2 * RSA padding templates.
4 * Copyright (c) 2015 Intel Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
12 #include <crypto/algapi.h>
13 #include <crypto/akcipher.h>
14 #include <crypto/internal/akcipher.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/random.h>
22 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2].
24 static const u8 rsa_digest_info_md5[] = {
25 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08,
26 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */
27 0x05, 0x00, 0x04, 0x10
30 static const u8 rsa_digest_info_sha1[] = {
31 0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
32 0x2b, 0x0e, 0x03, 0x02, 0x1a,
33 0x05, 0x00, 0x04, 0x14
36 static const u8 rsa_digest_info_rmd160[] = {
37 0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
38 0x2b, 0x24, 0x03, 0x02, 0x01,
39 0x05, 0x00, 0x04, 0x14
42 static const u8 rsa_digest_info_sha224[] = {
43 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09,
44 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04,
45 0x05, 0x00, 0x04, 0x1c
48 static const u8 rsa_digest_info_sha256[] = {
49 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
50 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
51 0x05, 0x00, 0x04, 0x20
54 static const u8 rsa_digest_info_sha384[] = {
55 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
56 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
57 0x05, 0x00, 0x04, 0x30
60 static const u8 rsa_digest_info_sha512[] = {
61 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
62 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
63 0x05, 0x00, 0x04, 0x40
66 static const struct rsa_asn1_template {
70 } rsa_asn1_templates[] = {
71 #define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) }
83 static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name)
85 const struct rsa_asn1_template *p;
87 for (p = rsa_asn1_templates; p->name; p++)
88 if (strcmp(name, p->name) == 0)
94 struct crypto_akcipher *child;
95 unsigned int key_size;
98 struct pkcs1pad_inst_ctx {
99 struct crypto_akcipher_spawn spawn;
100 const struct rsa_asn1_template *digest_info;
103 struct pkcs1pad_request {
104 struct scatterlist in_sg[2], out_sg[1];
105 uint8_t *in_buf, *out_buf;
106 struct akcipher_request child_req;
109 static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key,
112 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
117 err = crypto_akcipher_set_pub_key(ctx->child, key, keylen);
121 /* Find out new modulus size from rsa implementation */
122 err = crypto_akcipher_maxsize(ctx->child);
130 static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key,
133 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
138 err = crypto_akcipher_set_priv_key(ctx->child, key, keylen);
142 /* Find out new modulus size from rsa implementation */
143 err = crypto_akcipher_maxsize(ctx->child);
151 static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm)
153 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
156 * The maximum destination buffer size for the encrypt/sign operations
157 * will be the same as for RSA, even though it's smaller for
161 return ctx->key_size;
164 static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len,
165 struct scatterlist *next)
167 int nsegs = next ? 2 : 1;
169 sg_init_table(sg, nsegs);
170 sg_set_buf(sg, buf, len);
173 sg_chain(sg, nsegs, next);
176 static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err)
178 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
179 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
180 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
181 unsigned int pad_len;
188 len = req_ctx->child_req.dst_len;
189 pad_len = ctx->key_size - len;
191 /* Four billion to one */
192 if (likely(!pad_len))
195 out_buf = kzalloc(ctx->key_size, GFP_KERNEL);
200 sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len),
201 out_buf + pad_len, len);
202 sg_copy_from_buffer(req->dst,
203 sg_nents_for_len(req->dst, ctx->key_size),
204 out_buf, ctx->key_size);
208 req->dst_len = ctx->key_size;
210 kfree(req_ctx->in_buf);
215 static void pkcs1pad_encrypt_sign_complete_cb(
216 struct crypto_async_request *child_async_req, int err)
218 struct akcipher_request *req = child_async_req->data;
219 struct crypto_async_request async_req;
221 if (err == -EINPROGRESS)
224 async_req.data = req->base.data;
225 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
226 async_req.flags = child_async_req->flags;
227 req->base.complete(&async_req,
228 pkcs1pad_encrypt_sign_complete(req, err));
231 static int pkcs1pad_encrypt(struct akcipher_request *req)
233 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
234 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
235 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
237 unsigned int i, ps_end;
242 if (req->src_len > ctx->key_size - 11)
245 if (req->dst_len < ctx->key_size) {
246 req->dst_len = ctx->key_size;
250 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
252 if (!req_ctx->in_buf)
255 ps_end = ctx->key_size - req->src_len - 2;
256 req_ctx->in_buf[0] = 0x02;
257 for (i = 1; i < ps_end; i++)
258 req_ctx->in_buf[i] = 1 + prandom_u32_max(255);
259 req_ctx->in_buf[ps_end] = 0x00;
261 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
262 ctx->key_size - 1 - req->src_len, req->src);
264 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
265 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
266 pkcs1pad_encrypt_sign_complete_cb, req);
268 /* Reuse output buffer */
269 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
270 req->dst, ctx->key_size - 1, req->dst_len);
272 err = crypto_akcipher_encrypt(&req_ctx->child_req);
273 if (err != -EINPROGRESS && err != -EBUSY)
274 return pkcs1pad_encrypt_sign_complete(req, err);
