GNU Linux-libre 5.15.137-gnu
[releases.git] / crypto / crypto_engine.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Handle async block request by crypto hardware engine.
4  *
5  * Copyright (C) 2016 Linaro, Inc.
6  *
7  * Author: Baolin Wang <baolin.wang@linaro.org>
8  */
9
10 #include <linux/err.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <crypto/engine.h>
14 #include <uapi/linux/sched/types.h>
15 #include "internal.h"
16
17 #define CRYPTO_ENGINE_MAX_QLEN 10
18
19 /**
20  * crypto_finalize_request - finalize one request if the request is done
21  * @engine: the hardware engine
22  * @req: the request need to be finalized
23  * @err: error number
24  */
25 static void crypto_finalize_request(struct crypto_engine *engine,
26                                     struct crypto_async_request *req, int err)
27 {
28         unsigned long flags;
29         bool finalize_req = false;
30         int ret;
31         struct crypto_engine_ctx *enginectx;
32
33         /*
34          * If hardware cannot enqueue more requests
35          * and retry mechanism is not supported
36          * make sure we are completing the current request
37          */
38         if (!engine->retry_support) {
39                 spin_lock_irqsave(&engine->queue_lock, flags);
40                 if (engine->cur_req == req) {
41                         finalize_req = true;
42                         engine->cur_req = NULL;
43                 }
44                 spin_unlock_irqrestore(&engine->queue_lock, flags);
45         }
46
47         if (finalize_req || engine->retry_support) {
48                 enginectx = crypto_tfm_ctx(req->tfm);
49                 if (enginectx->op.prepare_request &&
50                     enginectx->op.unprepare_request) {
51                         ret = enginectx->op.unprepare_request(engine, req);
52                         if (ret)
53                                 dev_err(engine->dev, "failed to unprepare request\n");
54                 }
55         }
56         lockdep_assert_in_softirq();
57         crypto_request_complete(req, err);
58
59         kthread_queue_work(engine->kworker, &engine->pump_requests);
60 }
61
62 /**
63  * crypto_pump_requests - dequeue one request from engine queue to process
64  * @engine: the hardware engine
65  * @in_kthread: true if we are in the context of the request pump thread
66  *
67  * This function checks if there is any request in the engine queue that
68  * needs processing and if so call out to the driver to initialize hardware
69  * and handle each request.
70  */
71 static void crypto_pump_requests(struct crypto_engine *engine,
72                                  bool in_kthread)
73 {
74         struct crypto_async_request *async_req, *backlog;
75         unsigned long flags;
76         bool was_busy = false;
77         int ret;
78         struct crypto_engine_ctx *enginectx;
79
80         spin_lock_irqsave(&engine->queue_lock, flags);
81
82         /* Make sure we are not already running a request */
83         if (!engine->retry_support && engine->cur_req)
84                 goto out;
85
86         /* If another context is idling then defer */
87         if (engine->idling) {
88                 kthread_queue_work(engine->kworker, &engine->pump_requests);
89                 goto out;
90         }
91
92         /* Check if the engine queue is idle */
93         if (!crypto_queue_len(&engine->queue) || !engine->running) {
94                 if (!engine->busy)
95                         goto out;
96
97                 /* Only do teardown in the thread */
98                 if (!in_kthread) {
99                         kthread_queue_work(engine->kworker,
100                                            &engine->pump_requests);
101                         goto out;
102                 }
103
104                 engine->busy = false;
105                 engine->idling = true;
106                 spin_unlock_irqrestore(&engine->queue_lock, flags);
107
108                 if (engine->unprepare_crypt_hardware &&
109                     engine->unprepare_crypt_hardware(engine))
110                         dev_err(engine->dev, "failed to unprepare crypt hardware\n");
111
112                 spin_lock_irqsave(&engine->queue_lock, flags);
113                 engine->idling = false;
114                 goto out;
115         }
116
117 start_request:
118         /* Get the fist request from the engine queue to handle */
119         backlog = crypto_get_backlog(&engine->queue);
120         async_req = crypto_dequeue_request(&engine->queue);
121         if (!async_req)
122                 goto out;
123
124         /*
125          * If hardware doesn't support the retry mechanism,
126          * keep track of the request we are processing now.
127          * We'll need it on completion (crypto_finalize_request).
