GNU Linux-libre 6.8.9-gnu
[releases.git] / drivers / accel / habanalabs / common / irq.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * Copyright 2016-2022 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7
8 #include "habanalabs.h"
9
10 #include <linux/slab.h>
11
12 /**
13  * struct hl_eqe_work - This structure is used to schedule work of EQ
14  *                      entry and cpucp_reset event
15  *
16  * @eq_work:          workqueue object to run when EQ entry is received
17  * @hdev:             pointer to device structure
18  * @eq_entry:         copy of the EQ entry
19  */
20 struct hl_eqe_work {
21         struct work_struct      eq_work;
22         struct hl_device        *hdev;
23         struct hl_eq_entry      eq_entry;
24 };
25
26 /**
27  * hl_cq_inc_ptr - increment ci or pi of cq
28  *
29  * @ptr: the current ci or pi value of the completion queue
30  *
31  * Increment ptr by 1. If it reaches the number of completion queue
32  * entries, set it to 0
33  */
34 inline u32 hl_cq_inc_ptr(u32 ptr)
35 {
36         ptr++;
37         if (unlikely(ptr == HL_CQ_LENGTH))
38                 ptr = 0;
39         return ptr;
40 }
41
42 /**
43  * hl_eq_inc_ptr - increment ci of eq
44  *
45  * @ptr: the current ci value of the event queue
46  *
47  * Increment ptr by 1. If it reaches the number of event queue
48  * entries, set it to 0
49  */
50 static inline u32 hl_eq_inc_ptr(u32 ptr)
51 {
52         ptr++;
53         if (unlikely(ptr == HL_EQ_LENGTH))
54                 ptr = 0;
55         return ptr;
56 }
57
58 static void irq_handle_eqe(struct work_struct *work)
59 {
60         struct hl_eqe_work *eqe_work = container_of(work, struct hl_eqe_work,
61                                                         eq_work);
62         struct hl_device *hdev = eqe_work->hdev;
63
64         hdev->asic_funcs->handle_eqe(hdev, &eqe_work->eq_entry);
65
66         kfree(eqe_work);
67 }
68
69 /**
70  * job_finish - queue job finish work
71  *
72  * @hdev: pointer to device structure
73  * @cs_seq: command submission sequence
74  * @cq: completion queue
75  * @timestamp: interrupt timestamp
76  *
77  */
78 static void job_finish(struct hl_device *hdev, u32 cs_seq, struct hl_cq *cq, ktime_t timestamp)
79 {
80         struct hl_hw_queue *queue;
81         struct hl_cs_job *job;
82
83         queue = &hdev->kernel_queues[cq->hw_queue_id];
84         job = queue->shadow_queue[hl_pi_2_offset(cs_seq)];
85         job->timestamp = timestamp;
86         queue_work(hdev->cq_wq[cq->cq_idx], &job->finish_work);
87
88         atomic_inc(&queue->ci);
89 }
90
91 /**
92  * cs_finish - queue all cs jobs finish work
93  *
94  * @hdev: pointer to device structure
95  * @cs_seq: command submission sequence
96  * @timestamp: interrupt timestamp
97  *
98  */
99 static void cs_finish(struct hl_device *hdev, u16 cs_seq, ktime_t timestamp)
100 {
101         struct asic_fixed_properties *prop = &hdev->asic_prop;
102         struct hl_hw_queue *queue;
103         struct hl_cs *cs;
104         struct hl_cs_job *job;
105
106         cs = hdev->shadow_cs_queue[cs_seq & (prop->max_pending_cs - 1)];
107         if (!cs) {
108                 dev_warn(hdev->dev,
109                         "No pointer to CS in shadow array at index %d\n",
110                         cs_seq);
111                 return;
112         }
113
114         list_for_each_entry(job, &cs->job_list, cs_node) {
115                 queue = &hdev->kernel_queues[job->hw_queue_id];
116                 atomic_inc(&queue->ci);
117         }
118
119         cs->completion_timestamp = timestamp;
120         queue_work(hdev->cs_cmplt_wq, &cs->finish_work);
121 }
122
123 /**
124  * hl_irq_handler_cq - irq handler for completion queue
125  *
126  * @irq: irq number
127  * @arg: pointer to completion queue structure
128  *
129  */
130 irqreturn_t hl_irq_handler_cq(int irq, void *arg)
131 {
132         struct hl_cq *cq = arg;
133         struct hl_device *hdev = cq->hdev;
134         bool shadow_index_valid, entry_ready;
135         u16 shadow_index;
136         struct hl_cq_entry *cq_entry, *cq_base;
137         ktime_t timestamp = ktime_get();
138
139         if (hdev->disabled) {
140                 dev_dbg(hdev->dev,
141                         "Device disabled but received IRQ %d for CQ %d\n",
142                         irq, cq->hw_queue_id);
143                 return IRQ_HANDLED;
144         }
145
146         cq_base = cq->kernel_address;
147
148         while (1) {
149                 cq_entry = (struct hl_cq_entry *) &cq_base[cq->ci];
150
151                 entry_ready = !!FIELD_GET(CQ_ENTRY_READY_MASK,
152                                 le32_to_cpu(cq_entry->data));
153                 if (!entry_ready)
154                         break;
155
156                 /* Make sure we read CQ entry contents after we've
157                  * checked the ownership bit.
