GNU Linux-libre 6.8.9-gnu
[releases.git] / drivers / accel / habanalabs / common / hw_queue.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7
8 #include "habanalabs.h"
9
10 #include <linux/slab.h>
11
12 /*
13  * hl_queue_add_ptr - add to pi or ci and checks if it wraps around
14  *
15  * @ptr: the current pi/ci value
16  * @val: the amount to add
17  *
18  * Add val to ptr. It can go until twice the queue length.
19  */
20 inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
21 {
22         ptr += val;
23         ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
24         return ptr;
25 }
26 static inline int queue_ci_get(atomic_t *ci, u32 queue_len)
27 {
28         return atomic_read(ci) & ((queue_len << 1) - 1);
29 }
30
31 static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
32 {
33         int delta = (q->pi - queue_ci_get(&q->ci, queue_len));
34
35         if (delta >= 0)
36                 return (queue_len - delta);
37         else
38                 return (abs(delta) - queue_len);
39 }
40
41 void hl_hw_queue_update_ci(struct hl_cs *cs)
42 {
43         struct hl_device *hdev = cs->ctx->hdev;
44         struct hl_hw_queue *q;
45         int i;
46
47         if (hdev->disabled)
48                 return;
49
50         q = &hdev->kernel_queues[0];
51
52         /* There are no internal queues if H/W queues are being used */
53         if (!hdev->asic_prop.max_queues || q->queue_type == QUEUE_TYPE_HW)
54                 return;
55
56         /* We must increment CI for every queue that will never get a
57          * completion, there are 2 scenarios this can happen:
58          * 1. All queues of a non completion CS will never get a completion.
59          * 2. Internal queues never gets completion.
60          */
61         for (i = 0 ; i < hdev->asic_prop.max_queues ; i++, q++) {
62                 if (!cs_needs_completion(cs) || q->queue_type == QUEUE_TYPE_INT)
63                         atomic_add(cs->jobs_in_queue_cnt[i], &q->ci);
64         }
65 }
66
67 /*
68  * hl_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a
69  *                                H/W queue.
70  * @hdev: pointer to habanalabs device structure
71  * @q: pointer to habanalabs queue structure
72  * @ctl: BD's control word
73  * @len: BD's length
74  * @ptr: BD's pointer
75  *
76  * This function assumes there is enough space on the queue to submit a new
77  * BD to it. It initializes the next BD and calls the device specific
78  * function to set the pi (and doorbell)
79  *
80  * This function must be called when the scheduler mutex is taken
81  *
82  */
83 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
84                 u32 ctl, u32 len, u64 ptr)
85 {
86         struct hl_bd *bd;
87
88         bd = q->kernel_address;
89         bd += hl_pi_2_offset(q->pi);
90         bd->ctl = cpu_to_le32(ctl);
91         bd->len = cpu_to_le32(len);
92         bd->ptr = cpu_to_le64(ptr);
93
94         q->pi = hl_queue_inc_ptr(q->pi);
95         hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
96 }
97
98 /*
99  * ext_queue_sanity_checks - perform some sanity checks on external queue
100  *
101  * @hdev              : pointer to hl_device structure
102  * @q                 : pointer to hl_hw_queue structure
103  * @num_of_entries    : how many entries to check for space
104  * @reserve_cq_entry  : whether to reserve an entry in the cq
105  *
106  * H/W queues spinlock should be taken before calling this function
107  *
108  * Perform the following:
109  * - Make sure we have enough space in the h/w queue
110  * - Make sure we have enough space in the completion queue
111  * - Reserve space in the completion queue (needs to be reversed if there
112  *   is a failure down the road before the actual submission of work). Only
113  *   do this action if reserve_cq_entry is true
114  *
115  */
116 static int ext_queue_sanity_checks(struct hl_device *hdev,
117                                 struct hl_hw_queue *q, int num_of_entries,
118                                 bool reserve_cq_entry)
119 {
120         atomic_t *free_slots =
121                         &hdev->completion_queue[q->cq_id].free_slots_cnt;
122         int free_slots_cnt;
123
124         /* Check we have enough space in the queue */
125         free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
126
127         if (free_slots_cnt < num_of_entries) {
128                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
129                         q->hw_queue_id, num_of_entries);
130                 return -EAGAIN;
131         }
132
133         if (reserve_cq_entry) {
134                 /*
135                  * Check we have enough space in the completion queue
136                  * Add -1 to counter (decrement) unless counter was already 0
137                  * In that case, CQ is full so we can't submit a new CB because
138                  * we won't get ack on its completion
139                  * atomic_add_unless will return 0 if counter was already 0
140                  */
141                 if (atomic_add_negative(num_of_entries * -1, free_slots)) {
142                         dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
143                                 num_of_entries, q->hw_queue_id);
144                         atomic_add(num_of_entries, free_slots);
145                         return -EAGAIN;
146                 }
147         }
148
149         return 0;
150 }
151
152 /*
153  * int_queue_sanity_checks - perform some sanity checks on internal queue
154  *
155  * @hdev              : pointer to hl_device structure
156  * @q                 : pointer to hl_hw_queue structure
157  * @num_of_entries    : how many entries to check for space
158  *
159  * H/W queues spinlock should be taken before calling this function
160  *
161  * Perform the following:
162  * - Make sure we have enough space in the h/w queue
163  *
164  */
165 static int int_queue_sanity_checks(struct hl_device *hdev,
166                                         struct hl_hw_queue *q,
167                                         int num_of_entries)
168 {
169         int free_slots_cnt;
170
171         if (num_of_entries > q->int_queue_len) {
172                 dev_err(hdev->dev,
173                         "Cannot populate queue %u with %u jobs\n",
174                         q->hw_queue_id, num_of_entries);
175                 return -ENOMEM;
176         }
177
178         /* Check we have enough space in the queue */
179         free_slots_cnt = queue_free_slots(q, q->int_queue_len);
180
181         if (free_slots_cnt < num_of_entries) {
182                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
183                         q->hw_queue_id, num_of_entries);
184                 return -EAGAIN;
185         }
186
187         return 0;
188 }
189
190 /*
191  * hw_queue_sanity_checks() - Make sure we have enough space in the h/w queue
192  * @hdev: Pointer to hl_device structure.
