GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / acpi / acpi_lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI support for Intel Lynxpoint LPSS.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26
27 #include "internal.h"
28
29 #ifdef CONFIG_X86_INTEL_LPSS
30
31 #include <asm/cpu_device_id.h>
32 #include <asm/intel-family.h>
33 #include <asm/iosf_mbi.h>
34
35 #define LPSS_ADDR(desc) ((unsigned long)&desc)
36
37 #define LPSS_CLK_SIZE   0x04
38 #define LPSS_LTR_SIZE   0x18
39
40 /* Offsets relative to LPSS_PRIVATE_OFFSET */
41 #define LPSS_CLK_DIVIDER_DEF_MASK       (BIT(1) | BIT(16))
42 #define LPSS_RESETS                     0x04
43 #define LPSS_RESETS_RESET_FUNC          BIT(0)
44 #define LPSS_RESETS_RESET_APB           BIT(1)
45 #define LPSS_GENERAL                    0x08
46 #define LPSS_GENERAL_LTR_MODE_SW        BIT(2)
47 #define LPSS_GENERAL_UART_RTS_OVRD      BIT(3)
48 #define LPSS_SW_LTR                     0x10
49 #define LPSS_AUTO_LTR                   0x14
50 #define LPSS_LTR_SNOOP_REQ              BIT(15)
51 #define LPSS_LTR_SNOOP_MASK             0x0000FFFF
52 #define LPSS_LTR_SNOOP_LAT_1US          0x800
53 #define LPSS_LTR_SNOOP_LAT_32US         0xC00
54 #define LPSS_LTR_SNOOP_LAT_SHIFT        5
55 #define LPSS_LTR_SNOOP_LAT_CUTOFF       3000
56 #define LPSS_LTR_MAX_VAL                0x3FF
57 #define LPSS_TX_INT                     0x20
58 #define LPSS_TX_INT_MASK                BIT(1)
59
60 #define LPSS_PRV_REG_COUNT              9
61
62 /* LPSS Flags */
63 #define LPSS_CLK                        BIT(0)
64 #define LPSS_CLK_GATE                   BIT(1)
65 #define LPSS_CLK_DIVIDER                BIT(2)
66 #define LPSS_LTR                        BIT(3)
67 #define LPSS_SAVE_CTX                   BIT(4)
68 /*
69  * For some devices the DSDT AML code for another device turns off the device
70  * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
71  * as ctx register values.
72  * Luckily these devices always use the same ctx register values, so we can
73  * work around this by saving the ctx registers once on activation.
74  */
75 #define LPSS_SAVE_CTX_ONCE              BIT(5)
76 #define LPSS_NO_D3_DELAY                BIT(6)
77
78 struct lpss_private_data;
79
80 struct lpss_device_desc {
81         unsigned int flags;
82         const char *clk_con_id;
83         unsigned int prv_offset;
84         size_t prv_size_override;
85         struct property_entry *properties;
86         void (*setup)(struct lpss_private_data *pdata);
87         bool resume_from_noirq;
88 };
89
90 static const struct lpss_device_desc lpss_dma_desc = {
91         .flags = LPSS_CLK,
92 };
93
94 struct lpss_private_data {
95         struct acpi_device *adev;
96         void __iomem *mmio_base;
97         resource_size_t mmio_size;
98         unsigned int fixed_clk_rate;
99         struct clk *clk;
100         const struct lpss_device_desc *dev_desc;
101         u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
102 };
103
104 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
105 static u32 pmc_atom_d3_mask = 0xfe000ffe;
106
107 /* LPSS run time quirks */
108 static unsigned int lpss_quirks;
109
110 /*
111  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
112  *
113  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
114  * it can be powered off automatically whenever the last LPSS device goes down.
115  * In case of no power any access to the DMA controller will hang the system.
116  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
117  * well as on ASuS T100TA transformer.
118  *
119  * This quirk overrides power state of entire LPSS island to keep DMA powered
120  * on whenever we have at least one other device in use.
121  */
122 #define LPSS_QUIRK_ALWAYS_POWER_ON      BIT(0)
123
124 /* UART Component Parameter Register */
125 #define LPSS_UART_CPR                   0xF4
126 #define LPSS_UART_CPR_AFCE              BIT(4)
127
128 static void lpss_uart_setup(struct lpss_private_data *pdata)
129 {
130         unsigned int offset;
131         u32 val;
132
133         offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
134         val = readl(pdata->mmio_base + offset);
135         writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
136
137         val = readl(pdata->mmio_base + LPSS_UART_CPR);
138         if (!(val & LPSS_UART_CPR_AFCE)) {
139                 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
140                 val = readl(pdata->mmio_base + offset);
141                 val |= LPSS_GENERAL_UART_RTS_OVRD;
142                 writel(val, pdata->mmio_base + offset);
143         }
144 }
145
146 static void lpss_deassert_reset(struct lpss_private_data *pdata)
147 {
148         unsigned int offset;
149         u32 val;
150
151         offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
152         val = readl(pdata->mmio_base + offset);
153         val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
154         writel(val, pdata->mmio_base + offset);
155 }
156
157 /*
158  * BYT PWM used for backlight control by the i915 driver on systems without
159  * the Crystal Cove PMIC.