158                  */
159                 dma_rmb();
160
161                 shadow_index_valid =
162                         !!FIELD_GET(CQ_ENTRY_SHADOW_INDEX_VALID_MASK,
163                                         le32_to_cpu(cq_entry->data));
164
165                 shadow_index = FIELD_GET(CQ_ENTRY_SHADOW_INDEX_MASK,
166                                 le32_to_cpu(cq_entry->data));
167
168                 /*
169                  * CQ interrupt handler has 2 modes of operation:
170                  * 1. Interrupt per CS completion: (Single CQ for all queues)
171                  *    CQ entry represents a completed CS
172                  *
173                  * 2. Interrupt per CS job completion in queue: (CQ per queue)
174                  *    CQ entry represents a completed job in a certain queue
175                  */
176                 if (shadow_index_valid && !hdev->disabled) {
177                         if (hdev->asic_prop.completion_mode ==
178                                         HL_COMPLETION_MODE_CS)
179                                 cs_finish(hdev, shadow_index, timestamp);
180                         else
181                                 job_finish(hdev, shadow_index, cq, timestamp);
182                 }
183
184                 /* Clear CQ entry ready bit */
185                 cq_entry->data = cpu_to_le32(le32_to_cpu(cq_entry->data) &
186                                                 ~CQ_ENTRY_READY_MASK);
187
188                 cq->ci = hl_cq_inc_ptr(cq->ci);
189
190                 /* Increment free slots */
191                 atomic_inc(&cq->free_slots_cnt);
192         }
193
194         return IRQ_HANDLED;
195 }
196
197 /*
198  * hl_ts_free_objects - handler of the free objects workqueue.
199  * This function should put refcount to objects that the registration node
200  * took refcount to them.
201  * @work: workqueue object pointer
202  */
203 static void hl_ts_free_objects(struct work_struct *work)
204 {
205         struct timestamp_reg_work_obj *job =
206                         container_of(work, struct timestamp_reg_work_obj, free_obj);
207         struct list_head *dynamic_alloc_free_list_head = job->dynamic_alloc_free_obj_head;
208         struct timestamp_reg_free_node *free_obj, *temp_free_obj;
209         struct list_head *free_list_head = job->free_obj_head;
210
211         struct hl_device *hdev = job->hdev;
212
213         list_for_each_entry_safe(free_obj, temp_free_obj, free_list_head, free_objects_node) {
214                 dev_dbg(hdev->dev, "About to put refcount to buf (%p) cq_cb(%p)\n",
215                                         free_obj->buf,
216                                         free_obj->cq_cb);
217
218                 hl_mmap_mem_buf_put(free_obj->buf);
219                 hl_cb_put(free_obj->cq_cb);
220                 atomic_set(&free_obj->in_use, 0);
221         }
222
223         kfree(free_list_head);
224
225         if (dynamic_alloc_free_list_head) {
226                 list_for_each_entry_safe(free_obj, temp_free_obj, dynamic_alloc_free_list_head,
227                                                                 free_objects_node) {
228                         dev_dbg(hdev->dev,
229                                 "Dynamic_Alloc list: About to put refcount to buf (%p) cq_cb(%p)\n",
230                                                 free_obj->buf,
231                                                 free_obj->cq_cb);
232
233                         hl_mmap_mem_buf_put(free_obj->buf);
234                         hl_cb_put(free_obj->cq_cb);
235                         list_del(&free_obj->free_objects_node);
236                         kfree(free_obj);
237                 }
238
239                 kfree(dynamic_alloc_free_list_head);
240         }
241
242         kfree(job);
243 }
244
245 /*
246  * This function called with spin_lock of wait_list_lock taken
247  * This function will set timestamp and delete the registration node from the
248  * wait_list_lock.