193  * @q: Pointer to hl_hw_queue structure.
194  * @num_of_entries: How many entries to check for space.
195  *
196  * Notice: We do not reserve queue entries so this function mustn't be called
197  *         more than once per CS for the same queue
198  *
199  */
200 static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q,
201                                         int num_of_entries)
202 {
203         int free_slots_cnt;
204
205         /* Check we have enough space in the queue */
206         free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
207
208         if (free_slots_cnt < num_of_entries) {
209                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
210                         q->hw_queue_id, num_of_entries);
211                 return -EAGAIN;
212         }
213
214         return 0;
215 }
216
217 /*
218  * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
219  *
220  * @hdev: pointer to hl_device structure
221  * @hw_queue_id: Queue's type
222  * @cb_size: size of CB
223  * @cb_ptr: pointer to CB location
224  *
225  * This function sends a single CB, that must NOT generate a completion entry.
226  * Sending CPU messages can be done instead via 'hl_hw_queue_submit_bd()'
227  */
228 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
229                                 u32 cb_size, u64 cb_ptr)
230 {
231         struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
232         int rc = 0;
233
234         hdev->asic_funcs->hw_queues_lock(hdev);
235
236         if (hdev->disabled) {
237                 rc = -EPERM;
238                 goto out;
239         }
240
241         /*
242          * hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue
243          * type only on init phase, when the queues are empty and being tested,
244          * so there is no need for sanity checks.
245          */
246         if (q->queue_type != QUEUE_TYPE_HW) {
247                 rc = ext_queue_sanity_checks(hdev, q, 1, false);
248                 if (rc)
249                         goto out;
250         }
251
252         hl_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
253
254 out:
255         hdev->asic_funcs->hw_queues_unlock(hdev);
256
257         return rc;
258 }
259
260 /*
261  * ext_queue_schedule_job - submit a JOB to an external queue
262  *
263  * @job: pointer to the job that needs to be submitted to the queue
264  *
265  * This function must be called when the scheduler mutex is taken
266  *
267  */
268 static void ext_queue_schedule_job(struct hl_cs_job *job)
269 {
270         struct hl_device *hdev = job->cs->ctx->hdev;
271         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
272         struct hl_cq_entry cq_pkt;
273         struct hl_cq *cq;
274         u64 cq_addr;
275         struct hl_cb *cb;
276         u32 ctl;
277         u32 len;
278         u64 ptr;
279
280         /*
281          * Update the JOB ID inside the BD CTL so the device would know what
282          * to write in the completion queue
283          */
284         ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
285
286         cb = job->patched_cb;
287         len = job->job_cb_size;
288         ptr = cb->bus_address;
289
290         /* Skip completion flow in case this is a non completion CS */
291         if (!cs_needs_completion(job->cs))
292                 goto submit_bd;
293
294         cq_pkt.data = cpu_to_le32(
295                         ((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
296                                 & CQ_ENTRY_SHADOW_INDEX_MASK) |
297                         FIELD_PREP(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 1) |
298                         FIELD_PREP(CQ_ENTRY_READY_MASK, 1));
299
300         /*
301          * No need to protect pi_offset because scheduling to the
302          * H/W queues is done under the scheduler mutex
303          *
304          * No need to check if CQ is full because it was already
305          * checked in ext_queue_sanity_checks
306          */
307         cq = &hdev->completion_queue[q->cq_id];
308         cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
309
310         hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len,
311                                                 job->user_cb_size,
312                                                 cq_addr,
313                                                 le32_to_cpu(cq_pkt.data),
314                                                 q->msi_vec,
315                                                 job->contains_dma_pkt);
316
317         q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
318
319         cq->pi = hl_cq_inc_ptr(cq->pi);
320
321 submit_bd:
322         hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
323 }
324
325 /*
326  * int_queue_schedule_job - submit a JOB to an internal queue
327  *
328  * @job: pointer to the job that needs to be submitted to the queue
329  *
330  * This function must be called when the scheduler mutex is taken
331  *
332  */
