Mention branches and keyring.
[releases.git] / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 #include <rdma/lag.h>
54
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
57
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59                                struct rdma_ah_attr *ah_attr);
60
61 static const char * const ib_events[] = {
62         [IB_EVENT_CQ_ERR]               = "CQ error",
63         [IB_EVENT_QP_FATAL]             = "QP fatal error",
64         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
65         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
66         [IB_EVENT_COMM_EST]             = "communication established",
67         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
68         [IB_EVENT_PATH_MIG]             = "path migration successful",
69         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
70         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
71         [IB_EVENT_PORT_ACTIVE]          = "port active",
72         [IB_EVENT_PORT_ERR]             = "port error",
73         [IB_EVENT_LID_CHANGE]           = "LID change",
74         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
75         [IB_EVENT_SM_CHANGE]            = "SM change",
76         [IB_EVENT_SRQ_ERR]              = "SRQ error",
77         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
78         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
79         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
80         [IB_EVENT_GID_CHANGE]           = "GID changed",
81 };
82
83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85         size_t index = event;
86
87         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88                         ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91
92 static const char * const wc_statuses[] = {
93         [IB_WC_SUCCESS]                 = "success",
94         [IB_WC_LOC_LEN_ERR]             = "local length error",
95         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
96         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
97         [IB_WC_LOC_PROT_ERR]            = "local protection error",
98         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
99         [IB_WC_MW_BIND_ERR]             = "memory bind operation error",
100         [IB_WC_BAD_RESP_ERR]            = "bad response error",
101         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
102         [IB_WC_REM_INV_REQ_ERR]         = "remote invalid request error",
103         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
104         [IB_WC_REM_OP_ERR]              = "remote operation error",
105         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
106         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
107         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
108         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
109         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
110         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
111         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
112         [IB_WC_FATAL_ERR]               = "fatal error",
113         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
114         [IB_WC_GENERAL_ERR]             = "general error",
115 };
116
117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119         size_t index = status;
120
121         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122                         wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125
126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128         switch (rate) {
129         case IB_RATE_2_5_GBPS: return   1;
130         case IB_RATE_5_GBPS:   return   2;
131         case IB_RATE_10_GBPS:  return   4;
132         case IB_RATE_20_GBPS:  return   8;
133         case IB_RATE_30_GBPS:  return  12;
134         case IB_RATE_40_GBPS:  return  16;
135         case IB_RATE_60_GBPS:  return  24;
136         case IB_RATE_80_GBPS:  return  32;
137         case IB_RATE_120_GBPS: return  48;
138         case IB_RATE_14_GBPS:  return   6;
139         case IB_RATE_56_GBPS:  return  22;
140         case IB_RATE_112_GBPS: return  45;
141         case IB_RATE_168_GBPS: return  67;
142         case IB_RATE_25_GBPS:  return  10;
143         case IB_RATE_100_GBPS: return  40;
144         case IB_RATE_200_GBPS: return  80;
145         case IB_RATE_300_GBPS: return 120;
146         case IB_RATE_28_GBPS:  return  11;
147         case IB_RATE_50_GBPS:  return  20;
148         case IB_RATE_400_GBPS: return 160;
149         case IB_RATE_600_GBPS: return 240;
150         case IB_RATE_800_GBPS: return 320;
151         default:               return  -1;
152         }
153 }
154 EXPORT_SYMBOL(ib_rate_to_mult);
155
156 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
157 {
158         switch (mult) {
159         case 1:   return IB_RATE_2_5_GBPS;
160         case 2:   return IB_RATE_5_GBPS;
161         case 4:   return IB_RATE_10_GBPS;
162         case 8:   return IB_RATE_20_GBPS;
163         case 12:  return IB_RATE_30_GBPS;
164         case 16:  return IB_RATE_40_GBPS;
165         case 24:  return IB_RATE_60_GBPS;
166         case 32:  return IB_RATE_80_GBPS;
167         case 48:  return IB_RATE_120_GBPS;
168         case 6:   return IB_RATE_14_GBPS;
169         case 22:  return IB_RATE_56_GBPS;
170         case 45:  return IB_RATE_112_GBPS;
171         case 67:  return IB_RATE_168_GBPS;
172         case 10:  return IB_RATE_25_GBPS;
173         case 40:  return IB_RATE_100_GBPS;
174         case 80:  return IB_RATE_200_GBPS;
175         case 120: return IB_RATE_300_GBPS;
176         case 11:  return IB_RATE_28_GBPS;
177         case 20:  return IB_RATE_50_GBPS;
178         case 160: return IB_RATE_400_GBPS;
179         case 240: return IB_RATE_600_GBPS;
180         case 320: return IB_RATE_800_GBPS;
181         default:  return IB_RATE_PORT_CURRENT;
182         }
183 }
184 EXPORT_SYMBOL(mult_to_ib_rate);
185
186 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
187 {
188         switch (rate) {
189         case IB_RATE_2_5_GBPS: return 2500;
190         case IB_RATE_5_GBPS:   return 5000;
191         case IB_RATE_10_GBPS:  return 10000;
192         case IB_RATE_20_GBPS:  return 20000;
193         case IB_RATE_30_GBPS:  return 30000;
194         case IB_RATE_40_GBPS:  return 40000;
195         case IB_RATE_60_GBPS:  return 60000;
196         case IB_RATE_80_GBPS:  return 80000;
197         case IB_RATE_120_GBPS: return 120000;
198         case IB_RATE_14_GBPS:  return 14062;
199         case IB_RATE_56_GBPS:  return 56250;
200         case IB_RATE_112_GBPS: return 112500;
201         case IB_RATE_168_GBPS: return 168750;
202         case IB_RATE_25_GBPS:  return 25781;
203         case IB_RATE_100_GBPS: return 103125;
204         case IB_RATE_200_GBPS: return 206250;
205         case IB_RATE_300_GBPS: return 309375;
206         case IB_RATE_28_GBPS:  return 28125;
207         case IB_RATE_50_GBPS:  return 53125;
208         case IB_RATE_400_GBPS: return 425000;
209         case IB_RATE_600_GBPS: return 637500;
210         case IB_RATE_800_GBPS: return 850000;
211         default:               return -1;
212         }
213 }
214 EXPORT_SYMBOL(ib_rate_to_mbps);
215
216 __attribute_const__ enum rdma_transport_type
217 rdma_node_get_transport(unsigned int node_type)
218 {
219
220         if (node_type == RDMA_NODE_USNIC)
221                 return RDMA_TRANSPORT_USNIC;
222         if (node_type == RDMA_NODE_USNIC_UDP)
223                 return RDMA_TRANSPORT_USNIC_UDP;
224         if (node_type == RDMA_NODE_RNIC)
225                 return RDMA_TRANSPORT_IWARP;
226         if (node_type == RDMA_NODE_UNSPECIFIED)
227                 return RDMA_TRANSPORT_UNSPECIFIED;
228
229         return RDMA_TRANSPORT_IB;
230 }
231 EXPORT_SYMBOL(rdma_node_get_transport);
232
233 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
234                                               u32 port_num)
235 {
236         enum rdma_transport_type lt;
237         if (device->ops.get_link_layer)
238                 return device->ops.get_link_layer(device, port_num);
239
240         lt = rdma_node_get_transport(device->node_type);
241         if (lt == RDMA_TRANSPORT_IB)
242                 return IB_LINK_LAYER_INFINIBAND;
243
244         return IB_LINK_LAYER_ETHERNET;
245 }
246 EXPORT_SYMBOL(rdma_port_get_link_layer);
247
248 /* Protection domains */
249
250 /**
251  * __ib_alloc_pd - Allocates an unused protection domain.
252  * @device: The device on which to allocate the protection domain.
253  * @flags: protection domain flags
254  * @caller: caller's build-time module name
255  *
256  * A protection domain object provides an association between QPs, shared
257  * receive queues, address handles, memory regions, and memory windows.
258  *
259  * Every PD has a local_dma_lkey which can be used as the lkey value for local
260  * memory operations.
261  */
262 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
263                 const char *caller)
264 {
265         struct ib_pd *pd;
266         int mr_access_flags = 0;
267         int ret;
268
269         pd = rdma_zalloc_drv_obj(device, ib_pd);
270         if (!pd)
271                 return ERR_PTR(-ENOMEM);
272
273         pd->device = device;
274         pd->flags = flags;
275
276         rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
277         rdma_restrack_set_name(&pd->res, caller);
278
279         ret = device->ops.alloc_pd(pd, NULL);
280         if (ret) {
281                 rdma_restrack_put(&pd->res);
282                 kfree(pd);
283                 return ERR_PTR(ret);
284         }
285         rdma_restrack_add(&pd->res);
286
287         if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)
288                 pd->local_dma_lkey = device->local_dma_lkey;
289         else
290                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
291
292         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
293                 pr_warn("%s: enabling unsafe global rkey\n", caller);
294                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
295         }
296
297         if (mr_access_flags) {
298                 struct ib_mr *mr;
299
300                 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
301                 if (IS_ERR(mr)) {
302                         ib_dealloc_pd(pd);
303                         return ERR_CAST(mr);
304                 }
305
306                 mr->device      = pd->device;
307                 mr->pd          = pd;
308                 mr->type        = IB_MR_TYPE_DMA;
309                 mr->uobject     = NULL;
310                 mr->need_inval  = false;
311
312                 pd->__internal_mr = mr;
313
314                 if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY))
315                         pd->local_dma_lkey = pd->__internal_mr->lkey;
316
317                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
318                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
319         }
320
321         return pd;
322 }
323 EXPORT_SYMBOL(__ib_alloc_pd);
324
325 /**
326  * ib_dealloc_pd_user - Deallocates a protection domain.
327  * @pd: The protection domain to deallocate.
328  * @udata: Valid user data or NULL for kernel object
329  *
330  * It is an error to call this function while any resources in the pd still
331  * exist.  The caller is responsible to synchronously destroy them and
332  * guarantee no new allocations will happen.
333  */
334 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
335 {
336         int ret;
337
338         if (pd->__internal_mr) {
339                 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
340                 WARN_ON(ret);
341                 pd->__internal_mr = NULL;
342         }
343
344         ret = pd->device->ops.dealloc_pd(pd, udata);
345         if (ret)
346                 return ret;
347
348         rdma_restrack_del(&pd->res);
349         kfree(pd);
350         return ret;
351 }
352 EXPORT_SYMBOL(ib_dealloc_pd_user);
353
354 /* Address handles */
355
356 /**
357  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
358  * @dest:       Pointer to destination ah_attr. Contents of the destination
359  *              pointer is assumed to be invalid and attribute are overwritten.
360  * @src:        Pointer to source ah_attr.
361  */
362 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
363                        const struct rdma_ah_attr *src)
364 {
365         *dest = *src;
366         if (dest->grh.sgid_attr)
367                 rdma_hold_gid_attr(dest->grh.sgid_attr);
368 }
369 EXPORT_SYMBOL(rdma_copy_ah_attr);
370
371 /**
372  * rdma_replace_ah_attr - Replace valid ah_attr with new one.
373  * @old:        Pointer to existing ah_attr which needs to be replaced.
374  *              old is assumed to be valid or zero'd
375  * @new:        Pointer to the new ah_attr.
376  *
377  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
378  * old the ah_attr is valid; after that it copies the new attribute and holds
379  * the reference to the replaced ah_attr.
380  */
381 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
382                           const struct rdma_ah_attr *new)
383 {
384         rdma_destroy_ah_attr(old);
385         *old = *new;
386         if (old->grh.sgid_attr)
387                 rdma_hold_gid_attr(old->grh.sgid_attr);
388 }
389 EXPORT_SYMBOL(rdma_replace_ah_attr);
390
391 /**
392  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
393  * @dest:       Pointer to destination ah_attr to copy to.
394  *              dest is assumed to be valid or zero'd
395  * @src:        Pointer to the new ah_attr.
396  *
397  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
398  * if it is valid. This also transfers ownership of internal references from
399  * src to dest, making src invalid in the process. No new reference of the src
400  * ah_attr is taken.
401  */
402 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
403 {
404         rdma_destroy_ah_attr(dest);
405         *dest = *src;
406         src->grh.sgid_attr = NULL;
407 }
408 EXPORT_SYMBOL(rdma_move_ah_attr);
409
410 /*
411  * Validate that the rdma_ah_attr is valid for the device before passing it
412  * off to the driver.
