891ea2fa263c935707be62167f59c2c1474e9a8d
[releases.git] / delayed-ref.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/sort.h>
9 #include "messages.h"
10 #include "ctree.h"
11 #include "delayed-ref.h"
12 #include "transaction.h"
13 #include "qgroup.h"
14 #include "space-info.h"
15 #include "tree-mod-log.h"
16 #include "fs.h"
17
18 struct kmem_cache *btrfs_delayed_ref_head_cachep;
19 struct kmem_cache *btrfs_delayed_tree_ref_cachep;
20 struct kmem_cache *btrfs_delayed_data_ref_cachep;
21 struct kmem_cache *btrfs_delayed_extent_op_cachep;
22 /*
23  * delayed back reference update tracking.  For subvolume trees
24  * we queue up extent allocations and backref maintenance for
25  * delayed processing.   This avoids deep call chains where we
26  * add extents in the middle of btrfs_search_slot, and it allows
27  * us to buffer up frequently modified backrefs in an rb tree instead
28  * of hammering updates on the extent allocation tree.
29  */
30
31 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
32 {
33         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
34         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
35         bool ret = false;
36         u64 reserved;
37
38         spin_lock(&global_rsv->lock);
39         reserved = global_rsv->reserved;
40         spin_unlock(&global_rsv->lock);
41
42         /*
43          * Since the global reserve is just kind of magic we don't really want
44          * to rely on it to save our bacon, so if our size is more than the
45          * delayed_refs_rsv and the global rsv then it's time to think about
46          * bailing.
47          */
48         spin_lock(&delayed_refs_rsv->lock);
49         reserved += delayed_refs_rsv->reserved;
50         if (delayed_refs_rsv->size >= reserved)
51                 ret = true;
52         spin_unlock(&delayed_refs_rsv->lock);
53         return ret;
54 }
55
56 /*
57  * Release a ref head's reservation.
58  *
59  * @fs_info:  the filesystem
60  * @nr_refs:  number of delayed refs to drop
61  * @nr_csums: number of csum items to drop
62  *
63  * Drops the delayed ref head's count from the delayed refs rsv and free any
64  * excess reservation we had.
65  */
66 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
67 {
68         struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
69         u64 num_bytes;
70         u64 released;
71
72         num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
73         num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
74
75         released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
76         if (released)
77                 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
78                                               0, released, 0);
79 }
80
81 /*
82  * Adjust the size of the delayed refs rsv.
83  *
84  * This is to be called anytime we may have adjusted trans->delayed_ref_updates
85  * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
86  * add it to the delayed_refs_rsv.
87  */
88 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
89 {
90         struct btrfs_fs_info *fs_info = trans->fs_info;
91         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
92         struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
93         u64 num_bytes;
94         u64 reserved_bytes;
95
96         num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
97         num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
98                                                        trans->delayed_ref_csum_deletions);
99
100         if (num_bytes == 0)
101                 return;
102
103         /*
104          * Try to take num_bytes from the transaction's local delayed reserve.
105          * If not possible, try to take as much as it's available. If the local
106          * reserve doesn't have enough reserved space, the delayed refs reserve
107          * will be refilled next time btrfs_delayed_refs_rsv_refill() is called
108          * by someone or if a transaction commit is triggered before that, the
109          * global block reserve will be used. We want to minimize using the
110          * global block reserve for cases we can account for in advance, to
111          * avoid exhausting it and reach -ENOSPC during a transaction commit.
112          */
113         spin_lock(&local_rsv->lock);
114         reserved_bytes = min(num_bytes, local_rsv->reserved);
115         local_rsv->reserved -= reserved_bytes;
116         local_rsv->full = (local_rsv->reserved >= local_rsv->size);
117         spin_unlock(&local_rsv->lock);
118
119         spin_lock(&delayed_rsv->lock);
120         delayed_rsv->size += num_bytes;
121         delayed_rsv->reserved += reserved_bytes;
122         delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
123         spin_unlock(&delayed_rsv->lock);
124         trans->delayed_ref_updates = 0;
125         trans->delayed_ref_csum_deletions = 0;
126 }
127
128 /*
129  * Adjust the size of the delayed refs block reserve for 1 block group item
130  * insertion, used after allocating a block group.
131  */
132 void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
133 {
134         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
135
136         spin_lock(&delayed_rsv->lock);
137         /*
138          * Inserting a block group item does not require changing the free space
139          * tree, only the extent tree or the block group tree, so this is all we
140          * need.
141          */
142         delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
143         delayed_rsv->full = false;
144         spin_unlock(&delayed_rsv->lock);
145 }
146
147 /*
148  * Adjust the size of the delayed refs block reserve to release space for 1
149  * block group item insertion.
150  */
151 void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
152 {
153         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
154         const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
155         u64 released;
156
157         released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
158         if (released > 0)
159                 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
160                                               0, released, 0);
161 }
162
163 /*
164  * Adjust the size of the delayed refs block reserve for 1 block group item
165  * update.
166  */
167 void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
168 {
169         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
170
171         spin_lock(&delayed_rsv->lock);
172         /*
173          * Updating a block group item does not result in new nodes/leaves and
174          * does not require changing the free space tree, only the extent tree
175          * or the block group tree, so this is all we need.