333 static void int_queue_schedule_job(struct hl_cs_job *job)
334 {
335         struct hl_device *hdev = job->cs->ctx->hdev;
336         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
337         struct hl_bd bd;
338         __le64 *pi;
339
340         bd.ctl = 0;
341         bd.len = cpu_to_le32(job->job_cb_size);
342
343         if (job->is_kernel_allocated_cb)
344                 /* bus_address is actually a mmu mapped address
345                  * allocated from an internal pool
346                  */
347                 bd.ptr = cpu_to_le64(job->user_cb->bus_address);
348         else
349                 bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb);
350
351         pi = q->kernel_address + (q->pi & (q->int_queue_len - 1)) * sizeof(bd);
352
353         q->pi++;
354         q->pi &= ((q->int_queue_len << 1) - 1);
355
356         hdev->asic_funcs->pqe_write(hdev, pi, &bd);
357
358         hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
359 }
360
361 /*
362  * hw_queue_schedule_job - submit a JOB to a H/W queue
363  *
364  * @job: pointer to the job that needs to be submitted to the queue
365  *
366  * This function must be called when the scheduler mutex is taken
367  *
368  */
369 static void hw_queue_schedule_job(struct hl_cs_job *job)
370 {
371         struct hl_device *hdev = job->cs->ctx->hdev;
372         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
373         u64 ptr;
374         u32 offset, ctl, len;
375
376         /*
377          * Upon PQE completion, COMP_DATA is used as the write data to the
378          * completion queue (QMAN HBW message), and COMP_OFFSET is used as the
379          * write address offset in the SM block (QMAN LBW message).
380          * The write address offset is calculated as "COMP_OFFSET << 2".
381          */
382         offset = job->cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
383         ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) |
384                 ((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK);
385
386         len = job->job_cb_size;
387
388         /*
389          * A patched CB is created only if a user CB was allocated by driver and
390          * MMU is disabled. If MMU is enabled, the user CB should be used
391          * instead. If the user CB wasn't allocated by driver, assume that it
392          * holds an address.
393          */
394         if (job->patched_cb)
395                 ptr = job->patched_cb->bus_address;
396         else if (job->is_kernel_allocated_cb)
397                 ptr = job->user_cb->bus_address;
398         else
399                 ptr = (u64) (uintptr_t) job->user_cb;
400
401         hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
402 }
403
404 static int init_signal_cs(struct hl_device *hdev,
405                 struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
406 {
407         struct hl_sync_stream_properties *prop;
408         struct hl_hw_sob *hw_sob;
409         u32 q_idx;
410         int rc = 0;
411
412         q_idx = job->hw_queue_id;
413         prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
414         hw_sob = &prop->hw_sob[prop->curr_sob_offset];
415
416         cs_cmpl->hw_sob = hw_sob;
417         cs_cmpl->sob_val = prop->next_sob_val;
418
419         dev_dbg(hdev->dev,
420                 "generate signal CB, sob_id: %d, sob val: %u, q_idx: %d, seq: %llu\n",
421                 cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, q_idx,
422                 cs_cmpl->cs_seq);
423
424         /* we set an EB since we must make sure all oeprations are done
425          * when sending the signal
426          */
427         hdev->asic_funcs->gen_signal_cb(hdev, job->patched_cb,
428                                 cs_cmpl->hw_sob->sob_id, 0, true);
429
430         rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, 1,
431                                                                 false);
432
433         job->cs->sob_addr_offset = hw_sob->sob_addr;
434         job->cs->initial_sob_count = prop->next_sob_val - 1;
435
436         return rc;
437 }
438
439 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
440                         struct hl_cs *cs, struct hl_cs_job *job,
441                         struct hl_cs_compl *cs_cmpl)
442 {
443         struct hl_cs_encaps_sig_handle *handle = cs->encaps_sig_hdl;
444         u32 offset = 0;
445
446         cs_cmpl->hw_sob = handle->hw_sob;
447
448         /* Note that encaps_sig_wait_offset was validated earlier in the flow
449          * for offset value which exceeds the max reserved signal count.
450          * always decrement 1 of the offset since when the user
451          * set offset 1 for example he mean to wait only for the first
452          * signal only, which will be pre_sob_val, and if he set offset 2
453          * then the value required is (pre_sob_val + 1) and so on...
454          * if user set wait offset to 0, then treat it as legacy wait cs,
455          * wait for the next signal.