413  */
414 static int rdma_check_ah_attr(struct ib_device *device,
415                               struct rdma_ah_attr *ah_attr)
416 {
417         if (!rdma_is_port_valid(device, ah_attr->port_num))
418                 return -EINVAL;
419
420         if ((rdma_is_grh_required(device, ah_attr->port_num) ||
421              ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
422             !(ah_attr->ah_flags & IB_AH_GRH))
423                 return -EINVAL;
424
425         if (ah_attr->grh.sgid_attr) {
426                 /*
427                  * Make sure the passed sgid_attr is consistent with the
428                  * parameters
429                  */
430                 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
431                     ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
432                         return -EINVAL;
433         }
434         return 0;
435 }
436
437 /*
438  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
439  * On success the caller is responsible to call rdma_unfill_sgid_attr().
440  */
441 static int rdma_fill_sgid_attr(struct ib_device *device,
442                                struct rdma_ah_attr *ah_attr,
443                                const struct ib_gid_attr **old_sgid_attr)
444 {
445         const struct ib_gid_attr *sgid_attr;
446         struct ib_global_route *grh;
447         int ret;
448
449         *old_sgid_attr = ah_attr->grh.sgid_attr;
450
451         ret = rdma_check_ah_attr(device, ah_attr);
452         if (ret)
453                 return ret;
454
455         if (!(ah_attr->ah_flags & IB_AH_GRH))
456                 return 0;
457
458         grh = rdma_ah_retrieve_grh(ah_attr);
459         if (grh->sgid_attr)
460                 return 0;
461
462         sgid_attr =
463                 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
464         if (IS_ERR(sgid_attr))
465                 return PTR_ERR(sgid_attr);
466
467         /* Move ownerhip of the kref into the ah_attr */
468         grh->sgid_attr = sgid_attr;
469         return 0;
470 }
471
472 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
473                                   const struct ib_gid_attr *old_sgid_attr)
474 {
475         /*
476          * Fill didn't change anything, the caller retains ownership of
477          * whatever it passed
478          */
479         if (ah_attr->grh.sgid_attr == old_sgid_attr)
480                 return;
481
482         /*
483          * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
484          * doesn't see any change in the rdma_ah_attr. If we get here
485          * old_sgid_attr is NULL.
486          */
487         rdma_destroy_ah_attr(ah_attr);
488 }
489
490 static const struct ib_gid_attr *
491 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
492                       const struct ib_gid_attr *old_attr)
493 {
494         if (old_attr)
495                 rdma_put_gid_attr(old_attr);
496         if (ah_attr->ah_flags & IB_AH_GRH) {
497                 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
498                 return ah_attr->grh.sgid_attr;
499         }
500         return NULL;
501 }
502
503 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
504                                      struct rdma_ah_attr *ah_attr,
505                                      u32 flags,
506                                      struct ib_udata *udata,
507                                      struct net_device *xmit_slave)
508 {
509         struct rdma_ah_init_attr init_attr = {};
510         struct ib_device *device = pd->device;
511         struct ib_ah *ah;
512         int ret;
513
514         might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
515
516         if (!udata && !device->ops.create_ah)
517                 return ERR_PTR(-EOPNOTSUPP);
518
519         ah = rdma_zalloc_drv_obj_gfp(
520                 device, ib_ah,
521                 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
522         if (!ah)
523                 return ERR_PTR(-ENOMEM);
524
525         ah->device = device;
526         ah->pd = pd;
527         ah->type = ah_attr->type;
528         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
529         init_attr.ah_attr = ah_attr;
530         init_attr.flags = flags;
531         init_attr.xmit_slave = xmit_slave;
532
533         if (udata)
534                 ret = device->ops.create_user_ah(ah, &init_attr, udata);
535         else
536                 ret = device->ops.create_ah(ah, &init_attr, NULL);
537         if (ret) {
538                 if (ah->sgid_attr)
539                         rdma_put_gid_attr(ah->sgid_attr);
540                 kfree(ah);
541                 return ERR_PTR(ret);
542         }
543
544         atomic_inc(&pd->usecnt);
545         return ah;
546 }
547
548 /**
549  * rdma_create_ah - Creates an address handle for the
550  * given address vector.
551  * @pd: The protection domain associated with the address handle.
552  * @ah_attr: The attributes of the address vector.
553  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
554  *
555  * It returns 0 on success and returns appropriate error code on error.
556  * The address handle is used to reference a local or global destination
557  * in all UD QP post sends.
558  */
559 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
560                              u32 flags)
561 {
562         const struct ib_gid_attr *old_sgid_attr;
563         struct net_device *slave;
564         struct ib_ah *ah;
565         int ret;
566
567         ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
568         if (ret)
569                 return ERR_PTR(ret);
570         slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
571                                            (flags & RDMA_CREATE_AH_SLEEPABLE) ?
572                                            GFP_KERNEL : GFP_ATOMIC);
573         if (IS_ERR(slave)) {
574                 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
575                 return (void *)slave;
576         }
577         ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
578         rdma_lag_put_ah_roce_slave(slave);
579         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
580         return ah;
581 }
582 EXPORT_SYMBOL(rdma_create_ah);
583
584 /**
585  * rdma_create_user_ah - Creates an address handle for the
586  * given address vector.
587  * It resolves destination mac address for ah attribute of RoCE type.
588  * @pd: The protection domain associated with the address handle.
589  * @ah_attr: The attributes of the address vector.
590  * @udata: pointer to user's input output buffer information need by
591  *         provider driver.
592  *
593  * It returns 0 on success and returns appropriate error code on error.
594  * The address handle is used to reference a local or global destination
595  * in all UD QP post sends.
596  */
597 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
598                                   struct rdma_ah_attr *ah_attr,
599                                   struct ib_udata *udata)
600 {
601         const struct ib_gid_attr *old_sgid_attr;
602         struct ib_ah *ah;
603         int err;
604
605         err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
606         if (err)
607                 return ERR_PTR(err);
608
609         if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
610                 err = ib_resolve_eth_dmac(pd->device, ah_attr);
611                 if (err) {
612                         ah = ERR_PTR(err);
613                         goto out;
614                 }
615         }
616
617         ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
618                              udata, NULL);
619
620 out:
621         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
622         return ah;
623 }
624 EXPORT_SYMBOL(rdma_create_user_ah);
625
626 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
627 {
628         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
629         struct iphdr ip4h_checked;
630         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
631
632         /* If it's IPv6, the version must be 6, otherwise, the first
633          * 20 bytes (before the IPv4 header) are garbled.
634          */
635         if (ip6h->version != 6)
636                 return (ip4h->version == 4) ? 4 : 0;
637         /* version may be 6 or 4 because the first 20 bytes could be garbled */
638
639         /* RoCE v2 requires no options, thus header length
640          * must be 5 words
641          */
642         if (ip4h->ihl != 5)
643                 return 6;
644
645         /* Verify checksum.
646          * We can't write on scattered buffers so we need to copy to
647          * temp buffer.
648          */
649         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
650         ip4h_checked.check = 0;
651         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
652         /* if IPv4 header checksum is OK, believe it */
653         if (ip4h->check == ip4h_checked.check)
654                 return 4;
655         return 6;
656 }
657 EXPORT_SYMBOL(ib_get_rdma_header_version);
658
659 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
660                                                      u32 port_num,
661                                                      const struct ib_grh *grh)
662 {
663         int grh_version;
664
665         if (rdma_protocol_ib(device, port_num))
666                 return RDMA_NETWORK_IB;
667
668         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
669
670         if (grh_version == 4)
671                 return RDMA_NETWORK_IPV4;
672
673         if (grh->next_hdr == IPPROTO_UDP)
674                 return RDMA_NETWORK_IPV6;
675
676         return RDMA_NETWORK_ROCE_V1;
677 }
678
679 struct find_gid_index_context {
680         u16 vlan_id;
681         enum ib_gid_type gid_type;
682 };
683
684 static bool find_gid_index(const union ib_gid *gid,
685                            const struct ib_gid_attr *gid_attr,
686                            void *context)
687 {
688         struct find_gid_index_context *ctx = context;
689         u16 vlan_id = 0xffff;
690         int ret;
691
692         if (ctx->gid_type != gid_attr->gid_type)
693                 return false;
694
695         ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
696         if (ret)
697                 return false;
698
699         return ctx->vlan_id == vlan_id;
700 }
701
702 static const struct ib_gid_attr *
703 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
704                        u16 vlan_id, const union ib_gid *sgid,
705                        enum ib_gid_type gid_type)
706 {
707         struct find_gid_index_context context = {.vlan_id = vlan_id,
708                                                  .gid_type = gid_type};
709
710         return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
711                                        &context);
712 }
713
714 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
715                               enum rdma_network_type net_type,
716                               union ib_gid *sgid, union ib_gid *dgid)
717 {
718         struct sockaddr_in  src_in;
719         struct sockaddr_in  dst_in;
720         __be32 src_saddr, dst_saddr;
721
722         if (!sgid || !dgid)
723                 return -EINVAL;
724
725         if (net_type == RDMA_NETWORK_IPV4) {
726                 memcpy(&src_in.sin_addr.s_addr,
727                        &hdr->roce4grh.saddr, 4);
728                 memcpy(&dst_in.sin_addr.s_addr,
729                        &hdr->roce4grh.daddr, 4);
730                 src_saddr = src_in.sin_addr.s_addr;
731                 dst_saddr = dst_in.sin_addr.s_addr;
732                 ipv6_addr_set_v4mapped(src_saddr,
733                                        (struct in6_addr *)sgid);
734                 ipv6_addr_set_v4mapped(dst_saddr,
735                                        (struct in6_addr *)dgid);
736                 return 0;
737         } else if (net_type == RDMA_NETWORK_IPV6 ||
738                    net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
739                 *dgid = hdr->ibgrh.dgid;
740                 *sgid = hdr->ibgrh.sgid;
741                 return 0;
742         } else {
743                 return -EINVAL;
744         }
745 }
746 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
747
748 /* Resolve destination mac address and hop limit for unicast destination
749  * GID entry, considering the source GID entry as well.
750  * ah_attribute must have valid port_num, sgid_index.
751  */
752 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
753                                        struct rdma_ah_attr *ah_attr)
754 {
755         struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
756         const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
757         int hop_limit = 0xff;
758         int ret = 0;
759
760         /* If destination is link local and source GID is RoCEv1,
761          * IP stack is not used.
762          */
763         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
764             sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
765                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
766                                 ah_attr->roce.dmac);
767                 return ret;
768         }
769
770         ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
771                                            ah_attr->roce.dmac,
772                                            sgid_attr, &hop_limit);
773
774         grh->hop_limit = hop_limit;
775         return ret;
776 }
777
778 /*
779  * This function initializes address handle attributes from the incoming packet.
780  * Incoming packet has dgid of the receiver node on which this code is
781  * getting executed and, sgid contains the GID of the sender.
782  *
783  * When resolving mac address of destination, the arrived dgid is used
784  * as sgid and, sgid is used as dgid because sgid contains destinations
785  * GID whom to respond to.
786  *
787  * On success the caller is responsible to call rdma_destroy_ah_attr on the
788  * attr.