249  * and since we're protected with spin_lock here, so we cannot just put the refcount
250  * for the objects here, since the release function may be called and it's also a long
251  * logic (which might sleep also) that cannot be handled in irq context.
252  * so here we'll be filling a list with nodes of "put" jobs and then will send this
253  * list to a dedicated workqueue to do the actual put.
254  */
255 static int handle_registration_node(struct hl_device *hdev, struct hl_user_pending_interrupt *pend,
256                                                 struct list_head **free_list,
257                                                 struct list_head **dynamic_alloc_list,
258                                                 struct hl_user_interrupt *intr)
259 {
260         struct hl_ts_free_jobs *ts_free_jobs_data;
261         struct timestamp_reg_free_node *free_node;
262         u32 free_node_index;
263         u64 timestamp;
264
265         ts_free_jobs_data = &intr->ts_free_jobs_data;
266         free_node_index = ts_free_jobs_data->next_avail_free_node_idx;
267
268         if (!(*free_list)) {
269                 /* Alloc/Init the timestamp registration free objects list */
270                 *free_list = kmalloc(sizeof(struct list_head), GFP_ATOMIC);
271                 if (!(*free_list))
272                         return -ENOMEM;
273
274                 INIT_LIST_HEAD(*free_list);
275         }
276
277         free_node = &ts_free_jobs_data->free_nodes_pool[free_node_index];
278         if (atomic_cmpxchg(&free_node->in_use, 0, 1)) {
279                 dev_dbg(hdev->dev,
280                         "Timestamp free node pool is full, buff: %p, record: %p, irq: %u\n",
281                                 pend->ts_reg_info.buf,
282                                 pend,
283                                 intr->interrupt_id);
284
285                 if (!(*dynamic_alloc_list)) {
286                         *dynamic_alloc_list = kmalloc(sizeof(struct list_head), GFP_ATOMIC);
287                         if (!(*dynamic_alloc_list))
288                                 return -ENOMEM;
289
290                         INIT_LIST_HEAD(*dynamic_alloc_list);
291                 }
292
293                 free_node = kmalloc(sizeof(struct timestamp_reg_free_node), GFP_ATOMIC);
294                 if (!free_node)
295                         return -ENOMEM;
296
297                 free_node->dynamic_alloc = 1;
298         }
299
300         timestamp = ktime_to_ns(intr->timestamp);
301
302         *pend->ts_reg_info.timestamp_kernel_addr = timestamp;
303
304         dev_dbg(hdev->dev, "Irq handle: Timestamp record (%p) ts cb address (%p), interrupt_id: %u\n",
305                         pend, pend->ts_reg_info.timestamp_kernel_addr, intr->interrupt_id);
306
307         list_del(&pend->list_node);
308
309         /* Putting the refcount for ts_buff and cq_cb objects will be handled
310          * in workqueue context, just add job to free_list.
311          */
312         free_node->buf = pend->ts_reg_info.buf;
313         free_node->cq_cb = pend->ts_reg_info.cq_cb;
314
315         if (free_node->dynamic_alloc) {
316                 list_add(&free_node->free_objects_node, *dynamic_alloc_list);
317         } else {
318                 ts_free_jobs_data->next_avail_free_node_idx =
319                                 (++free_node_index) % ts_free_jobs_data->free_nodes_length;
320                 list_add(&free_node->free_objects_node, *free_list);
321         }
322
323         /* Mark TS record as free */
324         pend->ts_reg_info.in_use = false;
325
326         return 0;
327 }
328
329 static void handle_user_interrupt_ts_list(struct hl_device *hdev, struct hl_user_interrupt *intr)
330 {
331         struct list_head *ts_reg_free_list_head = NULL, *dynamic_alloc_list_head = NULL;
332         struct hl_user_pending_interrupt *pend, *temp_pend;
333         struct timestamp_reg_work_obj *job;
334         bool reg_node_handle_fail = false;
335         unsigned long flags;
336         int rc;
337
338         /* For registration nodes:
339          * As part of handling the registration nodes, we should put refcount to
340          * some objects. the problem is that we cannot do that under spinlock
341          * or in irq handler context at all (since release functions are long and
342          * might sleep), so we will need to handle that part in workqueue context.