160  */
161 static struct pwm_lookup byt_pwm_lookup[] = {
162         PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
163                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
164                                "pwm-lpss-platform"),
165 };
166
167 static void byt_pwm_setup(struct lpss_private_data *pdata)
168 {
169         struct acpi_device *adev = pdata->adev;
170
171         /* Only call pwm_add_table for the first PWM controller */
172         if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
173                 return;
174
175         pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
176 }
177
178 #define LPSS_I2C_ENABLE                 0x6c
179
180 static void byt_i2c_setup(struct lpss_private_data *pdata)
181 {
182         const char *uid_str = acpi_device_uid(pdata->adev);
183         acpi_handle handle = pdata->adev->handle;
184         unsigned long long shared_host = 0;
185         acpi_status status;
186         long uid = 0;
187
188         /* Expected to always be true, but better safe then sorry */
189         if (uid_str)
190                 uid = simple_strtol(uid_str, NULL, 10);
191
192         /* Detect I2C bus shared with PUNIT and ignore its d3 status */
193         status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
194         if (ACPI_SUCCESS(status) && shared_host && uid)
195                 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
196
197         lpss_deassert_reset(pdata);
198
199         if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
200                 pdata->fixed_clk_rate = 133000000;
201
202         writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
203 }
204
205 /* BSW PWM used for backlight control by the i915 driver */
206 static struct pwm_lookup bsw_pwm_lookup[] = {
207         PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
208                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
209                                "pwm-lpss-platform"),
210 };
211
212 static void bsw_pwm_setup(struct lpss_private_data *pdata)
213 {
214         struct acpi_device *adev = pdata->adev;
215
216         /* Only call pwm_add_table for the first PWM controller */
217         if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
218                 return;
219
220         pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
221 }
222
223 static const struct lpss_device_desc lpt_dev_desc = {
224         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
225                         | LPSS_SAVE_CTX,
226         .prv_offset = 0x800,
227 };
228
229 static const struct lpss_device_desc lpt_i2c_dev_desc = {
230         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
231         .prv_offset = 0x800,
232 };
233
234 static struct property_entry uart_properties[] = {
235         PROPERTY_ENTRY_U32("reg-io-width", 4),
236         PROPERTY_ENTRY_U32("reg-shift", 2),
237         PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
238         { },
239 };
240
241 static const struct lpss_device_desc lpt_uart_dev_desc = {
242         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
243                         | LPSS_SAVE_CTX,
244         .clk_con_id = "baudclk",
245         .prv_offset = 0x800,
246         .setup = lpss_uart_setup,
247         .properties = uart_properties,
248 };
249
250 static const struct lpss_device_desc lpt_sdio_dev_desc = {
251         .flags = LPSS_LTR,
252         .prv_offset = 0x1000,
253         .prv_size_override = 0x1018,
254 };
255
256 static const struct lpss_device_desc byt_pwm_dev_desc = {
257         .flags = LPSS_SAVE_CTX,
258         .prv_offset = 0x800,
259         .setup = byt_pwm_setup,
260 };
261
262 static const struct lpss_device_desc bsw_pwm_dev_desc = {
263         .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
264         .prv_offset = 0x800,
265         .setup = bsw_pwm_setup,
266         .resume_from_noirq = true,
267 };
268
269 static const struct lpss_device_desc byt_uart_dev_desc = {
270         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
271         .clk_con_id = "baudclk",
272         .prv_offset = 0x800,
273         .setup = lpss_uart_setup,
274         .properties = uart_properties,
275 };
276
277 static const struct lpss_device_desc bsw_uart_dev_desc = {
278         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
279                         | LPSS_NO_D3_DELAY,
280         .clk_con_id = "baudclk",
281         .prv_offset = 0x800,
282         .setup = lpss_uart_setup,
283         .properties = uart_properties,
284 };
285
286 static const struct lpss_device_desc byt_spi_dev_desc = {
287         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
288         .prv_offset = 0x400,
289 };
290
291 static const struct lpss_device_desc byt_sdio_dev_desc = {
292         .flags = LPSS_CLK,
293 };
294
295 static const struct lpss_device_desc byt_i2c_dev_desc = {
296         .flags = LPSS_CLK | LPSS_SAVE_CTX,
297         .prv_offset = 0x800,
298         .setup = byt_i2c_setup,
299         .resume_from_noirq = true,
300 };
301
302 static const struct lpss_device_desc bsw_i2c_dev_desc = {
303         .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
304         .prv_offset = 0x800,
305         .setup = byt_i2c_setup,
306         .resume_from_noirq = true,
307 };
308
309 static const struct lpss_device_desc bsw_spi_dev_desc = {
310         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
311                         | LPSS_NO_D3_DELAY,
312         .prv_offset = 0x400,
313         .setup = lpss_deassert_reset,
314 };
315
316 static const struct x86_cpu_id lpss_cpu_ids[] = {
317         X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,     NULL),
318         X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,        NULL),
319         {}
320 };
321
322 #else
323
324 #define LPSS_ADDR(desc) (0UL)
325
326 #endif /* CONFIG_X86_INTEL_LPSS */
327
328 static const struct acpi_device_id acpi_lpss_device_ids[] = {
329         /* Generic LPSS devices */
330         { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
331
332         /* Lynxpoint LPSS devices */
333         { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
334         { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