456          */
457         if (job->encaps_sig_wait_offset)
458                 offset = job->encaps_sig_wait_offset - 1;
459
460         cs_cmpl->sob_val = handle->pre_sob_val + offset;
461 }
462
463 static int init_wait_cs(struct hl_device *hdev, struct hl_cs *cs,
464                 struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
465 {
466         struct hl_gen_wait_properties wait_prop;
467         struct hl_sync_stream_properties *prop;
468         struct hl_cs_compl *signal_cs_cmpl;
469         u32 q_idx;
470
471         q_idx = job->hw_queue_id;
472         prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
473
474         signal_cs_cmpl = container_of(cs->signal_fence,
475                                         struct hl_cs_compl,
476                                         base_fence);
477
478         if (cs->encaps_signals) {
479                 /* use the encaps signal handle stored earlier in the flow
480                  * and set the SOB information from the encaps
481                  * signals handle
482                  */
483                 hl_hw_queue_encaps_sig_set_sob_info(hdev, cs, job, cs_cmpl);
484
485                 dev_dbg(hdev->dev, "Wait for encaps signals handle, qidx(%u), CS sequence(%llu), sob val: 0x%x, offset: %u\n",
486                                 cs->encaps_sig_hdl->q_idx,
487                                 cs->encaps_sig_hdl->cs_seq,
488                                 cs_cmpl->sob_val,
489                                 job->encaps_sig_wait_offset);
490         } else {
491                 /* Copy the SOB id and value of the signal CS */
492                 cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
493                 cs_cmpl->sob_val = signal_cs_cmpl->sob_val;
494         }
495
496         /* check again if the signal cs already completed.
497          * if yes then don't send any wait cs since the hw_sob
498          * could be in reset already. if signal is not completed
499          * then get refcount to hw_sob to prevent resetting the sob
500          * while wait cs is not submitted.
501          * note that this check is protected by two locks,
502          * hw queue lock and completion object lock,
503          * and the same completion object lock also protects
504          * the hw_sob reset handler function.
505          * The hw_queue lock prevent out of sync of hw_sob
506          * refcount value, changed by signal/wait flows.
507          */
508         spin_lock(&signal_cs_cmpl->lock);
509
510         if (completion_done(&cs->signal_fence->completion)) {
511                 spin_unlock(&signal_cs_cmpl->lock);
512                 return -EINVAL;
513         }
514
515         kref_get(&cs_cmpl->hw_sob->kref);
516
517         spin_unlock(&signal_cs_cmpl->lock);
518
519         dev_dbg(hdev->dev,
520                 "generate wait CB, sob_id: %d, sob_val: 0x%x, mon_id: %d, q_idx: %d, seq: %llu\n",
521                 cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
522                 prop->base_mon_id, q_idx, cs->sequence);
523
524         wait_prop.data = (void *) job->patched_cb;
525         wait_prop.sob_base = cs_cmpl->hw_sob->sob_id;
526         wait_prop.sob_mask = 0x1;
527         wait_prop.sob_val = cs_cmpl->sob_val;
528         wait_prop.mon_id = prop->base_mon_id;
529         wait_prop.q_idx = q_idx;
530         wait_prop.size = 0;
531
532         hdev->asic_funcs->gen_wait_cb(hdev, &wait_prop);
533
534         mb();
535         hl_fence_put(cs->signal_fence);
536         cs->signal_fence = NULL;
537
538         return 0;
539 }
540
541 /*
542  * init_signal_wait_cs - initialize a signal/wait CS
543  * @cs: pointer to the signal/wait CS
544  *
545  * H/W queues spinlock should be taken before calling this function
546  */
547 static int init_signal_wait_cs(struct hl_cs *cs)
548 {
549         struct hl_ctx *ctx = cs->ctx;
550         struct hl_device *hdev = ctx->hdev;
551         struct hl_cs_job *job;
552         struct hl_cs_compl *cs_cmpl =
553                         container_of(cs->fence, struct hl_cs_compl, base_fence);
554         int rc = 0;
555
556         /* There is only one job in a signal/wait CS */
557         job = list_first_entry(&cs->job_list, struct hl_cs_job,
558                                 cs_node);
559
560         if (cs->type & CS_TYPE_SIGNAL)
561                 rc = init_signal_cs(hdev, job, cs_cmpl);
562         else if (cs->type & CS_TYPE_WAIT)
563                 rc = init_wait_cs(hdev, cs, job, cs_cmpl);
564
565         return rc;
566 }
567
568 static int encaps_sig_first_staged_cs_handler
569                         (struct hl_device *hdev, struct hl_cs *cs)
570 {
571         struct hl_cs_compl *cs_cmpl =
572                         container_of(cs->fence,
573                                         struct hl_cs_compl, base_fence);
574         struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
575         struct hl_encaps_signals_mgr *mgr;
576         int rc = 0;
577
578         mgr = &cs->ctx->sig_mgr;
579
580         spin_lock(&mgr->lock);
581         encaps_sig_hdl = idr_find(&mgr->handles, cs->encaps_sig_hdl_id);
582         if (encaps_sig_hdl) {
583                 /*
584                  * Set handler CS sequence,
585                  * the CS which contains the encapsulated signals.
