_con_id;
83         unsigned int prv_offset;
84         size_t prv_size_override;
85         struct property_entry *properties;
86         void (*setup)(struct lpss_private_data *pdata);
87         bool resume_from_noirq;
88 };
89
90 static const struct lpss_device_desc lpss_dma_desc = {
91         .flags = LPSS_CLK,
92 };
93
94 struct lpss_private_data {
95         struct acpi_device *adev;
96         void __iomem *mmio_base;
97         resource_size_t mmio_size;
98         unsigned int fixed_clk_rate;
99         struct clk *clk;
100         const struct lpss_device_desc *dev_desc;
101         u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
102 };
103
104 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
105 static u32 pmc_atom_d3_mask = 0xfe000ffe;
106
107 /* LPSS run time quirks */
108 static unsigned int lpss_quirks;
109
110 /*
111  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
112  *
113  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
114  * it can be powered off automatically whenever the last LPSS device goes down.
115  * In case of no power any access to the DMA controller will hang the system.
116  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
117  * well as on ASuS T100TA transformer.
118  *
119  * This quirk overrides power state of entire LPSS island to keep DMA powered
120  * on whenever we have at least one other device in use.
121  */
122 #define LPSS_QUIRK_ALWAYS_POWER_ON      BIT(0)
123
124 /* UART Component Parameter Register */
125 #define LPSS_UART_CPR                   0xF4
126 #define LPSS_UART_CPR_AFCE              BIT(4)
127
128 static void lpss_uart_setup(struct lpss_private_data *pdata)
129 {
130         unsigned int offset;
131         u32 val;
132
133         offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
134         val = readl(pdata->mmio_base + offset);
135         writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
136
137         val = readl(pdata->mmio_base + LPSS_UART_CPR);
138         if (!(val & LPSS_UART_CPR_AFCE)) {
139                 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
140                 val = readl(pdata->mmio_base + offset);
141                 val |= LPSS_GENERAL_UART_RTS_OVRD;
142                 writel(val, pdata->mmio_base + offset);
143         }
144 }
145
146 static void lpss_deassert_reset(struct lpss_private_data *pdata)
147 {
148         unsigned int offset;
149         u32 val;
150
151         offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
152         val = readl(pdata->mmio_base + offset);
153         val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
154         writel(val, pdata->mmio_base + offset);
155 }
156
157 /*
158  * BYT PWM used for backlight control by the i915 driver on systems without
159  * the Crystal Cove PMIC.
160  */
161 static struct pwm_lookup byt_pwm_lookup[] = {
162         PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
163                                "pwm_backlight", 0, PWM_POLARITY_NORMAL,
164                                "pwm-lpss-platform"),
165 };
166
167 static void byt_pwm_setup(struct lpss_private_data *pdata)
168 {
169         struct acpi_device *adev = pdata->adev;
170
171         /* Only call pwm_add_table for the first PWM controller */
172         if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
173                 return;
174
175         if (!acpi_dev_present("INT33FD", NULL, BYT_CRC_HRV))
176                 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
177 }
178
179 #define LPSS_I2C_ENABLE                 0x6c
180
181 static void byt_i2c_setup(struct lpss_private_data *pdata)
182 {
183         const char *uid_str = acpi_device_uid(pdata->adev);
184         acpi_handle handle = pdata->adev->handle;
185         unsigned long long shared_host = 0;
186         acpi_status status;
187         long uid = 0;
188
189         /* Expected to always be true, but better safe then sorry */
190         if (uid_str)
191                 uid = simple_strtol(uid_str, NULL, 10);
192
193         /* Detect I2C bus shared with PUNIT and ignore its d3 status */
194         status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
195         if (ACPI_SUCCESS(status) && shared_host && uid)
196                 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
197
198         lpss_deassert_reset(pdata);
199
200         if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
201                 pdata->fixed_clk_rate = 133000000;
202
203         writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
204 }
205
206 /* BSW PWM used for backlight control by the i915 driver */
207 static struct pwm_lookup bsw_pwm_lookup[] = {
208         PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
209                                "pwm_backlight", 0, PWM_POLARITY_NORMAL,
210                                "pwm-lpss-platform"),
211 };
212
213 static void bsw_pwm_setup(struct lpss_private_data *pdata)
214 {
215         struct acpi_device *adev = pdata->adev;
216
217         /* Only call pwm_add_table for the first PWM controller */
218         if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
219                 return;
220
221         pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
222 }
223
224 static const struct lpss_device_desc lpt_dev_desc = {
225         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
226         .prv_offset = 0x800,
227 };
228
