Mention branches and keyring.
[releases.git] / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84
85 static const struct bpf_func_proto *
86 bpf_sk_base_func_proto(enum bpf_func_id func_id);
87
88 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
89 {
90         if (in_compat_syscall()) {
91                 struct compat_sock_fprog f32;
92
93                 if (len != sizeof(f32))
94                         return -EINVAL;
95                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
96                         return -EFAULT;
97                 memset(dst, 0, sizeof(*dst));
98                 dst->len = f32.len;
99                 dst->filter = compat_ptr(f32.filter);
100         } else {
101                 if (len != sizeof(*dst))
102                         return -EINVAL;
103                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
104                         return -EFAULT;
105         }
106
107         return 0;
108 }
109 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
110
111 /**
112  *      sk_filter_trim_cap - run a packet through a socket filter
113  *      @sk: sock associated with &sk_buff
114  *      @skb: buffer to filter
115  *      @cap: limit on how short the eBPF program may trim the packet
116  *
117  * Run the eBPF program and then cut skb->data to correct size returned by
118  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
119  * than pkt_len we keep whole skb->data. This is the socket level
120  * wrapper to bpf_prog_run. It returns 0 if the packet should
121  * be accepted or -EPERM if the packet should be tossed.
122  *
123  */
124 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
125 {
126         int err;
127         struct sk_filter *filter;
128
129         /*
130          * If the skb was allocated from pfmemalloc reserves, only
131          * allow SOCK_MEMALLOC sockets to use it as this socket is
132          * helping free memory
133          */
134         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
135                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
136                 return -ENOMEM;
137         }
138         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
139         if (err)
140                 return err;
141
142         err = security_sock_rcv_skb(sk, skb);
143         if (err)
144                 return err;
145
146         rcu_read_lock();
147         filter = rcu_dereference(sk->sk_filter);
148         if (filter) {
149                 struct sock *save_sk = skb->sk;
150                 unsigned int pkt_len;
151
152                 skb->sk = sk;
153                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
154                 skb->sk = save_sk;
155                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
156         }
157         rcu_read_unlock();
158
159         return err;
160 }
161 EXPORT_SYMBOL(sk_filter_trim_cap);
162
163 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
164 {
165         return skb_get_poff(skb);
166 }
167
168 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
169 {
170         struct nlattr *nla;
171
172         if (skb_is_nonlinear(skb))
173                 return 0;
174
175         if (skb->len < sizeof(struct nlattr))
176                 return 0;
177
178         if (a > skb->len - sizeof(struct nlattr))
179                 return 0;
180
181         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
182         if (nla)
183                 return (void *) nla - (void *) skb->data;
184
185         return 0;
186 }
187
188 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
189 {
190         struct nlattr *nla;
191
192         if (skb_is_nonlinear(skb))
193                 return 0;
194
195         if (skb->len < sizeof(struct nlattr))
196                 return 0;
197
198         if (a > skb->len - sizeof(struct nlattr))
199                 return 0;
200
201         nla = (struct nlattr *) &skb->data[a];
202         if (nla->nla_len > skb->len - a)
203                 return 0;
204
205         nla = nla_find_nested(nla, x);
206         if (nla)
207                 return (void *) nla - (void *) skb->data;
208
209         return 0;
210 }
211
212 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
213            data, int, headlen, int, offset)
214 {
215         u8 tmp, *ptr;
216         const int len = sizeof(tmp);
217
218         if (offset >= 0) {
219                 if (headlen - offset >= len)
220                         return *(u8 *)(data + offset);
221                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
222                         return tmp;
223         } else {
224                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
225                 if (likely(ptr))
226                         return *(u8 *)ptr;
227         }
228
229         return -EFAULT;
230 }
231
232 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
233            int, offset)
234 {
235         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
236                                          offset);
237 }
238
239 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
240            data, int, headlen, int, offset)
241 {
242         __be16 tmp, *ptr;
243         const int len = sizeof(tmp);
244
245         if (offset >= 0) {
246                 if (headlen - offset >= len)
247                         return get_unaligned_be16(data + offset);
248                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
249                         return be16_to_cpu(tmp);
250         } else {
251                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
252                 if (likely(ptr))
253                         return get_unaligned_be16(ptr);
254         }
255
256         return -EFAULT;
257 }
258
259 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
260            int, offset)
261 {
262         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
263                                           offset);
264 }
265
266 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
267            data, int, headlen, int, offset)
268 {
269         __be32 tmp, *ptr;
270         const int len = sizeof(tmp);
271
272         if (likely(offset >= 0)) {
273                 if (headlen - offset >= len)
274                         return get_unaligned_be32(data + offset);
275                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
276                         return be32_to_cpu(tmp);
277         } else {
278                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
279                 if (likely(ptr))
280                         return get_unaligned_be32(ptr);
281         }
282
283         return -EFAULT;
284 }
285
286 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
287            int, offset)
288 {
289         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
290                                           offset);
291 }
292
293 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
294                               struct bpf_insn *insn_buf)
295 {
296         struct bpf_insn *insn = insn_buf;
297
298         switch (skb_field) {
299         case SKF_AD_MARK:
300                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
301
302                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
303                                       offsetof(struct sk_buff, mark));
304                 break;
305
306         case SKF_AD_PKTTYPE:
307                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
308                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
309 #ifdef __BIG_ENDIAN_BITFIELD
310                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
311 #endif
312                 break;
313
314         case SKF_AD_QUEUE:
315                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
316
317                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
318                                       offsetof(struct sk_buff, queue_mapping));
319                 break;
320
321         case SKF_AD_VLAN_TAG:
322                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
323
324                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
325                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
326                                       offsetof(struct sk_buff, vlan_tci));
327                 break;
328         case SKF_AD_VLAN_TAG_PRESENT:
329                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
330                 if (PKT_VLAN_PRESENT_BIT)
331                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
332                 if (PKT_VLAN_PRESENT_BIT < 7)
333                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
334                 break;
335         }
336
337         return insn - insn_buf;
338 }
339
340 static bool convert_bpf_extensions(struct sock_filter *fp,
341                                    struct bpf_insn **insnp)