176          */
177         delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
178         delayed_rsv->full = false;
179         spin_unlock(&delayed_rsv->lock);
180 }
181
182 /*
183  * Adjust the size of the delayed refs block reserve to release space for 1
184  * block group item update.
185  */
186 void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
187 {
188         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
189         const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
190         u64 released;
191
192         released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
193         if (released > 0)
194                 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
195                                               0, released, 0);
196 }
197
198 /*
199  * Transfer bytes to our delayed refs rsv.
200  *
201  * @fs_info:   the filesystem
202  * @num_bytes: number of bytes to transfer
203  *
204  * This transfers up to the num_bytes amount, previously reserved, to the
205  * delayed_refs_rsv.  Any extra bytes are returned to the space info.
206  */
207 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
208                                        u64 num_bytes)
209 {
210         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
211         u64 to_free = 0;
212
213         spin_lock(&delayed_refs_rsv->lock);
214         if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
215                 u64 delta = delayed_refs_rsv->size -
216                         delayed_refs_rsv->reserved;
217                 if (num_bytes > delta) {
218                         to_free = num_bytes - delta;
219                         num_bytes = delta;
220                 }
221         } else {
222                 to_free = num_bytes;
223                 num_bytes = 0;
224         }
225
226         if (num_bytes)
227                 delayed_refs_rsv->reserved += num_bytes;
228         if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
229                 delayed_refs_rsv->full = true;
230         spin_unlock(&delayed_refs_rsv->lock);
231
232         if (num_bytes)
233                 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
234                                               0, num_bytes, 1);
235         if (to_free)
236                 btrfs_space_info_free_bytes_may_use(fs_info,
237                                 delayed_refs_rsv->space_info, to_free);
238 }
239
240 /*
241  * Refill based on our delayed refs usage.
242  *
243  * @fs_info: the filesystem
244  * @flush:   control how we can flush for this reservation.
245  *
246  * This will refill the delayed block_rsv up to 1 items size worth of space and
247  * will return -ENOSPC if we can't make the reservation.
248  */
249 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
250                                   enum btrfs_reserve_flush_enum flush)
251 {
252         struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
253         struct btrfs_space_info *space_info = block_rsv->space_info;
254         u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
255         u64 num_bytes = 0;
256         u64 refilled_bytes;
257         u64 to_free;
258         int ret = -ENOSPC;
259
260         spin_lock(&block_rsv->lock);
261         if (block_rsv->reserved < block_rsv->size) {
262                 num_bytes = block_rsv->size - block_rsv->reserved;
263                 num_bytes = min(num_bytes, limit);
264         }
265         spin_unlock(&block_rsv->lock);
266
267         if (!num_bytes)
268                 return 0;
269
270         ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
271         if (ret)
272                 return ret;
273
274         /*
275          * We may have raced with someone else, so check again if we the block
276          * reserve is still not full and release any excess space.
277          */
278         spin_lock(&block_rsv->lock);
279         if (block_rsv->reserved < block_rsv->size) {
280                 u64 needed = block_rsv->size - block_rsv->reserved;
281
282                 if (num_bytes >= needed) {
283                         block_rsv->reserved += needed;
284                         block_rsv->full = true;
285                         to_free = num_bytes - needed;
286                         refilled_bytes = needed;
287                 } else {
288                         block_rsv->reserved += num_bytes;
289                         to_free = 0;
290                         refilled_bytes = num_bytes;
291                 }
292         } else {
293                 to_free = num_bytes;
294                 refilled_bytes = 0;
295         }
296         spin_unlock(&block_rsv->lock);
297
298         if (to_free > 0)
299                 btrfs_space_info_free_bytes_may_use(fs_info, space_info, to_free);
300
301         if (refilled_bytes > 0)
302                 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
303                                               refilled_bytes, 1);
304         return 0;
305 }
306
307 /*
308  * compare two delayed tree backrefs with same bytenr and type
309  */
310 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
311                           struct btrfs_delayed_tree_ref *ref2)
312 {
313         if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
314                 if (ref1->root < ref2->root)
315                         return -1;
316                 if (ref1->root > ref2->root)
317                         return 1;
318         } else {
319                 if (ref1->parent < ref2->parent)
320                         return -1;
321                 if (ref1->parent > ref2->parent)
322                         return 1;
323         }
324         return 0;
325 }
326
327 /*
328  * compare two delayed data backrefs with same bytenr and type
329  */
330 static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
331                           struct btrfs_delayed_data_ref *ref2)
332 {
333         if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
334                 if (ref1->root < ref2->root)
335                         return -1;
336                 if (ref1->root > ref2->root)
337                         return 1;
338                 if (ref1->objectid < ref2->objectid)
339                         return -1;
340                 if (ref1->objectid > ref2->objectid)
341                         return 1;
342                 if (ref1->offset < ref2->offset)
