54330eb0d03b8b0781329ea45497636c153936f2
[releases.git] / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...)                                       \
37         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)                                        \
39         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)                                       \
41         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)                                       \
43         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)                                        \
45         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64         struct list_head list;
65         const char *dev_name;   /* The dev_name() for the consumer */
66         const char *supply;
67         struct regulator_dev *regulator;
68 };
69
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76         struct list_head list;
77         struct gpio_desc *gpiod;
78         u32 enable_count;       /* a number of enabled shared GPIO */
79         u32 request_count;      /* a number of requested shared GPIO */
80 };
81
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88         struct list_head list;
89         struct device *src_dev;
90         const char *src_supply;
91         struct device *alias_dev;
92         const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100                                   unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102                                      int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104                                      suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106                                           struct device *dev,
107                                           const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110
111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113         if (rdev->constraints && rdev->constraints->name)
114                 return rdev->constraints->name;
115         else if (rdev->desc->name)
116                 return rdev->desc->name;
117         else
118                 return "";
119 }
120
121 static bool have_full_constraints(void)
122 {
123         return has_full_constraints || of_have_populated_dt();
124 }
125
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128         if (!rdev->constraints) {
129                 rdev_err(rdev, "no constraints\n");
130                 return false;
131         }
132
133         if (rdev->constraints->valid_ops_mask & ops)
134                 return true;
135
136         return false;
137 }
138
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:               regulator source
142  * @ww_ctx:             w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151                                         struct ww_acquire_ctx *ww_ctx)
152 {
153         bool lock = false;
154         int ret = 0;
155
156         mutex_lock(&regulator_nesting_mutex);
157
158         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159                 if (rdev->mutex_owner == current)
160                         rdev->ref_cnt++;
161                 else
162                         lock = true;
163
164                 if (lock) {
165                         mutex_unlock(&regulator_nesting_mutex);
166                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167                         mutex_lock(&regulator_nesting_mutex);
168                 }
169         } else {
170                 lock = true;
171         }
172
173         if (lock && ret != -EDEADLK) {
174                 rdev->ref_cnt++;
175                 rdev->mutex_owner = current;
176         }
177
178         mutex_unlock(&regulator_nesting_mutex);
179
180         return ret;
181 }
182
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:               regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195         regulator_lock_nested(rdev, NULL);
196 }
197
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:               regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207         mutex_lock(&regulator_nesting_mutex);
208
209         if (--rdev->ref_cnt == 0) {
210                 rdev->mutex_owner = NULL;
211                 ww_mutex_unlock(&rdev->mutex);
212         }
213
214         WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216         mutex_unlock(&regulator_nesting_mutex);
217 }
218
219 /**
220  * regulator_lock_two - lock two regulators
221  * @rdev1:              first regulator
222  * @rdev2:              second regulator
223  * @ww_ctx:             w/w mutex acquire context
224  *
225  * Locks both rdevs using the regulator_ww_class.
226  */
227 static void regulator_lock_two(struct regulator_dev *rdev1,
228                                struct regulator_dev *rdev2,
229                                struct ww_acquire_ctx *ww_ctx)
230 {
231         struct regulator_dev *tmp;
232         int ret;
233
234         ww_acquire_init(ww_ctx, &regulator_ww_class);
235
236         /* Try to just grab both of them */
237         ret = regulator_lock_nested(rdev1, ww_ctx);
238         WARN_ON(ret);
239         ret = regulator_lock_nested(rdev2, ww_ctx);
240         if (ret != -EDEADLOCK) {
241                 WARN_ON(ret);
242                 goto exit;
243         }
244
245         while (true) {
246                 /*
247                  * Start of loop: rdev1 was locked and rdev2 was contended.
248                  * Need to unlock rdev1, slowly lock rdev2, then try rdev1
249                  * again.
250                  */
251                 regulator_unlock(rdev1);
252
253                 ww_mutex_lock_slow(&rdev2->mutex, ww_ctx);
254                 rdev2->ref_cnt++;
255                 rdev2->mutex_owner = current;
256                 ret = regulator_lock_nested(rdev1, ww_ctx);
257
258                 if (ret == -EDEADLOCK) {
259                         /* More contention; swap which needs to be slow */
260                         tmp = rdev1;
261                         rdev1 = rdev2;
262                         rdev2 = tmp;
263                 } else {
264                         WARN_ON(ret);
265                         break;
266                 }
267         }
268
269 exit:
270         ww_acquire_done(ww_ctx);
271 }
272
273 /**
274  * regulator_unlock_two - unlock two regulators
275  * @rdev1:              first regulator
276  * @rdev2:              second regulator
277  * @ww_ctx:             w/w mutex acquire context
278  *
279  * The inverse of regulator_lock_two().
280  */
281
282 static void regulator_unlock_two(struct regulator_dev *rdev1,
283                                  struct regulator_dev *rdev2,
284                                  struct ww_acquire_ctx *ww_ctx)
285 {
286         regulator_unlock(rdev2);
287         regulator_unlock(rdev1);
288         ww_acquire_fini(ww_ctx);
289 }
290
291 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
292 {
293         struct regulator_dev *c_rdev;
294         int i;
295
296         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
297                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
298
299                 if (rdev->supply->rdev == c_rdev)
300                         return true;
301         }
302
303         return false;
304 }
305
306 static void regulator_unlock_recursive(struct regulator_dev *rdev,
307                                        unsigned int n_coupled)
308 {
309         struct regulator_dev *c_rdev, *supply_rdev;
310         int i, supply_n_coupled;
311
312         for (i = n_coupled; i > 0; i--) {
313                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
314
315                 if (!c_rdev)
316                         continue;
317
318                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
319                         supply_rdev = c_rdev->supply->rdev;
320                         supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
321
322                         regulator_unlock_recursive(supply_rdev,
323                                                    supply_n_coupled);
324                 }
325
326                 regulator_unlock(c_rdev);
327         }
328 }
329
330 static int regulator_lock_recursive(struct regulator_dev *rdev,
331                                     struct regulator_dev **new_contended_rdev,
332                                     struct regulator_dev **old_contended_rdev,
333                                     struct ww_acquire_ctx *ww_ctx)
334 {
335         struct regulator_dev *c_rdev;
336         int i, err;
337
338         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
339                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
340
341                 if (!c_rdev)
342                         continue;
343
344                 if (c_rdev != *old_contended_rdev) {
345                         err = regulator_lock_nested(c_rdev, ww_ctx);
346                         if (err) {
347                                 if (err == -EDEADLK) {
348                                         *new_contended_rdev = c_rdev;
349                                         goto err_unlock;
350                                 }
351
352                                 /* shouldn't happen */
353                                 WARN_ON_ONCE(err != -EALREADY);
354                         }
355                 } else {
356                         *old_contended_rdev = NULL;
357                 }
358
359                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
360                         err = regulator_lock_recursive(c_rdev->supply->rdev,
361                                                        new_contended_rdev,
362                                                        old_contended_rdev,
363                                                        ww_ctx);
364                         if (err) {
365                                 regulator_unlock(c_rdev);
366                                 goto err_unlock;
367                         }
368                 }
369         }
370
371         return 0;
372
373 err_unlock:
374         regulator_unlock_recursive(rdev, i);
375
376         return err;
377 }
378
379 /**
380  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
381  *                              regulators
382  * @rdev:                       regulator source
383  * @ww_ctx:                     w/w mutex acquire context
384  *
385  * Unlock all regulators related with rdev by coupling or supplying.
386  */
387 static void regulator_unlock_dependent(struct regulator_dev *rdev,
388                                        struct ww_acquire_ctx *ww_ctx)
389 {
390         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
391         ww_acquire_fini(ww_ctx);
392 }
393
394 /**
395  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
396  * @rdev:                       regulator source
397  * @ww_ctx:                     w/w mutex acquire context
398  *
399  * This function as a wrapper on regulator_lock_recursive(), which locks
400  * all regulators related with rdev by coupling or supplying.
401  */
402 static void regulator_lock_dependent(struct regulator_dev *rdev,
403                                      struct ww_acquire_ctx *ww_ctx)
404 {
405         struct regulator_dev *new_contended_rdev = NULL;
406         struct regulator_dev *old_contended_rdev = NULL;
407         int err;
408
409         mutex_lock(&regulator_list_mutex);
410
411         ww_acquire_init(ww_ctx, &regulator_ww_class);
412
413         do {
414                 if (new_contended_rdev) {
415                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
416                         old_contended_rdev = new_contended_rdev;
417                         old_contended_rdev->ref_cnt++;
418                         old_contended_rdev->mutex_owner = current;
419                 }
420
421                 err = regulator_lock_recursive(rdev,
422                                                &new_contended_rdev,
423                                                &old_contended_rdev,
424                                                ww_ctx);
425
426                 if (old_contended_rdev)
427                         regulator_unlock(old_contended_rdev);
428
429         } while (err == -EDEADLK);
430
431         ww_acquire_done(ww_ctx);
432
433         mutex_unlock(&regulator_list_mutex);
434 }
435
436 /**
437  * of_get_child_regulator - get a child regulator device node
438  * based on supply name
439  * @parent: Parent device node
440  * @prop_name: Combination regulator supply name and "-supply"
441  *
442  * Traverse all child nodes.
443  * Extract the child regulator device node corresponding to the supply name.
444  * returns the device node corresponding to the regulator if found, else
445  * returns NULL.
446  */
447 static struct device_node *of_get_child_regulator(struct device_node *parent,
448                                                   const char *prop_name)
449 {
450         struct device_node *regnode = NULL;
451         struct device_node *child = NULL;
452
453         for_each_child_of_node(parent, child) {
454                 regnode = of_parse_phandle(child, prop_name, 0);
455
456                 if (!regnode) {
457                         regnode = of_get_child_regulator(child, prop_name);
458                         if (regnode)
459                                 goto err_node_put;
460                 } else {
461                         goto err_node_put;
462                 }
463         }
464         return NULL;
465
466 err_node_put:
467         of_node_put(child);
468         return regnode;
469 }
470
471 /**
472  * of_get_regulator - get a regulator device node based on supply name
473  * @dev: Device pointer for the consumer (of regulator) device
474  * @supply: regulator supply name
475  *
476  * Extract the regulator device node corresponding to the supply name.
477  * returns the device node corresponding to the regulator if found, else
478  * returns NULL.
479  */
480 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
481 {
482         struct device_node *regnode = NULL;
483         char prop_name[64]; /* 64 is max size of property name */
484
485         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
486
487         snprintf(prop_name, 64, "%s-supply", supply);
488         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
489
490         if (!regnode) {
491                 regnode = of_get_child_regulator(dev->of_node, prop_name);
492                 if (regnode)
493                         return regnode;
494
495                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
496                                 prop_name, dev->of_node);
497                 return NULL;
498         }
499         return regnode;
500 }
501
502 /* Platform voltage constraint check */
503 int regulator_check_voltage(struct regulator_dev *rdev,
504                             int *min_uV, int *max_uV)
505 {
506         BUG_ON(*min_uV > *max_uV);
507
508         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
509                 rdev_err(rdev, "voltage operation not allowed\n");
510                 return -EPERM;
511         }
512
513         if (*max_uV > rdev->constraints->max_uV)
514                 *max_uV = rdev->constraints->max_uV;
515         if (*min_uV < rdev->constraints->min_uV)
516                 *min_uV = rdev->constraints->min_uV;
517
518         if (*min_uV > *max_uV) {
519                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
520                          *min_uV, *max_uV);
521                 return -EINVAL;
522         }
523
524         return 0;
525 }
526
527 /* return 0 if the state is valid */
528 static int regulator_check_states(suspend_state_t state)
529 {
530         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
531 }
532
533 /* Make sure we select a voltage that suits the needs of all
534  * regulator consumers
535  */
536 int regulator_check_consumers(struct regulator_dev *rdev,
537                               int *min_uV, int *max_uV,
538                               suspend_state_t state)
539 {
540         struct regulator *regulator;
541         struct regulator_voltage *voltage;
542
543         list_for_each_entry(regulator, &rdev->consumer_list, list) {
544                 voltage = &regulator->voltage[state];
545                 /*
546                  * Assume consumers that didn't say anything are OK
547                  * with anything in the constraint range.
548                  */
549                 if (!voltage->min_uV && !voltage->max_uV)
550                         continue;
551
552                 if (*max_uV > voltage->max_uV)
553                         *max_uV = voltage->max_uV;
554                 if (*min_uV < voltage->min_uV)
555                         *min_uV = voltage->min_uV;
556         }
557
558         if (*min_uV > *max_uV) {
559                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
560                         *min_uV, *max_uV);
561                 return -EINVAL;
562         }
563
564         return 0;
565 }
566
567 /* current constraint check */
568 static int regulator_check_current_limit(struct regulator_dev *rdev,
569                                         int *min_uA, int *max_uA)
570 {
571         BUG_ON(*min_uA > *max_uA);
572
573         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
574                 rdev_err(rdev, "current operation not allowed\n");
575                 return -EPERM;
576         }
577
578         if (*max_uA > rdev->constraints->max_uA)
579                 *max_uA = rdev->constraints->max_uA;
580         if (*min_uA < rdev->constraints->min_uA)
581                 *min_uA = rdev->constraints->min_uA;
582
583         if (*min_uA > *max_uA) {
584                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
585                          *min_uA, *max_uA);
586                 return -EINVAL;
587         }
588
589         return 0;
590 }
591
592 /* operating mode constraint check */
593 static int regulator_mode_constrain(struct regulator_dev *rdev,
594                                     unsigned int *mode)
595 {
596         switch (*mode) {
597         case REGULATOR_MODE_FAST:
598         case REGULATOR_MODE_NORMAL:
599         case REGULATOR_MODE_IDLE:
600         case REGULATOR_MODE_STANDBY:
601                 break;
602         default:
603                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
604                 return -EINVAL;
605         }
606
607         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
608                 rdev_err(rdev, "mode operation not allowed\n");
609                 return -EPERM;
610         }
611
612         /* The modes are bitmasks, the most power hungry modes having
613          * the lowest values. If the requested mode isn't supported
614          * try higher modes. */
615         while (*mode) {
616                 if (rdev->constraints->valid_modes_mask & *mode)
617                         return 0;
618                 *mode /= 2;
619         }
620
621         return -EINVAL;
622 }
623
624 static inline struct regulator_state *
625 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
626 {
627         if (rdev->constraints == NULL)
628                 return NULL;
629
630         switch (state) {
631         case PM_SUSPEND_STANDBY:
632                 return &rdev->constraints->state_standby;
633         case PM_SUSPEND_MEM:
634                 return &rdev->constraints->state_mem;
635         case PM_SUSPEND_MAX:
636                 return &rdev->constraints->state_disk;
637         default:
638                 return NULL;
639         }
640 }
641
642 static const struct regulator_state *
643 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
644 {
645         const struct regulator_state *rstate;
646
647         rstate = regulator_get_suspend_state(rdev, state);
648         if (rstate == NULL)
649                 return NULL;
650
651         /* If we have no suspend mode configuration don't set anything;
652          * only warn if the driver implements set_suspend_voltage or
653          * set_suspend_mode callback.
654          */
655         if (rstate->enabled != ENABLE_IN_SUSPEND &&
656             rstate->enabled != DISABLE_IN_SUSPEND) {
657                 if (rdev->desc->ops->set_suspend_voltage ||
658                     rdev->desc->ops->set_suspend_mode)
659                         rdev_warn(rdev, "No configuration\n");
660                 return NULL;
661         }
662
663         return rstate;
664 }
665
666 static ssize_t regulator_uV_show(struct device *dev,
667                                 struct device_attribute *attr, char *buf)
668 {
669         struct regulator_dev *rdev = dev_get_drvdata(dev);
670         int uV;
671
672         regulator_lock(rdev);
673         uV = regulator_get_voltage_rdev(rdev);
674         regulator_unlock(rdev);
675
676         if (uV < 0)
677                 return uV;
678         return sprintf(buf, "%d\n", uV);
679 }
680 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
681
682 static ssize_t regulator_uA_show(struct device *dev,
683                                 struct device_attribute *attr, char *buf)
684 {
685         struct regulator_dev *rdev = dev_get_drvdata(dev);
686
687         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
688 }
689 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
690
691 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
692                          char *buf)
693 {
694         struct regulator_dev *rdev = dev_get_drvdata(dev);
695
696         return sprintf(buf, "%s\n", rdev_get_name(rdev));
697 }
698 static DEVICE_ATTR_RO(name);
699
700 static const char *regulator_opmode_to_str(int mode)
701 {
702         switch (mode) {
703         case REGULATOR_MODE_FAST:
704                 return "fast";
705         case REGULATOR_MODE_NORMAL:
706                 return "normal";
707         case REGULATOR_MODE_IDLE:
708                 return "idle";
709         case REGULATOR_MODE_STANDBY:
710                 return "standby";
711         }
712         return "unknown";
713 }
714
715 static ssize_t regulator_print_opmode(char *buf, int mode)
716 {
717         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
718 }
719
720 static ssize_t regulator_opmode_show(struct device *dev,
721                                     struct device_attribute *attr, char *buf)
722 {
723         struct regulator_dev *rdev = dev_get_drvdata(dev);
724
725         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
726 }
727 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
728
729 static ssize_t regulator_print_state(char *buf, int state)
730 {
731         if (state > 0)
732                 return sprintf(buf, "enabled\n");
733         else if (state == 0)
734                 return sprintf(buf, "disabled\n");
735         else
736                 return sprintf(buf, "unknown\n");
737 }
738
739 static ssize_t regulator_state_show(struct device *dev,
740                                    struct device_attribute *attr, char *buf)
741 {
742         struct regulator_dev *rdev = dev_get_drvdata(dev);
743         ssize_t ret;
744
745         regulator_lock(rdev);
746         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
747         regulator_unlock(rdev);
748
749         return ret;
750 }
751 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
752
753 static ssize_t regulator_status_show(struct device *dev,
754                                    struct device_attribute *attr, char *buf)
755 {
756         struct regulator_dev *rdev = dev_get_drvdata(dev);
757         int status;
758         char *label;
759
760         status = rdev->desc->ops->get_status(rdev);
761         if (status < 0)
762                 return status;
763
764         switch (status) {
765         case REGULATOR_STATUS_OFF:
766                 label = "off";
767                 break;
768         case REGULATOR_STATUS_ON:
769                 label = "on";
770                 break;
771         case REGULATOR_STATUS_ERROR:
772                 label = "error";
773                 break;
774         case REGULATOR_STATUS_FAST:
775                 label = "fast";
776                 break;
777         case REGULATOR_STATUS_NORMAL:
778                 label = "normal";
779                 break;
780         case REGULATOR_STATUS_IDLE:
781                 label = "idle";
782                 break;
783         case REGULATOR_STATUS_STANDBY:
784                 label = "standby";
785                 break;
786         case REGULATOR_STATUS_BYPASS:
787                 label = "bypass";
788                 break;
789         case REGULATOR_STATUS_UNDEFINED:
790                 label = "undefined";
791                 break;
792         default:
793                 return -ERANGE;
794         }
795
796         return sprintf(buf, "%s\n", label);
797 }
798 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
799
800 static ssize_t regulator_min_uA_show(struct device *dev,
801                                     struct device_attribute *attr, char *buf)
802 {
803         struct regulator_dev *rdev = dev_get_drvdata(dev);
804
805         if (!rdev->constraints)
806                 return sprintf(buf, "constraint not defined\n");
807
808         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
809 }
810 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
811
812 static ssize_t regulator_max_uA_show(struct device *dev,
813                                     struct device_attribute *attr, char *buf)
814 {
815         struct regulator_dev *rdev = dev_get_drvdata(dev);
816
817         if (!rdev->constraints)
818                 return sprintf(buf, "constraint not defined\n");
819
820         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
821 }
822 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
823
824 static ssize_t regulator_min_uV_show(struct device *dev,
825                                     struct device_attribute *attr, char *buf)
826 {
827         struct regulator_dev *rdev = dev_get_drvdata(dev);
828
829         if (!rdev->constraints)
830                 return sprintf(buf, "constraint not defined\n");
831
832         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
833 }
834 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
835
836 static ssize_t regulator_max_uV_show(struct device *dev,
837                                     struct device_attribute *attr, char *buf)
838 {
839         struct regulator_dev *rdev = dev_get_drvdata(dev);
840
841         if (!rdev->constraints)
842                 return sprintf(buf, "constraint not defined\n");
843
844         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
845 }
846 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
847
848 static ssize_t regulator_total_uA_show(struct device *dev,
849                                       struct device_attribute *attr, char *buf)
850 {
851         struct regulator_dev *rdev = dev_get_drvdata(dev);
852         struct regulator *regulator;
853         int uA = 0;
854
855         regulator_lock(rdev);
856         list_for_each_entry(regulator, &rdev->consumer_list, list) {
857                 if (regulator->enable_count)
858                         uA += regulator->uA_load;
859         }
860         regulator_unlock(rdev);
861         return sprintf(buf, "%d\n", uA);
862 }
863 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
864
865 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
866                               char *buf)
867 {
868         struct regulator_dev *rdev = dev_get_drvdata(dev);
869         return sprintf(buf, "%d\n", rdev->use_count);
870 }
871 static DEVICE_ATTR_RO(num_users);
872
873 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
874                          char *buf)
875 {
876         struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878         switch (rdev->desc->type) {
879         case REGULATOR_VOLTAGE:
880                 return sprintf(buf, "voltage\n");
881         case REGULATOR_CURRENT:
882                 return sprintf(buf, "current\n");
883         }
884         return sprintf(buf, "unknown\n");
885 }
886 static DEVICE_ATTR_RO(type);
887
888 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
889                                 struct device_attribute *attr, char *buf)
890 {
891         struct regulator_dev *rdev = dev_get_drvdata(dev);
892
893         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
894 }
895 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
896                 regulator_suspend_mem_uV_show, NULL);
897
898 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
899                                 struct device_attribute *attr, char *buf)
900 {
901         struct regulator_dev *rdev = dev_get_drvdata(dev);
902
903         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
904 }
905 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
906                 regulator_suspend_disk_uV_show, NULL);
907
908 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
909                                 struct device_attribute *attr, char *buf)
910 {
911         struct regulator_dev *rdev = dev_get_drvdata(dev);
912
913         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
914 }
915 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
916                 regulator_suspend_standby_uV_show, NULL);
917
918 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
919                                 struct device_attribute *attr, char *buf)
920 {
921         struct regulator_dev *rdev = dev_get_drvdata(dev);
922
923         return regulator_print_opmode(buf,
924                 rdev->constraints->state_mem.mode);
925 }
926 static DEVICE_ATTR(suspend_mem_mode, 0444,
927                 regulator_suspend_mem_mode_show, NULL);
928
929 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
930                                 struct device_attribute *attr, char *buf)
931 {
932         struct regulator_dev *rdev = dev_get_drvdata(dev);
933
934         return regulator_print_opmode(buf,
935                 rdev->constraints->state_disk.mode);
936 }
937 static DEVICE_ATTR(suspend_disk_mode, 0444,
938                 regulator_suspend_disk_mode_show, NULL);
939
940 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
941                                 struct device_attribute *attr, char *buf)
942 {
943         struct regulator_dev *rdev = dev_get_drvdata(dev);
944
945         return regulator_print_opmode(buf,
946                 rdev->constraints->state_standby.mode);
947 }
948 static DEVICE_ATTR(suspend_standby_mode, 0444,
949                 regulator_suspend_standby_mode_show, NULL);
950
951 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
952                                    struct device_attribute *attr, char *buf)
953 {
954         struct regulator_dev *rdev = dev_get_drvdata(dev);
955
956         return regulator_print_state(buf,
957                         rdev->constraints->state_mem.enabled);
958 }
959 static DEVICE_ATTR(suspend_mem_state, 0444,
960                 regulator_suspend_mem_state_show, NULL);
961
962 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
963                                    struct device_attribute *attr, char *buf)
964 {
965         struct regulator_dev *rdev = dev_get_drvdata(dev);
966
967         return regulator_print_state(buf,
968                         rdev->constraints->state_disk.enabled);
969 }
970 static DEVICE_ATTR(suspend_disk_state, 0444,
971                 regulator_suspend_disk_state_show, NULL);
972
973 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
974                                    struct device_attribute *attr, char *buf)
975 {
976         struct regulator_dev *rdev = dev_get_drvdata(dev);
977
978         return regulator_print_state(buf,
979                         rdev->constraints->state_standby.enabled);
980 }
981 static DEVICE_ATTR(suspend_standby_state, 0444,
982                 regulator_suspend_standby_state_show, NULL);
983
984 static ssize_t regulator_bypass_show(struct device *dev,
985                                      struct device_attribute *attr, char *buf)
986 {
987         struct regulator_dev *rdev = dev_get_drvdata(dev);
988         const char *report;
989         bool bypass;
990         int ret;
991
992         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
993
994         if (ret != 0)
995                 report = "unknown";
996         else if (bypass)
997                 report = "enabled";
998         else
999                 report = "disabled";
1000
1001         return sprintf(buf, "%s\n", report);
1002 }
1003 static DEVICE_ATTR(bypass, 0444,
1004                    regulator_bypass_show, NULL);
1005
1006 /* Calculate the new optimum regulator operating mode based on the new total
1007  * consumer load. All locks held by caller */
1008 static int drms_uA_update(struct regulator_dev *rdev)
1009 {
1010         struct regulator *sibling;
1011         int current_uA = 0, output_uV, input_uV, err;
1012         unsigned int mode;
1013
1014         /*
1015          * first check to see if we can set modes at all, otherwise just
1016          * tell the consumer everything is OK.