335         { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
336         { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
337         { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
338         { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
339         { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
340         { "INT33C7", },
341
342         /* BayTrail LPSS devices */
343         { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
344         { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
345         { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
346         { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
347         { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
348         { "INT33B2", },
349         { "INT33FC", },
350
351         /* Braswell LPSS devices */
352         { "80862286", LPSS_ADDR(lpss_dma_desc) },
353         { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
354         { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
355         { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
356         { "808622C0", LPSS_ADDR(lpss_dma_desc) },
357         { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
358
359         /* Broadwell LPSS devices */
360         { "INT3430", LPSS_ADDR(lpt_dev_desc) },
361         { "INT3431", LPSS_ADDR(lpt_dev_desc) },
362         { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
363         { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
364         { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
365         { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
366         { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
367         { "INT3437", },
368
369         /* Wildcat Point LPSS devices */
370         { "INT3438", LPSS_ADDR(lpt_dev_desc) },
371
372         { }
373 };
374
375 #ifdef CONFIG_X86_INTEL_LPSS
376
377 static int is_memory(struct acpi_resource *res, void *not_used)
378 {
379         struct resource r;
380         return !acpi_dev_resource_memory(res, &r);
381 }
382
383 /* LPSS main clock device. */
384 static struct platform_device *lpss_clk_dev;
385
386 static inline void lpt_register_clock_device(void)
387 {
388         lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
389 }
390
391 static int register_device_clock(struct acpi_device *adev,
392                                  struct lpss_private_data *pdata)
393 {
394         const struct lpss_device_desc *dev_desc = pdata->dev_desc;
395         const char *devname = dev_name(&adev->dev);
396         struct clk *clk;
397         struct lpss_clk_data *clk_data;
398         const char *parent, *clk_name;
399         void __iomem *prv_base;
400
401         if (!lpss_clk_dev)
402                 lpt_register_clock_device();
403
404         if (IS_ERR(lpss_clk_dev))
405                 return PTR_ERR(lpss_clk_dev);
406
407         clk_data = platform_get_drvdata(lpss_clk_dev);
408         if (!clk_data)
409                 return -ENODEV;
410         clk = clk_data->clk;
411
412         if (!pdata->mmio_base
413             || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
414                 return -ENODATA;
415
416         parent = clk_data->name;
417         prv_base = pdata->mmio_base + dev_desc->prv_offset;
418
419         if (pdata->fixed_clk_rate) {
420                 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
421                                               pdata->fixed_clk_rate);
422                 goto out;
423         }
424
425         if (dev_desc->flags & LPSS_CLK_GATE) {
426                 clk = clk_register_gate(NULL, devname, parent, 0,
427                                         prv_base, 0, 0, NULL);
428                 parent = devname;
429         }
430
431         if (dev_desc->flags & LPSS_CLK_DIVIDER) {
432                 /* Prevent division by zero */
433                 if (!readl(prv_base))
434                         writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
435
436                 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
437                 if (!clk_name)
438                         return -ENOMEM;
439                 clk = clk_register_fractional_divider(NULL, clk_name, parent,
440                                                       0, prv_base,
441                                                       1, 15, 16, 15, 0, NULL);
442                 parent = clk_name;
443
444                 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
445                 if (!clk_name) {
446                         kfree(parent);
447                         return -ENOMEM;
448                 }
449                 clk = clk_register_gate(NULL, clk_name, parent,
450                                         CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
451                                         prv_base, 31, 0, NULL);
452                 kfree(parent);
453                 kfree(clk_name);
454         }
455 out:
456         if (IS_ERR(clk))
457                 return PTR_ERR(clk);
458
459         pdata->clk = clk;
460         clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
461         return 0;
462 }
463
464 struct lpss_device_links {
465         const char *supplier_hid;
466         const char *supplier_uid;
467         const char *consumer_hid;
468         const char *consumer_uid;
469         u32 flags;
470         const struct dmi_system_id *dep_missing_ids;
471 };
472
473 /* Please keep this list sorted alphabetically by vendor and model */
474 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
475         {
476                 .matches = {
477                         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
478                         DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
479                 },
480         },
481         {}
482 };
483
484 /*
485  * The _DEP method is used to identify dependencies but instead of creating
486  * device links for every handle in _DEP, only links in the following list are
487  * created. That is necessary because, in the general case, _DEP can refer to
488  * devices that might not have drivers, or that are on different buses, or where
489  * the supplier is not enumerated until after the consumer is probed.