279 static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err)
281 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
282 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
283 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
284 unsigned int dst_len;
292 dst_len = req_ctx->child_req.dst_len;
293 if (dst_len < ctx->key_size - 1)
296 out_buf = req_ctx->out_buf;
297 if (dst_len == ctx->key_size) {
298 if (out_buf[0] != 0x00)
299 /* Decrypted value had no leading 0 byte */
306 if (out_buf[0] != 0x02)
309 for (pos = 1; pos < dst_len; pos++)
310 if (out_buf[pos] == 0x00)
312 if (pos < 9 || pos == dst_len)
318 if (req->dst_len < dst_len - pos)
320 req->dst_len = dst_len - pos;
323 sg_copy_from_buffer(req->dst,
324 sg_nents_for_len(req->dst, req->dst_len),
325 out_buf + pos, req->dst_len);
328 kzfree(req_ctx->out_buf);
333 static void pkcs1pad_decrypt_complete_cb(
334 struct crypto_async_request *child_async_req, int err)
336 struct akcipher_request *req = child_async_req->data;
337 struct crypto_async_request async_req;
339 if (err == -EINPROGRESS)
342 async_req.data = req->base.data;
343 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
344 async_req.flags = child_async_req->flags;
345 req->base.complete(&async_req, pkcs1pad_decrypt_complete(req, err));
348 static int pkcs1pad_decrypt(struct akcipher_request *req)
350 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
351 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
352 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
355 if (!ctx->key_size || req->src_len != ctx->key_size)
358 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
359 if (!req_ctx->out_buf)
362 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
363 ctx->key_size, NULL);
365 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
366 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
367 pkcs1pad_decrypt_complete_cb, req);
369 /* Reuse input buffer, output to a new buffer */
370 akcipher_request_set_crypt(&req_ctx->child_req, req->src,
371 req_ctx->out_sg, req->src_len,
374 err = crypto_akcipher_decrypt(&req_ctx->child_req);
375 if (err != -EINPROGRESS && err != -EBUSY)
376 return pkcs1pad_decrypt_complete(req, err);
381 static int pkcs1pad_sign(struct akcipher_request *req)
383 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
384 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
385 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
386 struct akcipher_instance *inst = akcipher_alg_instance(tfm);
387 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
388 const struct rsa_asn1_template *digest_info = ictx->digest_info;
390 unsigned int ps_end, digest_size = 0;
395 digest_size = digest_info->size;
397 if (req->src_len + digest_size > ctx->key_size - 11)
400 if (req->dst_len < ctx->key_size) {
401 req->dst_len = ctx->key_size;
405 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
407 if (!req_ctx->in_buf)
410 ps_end = ctx->key_size - digest_size - req->src_len - 2;
411 req_ctx->in_buf[0] = 0x01;
412 memset(req_ctx->in_buf + 1, 0xff, ps_end - 1);
413 req_ctx->in_buf[ps_end] = 0x00;
415 memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data,
418 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
419 ctx->key_size - 1 - req->src_len, req->src);
421 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
422 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
423 pkcs1pad_encrypt_sign_complete_cb, req);
425 /* Reuse output buffer */
426 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
427 req->dst, ctx->key_size - 1, req->dst_len);
429 err = crypto_akcipher_sign(&req_ctx->child_req);
430 if (err != -EINPROGRESS && err != -EBUSY)
431 return pkcs1pad_encrypt_sign_complete(req, err);
436 static int pkcs1pad_verify_complete(struct akcipher_request *req, int err)
438 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
439 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
440 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
441 struct akcipher_instance *inst = akcipher_alg_instance(tfm);
442 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
443 const struct rsa_asn1_template *digest_info = ictx->digest_info;
444 unsigned int dst_len;
452 dst_len = req_ctx->child_req.dst_len;
453 if (dst_len < ctx->key_size - 1)
456 out_buf = req_ctx->out_buf;
457 if (dst_len == ctx->key_size) {
458 if (out_buf[0] != 0x00)
459 /* Decrypted value had no leading 0 byte */
467 if (out_buf[0] != 0x01)
470 for (pos = 1; pos < dst_len; pos++)
471 if (out_buf[pos] != 0xff)
474 if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00)
478 if (crypto_memneq(out_buf + pos, digest_info->data, digest_info->size))
481 pos += digest_info->size;
485 if (req->dst_len < dst_len - pos)
487 req->dst_len = dst_len - pos;
490 sg_copy_from_buffer(req->dst,
491 sg_nents_for_len(req->dst, req->dst_len),
492 out_buf + pos, req->dst_len);
494 kzfree(req_ctx->out_buf);
499 static void pkcs1pad_verify_complete_cb(
500 struct crypto_async_request *child_async_req, int err)
502 struct akcipher_request *req = child_async_req->data;
503 struct crypto_async_request async_req;
505 if (err == -EINPROGRESS)
508 async_req.data = req->base.data;
509 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
510 async_req.flags = child_async_req->flags;
511 req->base.complete(&async_req, pkcs1pad_verify_complete(req, err));
515 * The verify operation is here for completeness similar to the verification
516 * defined in RFC2313 section 10.2 except that block type 0 is not accepted,
517 * as in RFC2437. RFC2437 section 9.2 doesn't define any operation to
518 * retrieve the DigestInfo from a signature, instead the user is expected
519 * to call the sign operation to generate the expected signature and compare
520 * signatures instead of the message-digests.