789  */
790 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
791                             const struct ib_wc *wc, const struct ib_grh *grh,
792                             struct rdma_ah_attr *ah_attr)
793 {
794         u32 flow_class;
795         int ret;
796         enum rdma_network_type net_type = RDMA_NETWORK_IB;
797         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
798         const struct ib_gid_attr *sgid_attr;
799         int hoplimit = 0xff;
800         union ib_gid dgid;
801         union ib_gid sgid;
802
803         might_sleep();
804
805         memset(ah_attr, 0, sizeof *ah_attr);
806         ah_attr->type = rdma_ah_find_type(device, port_num);
807         if (rdma_cap_eth_ah(device, port_num)) {
808                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
809                         net_type = wc->network_hdr_type;
810                 else
811                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
812                 gid_type = ib_network_to_gid_type(net_type);
813         }
814         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
815                                         &sgid, &dgid);
816         if (ret)
817                 return ret;
818
819         rdma_ah_set_sl(ah_attr, wc->sl);
820         rdma_ah_set_port_num(ah_attr, port_num);
821
822         if (rdma_protocol_roce(device, port_num)) {
823                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
824                                 wc->vlan_id : 0xffff;
825
826                 if (!(wc->wc_flags & IB_WC_GRH))
827                         return -EPROTOTYPE;
828
829                 sgid_attr = get_sgid_attr_from_eth(device, port_num,
830                                                    vlan_id, &dgid,
831                                                    gid_type);
832                 if (IS_ERR(sgid_attr))
833                         return PTR_ERR(sgid_attr);
834
835                 flow_class = be32_to_cpu(grh->version_tclass_flow);
836                 rdma_move_grh_sgid_attr(ah_attr,
837                                         &sgid,
838                                         flow_class & 0xFFFFF,
839                                         hoplimit,
840                                         (flow_class >> 20) & 0xFF,
841                                         sgid_attr);
842
843                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
844                 if (ret)
845                         rdma_destroy_ah_attr(ah_attr);
846
847                 return ret;
848         } else {
849                 rdma_ah_set_dlid(ah_attr, wc->slid);
850                 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
851
852                 if ((wc->wc_flags & IB_WC_GRH) == 0)
853                         return 0;
854
855                 if (dgid.global.interface_id !=
856                                         cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
857                         sgid_attr = rdma_find_gid_by_port(
858                                 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
859                 } else
860                         sgid_attr = rdma_get_gid_attr(device, port_num, 0);
861
862                 if (IS_ERR(sgid_attr))
863                         return PTR_ERR(sgid_attr);
864                 flow_class = be32_to_cpu(grh->version_tclass_flow);
865                 rdma_move_grh_sgid_attr(ah_attr,
866                                         &sgid,
867                                         flow_class & 0xFFFFF,
868                                         hoplimit,
869                                         (flow_class >> 20) & 0xFF,
870                                         sgid_attr);
871
872                 return 0;
873         }
874 }
875 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
876
877 /**
878  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
879  * of the reference
880  *
881  * @attr:       Pointer to AH attribute structure
882  * @dgid:       Destination GID
883  * @flow_label: Flow label
884  * @hop_limit:  Hop limit
885  * @traffic_class: traffic class
886  * @sgid_attr:  Pointer to SGID attribute
887  *
888  * This takes ownership of the sgid_attr reference. The caller must ensure
889  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
890  * calling this function.
891  */
892 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
893                              u32 flow_label, u8 hop_limit, u8 traffic_class,
894                              const struct ib_gid_attr *sgid_attr)
895 {
896         rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
897                         traffic_class);
898         attr->grh.sgid_attr = sgid_attr;
899 }
900 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
901
902 /**
903  * rdma_destroy_ah_attr - Release reference to SGID attribute of
904  * ah attribute.
905  * @ah_attr: Pointer to ah attribute
906  *
907  * Release reference to the SGID attribute of the ah attribute if it is
908  * non NULL. It is safe to call this multiple times, and safe to call it on
909  * a zero initialized ah_attr.
910  */
911 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
912 {
913         if (ah_attr->grh.sgid_attr) {
914                 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
915                 ah_attr->grh.sgid_attr = NULL;
916         }
917 }
918 EXPORT_SYMBOL(rdma_destroy_ah_attr);
919
920 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
921                                    const struct ib_grh *grh, u32 port_num)
922 {
923         struct rdma_ah_attr ah_attr;
924         struct ib_ah *ah;
925         int ret;
926
927         ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
928         if (ret)
929                 return ERR_PTR(ret);
930
931         ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
932
933         rdma_destroy_ah_attr(&ah_attr);
934         return ah;
935 }
936 EXPORT_SYMBOL(ib_create_ah_from_wc);
937
938 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
939 {
940         const struct ib_gid_attr *old_sgid_attr;
941         int ret;
942
943         if (ah->type != ah_attr->type)
944                 return -EINVAL;
945
946         ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
947         if (ret)
948                 return ret;
949
950         ret = ah->device->ops.modify_ah ?
951                 ah->device->ops.modify_ah(ah, ah_attr) :
952                 -EOPNOTSUPP;
953
954         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
955         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
956         return ret;
957 }
958 EXPORT_SYMBOL(rdma_modify_ah);
959
960 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
961 {
962         ah_attr->grh.sgid_attr = NULL;
963
964         return ah->device->ops.query_ah ?
965                 ah->device->ops.query_ah(ah, ah_attr) :
966                 -EOPNOTSUPP;
967 }
968 EXPORT_SYMBOL(rdma_query_ah);
969
970 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
971 {
972         const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
973         struct ib_pd *pd;
974         int ret;
975
976         might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
977
978         pd = ah->pd;
979
980         ret = ah->device->ops.destroy_ah(ah, flags);
981         if (ret)
982                 return ret;
983
984         atomic_dec(&pd->usecnt);
985         if (sgid_attr)
986                 rdma_put_gid_attr(sgid_attr);
987
988         kfree(ah);
989         return ret;
990 }
991 EXPORT_SYMBOL(rdma_destroy_ah_user);
992
993 /* Shared receive queues */
994
995 /**
996  * ib_create_srq_user - Creates a SRQ associated with the specified protection
997  *   domain.
998  * @pd: The protection domain associated with the SRQ.
999  * @srq_init_attr: A list of initial attributes required to create the
1000  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1001  *   the actual capabilities of the created SRQ.
1002  * @uobject: uobject pointer if this is not a kernel SRQ
1003  * @udata: udata pointer if this is not a kernel SRQ
1004  *
1005  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1006  * requested size of the SRQ, and set to the actual values allocated
1007  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1008  * will always be at least as large as the requested values.
1009  */
1010 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1011                                   struct ib_srq_init_attr *srq_init_attr,
1012                                   struct ib_usrq_object *uobject,
1013                                   struct ib_udata *udata)
1014 {
1015         struct ib_srq *srq;
1016         int ret;
1017
1018         srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1019         if (!srq)
1020                 return ERR_PTR(-ENOMEM);
1021
1022         srq->device = pd->device;
1023         srq->pd = pd;
1024         srq->event_handler = srq_init_attr->event_handler;
1025         srq->srq_context = srq_init_attr->srq_context;
1026         srq->srq_type = srq_init_attr->srq_type;
1027         srq->uobject = uobject;
1028
1029         if (ib_srq_has_cq(srq->srq_type)) {
1030                 srq->ext.cq = srq_init_attr->ext.cq;
1031                 atomic_inc(&srq->ext.cq->usecnt);
1032         }
1033         if (srq->srq_type == IB_SRQT_XRC) {
1034                 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1035                 if (srq->ext.xrc.xrcd)
1036                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1037         }
1038         atomic_inc(&pd->usecnt);
1039
1040         rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1041         rdma_restrack_parent_name(&srq->res, &pd->res);
1042
1043         ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1044         if (ret) {
1045                 rdma_restrack_put(&srq->res);
1046                 atomic_dec(&pd->usecnt);
1047                 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1048                         atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1049                 if (ib_srq_has_cq(srq->srq_type))
1050                         atomic_dec(&srq->ext.cq->usecnt);
1051                 kfree(srq);
1052                 return ERR_PTR(ret);
1053         }
1054
1055         rdma_restrack_add(&srq->res);
1056
1057         return srq;
1058 }
1059 EXPORT_SYMBOL(ib_create_srq_user);
1060
1061 int ib_modify_srq(struct ib_srq *srq,
1062                   struct ib_srq_attr *srq_attr,
1063                   enum ib_srq_attr_mask srq_attr_mask)
1064 {
1065         return srq->device->ops.modify_srq ?
1066                 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1067                                             NULL) : -EOPNOTSUPP;
1068 }
1069 EXPORT_SYMBOL(ib_modify_srq);
1070
1071 int ib_query_srq(struct ib_srq *srq,
1072                  struct ib_srq_attr *srq_attr)
1073 {
1074         return srq->device->ops.query_srq ?
1075                 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1076 }
1077 EXPORT_SYMBOL(ib_query_srq);
1078
1079 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1080 {
1081         int ret;
1082
1083         if (atomic_read(&srq->usecnt))
1084                 return -EBUSY;
1085
1086         ret = srq->device->ops.destroy_srq(srq, udata);
1087         if (ret)
1088                 return ret;
1089
1090         atomic_dec(&srq->pd->usecnt);
1091         if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1092                 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1093         if (ib_srq_has_cq(srq->srq_type))
1094                 atomic_dec(&srq->ext.cq->usecnt);
1095         rdma_restrack_del(&srq->res);
1096         kfree(srq);
1097
1098         return ret;
1099 }
1100 EXPORT_SYMBOL(ib_destroy_srq_user);
1101
1102 /* Queue pairs */
1103
1104 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1105 {
1106         struct ib_qp *qp = context;
1107         unsigned long flags;
1108
1109         spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1110         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1111                 if (event->element.qp->event_handler)
1112                         event->element.qp->event_handler(event, event->element.qp->qp_context);
1113         spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1114 }
1115
1116 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1117                                   void (*event_handler)(struct ib_event *, void *),
1118                                   void *qp_context)
1119 {
1120         struct ib_qp *qp;
1121         unsigned long flags;
1122         int err;
1123
1124         qp = kzalloc(sizeof *qp, GFP_KERNEL);
1125         if (!qp)
1126                 return ERR_PTR(-ENOMEM);
1127
1128         qp->real_qp = real_qp;
1129         err = ib_open_shared_qp_security(qp, real_qp->device);
1130         if (err) {
1131                 kfree(qp);
1132                 return ERR_PTR(err);
1133         }
1134
1135         qp->real_qp = real_qp;
1136         atomic_inc(&real_qp->usecnt);
1137         qp->device = real_qp->device;
1138         qp->event_handler = event_handler;
1139         qp->qp_context = qp_context;
1140         qp->qp_num = real_qp->qp_num;
1141         qp->qp_type = real_qp->qp_type;
1142
1143         spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1144         list_add(&qp->open_list, &real_qp->open_list);
1145         spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1146
1147         return qp;
1148 }
1149
1150 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1151                          struct ib_qp_open_attr *qp_open_attr)
1152 {
1153         struct ib_qp *qp, *real_qp;
1154
1155         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1156                 return ERR_PTR(-EINVAL);
1157
1158         down_read(&xrcd->tgt_qps_rwsem);
1159         real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1160         if (!real_qp) {
1161                 up_read(&xrcd->tgt_qps_rwsem);
1162                 return ERR_PTR(-EINVAL);
1163         }
1164         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1165                           qp_open_attr->qp_context);
1166         up_read(&xrcd->tgt_qps_rwsem);
1167         return qp;
1168 }
1169 EXPORT_SYMBOL(ib_open_qp);
1170
1171 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1172                                         struct ib_qp_init_attr *qp_init_attr)
1173 {
1174         struct ib_qp *real_qp = qp;
1175         int err;
1176
1177         qp->event_handler = __ib_shared_qp_event_handler;
1178         qp->qp_context = qp;
1179         qp->pd = NULL;
1180         qp->send_cq = qp->recv_cq = NULL;
1181         qp->srq = NULL;
1182         qp->xrcd = qp_init_attr->xrcd;
1183         atomic_inc(&qp_init_attr->xrcd->usecnt);
1184         INIT_LIST_HEAD(&qp->open_list);
1185
1186         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1187                           qp_init_attr->qp_context);
1188         if (IS_ERR(qp))
1189                 return qp;
1190
1191         err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1192                               real_qp, GFP_KERNEL));
1193         if (err) {
1194                 ib_close_qp(qp);
1195                 return ERR_PTR(err);
1196         }
1197         return qp;
1198 }
1199
1200 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1201                                struct ib_qp_init_attr *attr,
1202                                struct ib_udata *udata,
1203                                struct ib_uqp_object *uobj, const char *caller)
1204 {
1205         struct ib_udata dummy = {};
1206         struct ib_qp *qp;
1207         int ret;
1208
1209         if (!dev->ops.create_qp)
1210                 return ERR_PTR(-EOPNOTSUPP);
1211
1212         qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1213         if (!qp)
1214                 return ERR_PTR(-ENOMEM);
1215
1216         qp->device = dev;
1217         qp->pd = pd;
1218         qp->uobject = uobj;
1219         qp->real_qp = qp;
1220
1221         qp->qp_type = attr->qp_type;
1222         qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1223         qp->srq = attr->srq;
1224         qp->event_handler = attr->event_handler;
1225         qp->port = attr->port_num;
1226         qp->qp_context = attr->qp_context;
1227
1228         spin_lock_init(&qp->mr_lock);
1229         INIT_LIST_HEAD(&qp->rdma_mrs);
1230         INIT_LIST_HEAD(&qp->sig_mrs);
1231
1232         qp->send_cq = attr->send_cq;
1233         qp->recv_cq = attr->recv_cq;
1234
1235         rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1236         WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1237         rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1238         ret = dev->ops.create_qp(qp, attr, udata);
1239         if (ret)
1240                 goto err_create;
1241
1242         /*
1243          * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1244          * Unfortunately, it is not an easy task to fix that driver.