490  */
491 static const struct lpss_device_links lpss_device_links[] = {
492         /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
493         {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
494         /* CHT iGPU depends on PMIC I2C controller */
495         {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
496         /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
497         {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
498          i2c1_dep_missing_dmi_ids},
499         /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
500         {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
501         /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
502         {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
503 };
504
505 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
506                                   const struct lpss_device_links *link)
507 {
508         return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
509 }
510
511 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
512                                   const struct lpss_device_links *link)
513 {
514         return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
515 }
516
517 struct hid_uid {
518         const char *hid;
519         const char *uid;
520 };
521
522 static int match_hid_uid(struct device *dev, const void *data)
523 {
524         struct acpi_device *adev = ACPI_COMPANION(dev);
525         const struct hid_uid *id = data;
526
527         if (!adev)
528                 return 0;
529
530         return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
531 }
532
533 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
534 {
535         struct device *dev;
536
537         struct hid_uid data = {
538                 .hid = hid,
539                 .uid = uid,
540         };
541
542         dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
543         if (dev)
544                 return dev;
545
546         return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
547 }
548
549 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
550 {
551         struct acpi_handle_list dep_devices;
552         acpi_status status;
553         int i;
554
555         if (!acpi_has_method(adev->handle, "_DEP"))
556                 return false;
557
558         status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
559                                          &dep_devices);
560         if (ACPI_FAILURE(status)) {
561                 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
562                 return false;
563         }
564
565         for (i = 0; i < dep_devices.count; i++) {
566                 if (dep_devices.handles[i] == handle)
567                         return true;
568         }
569
570         return false;
571 }
572
573 static void acpi_lpss_link_consumer(struct device *dev1,
574                                     const struct lpss_device_links *link)
575 {
576         struct device *dev2;
577
578         dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
579         if (!dev2)
580                 return;
581
582         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
583             || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
584                 device_link_add(dev2, dev1, link->flags);
585
586         put_device(dev2);
587 }
588
589 static void acpi_lpss_link_supplier(struct device *dev1,
590                                     const struct lpss_device_links *link)
591 {
592         struct device *dev2;
593
594         dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
595         if (!dev2)
596                 return;
597
598         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
599             || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
600                 device_link_add(dev1, dev2, link->flags);
601
602         put_device(dev2);
603 }
604
605 static void acpi_lpss_create_device_links(struct acpi_device *adev,
606                                           struct platform_device *pdev)
607 {
608         int i;
609
610         for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
611                 const struct lpss_device_links *link = &lpss_device_links[i];
612
613                 if (acpi_lpss_is_supplier(adev, link))
614                         acpi_lpss_link_consumer(&pdev->dev, link);
615
616                 if (acpi_lpss_is_consumer(adev, link))
617                         acpi_lpss_link_supplier(&pdev->dev, link);
618         }
619 }
620
621 static int acpi_lpss_create_device(struct acpi_device *adev,
622                                    const struct acpi_device_id *id)
623 {
624         const struct lpss_device_desc *dev_desc;
625         struct lpss_private_data *pdata;
626         struct resource_entry *rentry;
627         struct list_head resource_list;
628         struct platform_device *pdev;
629         int ret;
630
631         dev_desc = (const struct lpss_device_desc *)id->driver_data;
632         if (!dev_desc) {
633                 pdev = acpi_create_platform_device(adev, NULL);
634                 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
635         }
636         pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
637         if (!pdata)
638                 return -ENOMEM;
639
640         INIT_LIST_HEAD(&resource_list);
641         ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
642         if (ret < 0)
643                 goto err_out;
644
645         list_for_each_entry(rentry, &resource_list, node)
646                 if (resource_type(rentry->res) == IORESOURCE_MEM) {
647                         if (dev_desc->prv_size_override)
648                                 pdata->mmio_size = dev_desc->prv_size_override;
649                         else
650                                 pdata->mmio_size = resource_size(rentry->res);
651                         pdata->mmio_base = ioremap(rentry->res->start,
652                                                    pdata->mmio_size);
653                         break;
654                 }
655
656         acpi_dev_free_resource_list(&resource_list);
657
658         if (!pdata->mmio_base) {
659                 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
660                 adev->pnp.type.platform_id = 0;
661                 /* Skip the device, but continue the namespace scan. */
662                 ret = 0;
663                 goto err_out;
664         }
665
666         pdata->adev = adev;
667         pdata->dev_desc = dev_desc;
668
669         if (dev_desc->setup)
670                 dev_desc->setup(pdata);
671
672         if (dev_desc->flags & LPSS_CLK) {
673                 ret = register_device_clock(adev, pdata);
674                 if (ret) {
675                         /* Skip the device, but continue the namespace scan. */
676                         ret = 0;
677                         goto err_out;
678                 }
679         }
680
681         /*
682          * This works around a known issue in ACPI tables where LPSS devices
683          * have _PS0 and _PS3 without _PSC (and no power resources), so
684          * acpi_bus_init_power() will assume that the BIOS has put them into D0.