128          */
129         if (!engine->retry_support)
130                 engine->cur_req = async_req;
131
132         if (engine->busy)
133                 was_busy = true;
134         else
135                 engine->busy = true;
136
137         spin_unlock_irqrestore(&engine->queue_lock, flags);
138
139         /* Until here we get the request need to be encrypted successfully */
140         if (!was_busy && engine->prepare_crypt_hardware) {
141                 ret = engine->prepare_crypt_hardware(engine);
142                 if (ret) {
143                         dev_err(engine->dev, "failed to prepare crypt hardware\n");
144                         goto req_err_2;
145                 }
146         }
147
148         enginectx = crypto_tfm_ctx(async_req->tfm);
149
150         if (enginectx->op.prepare_request) {
151                 ret = enginectx->op.prepare_request(engine, async_req);
152                 if (ret) {
153                         dev_err(engine->dev, "failed to prepare request: %d\n",
154                                 ret);
155                         goto req_err_2;
156                 }
157         }
158         if (!enginectx->op.do_one_request) {
159                 dev_err(engine->dev, "failed to do request\n");
160                 ret = -EINVAL;
161                 goto req_err_1;
162         }
163
164         ret = enginectx->op.do_one_request(engine, async_req);
165
166         /* Request unsuccessfully executed by hardware */
167         if (ret < 0) {
168                 /*
169                  * If hardware queue is full (-ENOSPC), requeue request
170                  * regardless of backlog flag.
171                  * Otherwise, unprepare and complete the request.
172                  */
173                 if (!engine->retry_support ||
174                     (ret != -ENOSPC)) {
175                         dev_err(engine->dev,
176                                 "Failed to do one request from queue: %d\n",
177                                 ret);
178                         goto req_err_1;
179                 }
180                 /*
181                  * If retry mechanism is supported,
182                  * unprepare current request and
183                  * enqueue it back into crypto-engine queue.
184                  */
185                 if (enginectx->op.unprepare_request) {
186                         ret = enginectx->op.unprepare_request(engine,
187                                                               async_req);
188                         if (ret)
189                                 dev_err(engine->dev,
190                                         "failed to unprepare request\n");
191                 }
192                 spin_lock_irqsave(&engine->queue_lock, flags);
193                 /*
194                  * If hardware was unable to execute request, enqueue it
195                  * back in front of crypto-engine queue, to keep the order
196                  * of requests.
197                  */
198                 crypto_enqueue_request_head(&engine->queue, async_req);
199
200                 kthread_queue_work(engine->kworker, &engine->pump_requests);
201                 goto out;
202         }
203
204         goto retry;
205
206 req_err_1:
207         if (enginectx->op.unprepare_request) {
208                 ret = enginectx->op.unprepare_request(engine, async_req);
209                 if (ret)
210                         dev_err(engine->dev, "failed to unprepare request\n");
211         }
212
213 req_err_2:
214         crypto_request_complete(async_req, ret);
215
216 retry:
217         if (backlog)
218                 crypto_request_complete(backlog, -EINPROGRESS);
219
220         /* If retry mechanism is supported, send new requests to engine */
221         if (engine->retry_support) {
222                 spin_lock_irqsave(&engine->queue_lock, flags);
223                 goto start_request;
224         }
225         return;
226
227 out:
228         spin_unlock_irqrestore(&engine->queue_lock, flags);
229
230         /*
231          * Batch requests is possible only if
232          * hardware can enqueue multiple requests
233          */
234         if (engine->do_batch_requests) {
235                 ret = engine->do_batch_requests(engine);
236                 if (ret)
237                         dev_err(engine->dev, "failed to do batch requests: %d\n",
238                                 ret);
239         }
240
241         return;
242 }
243
244 static void crypto_pump_work(struct kthread_work *work)
245 {
246         struct crypto_engine *engine =
247                 container_of(work, struct crypto_engine, pump_requests);
248
249         crypto_pump_requests(engine, true);
250 }
251
252 /**
253  * crypto_transfer_request - transfer the new request into the engine queue
254  * @engine: the hardware engine
255  * @req: the request need to be listed into the engine queue
256  */
257 static int crypto_transfer_request(struct crypto_engine *engine,
258                                    struct crypto_async_request *req,
259                                    bool need_pump)
260 {
261         unsigned long flags;
262         int ret;
263
264         spin_lock_irqsave(&engine->queue_lock, flags);
265
266         if (!engine->running) {
267                 spin_unlock_irqrestore(&engine->queue_lock, flags);
268                 return -ESHUTDOWN;
269         }
270
271         ret = crypto_enqueue_request(&engine->queue, req);
272
273         if (!engine->busy && need_pump)
274                 kthread_queue_work(engine->kworker, &engine->pump_requests);