343                         return -1;
344                 if (ref1->offset > ref2->offset)
345                         return 1;
346         } else {
347                 if (ref1->parent < ref2->parent)
348                         return -1;
349                 if (ref1->parent > ref2->parent)
350                         return 1;
351         }
352         return 0;
353 }
354
355 static int comp_refs(struct btrfs_delayed_ref_node *ref1,
356                      struct btrfs_delayed_ref_node *ref2,
357                      bool check_seq)
358 {
359         int ret = 0;
360
361         if (ref1->type < ref2->type)
362                 return -1;
363         if (ref1->type > ref2->type)
364                 return 1;
365         if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
366             ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
367                 ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
368                                      btrfs_delayed_node_to_tree_ref(ref2));
369         else
370                 ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
371                                      btrfs_delayed_node_to_data_ref(ref2));
372         if (ret)
373                 return ret;
374         if (check_seq) {
375                 if (ref1->seq < ref2->seq)
376                         return -1;
377                 if (ref1->seq > ref2->seq)
378                         return 1;
379         }
380         return 0;
381 }
382
383 /* insert a new ref to head ref rbtree */
384 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
385                                                    struct rb_node *node)
386 {
387         struct rb_node **p = &root->rb_root.rb_node;
388         struct rb_node *parent_node = NULL;
389         struct btrfs_delayed_ref_head *entry;
390         struct btrfs_delayed_ref_head *ins;
391         u64 bytenr;
392         bool leftmost = true;
393
394         ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
395         bytenr = ins->bytenr;
396         while (*p) {
397                 parent_node = *p;
398                 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
399                                  href_node);
400
401                 if (bytenr < entry->bytenr) {
402                         p = &(*p)->rb_left;
403                 } else if (bytenr > entry->bytenr) {
404                         p = &(*p)->rb_right;
405                         leftmost = false;
406                 } else {
407                         return entry;
408                 }
409         }
410
411         rb_link_node(node, parent_node, p);
412         rb_insert_color_cached(node, root, leftmost);
413         return NULL;
414 }
415
416 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
417                 struct btrfs_delayed_ref_node *ins)
418 {
419         struct rb_node **p = &root->rb_root.rb_node;
420         struct rb_node *node = &ins->ref_node;
421         struct rb_node *parent_node = NULL;
422         struct btrfs_delayed_ref_node *entry;
423         bool leftmost = true;
424
425         while (*p) {
426                 int comp;
427
428                 parent_node = *p;
429                 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
430                                  ref_node);
431                 comp = comp_refs(ins, entry, true);
432                 if (comp < 0) {
433                         p = &(*p)->rb_left;
434                 } else if (comp > 0) {
435                         p = &(*p)->rb_right;
436                         leftmost = false;
437                 } else {
438                         return entry;
439                 }
440         }
441
442         rb_link_node(node, parent_node, p);
443         rb_insert_color_cached(node, root, leftmost);
444         return NULL;
445 }
446
447 static struct btrfs_delayed_ref_head *find_first_ref_head(
448                 struct btrfs_delayed_ref_root *dr)
449 {
450         struct rb_node *n;
451         struct btrfs_delayed_ref_head *entry;
452
453         n = rb_first_cached(&dr->href_root);
454         if (!n)
455                 return NULL;
456
457         entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
458
459         return entry;
460 }
461
462 /*
463  * Find a head entry based on bytenr. This returns the delayed ref head if it
464  * was able to find one, or NULL if nothing was in that spot.  If return_bigger
465  * is given, the next bigger entry is returned if no exact match is found.
466  */
467 static struct btrfs_delayed_ref_head *find_ref_head(
468                 struct btrfs_delayed_ref_root *dr, u64 bytenr,
469                 bool return_bigger)
470 {
471         struct rb_root *root = &dr->href_root.rb_root;
472         struct rb_node *n;
473         struct btrfs_delayed_ref_head *entry;
474
475         n = root->rb_node;
476         entry = NULL;
477         while (n) {
478                 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
479
480                 if (bytenr < entry->bytenr)
481                         n = n->rb_left;
482                 else if (bytenr > entry->bytenr)
483                         n = n->rb_right;
484                 else
485                         return entry;
486         }
487         if (entry && return_bigger) {
488                 if (bytenr > entry->bytenr) {
489                         n = rb_next(&entry->href_node);
490                         if (!n)
491                                 return NULL;
492                         entry = rb_entry(n, struct btrfs_delayed_ref_head,
493                                          href_node);
494                 }
495                 return entry;
496         }
497         return NULL;
498 }
499
500 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
501                            struct btrfs_delayed_ref_head *head)
502 {
503         lockdep_assert_held(&delayed_refs->lock);
504         if (mutex_trylock(&head->mutex))
505                 return 0;
506
507         refcount_inc(&head->refs);
508         spin_unlock(&delayed_refs->lock);
509
510         mutex_lock(&head->mutex);
511         spin_lock(&delayed_refs->lock);
512         if (RB_EMPTY_NODE(&head->href_node)) {
513                 mutex_unlock(&head->mutex);
514                 btrfs_put_delayed_ref_head(head);
515                 return -EAGAIN;
516         }
517         btrfs_put_delayed_ref_head(head);