343          * To avoid handling kmalloc failure which compels us rolling back actions
344          * and move nodes hanged on the free list back to the interrupt ts list
345          * we always alloc the job of the WQ at the beginning.
346          */
347         job = kmalloc(sizeof(*job), GFP_ATOMIC);
348         if (!job)
349                 return;
350
351         spin_lock_irqsave(&intr->ts_list_lock, flags);
352         list_for_each_entry_safe(pend, temp_pend, &intr->ts_list_head, list_node) {
353                 if ((pend->cq_kernel_addr && *(pend->cq_kernel_addr) >= pend->cq_target_value) ||
354                                 !pend->cq_kernel_addr) {
355                         if (!reg_node_handle_fail) {
356                                 rc = handle_registration_node(hdev, pend,
357                                                 &ts_reg_free_list_head,
358                                                 &dynamic_alloc_list_head, intr);
359                                 if (rc)
360                                         reg_node_handle_fail = true;
361                         }
362                 }
363         }
364         spin_unlock_irqrestore(&intr->ts_list_lock, flags);
365
366         if (ts_reg_free_list_head) {
367                 INIT_WORK(&job->free_obj, hl_ts_free_objects);
368                 job->free_obj_head = ts_reg_free_list_head;
369                 job->dynamic_alloc_free_obj_head = dynamic_alloc_list_head;
370                 job->hdev = hdev;
371                 queue_work(hdev->ts_free_obj_wq, &job->free_obj);
372         } else {
373                 kfree(job);
374         }
375 }
376
377 static void handle_user_interrupt_wait_list(struct hl_device *hdev, struct hl_user_interrupt *intr)
378 {
379         struct hl_user_pending_interrupt *pend, *temp_pend;
380         unsigned long flags;
381
382         spin_lock_irqsave(&intr->wait_list_lock, flags);
383         list_for_each_entry_safe(pend, temp_pend, &intr->wait_list_head, list_node) {
384                 if ((pend->cq_kernel_addr && *(pend->cq_kernel_addr) >= pend->cq_target_value) ||
385                                 !pend->cq_kernel_addr) {
386                         /* Handle wait target value node */
387                         pend->fence.timestamp = intr->timestamp;
388                         complete_all(&pend->fence.completion);
389                 }
390         }
391         spin_unlock_irqrestore(&intr->wait_list_lock, flags);
392 }
393
394 static void handle_tpc_interrupt(struct hl_device *hdev)
395 {
396         u64 event_mask;
397         u32 flags;
398
399         event_mask = HL_NOTIFIER_EVENT_TPC_ASSERT |
400                 HL_NOTIFIER_EVENT_USER_ENGINE_ERR |
401                 HL_NOTIFIER_EVENT_DEVICE_RESET;
402
403         flags = HL_DRV_RESET_DELAY;
404
405         dev_err_ratelimited(hdev->dev, "Received TPC assert\n");
406         hl_device_cond_reset(hdev, flags, event_mask);
407 }
408
409 static void handle_unexpected_user_interrupt(struct hl_device *hdev)
410 {
411         dev_err_ratelimited(hdev->dev, "Received unexpected user error interrupt\n");
412 }
413
414 /**
415  * hl_irq_user_interrupt_handler - irq handler for user interrupts.
416  *
417  * @irq: irq number
418  * @arg: pointer to user interrupt structure
419  */
420 irqreturn_t hl_irq_user_interrupt_handler(int irq, void *arg)
421 {
422         struct hl_user_interrupt *user_int = arg;
423         struct hl_device *hdev = user_int->hdev;
424
425         user_int->timestamp = ktime_get();
426         switch (user_int->type) {
427         case HL_USR_INTERRUPT_CQ:
428                 /* First handle user waiters threads */
429                 handle_user_interrupt_wait_list(hdev, &hdev->common_user_cq_interrupt);
430                 handle_user_interrupt_wait_list(hdev, user_int);
431
432                 /* Second handle user timestamp registrations */
433                 handle_user_interrupt_ts_list(hdev,  &hdev->common_user_cq_interrupt);
434                 handle_user_interrupt_ts_list(hdev, user_int);
435                 break;
436         case HL_USR_INTERRUPT_DECODER:
437                 handle_user_interrupt_wait_list(hdev, &hdev->common_decoder_interrupt);
438
439                 /* Handle decoder interrupt registered on this specific irq */
440                 handle_user_interrupt_wait_list(hdev, user_int);
441                 break;
442         default:
443                 break;
444         }
445
446         return IRQ_HANDLED;
447 }
448
449 /**
450  * hl_irq_user_interrupt_thread_handler - irq thread handler for user interrupts.