586                  */
587                 encaps_sig_hdl->cs_seq = cs->sequence;
588                 /* store the handle and set encaps signal indication,
589                  * to be used later in cs_do_release to put the last
590                  * reference to encaps signals handlers.
591                  */
592                 cs_cmpl->encaps_signals = true;
593                 cs_cmpl->encaps_sig_hdl = encaps_sig_hdl;
594
595                 /* set hw_sob pointer in completion object
596                  * since it's used in cs_do_release flow to put
597                  * refcount to sob
598                  */
599                 cs_cmpl->hw_sob = encaps_sig_hdl->hw_sob;
600                 cs_cmpl->sob_val = encaps_sig_hdl->pre_sob_val +
601                                                 encaps_sig_hdl->count;
602
603                 dev_dbg(hdev->dev, "CS seq (%llu) added to encaps signal handler id (%u), count(%u), qidx(%u), sob(%u), val(%u)\n",
604                                 cs->sequence, encaps_sig_hdl->id,
605                                 encaps_sig_hdl->count,
606                                 encaps_sig_hdl->q_idx,
607                                 cs_cmpl->hw_sob->sob_id,
608                                 cs_cmpl->sob_val);
609
610         } else {
611                 dev_err(hdev->dev, "encaps handle id(%u) wasn't found!\n",
612                                 cs->encaps_sig_hdl_id);
613                 rc = -EINVAL;
614         }
615
616         spin_unlock(&mgr->lock);
617
618         return rc;
619 }
620
621 /*
622  * hl_hw_queue_schedule_cs - schedule a command submission
623  * @cs: pointer to the CS
624  */
625 int hl_hw_queue_schedule_cs(struct hl_cs *cs)
626 {
627         enum hl_device_status status;
628         struct hl_cs_counters_atomic *cntr;
629         struct hl_ctx *ctx = cs->ctx;
630         struct hl_device *hdev = ctx->hdev;
631         struct hl_cs_job *job, *tmp;
632         struct hl_hw_queue *q;
633         int rc = 0, i, cq_cnt;
634         bool first_entry;
635         u32 max_queues;
636
637         cntr = &hdev->aggregated_cs_counters;
638
639         hdev->asic_funcs->hw_queues_lock(hdev);
640
641         if (!hl_device_operational(hdev, &status)) {
642                 atomic64_inc(&cntr->device_in_reset_drop_cnt);
643                 atomic64_inc(&ctx->cs_counters.device_in_reset_drop_cnt);
644                 dev_err(hdev->dev,
645                         "device is %s, CS rejected!\n", hdev->status[status]);
646                 rc = -EPERM;
647                 goto out;
648         }
649
650         max_queues = hdev->asic_prop.max_queues;
651
652         q = &hdev->kernel_queues[0];
653         for (i = 0, cq_cnt = 0 ; i < max_queues ; i++, q++) {
654                 if (cs->jobs_in_queue_cnt[i]) {
655                         switch (q->queue_type) {
656                         case QUEUE_TYPE_EXT:
657                                 rc = ext_queue_sanity_checks(hdev, q,
658                                                 cs->jobs_in_queue_cnt[i],
659                                                 cs_needs_completion(cs) ?