685          */
686         acpi_device_fix_up_power(adev);
687
688         adev->driver_data = pdata;
689         pdev = acpi_create_platform_device(adev, dev_desc->properties);
690         if (!IS_ERR_OR_NULL(pdev)) {
691                 acpi_lpss_create_device_links(adev, pdev);
692                 return 1;
693         }
694
695         ret = PTR_ERR(pdev);
696         adev->driver_data = NULL;
697
698  err_out:
699         kfree(pdata);
700         return ret;
701 }
702
703 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
704 {
705         return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
706 }
707
708 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
709                              unsigned int reg)
710 {
711         writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
712 }
713
714 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
715 {
716         struct acpi_device *adev;
717         struct lpss_private_data *pdata;
718         unsigned long flags;
719         int ret;
720
721         ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
722         if (WARN_ON(ret))
723                 return ret;
724
725         spin_lock_irqsave(&dev->power.lock, flags);
726         if (pm_runtime_suspended(dev)) {
727                 ret = -EAGAIN;
728                 goto out;
729         }
730         pdata = acpi_driver_data(adev);
731         if (WARN_ON(!pdata || !pdata->mmio_base)) {
732                 ret = -ENODEV;
733                 goto out;
734         }
735         *val = __lpss_reg_read(pdata, reg);
736
737  out:
738         spin_unlock_irqrestore(&dev->power.lock, flags);
739         return ret;
740 }
741
742 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
743                              char *buf)
744 {
745         u32 ltr_value = 0;
746         unsigned int reg;
747         int ret;
748
749         reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
750         ret = lpss_reg_read(dev, reg, &ltr_value);
751         if (ret)
752                 return ret;
753
754         return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
755 }
756
757 static ssize_t lpss_ltr_mode_show(struct device *dev,
758                                   struct device_attribute *attr, char *buf)
759 {
760         u32 ltr_mode = 0;
761         char *outstr;
762         int ret;
763
764         ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
765         if (ret)
766                 return ret;
767
768         outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
769         return sprintf(buf, "%s\n", outstr);
770 }
771
772 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
773 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
774 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
775
776 static struct attribute *lpss_attrs[] = {
777         &dev_attr_auto_ltr.attr,
778         &dev_attr_sw_ltr.attr,
779         &dev_attr_ltr_mode.attr,
780         NULL,
781 };
782
783 static const struct attribute_group lpss_attr_group = {
784         .attrs = lpss_attrs,
785         .name = "lpss_ltr",
786 };
787
788 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
789 {
790         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
791         u32 ltr_mode, ltr_val;
792
793         ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
794         if (val < 0) {
795                 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
796                         ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
797                         __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
798                 }
799                 return;
800         }
801         ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
802         if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
803                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
804                 val = LPSS_LTR_MAX_VAL;
805         } else if (val > LPSS_LTR_MAX_VAL) {
806                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
807                 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
808         } else {
809                 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
810         }
811         ltr_val |= val;
812         __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
813         if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
814                 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
815                 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
816         }
817 }
818
819 #ifdef CONFIG_PM
820 /**
821  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
822  * @dev: LPSS device
823  * @pdata: pointer to the private data of the LPSS device
824  *
825  * Most LPSS devices have private registers which may loose their context when
826  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
827  * prv_reg_ctx array.
828  */
829 static void acpi_lpss_save_ctx(struct device *dev,
830                                struct lpss_private_data *pdata)
831 {
832         unsigned int i;
833
834         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
835                 unsigned long offset = i * sizeof(u32);
836
837                 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
838                 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
839                         pdata->prv_reg_ctx[i], offset);
840         }
841 }
842
843 /**
844  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
845  * @dev: LPSS device
846  * @pdata: pointer to the private data of the LPSS device
847  *
848  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
849  */
850 static void acpi_lpss_restore_ctx(struct device *dev,
851                                   struct lpss_private_data *pdata)
852 {
853         unsigned int i;
854
855         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
856                 unsigned long offset = i * sizeof(u32);
857
858                 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
859                 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
860                         pdata->prv_reg_ctx[i], offset);
861         }
862 }
863
864 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
865 {
866         /*
867          * The following delay is needed or the subsequent write operations may
868          * fail. The LPSS devices are actually PCI devices and the PCI spec
869          * expects 10ms delay before the device can be accessed after D3 to D0
870          * transition. However some platforms like BSW does not need this delay.
871          */
872         unsigned int delay = 10;        /* default 10ms delay */
873
874         if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
875                 delay = 0;
876
877         msleep(delay);
878 }
879
880 static int acpi_lpss_activate(struct device *dev)
881 {
882         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
883         int ret;
884
885         ret = acpi_dev_resume(dev);
886         if (ret)
887                 return ret;
888
889         acpi_lpss_d3_to_d0_delay(pdata);
890
891         /*
892          * This is called only on ->probe() stage where a device is either in
893          * known state defined by BIOS or most likely powered off. Due to this
894          * we have to deassert reset line to be sure that ->probe() will
895          * recognize the device.