275
276         spin_unlock_irqrestore(&engine->queue_lock, flags);
277         return ret;
278 }
279
280 /**
281  * crypto_transfer_request_to_engine - transfer one request to list
282  * into the engine queue
283  * @engine: the hardware engine
284  * @req: the request need to be listed into the engine queue
285  */
286 static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
287                                              struct crypto_async_request *req)
288 {
289         return crypto_transfer_request(engine, req, true);
290 }
291
292 /**
293  * crypto_transfer_aead_request_to_engine - transfer one aead_request
294  * to list into the engine queue
295  * @engine: the hardware engine
296  * @req: the request need to be listed into the engine queue
297  */
298 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
299                                            struct aead_request *req)
300 {
301         return crypto_transfer_request_to_engine(engine, &req->base);
302 }
303 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
304
305 /**
306  * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
307  * to list into the engine queue
308  * @engine: the hardware engine
309  * @req: the request need to be listed into the engine queue
310  */
311 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
312                                                struct akcipher_request *req)
313 {
314         return crypto_transfer_request_to_engine(engine, &req->base);
315 }
316 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
317
318 /**
319  * crypto_transfer_hash_request_to_engine - transfer one ahash_request
320  * to list into the engine queue
321  * @engine: the hardware engine
322  * @req: the request need to be listed into the engine queue
323  */
324 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
325                                            struct ahash_request *req)
326 {
327         return crypto_transfer_request_to_engine(engine, &req->base);
328 }
329 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
330
331 /**
332  * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
333  * to list into the engine queue
334  * @engine: the hardware engine
335  * @req: the request need to be listed into the engine queue
336  */
337 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
338                                                struct skcipher_request *req)
339 {
340         return crypto_transfer_request_to_engine(engine, &req->base);
341 }
342 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
343
344 /**
345  * crypto_finalize_aead_request - finalize one aead_request if
346  * the request is done
347  * @engine: the hardware engine
348  * @req: the request need to be finalized
349  * @err: error number
350  */
351 void crypto_finalize_aead_request(struct crypto_engine *engine,
352                                   struct aead_request *req, int err)
353 {
354         return crypto_finalize_request(engine, &req->base, err);
355 }
356 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
357
358 /**
359  * crypto_finalize_akcipher_request - finalize one akcipher_request if
360  * the request is done
361  * @engine: the hardware engine
362  * @req: the request need to be finalized
363  * @err: error number
364  */
365 void crypto_finalize_akcipher_request(struct crypto_engine *engine,
366                                       struct akcipher_request *req, int err)
367 {
368         return crypto_finalize_request(engine, &req->base, err);
369 }
370 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
371
372 /**
373  * crypto_finalize_hash_request - finalize one ahash_request if
374  * the request is done
375  * @engine: the hardware engine
376  * @req: the request need to be finalized
377  * @err: error number
378  */
379 void crypto_finalize_hash_request(struct crypto_engine *engine,
380                                   struct ahash_request *req, int err)
381 {
382         return crypto_finalize_request(engine, &req->base, err);
383 }
384 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
385
386 /**
387  * crypto_finalize_skcipher_request - finalize one skcipher_request if
388  * the request is done
389  * @engine: the hardware engine
390  * @req: the request need to be finalized
391  * @err: error number
392  */
393 void crypto_finalize_skcipher_request(struct crypto_engine *engine,
394                                       struct skcipher_request *req, int err)
395 {
396         return crypto_finalize_request(engine, &req->base, err);
397 }
398 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
399
400 /**
401  * crypto_engine_start - start the hardware engine
402  * @engine: the hardware engine need to be started
403  *
404  * Return 0 on success, else on fail.
405  */
406 int crypto_engine_start(struct crypto_engine *engine)
407 {
408         unsigned long flags;
409
410         spin_lock_irqsave(&engine->queue_lock, flags);
411
412         if (engine->running || engine->busy) {
413                 spin_unlock_irqrestore(&engine->queue_lock, flags);
414                 return -EBUSY;
415         }
416
417         engine->running = true;
418         spin_unlock_irqrestore(&engine->queue_lock, flags);
419
420         kthread_queue_work(engine->kworker, &engine->pump_requests);
421
422         return 0;
423 }
424 EXPORT_SYMBOL_GPL(crypto_engine_start);
425
426 /**
427  * crypto_engine_stop - stop the hardware engine
428  * @engine: the hardware engine need to be stopped
429  *
430  * Return 0 on success, else on fail.