229 static const struct lpss_device_desc lpt_i2c_dev_desc = {
230         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR,
231         .prv_offset = 0x800,
232 };
233
234 static struct property_entry uart_properties[] = {
235         PROPERTY_ENTRY_U32("reg-io-width", 4),
236         PROPERTY_ENTRY_U32("reg-shift", 2),
237         PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
238         { },
239 };
240
241 static const struct lpss_device_desc lpt_uart_dev_desc = {
242         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR,
243         .clk_con_id = "baudclk",
244         .prv_offset = 0x800,
245         .setup = lpss_uart_setup,
246         .properties = uart_properties,
247 };
248
249 static const struct lpss_device_desc lpt_sdio_dev_desc = {
250         .flags = LPSS_LTR,
251         .prv_offset = 0x1000,
252         .prv_size_override = 0x1018,
253 };
254
255 static const struct lpss_device_desc byt_pwm_dev_desc = {
256         .flags = LPSS_SAVE_CTX,
257         .prv_offset = 0x800,
258         .setup = byt_pwm_setup,
259 };
260
261 static const struct lpss_device_desc bsw_pwm_dev_desc = {
262         .flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
263         .prv_offset = 0x800,
264         .setup = bsw_pwm_setup,
265 };
266
267 static const struct lpss_device_desc byt_uart_dev_desc = {
268         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
269         .clk_con_id = "baudclk",
270         .prv_offset = 0x800,
271         .setup = lpss_uart_setup,
272         .properties = uart_properties,
273 };
274
275 static const struct lpss_device_desc bsw_uart_dev_desc = {
276         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
277                         | LPSS_NO_D3_DELAY,
278         .clk_con_id = "baudclk",
279         .prv_offset = 0x800,
280         .setup = lpss_uart_setup,
281         .properties = uart_properties,
282 };
283
284 static const struct lpss_device_desc byt_spi_dev_desc = {
285         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
286         .prv_offset = 0x400,
287 };
288
289 static const struct lpss_device_desc byt_sdio_dev_desc = {
290         .flags = LPSS_CLK,
291 };
292
293 static const struct lpss_device_desc byt_i2c_dev_desc = {
294         .flags = LPSS_CLK | LPSS_SAVE_CTX,
295         .prv_offset = 0x800,
296         .setup = byt_i2c_setup,
297         .resume_from_noirq = true,
298 };
299
300 static const struct lpss_device_desc bsw_i2c_dev_desc = {
301         .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
302         .prv_offset = 0x800,
303         .setup = byt_i2c_setup,
304         .resume_from_noirq = true,
305 };
306
307 static const struct lpss_device_desc bsw_spi_dev_desc = {
308         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
309                         | LPSS_NO_D3_DELAY,
310         .prv_offset = 0x400,
311         .setup = lpss_deassert_reset,
312 };
313
314 #define ICPU(model)     { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, }
315
316 static const struct x86_cpu_id lpss_cpu_ids[] = {
317         ICPU(INTEL_FAM6_ATOM_SILVERMONT),       /* Valleyview, Bay Trail */
318         ICPU(INTEL_FAM6_ATOM_AIRMONT),  /* Braswell, Cherry Trail */
319         {}
320 };
321
322 #else
323
324 #define LPSS_ADDR(desc) (0UL)
325
326 #endif /* CONFIG_X86_INTEL_LPSS */
327
328 static const struct acpi_device_id acpi_lpss_device_ids[] = {
329         /* Generic LPSS devices */
330         { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
331
332         /* Lynxpoint LPSS devices */
333         { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
334         { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
335         { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
336         { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
337         { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
338         { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
339         { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
340         { "INT33C7", },
341
342         /* BayTrail LPSS devices */
343         { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
344         { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
345         { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
346         { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
347         { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
348         { "INT33B2", },
349         { "INT33FC", },
350
351         /* Braswell LPSS devices */
352         { "80862286", LPSS_ADDR(lpss_dma_desc) },
353         { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
354         { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
355         { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
356         { "808622C0", LPSS_ADDR(lpss_dma_desc) },
357         { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
358
359         /* Broadwell LPSS devices */
360         { "INT3430", LPSS_ADDR(lpt_dev_desc) },
361         { "INT3431", LPSS_ADDR(lpt_dev_desc) },
362         { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
363         { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
364         { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
365         { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
366         { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
367         { "INT3437", },
368
369         /* Wildcat Point LPSS devices */