522 static int pkcs1pad_verify(struct akcipher_request *req)
524 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
525 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
526 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
529 if (!ctx->key_size || req->src_len < ctx->key_size)
532 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
533 if (!req_ctx->out_buf)
536 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
537 ctx->key_size, NULL);
539 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
540 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
541 pkcs1pad_verify_complete_cb, req);
543 /* Reuse input buffer, output to a new buffer */
544 akcipher_request_set_crypt(&req_ctx->child_req, req->src,
545 req_ctx->out_sg, req->src_len,
548 err = crypto_akcipher_verify(&req_ctx->child_req);
549 if (err != -EINPROGRESS && err != -EBUSY)
550 return pkcs1pad_verify_complete(req, err);
555 static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm)
557 struct akcipher_instance *inst = akcipher_alg_instance(tfm);
558 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
559 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
560 struct crypto_akcipher *child_tfm;
562 child_tfm = crypto_spawn_akcipher(&ictx->spawn);
563 if (IS_ERR(child_tfm))
564 return PTR_ERR(child_tfm);
566 ctx->child = child_tfm;
570 static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm)
572 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
574 crypto_free_akcipher(ctx->child);
577 static void pkcs1pad_free(struct akcipher_instance *inst)
579 struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst);
580 struct crypto_akcipher_spawn *spawn = &ctx->spawn;
582 crypto_drop_akcipher(spawn);
586 static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb)
588 const struct rsa_asn1_template *digest_info;
589 struct crypto_attr_type *algt;
590 struct akcipher_instance *inst;
591 struct pkcs1pad_inst_ctx *ctx;
592 struct crypto_akcipher_spawn *spawn;
593 struct akcipher_alg *rsa_alg;
594 const char *rsa_alg_name;
595 const char *hash_name;
598 algt = crypto_get_attr_type(tb);
600 return PTR_ERR(algt);
602 if ((algt->type ^ CRYPTO_ALG_TYPE_AKCIPHER) & algt->mask)
605 rsa_alg_name = crypto_attr_alg_name(tb[1]);
606 if (IS_ERR(rsa_alg_name))
607 return PTR_ERR(rsa_alg_name);
609 hash_name = crypto_attr_alg_name(tb[2]);
610 if (IS_ERR(hash_name))
611 return PTR_ERR(hash_name);
613 digest_info = rsa_lookup_asn1(hash_name);
617 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
621 ctx = akcipher_instance_ctx(inst);
623 ctx->digest_info = digest_info;
625 crypto_set_spawn(&spawn->base, akcipher_crypto_instance(inst));
626 err = crypto_grab_akcipher(spawn, rsa_alg_name, 0,
627 crypto_requires_sync(algt->type, algt->mask));
631 rsa_alg = crypto_spawn_akcipher_alg(spawn);
635 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
636 "pkcs1pad(%s,%s)", rsa_alg->base.cra_name, hash_name) >=
637 CRYPTO_MAX_ALG_NAME ||
638 snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
640 rsa_alg->base.cra_driver_name, hash_name) >=
644 inst->alg.base.cra_flags = rsa_alg->base.cra_flags & CRYPTO_ALG_ASYNC;
645 inst->alg.base.cra_priority = rsa_alg->base.cra_priority;
646 inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx);
648 inst->alg.init = pkcs1pad_init_tfm;
649 inst->alg.exit = pkcs1pad_exit_tfm;
651 inst->alg.encrypt = pkcs1pad_encrypt;
652 inst->alg.decrypt = pkcs1pad_decrypt;
653 inst->alg.sign = pkcs1pad_sign;
654 inst->alg.verify = pkcs1pad_verify;
655 inst->alg.set_pub_key = pkcs1pad_set_pub_key;
656 inst->alg.set_priv_key = pkcs1pad_set_priv_key;
657 inst->alg.max_size = pkcs1pad_get_max_size;
658 inst->alg.reqsize = sizeof(struct pkcs1pad_request) + rsa_alg->reqsize;
660 inst->free = pkcs1pad_free;
662 err = akcipher_register_instance(tmpl, inst);
669 crypto_drop_akcipher(spawn);
675 struct crypto_template rsa_pkcs1pad_tmpl = {
677 .create = pkcs1pad_create,
678 .module = THIS_MODULE,