518         return 0;
519 }
520
521 static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
522                                     struct btrfs_delayed_ref_root *delayed_refs,
523                                     struct btrfs_delayed_ref_head *head,
524                                     struct btrfs_delayed_ref_node *ref)
525 {
526         lockdep_assert_held(&head->lock);
527         rb_erase_cached(&ref->ref_node, &head->ref_tree);
528         RB_CLEAR_NODE(&ref->ref_node);
529         if (!list_empty(&ref->add_list))
530                 list_del(&ref->add_list);
531         btrfs_put_delayed_ref(ref);
532         atomic_dec(&delayed_refs->num_entries);
533         btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
534 }
535
536 static bool merge_ref(struct btrfs_fs_info *fs_info,
537                       struct btrfs_delayed_ref_root *delayed_refs,
538                       struct btrfs_delayed_ref_head *head,
539                       struct btrfs_delayed_ref_node *ref,
540                       u64 seq)
541 {
542         struct btrfs_delayed_ref_node *next;
543         struct rb_node *node = rb_next(&ref->ref_node);
544         bool done = false;
545
546         while (!done && node) {
547                 int mod;
548
549                 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
550                 node = rb_next(node);
551                 if (seq && next->seq >= seq)
552                         break;
553                 if (comp_refs(ref, next, false))
554                         break;
555
556                 if (ref->action == next->action) {
557                         mod = next->ref_mod;
558                 } else {
559                         if (ref->ref_mod < next->ref_mod) {
560                                 swap(ref, next);
561                                 done = true;
562                         }
563                         mod = -next->ref_mod;
564                 }
565
566                 drop_delayed_ref(fs_info, delayed_refs, head, next);
567                 ref->ref_mod += mod;
568                 if (ref->ref_mod == 0) {
569                         drop_delayed_ref(fs_info, delayed_refs, head, ref);
570                         done = true;
571                 } else {
572                         /*
573                          * Can't have multiples of the same ref on a tree block.
574                          */
575                         WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
576                                 ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
577                 }
578         }
579
580         return done;
581 }
582
583 void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
584                               struct btrfs_delayed_ref_root *delayed_refs,
585                               struct btrfs_delayed_ref_head *head)
586 {
587         struct btrfs_delayed_ref_node *ref;
588         struct rb_node *node;
589         u64 seq = 0;
590
591         lockdep_assert_held(&head->lock);
592
593         if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
594                 return;
595
596         /* We don't have too many refs to merge for data. */
597         if (head->is_data)
598                 return;
599
600         seq = btrfs_tree_mod_log_lowest_seq(fs_info);
601 again:
602         for (node = rb_first_cached(&head->ref_tree); node;
603              node = rb_next(node)) {
604                 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
605                 if (seq && ref->seq >= seq)
606                         continue;
607                 if (merge_ref(fs_info, delayed_refs, head, ref, seq))
608                         goto again;
609         }
610 }
611
612 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
613 {
614         int ret = 0;
615         u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
616
617         if (min_seq != 0 && seq >= min_seq) {
618                 btrfs_debug(fs_info,
619                             "holding back delayed_ref %llu, lowest is %llu",
620                             seq, min_seq);
621                 ret = 1;
622         }
623
624         return ret;
625 }
626
627 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
628                 struct btrfs_delayed_ref_root *delayed_refs)
629 {
630         struct btrfs_delayed_ref_head *head;
631
632         lockdep_assert_held(&delayed_refs->lock);
633 again:
634         head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
635                              true);
636         if (!head && delayed_refs->run_delayed_start != 0) {
637                 delayed_refs->run_delayed_start = 0;
638                 head = find_first_ref_head(delayed_refs);
639         }
640         if (!head)
641                 return NULL;
642
643         while (head->processing) {
644                 struct rb_node *node;
645
646                 node = rb_next(&head->href_node);
647                 if (!node) {
648                         if (delayed_refs->run_delayed_start == 0)
649                                 return NULL;
650                         delayed_refs->run_delayed_start = 0;
651                         goto again;
652                 }
653                 head = rb_entry(node, struct btrfs_delayed_ref_head,
654                                 href_node);
655         }
656
657         head->processing = true;
658         WARN_ON(delayed_refs->num_heads_ready == 0);
659         delayed_refs->num_heads_ready--;
660         delayed_refs->run_delayed_start = head->bytenr +
661                 head->num_bytes;
662         return head;
663 }
664
665 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
666                            struct btrfs_delayed_ref_head *head)
667 {
668         lockdep_assert_held(&delayed_refs->lock);
669         lockdep_assert_held(&head->lock);
670
671         rb_erase_cached(&head->href_node, &delayed_refs->href_root);
672         RB_CLEAR_NODE(&head->href_node);
673         atomic_dec(&delayed_refs->num_entries);
674         delayed_refs->num_heads--;
675         if (!head->processing)
676                 delayed_refs->num_heads_ready--;
677 }
678
679 /*
680  * Helper to insert the ref_node to the tail or merge with tail.
681  *
682  * Return false if the ref was inserted.
683  * Return true if the ref was merged into an existing one (and therefore can be
684  * freed by the caller).