431  */
432 int crypto_engine_stop(struct crypto_engine *engine)
433 {
434         unsigned long flags;
435         unsigned int limit = 500;
436         int ret = 0;
437
438         spin_lock_irqsave(&engine->queue_lock, flags);
439
440         /*
441          * If the engine queue is not empty or the engine is on busy state,
442          * we need to wait for a while to pump the requests of engine queue.
443          */
444         while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
445                 spin_unlock_irqrestore(&engine->queue_lock, flags);
446                 msleep(20);
447                 spin_lock_irqsave(&engine->queue_lock, flags);
448         }
449
450         if (crypto_queue_len(&engine->queue) || engine->busy)
451                 ret = -EBUSY;
452         else
453                 engine->running = false;
454
455         spin_unlock_irqrestore(&engine->queue_lock, flags);
456
457         if (ret)
458                 dev_warn(engine->dev, "could not stop engine\n");
459
460         return ret;
461 }
462 EXPORT_SYMBOL_GPL(crypto_engine_stop);
463
464 /**
465  * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
466  * and initialize it by setting the maximum number of entries in the software
467  * crypto-engine queue.
468  * @dev: the device attached with one hardware engine
469  * @retry_support: whether hardware has support for retry mechanism
470  * @cbk_do_batch: pointer to a callback function to be invoked when executing
471  *                a batch of requests.
472  *                This has the form:
473  *                callback(struct crypto_engine *engine)
474  *                where:
475  *                @engine: the crypto engine structure.
476  * @rt: whether this queue is set to run as a realtime task
477  * @qlen: maximum size of the crypto-engine queue
478  *
479  * This must be called from context that can sleep.
480  * Return: the crypto engine structure on success, else NULL.
481  */
482 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
483                                                        bool retry_support,
484                                                        int (*cbk_do_batch)(struct crypto_engine *engine),
485                                                        bool rt, int qlen)
486 {
487         struct crypto_engine *engine;
488
489         if (!dev)
490                 return NULL;
491
492         engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
493         if (!engine)
494                 return NULL;
495
496         engine->dev = dev;
497         engine->rt = rt;
498         engine->running = false;
499         engine->busy = false;
500         engine->idling = false;
501         engine->retry_support = retry_support;
502         engine->priv_data = dev;
503         /*
504          * Batch requests is possible only if
505          * hardware has support for retry mechanism.
506          */
507         engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
508
509         snprintf(engine->name, sizeof(engine->name),
510                  "%s-engine", dev_name(dev));
511
512         crypto_init_queue(&engine->queue, qlen);
513         spin_lock_init(&engine->queue_lock);
514
515         engine->kworker = kthread_create_worker(0, "%s", engine->name);
516         if (IS_ERR(engine->kworker)) {
517                 dev_err(dev, "failed to create crypto request pump task\n");
518                 return NULL;
519         }
520         kthread_init_work(&engine->pump_requests, crypto_pump_work);
521
522         if (engine->rt) {
523                 dev_info(dev, "will run requests pump with realtime priority\n");
524                 sched_set_fifo(engine->kworker->task);
525         }
526
527         return engine;
528 }
529 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
530
531 /**
532  * crypto_engine_alloc_init - allocate crypto hardware engine structure and
533  * initialize it.
534  * @dev: the device attached with one hardware engine
535  * @rt: whether this queue is set to run as a realtime task
536  *
537  * This must be called from context that can sleep.
538  * Return: the crypto engine structure on success, else NULL.
539  */
540 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
541 {
542         return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
543                                                 CRYPTO_ENGINE_MAX_QLEN);
544 }
545 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
546
547 /**
548  * crypto_engine_exit - free the resources of hardware engine when exit
549  * @engine: the hardware engine need to be freed
550  *
551  * Return 0 for success.
552  */
553 int crypto_engine_exit(struct crypto_engine *engine)
554 {
555         int ret;
556
557         ret = crypto_engine_stop(engine);
558         if (ret)
559                 return ret;
560
561         kthread_destroy_worker(engine->kworker);
562
563         return 0;
564 }
565 EXPORT_SYMBOL_GPL(crypto_engine_exit);
566
567 MODULE_LICENSE("GPL");
568 MODULE_DESCRIPTION("Crypto hardware engine framework");