1017          */
1018         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1019                 rdev_dbg(rdev, "DRMS operation not allowed\n");
1020                 return 0;
1021         }
1022
1023         if (!rdev->desc->ops->get_optimum_mode &&
1024             !rdev->desc->ops->set_load)
1025                 return 0;
1026
1027         if (!rdev->desc->ops->set_mode &&
1028             !rdev->desc->ops->set_load)
1029                 return -EINVAL;
1030
1031         /* calc total requested load */
1032         list_for_each_entry(sibling, &rdev->consumer_list, list) {
1033                 if (sibling->enable_count)
1034                         current_uA += sibling->uA_load;
1035         }
1036
1037         current_uA += rdev->constraints->system_load;
1038
1039         if (rdev->desc->ops->set_load) {
1040                 /* set the optimum mode for our new total regulator load */
1041                 err = rdev->desc->ops->set_load(rdev, current_uA);
1042                 if (err < 0)
1043                         rdev_err(rdev, "failed to set load %d: %pe\n",
1044                                  current_uA, ERR_PTR(err));
1045         } else {
1046                 /* get output voltage */
1047                 output_uV = regulator_get_voltage_rdev(rdev);
1048                 if (output_uV <= 0) {
1049                         rdev_err(rdev, "invalid output voltage found\n");
1050                         return -EINVAL;
1051                 }
1052
1053                 /* get input voltage */
1054                 input_uV = 0;
1055                 if (rdev->supply)
1056                         input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1057                 if (input_uV <= 0)
1058                         input_uV = rdev->constraints->input_uV;
1059                 if (input_uV <= 0) {
1060                         rdev_err(rdev, "invalid input voltage found\n");
1061                         return -EINVAL;
1062                 }
1063
1064                 /* now get the optimum mode for our new total regulator load */
1065                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1066                                                          output_uV, current_uA);
1067
1068                 /* check the new mode is allowed */
1069                 err = regulator_mode_constrain(rdev, &mode);
1070                 if (err < 0) {
1071                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1072                                  current_uA, input_uV, output_uV, ERR_PTR(err));
1073                         return err;
1074                 }
1075
1076                 err = rdev->desc->ops->set_mode(rdev, mode);
1077                 if (err < 0)
1078                         rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1079                                  mode, ERR_PTR(err));
1080         }
1081
1082         return err;
1083 }
1084
1085 static int __suspend_set_state(struct regulator_dev *rdev,
1086                                const struct regulator_state *rstate)
1087 {
1088         int ret = 0;
1089
1090         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1091                 rdev->desc->ops->set_suspend_enable)
1092                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1093         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1094                 rdev->desc->ops->set_suspend_disable)
1095                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1096         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1097                 ret = 0;
1098
1099         if (ret < 0) {
1100                 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1101                 return ret;
1102         }
1103
1104         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1105                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1106                 if (ret < 0) {
1107                         rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1108                         return ret;
1109                 }
1110         }
1111
1112         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1113                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1114                 if (ret < 0) {
1115                         rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1116                         return ret;
1117                 }
1118         }
1119
1120         return ret;
1121 }
1122
1123 static int suspend_set_initial_state(struct regulator_dev *rdev)
1124 {
1125         const struct regulator_state *rstate;
1126
1127         rstate = regulator_get_suspend_state_check(rdev,
1128                         rdev->constraints->initial_state);
1129         if (!rstate)
1130                 return 0;
1131
1132         return __suspend_set_state(rdev, rstate);
1133 }
1134
1135 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1136 static void print_constraints_debug(struct regulator_dev *rdev)
1137 {
1138         struct regulation_constraints *constraints = rdev->constraints;
1139         char buf[160] = "";
1140         size_t len = sizeof(buf) - 1;
1141         int count = 0;
1142         int ret;
1143
1144         if (constraints->min_uV && constraints->max_uV) {
1145                 if (constraints->min_uV == constraints->max_uV)
1146                         count += scnprintf(buf + count, len - count, "%d mV ",
1147                                            constraints->min_uV / 1000);
1148                 else
1149                         count += scnprintf(buf + count, len - count,
1150                                            "%d <--> %d mV ",
1151                                            constraints->min_uV / 1000,
1152                                            constraints->max_uV / 1000);
1153         }
1154
1155         if (!constraints->min_uV ||
1156             constraints->min_uV != constraints->max_uV) {
1157                 ret = regulator_get_voltage_rdev(rdev);
1158                 if (ret > 0)
1159                         count += scnprintf(buf + count, len - count,
1160                                            "at %d mV ", ret / 1000);
1161         }
1162
1163         if (constraints->uV_offset)
1164                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1165                                    constraints->uV_offset / 1000);
1166
1167         if (constraints->min_uA && constraints->max_uA) {
1168                 if (constraints->min_uA == constraints->max_uA)
1169                         count += scnprintf(buf + count, len - count, "%d mA ",
1170                                            constraints->min_uA / 1000);
1171                 else
1172                         count += scnprintf(buf + count, len - count,
1173                                            "%d <--> %d mA ",
1174                                            constraints->min_uA / 1000,
1175                                            constraints->max_uA / 1000);
1176         }
1177
1178         if (!constraints->min_uA ||
1179             constraints->min_uA != constraints->max_uA) {
1180                 ret = _regulator_get_current_limit(rdev);
1181                 if (ret > 0)
1182                         count += scnprintf(buf + count, len - count,
1183                                            "at %d mA ", ret / 1000);
1184         }
1185
1186         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1187                 count += scnprintf(buf + count, len - count, "fast ");
1188         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1189                 count += scnprintf(buf + count, len - count, "normal ");
1190         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1191                 count += scnprintf(buf + count, len - count, "idle ");
1192         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1193                 count += scnprintf(buf + count, len - count, "standby ");
1194
1195         if (!count)
1196                 count = scnprintf(buf, len, "no parameters");
1197         else
1198                 --count;
1199
1200         count += scnprintf(buf + count, len - count, ", %s",
1201                 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1202
1203         rdev_dbg(rdev, "%s\n", buf);
1204 }
1205 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1206 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1207 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1208
1209 static void print_constraints(struct regulator_dev *rdev)
1210 {
1211         struct regulation_constraints *constraints = rdev->constraints;
1212
1213         print_constraints_debug(rdev);
1214
1215         if ((constraints->min_uV != constraints->max_uV) &&
1216             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1217                 rdev_warn(rdev,
1218                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1219 }
1220
1221 static int machine_constraints_voltage(struct regulator_dev *rdev,
1222         struct regulation_constraints *constraints)
1223 {
1224         const struct regulator_ops *ops = rdev->desc->ops;
1225         int ret;
1226
1227         /* do we need to apply the constraint voltage */
1228         if (rdev->constraints->apply_uV &&
1229             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1230                 int target_min, target_max;
1231                 int current_uV = regulator_get_voltage_rdev(rdev);
1232
1233                 if (current_uV == -ENOTRECOVERABLE) {
1234                         /* This regulator can't be read and must be initialized */
1235                         rdev_info(rdev, "Setting %d-%duV\n",
1236                                   rdev->constraints->min_uV,
1237                                   rdev->constraints->max_uV);
1238                         _regulator_do_set_voltage(rdev,
1239                                                   rdev->constraints->min_uV,
1240                                                   rdev->constraints->max_uV);
1241                         current_uV = regulator_get_voltage_rdev(rdev);
1242                 }
1243
1244                 if (current_uV < 0) {
1245                         rdev_err(rdev,
1246                                  "failed to get the current voltage: %pe\n",
1247                                  ERR_PTR(current_uV));
1248                         return current_uV;
1249                 }
1250
1251                 /*
1252                  * If we're below the minimum voltage move up to the
1253                  * minimum voltage, if we're above the maximum voltage
1254                  * then move down to the maximum.
1255                  */
1256                 target_min = current_uV;
1257                 target_max = current_uV;
1258
1259                 if (current_uV < rdev->constraints->min_uV) {
1260                         target_min = rdev->constraints->min_uV;
1261                         target_max = rdev->constraints->min_uV;
1262                 }
1263
1264                 if (current_uV > rdev->constraints->max_uV) {
1265                         target_min = rdev->constraints->max_uV;
1266                         target_max = rdev->constraints->max_uV;
1267                 }
1268
1269                 if (target_min != current_uV || target_max != current_uV) {
1270                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1271                                   current_uV, target_min, target_max);
1272                         ret = _regulator_do_set_voltage(
1273                                 rdev, target_min, target_max);
1274                         if (ret < 0) {
1275                                 rdev_err(rdev,
1276                                         "failed to apply %d-%duV constraint: %pe\n",
1277                                         target_min, target_max, ERR_PTR(ret));
1278                                 return ret;
1279                         }
1280                 }
1281         }
1282
1283         /* constrain machine-level voltage specs to fit
1284          * the actual range supported by this regulator.
1285          */
1286         if (ops->list_voltage && rdev->desc->n_voltages) {
1287                 int     count = rdev->desc->n_voltages;
1288                 int     i;
1289                 int     min_uV = INT_MAX;
1290                 int     max_uV = INT_MIN;
1291                 int     cmin = constraints->min_uV;
1292                 int     cmax = constraints->max_uV;
1293
1294                 /* it's safe to autoconfigure fixed-voltage supplies
1295                    and the constraints are used by list_voltage. */
1296                 if (count == 1 && !cmin) {
1297                         cmin = 1;
1298                         cmax = INT_MAX;
1299                         constraints->min_uV = cmin;
1300                         constraints->max_uV = cmax;
1301                 }
1302
1303                 /* voltage constraints are optional */
1304                 if ((cmin == 0) && (cmax == 0))
1305                         return 0;
1306
1307                 /* else require explicit machine-level constraints */
1308                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1309                         rdev_err(rdev, "invalid voltage constraints\n");
1310                         return -EINVAL;
1311                 }
1312
1313                 /* no need to loop voltages if range is continuous */
1314                 if (rdev->desc->continuous_voltage_range)
1315                         return 0;
1316
1317                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1318                 for (i = 0; i < count; i++) {
1319                         int     value;
1320
1321                         value = ops->list_voltage(rdev, i);
1322                         if (value <= 0)
1323                                 continue;
1324
1325                         /* maybe adjust [min_uV..max_uV] */
1326                         if (value >= cmin && value < min_uV)
1327                                 min_uV = value;
1328                         if (value <= cmax && value > max_uV)
1329                                 max_uV = value;
1330                 }
1331
1332                 /* final: [min_uV..max_uV] valid iff constraints valid */
1333                 if (max_uV < min_uV) {
1334                         rdev_err(rdev,
1335                                  "unsupportable voltage constraints %u-%uuV\n",
1336                                  min_uV, max_uV);
1337                         return -EINVAL;
1338                 }
1339
1340                 /* use regulator's subset of machine constraints */
1341                 if (constraints->min_uV < min_uV) {
1342                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1343                                  constraints->min_uV, min_uV);
1344                         constraints->min_uV = min_uV;
1345                 }
1346                 if (constraints->max_uV > max_uV) {
1347                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1348                                  constraints->max_uV, max_uV);
1349                         constraints->max_uV = max_uV;
1350                 }
1351         }
1352
1353         return 0;
1354 }
1355
1356 static int machine_constraints_current(struct regulator_dev *rdev,
1357         struct regulation_constraints *constraints)
1358 {
1359         const struct regulator_ops *ops = rdev->desc->ops;
1360         int ret;
1361
1362         if (!constraints->min_uA && !constraints->max_uA)
1363                 return 0;
1364
1365         if (constraints->min_uA > constraints->max_uA) {
1366                 rdev_err(rdev, "Invalid current constraints\n");
1367                 return -EINVAL;
1368         }
1369
1370         if (!ops->set_current_limit || !ops->get_current_limit) {
1371                 rdev_warn(rdev, "Operation of current configuration missing\n");
1372                 return 0;
1373         }
1374
1375         /* Set regulator current in constraints range */
1376         ret = ops->set_current_limit(rdev, constraints->min_uA,
1377                         constraints->max_uA);
1378         if (ret < 0) {
1379                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1380                 return ret;
1381         }
1382
1383         return 0;
1384 }
1385
1386 static int _regulator_do_enable(struct regulator_dev *rdev);
1387
1388 /**
1389  * set_machine_constraints - sets regulator constraints
1390  * @rdev: regulator source
1391  *
1392  * Allows platform initialisation code to define and constrain
1393  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1394  * Constraints *must* be set by platform code in order for some
1395  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396  * set_mode.
1397  */
1398 static int set_machine_constraints(struct regulator_dev *rdev)
1399 {
1400         int ret = 0;
1401         const struct regulator_ops *ops = rdev->desc->ops;
1402
1403         ret = machine_constraints_voltage(rdev, rdev->constraints);
1404         if (ret != 0)
1405                 return ret;
1406
1407         ret = machine_constraints_current(rdev, rdev->constraints);
1408         if (ret != 0)
1409                 return ret;
1410
1411         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412                 ret = ops->set_input_current_limit(rdev,
1413                                                    rdev->constraints->ilim_uA);
1414                 if (ret < 0) {
1415                         rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416                         return ret;
1417                 }
1418         }
1419
1420         /* do we need to setup our suspend state */
1421         if (rdev->constraints->initial_state) {
1422                 ret = suspend_set_initial_state(rdev);
1423                 if (ret < 0) {
1424                         rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425                         return ret;
1426                 }
1427         }
1428
1429         if (rdev->constraints->initial_mode) {
1430                 if (!ops->set_mode) {
1431                         rdev_err(rdev, "no set_mode operation\n");
1432                         return -EINVAL;
1433                 }
1434
1435                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436                 if (ret < 0) {
1437                         rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438                         return ret;
1439                 }
1440         } else if (rdev->constraints->system_load) {
1441                 /*
1442                  * We'll only apply the initial system load if an
1443                  * initial mode wasn't specified.
1444                  */
1445                 drms_uA_update(rdev);
1446         }
1447
1448         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449                 && ops->set_ramp_delay) {
1450                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451                 if (ret < 0) {
1452                         rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453                         return ret;
1454                 }
1455         }
1456
1457         if (rdev->constraints->pull_down && ops->set_pull_down) {
1458                 ret = ops->set_pull_down(rdev);
1459                 if (ret < 0) {
1460                         rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461                         return ret;
1462                 }
1463         }
1464
1465         if (rdev->constraints->soft_start && ops->set_soft_start) {
1466                 ret = ops->set_soft_start(rdev);
1467                 if (ret < 0) {
1468                         rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469                         return ret;
1470                 }
1471         }
1472
1473         if (rdev->constraints->over_current_protection
1474                 && ops->set_over_current_protection) {
1475                 ret = ops->set_over_current_protection(rdev);
1476                 if (ret < 0) {
1477                         rdev_err(rdev, "failed to set over current protection: %pe\n",
1478                                  ERR_PTR(ret));
1479                         return ret;
1480                 }
1481         }
1482
1483         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1484                 bool ad_state = (rdev->constraints->active_discharge ==
1485                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1486
1487                 ret = ops->set_active_discharge(rdev, ad_state);
1488                 if (ret < 0) {
1489                         rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1490                         return ret;
1491                 }
1492         }
1493
1494         /* If the constraints say the regulator should be on at this point
1495          * and we have control then make sure it is enabled.
1496          */
1497         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1498                 /* If we want to enable this regulator, make sure that we know
1499                  * the supplying regulator.
1500                  */
1501                 if (rdev->supply_name && !rdev->supply)
1502                         return -EPROBE_DEFER;
1503
1504                 /* If supplying regulator has already been enabled,
1505                  * it's not intended to have use_count increment
1506                  * when rdev is only boot-on.
1507                  */
1508                 if (rdev->supply &&
1509                     (rdev->constraints->always_on ||
1510                      !regulator_is_enabled(rdev->supply))) {
1511                         ret = regulator_enable(rdev->supply);
1512                         if (ret < 0) {
1513                                 _regulator_put(rdev->supply);
1514                                 rdev->supply = NULL;
1515                                 return ret;
1516                         }
1517                 }
1518
1519                 ret = _regulator_do_enable(rdev);
1520                 if (ret < 0 && ret != -EINVAL) {
1521                         rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1522                         return ret;
1523                 }
1524
1525                 if (rdev->constraints->always_on)
1526                         rdev->use_count++;
1527         }
1528
1529         print_constraints(rdev);
1530         return 0;
1531 }
1532
1533 /**
1534  * set_supply - set regulator supply regulator
1535  * @rdev: regulator (locked)
1536  * @supply_rdev: supply regulator (locked))
1537  *
1538  * Called by platform initialisation code to set the supply regulator for this
1539  * regulator. This ensures that a regulators supply will also be enabled by the
1540  * core if it's child is enabled.
1541  */
1542 static int set_supply(struct regulator_dev *rdev,
1543                       struct regulator_dev *supply_rdev)
1544 {
1545         int err;
1546
1547         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1548
1549         if (!try_module_get(supply_rdev->owner))
1550                 return -ENODEV;
1551
1552         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1553         if (rdev->supply == NULL) {
1554                 module_put(supply_rdev->owner);
1555                 err = -ENOMEM;
1556                 return err;
1557         }
1558         supply_rdev->open_count++;
1559
1560         return 0;
1561 }
1562
1563 /**
1564  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1565  * @rdev:         regulator source
1566  * @consumer_dev_name: dev_name() string for device supply applies to
1567  * @supply:       symbolic name for supply
1568  *
1569  * Allows platform initialisation code to map physical regulator
1570  * sources to symbolic names for supplies for use by devices.  Devices
1571  * should use these symbolic names to request regulators, avoiding the
1572  * need to provide board-specific regulator names as platform data.