370         { "INT3438", LPSS_ADDR(lpt_dev_desc) },
371
372         { }
373 };
374
375 #ifdef CONFIG_X86_INTEL_LPSS
376
377 static int is_memory(struct acpi_resource *res, void *not_used)
378 {
379         struct resource r;
380         return !acpi_dev_resource_memory(res, &r);
381 }
382
383 /* LPSS main clock device. */
384 static struct platform_device *lpss_clk_dev;
385
386 static inline void lpt_register_clock_device(void)
387 {
388         lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
389 }
390
391 static int register_device_clock(struct acpi_device *adev,
392                                  struct lpss_private_data *pdata)
393 {
394         const struct lpss_device_desc *dev_desc = pdata->dev_desc;
395         const char *devname = dev_name(&adev->dev);
396         struct clk *clk;
397         struct lpss_clk_data *clk_data;
398         const char *parent, *clk_name;
399         void __iomem *prv_base;
400
401         if (!lpss_clk_dev)
402                 lpt_register_clock_device();
403
404         clk_data = platform_get_drvdata(lpss_clk_dev);
405         if (!clk_data)
406                 return -ENODEV;
407         clk = clk_data->clk;
408
409         if (!pdata->mmio_base
410             || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
411                 return -ENODATA;
412
413         parent = clk_data->name;
414         prv_base = pdata->mmio_base + dev_desc->prv_offset;
415
416         if (pdata->fixed_clk_rate) {
417                 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
418                                               pdata->fixed_clk_rate);
419                 goto out;
420         }
421
422         if (dev_desc->flags & LPSS_CLK_GATE) {
423                 clk = clk_register_gate(NULL, devname, parent, 0,
424                                         prv_base, 0, 0, NULL);
425                 parent = devname;
426         }
427
428         if (dev_desc->flags & LPSS_CLK_DIVIDER) {
429                 /* Prevent division by zero */
430                 if (!readl(prv_base))
431                         writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
432
433                 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
434                 if (!clk_name)
435                         return -ENOMEM;
436                 clk = clk_register_fractional_divider(NULL, clk_name, parent,
437                                                       0, prv_base,
438                                                       1, 15, 16, 15, 0, NULL);
439                 parent = clk_name;
440
441                 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
442                 if (!clk_name) {
443                         kfree(parent);
444                         return -ENOMEM;
445                 }
446                 clk = clk_register_gate(NULL, clk_name, parent,
447                                         CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
448                                         prv_base, 31, 0, NULL);
449                 kfree(parent);
450                 kfree(clk_name);
451         }
452 out:
453         if (IS_ERR(clk))
454                 return PTR_ERR(clk);
455
456         pdata->clk = clk;
457         clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
458         return 0;
459 }
460
461 struct lpss_device_links {
462         const char *supplier_hid;
463         const char *supplier_uid;
464         const char *consumer_hid;
465         const char *consumer_uid;
466         u32 flags;
467 };
468
469 /*
470  * The _DEP method is used to identify dependencies but instead of creating
471  * device links for every handle in _DEP, only links in the following list are
472  * created. That is necessary because, in the general case, _DEP can refer to
473  * devices that might not have drivers, or that are on different buses, or where
474  * the supplier is not enumerated until after the consumer is probed.
475  */
476 static const struct lpss_device_links lpss_device_links[] = {
477         {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
478 };
479
480 static bool hid_uid_match(const char *hid1, const char *uid1,
481                           const char *hid2, const char *uid2)
482 {
483         return !strcmp(hid1, hid2) && uid1 && uid2 && !strcmp(uid1, uid2);
484 }
485
486 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
487                                   const struct lpss_device_links *link)
488 {
489         return hid_uid_match(acpi_device_hid(adev), acpi_device_uid(adev),
490                              link->supplier_hid, link->supplier_uid);
491 }
492
493 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
494                                   const struct lpss_device_links *link)
495 {
496         return hid_uid_match(acpi_device_hid(adev), acpi_device_uid(adev),
497                              link->consumer_hid, link->consumer_uid);
498 }
499
500 struct hid_uid {
501         const char *hid;
502         const char *uid;
503 };
504
505 static int match_hid_uid(struct device *dev, void *data)
506 {
507         struct acpi_device *adev = ACPI_COMPANION(dev);
508         struct hid_uid *id = data;
509
510         if (!adev)
511                 return 0;
512
513         return hid_uid_match(acpi_device_hid(adev), acpi_device_uid(adev),
514                              id->hid, id->uid);
515 }
516