451  * This function is invoked by threaded irq mechanism
452  *
453  * @irq: irq number
454  * @arg: pointer to user interrupt structure
455  *
456  */
457 irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg)
458 {
459         struct hl_user_interrupt *user_int = arg;
460         struct hl_device *hdev = user_int->hdev;
461
462         user_int->timestamp = ktime_get();
463         switch (user_int->type) {
464         case HL_USR_INTERRUPT_TPC:
465                 handle_tpc_interrupt(hdev);
466                 break;
467         case HL_USR_INTERRUPT_UNEXPECTED:
468                 handle_unexpected_user_interrupt(hdev);
469                 break;
470         default:
471                 break;
472         }
473
474         return IRQ_HANDLED;
475 }
476
477 irqreturn_t hl_irq_eq_error_interrupt_thread_handler(int irq, void *arg)
478 {
479         u64 event_mask = HL_NOTIFIER_EVENT_DEVICE_RESET | HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE;
480         struct hl_device *hdev = arg;
481
482         dev_err(hdev->dev, "EQ error interrupt received\n");
483
484         hl_device_cond_reset(hdev, HL_DRV_RESET_HARD, event_mask);
485
486         return IRQ_HANDLED;
487 }
488
489 /**
490  * hl_irq_handler_eq - irq handler for event queue
491  *
492  * @irq: irq number
493  * @arg: pointer to event queue structure
494  *
495  */
496 irqreturn_t hl_irq_handler_eq(int irq, void *arg)
497 {
498         struct hl_eq *eq = arg;
499         struct hl_device *hdev = eq->hdev;
500         struct hl_eq_entry *eq_entry;
501         struct hl_eq_entry *eq_base;
502         struct hl_eqe_work *handle_eqe_work;
503         bool entry_ready;
504         u32 cur_eqe, ctl;
505         u16 cur_eqe_index, event_type;
506
507         eq_base = eq->kernel_address;
508
509         while (1) {
510                 cur_eqe = le32_to_cpu(eq_base[eq->ci].hdr.ctl);
511                 entry_ready = !!FIELD_GET(EQ_CTL_READY_MASK, cur_eqe);
512
513                 if (!entry_ready)
514                         break;
515
516                 cur_eqe_index = FIELD_GET(EQ_CTL_INDEX_MASK, cur_eqe);
517                 if ((hdev->event_queue.check_eqe_index) &&
518                                 (((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK) != cur_eqe_index)) {
519                         dev_err(hdev->dev,
520                                 "EQE %#x in queue is ready but index does not match %d!=%d",
521                                 cur_eqe,
522                                 ((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK),
523                                 cur_eqe_index);
524                         break;
525                 }
526
527                 eq->prev_eqe_index++;
528
529                 eq_entry = &eq_base[eq->ci];
530
531                 /*
532                  * Make sure we read EQ entry contents after we've
533                  * checked the ownership bit.
534                  */
535                 dma_rmb();
536
537                 if (hdev->disabled && !hdev->reset_info.in_compute_reset) {
538                         ctl = le32_to_cpu(eq_entry->hdr.ctl);
539                         event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK) >> EQ_CTL_EVENT_TYPE_SHIFT);
540                         dev_warn(hdev->dev,
541                                 "Device disabled but received an EQ event (%u)\n", event_type);
542                         goto skip_irq;
543                 }
544
545                 handle_eqe_work = kmalloc(sizeof(*handle_eqe_work), GFP_ATOMIC);
546                 if (handle_eqe_work) {
547                         INIT_WORK(&handle_eqe_work->eq_work, irq_handle_eqe);
548                         handle_eqe_work->hdev = hdev;
549
550                         memcpy(&handle_eqe_work->eq_entry, eq_entry,
551                                         sizeof(*eq_entry));
552
553                         queue_work(hdev->eq_wq, &handle_eqe_work->eq_work);
554                 }
555 skip_irq:
556                 /* Clear EQ entry ready bit */
557                 eq_entry->hdr.ctl =
558                         cpu_to_le32(le32_to_cpu(eq_entry->hdr.ctl) &
559                                                         ~EQ_CTL_READY_MASK);
560
561                 eq->ci = hl_eq_inc_ptr(eq->ci);
562
563                 hdev->asic_funcs->update_eq_ci(hdev, eq->ci);
564         }
565
566         return IRQ_HANDLED;
567 }
568
569 /**
570  * hl_irq_handler_dec_abnrm - Decoder error interrupt handler
571  * @irq: IRQ number
572  * @arg: pointer to decoder structure.