1573  */
1574 static int set_consumer_device_supply(struct regulator_dev *rdev,
1575                                       const char *consumer_dev_name,
1576                                       const char *supply)
1577 {
1578         struct regulator_map *node, *new_node;
1579         int has_dev;
1580
1581         if (supply == NULL)
1582                 return -EINVAL;
1583
1584         if (consumer_dev_name != NULL)
1585                 has_dev = 1;
1586         else
1587                 has_dev = 0;
1588
1589         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1590         if (new_node == NULL)
1591                 return -ENOMEM;
1592
1593         new_node->regulator = rdev;
1594         new_node->supply = supply;
1595
1596         if (has_dev) {
1597                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1598                 if (new_node->dev_name == NULL) {
1599                         kfree(new_node);
1600                         return -ENOMEM;
1601                 }
1602         }
1603
1604         mutex_lock(&regulator_list_mutex);
1605         list_for_each_entry(node, &regulator_map_list, list) {
1606                 if (node->dev_name && consumer_dev_name) {
1607                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1608                                 continue;
1609                 } else if (node->dev_name || consumer_dev_name) {
1610                         continue;
1611                 }
1612
1613                 if (strcmp(node->supply, supply) != 0)
1614                         continue;
1615
1616                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1617                          consumer_dev_name,
1618                          dev_name(&node->regulator->dev),
1619                          node->regulator->desc->name,
1620                          supply,
1621                          dev_name(&rdev->dev), rdev_get_name(rdev));
1622                 goto fail;
1623         }
1624
1625         list_add(&new_node->list, &regulator_map_list);
1626         mutex_unlock(&regulator_list_mutex);
1627
1628         return 0;
1629
1630 fail:
1631         mutex_unlock(&regulator_list_mutex);
1632         kfree(new_node->dev_name);
1633         kfree(new_node);
1634         return -EBUSY;
1635 }
1636
1637 static void unset_regulator_supplies(struct regulator_dev *rdev)
1638 {
1639         struct regulator_map *node, *n;
1640
1641         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1642                 if (rdev == node->regulator) {
1643                         list_del(&node->list);
1644                         kfree(node->dev_name);
1645                         kfree(node);
1646                 }
1647         }
1648 }
1649
1650 #ifdef CONFIG_DEBUG_FS
1651 static ssize_t constraint_flags_read_file(struct file *file,
1652                                           char __user *user_buf,
1653                                           size_t count, loff_t *ppos)
1654 {
1655         const struct regulator *regulator = file->private_data;
1656         const struct regulation_constraints *c = regulator->rdev->constraints;
1657         char *buf;
1658         ssize_t ret;
1659
1660         if (!c)
1661                 return 0;
1662
1663         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1664         if (!buf)
1665                 return -ENOMEM;
1666
1667         ret = snprintf(buf, PAGE_SIZE,
1668                         "always_on: %u\n"
1669                         "boot_on: %u\n"
1670                         "apply_uV: %u\n"
1671                         "ramp_disable: %u\n"
1672                         "soft_start: %u\n"
1673                         "pull_down: %u\n"
1674                         "over_current_protection: %u\n",
1675                         c->always_on,
1676                         c->boot_on,
1677                         c->apply_uV,
1678                         c->ramp_disable,
1679                         c->soft_start,
1680                         c->pull_down,
1681                         c->over_current_protection);
1682
1683         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1684         kfree(buf);
1685
1686         return ret;
1687 }
1688
1689 #endif
1690
1691 static const struct file_operations constraint_flags_fops = {
1692 #ifdef CONFIG_DEBUG_FS
1693         .open = simple_open,
1694         .read = constraint_flags_read_file,
1695         .llseek = default_llseek,
1696 #endif
1697 };
1698
1699 #define REG_STR_SIZE    64
1700
1701 static struct regulator *create_regulator(struct regulator_dev *rdev,
1702                                           struct device *dev,
1703                                           const char *supply_name)
1704 {
1705         struct regulator *regulator;
1706         int err = 0;
1707
1708         lockdep_assert_held_once(&rdev->mutex.base);
1709
1710         if (dev) {
1711                 char buf[REG_STR_SIZE];
1712                 int size;
1713
1714                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1715                                 dev->kobj.name, supply_name);
1716                 if (size >= REG_STR_SIZE)
1717                         return NULL;
1718
1719                 supply_name = kstrdup(buf, GFP_KERNEL);
1720                 if (supply_name == NULL)
1721                         return NULL;
1722         } else {
1723                 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1724                 if (supply_name == NULL)
1725                         return NULL;
1726         }
1727
1728         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1729         if (regulator == NULL) {
1730                 kfree_const(supply_name);
1731                 return NULL;
1732         }
1733
1734         regulator->rdev = rdev;
1735         regulator->supply_name = supply_name;
1736
1737         list_add(&regulator->list, &rdev->consumer_list);
1738
1739         if (dev) {
1740                 regulator->dev = dev;
1741
1742                 /* Add a link to the device sysfs entry */
1743                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1744                                                supply_name);
1745                 if (err) {
1746                         rdev_dbg(rdev, "could not add device link %s: %pe\n",
1747                                   dev->kobj.name, ERR_PTR(err));
1748                         /* non-fatal */
1749                 }
1750         }
1751
1752         if (err != -EEXIST)
1753                 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1754         if (IS_ERR(regulator->debugfs))
1755                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1756
1757         debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1758                            &regulator->uA_load);
1759         debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1760                            &regulator->voltage[PM_SUSPEND_ON].min_uV);
1761         debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1762                            &regulator->voltage[PM_SUSPEND_ON].max_uV);
1763         debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1764                             regulator, &constraint_flags_fops);
1765
1766         /*
1767          * Check now if the regulator is an always on regulator - if
1768          * it is then we don't need to do nearly so much work for
1769          * enable/disable calls.
1770          */
1771         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1772             _regulator_is_enabled(rdev))
1773                 regulator->always_on = true;
1774
1775         return regulator;
1776 }
1777
1778 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1779 {
1780         if (rdev->constraints && rdev->constraints->enable_time)
1781                 return rdev->constraints->enable_time;
1782         if (rdev->desc->ops->enable_time)
1783                 return rdev->desc->ops->enable_time(rdev);
1784         return rdev->desc->enable_time;
1785 }
1786
1787 static struct regulator_supply_alias *regulator_find_supply_alias(
1788                 struct device *dev, const char *supply)
1789 {
1790         struct regulator_supply_alias *map;
1791
1792         list_for_each_entry(map, &regulator_supply_alias_list, list)
1793                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1794                         return map;
1795
1796         return NULL;
1797 }
1798
1799 static void regulator_supply_alias(struct device **dev, const char **supply)
1800 {
1801         struct regulator_supply_alias *map;
1802
1803         map = regulator_find_supply_alias(*dev, *supply);
1804         if (map) {
1805                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1806                                 *supply, map->alias_supply,
1807                                 dev_name(map->alias_dev));
1808                 *dev = map->alias_dev;
1809                 *supply = map->alias_supply;
1810         }
1811 }
1812
1813 static int regulator_match(struct device *dev, const void *data)
1814 {
1815         struct regulator_dev *r = dev_to_rdev(dev);
1816
1817         return strcmp(rdev_get_name(r), data) == 0;
1818 }
1819
1820 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1821 {
1822         struct device *dev;
1823
1824         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1825
1826         return dev ? dev_to_rdev(dev) : NULL;
1827 }
1828
1829 /**
1830  * regulator_dev_lookup - lookup a regulator device.
1831  * @dev: device for regulator "consumer".
1832  * @supply: Supply name or regulator ID.
1833  *
1834  * If successful, returns a struct regulator_dev that corresponds to the name
1835  * @supply and with the embedded struct device refcount incremented by one.
1836  * The refcount must be dropped by calling put_device().
1837  * On failure one of the following ERR-PTR-encoded values is returned:
1838  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1839  * in the future.
1840  */
1841 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1842                                                   const char *supply)
1843 {
1844         struct regulator_dev *r = NULL;
1845         struct device_node *node;
1846         struct regulator_map *map;
1847         const char *devname = NULL;
1848
1849         regulator_supply_alias(&dev, &supply);
1850
1851         /* first do a dt based lookup */
1852         if (dev && dev->of_node) {
1853                 node = of_get_regulator(dev, supply);
1854                 if (node) {
1855                         r = of_find_regulator_by_node(node);
1856                         of_node_put(node);
1857                         if (r)
1858                                 return r;
1859
1860                         /*
1861                          * We have a node, but there is no device.
1862                          * assume it has not registered yet.
1863                          */
1864                         return ERR_PTR(-EPROBE_DEFER);
1865                 }
1866         }
1867
1868         /* if not found, try doing it non-dt way */
1869         if (dev)
1870                 devname = dev_name(dev);
1871
1872         mutex_lock(&regulator_list_mutex);
1873         list_for_each_entry(map, &regulator_map_list, list) {
1874                 /* If the mapping has a device set up it must match */
1875                 if (map->dev_name &&
1876                     (!devname || strcmp(map->dev_name, devname)))
1877                         continue;
1878
1879                 if (strcmp(map->supply, supply) == 0 &&
1880                     get_device(&map->regulator->dev)) {
1881                         r = map->regulator;
1882                         break;
1883                 }
1884         }
1885         mutex_unlock(&regulator_list_mutex);
1886
1887         if (r)
1888                 return r;
1889
1890         r = regulator_lookup_by_name(supply);
1891         if (r)
1892                 return r;
1893
1894         return ERR_PTR(-ENODEV);
1895 }
1896
1897 static int regulator_resolve_supply(struct regulator_dev *rdev)
1898 {
1899         struct regulator_dev *r;
1900         struct device *dev = rdev->dev.parent;
1901         struct ww_acquire_ctx ww_ctx;
1902         int ret = 0;
1903
1904         /* No supply to resolve? */
1905         if (!rdev->supply_name)
1906                 return 0;
1907
1908         /* Supply already resolved? (fast-path without locking contention) */
1909         if (rdev->supply)
1910                 return 0;
1911
1912         r = regulator_dev_lookup(dev, rdev->supply_name);
1913         if (IS_ERR(r)) {
1914                 ret = PTR_ERR(r);
1915
1916                 /* Did the lookup explicitly defer for us? */
1917                 if (ret == -EPROBE_DEFER)
1918                         goto out;
1919
1920                 if (have_full_constraints()) {
1921                         r = dummy_regulator_rdev;
1922                         get_device(&r->dev);
1923                 } else {
1924                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1925                                 rdev->supply_name, rdev->desc->name);
1926                         ret = -EPROBE_DEFER;
1927                         goto out;
1928                 }
1929         }
1930
1931         if (r == rdev) {
1932                 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1933                         rdev->desc->name, rdev->supply_name);
1934                 if (!have_full_constraints()) {
1935                         ret = -EINVAL;
1936                         goto out;
1937                 }
1938                 r = dummy_regulator_rdev;
1939                 get_device(&r->dev);
1940         }
1941
1942         /*
1943          * If the supply's parent device is not the same as the
1944          * regulator's parent device, then ensure the parent device
1945          * is bound before we resolve the supply, in case the parent
1946          * device get probe deferred and unregisters the supply.
1947          */
1948         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1949                 if (!device_is_bound(r->dev.parent)) {
1950                         put_device(&r->dev);
1951                         ret = -EPROBE_DEFER;
1952                         goto out;
1953                 }
1954         }
1955
1956         /* Recursively resolve the supply of the supply */
1957         ret = regulator_resolve_supply(r);
1958         if (ret < 0) {
1959                 put_device(&r->dev);
1960                 goto out;
1961         }
1962
1963         /*
1964          * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1965          * between rdev->supply null check and setting rdev->supply in
1966          * set_supply() from concurrent tasks.
1967          */
1968         regulator_lock_two(rdev, r, &ww_ctx);
1969
1970         /* Supply just resolved by a concurrent task? */
1971         if (rdev->supply) {
1972                 regulator_unlock_two(rdev, r, &ww_ctx);
1973                 put_device(&r->dev);
1974                 goto out;
1975         }
1976
1977         ret = set_supply(rdev, r);
1978         if (ret < 0) {
1979                 regulator_unlock_two(rdev, r, &ww_ctx);
1980                 put_device(&r->dev);
1981                 goto out;
1982         }
1983
1984         regulator_unlock_two(rdev, r, &ww_ctx);
1985
1986         /*
1987          * In set_machine_constraints() we may have turned this regulator on
1988          * but we couldn't propagate to the supply if it hadn't been resolved
1989          * yet.  Do it now.
1990          */
1991         if (rdev->use_count) {
1992                 ret = regulator_enable(rdev->supply);
1993                 if (ret < 0) {
1994                         _regulator_put(rdev->supply);
1995                         rdev->supply = NULL;
1996                         goto out;
1997                 }
1998         }
1999
2000 out:
2001         return ret;
2002 }
2003
2004 /* Internal regulator request function */
2005 struct regulator *_regulator_get(struct device *dev, const char *id,
2006                                  enum regulator_get_type get_type)
2007 {
2008         struct regulator_dev *rdev;
2009         struct regulator *regulator;
2010         struct device_link *link;
2011         int ret;
2012
2013         if (get_type >= MAX_GET_TYPE) {
2014                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2015                 return ERR_PTR(-EINVAL);
2016         }
2017
2018         if (id == NULL) {
2019                 pr_err("get() with no identifier\n");
2020                 return ERR_PTR(-EINVAL);
2021         }
2022
2023         rdev = regulator_dev_lookup(dev, id);
2024         if (IS_ERR(rdev)) {
2025                 ret = PTR_ERR(rdev);
2026
2027                 /*
2028                  * If regulator_dev_lookup() fails with error other
2029                  * than -ENODEV our job here is done, we simply return it.
2030                  */
2031                 if (ret != -ENODEV)
2032                         return ERR_PTR(ret);
2033
2034                 if (!have_full_constraints()) {
2035                         dev_warn(dev,
2036                                  "incomplete constraints, dummy supplies not allowed\n");
2037                         return ERR_PTR(-ENODEV);
2038                 }
2039
2040                 switch (get_type) {
2041                 case NORMAL_GET:
2042                         /*
2043                          * Assume that a regulator is physically present and
2044                          * enabled, even if it isn't hooked up, and just
2045                          * provide a dummy.
2046                          */
2047                         dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2048                         rdev = dummy_regulator_rdev;
2049                         get_device(&rdev->dev);
2050                         break;
2051
2052                 case EXCLUSIVE_GET:
2053                         dev_warn(dev,
2054                                  "dummy supplies not allowed for exclusive requests\n");
2055                         fallthrough;
2056
2057                 default:
2058                         return ERR_PTR(-ENODEV);
2059                 }
2060         }
2061
2062         if (rdev->exclusive) {
2063                 regulator = ERR_PTR(-EPERM);
2064                 put_device(&rdev->dev);
2065                 return regulator;
2066         }
2067
2068         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2069                 regulator = ERR_PTR(-EBUSY);
2070                 put_device(&rdev->dev);
2071                 return regulator;
2072         }
2073
2074         mutex_lock(&regulator_list_mutex);
2075         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2076         mutex_unlock(&regulator_list_mutex);
2077
2078         if (ret != 0) {
2079                 regulator = ERR_PTR(-EPROBE_DEFER);
2080                 put_device(&rdev->dev);
2081                 return regulator;
2082         }
2083
2084         ret = regulator_resolve_supply(rdev);
2085         if (ret < 0) {
2086                 regulator = ERR_PTR(ret);
2087                 put_device(&rdev->dev);
2088                 return regulator;
2089         }
2090
2091         if (!try_module_get(rdev->owner)) {
2092                 regulator = ERR_PTR(-EPROBE_DEFER);
2093                 put_device(&rdev->dev);
2094                 return regulator;
2095         }
2096
2097         regulator_lock(rdev);
2098         regulator = create_regulator(rdev, dev, id);
2099         regulator_unlock(rdev);
2100         if (regulator == NULL) {
2101                 regulator = ERR_PTR(-ENOMEM);
2102                 module_put(rdev->owner);
2103                 put_device(&rdev->dev);
2104                 return regulator;
2105         }
2106
2107         rdev->open_count++;
2108         if (get_type == EXCLUSIVE_GET) {
2109                 rdev->exclusive = 1;
2110
2111                 ret = _regulator_is_enabled(rdev);
2112                 if (ret > 0) {
2113                         rdev->use_count = 1;
2114                         regulator->enable_count = 1;
2115                 } else {
2116                         rdev->use_count = 0;
2117                         regulator->enable_count = 0;
2118                 }
2119         }
2120
2121         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2122         if (!IS_ERR_OR_NULL(link))
2123                 regulator->device_link = true;
2124
2125         return regulator;
2126 }
2127
2128 /**
2129  * regulator_get - lookup and obtain a reference to a regulator.
2130  * @dev: device for regulator "consumer"
2131  * @id: Supply name or regulator ID.
2132  *
2133  * Returns a struct regulator corresponding to the regulator producer,
2134  * or IS_ERR() condition containing errno.
2135  *
2136  * Use of supply names configured via regulator_set_device_supply() is
2137  * strongly encouraged.  It is recommended that the supply name used
2138  * should match the name used for the supply and/or the relevant
2139  * device pins in the datasheet.
2140  */
2141 struct regulator *regulator_get(struct device *dev, const char *id)
2142 {
2143         return _regulator_get(dev, id, NORMAL_GET);
2144 }
2145 EXPORT_SYMBOL_GPL(regulator_get);
2146
2147 /**
2148  * regulator_get_exclusive - obtain exclusive access to a regulator.
2149  * @dev: device for regulator "consumer"
2150  * @id: Supply name or regulator ID.
2151  *
2152  * Returns a struct regulator corresponding to the regulator producer,
2153  * or IS_ERR() condition containing errno.  Other consumers will be
2154  * unable to obtain this regulator while this reference is held and the
2155  * use count for the regulator will be initialised to reflect the current
2156  * state of the regulator.
2157  *
2158  * This is intended for use by consumers which cannot tolerate shared
2159  * use of the regulator such as those which need to force the
2160  * regulator off for correct operation of the hardware they are
2161  * controlling.
2162  *
2163  * Use of supply names configured via regulator_set_device_supply() is
2164  * strongly encouraged.  It is recommended that the supply name used
2165  * should match the name used for the supply and/or the relevant
2166  * device pins in the datasheet.
2167  */
2168 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2169 {
2170         return _regulator_get(dev, id, EXCLUSIVE_GET);
2171 }
2172 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2173
2174 /**
2175  * regulator_get_optional - obtain optional access to a regulator.
2176  * @dev: device for regulator "consumer"
2177  * @id: Supply name or regulator ID.
2178  *
2179  * Returns a struct regulator corresponding to the regulator producer,
2180  * or IS_ERR() condition containing errno.
2181  *
2182  * This is intended for use by consumers for devices which can have
2183  * some supplies unconnected in normal use, such as some MMC devices.
2184  * It can allow the regulator core to provide stub supplies for other
2185  * supplies requested using normal regulator_get() calls without
2186  * disrupting the operation of drivers that can handle absent
2187  * supplies.
2188  *
2189  * Use of supply names configured via regulator_set_device_supply() is
2190  * strongly encouraged.  It is recommended that the supply name used
2191  * should match the name used for the supply and/or the relevant
2192  * device pins in the datasheet.
2193  */
2194 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2195 {
2196         return _regulator_get(dev, id, OPTIONAL_GET);
2197 }
2198 EXPORT_SYMBOL_GPL(regulator_get_optional);
2199
2200 static void destroy_regulator(struct regulator *regulator)
2201 {
2202         struct regulator_dev *rdev = regulator->rdev;
2203
2204         debugfs_remove_recursive(regulator->debugfs);
2205
2206         if (regulator->dev) {
2207                 if (regulator->device_link)
2208                         device_link_remove(regulator->dev, &rdev->dev);
2209
2210                 /* remove any sysfs entries */
2211                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2212         }
2213
2214         regulator_lock(rdev);
2215         list_del(&regulator->list);
2216
2217         rdev->open_count--;
2218         rdev->exclusive = 0;
2219         regulator_unlock(rdev);
2220
2221         kfree_const(regulator->supply_name);
2222         kfree(regulator);
2223 }
2224
2225 /* regulator_list_mutex lock held by regulator_put() */
2226 static void _regulator_put(struct regulator *regulator)
2227 {
2228         struct regulator_dev *rdev;
2229
2230         if (IS_ERR_OR_NULL(regulator))
2231                 return;
2232
2233         lockdep_assert_held_once(&regulator_list_mutex);
2234
2235         /* Docs say you must disable before calling regulator_put() */
2236         WARN_ON(regulator->enable_count);
2237
2238         rdev = regulator->rdev;
2239
2240         destroy_regulator(regulator);
2241
2242         module_put(rdev->owner);
2243         put_device(&rdev->dev);
2244 }
2245
2246 /**
2247  * regulator_put - "free" the regulator source
2248  * @regulator: regulator source
2249  *
2250  * Note: drivers must ensure that all regulator_enable calls made on this
2251  * regulator source are balanced by regulator_disable calls prior to calling
2252  * this function.
2253  */
2254 void regulator_put(struct regulator *regulator)
2255 {
2256         mutex_lock(&regulator_list_mutex);
2257         _regulator_put(regulator);
2258         mutex_unlock(&regulator_list_mutex);
2259 }
2260 EXPORT_SYMBOL_GPL(regulator_put);
2261
2262 /**
2263  * regulator_register_supply_alias - Provide device alias for supply lookup
2264  *
2265  * @dev: device that will be given as the regulator "consumer"
2266  * @id: Supply name or regulator ID
2267  * @alias_dev: device that should be used to lookup the supply
2268  * @alias_id: Supply name or regulator ID that should be used to lookup the
2269  * supply
2270  *
2271  * All lookups for id on dev will instead be conducted for alias_id on
2272  * alias_dev.
2273  */
2274 int regulator_register_supply_alias(struct device *dev, const char *id,
2275                                     struct device *alias_dev,
2276                                     const char *alias_id)
2277 {
2278         struct regulator_supply_alias *map;
2279
2280         map = regulator_find_supply_alias(dev, id);
2281         if (map)
2282                 return -EEXIST;
2283
2284         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2285         if (!map)
2286                 return -ENOMEM;
2287
2288         map->src_dev = dev;
2289         map->src_supply = id;
2290         map->alias_dev = alias_dev;
2291         map->alias_supply = alias_id;
2292
2293         list_add(&map->list, &regulator_supply_alias_list);
2294
2295         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2296                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2297
2298         return 0;
2299 }
2300 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2301
2302 /**
2303  * regulator_unregister_supply_alias - Remove device alias
2304  *
2305  * @dev: device that will be given as the regulator "consumer"
2306  * @id: Supply name or regulator ID
2307  *
2308  * Remove a lookup alias if one exists for id on dev.
2309  */
2310 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2311 {
2312         struct regulator_supply_alias *map;
2313
2314         map = regulator_find_supply_alias(dev, id);
2315         if (map) {
2316                 list_del(&map->list);
2317                 kfree(map);
2318         }
2319 }
2320 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2321
2322 /**
2323  * regulator_bulk_register_supply_alias - register multiple aliases
2324  *
2325  * @dev: device that will be given as the regulator "consumer"
2326  * @id: List of supply names or regulator IDs
2327  * @alias_dev: device that should be used to lookup the supply
2328  * @alias_id: List of supply names or regulator IDs that should be used to
2329  * lookup the supply
2330  * @num_id: Number of aliases to register
2331  *
2332  * @return 0 on success, an errno on failure.
2333  *
2334  * This helper function allows drivers to register several supply
2335  * aliases in one operation.  If any of the aliases cannot be
2336  * registered any aliases that were registered will be removed
2337  * before returning to the caller.
2338  */
2339 int regulator_bulk_register_supply_alias(struct device *dev,
2340                                          const char *const *id,
2341                                          struct device *alias_dev,
2342                                          const char *const *alias_id,
2343                                          int num_id)
2344 {
2345         int i;
2346         int ret;
2347
2348         for (i = 0; i < num_id; ++i) {
2349                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2350                                                       alias_id[i]);
2351                 if (ret < 0)
2352                         goto err;
2353         }
2354
2355         return 0;
2356
2357 err:
2358         dev_err(dev,
2359                 "Failed to create supply alias %s,%s -> %s,%s\n",
2360                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2361
2362         while (--i >= 0)
2363                 regulator_unregister_supply_alias(dev, id[i]);
2364
2365         return ret;
2366 }
2367 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2368
2369 /**
2370  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2371  *
2372  * @dev: device that will be given as the regulator "consumer"
2373  * @id: List of supply names or regulator IDs
2374  * @num_id: Number of aliases to unregister
2375  *
2376  * This helper function allows drivers to unregister several supply
2377  * aliases in one operation.