517 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
518 {
519         struct device *dev;
520
521         struct hid_uid data = {
522                 .hid = hid,
523                 .uid = uid,
524         };
525
526         dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
527         if (dev)
528                 return dev;
529
530         return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
531 }
532
533 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
534 {
535         struct acpi_handle_list dep_devices;
536         acpi_status status;
537         int i;
538
539         if (!acpi_has_method(adev->handle, "_DEP"))
540                 return false;
541
542         status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
543                                          &dep_devices);
544         if (ACPI_FAILURE(status)) {
545                 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
546                 return false;
547         }
548
549         for (i = 0; i < dep_devices.count; i++) {
550                 if (dep_devices.handles[i] == handle)
551                         return true;
552         }
553
554         return false;
555 }
556
557 static void acpi_lpss_link_consumer(struct device *dev1,
558                                     const struct lpss_device_links *link)
559 {
560         struct device *dev2;
561
562         dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
563         if (!dev2)
564                 return;
565
566         if (acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
567                 device_link_add(dev2, dev1, link->flags);
568
569         put_device(dev2);
570 }
571
572 static void acpi_lpss_link_supplier(struct device *dev1,
573                                     const struct lpss_device_links *link)
574 {
575         struct device *dev2;
576
577         dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
578         if (!dev2)
579                 return;
580
581         if (acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
582                 device_link_add(dev1, dev2, link->flags);
583
584         put_device(dev2);
585 }
586
587 static void acpi_lpss_create_device_links(struct acpi_device *adev,
588                                           struct platform_device *pdev)
589 {
590         int i;
591
592         for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
593                 const struct lpss_device_links *link = &lpss_device_links[i];
594
595                 if (acpi_lpss_is_supplier(adev, link))
596                         acpi_lpss_link_consumer(&pdev->dev, link);
597
598                 if (acpi_lpss_is_consumer(adev, link))
599                         acpi_lpss_link_supplier(&pdev->dev, link);
600         }
601 }
602
603 static int acpi_lpss_create_device(struct acpi_device *adev,
604                                    const struct acpi_device_id *id)
605 {
606         const struct lpss_device_desc *dev_desc;
607         struct lpss_private_data *pdata;
608         struct resource_entry *rentry;
609         struct list_head resource_list;
610         struct platform_device *pdev;
611         int ret;
612
613         dev_desc = (const struct lpss_device_desc *)id->driver_data;
614         if (!dev_desc) {
615                 pdev = acpi_create_platform_device(adev, NULL);
616                 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
617         }
618         pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
619         if (!pdata)
620                 return -ENOMEM;
621
622         INIT_LIST_HEAD(&resource_list);
623         ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
624         if (ret < 0)
625                 goto err_out;
626
627         list_for_each_entry(rentry, &resource_list, node)
628                 if (resource_type(rentry->res) == IORESOURCE_MEM) {
629                         if (dev_desc->prv_size_override)
630                                 pdata->mmio_size = dev_desc->prv_size_override;
631                         else
632                                 pdata->mmio_size = resource_size(rentry->res);
633                         pdata->mmio_base = ioremap(rentry->res->start,
634                                                    pdata->mmio_size);
635                         break;
636                 }
637
638         acpi_dev_free_resource_list(&resource_list);
639
640         if (!pdata->mmio_base) {
641                 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
642                 adev->pnp.type.platform_id = 0;
643                 /* Skip the device, but continue the namespace scan. */
644                 ret = 0;
645                 goto err_out;
646         }
647
648         pdata->adev = adev;
649         pdata->dev_desc = dev_desc;
650
651         if (dev_desc->setup)
652                 dev_desc->setup(pdata);
653
654         if (dev_desc->flags & LPSS_CLK) {
655                 ret = register_device_clock(adev, pdata);
656                 if (ret) {
657                         /* Skip the device, but continue the namespace scan. */
658                         ret = 0;
659                         goto err_out;
660                 }
661         }
662
663         /*
664          * This works around a known issue in ACPI tables where LPSS devices
665          * have _PS0 and _PS3 without _PSC (and no power resources), so
666          * acpi_bus_init_power() will assume that the BIOS has put them into D0.