1245          */
1246         qp->send_cq = attr->send_cq;
1247         qp->recv_cq = attr->recv_cq;
1248
1249         ret = ib_create_qp_security(qp, dev);
1250         if (ret)
1251                 goto err_security;
1252
1253         rdma_restrack_add(&qp->res);
1254         return qp;
1255
1256 err_security:
1257         qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1258 err_create:
1259         rdma_restrack_put(&qp->res);
1260         kfree(qp);
1261         return ERR_PTR(ret);
1262
1263 }
1264
1265 /**
1266  * ib_create_qp_user - Creates a QP associated with the specified protection
1267  *   domain.
1268  * @dev: IB device
1269  * @pd: The protection domain associated with the QP.
1270  * @attr: A list of initial attributes required to create the
1271  *   QP.  If QP creation succeeds, then the attributes are updated to
1272  *   the actual capabilities of the created QP.
1273  * @udata: User data
1274  * @uobj: uverbs obect
1275  * @caller: caller's build-time module name
1276  */
1277 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1278                                 struct ib_qp_init_attr *attr,
1279                                 struct ib_udata *udata,
1280                                 struct ib_uqp_object *uobj, const char *caller)
1281 {
1282         struct ib_qp *qp, *xrc_qp;
1283
1284         if (attr->qp_type == IB_QPT_XRC_TGT)
1285                 qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1286         else
1287                 qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1288         if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1289                 return qp;
1290
1291         xrc_qp = create_xrc_qp_user(qp, attr);
1292         if (IS_ERR(xrc_qp)) {
1293                 ib_destroy_qp(qp);
1294                 return xrc_qp;
1295         }
1296
1297         xrc_qp->uobject = uobj;
1298         return xrc_qp;
1299 }
1300 EXPORT_SYMBOL(ib_create_qp_user);
1301
1302 void ib_qp_usecnt_inc(struct ib_qp *qp)
1303 {
1304         if (qp->pd)
1305                 atomic_inc(&qp->pd->usecnt);
1306         if (qp->send_cq)
1307                 atomic_inc(&qp->send_cq->usecnt);
1308         if (qp->recv_cq)
1309                 atomic_inc(&qp->recv_cq->usecnt);
1310         if (qp->srq)
1311                 atomic_inc(&qp->srq->usecnt);
1312         if (qp->rwq_ind_tbl)
1313                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1314 }
1315 EXPORT_SYMBOL(ib_qp_usecnt_inc);
1316
1317 void ib_qp_usecnt_dec(struct ib_qp *qp)
1318 {
1319         if (qp->rwq_ind_tbl)
1320                 atomic_dec(&qp->rwq_ind_tbl->usecnt);
1321         if (qp->srq)
1322                 atomic_dec(&qp->srq->usecnt);
1323         if (qp->recv_cq)
1324                 atomic_dec(&qp->recv_cq->usecnt);
1325         if (qp->send_cq)
1326                 atomic_dec(&qp->send_cq->usecnt);
1327         if (qp->pd)
1328                 atomic_dec(&qp->pd->usecnt);
1329 }
1330 EXPORT_SYMBOL(ib_qp_usecnt_dec);
1331
1332 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1333                                   struct ib_qp_init_attr *qp_init_attr,
1334                                   const char *caller)
1335 {
1336         struct ib_device *device = pd->device;
1337         struct ib_qp *qp;
1338         int ret;
1339
1340         /*
1341          * If the callers is using the RDMA API calculate the resources
1342          * needed for the RDMA READ/WRITE operations.
1343          *
1344          * Note that these callers need to pass in a port number.
1345          */
1346         if (qp_init_attr->cap.max_rdma_ctxs)
1347                 rdma_rw_init_qp(device, qp_init_attr);
1348
1349         qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1350         if (IS_ERR(qp))
1351                 return qp;
1352
1353         ib_qp_usecnt_inc(qp);
1354
1355         if (qp_init_attr->cap.max_rdma_ctxs) {
1356                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1357                 if (ret)
1358                         goto err;
1359         }
1360
1361         /*
1362          * Note: all hw drivers guarantee that max_send_sge is lower than
1363          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1364          * max_send_sge <= max_sge_rd.
1365          */
1366         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1367         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1368                                  device->attrs.max_sge_rd);
1369         if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1370                 qp->integrity_en = true;
1371
1372         return qp;
1373
1374 err:
1375         ib_destroy_qp(qp);
1376         return ERR_PTR(ret);
1377
1378 }
1379 EXPORT_SYMBOL(ib_create_qp_kernel);
1380
1381 static const struct {
1382         int                     valid;
1383         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1384         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1385 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1386         [IB_QPS_RESET] = {
1387                 [IB_QPS_RESET] = { .valid = 1 },
1388                 [IB_QPS_INIT]  = {
1389                         .valid = 1,
1390                         .req_param = {
1391                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1392                                                 IB_QP_PORT                      |
1393                                                 IB_QP_QKEY),
1394                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1395                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1396                                                 IB_QP_PORT                      |
1397                                                 IB_QP_ACCESS_FLAGS),
1398                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1399                                                 IB_QP_PORT                      |
1400                                                 IB_QP_ACCESS_FLAGS),
1401                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1402                                                 IB_QP_PORT                      |
1403                                                 IB_QP_ACCESS_FLAGS),
1404                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1405                                                 IB_QP_PORT                      |
1406                                                 IB_QP_ACCESS_FLAGS),
1407                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1408                                                 IB_QP_QKEY),
1409                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1410                                                 IB_QP_QKEY),
1411                         }
1412                 },
1413         },
1414         [IB_QPS_INIT]  = {
1415                 [IB_QPS_RESET] = { .valid = 1 },
1416                 [IB_QPS_ERR] =   { .valid = 1 },
1417                 [IB_QPS_INIT]  = {
1418                         .valid = 1,
1419                         .opt_param = {
1420                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1421                                                 IB_QP_PORT                      |
1422                                                 IB_QP_QKEY),
1423                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1424                                                 IB_QP_PORT                      |
1425                                                 IB_QP_ACCESS_FLAGS),
1426                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1427                                                 IB_QP_PORT                      |
1428                                                 IB_QP_ACCESS_FLAGS),
1429                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1430                                                 IB_QP_PORT                      |
1431                                                 IB_QP_ACCESS_FLAGS),
1432                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1433                                                 IB_QP_PORT                      |
1434                                                 IB_QP_ACCESS_FLAGS),
1435                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1436                                                 IB_QP_QKEY),
1437                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1438                                                 IB_QP_QKEY),
1439                         }
1440                 },
1441                 [IB_QPS_RTR]   = {
1442                         .valid = 1,
1443                         .req_param = {
1444                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1445                                                 IB_QP_PATH_MTU                  |
1446                                                 IB_QP_DEST_QPN                  |
1447                                                 IB_QP_RQ_PSN),
1448                                 [IB_QPT_RC]  = (IB_QP_AV                        |
1449                                                 IB_QP_PATH_MTU                  |
1450                                                 IB_QP_DEST_QPN                  |
1451                                                 IB_QP_RQ_PSN                    |
1452                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1453                                                 IB_QP_MIN_RNR_TIMER),
1454                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1455                                                 IB_QP_PATH_MTU                  |
1456                                                 IB_QP_DEST_QPN                  |
1457                                                 IB_QP_RQ_PSN),
1458                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1459                                                 IB_QP_PATH_MTU                  |
1460                                                 IB_QP_DEST_QPN                  |
1461                                                 IB_QP_RQ_PSN                    |
1462                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1463                                                 IB_QP_MIN_RNR_TIMER),
1464                         },
1465                         .opt_param = {
1466                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1467                                                  IB_QP_QKEY),
1468                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1469                                                  IB_QP_ACCESS_FLAGS             |
1470                                                  IB_QP_PKEY_INDEX),
1471                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1472                                                  IB_QP_ACCESS_FLAGS             |
1473                                                  IB_QP_PKEY_INDEX),
1474                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1475                                                  IB_QP_ACCESS_FLAGS             |
1476                                                  IB_QP_PKEY_INDEX),
1477                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1478                                                  IB_QP_ACCESS_FLAGS             |
1479                                                  IB_QP_PKEY_INDEX),
1480                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1481                                                  IB_QP_QKEY),
1482                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1483                                                  IB_QP_QKEY),
1484                          },
1485                 },
1486         },
1487         [IB_QPS_RTR]   = {
1488                 [IB_QPS_RESET] = { .valid = 1 },
1489                 [IB_QPS_ERR] =   { .valid = 1 },
1490                 [IB_QPS_RTS]   = {
1491                         .valid = 1,
1492                         .req_param = {
1493                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
1494                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
1495                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1496                                                 IB_QP_RETRY_CNT                 |
1497                                                 IB_QP_RNR_RETRY                 |
1498                                                 IB_QP_SQ_PSN                    |
1499                                                 IB_QP_MAX_QP_RD_ATOMIC),
1500                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1501                                                 IB_QP_RETRY_CNT                 |
1502                                                 IB_QP_RNR_RETRY                 |
1503                                                 IB_QP_SQ_PSN                    |
1504                                                 IB_QP_MAX_QP_RD_ATOMIC),
1505                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1506                                                 IB_QP_SQ_PSN),
1507                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1508                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1509                         },
1510                         .opt_param = {
1511                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1512                                                  IB_QP_QKEY),
1513                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1514                                                  IB_QP_ALT_PATH                 |
1515                                                  IB_QP_ACCESS_FLAGS             |
1516                                                  IB_QP_PATH_MIG_STATE),
1517                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1518                                                  IB_QP_ALT_PATH                 |
1519                                                  IB_QP_ACCESS_FLAGS             |
1520                                                  IB_QP_MIN_RNR_TIMER            |
1521                                                  IB_QP_PATH_MIG_STATE),
1522                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1523                                                  IB_QP_ALT_PATH                 |
1524                                                  IB_QP_ACCESS_FLAGS             |
1525                                                  IB_QP_PATH_MIG_STATE),
1526                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1527                                                  IB_QP_ALT_PATH                 |
1528                                                  IB_QP_ACCESS_FLAGS             |
1529                                                  IB_QP_MIN_RNR_TIMER            |
1530                                                  IB_QP_PATH_MIG_STATE),
1531                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1532                                                  IB_QP_QKEY),
1533                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1534                                                  IB_QP_QKEY),
1535                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1536                          }
1537                 }
1538         },
1539         [IB_QPS_RTS]   = {
1540                 [IB_QPS_RESET] = { .valid = 1 },
1541                 [IB_QPS_ERR] =   { .valid = 1 },
1542                 [IB_QPS_RTS]   = {
1543                         .valid = 1,
1544                         .opt_param = {
1545                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1546                                                 IB_QP_QKEY),
1547                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1548                                                 IB_QP_ACCESS_FLAGS              |
1549                                                 IB_QP_ALT_PATH                  |
1550                                                 IB_QP_PATH_MIG_STATE),
1551                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1552                                                 IB_QP_ACCESS_FLAGS              |
1553                                                 IB_QP_ALT_PATH                  |
1554                                                 IB_QP_PATH_MIG_STATE            |
1555                                                 IB_QP_MIN_RNR_TIMER),
1556                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1557                                                 IB_QP_ACCESS_FLAGS              |
1558                                                 IB_QP_ALT_PATH                  |
1559                                                 IB_QP_PATH_MIG_STATE),