2378  */
2379 void regulator_bulk_unregister_supply_alias(struct device *dev,
2380                                             const char *const *id,
2381                                             int num_id)
2382 {
2383         int i;
2384
2385         for (i = 0; i < num_id; ++i)
2386                 regulator_unregister_supply_alias(dev, id[i]);
2387 }
2388 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2389
2390
2391 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2392 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2393                                 const struct regulator_config *config)
2394 {
2395         struct regulator_enable_gpio *pin, *new_pin;
2396         struct gpio_desc *gpiod;
2397
2398         gpiod = config->ena_gpiod;
2399         new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2400
2401         mutex_lock(&regulator_list_mutex);
2402
2403         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2404                 if (pin->gpiod == gpiod) {
2405                         rdev_dbg(rdev, "GPIO is already used\n");
2406                         goto update_ena_gpio_to_rdev;
2407                 }
2408         }
2409
2410         if (new_pin == NULL) {
2411                 mutex_unlock(&regulator_list_mutex);
2412                 return -ENOMEM;
2413         }
2414
2415         pin = new_pin;
2416         new_pin = NULL;
2417
2418         pin->gpiod = gpiod;
2419         list_add(&pin->list, &regulator_ena_gpio_list);
2420
2421 update_ena_gpio_to_rdev:
2422         pin->request_count++;
2423         rdev->ena_pin = pin;
2424
2425         mutex_unlock(&regulator_list_mutex);
2426         kfree(new_pin);
2427
2428         return 0;
2429 }
2430
2431 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2432 {
2433         struct regulator_enable_gpio *pin, *n;
2434
2435         if (!rdev->ena_pin)
2436                 return;
2437
2438         /* Free the GPIO only in case of no use */
2439         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2440                 if (pin != rdev->ena_pin)
2441                         continue;
2442
2443                 if (--pin->request_count)
2444                         break;
2445
2446                 gpiod_put(pin->gpiod);
2447                 list_del(&pin->list);
2448                 kfree(pin);
2449                 break;
2450         }
2451
2452         rdev->ena_pin = NULL;
2453 }
2454
2455 /**
2456  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2457  * @rdev: regulator_dev structure
2458  * @enable: enable GPIO at initial use?
2459  *
2460  * GPIO is enabled in case of initial use. (enable_count is 0)
2461  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2462  */
2463 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2464 {
2465         struct regulator_enable_gpio *pin = rdev->ena_pin;
2466
2467         if (!pin)
2468                 return -EINVAL;
2469
2470         if (enable) {
2471                 /* Enable GPIO at initial use */
2472                 if (pin->enable_count == 0)
2473                         gpiod_set_value_cansleep(pin->gpiod, 1);
2474
2475                 pin->enable_count++;
2476         } else {
2477                 if (pin->enable_count > 1) {
2478                         pin->enable_count--;
2479                         return 0;
2480                 }
2481
2482                 /* Disable GPIO if not used */
2483                 if (pin->enable_count <= 1) {
2484                         gpiod_set_value_cansleep(pin->gpiod, 0);
2485                         pin->enable_count = 0;
2486                 }
2487         }
2488
2489         return 0;
2490 }
2491
2492 /**
2493  * _regulator_enable_delay - a delay helper function
2494  * @delay: time to delay in microseconds
2495  *
2496  * Delay for the requested amount of time as per the guidelines in:
2497  *
2498  *     Documentation/timers/timers-howto.rst
2499  *
2500  * The assumption here is that regulators will never be enabled in
2501  * atomic context and therefore sleeping functions can be used.
2502  */
2503 static void _regulator_enable_delay(unsigned int delay)
2504 {
2505         unsigned int ms = delay / 1000;
2506         unsigned int us = delay % 1000;
2507
2508         if (ms > 0) {
2509                 /*
2510                  * For small enough values, handle super-millisecond
2511                  * delays in the usleep_range() call below.
2512                  */
2513                 if (ms < 20)
2514                         us += ms * 1000;
2515                 else
2516                         msleep(ms);
2517         }
2518
2519         /*
2520          * Give the scheduler some room to coalesce with any other
2521          * wakeup sources. For delays shorter than 10 us, don't even
2522          * bother setting up high-resolution timers and just busy-
2523          * loop.
2524          */
2525         if (us >= 10)
2526                 usleep_range(us, us + 100);
2527         else
2528                 udelay(us);
2529 }
2530
2531 /**
2532  * _regulator_check_status_enabled
2533  *
2534  * A helper function to check if the regulator status can be interpreted
2535  * as 'regulator is enabled'.
2536  * @rdev: the regulator device to check
2537  *
2538  * Return:
2539  * * 1                  - if status shows regulator is in enabled state
2540  * * 0                  - if not enabled state
2541  * * Error Value        - as received from ops->get_status()
2542  */
2543 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2544 {
2545         int ret = rdev->desc->ops->get_status(rdev);
2546
2547         if (ret < 0) {
2548                 rdev_info(rdev, "get_status returned error: %d\n", ret);
2549                 return ret;
2550         }
2551
2552         switch (ret) {
2553         case REGULATOR_STATUS_OFF:
2554         case REGULATOR_STATUS_ERROR:
2555         case REGULATOR_STATUS_UNDEFINED:
2556                 return 0;
2557         default:
2558                 return 1;
2559         }
2560 }
2561
2562 static int _regulator_do_enable(struct regulator_dev *rdev)
2563 {
2564         int ret, delay;
2565
2566         /* Query before enabling in case configuration dependent.  */
2567         ret = _regulator_get_enable_time(rdev);
2568         if (ret >= 0) {
2569                 delay = ret;
2570         } else {
2571                 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2572                 delay = 0;
2573         }
2574
2575         trace_regulator_enable(rdev_get_name(rdev));
2576
2577         if (rdev->desc->off_on_delay) {
2578                 /* if needed, keep a distance of off_on_delay from last time
2579                  * this regulator was disabled.
2580                  */
2581                 unsigned long start_jiffy = jiffies;
2582                 unsigned long intended, max_delay, remaining;
2583
2584                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2585                 intended = rdev->last_off_jiffy + max_delay;
2586
2587                 if (time_before(start_jiffy, intended)) {
2588                         /* calc remaining jiffies to deal with one-time
2589                          * timer wrapping.
2590                          * in case of multiple timer wrapping, either it can be
2591                          * detected by out-of-range remaining, or it cannot be
2592                          * detected and we get a penalty of
2593                          * _regulator_enable_delay().
2594                          */
2595                         remaining = intended - start_jiffy;
2596                         if (remaining <= max_delay)
2597                                 _regulator_enable_delay(
2598                                                 jiffies_to_usecs(remaining));
2599                 }
2600         }
2601
2602         if (rdev->ena_pin) {
2603                 if (!rdev->ena_gpio_state) {
2604                         ret = regulator_ena_gpio_ctrl(rdev, true);
2605                         if (ret < 0)
2606                                 return ret;
2607                         rdev->ena_gpio_state = 1;
2608                 }
2609         } else if (rdev->desc->ops->enable) {
2610                 ret = rdev->desc->ops->enable(rdev);
2611                 if (ret < 0)
2612                         return ret;
2613         } else {
2614                 return -EINVAL;
2615         }
2616
2617         /* Allow the regulator to ramp; it would be useful to extend
2618          * this for bulk operations so that the regulators can ramp
2619          * together.  */
2620         trace_regulator_enable_delay(rdev_get_name(rdev));
2621
2622         /* If poll_enabled_time is set, poll upto the delay calculated
2623          * above, delaying poll_enabled_time uS to check if the regulator
2624          * actually got enabled.
2625          * If the regulator isn't enabled after enable_delay has
2626          * expired, return -ETIMEDOUT.
2627          */
2628         if (rdev->desc->poll_enabled_time) {
2629                 int time_remaining = delay;
2630
2631                 while (time_remaining > 0) {
2632                         _regulator_enable_delay(rdev->desc->poll_enabled_time);
2633
2634                         if (rdev->desc->ops->get_status) {
2635                                 ret = _regulator_check_status_enabled(rdev);
2636                                 if (ret < 0)
2637                                         return ret;
2638                                 else if (ret)
2639                                         break;
2640                         } else if (rdev->desc->ops->is_enabled(rdev))
2641                                 break;
2642
2643                         time_remaining -= rdev->desc->poll_enabled_time;
2644                 }
2645
2646                 if (time_remaining <= 0) {
2647                         rdev_err(rdev, "Enabled check timed out\n");
2648                         return -ETIMEDOUT;
2649                 }
2650         } else {
2651                 _regulator_enable_delay(delay);
2652         }
2653
2654         trace_regulator_enable_complete(rdev_get_name(rdev));
2655
2656         return 0;
2657 }
2658
2659 /**
2660  * _regulator_handle_consumer_enable - handle that a consumer enabled
2661  * @regulator: regulator source
2662  *
2663  * Some things on a regulator consumer (like the contribution towards total
2664  * load on the regulator) only have an effect when the consumer wants the
2665  * regulator enabled.  Explained in example with two consumers of the same
2666  * regulator:
2667  *   consumer A: set_load(100);       => total load = 0
2668  *   consumer A: regulator_enable();  => total load = 100
2669  *   consumer B: set_load(1000);      => total load = 100
2670  *   consumer B: regulator_enable();  => total load = 1100
2671  *   consumer A: regulator_disable(); => total_load = 1000
2672  *
2673  * This function (together with _regulator_handle_consumer_disable) is
2674  * responsible for keeping track of the refcount for a given regulator consumer
2675  * and applying / unapplying these things.
2676  *
2677  * Returns 0 upon no error; -error upon error.
2678  */
2679 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2680 {
2681         int ret;
2682         struct regulator_dev *rdev = regulator->rdev;
2683
2684         lockdep_assert_held_once(&rdev->mutex.base);
2685
2686         regulator->enable_count++;
2687         if (regulator->uA_load && regulator->enable_count == 1) {
2688                 ret = drms_uA_update(rdev);
2689                 if (ret)
2690                         regulator->enable_count--;
2691                 return ret;
2692         }
2693
2694         return 0;
2695 }
2696
2697 /**
2698  * _regulator_handle_consumer_disable - handle that a consumer disabled
2699  * @regulator: regulator source
2700  *
2701  * The opposite of _regulator_handle_consumer_enable().
2702  *
2703  * Returns 0 upon no error; -error upon error.
2704  */
2705 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2706 {
2707         struct regulator_dev *rdev = regulator->rdev;
2708
2709         lockdep_assert_held_once(&rdev->mutex.base);
2710
2711         if (!regulator->enable_count) {
2712                 rdev_err(rdev, "Underflow of regulator enable count\n");
2713                 return -EINVAL;
2714         }
2715
2716         regulator->enable_count--;
2717         if (regulator->uA_load && regulator->enable_count == 0)
2718                 return drms_uA_update(rdev);
2719
2720         return 0;
2721 }
2722
2723 /* locks held by regulator_enable() */
2724 static int _regulator_enable(struct regulator *regulator)
2725 {
2726         struct regulator_dev *rdev = regulator->rdev;
2727         int ret;
2728
2729         lockdep_assert_held_once(&rdev->mutex.base);
2730
2731         if (rdev->use_count == 0 && rdev->supply) {
2732                 ret = _regulator_enable(rdev->supply);
2733                 if (ret < 0)
2734                         return ret;
2735         }
2736
2737         /* balance only if there are regulators coupled */
2738         if (rdev->coupling_desc.n_coupled > 1) {
2739                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2740                 if (ret < 0)
2741                         goto err_disable_supply;
2742         }
2743
2744         ret = _regulator_handle_consumer_enable(regulator);
2745         if (ret < 0)
2746                 goto err_disable_supply;
2747
2748         if (rdev->use_count == 0) {
2749                 /* The regulator may on if it's not switchable or left on */
2750                 ret = _regulator_is_enabled(rdev);
2751                 if (ret == -EINVAL || ret == 0) {
2752                         if (!regulator_ops_is_valid(rdev,
2753                                         REGULATOR_CHANGE_STATUS)) {
2754                                 ret = -EPERM;
2755                                 goto err_consumer_disable;
2756                         }
2757
2758                         ret = _regulator_do_enable(rdev);
2759                         if (ret < 0)
2760                                 goto err_consumer_disable;
2761
2762                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2763                                              NULL);
2764                 } else if (ret < 0) {
2765                         rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2766                         goto err_consumer_disable;
2767                 }
2768                 /* Fallthrough on positive return values - already enabled */
2769         }
2770
2771         if (regulator->enable_count == 1)
2772                 rdev->use_count++;
2773
2774         return 0;
2775
2776 err_consumer_disable:
2777         _regulator_handle_consumer_disable(regulator);
2778
2779 err_disable_supply:
2780         if (rdev->use_count == 0 && rdev->supply)
2781                 _regulator_disable(rdev->supply);
2782
2783         return ret;
2784 }
2785
2786 /**
2787  * regulator_enable - enable regulator output
2788  * @regulator: regulator source
2789  *
2790  * Request that the regulator be enabled with the regulator output at
2791  * the predefined voltage or current value.  Calls to regulator_enable()
2792  * must be balanced with calls to regulator_disable().
2793  *
2794  * NOTE: the output value can be set by other drivers, boot loader or may be
2795  * hardwired in the regulator.
2796  */
2797 int regulator_enable(struct regulator *regulator)
2798 {
2799         struct regulator_dev *rdev = regulator->rdev;
2800         struct ww_acquire_ctx ww_ctx;
2801         int ret;
2802
2803         regulator_lock_dependent(rdev, &ww_ctx);
2804         ret = _regulator_enable(regulator);
2805         regulator_unlock_dependent(rdev, &ww_ctx);
2806
2807         return ret;
2808 }
2809 EXPORT_SYMBOL_GPL(regulator_enable);
2810
2811 static int _regulator_do_disable(struct regulator_dev *rdev)
2812 {
2813         int ret;
2814
2815         trace_regulator_disable(rdev_get_name(rdev));
2816
2817         if (rdev->ena_pin) {
2818                 if (rdev->ena_gpio_state) {
2819                         ret = regulator_ena_gpio_ctrl(rdev, false);
2820                         if (ret < 0)
2821                                 return ret;
2822                         rdev->ena_gpio_state = 0;
2823                 }
2824
2825         } else if (rdev->desc->ops->disable) {
2826                 ret = rdev->desc->ops->disable(rdev);
2827                 if (ret != 0)
2828                         return ret;
2829         }
2830
2831         /* cares about last_off_jiffy only if off_on_delay is required by
2832          * device.
2833          */
2834         if (rdev->desc->off_on_delay)
2835                 rdev->last_off_jiffy = jiffies;
2836
2837         trace_regulator_disable_complete(rdev_get_name(rdev));
2838
2839         return 0;
2840 }
2841
2842 /* locks held by regulator_disable() */
2843 static int _regulator_disable(struct regulator *regulator)
2844 {
2845         struct regulator_dev *rdev = regulator->rdev;
2846         int ret = 0;
2847
2848         lockdep_assert_held_once(&rdev->mutex.base);
2849
2850         if (WARN(regulator->enable_count == 0,
2851                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2852                 return -EIO;
2853
2854         if (regulator->enable_count == 1) {
2855         /* disabling last enable_count from this regulator */
2856                 /* are we the last user and permitted to disable ? */
2857                 if (rdev->use_count == 1 &&
2858                     (rdev->constraints && !rdev->constraints->always_on)) {
2859
2860                         /* we are last user */
2861                         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2862                                 ret = _notifier_call_chain(rdev,
2863                                                            REGULATOR_EVENT_PRE_DISABLE,
2864                                                            NULL);
2865                                 if (ret & NOTIFY_STOP_MASK)
2866                                         return -EINVAL;
2867
2868                                 ret = _regulator_do_disable(rdev);
2869                                 if (ret < 0) {
2870                                         rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2871                                         _notifier_call_chain(rdev,
2872                                                         REGULATOR_EVENT_ABORT_DISABLE,
2873                                                         NULL);
2874                                         return ret;
2875                                 }
2876                                 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2877                                                 NULL);
2878                         }
2879
2880                         rdev->use_count = 0;
2881                 } else if (rdev->use_count > 1) {
2882                         rdev->use_count--;
2883                 }
2884         }
2885
2886         if (ret == 0)
2887                 ret = _regulator_handle_consumer_disable(regulator);
2888
2889         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2890                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2891
2892         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2893                 ret = _regulator_disable(rdev->supply);
2894
2895         return ret;
2896 }
2897
2898 /**
2899  * regulator_disable - disable regulator output
2900  * @regulator: regulator source
2901  *
2902  * Disable the regulator output voltage or current.  Calls to
2903  * regulator_enable() must be balanced with calls to
2904  * regulator_disable().
2905  *
2906  * NOTE: this will only disable the regulator output if no other consumer
2907  * devices have it enabled, the regulator device supports disabling and
2908  * machine constraints permit this operation.
2909  */
2910 int regulator_disable(struct regulator *regulator)
2911 {
2912         struct regulator_dev *rdev = regulator->rdev;
2913         struct ww_acquire_ctx ww_ctx;
2914         int ret;
2915
2916         regulator_lock_dependent(rdev, &ww_ctx);
2917         ret = _regulator_disable(regulator);
2918         regulator_unlock_dependent(rdev, &ww_ctx);
2919
2920         return ret;
2921 }
2922 EXPORT_SYMBOL_GPL(regulator_disable);
2923
2924 /* locks held by regulator_force_disable() */
2925 static int _regulator_force_disable(struct regulator_dev *rdev)
2926 {
2927         int ret = 0;
2928
2929         lockdep_assert_held_once(&rdev->mutex.base);
2930
2931         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2932                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2933         if (ret & NOTIFY_STOP_MASK)
2934                 return -EINVAL;
2935
2936         ret = _regulator_do_disable(rdev);
2937         if (ret < 0) {
2938                 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2939                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2940                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2941                 return ret;
2942         }
2943
2944         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2945                         REGULATOR_EVENT_DISABLE, NULL);
2946
2947         return 0;
2948 }
2949
2950 /**
2951  * regulator_force_disable - force disable regulator output
2952  * @regulator: regulator source
2953  *
2954  * Forcibly disable the regulator output voltage or current.
2955  * NOTE: this *will* disable the regulator output even if other consumer
2956  * devices have it enabled. This should be used for situations when device
2957  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2958  */
2959 int regulator_force_disable(struct regulator *regulator)
2960 {
2961         struct regulator_dev *rdev = regulator->rdev;
2962         struct ww_acquire_ctx ww_ctx;
2963         int ret;
2964
2965         regulator_lock_dependent(rdev, &ww_ctx);
2966
2967         ret = _regulator_force_disable(regulator->rdev);
2968
2969         if (rdev->coupling_desc.n_coupled > 1)
2970                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2971
2972         if (regulator->uA_load) {
2973                 regulator->uA_load = 0;
2974                 ret = drms_uA_update(rdev);
2975         }
2976
2977         if (rdev->use_count != 0 && rdev->supply)
2978                 _regulator_disable(rdev->supply);
2979
2980         regulator_unlock_dependent(rdev, &ww_ctx);
2981
2982         return ret;
2983 }
2984 EXPORT_SYMBOL_GPL(regulator_force_disable);
2985
2986 static void regulator_disable_work(struct work_struct *work)
2987 {
2988         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2989                                                   disable_work.work);
2990         struct ww_acquire_ctx ww_ctx;
2991         int count, i, ret;
2992         struct regulator *regulator;
2993         int total_count = 0;
2994
2995         regulator_lock_dependent(rdev, &ww_ctx);
2996
2997         /*
2998          * Workqueue functions queue the new work instance while the previous
2999          * work instance is being processed. Cancel the queued work instance
3000          * as the work instance under processing does the job of the queued
3001          * work instance.
3002          */
3003         cancel_delayed_work(&rdev->disable_work);
3004
3005         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3006                 count = regulator->deferred_disables;
3007
3008                 if (!count)
3009                         continue;
3010
3011                 total_count += count;
3012                 regulator->deferred_disables = 0;
3013
3014                 for (i = 0; i < count; i++) {
3015                         ret = _regulator_disable(regulator);
3016                         if (ret != 0)
3017                                 rdev_err(rdev, "Deferred disable failed: %pe\n",
3018                                          ERR_PTR(ret));
3019                 }
3020         }
3021         WARN_ON(!total_count);
3022
3023         if (rdev->coupling_desc.n_coupled > 1)
3024                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3025
3026         regulator_unlock_dependent(rdev, &ww_ctx);
3027 }
3028
3029 /**
3030  * regulator_disable_deferred - disable regulator output with delay
3031  * @regulator: regulator source
3032  * @ms: milliseconds until the regulator is disabled
3033  *
3034  * Execute regulator_disable() on the regulator after a delay.  This
3035  * is intended for use with devices that require some time to quiesce.
3036  *
3037  * NOTE: this will only disable the regulator output if no other consumer
3038  * devices have it enabled, the regulator device supports disabling and
3039  * machine constraints permit this operation.
3040  */
3041 int regulator_disable_deferred(struct regulator *regulator, int ms)
3042 {
3043         struct regulator_dev *rdev = regulator->rdev;
3044
3045         if (!ms)
3046                 return regulator_disable(regulator);
3047
3048         regulator_lock(rdev);
3049         regulator->deferred_disables++;
3050         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3051                          msecs_to_jiffies(ms));
3052         regulator_unlock(rdev);
3053
3054         return 0;
3055 }
3056 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3057
3058 static int _regulator_is_enabled(struct regulator_dev *rdev)
3059 {
3060         /* A GPIO control always takes precedence */
3061         if (rdev->ena_pin)
3062                 return rdev->ena_gpio_state;
3063
3064         /* If we don't know then assume that the regulator is always on */
3065         if (!rdev->desc->ops->is_enabled)
3066                 return 1;
3067
3068         return rdev->desc->ops->is_enabled(rdev);
3069 }
3070
3071 static int _regulator_list_voltage(struct regulator_dev *rdev,
3072                                    unsigned selector, int lock)
3073 {
3074         const struct regulator_ops *ops = rdev->desc->ops;
3075         int ret;
3076
3077         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3078                 return rdev->desc->fixed_uV;
3079
3080         if (ops->list_voltage) {
3081                 if (selector >= rdev->desc->n_voltages)
3082                         return -EINVAL;
3083                 if (lock)
3084                         regulator_lock(rdev);
3085                 ret = ops->list_voltage(rdev, selector);
3086                 if (lock)
3087                         regulator_unlock(rdev);
3088         } else if (rdev->is_switch && rdev->supply) {
3089                 ret = _regulator_list_voltage(rdev->supply->rdev,
3090                                               selector, lock);
3091         } else {
3092                 return -EINVAL;
3093         }
3094
3095         if (ret > 0) {
3096                 if (ret < rdev->constraints->min_uV)
3097                         ret = 0;
3098                 else if (ret > rdev->constraints->max_uV)
3099                         ret = 0;
3100         }
3101
3102         return ret;
3103 }
3104
3105 /**
3106  * regulator_is_enabled - is the regulator output enabled
3107  * @regulator: regulator source
3108  *
3109  * Returns positive if the regulator driver backing the source/client
3110  * has requested that the device be enabled, zero if it hasn't, else a
3111  * negative errno code.