660                                                                 true : false);
661                                 break;
662                         case QUEUE_TYPE_INT:
663                                 rc = int_queue_sanity_checks(hdev, q,
664                                                 cs->jobs_in_queue_cnt[i]);
665                                 break;
666                         case QUEUE_TYPE_HW:
667                                 rc = hw_queue_sanity_checks(hdev, q,
668                                                 cs->jobs_in_queue_cnt[i]);
669                                 break;
670                         default:
671                                 dev_err(hdev->dev, "Queue type %d is invalid\n",
672                                         q->queue_type);
673                                 rc = -EINVAL;
674                                 break;
675                         }
676
677                         if (rc) {
678                                 atomic64_inc(
679                                         &ctx->cs_counters.queue_full_drop_cnt);
680                                 atomic64_inc(&cntr->queue_full_drop_cnt);
681                                 goto unroll_cq_resv;
682                         }
683
684                         if (q->queue_type == QUEUE_TYPE_EXT)
685                                 cq_cnt++;
686                 }
687         }
688
689         if ((cs->type == CS_TYPE_SIGNAL) || (cs->type == CS_TYPE_WAIT)) {
690                 rc = init_signal_wait_cs(cs);
691                 if (rc)
692                         goto unroll_cq_resv;
693         } else if (cs->type == CS_TYPE_COLLECTIVE_WAIT) {
694                 rc = hdev->asic_funcs->collective_wait_init_cs(cs);
695                 if (rc)
696                         goto unroll_cq_resv;
697         }
698
699         rc = hdev->asic_funcs->pre_schedule_cs(cs);
700         if (rc) {
701                 dev_err(hdev->dev,
702                         "Failed in pre-submission operations of CS %d.%llu\n",
703                         ctx->asid, cs->sequence);
704                 goto unroll_cq_resv;
705         }
706
707         hdev->shadow_cs_queue[cs->sequence &
708                                 (hdev->asic_prop.max_pending_cs - 1)] = cs;
709
710         if (cs->encaps_signals && cs->staged_first) {
711                 rc = encaps_sig_first_staged_cs_handler(hdev, cs);
712                 if (rc)
713                         goto unroll_cq_resv;
714         }
715
716         spin_lock(&hdev->cs_mirror_lock);
717
718         /* Verify staged CS exists and add to the staged list */
719         if (cs->staged_cs && !cs->staged_first) {
720                 struct hl_cs *staged_cs;
721
722                 staged_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
723                 if (!staged_cs) {
724                         dev_err(hdev->dev,
725                                 "Cannot find staged submission sequence %llu",
726                                 cs->staged_sequence);
727                         rc = -EINVAL;
728                         goto unlock_cs_mirror;
729                 }
730
731                 if (is_staged_cs_last_exists(hdev, staged_cs)) {
732                         dev_err(hdev->dev,
733                                 "Staged submission sequence %llu already submitted",
734                                 cs->staged_sequence);
735                         rc = -EINVAL;
736                         goto unlock_cs_mirror;
737                 }
738
739                 list_add_tail(&cs->staged_cs_node, &staged_cs->staged_cs_node);
740
741                 /* update stream map of the first CS */
742                 if (hdev->supports_wait_for_multi_cs)
743                         staged_cs->fence->stream_master_qid_map |=
744                                         cs->fence->stream_master_qid_map;
745         }
746
747         list_add_tail(&cs->mirror_node, &hdev->cs_mirror_list);
748
749         /* Queue TDR if the CS is the first entry and if timeout is wanted */
750         first_entry = list_first_entry(&hdev->cs_mirror_list,
751                                         struct hl_cs, mirror_node) == cs;
752         if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
753                                 first_entry && cs_needs_timeout(cs)) {
754                 cs->tdr_active = true;
755                 schedule_delayed_work(&cs->work_tdr, cs->timeout_jiffies);
756
757         }
758
759         spin_unlock(&hdev->cs_mirror_lock);
760
761         list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
762                 switch (job->queue_type) {
763                 case QUEUE_TYPE_EXT:
764                         ext_queue_schedule_job(job);
765                         break;
766                 case QUEUE_TYPE_INT:
767                         int_queue_schedule_job(job);
768                         break;
769                 case QUEUE_TYPE_HW:
770                         hw_queue_schedule_job(job);
771                         break;
772                 default:
773                         break;
774                 }
775
776         cs->submitted = true;
777
778         goto out;
779
780 unlock_cs_mirror:
781         spin_unlock(&hdev->cs_mirror_lock);
782 unroll_cq_resv:
783         q = &hdev->kernel_queues[0];
784         for (i = 0 ; (i < max_queues) && (cq_cnt > 0) ; i++, q++) {
785                 if ((q->queue_type == QUEUE_TYPE_EXT) &&
786                                                 (cs->jobs_in_queue_cnt[i])) {
787                         atomic_t *free_slots =
788                                 &hdev->completion_queue[i].free_slots_cnt;
789                         atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
790                         cq_cnt--;
791                 }
792         }
793
794 out:
795         hdev->asic_funcs->hw_queues_unlock(hdev);
796
797         return rc;
798 }
799
800 /*
801  * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
802  *
803  * @hdev: pointer to hl_device structure
804  * @hw_queue_id: which queue to increment its ci
805  */
806 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
807 {