685  */
686 static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
687                                struct btrfs_delayed_ref_head *href,
688                                struct btrfs_delayed_ref_node *ref)
689 {
690         struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
691         struct btrfs_delayed_ref_node *exist;
692         int mod;
693
694         spin_lock(&href->lock);
695         exist = tree_insert(&href->ref_tree, ref);
696         if (!exist) {
697                 if (ref->action == BTRFS_ADD_DELAYED_REF)
698                         list_add_tail(&ref->add_list, &href->ref_add_list);
699                 atomic_inc(&root->num_entries);
700                 spin_unlock(&href->lock);
701                 trans->delayed_ref_updates++;
702                 return false;
703         }
704
705         /* Now we are sure we can merge */
706         if (exist->action == ref->action) {
707                 mod = ref->ref_mod;
708         } else {
709                 /* Need to change action */
710                 if (exist->ref_mod < ref->ref_mod) {
711                         exist->action = ref->action;
712                         mod = -exist->ref_mod;
713                         exist->ref_mod = ref->ref_mod;
714                         if (ref->action == BTRFS_ADD_DELAYED_REF)
715                                 list_add_tail(&exist->add_list,
716                                               &href->ref_add_list);
717                         else if (ref->action == BTRFS_DROP_DELAYED_REF) {
718                                 ASSERT(!list_empty(&exist->add_list));
719                                 list_del(&exist->add_list);
720                         } else {
721                                 ASSERT(0);
722                         }
723                 } else
724                         mod = -ref->ref_mod;
725         }
726         exist->ref_mod += mod;
727
728         /* remove existing tail if its ref_mod is zero */
729         if (exist->ref_mod == 0)
730                 drop_delayed_ref(trans->fs_info, root, href, exist);
731         spin_unlock(&href->lock);
732         return true;
733 }
734
735 /*
736  * helper function to update the accounting in the head ref
737  * existing and update must have the same bytenr
738  */
739 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
740                          struct btrfs_delayed_ref_head *existing,
741                          struct btrfs_delayed_ref_head *update)
742 {
743         struct btrfs_delayed_ref_root *delayed_refs =
744                 &trans->transaction->delayed_refs;
745         struct btrfs_fs_info *fs_info = trans->fs_info;
746         int old_ref_mod;
747
748         BUG_ON(existing->is_data != update->is_data);
749
750         spin_lock(&existing->lock);
751
752         /*
753          * When freeing an extent, we may not know the owning root when we
754          * first create the head_ref. However, some deref before the last deref
755          * will know it, so we just need to update the head_ref accordingly.
756          */
757         if (!existing->owning_root)
758                 existing->owning_root = update->owning_root;
759
760         if (update->must_insert_reserved) {
761                 /* if the extent was freed and then
762                  * reallocated before the delayed ref
763                  * entries were processed, we can end up
764                  * with an existing head ref without
765                  * the must_insert_reserved flag set.
766                  * Set it again here
767                  */
768                 existing->must_insert_reserved = update->must_insert_reserved;
769                 existing->owning_root = update->owning_root;
770
771                 /*
772                  * update the num_bytes so we make sure the accounting
773                  * is done correctly
774                  */
775                 existing->num_bytes = update->num_bytes;
776
777         }
778
779         if (update->extent_op) {
780                 if (!existing->extent_op) {
781                         existing->extent_op = update->extent_op;
782                 } else {
783                         if (update->extent_op->update_key) {
784                                 memcpy(&existing->extent_op->key,
785                                        &update->extent_op->key,
786                                        sizeof(update->extent_op->key));
787                                 existing->extent_op->update_key = true;
788                         }
789                         if (update->extent_op->update_flags) {
790                                 existing->extent_op->flags_to_set |=
791                                         update->extent_op->flags_to_set;
792                                 existing->extent_op->update_flags = true;
793                         }
794                         btrfs_free_delayed_extent_op(update->extent_op);
795                 }
796         }
797         /*
798          * update the reference mod on the head to reflect this new operation,
799          * only need the lock for this case cause we could be processing it
800          * currently, for refs we just added we know we're a-ok.
801          */
802         old_ref_mod = existing->total_ref_mod;
803         existing->ref_mod += update->ref_mod;
804         existing->total_ref_mod += update->ref_mod;
805
806         /*
807          * If we are going to from a positive ref mod to a negative or vice
808          * versa we need to make sure to adjust pending_csums accordingly.
809          * We reserve bytes for csum deletion when adding or updating a ref head
810          * see add_delayed_ref_head() for more details.
811          */
812         if (existing->is_data) {
813                 u64 csum_leaves =
814                         btrfs_csum_bytes_to_leaves(fs_info,
815                                                    existing->num_bytes);
816
817                 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
818                         delayed_refs->pending_csums -= existing->num_bytes;
819                         btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
820                 }
821                 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
822                         delayed_refs->pending_csums += existing->num_bytes;
823                         trans->delayed_ref_csum_deletions += csum_leaves;
824                 }
825         }
826
827         spin_unlock(&existing->lock);
828 }
829
830 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
831                                   struct btrfs_qgroup_extent_record *qrecord,
832                                   u64 bytenr, u64 num_bytes, u64 ref_root,
833                                   u64 reserved, int action, bool is_data,
834                                   bool is_system, u64 owning_root)
835 {
836         int count_mod = 1;
837         bool must_insert_reserved = false;
838
839         /* If reserved is provided, it must be a data extent. */
840         BUG_ON(!is_data && reserved);
841
842         switch (action) {
843         case BTRFS_UPDATE_DELAYED_HEAD:
844                 count_mod = 0;
845                 break;
846         case BTRFS_DROP_DELAYED_REF:
847                 /*
848                  * The head node stores the sum of all the mods, so dropping a ref
849                  * should drop the sum in the head node by one.