3112  *
3113  * Note that the device backing this regulator handle can have multiple
3114  * users, so it might be enabled even if regulator_enable() was never
3115  * called for this particular source.
3116  */
3117 int regulator_is_enabled(struct regulator *regulator)
3118 {
3119         int ret;
3120
3121         if (regulator->always_on)
3122                 return 1;
3123
3124         regulator_lock(regulator->rdev);
3125         ret = _regulator_is_enabled(regulator->rdev);
3126         regulator_unlock(regulator->rdev);
3127
3128         return ret;
3129 }
3130 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3131
3132 /**
3133  * regulator_count_voltages - count regulator_list_voltage() selectors
3134  * @regulator: regulator source
3135  *
3136  * Returns number of selectors, or negative errno.  Selectors are
3137  * numbered starting at zero, and typically correspond to bitfields
3138  * in hardware registers.
3139  */
3140 int regulator_count_voltages(struct regulator *regulator)
3141 {
3142         struct regulator_dev    *rdev = regulator->rdev;
3143
3144         if (rdev->desc->n_voltages)
3145                 return rdev->desc->n_voltages;
3146
3147         if (!rdev->is_switch || !rdev->supply)
3148                 return -EINVAL;
3149
3150         return regulator_count_voltages(rdev->supply);
3151 }
3152 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3153
3154 /**
3155  * regulator_list_voltage - enumerate supported voltages
3156  * @regulator: regulator source
3157  * @selector: identify voltage to list
3158  * Context: can sleep
3159  *
3160  * Returns a voltage that can be passed to @regulator_set_voltage(),
3161  * zero if this selector code can't be used on this system, or a
3162  * negative errno.
3163  */
3164 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3165 {
3166         return _regulator_list_voltage(regulator->rdev, selector, 1);
3167 }
3168 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3169
3170 /**
3171  * regulator_get_regmap - get the regulator's register map
3172  * @regulator: regulator source
3173  *
3174  * Returns the register map for the given regulator, or an ERR_PTR value
3175  * if the regulator doesn't use regmap.
3176  */
3177 struct regmap *regulator_get_regmap(struct regulator *regulator)
3178 {
3179         struct regmap *map = regulator->rdev->regmap;
3180
3181         return map ? map : ERR_PTR(-EOPNOTSUPP);
3182 }
3183
3184 /**
3185  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3186  * @regulator: regulator source
3187  * @vsel_reg: voltage selector register, output parameter
3188  * @vsel_mask: mask for voltage selector bitfield, output parameter
3189  *
3190  * Returns the hardware register offset and bitmask used for setting the
3191  * regulator voltage. This might be useful when configuring voltage-scaling
3192  * hardware or firmware that can make I2C requests behind the kernel's back,
3193  * for example.
3194  *
3195  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3196  * and 0 is returned, otherwise a negative errno is returned.
3197  */
3198 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3199                                          unsigned *vsel_reg,
3200                                          unsigned *vsel_mask)
3201 {
3202         struct regulator_dev *rdev = regulator->rdev;
3203         const struct regulator_ops *ops = rdev->desc->ops;
3204
3205         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3206                 return -EOPNOTSUPP;
3207
3208         *vsel_reg = rdev->desc->vsel_reg;
3209         *vsel_mask = rdev->desc->vsel_mask;
3210
3211         return 0;
3212 }
3213 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3214
3215 /**
3216  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3217  * @regulator: regulator source
3218  * @selector: identify voltage to list
3219  *
3220  * Converts the selector to a hardware-specific voltage selector that can be
3221  * directly written to the regulator registers. The address of the voltage
3222  * register can be determined by calling @regulator_get_hardware_vsel_register.
3223  *
3224  * On error a negative errno is returned.
3225  */
3226 int regulator_list_hardware_vsel(struct regulator *regulator,
3227                                  unsigned selector)
3228 {
3229         struct regulator_dev *rdev = regulator->rdev;
3230         const struct regulator_ops *ops = rdev->desc->ops;
3231
3232         if (selector >= rdev->desc->n_voltages)
3233                 return -EINVAL;
3234         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3235                 return -EOPNOTSUPP;
3236
3237         return selector;
3238 }
3239 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3240
3241 /**
3242  * regulator_get_linear_step - return the voltage step size between VSEL values
3243  * @regulator: regulator source
3244  *
3245  * Returns the voltage step size between VSEL values for linear
3246  * regulators, or return 0 if the regulator isn't a linear regulator.
3247  */
3248 unsigned int regulator_get_linear_step(struct regulator *regulator)
3249 {
3250         struct regulator_dev *rdev = regulator->rdev;
3251
3252         return rdev->desc->uV_step;
3253 }
3254 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3255
3256 /**
3257  * regulator_is_supported_voltage - check if a voltage range can be supported
3258  *
3259  * @regulator: Regulator to check.
3260  * @min_uV: Minimum required voltage in uV.
3261  * @max_uV: Maximum required voltage in uV.
3262  *
3263  * Returns a boolean.
3264  */
3265 int regulator_is_supported_voltage(struct regulator *regulator,
3266                                    int min_uV, int max_uV)
3267 {
3268         struct regulator_dev *rdev = regulator->rdev;
3269         int i, voltages, ret;
3270
3271         /* If we can't change voltage check the current voltage */
3272         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3273                 ret = regulator_get_voltage(regulator);
3274                 if (ret >= 0)
3275                         return min_uV <= ret && ret <= max_uV;
3276                 else
3277                         return ret;
3278         }
3279
3280         /* Any voltage within constrains range is fine? */
3281         if (rdev->desc->continuous_voltage_range)
3282                 return min_uV >= rdev->constraints->min_uV &&
3283                                 max_uV <= rdev->constraints->max_uV;
3284
3285         ret = regulator_count_voltages(regulator);
3286         if (ret < 0)
3287                 return 0;
3288         voltages = ret;
3289
3290         for (i = 0; i < voltages; i++) {
3291                 ret = regulator_list_voltage(regulator, i);
3292
3293                 if (ret >= min_uV && ret <= max_uV)
3294                         return 1;
3295         }
3296
3297         return 0;
3298 }
3299 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3300
3301 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3302                                  int max_uV)
3303 {
3304         const struct regulator_desc *desc = rdev->desc;
3305
3306         if (desc->ops->map_voltage)
3307                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3308
3309         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3310                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3311
3312         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3313                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3314
3315         if (desc->ops->list_voltage ==
3316                 regulator_list_voltage_pickable_linear_range)
3317                 return regulator_map_voltage_pickable_linear_range(rdev,
3318                                                         min_uV, max_uV);
3319
3320         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3321 }
3322
3323 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3324                                        int min_uV, int max_uV,
3325                                        unsigned *selector)
3326 {
3327         struct pre_voltage_change_data data;
3328         int ret;
3329
3330         data.old_uV = regulator_get_voltage_rdev(rdev);
3331         data.min_uV = min_uV;
3332         data.max_uV = max_uV;
3333         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3334                                    &data);
3335         if (ret & NOTIFY_STOP_MASK)
3336                 return -EINVAL;
3337
3338         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3339         if (ret >= 0)
3340                 return ret;
3341
3342         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3343                              (void *)data.old_uV);
3344
3345         return ret;
3346 }
3347
3348 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3349                                            int uV, unsigned selector)
3350 {
3351         struct pre_voltage_change_data data;
3352         int ret;
3353
3354         data.old_uV = regulator_get_voltage_rdev(rdev);
3355         data.min_uV = uV;
3356         data.max_uV = uV;
3357         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3358                                    &data);
3359         if (ret & NOTIFY_STOP_MASK)
3360                 return -EINVAL;
3361
3362         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3363         if (ret >= 0)
3364                 return ret;
3365
3366         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3367                              (void *)data.old_uV);
3368
3369         return ret;
3370 }
3371
3372 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3373                                            int uV, int new_selector)
3374 {
3375         const struct regulator_ops *ops = rdev->desc->ops;
3376         int diff, old_sel, curr_sel, ret;
3377
3378         /* Stepping is only needed if the regulator is enabled. */
3379         if (!_regulator_is_enabled(rdev))
3380                 goto final_set;
3381
3382         if (!ops->get_voltage_sel)
3383                 return -EINVAL;
3384
3385         old_sel = ops->get_voltage_sel(rdev);
3386         if (old_sel < 0)
3387                 return old_sel;
3388
3389         diff = new_selector - old_sel;
3390         if (diff == 0)
3391                 return 0; /* No change needed. */
3392
3393         if (diff > 0) {
3394                 /* Stepping up. */
3395                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3396                      curr_sel < new_selector;
3397                      curr_sel += rdev->desc->vsel_step) {
3398                         /*
3399                          * Call the callback directly instead of using
3400                          * _regulator_call_set_voltage_sel() as we don't
3401                          * want to notify anyone yet. Same in the branch
3402                          * below.
3403                          */
3404                         ret = ops->set_voltage_sel(rdev, curr_sel);
3405                         if (ret)
3406                                 goto try_revert;
3407                 }
3408         } else {
3409                 /* Stepping down. */
3410                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3411                      curr_sel > new_selector;
3412                      curr_sel -= rdev->desc->vsel_step) {
3413                         ret = ops->set_voltage_sel(rdev, curr_sel);
3414                         if (ret)
3415                                 goto try_revert;
3416                 }
3417         }
3418
3419 final_set:
3420         /* The final selector will trigger the notifiers. */
3421         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3422
3423 try_revert:
3424         /*
3425          * At least try to return to the previous voltage if setting a new
3426          * one failed.
3427          */
3428         (void)ops->set_voltage_sel(rdev, old_sel);
3429         return ret;
3430 }
3431
3432 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3433                                        int old_uV, int new_uV)
3434 {
3435         unsigned int ramp_delay = 0;
3436
3437         if (rdev->constraints->ramp_delay)
3438                 ramp_delay = rdev->constraints->ramp_delay;
3439         else if (rdev->desc->ramp_delay)
3440                 ramp_delay = rdev->desc->ramp_delay;
3441         else if (rdev->constraints->settling_time)
3442                 return rdev->constraints->settling_time;
3443         else if (rdev->constraints->settling_time_up &&
3444                  (new_uV > old_uV))
3445                 return rdev->constraints->settling_time_up;
3446         else if (rdev->constraints->settling_time_down &&
3447                  (new_uV < old_uV))
3448                 return rdev->constraints->settling_time_down;
3449
3450         if (ramp_delay == 0) {
3451                 rdev_dbg(rdev, "ramp_delay not set\n");
3452                 return 0;
3453         }
3454
3455         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3456 }
3457
3458 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3459                                      int min_uV, int max_uV)
3460 {
3461         int ret;
3462         int delay = 0;
3463         int best_val = 0;
3464         unsigned int selector;
3465         int old_selector = -1;
3466         const struct regulator_ops *ops = rdev->desc->ops;
3467         int old_uV = regulator_get_voltage_rdev(rdev);
3468
3469         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3470
3471         min_uV += rdev->constraints->uV_offset;
3472         max_uV += rdev->constraints->uV_offset;
3473
3474         /*
3475          * If we can't obtain the old selector there is not enough
3476          * info to call set_voltage_time_sel().
3477          */
3478         if (_regulator_is_enabled(rdev) &&
3479             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3480                 old_selector = ops->get_voltage_sel(rdev);
3481                 if (old_selector < 0)
3482                         return old_selector;
3483         }
3484
3485         if (ops->set_voltage) {
3486                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3487                                                   &selector);
3488
3489                 if (ret >= 0) {
3490                         if (ops->list_voltage)
3491                                 best_val = ops->list_voltage(rdev,
3492                                                              selector);
3493                         else
3494                                 best_val = regulator_get_voltage_rdev(rdev);
3495                 }
3496
3497         } else if (ops->set_voltage_sel) {
3498                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3499                 if (ret >= 0) {
3500                         best_val = ops->list_voltage(rdev, ret);
3501                         if (min_uV <= best_val && max_uV >= best_val) {
3502                                 selector = ret;
3503                                 if (old_selector == selector)
3504                                         ret = 0;
3505                                 else if (rdev->desc->vsel_step)
3506                                         ret = _regulator_set_voltage_sel_step(
3507                                                 rdev, best_val, selector);
3508                                 else
3509                                         ret = _regulator_call_set_voltage_sel(
3510                                                 rdev, best_val, selector);
3511                         } else {
3512                                 ret = -EINVAL;
3513                         }
3514                 }
3515         } else {
3516                 ret = -EINVAL;
3517         }
3518
3519         if (ret)
3520                 goto out;
3521
3522         if (ops->set_voltage_time_sel) {
3523                 /*
3524                  * Call set_voltage_time_sel if successfully obtained
3525                  * old_selector
3526                  */
3527                 if (old_selector >= 0 && old_selector != selector)
3528                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3529                                                           selector);
3530         } else {
3531                 if (old_uV != best_val) {
3532                         if (ops->set_voltage_time)
3533                                 delay = ops->set_voltage_time(rdev, old_uV,
3534                                                               best_val);
3535                         else
3536                                 delay = _regulator_set_voltage_time(rdev,
3537                                                                     old_uV,
3538                                                                     best_val);
3539                 }
3540         }
3541
3542         if (delay < 0) {
3543                 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3544                 delay = 0;
3545         }
3546
3547         /* Insert any necessary delays */
3548         if (delay >= 1000) {
3549                 mdelay(delay / 1000);
3550                 udelay(delay % 1000);
3551         } else if (delay) {
3552                 udelay(delay);
3553         }
3554
3555         if (best_val >= 0) {
3556                 unsigned long data = best_val;
3557
3558                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3559                                      (void *)data);
3560         }
3561
3562 out:
3563         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3564
3565         return ret;
3566 }
3567
3568 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3569                                   int min_uV, int max_uV, suspend_state_t state)
3570 {
3571         struct regulator_state *rstate;
3572         int uV, sel;
3573
3574         rstate = regulator_get_suspend_state(rdev, state);
3575         if (rstate == NULL)
3576                 return -EINVAL;
3577
3578         if (min_uV < rstate->min_uV)
3579                 min_uV = rstate->min_uV;
3580         if (max_uV > rstate->max_uV)
3581                 max_uV = rstate->max_uV;
3582
3583         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3584         if (sel < 0)
3585                 return sel;
3586
3587         uV = rdev->desc->ops->list_voltage(rdev, sel);
3588         if (uV >= min_uV && uV <= max_uV)
3589                 rstate->uV = uV;
3590
3591         return 0;
3592 }
3593
3594 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3595                                           int min_uV, int max_uV,
3596                                           suspend_state_t state)
3597 {
3598         struct regulator_dev *rdev = regulator->rdev;
3599         struct regulator_voltage *voltage = &regulator->voltage[state];
3600         int ret = 0;
3601         int old_min_uV, old_max_uV;
3602         int current_uV;
3603
3604         /* If we're setting the same range as last time the change
3605          * should be a noop (some cpufreq implementations use the same
3606          * voltage for multiple frequencies, for example).
3607          */
3608         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3609                 goto out;
3610
3611         /* If we're trying to set a range that overlaps the current voltage,
3612          * return successfully even though the regulator does not support
3613          * changing the voltage.
3614          */
3615         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3616                 current_uV = regulator_get_voltage_rdev(rdev);
3617                 if (min_uV <= current_uV && current_uV <= max_uV) {
3618                         voltage->min_uV = min_uV;
3619                         voltage->max_uV = max_uV;
3620                         goto out;
3621                 }
3622         }
3623
3624         /* sanity check */
3625         if (!rdev->desc->ops->set_voltage &&
3626             !rdev->desc->ops->set_voltage_sel) {
3627                 ret = -EINVAL;
3628                 goto out;
3629         }
3630
3631         /* constraints check */
3632         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3633         if (ret < 0)
3634                 goto out;
3635
3636         /* restore original values in case of error */
3637         old_min_uV = voltage->min_uV;
3638         old_max_uV = voltage->max_uV;
3639         voltage->min_uV = min_uV;
3640         voltage->max_uV = max_uV;
3641
3642         /* for not coupled regulators this will just set the voltage */
3643         ret = regulator_balance_voltage(rdev, state);
3644         if (ret < 0) {
3645                 voltage->min_uV = old_min_uV;
3646                 voltage->max_uV = old_max_uV;
3647         }
3648
3649 out:
3650         return ret;
3651 }
3652
3653 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3654                                int max_uV, suspend_state_t state)
3655 {
3656         int best_supply_uV = 0;
3657         int supply_change_uV = 0;
3658         int ret;
3659
3660         if (rdev->supply &&
3661             regulator_ops_is_valid(rdev->supply->rdev,
3662                                    REGULATOR_CHANGE_VOLTAGE) &&
3663             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3664                                            rdev->desc->ops->get_voltage_sel))) {
3665                 int current_supply_uV;
3666                 int selector;
3667
3668                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3669                 if (selector < 0) {
3670                         ret = selector;
3671                         goto out;
3672                 }
3673
3674                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3675                 if (best_supply_uV < 0) {
3676                         ret = best_supply_uV;
3677                         goto out;
3678                 }
3679
3680                 best_supply_uV += rdev->desc->min_dropout_uV;
3681
3682                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3683                 if (current_supply_uV < 0) {
3684                         ret = current_supply_uV;
3685                         goto out;
3686                 }
3687
3688                 supply_change_uV = best_supply_uV - current_supply_uV;
3689         }
3690
3691         if (supply_change_uV > 0) {
3692                 ret = regulator_set_voltage_unlocked(rdev->supply,
3693                                 best_supply_uV, INT_MAX, state);
3694                 if (ret) {
3695                         dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3696                                 ERR_PTR(ret));
3697                         goto out;
3698                 }
3699         }
3700
3701         if (state == PM_SUSPEND_ON)
3702                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3703         else
3704                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3705                                                         max_uV, state);
3706         if (ret < 0)
3707                 goto out;
3708
3709         if (supply_change_uV < 0) {
3710                 ret = regulator_set_voltage_unlocked(rdev->supply,
3711                                 best_supply_uV, INT_MAX, state);
3712                 if (ret)
3713                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3714                                  ERR_PTR(ret));
3715                 /* No need to fail here */
3716                 ret = 0;
3717         }
3718
3719 out:
3720         return ret;
3721 }
3722 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3723
3724 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3725                                         int *current_uV, int *min_uV)
3726 {
3727         struct regulation_constraints *constraints = rdev->constraints;
3728
3729         /* Limit voltage change only if necessary */
3730         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3731                 return 1;
3732
3733         if (*current_uV < 0) {
3734                 *current_uV = regulator_get_voltage_rdev(rdev);
3735
3736                 if (*current_uV < 0)
3737                         return *current_uV;
3738         }
3739
3740         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3741                 return 1;
3742
3743         /* Clamp target voltage within the given step */
3744         if (*current_uV < *min_uV)
3745                 *min_uV = min(*current_uV + constraints->max_uV_step,
3746                               *min_uV);
3747         else
3748                 *min_uV = max(*current_uV - constraints->max_uV_step,
3749                               *min_uV);
3750
3751         return 0;
3752 }
3753
3754 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3755                                          int *current_uV,
3756                                          int *min_uV, int *max_uV,
3757                                          suspend_state_t state,
3758                                          int n_coupled)
3759 {
3760         struct coupling_desc *c_desc = &rdev->coupling_desc;
3761         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3762         struct regulation_constraints *constraints = rdev->constraints;
3763         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3764         int max_current_uV = 0, min_current_uV = INT_MAX;
3765         int highest_min_uV = 0, target_uV, possible_uV;
3766         int i, ret, max_spread;
3767         bool done;
3768
3769         *current_uV = -1;
3770
3771         /*
3772          * If there are no coupled regulators, simply set the voltage
3773          * demanded by consumers.
3774          */
3775         if (n_coupled == 1) {
3776                 /*
3777                  * If consumers don't provide any demands, set voltage
3778                  * to min_uV
3779                  */
3780                 desired_min_uV = constraints->min_uV;
3781                 desired_max_uV = constraints->max_uV;
3782
3783                 ret = regulator_check_consumers(rdev,
3784                                                 &desired_min_uV,
3785                                                 &desired_max_uV, state);
3786                 if (ret < 0)
3787                         return ret;
3788
3789                 possible_uV = desired_min_uV;
3790                 done = true;
3791
3792                 goto finish;
3793         }
3794
3795         /* Find highest min desired voltage */
3796         for (i = 0; i < n_coupled; i++) {
3797                 int tmp_min = 0;
3798                 int tmp_max = INT_MAX;
3799
3800                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3801
3802                 ret = regulator_check_consumers(c_rdevs[i],
3803                                                 &tmp_min,
3804                                                 &tmp_max, state);
3805                 if (ret < 0)
3806                         return ret;
3807
3808                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3809                 if (ret < 0)
3810                         return ret;
3811
3812                 highest_min_uV = max(highest_min_uV, tmp_min);
3813
3814                 if (i == 0) {
3815                         desired_min_uV = tmp_min;
3816                         desired_max_uV = tmp_max;
3817                 }
3818         }
3819
3820         max_spread = constraints->max_spread[0];
3821
3822         /*
3823          * Let target_uV be equal to the desired one if possible.
3824          * If not, set it to minimum voltage, allowed by other coupled
3825          * regulators.
3826          */
3827         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3828
3829         /*
3830          * Find min and max voltages, which currently aren't violating
3831          * max_spread.
3832          */
3833         for (i = 1; i < n_coupled; i++) {
3834                 int tmp_act;
3835
3836                 if (!_regulator_is_enabled(c_rdevs[i]))
3837                         continue;
3838
3839                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3840                 if (tmp_act < 0)
3841                         return tmp_act;
3842
3843                 min_current_uV = min(tmp_act, min_current_uV);
3844                 max_current_uV = max(tmp_act, max_current_uV);
3845         }
3846
3847         /* There aren't any other regulators enabled */
3848         if (max_current_uV == 0) {
3849                 possible_uV = target_uV;
3850         } else {
3851                 /*
3852                  * Correct target voltage, so as it currently isn't
3853                  * violating max_spread
3854                  */
3855                 possible_uV = max(target_uV, max_current_uV - max_spread);
3856                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3857         }
3858
3859         if (possible_uV > desired_max_uV)
3860                 return -EINVAL;
3861
3862         done = (possible_uV == target_uV);
3863         desired_min_uV = possible_uV;
3864
3865 finish:
3866         /* Apply max_uV_step constraint if necessary */
3867         if (state == PM_SUSPEND_ON) {
3868                 ret = regulator_limit_voltage_step(rdev, current_uV,
3869                                                    &desired_min_uV);
3870                 if (ret < 0)
3871                         return ret;
3872
3873                 if (ret == 0)
3874                         done = false;
3875         }
3876
3877         /* Set current_uV if wasn't done earlier in the code and if necessary */
3878         if (n_coupled > 1 && *current_uV == -1) {
3879
3880                 if (_regulator_is_enabled(rdev)) {
3881                         ret = regulator_get_voltage_rdev(rdev);
3882                         if (ret < 0)
3883                                 return ret;
3884
3885                         *current_uV = ret;
3886                 } else {
3887                         *current_uV = desired_min_uV;
3888                 }
3889         }
3890
3891         *min_uV = desired_min_uV;
3892         *max_uV = desired_max_uV;
3893
3894         return done;
3895 }
3896
3897 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3898                                  suspend_state_t state, bool skip_coupled)
3899 {
3900         struct regulator_dev **c_rdevs;
3901         struct regulator_dev *best_rdev;
3902         struct coupling_desc *c_desc = &rdev->coupling_desc;
3903         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3904         unsigned int delta, best_delta;
3905         unsigned long c_rdev_done = 0;
3906         bool best_c_rdev_done;
3907
3908         c_rdevs = c_desc->coupled_rdevs;
3909         n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3910
3911         /*
3912          * Find the best possible voltage change on each loop. Leave the loop
3913          * if there isn't any possible change.