896          */
897         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
898                 lpss_deassert_reset(pdata);
899
900 #ifdef CONFIG_PM
901         if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
902                 acpi_lpss_save_ctx(dev, pdata);
903 #endif
904
905         return 0;
906 }
907
908 static void acpi_lpss_dismiss(struct device *dev)
909 {
910         acpi_dev_suspend(dev, false);
911 }
912
913 /* IOSF SB for LPSS island */
914 #define LPSS_IOSF_UNIT_LPIOEP           0xA0
915 #define LPSS_IOSF_UNIT_LPIO1            0xAB
916 #define LPSS_IOSF_UNIT_LPIO2            0xAC
917
918 #define LPSS_IOSF_PMCSR                 0x84
919 #define LPSS_PMCSR_D0                   0
920 #define LPSS_PMCSR_D3hot                3
921 #define LPSS_PMCSR_Dx_MASK              GENMASK(1, 0)
922
923 #define LPSS_IOSF_GPIODEF0              0x154
924 #define LPSS_GPIODEF0_DMA1_D3           BIT(2)
925 #define LPSS_GPIODEF0_DMA2_D3           BIT(3)
926 #define LPSS_GPIODEF0_DMA_D3_MASK       GENMASK(3, 2)
927 #define LPSS_GPIODEF0_DMA_LLP           BIT(13)
928
929 static DEFINE_MUTEX(lpss_iosf_mutex);
930 static bool lpss_iosf_d3_entered = true;
931
932 static void lpss_iosf_enter_d3_state(void)
933 {
934         u32 value1 = 0;
935         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
936         u32 value2 = LPSS_PMCSR_D3hot;
937         u32 mask2 = LPSS_PMCSR_Dx_MASK;
938         /*
939          * PMC provides an information about actual status of the LPSS devices.
940          * Here we read the values related to LPSS power island, i.e. LPSS
941          * devices, excluding both LPSS DMA controllers, along with SCC domain.
942          */
943         u32 func_dis, d3_sts_0, pmc_status;
944         int ret;
945
946         ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
947         if (ret)
948                 return;
949
950         mutex_lock(&lpss_iosf_mutex);
951
952         ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
953         if (ret)
954                 goto exit;
955
956         /*
957          * Get the status of entire LPSS power island per device basis.
958          * Shutdown both LPSS DMA controllers if and only if all other devices
959          * are already in D3hot.
960          */
961         pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
962         if (pmc_status)
963                 goto exit;
964
965         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
966                         LPSS_IOSF_PMCSR, value2, mask2);
967
968         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
969                         LPSS_IOSF_PMCSR, value2, mask2);
970
971         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
972                         LPSS_IOSF_GPIODEF0, value1, mask1);
973
974         lpss_iosf_d3_entered = true;
975
976 exit:
977         mutex_unlock(&lpss_iosf_mutex);
978 }
979
980 static void lpss_iosf_exit_d3_state(void)
981 {
982         u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
983                      LPSS_GPIODEF0_DMA_LLP;
984         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
985         u32 value2 = LPSS_PMCSR_D0;
986         u32 mask2 = LPSS_PMCSR_Dx_MASK;
987
988         mutex_lock(&lpss_iosf_mutex);
989
990         if (!lpss_iosf_d3_entered)
991                 goto exit;
992
993         lpss_iosf_d3_entered = false;
994
995         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
996                         LPSS_IOSF_GPIODEF0, value1, mask1);
997
998         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
999                         LPSS_IOSF_PMCSR, value2, mask2);
1000
1001         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1002                         LPSS_IOSF_PMCSR, value2, mask2);
1003
1004 exit:
1005         mutex_unlock(&lpss_iosf_mutex);
1006 }
1007
1008 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1009 {
1010         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1011         int ret;
1012
1013         if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1014                 acpi_lpss_save_ctx(dev, pdata);
1015
1016         ret = acpi_dev_suspend(dev, wakeup);
1017
1018         /*
1019          * This call must be last in the sequence, otherwise PMC will return
1020          * wrong status for devices being about to be powered off. See
1021          * lpss_iosf_enter_d3_state() for further information.
1022          */
1023         if (acpi_target_system_state() == ACPI_STATE_S0 &&
1024             lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1025                 lpss_iosf_enter_d3_state();
1026
1027         return ret;
1028 }
1029
1030 static int acpi_lpss_resume(struct device *dev)
1031 {
1032         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1033         int ret;
1034
1035         /*
1036          * This call is kept first to be in symmetry with
1037          * acpi_lpss_runtime_suspend() one.