850                  */
851                 count_mod = -1;
852                 break;
853         case BTRFS_ADD_DELAYED_EXTENT:
854                 /*
855                  * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
856                  * reserved accounting when the extent is finally added, or if a
857                  * later modification deletes the delayed ref without ever
858                  * inserting the extent into the extent allocation tree.
859                  * ref->must_insert_reserved is the flag used to record that
860                  * accounting mods are required.
861                  *
862                  * Once we record must_insert_reserved, switch the action to
863                  * BTRFS_ADD_DELAYED_REF because other special casing is not
864                  * required.
865                  */
866                 must_insert_reserved = true;
867                 break;
868         }
869
870         refcount_set(&head_ref->refs, 1);
871         head_ref->bytenr = bytenr;
872         head_ref->num_bytes = num_bytes;
873         head_ref->ref_mod = count_mod;
874         head_ref->reserved_bytes = reserved;
875         head_ref->must_insert_reserved = must_insert_reserved;
876         head_ref->owning_root = owning_root;
877         head_ref->is_data = is_data;
878         head_ref->is_system = is_system;
879         head_ref->ref_tree = RB_ROOT_CACHED;
880         INIT_LIST_HEAD(&head_ref->ref_add_list);
881         RB_CLEAR_NODE(&head_ref->href_node);
882         head_ref->processing = false;
883         head_ref->total_ref_mod = count_mod;
884         spin_lock_init(&head_ref->lock);
885         mutex_init(&head_ref->mutex);
886
887         if (qrecord) {
888                 if (ref_root && reserved) {
889                         qrecord->data_rsv = reserved;
890                         qrecord->data_rsv_refroot = ref_root;
891                 }
892                 qrecord->bytenr = bytenr;
893                 qrecord->num_bytes = num_bytes;
894                 qrecord->old_roots = NULL;
895         }
896 }
897
898 /*
899  * helper function to actually insert a head node into the rbtree.
900  * this does all the dirty work in terms of maintaining the correct
901  * overall modification count.
902  */
903 static noinline struct btrfs_delayed_ref_head *
904 add_delayed_ref_head(struct btrfs_trans_handle *trans,
905                      struct btrfs_delayed_ref_head *head_ref,
906                      struct btrfs_qgroup_extent_record *qrecord,
907                      int action, bool *qrecord_inserted_ret)
908 {
909         struct btrfs_delayed_ref_head *existing;
910         struct btrfs_delayed_ref_root *delayed_refs;
911         bool qrecord_inserted = false;
912
913         delayed_refs = &trans->transaction->delayed_refs;
914
915         /* Record qgroup extent info if provided */
916         if (qrecord) {
917                 if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
918                                         delayed_refs, qrecord))
919                         kfree(qrecord);
920                 else
921                         qrecord_inserted = true;
922         }
923
924         trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
925
926         existing = htree_insert(&delayed_refs->href_root,
927                                 &head_ref->href_node);
928         if (existing) {
929                 update_existing_head_ref(trans, existing, head_ref);
930                 /*
931                  * we've updated the existing ref, free the newly
932                  * allocated ref
933                  */
934                 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
935                 head_ref = existing;
936         } else {
937                 /*
938                  * We reserve the amount of bytes needed to delete csums when
939                  * adding the ref head and not when adding individual drop refs
940                  * since the csum items are deleted only after running the last
941                  * delayed drop ref (the data extent's ref count drops to 0).
942                  */
943                 if (head_ref->is_data && head_ref->ref_mod < 0) {
944                         delayed_refs->pending_csums += head_ref->num_bytes;
945                         trans->delayed_ref_csum_deletions +=
946                                 btrfs_csum_bytes_to_leaves(trans->fs_info,
947                                                            head_ref->num_bytes);
948                 }
949                 delayed_refs->num_heads++;
950                 delayed_refs->num_heads_ready++;
951                 atomic_inc(&delayed_refs->num_entries);
952         }
953         if (qrecord_inserted_ret)
954                 *qrecord_inserted_ret = qrecord_inserted;
955
956         return head_ref;
957 }
958
959 /*
960  * Initialize the structure which represents a modification to a an extent.
961  *
962  * @fs_info:    Internal to the mounted filesystem mount structure.
963  *
964  * @ref:        The structure which is going to be initialized.
965  *
966  * @bytenr:     The logical address of the extent for which a modification is
967  *              going to be recorded.
968  *
969  * @num_bytes:  Size of the extent whose modification is being recorded.
970  *
971  * @ref_root:   The id of the root where this modification has originated, this
972  *              can be either one of the well-known metadata trees or the
973  *              subvolume id which references this extent.