573  */
574 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg)
575 {
576         struct hl_dec *dec = arg;
577
578         schedule_work(&dec->abnrm_intr_work);
579
580         return IRQ_HANDLED;
581 }
582
583 /**
584  * hl_cq_init - main initialization function for an cq object
585  *
586  * @hdev: pointer to device structure
587  * @q: pointer to cq structure
588  * @hw_queue_id: The H/W queue ID this completion queue belongs to
589  *               HL_INVALID_QUEUE if cq is not attached to any specific queue
590  *
591  * Allocate dma-able memory for the completion queue and initialize fields
592  * Returns 0 on success
593  */
594 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id)
595 {
596         void *p;
597
598         p = hl_asic_dma_alloc_coherent(hdev, HL_CQ_SIZE_IN_BYTES, &q->bus_address,
599                                         GFP_KERNEL | __GFP_ZERO);
600         if (!p)
601                 return -ENOMEM;
602
603         q->hdev = hdev;
604         q->kernel_address = p;
605         q->hw_queue_id = hw_queue_id;
606         q->ci = 0;
607         q->pi = 0;
608
609         atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH);
610
611         return 0;
612 }
613
614 /**
615  * hl_cq_fini - destroy completion queue
616  *
617  * @hdev: pointer to device structure
618  * @q: pointer to cq structure
619  *
620  * Free the completion queue memory
621  */
622 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q)
623 {
624         hl_asic_dma_free_coherent(hdev, HL_CQ_SIZE_IN_BYTES, q->kernel_address, q->bus_address);
625 }
626
627 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q)
628 {
629         q->ci = 0;
630         q->pi = 0;
631
632         atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH);
633
634         /*
635          * It's not enough to just reset the PI/CI because the H/W may have
636          * written valid completion entries before it was halted and therefore
637          * we need to clean the actual queues so we won't process old entries
638          * when the device is operational again
639          */
640
641         memset(q->kernel_address, 0, HL_CQ_SIZE_IN_BYTES);
642 }
643
644 /**
645  * hl_eq_init - main initialization function for an event queue object
646  *
647  * @hdev: pointer to device structure
648  * @q: pointer to eq structure
649  *
650  * Allocate dma-able memory for the event queue and initialize fields
651  * Returns 0 on success
652  */
653 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q)
654 {
655         void *p;
656
657         p = hl_cpu_accessible_dma_pool_alloc(hdev, HL_EQ_SIZE_IN_BYTES, &q->bus_address);
658         if (!p)
659                 return -ENOMEM;
660
661         q->hdev = hdev;
662         q->kernel_address = p;
663         q->ci = 0;
664         q->prev_eqe_index = 0;
665
666         return 0;
667 }
668
669 /**
670  * hl_eq_fini - destroy event queue
671  *
672  * @hdev: pointer to device structure
673  * @q: pointer to eq structure
674  *
675  * Free the event queue memory
676  */
677 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q)
678 {
679         flush_workqueue(hdev->eq_wq);
680
681         hl_cpu_accessible_dma_pool_free(hdev, HL_EQ_SIZE_IN_BYTES, q->kernel_address);
682 }
683
684 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q)
685 {
686         q->ci = 0;
687         q->prev_eqe_index = 0;
688
689         /*
690          * It's not enough to just reset the PI/CI because the H/W may have
691          * written valid completion entries before it was halted and therefore
692          * we need to clean the actual queues so we won't process old entries
693          * when the device is operational again
694          */
695
696         memset(q->kernel_address, 0, HL_EQ_SIZE_IN_BYTES);
697 }