1038          */
1039         if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1040                 lpss_iosf_exit_d3_state();
1041
1042         ret = acpi_dev_resume(dev);
1043         if (ret)
1044                 return ret;
1045
1046         acpi_lpss_d3_to_d0_delay(pdata);
1047
1048         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1049                 acpi_lpss_restore_ctx(dev, pdata);
1050
1051         return 0;
1052 }
1053
1054 #ifdef CONFIG_PM_SLEEP
1055 static int acpi_lpss_do_suspend_late(struct device *dev)
1056 {
1057         int ret;
1058
1059         if (dev_pm_skip_suspend(dev))
1060                 return 0;
1061
1062         ret = pm_generic_suspend_late(dev);
1063         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1064 }
1065
1066 static int acpi_lpss_suspend_late(struct device *dev)
1067 {
1068         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1069
1070         if (pdata->dev_desc->resume_from_noirq)
1071                 return 0;
1072
1073         return acpi_lpss_do_suspend_late(dev);
1074 }
1075
1076 static int acpi_lpss_suspend_noirq(struct device *dev)
1077 {
1078         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1079         int ret;
1080
1081         if (pdata->dev_desc->resume_from_noirq) {
1082                 /*
1083                  * The driver's ->suspend_late callback will be invoked by
1084                  * acpi_lpss_do_suspend_late(), with the assumption that the
1085                  * driver really wanted to run that code in ->suspend_noirq, but
1086                  * it could not run after acpi_dev_suspend() and the driver
1087                  * expected the latter to be called in the "late" phase.
1088                  */
1089                 ret = acpi_lpss_do_suspend_late(dev);
1090                 if (ret)
1091                         return ret;
1092         }
1093
1094         return acpi_subsys_suspend_noirq(dev);
1095 }
1096
1097 static int acpi_lpss_do_resume_early(struct device *dev)
1098 {
1099         int ret = acpi_lpss_resume(dev);
1100
1101         return ret ? ret : pm_generic_resume_early(dev);
1102 }
1103
1104 static int acpi_lpss_resume_early(struct device *dev)
1105 {
1106         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1107
1108         if (pdata->dev_desc->resume_from_noirq)
1109                 return 0;
1110
1111         if (dev_pm_skip_resume(dev))
1112                 return 0;
1113
1114         return acpi_lpss_do_resume_early(dev);
1115 }
1116
1117 static int acpi_lpss_resume_noirq(struct device *dev)
1118 {
1119         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1120         int ret;
1121
1122         /* Follow acpi_subsys_resume_noirq(). */
1123         if (dev_pm_skip_resume(dev))
1124                 return 0;
1125
1126         ret = pm_generic_resume_noirq(dev);
1127         if (ret)
1128                 return ret;
1129
1130         if (!pdata->dev_desc->resume_from_noirq)
1131                 return 0;
1132
1133         /*
1134          * The driver's ->resume_early callback will be invoked by
1135          * acpi_lpss_do_resume_early(), with the assumption that the driver
1136          * really wanted to run that code in ->resume_noirq, but it could not
1137          * run before acpi_dev_resume() and the driver expected the latter to be
1138          * called in the "early" phase.
1139          */
1140         return acpi_lpss_do_resume_early(dev);
1141 }
1142
1143 static int acpi_lpss_do_restore_early(struct device *dev)
1144 {
1145         int ret = acpi_lpss_resume(dev);
1146
1147         return ret ? ret : pm_generic_restore_early(dev);
1148 }
1149
1150 static int acpi_lpss_restore_early(struct device *dev)
1151 {
1152         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1153
1154         if (pdata->dev_desc->resume_from_noirq)
1155                 return 0;
1156
1157         return acpi_lpss_do_restore_early(dev);
1158 }
1159
1160 static int acpi_lpss_restore_noirq(struct device *dev)
1161 {
1162         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1163         int ret;
1164
1165         ret = pm_generic_restore_noirq(dev);
1166         if (ret)
1167                 return ret;
1168
1169         if (!pdata->dev_desc->resume_from_noirq)
1170                 return 0;
1171
1172         /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1173         return acpi_lpss_do_restore_early(dev);
1174 }
1175
1176 static int acpi_lpss_do_poweroff_late(struct device *dev)
1177 {
1178         int ret = pm_generic_poweroff_late(dev);
1179
1180         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1181 }
1182
1183 static int acpi_lpss_poweroff_late(struct device *dev)
1184 {
1185         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1186
1187         if (dev_pm_skip_suspend(dev))
1188                 return 0;
1189
1190         if (pdata->dev_desc->resume_from_noirq)
1191                 return 0;
1192
1193         return acpi_lpss_do_poweroff_late(dev);
1194 }
1195
1196 static int acpi_lpss_poweroff_noirq(struct device *dev)
1197 {
1198         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1199
1200         if (dev_pm_skip_suspend(dev))
1201                 return 0;
1202
1203         if (pdata->dev_desc->resume_from_noirq) {
1204                 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1205                 int ret = acpi_lpss_do_poweroff_late(dev);
1206                 if (ret)
1207                         return ret;