974  *
975  * @action:     Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
976  *              BTRFS_ADD_DELAYED_EXTENT
977  *
978  * @ref_type:   Holds the type of the extent which is being recorded, can be
979  *              one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
980  *              when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
981  *              BTRFS_EXTENT_DATA_REF_KEY when recording data extent
982  */
983 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
984                                     struct btrfs_delayed_ref_node *ref,
985                                     u64 bytenr, u64 num_bytes, u64 ref_root,
986                                     int action, u8 ref_type)
987 {
988         u64 seq = 0;
989
990         if (action == BTRFS_ADD_DELAYED_EXTENT)
991                 action = BTRFS_ADD_DELAYED_REF;
992
993         if (is_fstree(ref_root))
994                 seq = atomic64_read(&fs_info->tree_mod_seq);
995
996         refcount_set(&ref->refs, 1);
997         ref->bytenr = bytenr;
998         ref->num_bytes = num_bytes;
999         ref->ref_mod = 1;
1000         ref->action = action;
1001         ref->seq = seq;
1002         ref->type = ref_type;
1003         RB_CLEAR_NODE(&ref->ref_node);
1004         INIT_LIST_HEAD(&ref->add_list);
1005 }
1006
1007 /*
1008  * add a delayed tree ref.  This does all of the accounting required
1009  * to make sure the delayed ref is eventually processed before this
1010  * transaction commits.
1011  */
1012 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1013                                struct btrfs_ref *generic_ref,
1014                                struct btrfs_delayed_extent_op *extent_op)
1015 {
1016         struct btrfs_fs_info *fs_info = trans->fs_info;
1017         struct btrfs_delayed_tree_ref *ref;
1018         struct btrfs_delayed_ref_head *head_ref;
1019         struct btrfs_delayed_ref_root *delayed_refs;
1020         struct btrfs_qgroup_extent_record *record = NULL;
1021         bool qrecord_inserted;
1022         bool is_system;
1023         bool merged;
1024         int action = generic_ref->action;
1025         int level = generic_ref->tree_ref.level;
1026         u64 bytenr = generic_ref->bytenr;
1027         u64 num_bytes = generic_ref->len;
1028         u64 parent = generic_ref->parent;
1029         u8 ref_type;
1030
1031         is_system = (generic_ref->tree_ref.ref_root == BTRFS_CHUNK_TREE_OBJECTID);
1032
1033         ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
1034         ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
1035         if (!ref)
1036                 return -ENOMEM;
1037
1038         head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1039         if (!head_ref) {
1040                 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1041                 return -ENOMEM;
1042         }
1043
1044         if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1045                 record = kzalloc(sizeof(*record), GFP_NOFS);
1046                 if (!record) {
1047                         kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1048                         kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1049                         return -ENOMEM;
1050                 }
1051         }
1052
1053         if (parent)
1054                 ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
1055         else
1056                 ref_type = BTRFS_TREE_BLOCK_REF_KEY;
1057
1058         init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1059                                 generic_ref->tree_ref.ref_root, action,
1060                                 ref_type);
1061         ref->root = generic_ref->tree_ref.ref_root;
1062         ref->parent = parent;
1063         ref->level = level;
1064
1065         init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
1066                               generic_ref->tree_ref.ref_root, 0, action,
1067                               false, is_system, generic_ref->owning_root);
1068         head_ref->extent_op = extent_op;
1069
1070         delayed_refs = &trans->transaction->delayed_refs;
1071         spin_lock(&delayed_refs->lock);
1072
1073         /*
1074          * insert both the head node and the new ref without dropping
1075          * the spin lock
1076          */
1077         head_ref = add_delayed_ref_head(trans, head_ref, record,
1078                                         action, &qrecord_inserted);
1079
1080         merged = insert_delayed_ref(trans, head_ref, &ref->node);
1081         spin_unlock(&delayed_refs->lock);
1082
1083         /*
1084          * Need to update the delayed_refs_rsv with any changes we may have
1085          * made.
1086          */
1087         btrfs_update_delayed_refs_rsv(trans);
1088
1089         trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
1090                                    action == BTRFS_ADD_DELAYED_EXTENT ?