1560                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1561                                                 IB_QP_ACCESS_FLAGS              |
1562                                                 IB_QP_ALT_PATH                  |
1563                                                 IB_QP_PATH_MIG_STATE            |
1564                                                 IB_QP_MIN_RNR_TIMER),
1565                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1566                                                 IB_QP_QKEY),
1567                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1568                                                 IB_QP_QKEY),
1569                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1570                         }
1571                 },
1572                 [IB_QPS_SQD]   = {
1573                         .valid = 1,
1574                         .opt_param = {
1575                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1576                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1577                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1578                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1579                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1580                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1581                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1582                         }
1583                 },
1584         },
1585         [IB_QPS_SQD]   = {
1586                 [IB_QPS_RESET] = { .valid = 1 },
1587                 [IB_QPS_ERR] =   { .valid = 1 },
1588                 [IB_QPS_RTS]   = {
1589                         .valid = 1,
1590                         .opt_param = {
1591                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1592                                                 IB_QP_QKEY),
1593                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1594                                                 IB_QP_ALT_PATH                  |
1595                                                 IB_QP_ACCESS_FLAGS              |
1596                                                 IB_QP_PATH_MIG_STATE),
1597                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1598                                                 IB_QP_ALT_PATH                  |
1599                                                 IB_QP_ACCESS_FLAGS              |
1600                                                 IB_QP_MIN_RNR_TIMER             |
1601                                                 IB_QP_PATH_MIG_STATE),
1602                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1603                                                 IB_QP_ALT_PATH                  |
1604                                                 IB_QP_ACCESS_FLAGS              |
1605                                                 IB_QP_PATH_MIG_STATE),
1606                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1607                                                 IB_QP_ALT_PATH                  |
1608                                                 IB_QP_ACCESS_FLAGS              |
1609                                                 IB_QP_MIN_RNR_TIMER             |
1610                                                 IB_QP_PATH_MIG_STATE),
1611                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1612                                                 IB_QP_QKEY),
1613                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1614                                                 IB_QP_QKEY),
1615                         }
1616                 },
1617                 [IB_QPS_SQD]   = {
1618                         .valid = 1,
1619                         .opt_param = {
1620                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1621                                                 IB_QP_QKEY),
1622                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1623                                                 IB_QP_ALT_PATH                  |
1624                                                 IB_QP_ACCESS_FLAGS              |
1625                                                 IB_QP_PKEY_INDEX                |
1626                                                 IB_QP_PATH_MIG_STATE),
1627                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1628                                                 IB_QP_AV                        |
1629                                                 IB_QP_TIMEOUT                   |
1630                                                 IB_QP_RETRY_CNT                 |
1631                                                 IB_QP_RNR_RETRY                 |
1632                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1633                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1634                                                 IB_QP_ALT_PATH                  |
1635                                                 IB_QP_ACCESS_FLAGS              |
1636                                                 IB_QP_PKEY_INDEX                |
1637                                                 IB_QP_MIN_RNR_TIMER             |
1638                                                 IB_QP_PATH_MIG_STATE),
1639                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1640                                                 IB_QP_AV                        |
1641                                                 IB_QP_TIMEOUT                   |
1642                                                 IB_QP_RETRY_CNT                 |
1643                                                 IB_QP_RNR_RETRY                 |
1644                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1645                                                 IB_QP_ALT_PATH                  |
1646                                                 IB_QP_ACCESS_FLAGS              |
1647                                                 IB_QP_PKEY_INDEX                |
1648                                                 IB_QP_PATH_MIG_STATE),
1649                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1650                                                 IB_QP_AV                        |
1651                                                 IB_QP_TIMEOUT                   |
1652                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1653                                                 IB_QP_ALT_PATH                  |
1654                                                 IB_QP_ACCESS_FLAGS              |
1655                                                 IB_QP_PKEY_INDEX                |
1656                                                 IB_QP_MIN_RNR_TIMER             |
1657                                                 IB_QP_PATH_MIG_STATE),
1658                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1659                                                 IB_QP_QKEY),
1660                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1661                                                 IB_QP_QKEY),
1662                         }
1663                 }
1664         },
1665         [IB_QPS_SQE]   = {
1666                 [IB_QPS_RESET] = { .valid = 1 },
1667                 [IB_QPS_ERR] =   { .valid = 1 },
1668                 [IB_QPS_RTS]   = {
1669                         .valid = 1,
1670                         .opt_param = {
1671                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1672                                                 IB_QP_QKEY),
1673                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1674                                                 IB_QP_ACCESS_FLAGS),
1675                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1676                                                 IB_QP_QKEY),
1677                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1678                                                 IB_QP_QKEY),
1679                         }
1680                 }
1681         },
1682         [IB_QPS_ERR] = {
1683                 [IB_QPS_RESET] = { .valid = 1 },
1684                 [IB_QPS_ERR] =   { .valid = 1 }
1685         }
1686 };
1687
1688 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1689                         enum ib_qp_type type, enum ib_qp_attr_mask mask)
1690 {
1691         enum ib_qp_attr_mask req_param, opt_param;
1692
1693         if (mask & IB_QP_CUR_STATE  &&
1694             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1695             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1696                 return false;
1697
1698         if (!qp_state_table[cur_state][next_state].valid)
1699                 return false;
1700
1701         req_param = qp_state_table[cur_state][next_state].req_param[type];
1702         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1703
1704         if ((mask & req_param) != req_param)
1705                 return false;
1706
1707         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1708                 return false;
1709
1710         return true;
1711 }
1712 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1713
1714 /**
1715  * ib_resolve_eth_dmac - Resolve destination mac address
1716  * @device:             Device to consider
1717  * @ah_attr:            address handle attribute which describes the
1718  *                      source and destination parameters
1719  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1720  * returns 0 on success or appropriate error code. It initializes the
1721  * necessary ah_attr fields when call is successful.
1722  */
1723 static int ib_resolve_eth_dmac(struct ib_device *device,
1724                                struct rdma_ah_attr *ah_attr)
1725 {
1726         int ret = 0;
1727
1728         if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1729                 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1730                         __be32 addr = 0;
1731
1732                         memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1733                         ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1734                 } else {
1735                         ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1736                                         (char *)ah_attr->roce.dmac);
1737                 }
1738         } else {
1739                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1740         }
1741         return ret;
1742 }
1743
1744 static bool is_qp_type_connected(const struct ib_qp *qp)
1745 {
1746         return (qp->qp_type == IB_QPT_UC ||
1747                 qp->qp_type == IB_QPT_RC ||
1748                 qp->qp_type == IB_QPT_XRC_INI ||
1749                 qp->qp_type == IB_QPT_XRC_TGT);
1750 }
1751
1752 /*
1753  * IB core internal function to perform QP attributes modification.
1754  */
1755 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1756                          int attr_mask, struct ib_udata *udata)
1757 {
1758         u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1759         const struct ib_gid_attr *old_sgid_attr_av;
1760         const struct ib_gid_attr *old_sgid_attr_alt_av;
1761         int ret;
1762
1763         attr->xmit_slave = NULL;
1764         if (attr_mask & IB_QP_AV) {
1765                 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1766                                           &old_sgid_attr_av);
1767                 if (ret)
1768                         return ret;
1769
1770                 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1771                     is_qp_type_connected(qp)) {
1772                         struct net_device *slave;
1773
1774                         /*
1775                          * If the user provided the qp_attr then we have to
1776                          * resolve it. Kerne users have to provide already
1777                          * resolved rdma_ah_attr's.
1778                          */
1779                         if (udata) {
1780                                 ret = ib_resolve_eth_dmac(qp->device,
1781                                                           &attr->ah_attr);
1782                                 if (ret)
1783                                         goto out_av;
1784                         }
1785                         slave = rdma_lag_get_ah_roce_slave(qp->device,
1786                                                            &attr->ah_attr,
1787                                                            GFP_KERNEL);
1788                         if (IS_ERR(slave)) {
1789                                 ret = PTR_ERR(slave);
1790                                 goto out_av;
1791                         }
1792                         attr->xmit_slave = slave;
1793                 }
1794         }
1795         if (attr_mask & IB_QP_ALT_PATH) {
1796                 /*
1797                  * FIXME: This does not track the migration state, so if the
1798                  * user loads a new alternate path after the HW has migrated
1799                  * from primary->alternate we will keep the wrong
1800                  * references. This is OK for IB because the reference
1801                  * counting does not serve any functional purpose.
1802                  */
1803                 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1804                                           &old_sgid_attr_alt_av);
1805                 if (ret)
1806                         goto out_av;
1807
1808                 /*
1809                  * Today the core code can only handle alternate paths and APM
1810                  * for IB. Ban them in roce mode.
1811                  */
1812                 if (!(rdma_protocol_ib(qp->device,
1813                                        attr->alt_ah_attr.port_num) &&
1814                       rdma_protocol_ib(qp->device, port))) {
1815                         ret = -EINVAL;
1816                         goto out;
1817                 }
1818         }
1819
1820         if (rdma_ib_or_roce(qp->device, port)) {
1821                 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1822                         dev_warn(&qp->device->dev,
1823                                  "%s rq_psn overflow, masking to 24 bits\n",
1824                                  __func__);
1825                         attr->rq_psn &= 0xffffff;
1826                 }
1827
1828                 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1829                         dev_warn(&qp->device->dev,
1830                                  " %s sq_psn overflow, masking to 24 bits\n",
1831                                  __func__);
1832                         attr->sq_psn &= 0xffffff;
1833                 }
1834         }
1835
1836         /*
1837          * Bind this qp to a counter automatically based on the rdma counter
1838          * rules. This only set in RST2INIT with port specified
1839          */
1840         if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1841             ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1842                 rdma_counter_bind_qp_auto(qp, attr->port_num);
1843
1844         ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1845         if (ret)
1846                 goto out;
1847
1848         if (attr_mask & IB_QP_PORT)
1849                 qp->port = attr->port_num;
1850         if (attr_mask & IB_QP_AV)
1851                 qp->av_sgid_attr =
1852                         rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1853         if (attr_mask & IB_QP_ALT_PATH)
1854                 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1855                         &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1856
1857 out:
1858         if (attr_mask & IB_QP_ALT_PATH)
1859                 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1860 out_av:
1861         if (attr_mask & IB_QP_AV) {
1862                 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1863                 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1864         }
1865         return ret;
1866 }
1867
1868 /**
1869  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1870  * @ib_qp: The QP to modify.
1871  * @attr: On input, specifies the QP attributes to modify.  On output,
1872  *   the current values of selected QP attributes are returned.
1873  * @attr_mask: A bit-mask used to specify which attributes of the QP
1874  *   are being modified.
1875  * @udata: pointer to user's input output buffer information
1876  *   are being modified.
1877  * It returns 0 on success and returns appropriate error code on error.