808         struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
809
810         atomic_inc(&q->ci);
811 }
812
813 static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
814                                         bool is_cpu_queue)
815 {
816         void *p;
817         int rc;
818
819         if (is_cpu_queue)
820                 p = hl_cpu_accessible_dma_pool_alloc(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address);
821         else
822                 p = hl_asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address,
823                                                 GFP_KERNEL | __GFP_ZERO);
824         if (!p)
825                 return -ENOMEM;
826
827         q->kernel_address = p;
828
829         q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH, sizeof(struct hl_cs_job *), GFP_KERNEL);
830         if (!q->shadow_queue) {
831                 dev_err(hdev->dev,
832                         "Failed to allocate shadow queue for H/W queue %d\n",
833                         q->hw_queue_id);
834                 rc = -ENOMEM;
835                 goto free_queue;
836         }
837
838         /* Make sure read/write pointers are initialized to start of queue */
839         atomic_set(&q->ci, 0);
840         q->pi = 0;
841
842         return 0;
843
844 free_queue:
845         if (is_cpu_queue)
846                 hl_cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address);
847         else
848                 hl_asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address,
849                                                 q->bus_address);
850
851         return rc;
852 }
853
854 static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
855 {
856         void *p;
857
858         p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
859                                         &q->bus_address, &q->int_queue_len);
860         if (!p) {
861                 dev_err(hdev->dev,
862                         "Failed to get base address for internal queue %d\n",
863                         q->hw_queue_id);
864                 return -EFAULT;
865         }
866
867         q->kernel_address = p;
868         q->pi = 0;
869         atomic_set(&q->ci, 0);
870
871         return 0;
872 }
873
874 static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
875 {
876         return ext_and_cpu_queue_init(hdev, q, true);
877 }
878
879 static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
880 {
881         return ext_and_cpu_queue_init(hdev, q, false);
882 }
883
884 static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
885 {
886         void *p;
887
888         p = hl_asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address,
889                                         GFP_KERNEL | __GFP_ZERO);
890         if (!p)
891                 return -ENOMEM;
892
893         q->kernel_address = p;
894
895         /* Make sure read/write pointers are initialized to start of queue */
896         atomic_set(&q->ci, 0);
897         q->pi = 0;
898
899         return 0;
900 }
901
902 static void sync_stream_queue_init(struct hl_device *hdev, u32 q_idx)
903 {
904         struct hl_sync_stream_properties *sync_stream_prop;
905         struct asic_fixed_properties *prop = &hdev->asic_prop;
906         struct hl_hw_sob *hw_sob;
907         int sob, reserved_mon_idx, queue_idx;
908
909         sync_stream_prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
910
911         /* We use 'collective_mon_idx' as a running index in order to reserve
912          * monitors for collective master/slave queues.
913          * collective master queue gets 2 reserved monitors
914          * collective slave queue gets 1 reserved monitor
915          */
916         if (hdev->kernel_queues[q_idx].collective_mode ==
917                         HL_COLLECTIVE_MASTER) {
918                 reserved_mon_idx = hdev->collective_mon_idx;
919
920                 /* reserve the first monitor for collective master queue */
921                 sync_stream_prop->collective_mstr_mon_id[0] =
922                         prop->collective_first_mon + reserved_mon_idx;
923
924                 /* reserve the second monitor for collective master queue */
925                 sync_stream_prop->collective_mstr_mon_id[1] =
926                         prop->collective_first_mon + reserved_mon_idx + 1;
927
928                 hdev->collective_mon_idx += HL_COLLECTIVE_RSVD_MSTR_MONS;
929         } else if (hdev->kernel_queues[q_idx].collective_mode ==
930                         HL_COLLECTIVE_SLAVE) {
931                 reserved_mon_idx = hdev->collective_mon_idx++;
932
933                 /* reserve a monitor for collective slave queue */
934                 sync_stream_prop->collective_slave_mon_id =
935                         prop->collective_first_mon + reserved_mon_idx;
936         }
937
938         if (!hdev->kernel_queues[q_idx].supports_sync_stream)
939                 return;
940
941         queue_idx = hdev->sync_stream_queue_idx++;
942
943         sync_stream_prop->base_sob_id = prop->sync_stream_first_sob +
944                         (queue_idx * HL_RSVD_SOBS);
945         sync_stream_prop->base_mon_id = prop->sync_stream_first_mon +
946                         (queue_idx * HL_RSVD_MONS);
947         sync_stream_prop->next_sob_val = 1;
948         sync_stream_prop->curr_sob_offset = 0;
949
950         for (sob = 0 ; sob < HL_RSVD_SOBS ; sob++) {
951                 hw_sob = &sync_stream_prop->hw_sob[sob];
952                 hw_sob->hdev = hdev;
953                 hw_sob->sob_id = sync_stream_prop->base_sob_id + sob;
954                 hw_sob->sob_addr =
955                         hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
956                 hw_sob->q_idx = q_idx;
957                 kref_init(&hw_sob->kref);
958         }
959 }
960
961 static void sync_stream_queue_reset(struct hl_device *hdev, u32 q_idx)
962 {
963         struct hl_sync_stream_properties *prop =
964                         &hdev->kernel_queues[q_idx].sync_stream_prop;
965
966         /*
967          * In case we got here due to a stuck CS, the refcnt might be bigger
968          * than 1 and therefore we reset it.