667          */
668         acpi_device_fix_up_power(adev);
669
670         adev->driver_data = pdata;
671         pdev = acpi_create_platform_device(adev, dev_desc->properties);
672         if (!IS_ERR_OR_NULL(pdev)) {
673                 acpi_lpss_create_device_links(adev, pdev);
674                 return 1;
675         }
676
677         ret = PTR_ERR(pdev);
678         adev->driver_data = NULL;
679
680  err_out:
681         kfree(pdata);
682         return ret;
683 }
684
685 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
686 {
687         return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
688 }
689
690 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
691                              unsigned int reg)
692 {
693         writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
694 }
695
696 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
697 {
698         struct acpi_device *adev;
699         struct lpss_private_data *pdata;
700         unsigned long flags;
701         int ret;
702
703         ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
704         if (WARN_ON(ret))
705                 return ret;
706
707         spin_lock_irqsave(&dev->power.lock, flags);
708         if (pm_runtime_suspended(dev)) {
709                 ret = -EAGAIN;
710                 goto out;
711         }
712         pdata = acpi_driver_data(adev);
713         if (WARN_ON(!pdata || !pdata->mmio_base)) {
714                 ret = -ENODEV;
715                 goto out;
716         }
717         *val = __lpss_reg_read(pdata, reg);
718
719  out:
720         spin_unlock_irqrestore(&dev->power.lock, flags);
721         return ret;
722 }
723
724 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
725                              char *buf)
726 {
727         u32 ltr_value = 0;
728         unsigned int reg;
729         int ret;
730
731         reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
732         ret = lpss_reg_read(dev, reg, &ltr_value);
733         if (ret)
734                 return ret;
735
736         return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
737 }
738
739 static ssize_t lpss_ltr_mode_show(struct device *dev,
740                                   struct device_attribute *attr, char *buf)
741 {
742         u32 ltr_mode = 0;
743         char *outstr;
744         int ret;
745
746         ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
747         if (ret)
748                 return ret;
749
750         outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
751         return sprintf(buf, "%s\n", outstr);
752 }
753
754 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
755 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
756 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
757
758 static struct attribute *lpss_attrs[] = {
759         &dev_attr_auto_ltr.attr,
760         &dev_attr_sw_ltr.attr,
761         &dev_attr_ltr_mode.attr,
762         NULL,
763 };
764
765 static const struct attribute_group lpss_attr_group = {
766         .attrs = lpss_attrs,
767         .name = "lpss_ltr",
768 };
769
770 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
771 {
772         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
773         u32 ltr_mode, ltr_val;
774
775         ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
776         if (val < 0) {
777                 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
778                         ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
779                         __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
780                 }
781                 return;
782         }
783         ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
784         if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
785                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
786                 val = LPSS_LTR_MAX_VAL;
787         } else if (val > LPSS_LTR_MAX_VAL) {
788                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
789                 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
790         } else {
791                 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
792         }
793         ltr_val |= val;
794         __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
795         if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
796                 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
797                 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
798         }
799 }
800
801 #ifdef CONFIG_PM
802 /**
803  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
804  * @dev: LPSS device
805  * @pdata: pointer to the private data of the LPSS device
806  *
807  * Most LPSS devices have private registers which may loose their context when
808  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
809  * prv_reg_ctx array.
810  */
811 static void acpi_lpss_save_ctx(struct device *dev,
812                                struct lpss_private_data *pdata)
813 {
814         unsigned int i;
815
816         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
817                 unsigned long offset = i * sizeof(u32);
818
819                 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
820                 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
821                         pdata->prv_reg_ctx[i], offset);
822         }
823 }
824
825 /**
826  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
827  * @dev: LPSS device
828  * @pdata: pointer to the private data of the LPSS device
829  *
830  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
831  */
832 static void acpi_lpss_restore_ctx(struct device *dev,
833                                   struct lpss_private_data *pdata)
834 {
835         unsigned int i;
836
837         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
838                 unsigned long offset = i * sizeof(u32);
839
840                 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
841                 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
842                         pdata->prv_reg_ctx[i], offset);
843         }
844 }
845
846 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
847 {
848         /*
849          * The following delay is needed or the subsequent write operations may
850          * fail. The LPSS devices are actually PCI devices and the PCI spec
851          * expects 10ms delay before the device can be accessed after D3 to D0
852          * transition. However some platforms like BSW does not need this delay.
853          */
854         unsigned int delay = 10;        /* default 10ms delay */
855
856         if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
857                 delay = 0;
858
859         msleep(delay);
860 }
861
862 static int acpi_lpss_activate(struct device *dev)
863 {
864         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
865         int ret;
866
867         ret = acpi_dev_resume(dev);
868         if (ret)
869                 return ret;
870
871         acpi_lpss_d3_to_d0_delay(pdata);
872
873         /*
874          * This is called only on ->probe() stage where a device is either in
875          * known state defined by BIOS or most likely powered off. Due to this
876          * we have to deassert reset line to be sure that ->probe() will
877          * recognize the device.