3914          */
3915         do {
3916                 best_c_rdev_done = false;
3917                 best_delta = 0;
3918                 best_min_uV = 0;
3919                 best_max_uV = 0;
3920                 best_c_rdev = 0;
3921                 best_rdev = NULL;
3922
3923                 /*
3924                  * Find highest difference between optimal voltage
3925                  * and current voltage.
3926                  */
3927                 for (i = 0; i < n_coupled; i++) {
3928                         /*
3929                          * optimal_uV is the best voltage that can be set for
3930                          * i-th regulator at the moment without violating
3931                          * max_spread constraint in order to balance
3932                          * the coupled voltages.
3933                          */
3934                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3935
3936                         if (test_bit(i, &c_rdev_done))
3937                                 continue;
3938
3939                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3940                                                             &current_uV,
3941                                                             &optimal_uV,
3942                                                             &optimal_max_uV,
3943                                                             state, n_coupled);
3944                         if (ret < 0)
3945                                 goto out;
3946
3947                         delta = abs(optimal_uV - current_uV);
3948
3949                         if (delta && best_delta <= delta) {
3950                                 best_c_rdev_done = ret;
3951                                 best_delta = delta;
3952                                 best_rdev = c_rdevs[i];
3953                                 best_min_uV = optimal_uV;
3954                                 best_max_uV = optimal_max_uV;
3955                                 best_c_rdev = i;
3956                         }
3957                 }
3958
3959                 /* Nothing to change, return successfully */
3960                 if (!best_rdev) {
3961                         ret = 0;
3962                         goto out;
3963                 }
3964
3965                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3966                                                  best_max_uV, state);
3967
3968                 if (ret < 0)
3969                         goto out;
3970
3971                 if (best_c_rdev_done)
3972                         set_bit(best_c_rdev, &c_rdev_done);
3973
3974         } while (n_coupled > 1);
3975
3976 out:
3977         return ret;
3978 }
3979
3980 static int regulator_balance_voltage(struct regulator_dev *rdev,
3981                                      suspend_state_t state)
3982 {
3983         struct coupling_desc *c_desc = &rdev->coupling_desc;
3984         struct regulator_coupler *coupler = c_desc->coupler;
3985         bool skip_coupled = false;
3986
3987         /*
3988          * If system is in a state other than PM_SUSPEND_ON, don't check
3989          * other coupled regulators.
3990          */
3991         if (state != PM_SUSPEND_ON)
3992                 skip_coupled = true;
3993
3994         if (c_desc->n_resolved < c_desc->n_coupled) {
3995                 rdev_err(rdev, "Not all coupled regulators registered\n");
3996                 return -EPERM;
3997         }
3998
3999         /* Invoke custom balancer for customized couplers */
4000         if (coupler && coupler->balance_voltage)
4001                 return coupler->balance_voltage(coupler, rdev, state);
4002
4003         return regulator_do_balance_voltage(rdev, state, skip_coupled);
4004 }
4005
4006 /**
4007  * regulator_set_voltage - set regulator output voltage
4008  * @regulator: regulator source
4009  * @min_uV: Minimum required voltage in uV
4010  * @max_uV: Maximum acceptable voltage in uV
4011  *
4012  * Sets a voltage regulator to the desired output voltage. This can be set
4013  * during any regulator state. IOW, regulator can be disabled or enabled.
4014  *
4015  * If the regulator is enabled then the voltage will change to the new value
4016  * immediately otherwise if the regulator is disabled the regulator will
4017  * output at the new voltage when enabled.
4018  *
4019  * NOTE: If the regulator is shared between several devices then the lowest
4020  * request voltage that meets the system constraints will be used.
4021  * Regulator system constraints must be set for this regulator before
4022  * calling this function otherwise this call will fail.
4023  */
4024 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4025 {
4026         struct ww_acquire_ctx ww_ctx;
4027         int ret;
4028
4029         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4030
4031         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4032                                              PM_SUSPEND_ON);
4033
4034         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4035
4036         return ret;
4037 }
4038 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4039
4040 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4041                                            suspend_state_t state, bool en)
4042 {
4043         struct regulator_state *rstate;
4044
4045         rstate = regulator_get_suspend_state(rdev, state);
4046         if (rstate == NULL)
4047                 return -EINVAL;
4048
4049         if (!rstate->changeable)
4050                 return -EPERM;
4051
4052         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4053
4054         return 0;
4055 }
4056
4057 int regulator_suspend_enable(struct regulator_dev *rdev,
4058                                     suspend_state_t state)
4059 {
4060         return regulator_suspend_toggle(rdev, state, true);
4061 }
4062 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4063
4064 int regulator_suspend_disable(struct regulator_dev *rdev,
4065                                      suspend_state_t state)
4066 {
4067         struct regulator *regulator;
4068         struct regulator_voltage *voltage;
4069
4070         /*
4071          * if any consumer wants this regulator device keeping on in
4072          * suspend states, don't set it as disabled.
4073          */
4074         list_for_each_entry(regulator, &rdev->consumer_list, list) {
4075                 voltage = &regulator->voltage[state];
4076                 if (voltage->min_uV || voltage->max_uV)
4077                         return 0;
4078         }
4079
4080         return regulator_suspend_toggle(rdev, state, false);
4081 }
4082 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4083
4084 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4085                                           int min_uV, int max_uV,
4086                                           suspend_state_t state)
4087 {
4088         struct regulator_dev *rdev = regulator->rdev;
4089         struct regulator_state *rstate;
4090
4091         rstate = regulator_get_suspend_state(rdev, state);
4092         if (rstate == NULL)
4093                 return -EINVAL;
4094
4095         if (rstate->min_uV == rstate->max_uV) {
4096                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4097                 return -EPERM;
4098         }
4099
4100         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4101 }
4102
4103 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4104                                   int max_uV, suspend_state_t state)
4105 {
4106         struct ww_acquire_ctx ww_ctx;
4107         int ret;
4108
4109         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4110         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4111                 return -EINVAL;
4112
4113         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4114
4115         ret = _regulator_set_suspend_voltage(regulator, min_uV,
4116                                              max_uV, state);
4117
4118         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4119
4120         return ret;
4121 }
4122 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4123
4124 /**
4125  * regulator_set_voltage_time - get raise/fall time
4126  * @regulator: regulator source
4127  * @old_uV: starting voltage in microvolts
4128  * @new_uV: target voltage in microvolts
4129  *
4130  * Provided with the starting and ending voltage, this function attempts to
4131  * calculate the time in microseconds required to rise or fall to this new
4132  * voltage.
4133  */
4134 int regulator_set_voltage_time(struct regulator *regulator,
4135                                int old_uV, int new_uV)
4136 {
4137         struct regulator_dev *rdev = regulator->rdev;
4138         const struct regulator_ops *ops = rdev->desc->ops;
4139         int old_sel = -1;
4140         int new_sel = -1;
4141         int voltage;
4142         int i;
4143
4144         if (ops->set_voltage_time)
4145                 return ops->set_voltage_time(rdev, old_uV, new_uV);
4146         else if (!ops->set_voltage_time_sel)
4147                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4148
4149         /* Currently requires operations to do this */
4150         if (!ops->list_voltage || !rdev->desc->n_voltages)
4151                 return -EINVAL;
4152
4153         for (i = 0; i < rdev->desc->n_voltages; i++) {
4154                 /* We only look for exact voltage matches here */
4155                 voltage = regulator_list_voltage(regulator, i);
4156                 if (voltage < 0)
4157                         return -EINVAL;
4158                 if (voltage == 0)
4159                         continue;
4160                 if (voltage == old_uV)
4161                         old_sel = i;
4162                 if (voltage == new_uV)
4163                         new_sel = i;
4164         }
4165
4166         if (old_sel < 0 || new_sel < 0)
4167                 return -EINVAL;
4168
4169         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4170 }
4171 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4172
4173 /**
4174  * regulator_set_voltage_time_sel - get raise/fall time
4175  * @rdev: regulator source device
4176  * @old_selector: selector for starting voltage
4177  * @new_selector: selector for target voltage
4178  *
4179  * Provided with the starting and target voltage selectors, this function
4180  * returns time in microseconds required to rise or fall to this new voltage
4181  *
4182  * Drivers providing ramp_delay in regulation_constraints can use this as their
4183  * set_voltage_time_sel() operation.
4184  */
4185 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4186                                    unsigned int old_selector,
4187                                    unsigned int new_selector)
4188 {
4189         int old_volt, new_volt;
4190
4191         /* sanity check */
4192         if (!rdev->desc->ops->list_voltage)
4193                 return -EINVAL;
4194
4195         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4196         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4197
4198         if (rdev->desc->ops->set_voltage_time)
4199                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4200                                                          new_volt);
4201         else
4202                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4203 }
4204 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4205
4206 /**
4207  * regulator_sync_voltage - re-apply last regulator output voltage
4208  * @regulator: regulator source
4209  *
4210  * Re-apply the last configured voltage.  This is intended to be used
4211  * where some external control source the consumer is cooperating with
4212  * has caused the configured voltage to change.
4213  */
4214 int regulator_sync_voltage(struct regulator *regulator)
4215 {
4216         struct regulator_dev *rdev = regulator->rdev;
4217         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4218         int ret, min_uV, max_uV;
4219
4220         regulator_lock(rdev);
4221
4222         if (!rdev->desc->ops->set_voltage &&
4223             !rdev->desc->ops->set_voltage_sel) {
4224                 ret = -EINVAL;
4225                 goto out;
4226         }
4227
4228         /* This is only going to work if we've had a voltage configured. */
4229         if (!voltage->min_uV && !voltage->max_uV) {
4230                 ret = -EINVAL;
4231                 goto out;
4232         }
4233
4234         min_uV = voltage->min_uV;
4235         max_uV = voltage->max_uV;
4236
4237         /* This should be a paranoia check... */
4238         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4239         if (ret < 0)
4240                 goto out;
4241
4242         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4243         if (ret < 0)
4244                 goto out;
4245
4246         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4247
4248 out:
4249         regulator_unlock(rdev);
4250         return ret;
4251 }
4252 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4253
4254 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4255 {
4256         int sel, ret;
4257         bool bypassed;
4258
4259         if (rdev->desc->ops->get_bypass) {
4260                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4261                 if (ret < 0)
4262                         return ret;
4263                 if (bypassed) {
4264                         /* if bypassed the regulator must have a supply */
4265                         if (!rdev->supply) {
4266                                 rdev_err(rdev,
4267                                          "bypassed regulator has no supply!\n");
4268                                 return -EPROBE_DEFER;
4269                         }
4270
4271                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4272                 }
4273         }
4274
4275         if (rdev->desc->ops->get_voltage_sel) {
4276                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4277                 if (sel < 0)
4278                         return sel;
4279                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4280         } else if (rdev->desc->ops->get_voltage) {
4281                 ret = rdev->desc->ops->get_voltage(rdev);
4282         } else if (rdev->desc->ops->list_voltage) {
4283                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4284         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4285                 ret = rdev->desc->fixed_uV;
4286         } else if (rdev->supply) {
4287                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4288         } else if (rdev->supply_name) {
4289                 return -EPROBE_DEFER;
4290         } else {
4291                 return -EINVAL;
4292         }
4293
4294         if (ret < 0)
4295                 return ret;
4296         return ret - rdev->constraints->uV_offset;
4297 }
4298 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4299
4300 /**
4301  * regulator_get_voltage - get regulator output voltage
4302  * @regulator: regulator source
4303  *
4304  * This returns the current regulator voltage in uV.
4305  *
4306  * NOTE: If the regulator is disabled it will return the voltage value. This
4307  * function should not be used to determine regulator state.
4308  */
4309 int regulator_get_voltage(struct regulator *regulator)
4310 {
4311         struct ww_acquire_ctx ww_ctx;
4312         int ret;
4313
4314         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4315         ret = regulator_get_voltage_rdev(regulator->rdev);
4316         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4317
4318         return ret;
4319 }
4320 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4321
4322 /**
4323  * regulator_set_current_limit - set regulator output current limit
4324  * @regulator: regulator source
4325  * @min_uA: Minimum supported current in uA
4326  * @max_uA: Maximum supported current in uA
4327  *
4328  * Sets current sink to the desired output current. This can be set during
4329  * any regulator state. IOW, regulator can be disabled or enabled.
4330  *
4331  * If the regulator is enabled then the current will change to the new value
4332  * immediately otherwise if the regulator is disabled the regulator will
4333  * output at the new current when enabled.
4334  *
4335  * NOTE: Regulator system constraints must be set for this regulator before
4336  * calling this function otherwise this call will fail.
4337  */
4338 int regulator_set_current_limit(struct regulator *regulator,
4339                                int min_uA, int max_uA)
4340 {
4341         struct regulator_dev *rdev = regulator->rdev;
4342         int ret;
4343
4344         regulator_lock(rdev);
4345
4346         /* sanity check */
4347         if (!rdev->desc->ops->set_current_limit) {
4348                 ret = -EINVAL;
4349                 goto out;
4350         }
4351
4352         /* constraints check */
4353         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4354         if (ret < 0)
4355                 goto out;
4356
4357         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4358 out:
4359         regulator_unlock(rdev);
4360         return ret;
4361 }
4362 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4363
4364 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4365 {
4366         /* sanity check */
4367         if (!rdev->desc->ops->get_current_limit)
4368                 return -EINVAL;
4369
4370         return rdev->desc->ops->get_current_limit(rdev);
4371 }
4372
4373 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4374 {
4375         int ret;
4376
4377         regulator_lock(rdev);
4378         ret = _regulator_get_current_limit_unlocked(rdev);
4379         regulator_unlock(rdev);
4380
4381         return ret;
4382 }
4383
4384 /**
4385  * regulator_get_current_limit - get regulator output current
4386  * @regulator: regulator source
4387  *
4388  * This returns the current supplied by the specified current sink in uA.
4389  *
4390  * NOTE: If the regulator is disabled it will return the current value. This
4391  * function should not be used to determine regulator state.
4392  */
4393 int regulator_get_current_limit(struct regulator *regulator)
4394 {
4395         return _regulator_get_current_limit(regulator->rdev);
4396 }
4397 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4398
4399 /**
4400  * regulator_set_mode - set regulator operating mode
4401  * @regulator: regulator source
4402  * @mode: operating mode - one of the REGULATOR_MODE constants
4403  *
4404  * Set regulator operating mode to increase regulator efficiency or improve
4405  * regulation performance.
4406  *
4407  * NOTE: Regulator system constraints must be set for this regulator before
4408  * calling this function otherwise this call will fail.
4409  */
4410 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4411 {
4412         struct regulator_dev *rdev = regulator->rdev;
4413         int ret;
4414         int regulator_curr_mode;
4415
4416         regulator_lock(rdev);
4417
4418         /* sanity check */
4419         if (!rdev->desc->ops->set_mode) {
4420                 ret = -EINVAL;
4421                 goto out;
4422         }
4423
4424         /* return if the same mode is requested */
4425         if (rdev->desc->ops->get_mode) {
4426                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4427                 if (regulator_curr_mode == mode) {
4428                         ret = 0;
4429                         goto out;
4430                 }
4431         }
4432
4433         /* constraints check */
4434         ret = regulator_mode_constrain(rdev, &mode);
4435         if (ret < 0)
4436                 goto out;
4437
4438         ret = rdev->desc->ops->set_mode(rdev, mode);
4439 out:
4440         regulator_unlock(rdev);
4441         return ret;
4442 }
4443 EXPORT_SYMBOL_GPL(regulator_set_mode);
4444
4445 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4446 {
4447         /* sanity check */
4448         if (!rdev->desc->ops->get_mode)
4449                 return -EINVAL;
4450
4451         return rdev->desc->ops->get_mode(rdev);
4452 }
4453
4454 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4455 {
4456         int ret;
4457
4458         regulator_lock(rdev);
4459         ret = _regulator_get_mode_unlocked(rdev);
4460         regulator_unlock(rdev);
4461
4462         return ret;
4463 }
4464
4465 /**
4466  * regulator_get_mode - get regulator operating mode
4467  * @regulator: regulator source
4468  *
4469  * Get the current regulator operating mode.
4470  */
4471 unsigned int regulator_get_mode(struct regulator *regulator)
4472 {
4473         return _regulator_get_mode(regulator->rdev);
4474 }
4475 EXPORT_SYMBOL_GPL(regulator_get_mode);
4476
4477 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4478                                         unsigned int *flags)
4479 {
4480         int ret;
4481
4482         regulator_lock(rdev);
4483
4484         /* sanity check */
4485         if (!rdev->desc->ops->get_error_flags) {
4486                 ret = -EINVAL;
4487                 goto out;
4488         }
4489
4490         ret = rdev->desc->ops->get_error_flags(rdev, flags);
4491 out:
4492         regulator_unlock(rdev);
4493         return ret;
4494 }
4495
4496 /**
4497  * regulator_get_error_flags - get regulator error information
4498  * @regulator: regulator source
4499  * @flags: pointer to store error flags
4500  *
4501  * Get the current regulator error information.
4502  */
4503 int regulator_get_error_flags(struct regulator *regulator,
4504                                 unsigned int *flags)
4505 {
4506         return _regulator_get_error_flags(regulator->rdev, flags);
4507 }
4508 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4509
4510 /**
4511  * regulator_set_load - set regulator load
4512  * @regulator: regulator source
4513  * @uA_load: load current
4514  *
4515  * Notifies the regulator core of a new device load. This is then used by
4516  * DRMS (if enabled by constraints) to set the most efficient regulator
4517  * operating mode for the new regulator loading.
4518  *
4519  * Consumer devices notify their supply regulator of the maximum power
4520  * they will require (can be taken from device datasheet in the power
4521  * consumption tables) when they change operational status and hence power
4522  * state. Examples of operational state changes that can affect power
4523  * consumption are :-
4524  *
4525  *    o Device is opened / closed.
4526  *    o Device I/O is about to begin or has just finished.
4527  *    o Device is idling in between work.
4528  *
4529  * This information is also exported via sysfs to userspace.
4530  *
4531  * DRMS will sum the total requested load on the regulator and change
4532  * to the most efficient operating mode if platform constraints allow.
4533  *
4534  * NOTE: when a regulator consumer requests to have a regulator
4535  * disabled then any load that consumer requested no longer counts
4536  * toward the total requested load.  If the regulator is re-enabled
4537  * then the previously requested load will start counting again.
4538  *
4539  * If a regulator is an always-on regulator then an individual consumer's
4540  * load will still be removed if that consumer is fully disabled.
4541  *
4542  * On error a negative errno is returned.
4543  */
4544 int regulator_set_load(struct regulator *regulator, int uA_load)
4545 {
4546         struct regulator_dev *rdev = regulator->rdev;
4547         int old_uA_load;
4548         int ret = 0;
4549
4550         regulator_lock(rdev);
4551         old_uA_load = regulator->uA_load;
4552         regulator->uA_load = uA_load;
4553         if (regulator->enable_count && old_uA_load != uA_load) {
4554                 ret = drms_uA_update(rdev);
4555                 if (ret < 0)
4556                         regulator->uA_load = old_uA_load;
4557         }
4558         regulator_unlock(rdev);
4559
4560         return ret;
4561 }
4562 EXPORT_SYMBOL_GPL(regulator_set_load);
4563
4564 /**
4565  * regulator_allow_bypass - allow the regulator to go into bypass mode
4566  *
4567  * @regulator: Regulator to configure
4568  * @enable: enable or disable bypass mode
4569  *
4570  * Allow the regulator to go into bypass mode if all other consumers
4571  * for the regulator also enable bypass mode and the machine
4572  * constraints allow this.  Bypass mode means that the regulator is
4573  * simply passing the input directly to the output with no regulation.
4574  */
4575 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4576 {
4577         struct regulator_dev *rdev = regulator->rdev;
4578         const char *name = rdev_get_name(rdev);
4579         int ret = 0;
4580
4581         if (!rdev->desc->ops->set_bypass)
4582                 return 0;
4583
4584         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4585                 return 0;
4586
4587         regulator_lock(rdev);
4588
4589         if (enable && !regulator->bypass) {
4590                 rdev->bypass_count++;
4591
4592                 if (rdev->bypass_count == rdev->open_count) {
4593                         trace_regulator_bypass_enable(name);
4594
4595                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4596                         if (ret != 0)
4597                                 rdev->bypass_count--;
4598                         else
4599                                 trace_regulator_bypass_enable_complete(name);
4600                 }
4601
4602         } else if (!enable && regulator->bypass) {
4603                 rdev->bypass_count--;
4604
4605                 if (rdev->bypass_count != rdev->open_count) {
4606                         trace_regulator_bypass_disable(name);
4607
4608                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4609                         if (ret != 0)
4610                                 rdev->bypass_count++;
4611                         else
4612                                 trace_regulator_bypass_disable_complete(name);
4613                 }
4614         }
4615
4616         if (ret == 0)
4617                 regulator->bypass = enable;
4618
4619         regulator_unlock(rdev);
4620
4621         return ret;
4622 }
4623 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4624
4625 /**
4626  * regulator_register_notifier - register regulator event notifier
4627  * @regulator: regulator source
4628  * @nb: notifier block
4629  *
4630  * Register notifier block to receive regulator events.
4631  */
4632 int regulator_register_notifier(struct regulator *regulator,
4633                               struct notifier_block *nb)
4634 {
4635         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4636                                                 nb);
4637 }
4638 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4639
4640 /**
4641  * regulator_unregister_notifier - unregister regulator event notifier
4642  * @regulator: regulator source
4643  * @nb: notifier block
4644  *
4645  * Unregister regulator event notifier block.