969          */
970         kref_init(&prop->hw_sob[prop->curr_sob_offset].kref);
971         prop->curr_sob_offset = 0;
972         prop->next_sob_val = 1;
973 }
974
975 /*
976  * queue_init - main initialization function for H/W queue object
977  *
978  * @hdev: pointer to hl_device device structure
979  * @q: pointer to hl_hw_queue queue structure
980  * @hw_queue_id: The id of the H/W queue
981  *
982  * Allocate dma-able memory for the queue and initialize fields
983  * Returns 0 on success
984  */
985 static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
986                         u32 hw_queue_id)
987 {
988         int rc;
989
990         q->hw_queue_id = hw_queue_id;
991
992         switch (q->queue_type) {
993         case QUEUE_TYPE_EXT:
994                 rc = ext_queue_init(hdev, q);
995                 break;
996         case QUEUE_TYPE_INT:
997                 rc = int_queue_init(hdev, q);
998                 break;
999         case QUEUE_TYPE_CPU:
1000                 rc = cpu_queue_init(hdev, q);
1001                 break;
1002         case QUEUE_TYPE_HW:
1003                 rc = hw_queue_init(hdev, q);
1004                 break;
1005         case QUEUE_TYPE_NA:
1006                 q->valid = 0;
1007                 return 0;
1008         default:
1009                 dev_crit(hdev->dev, "wrong queue type %d during init\n",
1010                         q->queue_type);
1011                 rc = -EINVAL;
1012                 break;
1013         }
1014
1015         sync_stream_queue_init(hdev, q->hw_queue_id);
1016
1017         if (rc)
1018                 return rc;
1019
1020         q->valid = 1;
1021
1022         return 0;
1023 }
1024
1025 /*
1026  * hw_queue_fini - destroy queue
1027  *
1028  * @hdev: pointer to hl_device device structure
1029  * @q: pointer to hl_hw_queue queue structure
1030  *
1031  * Free the queue memory
1032  */
1033 static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
1034 {
1035         if (!q->valid)
1036                 return;
1037
1038         /*
1039          * If we arrived here, there are no jobs waiting on this queue
1040          * so we can safely remove it.
1041          * This is because this function can only called when:
1042          * 1. Either a context is deleted, which only can occur if all its
1043          *    jobs were finished
1044          * 2. A context wasn't able to be created due to failure or timeout,
1045          *    which means there are no jobs on the queue yet
1046          *
1047          * The only exception are the queues of the kernel context, but
1048          * if they are being destroyed, it means that the entire module is
1049          * being removed. If the module is removed, it means there is no open
1050          * user context. It also means that if a job was submitted by
1051          * the kernel driver (e.g. context creation), the job itself was
1052          * released by the kernel driver when a timeout occurred on its
1053          * Completion. Thus, we don't need to release it again.
1054          */
1055
1056         if (q->queue_type == QUEUE_TYPE_INT)
1057                 return;
1058
1059         kfree(q->shadow_queue);
1060
1061         if (q->queue_type == QUEUE_TYPE_CPU)
1062                 hl_cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address);
1063         else
1064                 hl_asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address,
1065                                                 q->bus_address);
1066 }
1067
1068 int hl_hw_queues_create(struct hl_device *hdev)
1069 {
1070         struct asic_fixed_properties *asic = &hdev->asic_prop;
1071         struct hl_hw_queue *q;
1072         int i, rc, q_ready_cnt;
1073
1074         hdev->kernel_queues = kcalloc(asic->max_queues,
1075                                 sizeof(*hdev->kernel_queues), GFP_KERNEL);
1076
1077         if (!hdev->kernel_queues) {
1078                 dev_err(hdev->dev, "Not enough memory for H/W queues\n");
1079                 return -ENOMEM;
1080         }
1081
1082         /* Initialize the H/W queues */
1083         for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
1084                         i < asic->max_queues ; i++, q_ready_cnt++, q++) {
1085
1086                 q->queue_type = asic->hw_queues_props[i].type;
1087                 q->supports_sync_stream =
1088                                 asic->hw_queues_props[i].supports_sync_stream;
1089                 q->collective_mode = asic->hw_queues_props[i].collective_mode;
1090                 rc = queue_init(hdev, q, i);
1091                 if (rc) {
1092                         dev_err(hdev->dev,
1093                                 "failed to initialize queue %d\n", i);
1094                         goto release_queues;
1095                 }
1096         }
1097
1098         return 0;
1099
1100 release_queues:
1101         for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
1102                 queue_fini(hdev, q);
1103
1104         kfree(hdev->kernel_queues);
1105
1106         return rc;
1107 }
1108
1109 void hl_hw_queues_destroy(struct hl_device *hdev)
1110 {
1111         struct hl_hw_queue *q;
1112         u32 max_queues = hdev->asic_prop.max_queues;
1113         int i;
1114
1115         for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++)
1116                 queue_fini(hdev, q);
1117
1118         kfree(hdev->kernel_queues);
1119 }
1120
1121 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
1122 {
1123         struct hl_hw_queue *q;
1124         u32 max_queues = hdev->asic_prop.max_queues;
1125         int i;
1126
1127         for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) {
1128                 if ((!q->valid) ||
1129                         ((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
1130                         continue;
1131                 q->pi = 0;
1132                 atomic_set(&q->ci, 0);
1133
1134                 if (q->supports_sync_stream)
1135                         sync_stream_queue_reset(hdev, q->hw_queue_id);
1136         }
1137 }