878          */
879         if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
880                 lpss_deassert_reset(pdata);
881
882         return 0;
883 }
884
885 static void acpi_lpss_dismiss(struct device *dev)
886 {
887         acpi_dev_suspend(dev, false);
888 }
889
890 /* IOSF SB for LPSS island */
891 #define LPSS_IOSF_UNIT_LPIOEP           0xA0
892 #define LPSS_IOSF_UNIT_LPIO1            0xAB
893 #define LPSS_IOSF_UNIT_LPIO2            0xAC
894
895 #define LPSS_IOSF_PMCSR                 0x84
896 #define LPSS_PMCSR_D0                   0
897 #define LPSS_PMCSR_D3hot                3
898 #define LPSS_PMCSR_Dx_MASK              GENMASK(1, 0)
899
900 #define LPSS_IOSF_GPIODEF0              0x154
901 #define LPSS_GPIODEF0_DMA1_D3           BIT(2)
902 #define LPSS_GPIODEF0_DMA2_D3           BIT(3)
903 #define LPSS_GPIODEF0_DMA_D3_MASK       GENMASK(3, 2)
904 #define LPSS_GPIODEF0_DMA_LLP           BIT(13)
905
906 static DEFINE_MUTEX(lpss_iosf_mutex);
907 static bool lpss_iosf_d3_entered = true;
908
909 static void lpss_iosf_enter_d3_state(void)
910 {
911         u32 value1 = 0;
912         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
913         u32 value2 = LPSS_PMCSR_D3hot;
914         u32 mask2 = LPSS_PMCSR_Dx_MASK;
915         /*
916          * PMC provides an information about actual status of the LPSS devices.
917          * Here we read the values related to LPSS power island, i.e. LPSS
918          * devices, excluding both LPSS DMA controllers, along with SCC domain.
919          */
920         u32 func_dis, d3_sts_0, pmc_status;
921         int ret;
922
923         ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
924         if (ret)
925                 return;
926
927         mutex_lock(&lpss_iosf_mutex);
928
929         ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
930         if (ret)
931                 goto exit;
932
933         /*
934          * Get the status of entire LPSS power island per device basis.
935          * Shutdown both LPSS DMA controllers if and only if all other devices
936          * are already in D3hot.
937          */
938         pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
939         if (pmc_status)
940                 goto exit;
941
942         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
943                         LPSS_IOSF_PMCSR, value2, mask2);
944
945         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
946                         LPSS_IOSF_PMCSR, value2, mask2);
947
948         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
949                         LPSS_IOSF_GPIODEF0, value1, mask1);
950
951         lpss_iosf_d3_entered = true;
952
953 exit:
954         mutex_unlock(&lpss_iosf_mutex);
955 }
956
957 static void lpss_iosf_exit_d3_state(void)
958 {
959         u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
960                      LPSS_GPIODEF0_DMA_LLP;
961         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
962         u32 value2 = LPSS_PMCSR_D0;
963         u32 mask2 = LPSS_PMCSR_Dx_MASK;
964
965         mutex_lock(&lpss_iosf_mutex);
966
967         if (!lpss_iosf_d3_entered)
968                 goto exit;
969
970         lpss_iosf_d3_entered = false;
971
972         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
973                         LPSS_IOSF_GPIODEF0, value1, mask1);
974
975         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
976                         LPSS_IOSF_PMCSR, value2, mask2);
977
978         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
979                         LPSS_IOSF_PMCSR, value2, mask2);
980
981 exit:
982         mutex_unlock(&lpss_iosf_mutex);
983 }
984
985 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
986 {
987         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
988         int ret;
989
990         if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
991                 acpi_lpss_save_ctx(dev, pdata);
992
993         ret = acpi_dev_suspend(dev, wakeup);
994
995         /*
996          * This call must be last in the sequence, otherwise PMC will return
997          * wrong status for devices being about to be powered off. See
998          * lpss_iosf_enter_d3_state() for further information.
999          */
1000         if (acpi_target_system_state() == ACPI_STATE_S0 &&
1001             lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1002                 lpss_iosf_enter_d3_state();
1003
1004         return ret;
1005 }
1006
1007 static int acpi_lpss_resume(struct device *dev)
1008 {
1009         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1010         int ret;
1011
1012         /*
1013          * This call is kept first to be in symmetry with
1014          * acpi_lpss_runtime_suspend() one.
1015          */
1016         if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1017                 lpss_iosf_exit_d3_state();
1018
1019         ret = acpi_dev_resume(dev);
1020         if (ret)
1021                 return ret;
1022
1023         acpi_lpss_d3_to_d0_delay(pdata);
1024
1025         if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1026                 acpi_lpss_restore_ctx(dev, pdata);
1027
1028         return 0;
1029 }
1030
1031 #ifdef CONFIG_PM_SLEEP
1032 static int acpi_lpss_do_suspend_late(struct device *dev)
1033 {
1034         int ret;
1035
1036         if (dev_pm_smart_suspend_and_suspended(dev))
1037                 return 0;
1038
1039         ret = pm_generic_suspend_late(dev);
1040         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1041 }
1042
1043 static int acpi_lpss_suspend_late(struct device *dev)
1044 {
1045         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1046
1047         if (pdata->dev_desc->resume_from_noirq)
1048                 return 0;
1049
1050         return acpi_lpss_do_suspend_late(dev);
1051 }
1052
1053 static int acpi_lpss_suspend_noirq(struct device *dev)
1054 {
1055         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1056         int ret;
1057
1058         if (pdata->dev_desc->resume_from_noirq) {
1059                 /*
1060                  * The driver's ->suspend_late callback will be invoked by
1061                  * acpi_lpss_do_suspend_late(), with the assumption that the
1062                  * driver really wanted to run that code in ->suspend_noirq, but
1063                  * it could not run after acpi_dev_suspend() and the driver
1064                  * expected the latter to be called in the "late" phase.