1878  */
1879 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1880                             int attr_mask, struct ib_udata *udata)
1881 {
1882         return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1883 }
1884 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1885
1886 static void ib_get_width_and_speed(u32 netdev_speed, u32 lanes,
1887                                    u16 *speed, u8 *width)
1888 {
1889         if (!lanes) {
1890                 if (netdev_speed <= SPEED_1000) {
1891                         *width = IB_WIDTH_1X;
1892                         *speed = IB_SPEED_SDR;
1893                 } else if (netdev_speed <= SPEED_10000) {
1894                         *width = IB_WIDTH_1X;
1895                         *speed = IB_SPEED_FDR10;
1896                 } else if (netdev_speed <= SPEED_20000) {
1897                         *width = IB_WIDTH_4X;
1898                         *speed = IB_SPEED_DDR;
1899                 } else if (netdev_speed <= SPEED_25000) {
1900                         *width = IB_WIDTH_1X;
1901                         *speed = IB_SPEED_EDR;
1902                 } else if (netdev_speed <= SPEED_40000) {
1903                         *width = IB_WIDTH_4X;
1904                         *speed = IB_SPEED_FDR10;
1905                 } else if (netdev_speed <= SPEED_50000) {
1906                         *width = IB_WIDTH_2X;
1907                         *speed = IB_SPEED_EDR;
1908                 } else if (netdev_speed <= SPEED_100000) {
1909                         *width = IB_WIDTH_4X;
1910                         *speed = IB_SPEED_EDR;
1911                 } else if (netdev_speed <= SPEED_200000) {
1912                         *width = IB_WIDTH_4X;
1913                         *speed = IB_SPEED_HDR;
1914                 } else {
1915                         *width = IB_WIDTH_4X;
1916                         *speed = IB_SPEED_NDR;
1917                 }
1918
1919                 return;
1920         }
1921
1922         switch (lanes) {
1923         case 1:
1924                 *width = IB_WIDTH_1X;
1925                 break;
1926         case 2:
1927                 *width = IB_WIDTH_2X;
1928                 break;
1929         case 4:
1930                 *width = IB_WIDTH_4X;
1931                 break;
1932         case 8:
1933                 *width = IB_WIDTH_8X;
1934                 break;
1935         case 12:
1936                 *width = IB_WIDTH_12X;
1937                 break;
1938         default:
1939                 *width = IB_WIDTH_1X;
1940         }
1941
1942         switch (netdev_speed / lanes) {
1943         case SPEED_2500:
1944                 *speed = IB_SPEED_SDR;
1945                 break;
1946         case SPEED_5000:
1947                 *speed = IB_SPEED_DDR;
1948                 break;
1949         case SPEED_10000:
1950                 *speed = IB_SPEED_FDR10;
1951                 break;
1952         case SPEED_14000:
1953                 *speed = IB_SPEED_FDR;
1954                 break;
1955         case SPEED_25000:
1956                 *speed = IB_SPEED_EDR;
1957                 break;
1958         case SPEED_50000:
1959                 *speed = IB_SPEED_HDR;
1960                 break;
1961         case SPEED_100000:
1962                 *speed = IB_SPEED_NDR;
1963                 break;
1964         default:
1965                 *speed = IB_SPEED_SDR;
1966         }
1967 }
1968
1969 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1970 {
1971         int rc;
1972         u32 netdev_speed;
1973         struct net_device *netdev;
1974         struct ethtool_link_ksettings lksettings = {};
1975
1976         if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1977                 return -EINVAL;
1978
1979         netdev = ib_device_get_netdev(dev, port_num);
1980         if (!netdev)
1981                 return -ENODEV;
1982
1983         rtnl_lock();
1984         rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1985         rtnl_unlock();
1986
1987         dev_put(netdev);
1988
1989         if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1990                 netdev_speed = lksettings.base.speed;
1991         } else {
1992                 netdev_speed = SPEED_1000;
1993                 if (rc)
1994                         pr_warn("%s speed is unknown, defaulting to %u\n",
1995                                 netdev->name, netdev_speed);
1996         }
1997
1998         ib_get_width_and_speed(netdev_speed, lksettings.lanes,
1999                                speed, width);
2000
2001         return 0;
2002 }
2003 EXPORT_SYMBOL(ib_get_eth_speed);
2004
2005 int ib_modify_qp(struct ib_qp *qp,
2006                  struct ib_qp_attr *qp_attr,
2007                  int qp_attr_mask)
2008 {
2009         return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
2010 }
2011 EXPORT_SYMBOL(ib_modify_qp);
2012
2013 int ib_query_qp(struct ib_qp *qp,
2014                 struct ib_qp_attr *qp_attr,
2015                 int qp_attr_mask,
2016                 struct ib_qp_init_attr *qp_init_attr)
2017 {
2018         qp_attr->ah_attr.grh.sgid_attr = NULL;
2019         qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
2020
2021         return qp->device->ops.query_qp ?
2022                 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
2023                                          qp_init_attr) : -EOPNOTSUPP;
2024 }
2025 EXPORT_SYMBOL(ib_query_qp);
2026
2027 int ib_close_qp(struct ib_qp *qp)
2028 {
2029         struct ib_qp *real_qp;
2030         unsigned long flags;
2031
2032         real_qp = qp->real_qp;
2033         if (real_qp == qp)
2034                 return -EINVAL;
2035
2036         spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
2037         list_del(&qp->open_list);
2038         spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
2039
2040         atomic_dec(&real_qp->usecnt);
2041         if (qp->qp_sec)
2042                 ib_close_shared_qp_security(qp->qp_sec);
2043         kfree(qp);
2044
2045         return 0;
2046 }
2047 EXPORT_SYMBOL(ib_close_qp);
2048
2049 static int __ib_destroy_shared_qp(struct ib_qp *qp)
2050 {
2051         struct ib_xrcd *xrcd;
2052         struct ib_qp *real_qp;
2053         int ret;
2054
2055         real_qp = qp->real_qp;
2056         xrcd = real_qp->xrcd;
2057         down_write(&xrcd->tgt_qps_rwsem);
2058         ib_close_qp(qp);
2059         if (atomic_read(&real_qp->usecnt) == 0)
2060                 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
2061         else
2062                 real_qp = NULL;
2063         up_write(&xrcd->tgt_qps_rwsem);
2064
2065         if (real_qp) {
2066                 ret = ib_destroy_qp(real_qp);
2067                 if (!ret)
2068                         atomic_dec(&xrcd->usecnt);
2069         }
2070
2071         return 0;
2072 }
2073
2074 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2075 {
2076         const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2077         const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2078         struct ib_qp_security *sec;
2079         int ret;
2080
2081         WARN_ON_ONCE(qp->mrs_used > 0);
2082
2083         if (atomic_read(&qp->usecnt))
2084                 return -EBUSY;
2085
2086         if (qp->real_qp != qp)
2087                 return __ib_destroy_shared_qp(qp);
2088
2089         sec  = qp->qp_sec;
2090         if (sec)
2091                 ib_destroy_qp_security_begin(sec);
2092
2093         if (!qp->uobject)
2094                 rdma_rw_cleanup_mrs(qp);
2095
2096         rdma_counter_unbind_qp(qp, true);
2097         ret = qp->device->ops.destroy_qp(qp, udata);
2098         if (ret) {
2099                 if (sec)
2100                         ib_destroy_qp_security_abort(sec);
2101                 return ret;
2102         }
2103
2104         if (alt_path_sgid_attr)
2105                 rdma_put_gid_attr(alt_path_sgid_attr);
2106         if (av_sgid_attr)
2107                 rdma_put_gid_attr(av_sgid_attr);
2108
2109         ib_qp_usecnt_dec(qp);
2110         if (sec)
2111                 ib_destroy_qp_security_end(sec);
2112
2113         rdma_restrack_del(&qp->res);
2114         kfree(qp);
2115         return ret;
2116 }
2117 EXPORT_SYMBOL(ib_destroy_qp_user);
2118
2119 /* Completion queues */
2120
2121 struct ib_cq *__ib_create_cq(struct ib_device *device,
2122                              ib_comp_handler comp_handler,
2123                              void (*event_handler)(struct ib_event *, void *),
2124                              void *cq_context,
2125                              const struct ib_cq_init_attr *cq_attr,
2126                              const char *caller)
2127 {
2128         struct ib_cq *cq;
2129         int ret;
2130
2131         cq = rdma_zalloc_drv_obj(device, ib_cq);
2132         if (!cq)
2133                 return ERR_PTR(-ENOMEM);
2134
2135         cq->device = device;
2136         cq->uobject = NULL;
2137         cq->comp_handler = comp_handler;
2138         cq->event_handler = event_handler;
2139         cq->cq_context = cq_context;
2140         atomic_set(&cq->usecnt, 0);
2141
2142         rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2143         rdma_restrack_set_name(&cq->res, caller);
2144
2145         ret = device->ops.create_cq(cq, cq_attr, NULL);
2146         if (ret) {
2147                 rdma_restrack_put(&cq->res);
2148                 kfree(cq);
2149                 return ERR_PTR(ret);
2150         }
2151
2152         rdma_restrack_add(&cq->res);
2153         return cq;
2154 }
2155 EXPORT_SYMBOL(__ib_create_cq);
2156
2157 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2158 {
2159         if (cq->shared)
2160                 return -EOPNOTSUPP;
2161
2162         return cq->device->ops.modify_cq ?
2163                 cq->device->ops.modify_cq(cq, cq_count,
2164                                           cq_period) : -EOPNOTSUPP;
2165 }
2166 EXPORT_SYMBOL(rdma_set_cq_moderation);
2167
2168 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2169 {
2170         int ret;
2171
2172         if (WARN_ON_ONCE(cq->shared))
2173                 return -EOPNOTSUPP;
2174
2175         if (atomic_read(&cq->usecnt))
2176                 return -EBUSY;
2177
2178         ret = cq->device->ops.destroy_cq(cq, udata);
2179         if (ret)
2180                 return ret;
2181
2182         rdma_restrack_del(&cq->res);
2183         kfree(cq);
2184         return ret;
2185 }
2186 EXPORT_SYMBOL(ib_destroy_cq_user);
2187
2188 int ib_resize_cq(struct ib_cq *cq, int cqe)
2189 {
2190         if (cq->shared)
2191                 return -EOPNOTSUPP;
2192
2193         return cq->device->ops.resize_cq ?
2194                 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2195 }
2196 EXPORT_SYMBOL(ib_resize_cq);
2197
2198 /* Memory regions */
2199
2200 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2201                              u64 virt_addr, int access_flags)
2202 {
2203         struct ib_mr *mr;
2204
2205         if (access_flags & IB_ACCESS_ON_DEMAND) {
2206                 if (!(pd->device->attrs.kernel_cap_flags &
2207                       IBK_ON_DEMAND_PAGING)) {
2208                         pr_debug("ODP support not available\n");
2209                         return ERR_PTR(-EINVAL);
2210                 }
2211         }
2212
2213         mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2214                                          access_flags, NULL);
2215
2216         if (IS_ERR(mr))
2217                 return mr;
2218
2219         mr->device = pd->device;
2220         mr->type = IB_MR_TYPE_USER;
2221         mr->pd = pd;
2222         mr->dm = NULL;
2223         atomic_inc(&pd->usecnt);
2224         mr->iova =  virt_addr;
2225         mr->length = length;
2226
2227         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2228         rdma_restrack_parent_name(&mr->res, &pd->res);
2229         rdma_restrack_add(&mr->res);
2230
2231         return mr;
2232 }
2233 EXPORT_SYMBOL(ib_reg_user_mr);
2234
2235 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2236                  u32 flags, struct ib_sge *sg_list, u32 num_sge)
2237 {
2238         if (!pd->device->ops.advise_mr)
2239                 return -EOPNOTSUPP;
2240
2241         if (!num_sge)
2242                 return 0;
2243
2244         return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2245                                          NULL);
2246 }
2247 EXPORT_SYMBOL(ib_advise_mr);
2248
2249 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2250 {
2251         struct ib_pd *pd = mr->pd;
2252         struct ib_dm *dm = mr->dm;
2253         struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2254         int ret;
2255
2256         trace_mr_dereg(mr);
2257         rdma_restrack_del(&mr->res);
2258         ret = mr->device->ops.dereg_mr(mr, udata);
2259         if (!ret) {
2260                 atomic_dec(&pd->usecnt);
2261                 if (dm)
2262                         atomic_dec(&dm->usecnt);
2263                 kfree(sig_attrs);
2264         }
2265
2266         return ret;
2267 }
2268 EXPORT_SYMBOL(ib_dereg_mr_user);
2269
2270 /**
2271  * ib_alloc_mr() - Allocates a memory region
2272  * @pd:            protection domain associated with the region
2273  * @mr_type:       memory region type
2274  * @max_num_sg:    maximum sg entries available for registration.
2275  *
2276  * Notes:
2277  * Memory registeration page/sg lists must not exceed max_num_sg.
2278  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2279  * max_num_sg * used_page_size.
2280  *
2281  */
2282 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2283                           u32 max_num_sg)
2284 {
2285         struct ib_mr *mr;
2286
2287         if (!pd->device->ops.alloc_mr) {
2288                 mr = ERR_PTR(-EOPNOTSUPP);
2289                 goto out;
2290         }
2291
2292         if (mr_type == IB_MR_TYPE_INTEGRITY) {
2293                 WARN_ON_ONCE(1);
2294                 mr = ERR_PTR(-EINVAL);
2295                 goto out;
2296         }
2297
2298         mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2299         if (IS_ERR(mr))
2300                 goto out;
2301
2302         mr->device = pd->device;
2303         mr->pd = pd;
2304         mr->dm = NULL;
2305         mr->uobject = NULL;
2306         atomic_inc(&pd->usecnt);
2307         mr->need_inval = false;
2308         mr->type = mr_type;
2309         mr->sig_attrs = NULL;
2310
2311         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2312         rdma_restrack_parent_name(&mr->res, &pd->res);
2313         rdma_restrack_add(&mr->res);
2314 out:
2315         trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2316         return mr;
2317 }
2318 EXPORT_SYMBOL(ib_alloc_mr);
2319
2320 /**
2321  * ib_alloc_mr_integrity() - Allocates an integrity memory region
2322  * @pd:                      protection domain associated with the region
2323  * @max_num_data_sg:         maximum data sg entries available for registration
2324  * @max_num_meta_sg:         maximum metadata sg entries available for
2325  *                           registration
2326  *
2327  * Notes:
2328  * Memory registration page/sg lists must not exceed max_num_sg,
2329  * also the integrity page/sg lists must not exceed max_num_meta_sg.