4646  */
4647 int regulator_unregister_notifier(struct regulator *regulator,
4648                                 struct notifier_block *nb)
4649 {
4650         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4651                                                   nb);
4652 }
4653 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4654
4655 /* notify regulator consumers and downstream regulator consumers.
4656  * Note mutex must be held by caller.
4657  */
4658 static int _notifier_call_chain(struct regulator_dev *rdev,
4659                                   unsigned long event, void *data)
4660 {
4661         /* call rdev chain first */
4662         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4663 }
4664
4665 /**
4666  * regulator_bulk_get - get multiple regulator consumers
4667  *
4668  * @dev:           Device to supply
4669  * @num_consumers: Number of consumers to register
4670  * @consumers:     Configuration of consumers; clients are stored here.
4671  *
4672  * @return 0 on success, an errno on failure.
4673  *
4674  * This helper function allows drivers to get several regulator
4675  * consumers in one operation.  If any of the regulators cannot be
4676  * acquired then any regulators that were allocated will be freed
4677  * before returning to the caller.
4678  */
4679 int regulator_bulk_get(struct device *dev, int num_consumers,
4680                        struct regulator_bulk_data *consumers)
4681 {
4682         int i;
4683         int ret;
4684
4685         for (i = 0; i < num_consumers; i++)
4686                 consumers[i].consumer = NULL;
4687
4688         for (i = 0; i < num_consumers; i++) {
4689                 consumers[i].consumer = regulator_get(dev,
4690                                                       consumers[i].supply);
4691                 if (IS_ERR(consumers[i].consumer)) {
4692                         ret = PTR_ERR(consumers[i].consumer);
4693                         consumers[i].consumer = NULL;
4694                         goto err;
4695                 }
4696         }
4697
4698         return 0;
4699
4700 err:
4701         if (ret != -EPROBE_DEFER)
4702                 dev_err(dev, "Failed to get supply '%s': %pe\n",
4703                         consumers[i].supply, ERR_PTR(ret));
4704         else
4705                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4706                         consumers[i].supply);
4707
4708         while (--i >= 0)
4709                 regulator_put(consumers[i].consumer);
4710
4711         return ret;
4712 }
4713 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4714
4715 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4716 {
4717         struct regulator_bulk_data *bulk = data;
4718
4719         bulk->ret = regulator_enable(bulk->consumer);
4720 }
4721
4722 /**
4723  * regulator_bulk_enable - enable multiple regulator consumers
4724  *
4725  * @num_consumers: Number of consumers
4726  * @consumers:     Consumer data; clients are stored here.
4727  * @return         0 on success, an errno on failure
4728  *
4729  * This convenience API allows consumers to enable multiple regulator
4730  * clients in a single API call.  If any consumers cannot be enabled
4731  * then any others that were enabled will be disabled again prior to
4732  * return.
4733  */
4734 int regulator_bulk_enable(int num_consumers,
4735                           struct regulator_bulk_data *consumers)
4736 {
4737         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4738         int i;
4739         int ret = 0;
4740
4741         for (i = 0; i < num_consumers; i++) {
4742                 async_schedule_domain(regulator_bulk_enable_async,
4743                                       &consumers[i], &async_domain);
4744         }
4745
4746         async_synchronize_full_domain(&async_domain);
4747
4748         /* If any consumer failed we need to unwind any that succeeded */
4749         for (i = 0; i < num_consumers; i++) {
4750                 if (consumers[i].ret != 0) {
4751                         ret = consumers[i].ret;
4752                         goto err;
4753                 }
4754         }
4755
4756         return 0;
4757
4758 err:
4759         for (i = 0; i < num_consumers; i++) {
4760                 if (consumers[i].ret < 0)
4761                         pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4762                                ERR_PTR(consumers[i].ret));
4763                 else
4764                         regulator_disable(consumers[i].consumer);
4765         }
4766
4767         return ret;
4768 }
4769 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4770
4771 /**
4772  * regulator_bulk_disable - disable multiple regulator consumers
4773  *
4774  * @num_consumers: Number of consumers
4775  * @consumers:     Consumer data; clients are stored here.
4776  * @return         0 on success, an errno on failure
4777  *
4778  * This convenience API allows consumers to disable multiple regulator
4779  * clients in a single API call.  If any consumers cannot be disabled
4780  * then any others that were disabled will be enabled again prior to
4781  * return.
4782  */
4783 int regulator_bulk_disable(int num_consumers,
4784                            struct regulator_bulk_data *consumers)
4785 {
4786         int i;
4787         int ret, r;
4788
4789         for (i = num_consumers - 1; i >= 0; --i) {
4790                 ret = regulator_disable(consumers[i].consumer);
4791                 if (ret != 0)
4792                         goto err;
4793         }
4794
4795         return 0;
4796
4797 err:
4798         pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4799         for (++i; i < num_consumers; ++i) {
4800                 r = regulator_enable(consumers[i].consumer);
4801                 if (r != 0)
4802                         pr_err("Failed to re-enable %s: %pe\n",
4803                                consumers[i].supply, ERR_PTR(r));
4804         }
4805
4806         return ret;
4807 }
4808 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4809
4810 /**
4811  * regulator_bulk_force_disable - force disable multiple regulator consumers
4812  *
4813  * @num_consumers: Number of consumers
4814  * @consumers:     Consumer data; clients are stored here.
4815  * @return         0 on success, an errno on failure
4816  *
4817  * This convenience API allows consumers to forcibly disable multiple regulator
4818  * clients in a single API call.
4819  * NOTE: This should be used for situations when device damage will
4820  * likely occur if the regulators are not disabled (e.g. over temp).
4821  * Although regulator_force_disable function call for some consumers can
4822  * return error numbers, the function is called for all consumers.
4823  */
4824 int regulator_bulk_force_disable(int num_consumers,
4825                            struct regulator_bulk_data *consumers)
4826 {
4827         int i;
4828         int ret = 0;
4829
4830         for (i = 0; i < num_consumers; i++) {
4831                 consumers[i].ret =
4832                             regulator_force_disable(consumers[i].consumer);
4833
4834                 /* Store first error for reporting */
4835                 if (consumers[i].ret && !ret)
4836                         ret = consumers[i].ret;
4837         }
4838
4839         return ret;
4840 }
4841 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4842
4843 /**
4844  * regulator_bulk_free - free multiple regulator consumers
4845  *
4846  * @num_consumers: Number of consumers
4847  * @consumers:     Consumer data; clients are stored here.
4848  *
4849  * This convenience API allows consumers to free multiple regulator
4850  * clients in a single API call.
4851  */
4852 void regulator_bulk_free(int num_consumers,
4853                          struct regulator_bulk_data *consumers)
4854 {
4855         int i;
4856
4857         for (i = 0; i < num_consumers; i++) {
4858                 regulator_put(consumers[i].consumer);
4859                 consumers[i].consumer = NULL;
4860         }
4861 }
4862 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4863
4864 /**
4865  * regulator_notifier_call_chain - call regulator event notifier
4866  * @rdev: regulator source
4867  * @event: notifier block
4868  * @data: callback-specific data.
4869  *
4870  * Called by regulator drivers to notify clients a regulator event has
4871  * occurred.
4872  */
4873 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4874                                   unsigned long event, void *data)
4875 {
4876         _notifier_call_chain(rdev, event, data);
4877         return NOTIFY_DONE;
4878
4879 }
4880 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4881
4882 /**
4883  * regulator_mode_to_status - convert a regulator mode into a status
4884  *
4885  * @mode: Mode to convert
4886  *
4887  * Convert a regulator mode into a status.
4888  */
4889 int regulator_mode_to_status(unsigned int mode)
4890 {
4891         switch (mode) {
4892         case REGULATOR_MODE_FAST:
4893                 return REGULATOR_STATUS_FAST;
4894         case REGULATOR_MODE_NORMAL:
4895                 return REGULATOR_STATUS_NORMAL;
4896         case REGULATOR_MODE_IDLE:
4897                 return REGULATOR_STATUS_IDLE;
4898         case REGULATOR_MODE_STANDBY:
4899                 return REGULATOR_STATUS_STANDBY;
4900         default:
4901                 return REGULATOR_STATUS_UNDEFINED;
4902         }
4903 }
4904 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4905
4906 static struct attribute *regulator_dev_attrs[] = {
4907         &dev_attr_name.attr,
4908         &dev_attr_num_users.attr,
4909         &dev_attr_type.attr,
4910         &dev_attr_microvolts.attr,
4911         &dev_attr_microamps.attr,
4912         &dev_attr_opmode.attr,
4913         &dev_attr_state.attr,
4914         &dev_attr_status.attr,
4915         &dev_attr_bypass.attr,
4916         &dev_attr_requested_microamps.attr,
4917         &dev_attr_min_microvolts.attr,
4918         &dev_attr_max_microvolts.attr,
4919         &dev_attr_min_microamps.attr,
4920         &dev_attr_max_microamps.attr,
4921         &dev_attr_suspend_standby_state.attr,
4922         &dev_attr_suspend_mem_state.attr,
4923         &dev_attr_suspend_disk_state.attr,
4924         &dev_attr_suspend_standby_microvolts.attr,
4925         &dev_attr_suspend_mem_microvolts.attr,
4926         &dev_attr_suspend_disk_microvolts.attr,
4927         &dev_attr_suspend_standby_mode.attr,
4928         &dev_attr_suspend_mem_mode.attr,
4929         &dev_attr_suspend_disk_mode.attr,
4930         NULL
4931 };
4932
4933 /*
4934  * To avoid cluttering sysfs (and memory) with useless state, only
4935  * create attributes that can be meaningfully displayed.
4936  */
4937 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4938                                          struct attribute *attr, int idx)
4939 {
4940         struct device *dev = kobj_to_dev(kobj);
4941         struct regulator_dev *rdev = dev_to_rdev(dev);
4942         const struct regulator_ops *ops = rdev->desc->ops;
4943         umode_t mode = attr->mode;
4944
4945         /* these three are always present */
4946         if (attr == &dev_attr_name.attr ||
4947             attr == &dev_attr_num_users.attr ||
4948             attr == &dev_attr_type.attr)
4949                 return mode;
4950
4951         /* some attributes need specific methods to be displayed */
4952         if (attr == &dev_attr_microvolts.attr) {
4953                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4954                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4955                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4956                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4957                         return mode;
4958                 return 0;
4959         }
4960
4961         if (attr == &dev_attr_microamps.attr)
4962                 return ops->get_current_limit ? mode : 0;
4963
4964         if (attr == &dev_attr_opmode.attr)
4965                 return ops->get_mode ? mode : 0;
4966
4967         if (attr == &dev_attr_state.attr)
4968                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4969
4970         if (attr == &dev_attr_status.attr)
4971                 return ops->get_status ? mode : 0;
4972
4973         if (attr == &dev_attr_bypass.attr)
4974                 return ops->get_bypass ? mode : 0;
4975
4976         /* constraints need specific supporting methods */
4977         if (attr == &dev_attr_min_microvolts.attr ||
4978             attr == &dev_attr_max_microvolts.attr)
4979                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4980
4981         if (attr == &dev_attr_min_microamps.attr ||
4982             attr == &dev_attr_max_microamps.attr)
4983                 return ops->set_current_limit ? mode : 0;
4984
4985         if (attr == &dev_attr_suspend_standby_state.attr ||
4986             attr == &dev_attr_suspend_mem_state.attr ||
4987             attr == &dev_attr_suspend_disk_state.attr)
4988                 return mode;
4989
4990         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4991             attr == &dev_attr_suspend_mem_microvolts.attr ||
4992             attr == &dev_attr_suspend_disk_microvolts.attr)
4993                 return ops->set_suspend_voltage ? mode : 0;
4994
4995         if (attr == &dev_attr_suspend_standby_mode.attr ||
4996             attr == &dev_attr_suspend_mem_mode.attr ||
4997             attr == &dev_attr_suspend_disk_mode.attr)
4998                 return ops->set_suspend_mode ? mode : 0;
4999
5000         return mode;
5001 }
5002
5003 static const struct attribute_group regulator_dev_group = {
5004         .attrs = regulator_dev_attrs,
5005         .is_visible = regulator_attr_is_visible,
5006 };
5007
5008 static const struct attribute_group *regulator_dev_groups[] = {
5009         &regulator_dev_group,
5010         NULL
5011 };
5012
5013 static void regulator_dev_release(struct device *dev)
5014 {
5015         struct regulator_dev *rdev = dev_get_drvdata(dev);
5016
5017         debugfs_remove_recursive(rdev->debugfs);
5018         kfree(rdev->constraints);
5019         of_node_put(rdev->dev.of_node);
5020         kfree(rdev);
5021 }
5022
5023 static void rdev_init_debugfs(struct regulator_dev *rdev)
5024 {
5025         struct device *parent = rdev->dev.parent;
5026         const char *rname = rdev_get_name(rdev);
5027         char name[NAME_MAX];
5028
5029         /* Avoid duplicate debugfs directory names */
5030         if (parent && rname == rdev->desc->name) {
5031                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5032                          rname);
5033                 rname = name;
5034         }
5035
5036         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5037         if (IS_ERR(rdev->debugfs))
5038                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5039
5040         debugfs_create_u32("use_count", 0444, rdev->debugfs,
5041                            &rdev->use_count);
5042         debugfs_create_u32("open_count", 0444, rdev->debugfs,
5043                            &rdev->open_count);
5044         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5045                            &rdev->bypass_count);
5046 }
5047
5048 static int regulator_register_resolve_supply(struct device *dev, void *data)
5049 {
5050         struct regulator_dev *rdev = dev_to_rdev(dev);
5051
5052         if (regulator_resolve_supply(rdev))
5053                 rdev_dbg(rdev, "unable to resolve supply\n");
5054
5055         return 0;
5056 }
5057
5058 int regulator_coupler_register(struct regulator_coupler *coupler)
5059 {
5060         mutex_lock(&regulator_list_mutex);
5061         list_add_tail(&coupler->list, &regulator_coupler_list);
5062         mutex_unlock(&regulator_list_mutex);
5063
5064         return 0;
5065 }
5066
5067 static struct regulator_coupler *
5068 regulator_find_coupler(struct regulator_dev *rdev)
5069 {
5070         struct regulator_coupler *coupler;
5071         int err;
5072
5073         /*
5074          * Note that regulators are appended to the list and the generic
5075          * coupler is registered first, hence it will be attached at last
5076          * if nobody cared.
5077          */
5078         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5079                 err = coupler->attach_regulator(coupler, rdev);
5080                 if (!err) {
5081                         if (!coupler->balance_voltage &&
5082                             rdev->coupling_desc.n_coupled > 2)
5083                                 goto err_unsupported;
5084
5085                         return coupler;
5086                 }
5087
5088                 if (err < 0)
5089                         return ERR_PTR(err);
5090
5091                 if (err == 1)
5092                         continue;
5093
5094                 break;
5095         }
5096
5097         return ERR_PTR(-EINVAL);
5098
5099 err_unsupported:
5100         if (coupler->detach_regulator)
5101                 coupler->detach_regulator(coupler, rdev);
5102
5103         rdev_err(rdev,
5104                 "Voltage balancing for multiple regulator couples is unimplemented\n");
5105
5106         return ERR_PTR(-EPERM);
5107 }
5108
5109 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5110 {
5111         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5112         struct coupling_desc *c_desc = &rdev->coupling_desc;
5113         int n_coupled = c_desc->n_coupled;
5114         struct regulator_dev *c_rdev;
5115         int i;
5116
5117         for (i = 1; i < n_coupled; i++) {
5118                 /* already resolved */
5119                 if (c_desc->coupled_rdevs[i])
5120                         continue;
5121
5122                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5123
5124                 if (!c_rdev)
5125                         continue;
5126
5127                 if (c_rdev->coupling_desc.coupler != coupler) {
5128                         rdev_err(rdev, "coupler mismatch with %s\n",
5129                                  rdev_get_name(c_rdev));
5130                         return;
5131                 }
5132
5133                 c_desc->coupled_rdevs[i] = c_rdev;
5134                 c_desc->n_resolved++;
5135
5136                 regulator_resolve_coupling(c_rdev);
5137         }
5138 }
5139
5140 static void regulator_remove_coupling(struct regulator_dev *rdev)
5141 {
5142         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5143         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5144         struct regulator_dev *__c_rdev, *c_rdev;
5145         unsigned int __n_coupled, n_coupled;
5146         int i, k;
5147         int err;
5148
5149         n_coupled = c_desc->n_coupled;
5150
5151         for (i = 1; i < n_coupled; i++) {
5152                 c_rdev = c_desc->coupled_rdevs[i];
5153
5154                 if (!c_rdev)
5155                         continue;
5156
5157                 regulator_lock(c_rdev);
5158
5159                 __c_desc = &c_rdev->coupling_desc;
5160                 __n_coupled = __c_desc->n_coupled;
5161
5162                 for (k = 1; k < __n_coupled; k++) {
5163                         __c_rdev = __c_desc->coupled_rdevs[k];
5164
5165                         if (__c_rdev == rdev) {
5166                                 __c_desc->coupled_rdevs[k] = NULL;
5167                                 __c_desc->n_resolved--;
5168                                 break;
5169                         }
5170                 }
5171
5172                 regulator_unlock(c_rdev);
5173
5174                 c_desc->coupled_rdevs[i] = NULL;
5175                 c_desc->n_resolved--;
5176         }
5177
5178         if (coupler && coupler->detach_regulator) {
5179                 err = coupler->detach_regulator(coupler, rdev);
5180                 if (err)
5181                         rdev_err(rdev, "failed to detach from coupler: %pe\n",
5182                                  ERR_PTR(err));
5183         }
5184
5185         kfree(rdev->coupling_desc.coupled_rdevs);
5186         rdev->coupling_desc.coupled_rdevs = NULL;
5187 }
5188
5189 static int regulator_init_coupling(struct regulator_dev *rdev)
5190 {
5191         struct regulator_dev **coupled;
5192         int err, n_phandles;
5193
5194         if (!IS_ENABLED(CONFIG_OF))
5195                 n_phandles = 0;
5196         else
5197                 n_phandles = of_get_n_coupled(rdev);
5198
5199         coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5200         if (!coupled)
5201                 return -ENOMEM;
5202
5203         rdev->coupling_desc.coupled_rdevs = coupled;
5204
5205         /*
5206          * Every regulator should always have coupling descriptor filled with
5207          * at least pointer to itself.
5208          */
5209         rdev->coupling_desc.coupled_rdevs[0] = rdev;
5210         rdev->coupling_desc.n_coupled = n_phandles + 1;
5211         rdev->coupling_desc.n_resolved++;
5212
5213         /* regulator isn't coupled */
5214         if (n_phandles == 0)
5215                 return 0;
5216
5217         if (!of_check_coupling_data(rdev))
5218                 return -EPERM;
5219
5220         mutex_lock(&regulator_list_mutex);
5221         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5222         mutex_unlock(&regulator_list_mutex);
5223
5224         if (IS_ERR(rdev->coupling_desc.coupler)) {
5225                 err = PTR_ERR(rdev->coupling_desc.coupler);
5226                 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5227                 return err;
5228         }
5229
5230         return 0;
5231 }
5232
5233 static int generic_coupler_attach(struct regulator_coupler *coupler,
5234                                   struct regulator_dev *rdev)
5235 {
5236         if (rdev->coupling_desc.n_coupled > 2) {
5237                 rdev_err(rdev,
5238                          "Voltage balancing for multiple regulator couples is unimplemented\n");
5239                 return -EPERM;
5240         }
5241
5242         if (!rdev->constraints->always_on) {
5243                 rdev_err(rdev,
5244                          "Coupling of a non always-on regulator is unimplemented\n");
5245                 return -ENOTSUPP;
5246         }
5247
5248         return 0;
5249 }
5250
5251 static struct regulator_coupler generic_regulator_coupler = {
5252         .attach_regulator = generic_coupler_attach,
5253 };
5254
5255 /**
5256  * regulator_register - register regulator
5257  * @regulator_desc: regulator to register
5258  * @cfg: runtime configuration for regulator
5259  *
5260  * Called by regulator drivers to register a regulator.
5261  * Returns a valid pointer to struct regulator_dev on success
5262  * or an ERR_PTR() on error.
5263  */
5264 struct regulator_dev *
5265 regulator_register(const struct regulator_desc *regulator_desc,
5266                    const struct regulator_config *cfg)
5267 {
5268         const struct regulator_init_data *init_data;
5269         struct regulator_config *config = NULL;
5270         static atomic_t regulator_no = ATOMIC_INIT(-1);
5271         struct regulator_dev *rdev;
5272         bool dangling_cfg_gpiod = false;
5273         bool dangling_of_gpiod = false;
5274         struct device *dev;
5275         int ret, i;
5276
5277         if (cfg == NULL)
5278                 return ERR_PTR(-EINVAL);
5279         if (cfg->ena_gpiod)
5280                 dangling_cfg_gpiod = true;
5281         if (regulator_desc == NULL) {
5282                 ret = -EINVAL;
5283                 goto rinse;
5284         }
5285
5286         dev = cfg->dev;
5287         WARN_ON(!dev);
5288
5289         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5290                 ret = -EINVAL;
5291                 goto rinse;
5292         }
5293
5294         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5295             regulator_desc->type != REGULATOR_CURRENT) {
5296                 ret = -EINVAL;
5297                 goto rinse;
5298         }
5299
5300         /* Only one of each should be implemented */
5301         WARN_ON(regulator_desc->ops->get_voltage &&
5302                 regulator_desc->ops->get_voltage_sel);
5303         WARN_ON(regulator_desc->ops->set_voltage &&
5304                 regulator_desc->ops->set_voltage_sel);
5305
5306         /* If we're using selectors we must implement list_voltage. */
5307         if (regulator_desc->ops->get_voltage_sel &&
5308             !regulator_desc->ops->list_voltage) {
5309                 ret = -EINVAL;
5310                 goto rinse;
5311         }
5312         if (regulator_desc->ops->set_voltage_sel &&
5313             !regulator_desc->ops->list_voltage) {
5314                 ret = -EINVAL;
5315                 goto rinse;
5316         }
5317
5318         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5319         if (rdev == NULL) {
5320                 ret = -ENOMEM;
5321                 goto rinse;
5322         }
5323         device_initialize(&rdev->dev);
5324
5325         /*
5326          * Duplicate the config so the driver could override it after
5327          * parsing init data.
5328          */
5329         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5330         if (config == NULL) {
5331                 ret = -ENOMEM;
5332                 goto clean;
5333         }
5334
5335         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5336                                                &rdev->dev.of_node);
5337
5338         /*
5339          * Sometimes not all resources are probed already so we need to take
5340          * that into account. This happens most the time if the ena_gpiod comes
5341          * from a gpio extender or something else.