1065                  */
1066                 ret = acpi_lpss_do_suspend_late(dev);
1067                 if (ret)
1068                         return ret;
1069         }
1070
1071         return acpi_subsys_suspend_noirq(dev);
1072 }
1073
1074 static int acpi_lpss_do_resume_early(struct device *dev)
1075 {
1076         int ret = acpi_lpss_resume(dev);
1077
1078         return ret ? ret : pm_generic_resume_early(dev);
1079 }
1080
1081 static int acpi_lpss_resume_early(struct device *dev)
1082 {
1083         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1084
1085         if (pdata->dev_desc->resume_from_noirq)
1086                 return 0;
1087
1088         return acpi_lpss_do_resume_early(dev);
1089 }
1090
1091 static int acpi_lpss_resume_noirq(struct device *dev)
1092 {
1093         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1094         int ret;
1095
1096         /* Follow acpi_subsys_resume_noirq(). */
1097         if (dev_pm_may_skip_resume(dev))
1098                 return 0;
1099
1100         if (dev_pm_smart_suspend_and_suspended(dev))
1101                 pm_runtime_set_active(dev);
1102
1103         ret = pm_generic_resume_noirq(dev);
1104         if (ret)
1105                 return ret;
1106
1107         if (!pdata->dev_desc->resume_from_noirq)
1108                 return 0;
1109
1110         /*
1111          * The driver's ->resume_early callback will be invoked by
1112          * acpi_lpss_do_resume_early(), with the assumption that the driver
1113          * really wanted to run that code in ->resume_noirq, but it could not
1114          * run before acpi_dev_resume() and the driver expected the latter to be
1115          * called in the "early" phase.
1116          */
1117         return acpi_lpss_do_resume_early(dev);
1118 }
1119
1120 static int acpi_lpss_do_restore_early(struct device *dev)
1121 {
1122         int ret = acpi_lpss_resume(dev);
1123
1124         return ret ? ret : pm_generic_restore_early(dev);
1125 }
1126
1127 static int acpi_lpss_restore_early(struct device *dev)
1128 {
1129         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1130
1131         if (pdata->dev_desc->resume_from_noirq)
1132                 return 0;
1133
1134         return acpi_lpss_do_restore_early(dev);
1135 }
1136
1137 static int acpi_lpss_restore_noirq(struct device *dev)
1138 {
1139         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1140         int ret;
1141
1142         ret = pm_generic_restore_noirq(dev);
1143         if (ret)
1144                 return ret;
1145
1146         if (!pdata->dev_desc->resume_from_noirq)
1147                 return 0;
1148
1149         /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1150         return acpi_lpss_do_restore_early(dev);
1151 }
1152
1153 static int acpi_lpss_do_poweroff_late(struct device *dev)
1154 {
1155         int ret = pm_generic_poweroff_late(dev);
1156
1157         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1158 }
1159
1160 static int acpi_lpss_poweroff_late(struct device *dev)
1161 {
1162         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1163
1164         if (dev_pm_smart_suspend_and_suspended(dev))
1165                 return 0;
1166
1167         if (pdata->dev_desc->resume_from_noirq)
1168                 return 0;
1169
1170         return acpi_lpss_do_poweroff_late(dev);
1171 }
1172
1173 static int acpi_lpss_poweroff_noirq(struct device *dev)
1174 {
1175         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1176
1177         if (dev_pm_smart_suspend_and_suspended(dev))
1178                 return 0;
1179
1180         if (pdata->dev_desc->resume_from_noirq) {
1181                 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1182                 int ret = acpi_lpss_do_poweroff_late(dev);
1183                 if (ret)
1184                         return ret;
1185         }
1186
1187         return pm_generic_poweroff_noirq(dev);
1188 }
1189 #endif /* CONFIG_PM_SLEEP */
1190
1191 static int acpi_lpss_runtime_suspend(struct device *dev)
1192 {
1193         int ret = pm_generic_runtime_suspend(dev);
1194
1195         return ret ? ret : acpi_lpss_suspend(dev, true);
1196 }
1197
1198 static int acpi_lpss_runtime_resume(struct device *dev)
1199 {
1200         int ret = acpi_lpss_resume(dev);
1201
1202         return ret ? ret : pm_generic_runtime_resume(dev);
1203 }
1204 #endif /* CONFIG_PM */
1205
1206 static struct dev_pm_domain acpi_lpss_pm_domain = {
1207 #ifdef CONFIG_PM
1208         .activate = acpi_lpss_activate,
1209         .dismiss = acpi_lpss_dismiss,
1210 #endif
1211         .ops = {
1212 #ifdef CONFIG_PM
1213 #ifdef CONFIG_PM_SLEEP