2330  *
2331  */
2332 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2333                                     u32 max_num_data_sg,
2334                                     u32 max_num_meta_sg)
2335 {
2336         struct ib_mr *mr;
2337         struct ib_sig_attrs *sig_attrs;
2338
2339         if (!pd->device->ops.alloc_mr_integrity ||
2340             !pd->device->ops.map_mr_sg_pi) {
2341                 mr = ERR_PTR(-EOPNOTSUPP);
2342                 goto out;
2343         }
2344
2345         if (!max_num_meta_sg) {
2346                 mr = ERR_PTR(-EINVAL);
2347                 goto out;
2348         }
2349
2350         sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2351         if (!sig_attrs) {
2352                 mr = ERR_PTR(-ENOMEM);
2353                 goto out;
2354         }
2355
2356         mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2357                                                 max_num_meta_sg);
2358         if (IS_ERR(mr)) {
2359                 kfree(sig_attrs);
2360                 goto out;
2361         }
2362
2363         mr->device = pd->device;
2364         mr->pd = pd;
2365         mr->dm = NULL;
2366         mr->uobject = NULL;
2367         atomic_inc(&pd->usecnt);
2368         mr->need_inval = false;
2369         mr->type = IB_MR_TYPE_INTEGRITY;
2370         mr->sig_attrs = sig_attrs;
2371
2372         rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2373         rdma_restrack_parent_name(&mr->res, &pd->res);
2374         rdma_restrack_add(&mr->res);
2375 out:
2376         trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2377         return mr;
2378 }
2379 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2380
2381 /* Multicast groups */
2382
2383 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2384 {
2385         struct ib_qp_init_attr init_attr = {};
2386         struct ib_qp_attr attr = {};
2387         int num_eth_ports = 0;
2388         unsigned int port;
2389
2390         /* If QP state >= init, it is assigned to a port and we can check this
2391          * port only.
2392          */
2393         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2394                 if (attr.qp_state >= IB_QPS_INIT) {
2395                         if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2396                             IB_LINK_LAYER_INFINIBAND)
2397                                 return true;
2398                         goto lid_check;
2399                 }
2400         }
2401
2402         /* Can't get a quick answer, iterate over all ports */
2403         rdma_for_each_port(qp->device, port)
2404                 if (rdma_port_get_link_layer(qp->device, port) !=
2405                     IB_LINK_LAYER_INFINIBAND)
2406                         num_eth_ports++;
2407
2408         /* If we have at lease one Ethernet port, RoCE annex declares that
2409          * multicast LID should be ignored. We can't tell at this step if the
2410          * QP belongs to an IB or Ethernet port.
2411          */
2412         if (num_eth_ports)
2413                 return true;
2414
2415         /* If all the ports are IB, we can check according to IB spec. */
2416 lid_check:
2417         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2418                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
2419 }
2420
2421 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2422 {
2423         int ret;
2424
2425         if (!qp->device->ops.attach_mcast)
2426                 return -EOPNOTSUPP;
2427
2428         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2429             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2430                 return -EINVAL;
2431
2432         ret = qp->device->ops.attach_mcast(qp, gid, lid);
2433         if (!ret)
2434                 atomic_inc(&qp->usecnt);
2435         return ret;
2436 }
2437 EXPORT_SYMBOL(ib_attach_mcast);
2438
2439 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2440 {
2441         int ret;
2442
2443         if (!qp->device->ops.detach_mcast)
2444                 return -EOPNOTSUPP;
2445
2446         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2447             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2448                 return -EINVAL;
2449
2450         ret = qp->device->ops.detach_mcast(qp, gid, lid);
2451         if (!ret)
2452                 atomic_dec(&qp->usecnt);
2453         return ret;
2454 }
2455 EXPORT_SYMBOL(ib_detach_mcast);
2456
2457 /**
2458  * ib_alloc_xrcd_user - Allocates an XRC domain.
2459  * @device: The device on which to allocate the XRC domain.
2460  * @inode: inode to connect XRCD
2461  * @udata: Valid user data or NULL for kernel object
2462  */
2463 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2464                                    struct inode *inode, struct ib_udata *udata)
2465 {
2466         struct ib_xrcd *xrcd;
2467         int ret;
2468
2469         if (!device->ops.alloc_xrcd)
2470                 return ERR_PTR(-EOPNOTSUPP);
2471
2472         xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2473         if (!xrcd)
2474                 return ERR_PTR(-ENOMEM);
2475
2476         xrcd->device = device;
2477         xrcd->inode = inode;
2478         atomic_set(&xrcd->usecnt, 0);
2479         init_rwsem(&xrcd->tgt_qps_rwsem);
2480         xa_init(&xrcd->tgt_qps);
2481
2482         ret = device->ops.alloc_xrcd(xrcd, udata);
2483         if (ret)
2484                 goto err;
2485         return xrcd;
2486 err:
2487         kfree(xrcd);
2488         return ERR_PTR(ret);
2489 }
2490 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2491
2492 /**
2493  * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2494  * @xrcd: The XRC domain to deallocate.
2495  * @udata: Valid user data or NULL for kernel object
2496  */
2497 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2498 {
2499         int ret;
2500
2501         if (atomic_read(&xrcd->usecnt))
2502                 return -EBUSY;
2503
2504         WARN_ON(!xa_empty(&xrcd->tgt_qps));
2505         ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2506         if (ret)
2507                 return ret;
2508         kfree(xrcd);
2509         return ret;
2510 }
2511 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2512
2513 /**
2514  * ib_create_wq - Creates a WQ associated with the specified protection
2515  * domain.
2516  * @pd: The protection domain associated with the WQ.
2517  * @wq_attr: A list of initial attributes required to create the
2518  * WQ. If WQ creation succeeds, then the attributes are updated to
2519  * the actual capabilities of the created WQ.
2520  *
2521  * wq_attr->max_wr and wq_attr->max_sge determine
2522  * the requested size of the WQ, and set to the actual values allocated
2523  * on return.
2524  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2525  * at least as large as the requested values.
2526  */
2527 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2528                            struct ib_wq_init_attr *wq_attr)
2529 {
2530         struct ib_wq *wq;
2531
2532         if (!pd->device->ops.create_wq)
2533                 return ERR_PTR(-EOPNOTSUPP);
2534
2535         wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2536         if (!IS_ERR(wq)) {
2537                 wq->event_handler = wq_attr->event_handler;
2538                 wq->wq_context = wq_attr->wq_context;
2539                 wq->wq_type = wq_attr->wq_type;
2540                 wq->cq = wq_attr->cq;
2541                 wq->device = pd->device;
2542                 wq->pd = pd;
2543                 wq->uobject = NULL;
2544                 atomic_inc(&pd->usecnt);
2545                 atomic_inc(&wq_attr->cq->usecnt);
2546                 atomic_set(&wq->usecnt, 0);
2547         }
2548         return wq;
2549 }
2550 EXPORT_SYMBOL(ib_create_wq);
2551
2552 /**
2553  * ib_destroy_wq_user - Destroys the specified user WQ.
2554  * @wq: The WQ to destroy.
2555  * @udata: Valid user data
2556  */
2557 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2558 {
2559         struct ib_cq *cq = wq->cq;
2560         struct ib_pd *pd = wq->pd;
2561         int ret;
2562
2563         if (atomic_read(&wq->usecnt))
2564                 return -EBUSY;
2565
2566         ret = wq->device->ops.destroy_wq(wq, udata);
2567         if (ret)
2568                 return ret;
2569
2570         atomic_dec(&pd->usecnt);
2571         atomic_dec(&cq->usecnt);
2572         return ret;
2573 }
2574 EXPORT_SYMBOL(ib_destroy_wq_user);
2575
2576 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2577                        struct ib_mr_status *mr_status)
2578 {
2579         if (!mr->device->ops.check_mr_status)
2580                 return -EOPNOTSUPP;
2581
2582         return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2583 }
2584 EXPORT_SYMBOL(ib_check_mr_status);
2585
2586 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2587                          int state)
2588 {
2589         if (!device->ops.set_vf_link_state)
2590                 return -EOPNOTSUPP;
2591
2592         return device->ops.set_vf_link_state(device, vf, port, state);
2593 }
2594 EXPORT_SYMBOL(ib_set_vf_link_state);
2595
2596 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2597                      struct ifla_vf_info *info)
2598 {
2599         if (!device->ops.get_vf_config)
2600                 return -EOPNOTSUPP;
2601
2602         return device->ops.get_vf_config(device, vf, port, info);
2603 }
2604 EXPORT_SYMBOL(ib_get_vf_config);
2605
2606 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2607                     struct ifla_vf_stats *stats)
2608 {
2609         if (!device->ops.get_vf_stats)
2610                 return -EOPNOTSUPP;
2611
2612         return device->ops.get_vf_stats(device, vf, port, stats);
2613 }
2614 EXPORT_SYMBOL(ib_get_vf_stats);
2615
2616 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2617                    int type)
2618 {
2619         if (!device->ops.set_vf_guid)
2620                 return -EOPNOTSUPP;
2621
2622         return device->ops.set_vf_guid(device, vf, port, guid, type);
2623 }
2624 EXPORT_SYMBOL(ib_set_vf_guid);
2625
2626 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2627                    struct ifla_vf_guid *node_guid,
2628                    struct ifla_vf_guid *port_guid)
2629 {
2630         if (!device->ops.get_vf_guid)
2631                 return -EOPNOTSUPP;
2632
2633         return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2634 }
2635 EXPORT_SYMBOL(ib_get_vf_guid);
2636 /**
2637  * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2638  *     information) and set an appropriate memory region for registration.
2639  * @mr:             memory region
2640  * @data_sg:        dma mapped scatterlist for data
2641  * @data_sg_nents:  number of entries in data_sg
2642  * @data_sg_offset: offset in bytes into data_sg
2643  * @meta_sg:        dma mapped scatterlist for metadata
2644  * @meta_sg_nents:  number of entries in meta_sg
2645  * @meta_sg_offset: offset in bytes into meta_sg
2646  * @page_size:      page vector desired page size
2647  *
2648  * Constraints:
2649  * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2650  *
2651  * Return: 0 on success.
2652  *
2653  * After this completes successfully, the  memory region
2654  * is ready for registration.
2655  */
2656 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2657                     int data_sg_nents, unsigned int *data_sg_offset,
2658                     struct scatterlist *meta_sg, int meta_sg_nents,
2659                     unsigned int *meta_sg_offset, unsigned int page_size)
2660 {
2661         if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2662                      WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2663                 return -EOPNOTSUPP;
2664
2665         mr->page_size = page_size;
2666
2667         return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2668                                             data_sg_offset, meta_sg,
2669                                             meta_sg_nents, meta_sg_offset);
2670 }
2671 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2672
2673 /**
2674  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2675  *     and set it the memory region.
2676  * @mr:            memory region
2677  * @sg:            dma mapped scatterlist
2678  * @sg_nents:      number of entries in sg
2679  * @sg_offset:     offset in bytes into sg
2680  * @page_size:     page vector desired page size
2681  *
2682  * Constraints:
2683  *
2684  * - The first sg element is allowed to have an offset.
2685  * - Each sg element must either be aligned to page_size or virtually
2686  *   contiguous to the previous element. In case an sg element has a
2687  *   non-contiguous offset, the mapping prefix will not include it.
2688  * - The last sg element is allowed to have length less than page_size.
2689  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2690  *   then only max_num_sg entries will be mapped.
2691  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2692  *   constraints holds and the page_size argument is ignored.
2693  *
2694  * Returns the number of sg elements that were mapped to the memory region.
2695  *
2696  * After this completes successfully, the  memory region
2697  * is ready for registration.