5342          */
5343         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5344                 ret = -EPROBE_DEFER;
5345                 goto clean;
5346         }
5347
5348         /*
5349          * We need to keep track of any GPIO descriptor coming from the
5350          * device tree until we have handled it over to the core. If the
5351          * config that was passed in to this function DOES NOT contain
5352          * a descriptor, and the config after this call DOES contain
5353          * a descriptor, we definitely got one from parsing the device
5354          * tree.
5355          */
5356         if (!cfg->ena_gpiod && config->ena_gpiod)
5357                 dangling_of_gpiod = true;
5358         if (!init_data) {
5359                 init_data = config->init_data;
5360                 rdev->dev.of_node = of_node_get(config->of_node);
5361         }
5362
5363         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5364         rdev->reg_data = config->driver_data;
5365         rdev->owner = regulator_desc->owner;
5366         rdev->desc = regulator_desc;
5367         if (config->regmap)
5368                 rdev->regmap = config->regmap;
5369         else if (dev_get_regmap(dev, NULL))
5370                 rdev->regmap = dev_get_regmap(dev, NULL);
5371         else if (dev->parent)
5372                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5373         INIT_LIST_HEAD(&rdev->consumer_list);
5374         INIT_LIST_HEAD(&rdev->list);
5375         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5376         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5377
5378         /* preform any regulator specific init */
5379         if (init_data && init_data->regulator_init) {
5380                 ret = init_data->regulator_init(rdev->reg_data);
5381                 if (ret < 0)
5382                         goto clean;
5383         }
5384
5385         if (config->ena_gpiod) {
5386                 ret = regulator_ena_gpio_request(rdev, config);
5387                 if (ret != 0) {
5388                         rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5389                                  ERR_PTR(ret));
5390                         goto clean;
5391                 }
5392                 /* The regulator core took over the GPIO descriptor */
5393                 dangling_cfg_gpiod = false;
5394                 dangling_of_gpiod = false;
5395         }
5396
5397         /* register with sysfs */
5398         rdev->dev.class = &regulator_class;
5399         rdev->dev.parent = dev;
5400         dev_set_name(&rdev->dev, "regulator.%lu",
5401                     (unsigned long) atomic_inc_return(&regulator_no));
5402         dev_set_drvdata(&rdev->dev, rdev);
5403
5404         /* set regulator constraints */
5405         if (init_data)
5406                 rdev->constraints = kmemdup(&init_data->constraints,
5407                                             sizeof(*rdev->constraints),
5408                                             GFP_KERNEL);
5409         else
5410                 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5411                                             GFP_KERNEL);
5412         if (!rdev->constraints) {
5413                 ret = -ENOMEM;
5414                 goto wash;
5415         }
5416
5417         if (init_data && init_data->supply_regulator)
5418                 rdev->supply_name = init_data->supply_regulator;
5419         else if (regulator_desc->supply_name)
5420                 rdev->supply_name = regulator_desc->supply_name;
5421
5422         ret = set_machine_constraints(rdev);
5423         if (ret == -EPROBE_DEFER) {
5424                 /* Regulator might be in bypass mode and so needs its supply
5425                  * to set the constraints */
5426                 /* FIXME: this currently triggers a chicken-and-egg problem
5427                  * when creating -SUPPLY symlink in sysfs to a regulator
5428                  * that is just being created */
5429                 ret = regulator_resolve_supply(rdev);
5430                 if (!ret)
5431                         ret = set_machine_constraints(rdev);
5432                 else
5433                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5434                                  ERR_PTR(ret));
5435         }
5436         if (ret < 0)
5437                 goto wash;
5438
5439         ret = regulator_init_coupling(rdev);
5440         if (ret < 0)
5441                 goto wash;
5442
5443         /* add consumers devices */
5444         if (init_data) {
5445                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5446                         ret = set_consumer_device_supply(rdev,
5447                                 init_data->consumer_supplies[i].dev_name,
5448                                 init_data->consumer_supplies[i].supply);
5449                         if (ret < 0) {
5450                                 dev_err(dev, "Failed to set supply %s\n",
5451                                         init_data->consumer_supplies[i].supply);
5452                                 goto unset_supplies;
5453                         }
5454                 }
5455         }
5456
5457         if (!rdev->desc->ops->get_voltage &&
5458             !rdev->desc->ops->list_voltage &&
5459             !rdev->desc->fixed_uV)
5460                 rdev->is_switch = true;
5461
5462         ret = device_add(&rdev->dev);
5463         if (ret != 0)
5464                 goto unset_supplies;
5465
5466         rdev_init_debugfs(rdev);
5467
5468         /* try to resolve regulators coupling since a new one was registered */
5469         mutex_lock(&regulator_list_mutex);
5470         regulator_resolve_coupling(rdev);
5471         mutex_unlock(&regulator_list_mutex);
5472
5473         /* try to resolve regulators supply since a new one was registered */
5474         class_for_each_device(&regulator_class, NULL, NULL,
5475                               regulator_register_resolve_supply);
5476         kfree(config);
5477         return rdev;
5478
5479 unset_supplies:
5480         mutex_lock(&regulator_list_mutex);
5481         unset_regulator_supplies(rdev);
5482         regulator_remove_coupling(rdev);
5483         mutex_unlock(&regulator_list_mutex);
5484 wash:
5485         regulator_put(rdev->supply);
5486         kfree(rdev->coupling_desc.coupled_rdevs);
5487         mutex_lock(&regulator_list_mutex);
5488         regulator_ena_gpio_free(rdev);
5489         mutex_unlock(&regulator_list_mutex);
5490 clean:
5491         if (dangling_of_gpiod)
5492                 gpiod_put(config->ena_gpiod);
5493         kfree(config);
5494         put_device(&rdev->dev);
5495 rinse:
5496         if (dangling_cfg_gpiod)
5497                 gpiod_put(cfg->ena_gpiod);
5498         return ERR_PTR(ret);
5499 }
5500 EXPORT_SYMBOL_GPL(regulator_register);
5501
5502 /**
5503  * regulator_unregister - unregister regulator
5504  * @rdev: regulator to unregister
5505  *
5506  * Called by regulator drivers to unregister a regulator.
5507  */
5508 void regulator_unregister(struct regulator_dev *rdev)
5509 {
5510         if (rdev == NULL)
5511                 return;
5512
5513         if (rdev->supply) {
5514                 while (rdev->use_count--)
5515                         regulator_disable(rdev->supply);
5516                 regulator_put(rdev->supply);
5517         }
5518
5519         flush_work(&rdev->disable_work.work);
5520
5521         mutex_lock(&regulator_list_mutex);
5522
5523         WARN_ON(rdev->open_count);
5524         regulator_remove_coupling(rdev);
5525         unset_regulator_supplies(rdev);
5526         list_del(&rdev->list);
5527         regulator_ena_gpio_free(rdev);
5528         device_unregister(&rdev->dev);
5529
5530         mutex_unlock(&regulator_list_mutex);
5531 }
5532 EXPORT_SYMBOL_GPL(regulator_unregister);
5533
5534 #ifdef CONFIG_SUSPEND
5535 /**
5536  * regulator_suspend - prepare regulators for system wide suspend
5537  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5538  *
5539  * Configure each regulator with it's suspend operating parameters for state.
5540  */
5541 static int regulator_suspend(struct device *dev)
5542 {
5543         struct regulator_dev *rdev = dev_to_rdev(dev);
5544         suspend_state_t state = pm_suspend_target_state;
5545         int ret;
5546         const struct regulator_state *rstate;
5547
5548         rstate = regulator_get_suspend_state_check(rdev, state);
5549         if (!rstate)
5550                 return 0;
5551
5552         regulator_lock(rdev);
5553         ret = __suspend_set_state(rdev, rstate);
5554         regulator_unlock(rdev);
5555
5556         return ret;
5557 }
5558
5559 static int regulator_resume(struct device *dev)
5560 {
5561         suspend_state_t state = pm_suspend_target_state;
5562         struct regulator_dev *rdev = dev_to_rdev(dev);
5563         struct regulator_state *rstate;
5564         int ret = 0;
5565
5566         rstate = regulator_get_suspend_state(rdev, state);
5567         if (rstate == NULL)
5568                 return 0;
5569
5570         /* Avoid grabbing the lock if we don't need to */
5571         if (!rdev->desc->ops->resume)
5572                 return 0;
5573
5574         regulator_lock(rdev);
5575
5576         if (rstate->enabled == ENABLE_IN_SUSPEND ||
5577             rstate->enabled == DISABLE_IN_SUSPEND)
5578                 ret = rdev->desc->ops->resume(rdev);
5579
5580         regulator_unlock(rdev);
5581
5582         return ret;
5583 }
5584 #else /* !CONFIG_SUSPEND */
5585
5586 #define regulator_suspend       NULL
5587 #define regulator_resume        NULL
5588
5589 #endif /* !CONFIG_SUSPEND */
5590
5591 #ifdef CONFIG_PM
5592 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5593         .suspend        = regulator_suspend,
5594         .resume         = regulator_resume,
5595 };
5596 #endif
5597
5598 struct class regulator_class = {
5599         .name = "regulator",
5600         .dev_release = regulator_dev_release,
5601         .dev_groups = regulator_dev_groups,
5602 #ifdef CONFIG_PM
5603         .pm = &regulator_pm_ops,
5604 #endif
5605 };
5606 /**
5607  * regulator_has_full_constraints - the system has fully specified constraints
5608  *
5609  * Calling this function will cause the regulator API to disable all
5610  * regulators which have a zero use count and don't have an always_on
5611  * constraint in a late_initcall.
5612  *
5613  * The intention is that this will become the default behaviour in a
5614  * future kernel release so users are encouraged to use this facility
5615  * now.
5616  */
5617 void regulator_has_full_constraints(void)
5618 {
5619         has_full_constraints = 1;
5620 }
5621 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5622
5623 /**
5624  * rdev_get_drvdata - get rdev regulator driver data
5625  * @rdev: regulator
5626  *
5627  * Get rdev regulator driver private data. This call can be used in the
5628  * regulator driver context.
5629  */
5630 void *rdev_get_drvdata(struct regulator_dev *rdev)
5631 {
5632         return rdev->reg_data;
5633 }
5634 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5635
5636 /**
5637  * regulator_get_drvdata - get regulator driver data
5638  * @regulator: regulator
5639  *
5640  * Get regulator driver private data. This call can be used in the consumer
5641  * driver context when non API regulator specific functions need to be called.
5642  */
5643 void *regulator_get_drvdata(struct regulator *regulator)
5644 {
5645         return regulator->rdev->reg_data;
5646 }
5647 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5648
5649 /**
5650  * regulator_set_drvdata - set regulator driver data
5651  * @regulator: regulator
5652  * @data: data
5653  */
5654 void regulator_set_drvdata(struct regulator *regulator, void *data)
5655 {
5656         regulator->rdev->reg_data = data;
5657 }
5658 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5659
5660 /**
5661  * regulator_get_id - get regulator ID
5662  * @rdev: regulator
5663  */
5664 int rdev_get_id(struct regulator_dev *rdev)
5665 {
5666         return rdev->desc->id;
5667 }
5668 EXPORT_SYMBOL_GPL(rdev_get_id);
5669
5670 struct device *rdev_get_dev(struct regulator_dev *rdev)
5671 {
5672         return &rdev->dev;
5673 }
5674 EXPORT_SYMBOL_GPL(rdev_get_dev);
5675
5676 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5677 {
5678         return rdev->regmap;
5679 }
5680 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5681
5682 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5683 {
5684         return reg_init_data->driver_data;
5685 }
5686 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5687
5688 #ifdef CONFIG_DEBUG_FS
5689 static int supply_map_show(struct seq_file *sf, void *data)
5690 {
5691         struct regulator_map *map;
5692
5693         list_for_each_entry(map, &regulator_map_list, list) {
5694                 seq_printf(sf, "%s -> %s.%s\n",
5695                                 rdev_get_name(map->regulator), map->dev_name,
5696                                 map->supply);
5697         }
5698
5699         return 0;
5700 }
5701 DEFINE_SHOW_ATTRIBUTE(supply_map);
5702
5703 struct summary_data {
5704         struct seq_file *s;
5705         struct regulator_dev *parent;
5706         int level;
5707 };
5708
5709 static void regulator_summary_show_subtree(struct seq_file *s,
5710                                            struct regulator_dev *rdev,
5711                                            int level);
5712
5713 static int regulator_summary_show_children(struct device *dev, void *data)
5714 {
5715         struct regulator_dev *rdev = dev_to_rdev(dev);
5716         struct summary_data *summary_data = data;
5717
5718         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5719                 regulator_summary_show_subtree(summary_data->s, rdev,
5720                                                summary_data->level + 1);
5721
5722         return 0;
5723 }
5724
5725 static void regulator_summary_show_subtree(struct seq_file *s,
5726                                            struct regulator_dev *rdev,
5727                                            int level)
5728 {
5729         struct regulation_constraints *c;
5730         struct regulator *consumer;
5731         struct summary_data summary_data;
5732         unsigned int opmode;
5733
5734         if (!rdev)
5735                 return;
5736
5737         opmode = _regulator_get_mode_unlocked(rdev);
5738         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5739                    level * 3 + 1, "",
5740                    30 - level * 3, rdev_get_name(rdev),
5741                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5742                    regulator_opmode_to_str(opmode));
5743
5744         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5745         seq_printf(s, "%5dmA ",
5746                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5747
5748         c = rdev->constraints;
5749         if (c) {
5750                 switch (rdev->desc->type) {
5751                 case REGULATOR_VOLTAGE:
5752                         seq_printf(s, "%5dmV %5dmV ",
5753                                    c->min_uV / 1000, c->max_uV / 1000);
5754                         break;
5755                 case REGULATOR_CURRENT:
5756                         seq_printf(s, "%5dmA %5dmA ",
5757                                    c->min_uA / 1000, c->max_uA / 1000);
5758                         break;
5759                 }
5760         }
5761
5762         seq_puts(s, "\n");
5763
5764         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5765                 if (consumer->dev && consumer->dev->class == &regulator_class)
5766                         continue;
5767
5768                 seq_printf(s, "%*s%-*s ",
5769                            (level + 1) * 3 + 1, "",
5770                            30 - (level + 1) * 3,
5771                            consumer->supply_name ? consumer->supply_name :
5772                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5773
5774                 switch (rdev->desc->type) {
5775                 case REGULATOR_VOLTAGE:
5776                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5777                                    consumer->enable_count,
5778                                    consumer->uA_load / 1000,
5779                                    consumer->uA_load && !consumer->enable_count ?
5780                                    '*' : ' ',
5781                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5782                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5783                         break;
5784                 case REGULATOR_CURRENT:
5785                         break;
5786                 }
5787
5788                 seq_puts(s, "\n");
5789         }
5790
5791         summary_data.s = s;
5792         summary_data.level = level;
5793         summary_data.parent = rdev;
5794
5795         class_for_each_device(&regulator_class, NULL, &summary_data,
5796                               regulator_summary_show_children);
5797 }
5798
5799 struct summary_lock_data {
5800         struct ww_acquire_ctx *ww_ctx;
5801         struct regulator_dev **new_contended_rdev;
5802         struct regulator_dev **old_contended_rdev;
5803 };
5804
5805 static int regulator_summary_lock_one(struct device *dev, void *data)
5806 {
5807         struct regulator_dev *rdev = dev_to_rdev(dev);
5808         struct summary_lock_data *lock_data = data;
5809         int ret = 0;
5810
5811         if (rdev != *lock_data->old_contended_rdev) {
5812                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5813
5814                 if (ret == -EDEADLK)
5815                         *lock_data->new_contended_rdev = rdev;
5816                 else
5817                         WARN_ON_ONCE(ret);
5818         } else {
5819                 *lock_data->old_contended_rdev = NULL;
5820         }
5821
5822         return ret;
5823 }
5824
5825 static int regulator_summary_unlock_one(struct device *dev, void *data)
5826 {
5827         struct regulator_dev *rdev = dev_to_rdev(dev);
5828         struct summary_lock_data *lock_data = data;
5829
5830         if (lock_data) {
5831                 if (rdev == *lock_data->new_contended_rdev)
5832                         return -EDEADLK;
5833         }
5834
5835         regulator_unlock(rdev);
5836
5837         return 0;
5838 }
5839
5840 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5841                                       struct regulator_dev **new_contended_rdev,
5842                                       struct regulator_dev **old_contended_rdev)
5843 {
5844         struct summary_lock_data lock_data;
5845         int ret;
5846
5847         lock_data.ww_ctx = ww_ctx;
5848         lock_data.new_contended_rdev = new_contended_rdev;
5849         lock_data.old_contended_rdev = old_contended_rdev;
5850
5851         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5852                                     regulator_summary_lock_one);
5853         if (ret)
5854                 class_for_each_device(&regulator_class, NULL, &lock_data,
5855                                       regulator_summary_unlock_one);
5856
5857         return ret;
5858 }
5859
5860 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5861 {
5862         struct regulator_dev *new_contended_rdev = NULL;
5863         struct regulator_dev *old_contended_rdev = NULL;
5864         int err;
5865
5866         mutex_lock(&regulator_list_mutex);
5867
5868         ww_acquire_init(ww_ctx, &regulator_ww_class);
5869
5870         do {
5871                 if (new_contended_rdev) {
5872                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5873                         old_contended_rdev = new_contended_rdev;
5874                         old_contended_rdev->ref_cnt++;
5875                         old_contended_rdev->mutex_owner = current;
5876                 }
5877
5878                 err = regulator_summary_lock_all(ww_ctx,
5879                                                  &new_contended_rdev,
5880                                                  &old_contended_rdev);
5881
5882                 if (old_contended_rdev)
5883                         regulator_unlock(old_contended_rdev);
5884
5885         } while (err == -EDEADLK);
5886
5887         ww_acquire_done(ww_ctx);
5888 }
5889
5890 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5891 {
5892         class_for_each_device(&regulator_class, NULL, NULL,
5893                               regulator_summary_unlock_one);
5894         ww_acquire_fini(ww_ctx);
5895
5896         mutex_unlock(&regulator_list_mutex);
5897 }
5898
5899 static int regulator_summary_show_roots(struct device *dev, void *data)
5900 {
5901         struct regulator_dev *rdev = dev_to_rdev(dev);
5902         struct seq_file *s = data;
5903
5904         if (!rdev->supply)
5905                 regulator_summary_show_subtree(s, rdev, 0);
5906
5907         return 0;
5908 }
5909
5910 static int regulator_summary_show(struct seq_file *s, void *data)
5911 {
5912         struct ww_acquire_ctx ww_ctx;
5913
5914         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5915         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5916
5917         regulator_summary_lock(&ww_ctx);
5918
5919         class_for_each_device(&regulator_class, NULL, s,
5920                               regulator_summary_show_roots);
5921
5922         regulator_summary_unlock(&ww_ctx);
5923
5924         return 0;
5925 }
5926 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5927 #endif /* CONFIG_DEBUG_FS */
5928
5929 static int __init regulator_init(void)
5930 {
5931         int ret;
5932
5933         ret = class_register(&regulator_class);
5934
5935         debugfs_root = debugfs_create_dir("regulator", NULL);
5936         if (IS_ERR(debugfs_root))
5937                 pr_debug("regulator: Failed to create debugfs directory\n");
5938
5939 #ifdef CONFIG_DEBUG_FS
5940         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5941                             &supply_map_fops);
5942
5943         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5944                             NULL, &regulator_summary_fops);
5945 #endif
5946         regulator_dummy_init();
5947
5948         regulator_coupler_register(&generic_regulator_coupler);
5949
5950         return ret;
5951 }
5952
5953 /* init early to allow our consumers to complete system booting */
5954 core_initcall(regulator_init);
5955
5956 static int regulator_late_cleanup(struct device *dev, void *data)
5957 {
5958         struct regulator_dev *rdev = dev_to_rdev(dev);
5959         struct regulation_constraints *c = rdev->constraints;
5960         int ret;
5961
5962         if (c && c->always_on)
5963                 return 0;
5964
5965         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5966                 return 0;
5967
5968         regulator_lock(rdev);
5969
5970         if (rdev->use_count)
5971                 goto unlock;
5972
5973         /* If reading the status failed, assume that it's off. */
5974         if (_regulator_is_enabled(rdev) <= 0)
5975                 goto unlock;
5976
5977         if (have_full_constraints()) {
5978                 /* We log since this may kill the system if it goes
5979                  * wrong. */
5980                 rdev_info(rdev, "disabling\n");
5981                 ret = _regulator_do_disable(rdev);
5982                 if (ret != 0)
5983                         rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5984         } else {
5985                 /* The intention is that in future we will
5986                  * assume that full constraints are provided
5987                  * so warn even if we aren't going to do
5988                  * anything here.
5989                  */
5990                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5991         }
5992
5993 unlock:
5994         regulator_unlock(rdev);
5995
5996         return 0;
5997 }
5998
5999 static void regulator_init_complete_work_function(struct work_struct *work)
6000 {
6001         /*
6002          * Regulators may had failed to resolve their input supplies
6003          * when were registered, either because the input supply was
6004          * not registered yet or because its parent device was not
6005          * bound yet. So attempt to resolve the input supplies for
6006          * pending regulators before trying to disable unused ones.
6007          */
6008         class_for_each_device(&regulator_class, NULL, NULL,
6009                               regulator_register_resolve_supply);
6010
6011         /* If we have a full configuration then disable any regulators
6012          * we have permission to change the status for and which are
6013          * not in use or always_on.  This is effectively the default
6014          * for DT and ACPI as they have full constraints.
6015          */
6016         class_for_each_device(&regulator_class, NULL, NULL,
6017                               regulator_late_cleanup);
6018 }
6019
6020 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6021                             regulator_init_complete_work_function);
6022
6023 static int __init regulator_init_complete(void)
6024 {
6025         /*
6026          * Since DT doesn't provide an idiomatic mechanism for
6027          * enabling full constraints and since it's much more natural
6028          * with DT to provide them just assume that a DT enabled
6029          * system has full constraints.
6030          */
6031         if (of_have_populated_dt())
6032                 has_full_constraints = true;
6033
6034         /*
6035          * We punt completion for an arbitrary amount of time since
6036          * systems like distros will load many drivers from userspace
6037          * so consumers might not always be ready yet, this is
6038          * particularly an issue with laptops where this might bounce
6039          * the display off then on.  Ideally we'd get a notification
6040          * from userspace when this happens but we don't so just wait
6041          * a bit and hope we waited long enough.  It'd be better if
6042          * we'd only do this on systems that need it, and a kernel
6043          * command line option might be useful.
6044          */
6045         schedule_delayed_work(&regulator_init_complete_work,
6046                               msecs_to_jiffies(30000));
6047
6048         return 0;
6049 }
6050 late_initcall_sync(regulator_init_complete);