1214                 .prepare = acpi_subsys_prepare,
1215                 .complete = acpi_subsys_complete,
1216                 .suspend = acpi_subsys_suspend,
1217                 .suspend_late = acpi_lpss_suspend_late,
1218                 .suspend_noirq = acpi_lpss_suspend_noirq,
1219                 .resume_noirq = acpi_lpss_resume_noirq,
1220                 .resume_early = acpi_lpss_resume_early,
1221                 .freeze = acpi_subsys_freeze,
1222                 .poweroff = acpi_subsys_poweroff,
1223                 .poweroff_late = acpi_lpss_poweroff_late,
1224                 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1225                 .restore_noirq = acpi_lpss_restore_noirq,
1226                 .restore_early = acpi_lpss_restore_early,
1227 #endif
1228                 .runtime_suspend = acpi_lpss_runtime_suspend,
1229                 .runtime_resume = acpi_lpss_runtime_resume,
1230 #endif
1231         },
1232 };
1233
1234 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1235                                      unsigned long action, void *data)
1236 {
1237         struct platform_device *pdev = to_platform_device(data);
1238         struct lpss_private_data *pdata;
1239         struct acpi_device *adev;
1240         const struct acpi_device_id *id;
1241
1242         id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1243         if (!id || !id->driver_data)
1244                 return 0;
1245
1246         if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1247                 return 0;
1248
1249         pdata = acpi_driver_data(adev);
1250         if (!pdata)
1251                 return 0;
1252
1253         if (pdata->mmio_base &&
1254             pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1255                 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1256                 return 0;
1257         }
1258
1259         switch (action) {
1260         case BUS_NOTIFY_BIND_DRIVER:
1261                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1262                 break;
1263         case BUS_NOTIFY_DRIVER_NOT_BOUND:
1264         case BUS_NOTIFY_UNBOUND_DRIVER:
1265                 dev_pm_domain_set(&pdev->dev, NULL);
1266                 break;
1267         case BUS_NOTIFY_ADD_DEVICE:
1268                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1269                 if (pdata->dev_desc->flags & LPSS_LTR)
1270                         return sysfs_create_group(&pdev->dev.kobj,
1271                                                   &lpss_attr_group);
1272                 break;
1273         case BUS_NOTIFY_DEL_DEVICE:
1274                 if (pdata->dev_desc->flags & LPSS_LTR)
1275                         sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1276                 dev_pm_domain_set(&pdev->dev, NULL);
1277                 break;
1278         default:
1279                 break;
1280         }
1281
1282         return 0;
1283 }
1284
1285 static struct notifier_block acpi_lpss_nb = {
1286         .notifier_call = acpi_lpss_platform_notify,
1287 };
1288
1289 static void acpi_lpss_bind(struct device *dev)
1290 {
1291         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1292
1293         if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1294                 return;
1295
1296         if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1297                 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1298         else
1299                 dev_err(dev, "MMIO size insufficient to access LTR\n");
1300 }
1301
1302 static void acpi_lpss_unbind(struct device *dev)
1303 {
1304         dev->power.set_latency_tolerance = NULL;
1305 }
1306
1307 static struct acpi_scan_handler lpss_handler = {
1308         .ids = acpi_lpss_device_ids,
1309         .attach = acpi_lpss_create_device,
1310         .bind = acpi_lpss_bind,
1311         .unbind = acpi_lpss_unbind,
1312 };
1313
1314 void __init acpi_lpss_init(void)
1315 {
1316         const struct x86_cpu_id *id;
1317         int ret;
1318
1319         ret = lpt_clk_init();
1320         if (ret)
1321                 return;
1322
1323         id = x86_match_cpu(lpss_cpu_ids);
1324         if (id)
1325                 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1326
1327         bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1328         acpi_scan_add_handler(&lpss_handler);
1329 }
1330
1331 #else
1332
1333 static struct acpi_scan_handler lpss_handler = {
1334         .ids = acpi_lpss_device_ids,
1335 };
1336
1337 void __init acpi_lpss_init(void)
1338 {
1339         acpi_scan_add_handler(&lpss_handler);
1340 }
1341
1342 #endif /* CONFIG_X86_INTEL_LPSS */