2698  */
2699 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2700                  unsigned int *sg_offset, unsigned int page_size)
2701 {
2702         if (unlikely(!mr->device->ops.map_mr_sg))
2703                 return -EOPNOTSUPP;
2704
2705         mr->page_size = page_size;
2706
2707         return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2708 }
2709 EXPORT_SYMBOL(ib_map_mr_sg);
2710
2711 /**
2712  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2713  *     to a page vector
2714  * @mr:            memory region
2715  * @sgl:           dma mapped scatterlist
2716  * @sg_nents:      number of entries in sg
2717  * @sg_offset_p:   ==== =======================================================
2718  *                 IN   start offset in bytes into sg
2719  *                 OUT  offset in bytes for element n of the sg of the first
2720  *                      byte that has not been processed where n is the return
2721  *                      value of this function.
2722  *                 ==== =======================================================
2723  * @set_page:      driver page assignment function pointer
2724  *
2725  * Core service helper for drivers to convert the largest
2726  * prefix of given sg list to a page vector. The sg list
2727  * prefix converted is the prefix that meet the requirements
2728  * of ib_map_mr_sg.
2729  *
2730  * Returns the number of sg elements that were assigned to
2731  * a page vector.
2732  */
2733 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2734                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2735 {
2736         struct scatterlist *sg;
2737         u64 last_end_dma_addr = 0;
2738         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2739         unsigned int last_page_off = 0;
2740         u64 page_mask = ~((u64)mr->page_size - 1);
2741         int i, ret;
2742
2743         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2744                 return -EINVAL;
2745
2746         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2747         mr->length = 0;
2748
2749         for_each_sg(sgl, sg, sg_nents, i) {
2750                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2751                 u64 prev_addr = dma_addr;
2752                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2753                 u64 end_dma_addr = dma_addr + dma_len;
2754                 u64 page_addr = dma_addr & page_mask;
2755
2756                 /*
2757                  * For the second and later elements, check whether either the
2758                  * end of element i-1 or the start of element i is not aligned
2759                  * on a page boundary.
2760                  */
2761                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2762                         /* Stop mapping if there is a gap. */
2763                         if (last_end_dma_addr != dma_addr)
2764                                 break;
2765
2766                         /*
2767                          * Coalesce this element with the last. If it is small
2768                          * enough just update mr->length. Otherwise start
2769                          * mapping from the next page.
2770                          */
2771                         goto next_page;
2772                 }
2773
2774                 do {
2775                         ret = set_page(mr, page_addr);
2776                         if (unlikely(ret < 0)) {
2777                                 sg_offset = prev_addr - sg_dma_address(sg);
2778                                 mr->length += prev_addr - dma_addr;
2779                                 if (sg_offset_p)
2780                                         *sg_offset_p = sg_offset;
2781                                 return i || sg_offset ? i : ret;
2782                         }
2783                         prev_addr = page_addr;
2784 next_page:
2785                         page_addr += mr->page_size;
2786                 } while (page_addr < end_dma_addr);
2787
2788                 mr->length += dma_len;
2789                 last_end_dma_addr = end_dma_addr;
2790                 last_page_off = end_dma_addr & ~page_mask;
2791
2792                 sg_offset = 0;
2793         }
2794
2795         if (sg_offset_p)
2796                 *sg_offset_p = 0;
2797         return i;
2798 }
2799 EXPORT_SYMBOL(ib_sg_to_pages);
2800
2801 struct ib_drain_cqe {
2802         struct ib_cqe cqe;
2803         struct completion done;
2804 };
2805
2806 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2807 {
2808         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2809                                                 cqe);
2810
2811         complete(&cqe->done);
2812 }
2813
2814 /*
2815  * Post a WR and block until its completion is reaped for the SQ.
2816  */
2817 static void __ib_drain_sq(struct ib_qp *qp)
2818 {
2819         struct ib_cq *cq = qp->send_cq;
2820         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2821         struct ib_drain_cqe sdrain;
2822         struct ib_rdma_wr swr = {
2823                 .wr = {
2824                         .next = NULL,
2825                         { .wr_cqe       = &sdrain.cqe, },
2826                         .opcode = IB_WR_RDMA_WRITE,
2827                 },
2828         };
2829         int ret;
2830
2831         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2832         if (ret) {
2833                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2834                 return;
2835         }
2836
2837         sdrain.cqe.done = ib_drain_qp_done;
2838         init_completion(&sdrain.done);
2839
2840         ret = ib_post_send(qp, &swr.wr, NULL);
2841         if (ret) {
2842                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2843                 return;
2844         }
2845
2846         if (cq->poll_ctx == IB_POLL_DIRECT)
2847                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2848                         ib_process_cq_direct(cq, -1);
2849         else
2850                 wait_for_completion(&sdrain.done);
2851 }
2852
2853 /*
2854  * Post a WR and block until its completion is reaped for the RQ.
2855  */
2856 static void __ib_drain_rq(struct ib_qp *qp)
2857 {
2858         struct ib_cq *cq = qp->recv_cq;
2859         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2860         struct ib_drain_cqe rdrain;
2861         struct ib_recv_wr rwr = {};
2862         int ret;
2863
2864         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2865         if (ret) {
2866                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2867                 return;
2868         }
2869
2870         rwr.wr_cqe = &rdrain.cqe;
2871         rdrain.cqe.done = ib_drain_qp_done;
2872         init_completion(&rdrain.done);
2873
2874         ret = ib_post_recv(qp, &rwr, NULL);
2875         if (ret) {
2876                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2877                 return;
2878         }
2879
2880         if (cq->poll_ctx == IB_POLL_DIRECT)
2881                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2882                         ib_process_cq_direct(cq, -1);
2883         else
2884                 wait_for_completion(&rdrain.done);
2885 }
2886
2887 /**
2888  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2889  *                 application.
2890  * @qp:            queue pair to drain
2891  *
2892  * If the device has a provider-specific drain function, then
2893  * call that.  Otherwise call the generic drain function
2894  * __ib_drain_sq().
2895  *
2896  * The caller must:
2897  *
2898  * ensure there is room in the CQ and SQ for the drain work request and
2899  * completion.
2900  *
2901  * allocate the CQ using ib_alloc_cq().
2902  *
2903  * ensure that there are no other contexts that are posting WRs concurrently.
2904  * Otherwise the drain is not guaranteed.
2905  */
2906 void ib_drain_sq(struct ib_qp *qp)
2907 {
2908         if (qp->device->ops.drain_sq)
2909                 qp->device->ops.drain_sq(qp);
2910         else
2911                 __ib_drain_sq(qp);
2912         trace_cq_drain_complete(qp->send_cq);
2913 }
2914 EXPORT_SYMBOL(ib_drain_sq);
2915
2916 /**
2917  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2918  *                 application.
2919  * @qp:            queue pair to drain
2920  *
2921  * If the device has a provider-specific drain function, then
2922  * call that.  Otherwise call the generic drain function
2923  * __ib_drain_rq().
2924  *
2925  * The caller must:
2926  *
2927  * ensure there is room in the CQ and RQ for the drain work request and
2928  * completion.
2929  *
2930  * allocate the CQ using ib_alloc_cq().
2931  *
2932  * ensure that there are no other contexts that are posting WRs concurrently.
2933  * Otherwise the drain is not guaranteed.
2934  */
2935 void ib_drain_rq(struct ib_qp *qp)
2936 {
2937         if (qp->device->ops.drain_rq)
2938                 qp->device->ops.drain_rq(qp);
2939         else
2940                 __ib_drain_rq(qp);
2941         trace_cq_drain_complete(qp->recv_cq);
2942 }
2943 EXPORT_SYMBOL(ib_drain_rq);
2944
2945 /**
2946  * ib_drain_qp() - Block until all CQEs have been consumed by the
2947  *                 application on both the RQ and SQ.
2948  * @qp:            queue pair to drain
2949  *
2950  * The caller must:
2951  *
2952  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2953  * and completions.
2954  *
2955  * allocate the CQs using ib_alloc_cq().
2956  *
2957  * ensure that there are no other contexts that are posting WRs concurrently.
2958  * Otherwise the drain is not guaranteed.
2959  */
2960 void ib_drain_qp(struct ib_qp *qp)
2961 {
2962         ib_drain_sq(qp);
2963         if (!qp->srq)
2964                 ib_drain_rq(qp);
2965 }
2966 EXPORT_SYMBOL(ib_drain_qp);
2967
2968 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
2969                                      enum rdma_netdev_t type, const char *name,
2970                                      unsigned char name_assign_type,
2971                                      void (*setup)(struct net_device *))
2972 {
2973         struct rdma_netdev_alloc_params params;
2974         struct net_device *netdev;
2975         int rc;
2976
2977         if (!device->ops.rdma_netdev_get_params)
2978                 return ERR_PTR(-EOPNOTSUPP);
2979
2980         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2981                                                 &params);
2982         if (rc)
2983                 return ERR_PTR(rc);
2984
2985         netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2986                                   setup, params.txqs, params.rxqs);
2987         if (!netdev)
2988                 return ERR_PTR(-ENOMEM);
2989
2990         return netdev;
2991 }
2992 EXPORT_SYMBOL(rdma_alloc_netdev);
2993
2994 int rdma_init_netdev(struct ib_device *device, u32 port_num,
2995                      enum rdma_netdev_t type, const char *name,
2996                      unsigned char name_assign_type,
2997                      void (*setup)(struct net_device *),
2998                      struct net_device *netdev)
2999 {
3000         struct rdma_netdev_alloc_params params;
3001         int rc;
3002
3003         if (!device->ops.rdma_netdev_get_params)
3004                 return -EOPNOTSUPP;
3005
3006         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3007                                                 &params);
3008         if (rc)
3009                 return rc;
3010
3011         return params.initialize_rdma_netdev(device, port_num,
3012                                              netdev, params.param);
3013 }
3014 EXPORT_SYMBOL(rdma_init_netdev);
3015
3016 void __rdma_block_iter_start(struct ib_block_iter *biter,
3017                              struct scatterlist *sglist, unsigned int nents,
3018                              unsigned long pgsz)
3019 {
3020         memset(biter, 0, sizeof(struct ib_block_iter));
3021         biter->__sg = sglist;
3022         biter->__sg_nents = nents;
3023
3024         /* Driver provides best block size to use */
3025         biter->__pg_bit = __fls(pgsz);
3026 }
3027 EXPORT_SYMBOL(__rdma_block_iter_start);
3028
3029 bool __rdma_block_iter_next(struct ib_block_iter *biter)
3030 {
3031         unsigned int block_offset;
3032         unsigned int sg_delta;
3033
3034         if (!biter->__sg_nents || !biter->__sg)
3035                 return false;
3036
3037         biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
3038         block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
3039         sg_delta = BIT_ULL(biter->__pg_bit) - block_offset;
3040
3041         if (sg_dma_len(biter->__sg) - biter->__sg_advance > sg_delta) {
3042                 biter->__sg_advance += sg_delta;
3043         } else {
3044                 biter->__sg_advance = 0;
3045                 biter->__sg = sg_next(biter->__sg);
3046                 biter->__sg_nents--;
3047         }
3048
3049         return true;
3050 }
3051 EXPORT_SYMBOL(__rdma_block_iter_next);
3052
3053 /**
3054  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
3055  *   for the drivers.
3056  * @descs: array of static descriptors
3057  * @num_counters: number of elements in array
3058  * @lifespan: milliseconds between updates
3059  */
3060 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
3061         const struct rdma_stat_desc *descs, int num_counters,
3062         unsigned long lifespan)
3063 {
3064         struct rdma_hw_stats *stats;
3065
3066         stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL);
3067         if (!stats)
3068                 return NULL;
3069
3070         stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters),
3071                                      sizeof(*stats->is_disabled), GFP_KERNEL);
3072         if (!stats->is_disabled)
3073                 goto err;
3074
3075         stats->descs = descs;
3076         stats->num_counters = num_counters;
3077         stats->lifespan = msecs_to_jiffies(lifespan);
3078         mutex_init(&stats->lock);
3079
3080         return stats;
3081
3082 err:
3083         kfree(stats);
3084         return NULL;
3085 }
3086 EXPORT_SYMBOL(rdma_alloc_hw_stats_struct);
3087
3088 /**
3089  * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats
3090  * @stats: statistics to release
3091  */
3092 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats)
3093 {
3094         if (!stats)
3095                 return;
3096
3097         kfree(stats->is_disabled);
3098         kfree(stats);
3099 }
3100 EXPORT_SYMBOL(rdma_free_hw_stats_struct);