1208         }
1209
1210         return pm_generic_poweroff_noirq(dev);
1211 }
1212 #endif /* CONFIG_PM_SLEEP */
1213
1214 static int acpi_lpss_runtime_suspend(struct device *dev)
1215 {
1216         int ret = pm_generic_runtime_suspend(dev);
1217
1218         return ret ? ret : acpi_lpss_suspend(dev, true);
1219 }
1220
1221 static int acpi_lpss_runtime_resume(struct device *dev)
1222 {
1223         int ret = acpi_lpss_resume(dev);
1224
1225         return ret ? ret : pm_generic_runtime_resume(dev);
1226 }
1227 #endif /* CONFIG_PM */
1228
1229 static struct dev_pm_domain acpi_lpss_pm_domain = {
1230 #ifdef CONFIG_PM
1231         .activate = acpi_lpss_activate,
1232         .dismiss = acpi_lpss_dismiss,
1233 #endif
1234         .ops = {
1235 #ifdef CONFIG_PM
1236 #ifdef CONFIG_PM_SLEEP
1237                 .prepare = acpi_subsys_prepare,
1238                 .complete = acpi_subsys_complete,
1239                 .suspend = acpi_subsys_suspend,
1240                 .suspend_late = acpi_lpss_suspend_late,
1241                 .suspend_noirq = acpi_lpss_suspend_noirq,
1242                 .resume_noirq = acpi_lpss_resume_noirq,
1243                 .resume_early = acpi_lpss_resume_early,
1244                 .freeze = acpi_subsys_freeze,
1245                 .poweroff = acpi_subsys_poweroff,
1246                 .poweroff_late = acpi_lpss_poweroff_late,
1247                 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1248                 .restore_noirq = acpi_lpss_restore_noirq,
1249                 .restore_early = acpi_lpss_restore_early,
1250 #endif
1251                 .runtime_suspend = acpi_lpss_runtime_suspend,
1252                 .runtime_resume = acpi_lpss_runtime_resume,
1253 #endif
1254         },
1255 };
1256
1257 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1258                                      unsigned long action, void *data)
1259 {
1260         struct platform_device *pdev = to_platform_device(data);
1261         struct lpss_private_data *pdata;
1262         struct acpi_device *adev;
1263         const struct acpi_device_id *id;
1264
1265         id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1266         if (!id || !id->driver_data)
1267                 return 0;
1268
1269         if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1270                 return 0;
1271
1272         pdata = acpi_driver_data(adev);
1273         if (!pdata)
1274                 return 0;
1275
1276         if (pdata->mmio_base &&
1277             pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1278                 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1279                 return 0;
1280         }
1281
1282         switch (action) {
1283         case BUS_NOTIFY_BIND_DRIVER:
1284                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1285                 break;
1286         case BUS_NOTIFY_DRIVER_NOT_BOUND:
1287         case BUS_NOTIFY_UNBOUND_DRIVER:
1288                 dev_pm_domain_set(&pdev->dev, NULL);
1289                 break;
1290         case BUS_NOTIFY_ADD_DEVICE:
1291                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1292                 if (pdata->dev_desc->flags & LPSS_LTR)
1293                         return sysfs_create_group(&pdev->dev.kobj,
1294                                                   &lpss_attr_group);
1295                 break;
1296         case BUS_NOTIFY_DEL_DEVICE:
1297                 if (pdata->dev_desc->flags & LPSS_LTR)
1298                         sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1299                 dev_pm_domain_set(&pdev->dev, NULL);
1300                 break;
1301         default:
1302                 break;
1303         }
1304
1305         return 0;
1306 }
1307
1308 static struct notifier_block acpi_lpss_nb = {
1309         .notifier_call = acpi_lpss_platform_notify,
1310 };
1311
1312 static void acpi_lpss_bind(struct device *dev)
1313 {
1314         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1315
1316         if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1317                 return;
1318
1319         if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1320                 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1321         else
1322                 dev_err(dev, "MMIO size insufficient to access LTR\n");
1323 }
1324
1325 static void acpi_lpss_unbind(struct device *dev)
1326 {
1327         dev->power.set_latency_tolerance = NULL;
1328 }
1329
1330 static struct acpi_scan_handler lpss_handler = {
1331         .ids = acpi_lpss_device_ids,
1332         .attach = acpi_lpss_create_device,
1333         .bind = acpi_lpss_bind,
1334         .unbind = acpi_lpss_unbind,
1335 };
1336
1337 void __init acpi_lpss_init(void)
1338 {
1339         const struct x86_cpu_id *id;
1340         int ret;
1341
1342         ret = lpt_clk_init();
1343         if (ret)
1344                 return;
1345
1346         id = x86_match_cpu(lpss_cpu_ids);
1347         if (id)
1348                 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1349
1350         bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1351         acpi_scan_add_handler(&lpss_handler);
1352 }
1353
1354 #else
1355
1356 static struct acpi_scan_handler lpss_handler = {
1357         .ids = acpi_lpss_device_ids,
1358 };
1359
1360 void __init acpi_lpss_init(void)
1361 {
1362         acpi_scan_add_handler(&lpss_handler);
1363 }
1364
1365 #endif /* CONFIG_X86_INTEL_LPSS */