1091                                    BTRFS_ADD_DELAYED_REF : action);
1092         if (merged)
1093                 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1094
1095         if (qrecord_inserted)
1096                 btrfs_qgroup_trace_extent_post(trans, record);
1097
1098         return 0;
1099 }
1100
1101 /*
1102  * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1103  */
1104 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1105                                struct btrfs_ref *generic_ref,
1106                                u64 reserved)
1107 {
1108         struct btrfs_fs_info *fs_info = trans->fs_info;
1109         struct btrfs_delayed_data_ref *ref;
1110         struct btrfs_delayed_ref_head *head_ref;
1111         struct btrfs_delayed_ref_root *delayed_refs;
1112         struct btrfs_qgroup_extent_record *record = NULL;
1113         bool qrecord_inserted;
1114         int action = generic_ref->action;
1115         bool merged;
1116         u64 bytenr = generic_ref->bytenr;
1117         u64 num_bytes = generic_ref->len;
1118         u64 parent = generic_ref->parent;
1119         u64 ref_root = generic_ref->data_ref.ref_root;
1120         u64 owner = generic_ref->data_ref.ino;
1121         u64 offset = generic_ref->data_ref.offset;
1122         u8 ref_type;
1123
1124         ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1125         ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1126         if (!ref)
1127                 return -ENOMEM;
1128
1129         if (parent)
1130                 ref_type = BTRFS_SHARED_DATA_REF_KEY;
1131         else
1132                 ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1133         init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1134                                 ref_root, action, ref_type);
1135         ref->root = ref_root;
1136         ref->parent = parent;
1137         ref->objectid = owner;
1138         ref->offset = offset;
1139
1140
1141         head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1142         if (!head_ref) {
1143                 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1144                 return -ENOMEM;
1145         }
1146
1147         if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1148                 record = kzalloc(sizeof(*record), GFP_NOFS);
1149                 if (!record) {
1150                         kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1151                         kmem_cache_free(btrfs_delayed_ref_head_cachep,
1152                                         head_ref);
1153                         return -ENOMEM;
1154                 }
1155         }
1156
1157         init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1158                               reserved, action, true, false, generic_ref->owning_root);
1159         head_ref->extent_op = NULL;
1160
1161         delayed_refs = &trans->transaction->delayed_refs;
1162         spin_lock(&delayed_refs->lock);
1163
1164         /*
1165          * insert both the head node and the new ref without dropping
1166          * the spin lock
1167          */
1168         head_ref = add_delayed_ref_head(trans, head_ref, record,
1169                                         action, &qrecord_inserted);
1170
1171         merged = insert_delayed_ref(trans, head_ref, &ref->node);
1172         spin_unlock(&delayed_refs->lock);
1173
1174         /*
1175          * Need to update the delayed_refs_rsv with any changes we may have
1176          * made.
1177          */
1178         btrfs_update_delayed_refs_rsv(trans);
1179
1180         trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1181                                    action == BTRFS_ADD_DELAYED_EXTENT ?
1182                                    BTRFS_ADD_DELAYED_REF : action);
1183         if (merged)
1184                 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1185
1186
1187         if (qrecord_inserted)
1188                 return btrfs_qgroup_trace_extent_post(trans, record);
1189         return 0;
1190 }
1191
1192 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1193                                 u64 bytenr, u64 num_bytes,
1194                                 struct btrfs_delayed_extent_op *extent_op)
1195 {
1196         struct btrfs_delayed_ref_head *head_ref;
1197         struct btrfs_delayed_ref_root *delayed_refs;
1198
1199         head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1200         if (!head_ref)
1201                 return -ENOMEM;
1202
1203         init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1204                               BTRFS_UPDATE_DELAYED_HEAD, false, false, 0);
1205         head_ref->extent_op = extent_op;
1206
1207         delayed_refs = &trans->transaction->delayed_refs;
1208         spin_lock(&delayed_refs->lock);
1209
1210         add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1211                              NULL);
1212
1213         spin_unlock(&delayed_refs->lock);
1214
1215         /*
1216          * Need to update the delayed_refs_rsv with any changes we may have
1217          * made.
1218          */
1219         btrfs_update_delayed_refs_rsv(trans);
1220         return 0;
1221 }
1222
1223 /*
1224  * This does a simple search for the head node for a given extent.  Returns the
1225  * head node if found, or NULL if not.
1226  */
1227 struct btrfs_delayed_ref_head *
1228 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1229 {
1230         lockdep_assert_held(&delayed_refs->lock);
1231
1232         return find_ref_head(delayed_refs, bytenr, false);
1233 }
1234
1235 void __cold btrfs_delayed_ref_exit(void)
1236 {
1237         kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1238         kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1239         kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1240         kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1241 }
1242
1243 int __init btrfs_delayed_ref_init(void)
1244 {
1245         btrfs_delayed_ref_head_cachep = kmem_cache_create(
1246                                 "btrfs_delayed_ref_head",
1247                                 sizeof(struct btrfs_delayed_ref_head), 0,
1248                                 SLAB_MEM_SPREAD, NULL);
1249         if (!btrfs_delayed_ref_head_cachep)
1250                 goto fail;
1251
1252         btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1253                                 "btrfs_delayed_tree_ref",
1254                                 sizeof(struct btrfs_delayed_tree_ref), 0,
1255                                 SLAB_MEM_SPREAD, NULL);
1256         if (!btrfs_delayed_tree_ref_cachep)
1257                 goto fail;
1258
1259         btrfs_delayed_data_ref_cachep = kmem_cache_create(
1260                                 "btrfs_delayed_data_ref",
1261                                 sizeof(struct btrfs_delayed_data_ref), 0,
1262                                 SLAB_MEM_SPREAD, NULL);
1263         if (!btrfs_delayed_data_ref_cachep)
1264                 goto fail;
1265
1266         btrfs_delayed_extent_op_cachep = kmem_cache_create(
1267                                 "btrfs_delayed_extent_op",
1268                                 sizeof(struct btrfs_delayed_extent_op), 0,
1269                                 SLAB_MEM_SPREAD, NULL);
1270         if (!btrfs_delayed_extent_op_cachep)
1271                 goto fail;
1272
1273         return 0;
1274 fail:
1275         btrfs_delayed_ref_exit();
1276         return -ENOMEM;
1277 }