342 {
343         struct bpf_insn *insn = *insnp;
344         u32 cnt;
345
346         switch (fp->k) {
347         case SKF_AD_OFF + SKF_AD_PROTOCOL:
348                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
349
350                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
351                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
352                                       offsetof(struct sk_buff, protocol));
353                 /* A = ntohs(A) [emitting a nop or swap16] */
354                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
355                 break;
356
357         case SKF_AD_OFF + SKF_AD_PKTTYPE:
358                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
359                 insn += cnt - 1;
360                 break;
361
362         case SKF_AD_OFF + SKF_AD_IFINDEX:
363         case SKF_AD_OFF + SKF_AD_HATYPE:
364                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
365                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
366
367                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
368                                       BPF_REG_TMP, BPF_REG_CTX,
369                                       offsetof(struct sk_buff, dev));
370                 /* if (tmp != 0) goto pc + 1 */
371                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
372                 *insn++ = BPF_EXIT_INSN();
373                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
374                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
375                                             offsetof(struct net_device, ifindex));
376                 else
377                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
378                                             offsetof(struct net_device, type));
379                 break;
380
381         case SKF_AD_OFF + SKF_AD_MARK:
382                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
383                 insn += cnt - 1;
384                 break;
385
386         case SKF_AD_OFF + SKF_AD_RXHASH:
387                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
388
389                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
390                                     offsetof(struct sk_buff, hash));
391                 break;
392
393         case SKF_AD_OFF + SKF_AD_QUEUE:
394                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
395                 insn += cnt - 1;
396                 break;
397
398         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
399                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
400                                          BPF_REG_A, BPF_REG_CTX, insn);
401                 insn += cnt - 1;
402                 break;
403
404         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
405                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
406                                          BPF_REG_A, BPF_REG_CTX, insn);
407                 insn += cnt - 1;
408                 break;
409
410         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
411                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
412
413                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
414                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
415                                       offsetof(struct sk_buff, vlan_proto));
416                 /* A = ntohs(A) [emitting a nop or swap16] */
417                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
418                 break;
419
420         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
421         case SKF_AD_OFF + SKF_AD_NLATTR:
422         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
423         case SKF_AD_OFF + SKF_AD_CPU:
424         case SKF_AD_OFF + SKF_AD_RANDOM:
425                 /* arg1 = CTX */
426                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
427                 /* arg2 = A */
428                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
429                 /* arg3 = X */
430                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
431                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
432                 switch (fp->k) {
433                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
434                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
435                         break;
436                 case SKF_AD_OFF + SKF_AD_NLATTR:
437                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
438                         break;
439                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
440                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
441                         break;
442                 case SKF_AD_OFF + SKF_AD_CPU:
443                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
444                         break;
445                 case SKF_AD_OFF + SKF_AD_RANDOM:
446                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
447                         bpf_user_rnd_init_once();
448                         break;
449                 }
450                 break;
451
452         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
453                 /* A ^= X */
454                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
455                 break;
456
457         default:
458                 /* This is just a dummy call to avoid letting the compiler
459                  * evict __bpf_call_base() as an optimization. Placed here
460                  * where no-one bothers.
461                  */
462                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
463                 return false;
464         }
465
466         *insnp = insn;
467         return true;
468 }
469
470 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
471 {
472         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
473         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
474         bool endian = BPF_SIZE(fp->code) == BPF_H ||
475                       BPF_SIZE(fp->code) == BPF_W;
476         bool indirect = BPF_MODE(fp->code) == BPF_IND;
477         const int ip_align = NET_IP_ALIGN;
478         struct bpf_insn *insn = *insnp;
479         int offset = fp->k;
480
481         if (!indirect &&
482             ((unaligned_ok && offset >= 0) ||
483              (!unaligned_ok && offset >= 0 &&
484               offset + ip_align >= 0 &&
485               offset + ip_align % size == 0))) {
486                 bool ldx_off_ok = offset <= S16_MAX;
487
488                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
489                 if (offset)
490                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
491                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
492                                       size, 2 + endian + (!ldx_off_ok * 2));
493                 if (ldx_off_ok) {
494                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
495                                               BPF_REG_D, offset);
496                 } else {
497                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
498                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
499                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
500                                               BPF_REG_TMP, 0);
501                 }
502                 if (endian)
503                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
504                 *insn++ = BPF_JMP_A(8);
505         }
506
507         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
508         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
509         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
510         if (!indirect) {
511                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
512         } else {
513                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
514                 if (fp->k)
515                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
516         }
517
518         switch (BPF_SIZE(fp->code)) {
519         case BPF_B:
520                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
521                 break;
522         case BPF_H:
523                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
524                 break;
525         case BPF_W:
526                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
527                 break;
528         default:
529                 return false;
530         }
531
532         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
533         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
534         *insn   = BPF_EXIT_INSN();
535
536         *insnp = insn;
537         return true;
538 }
539
540 /**
541  *      bpf_convert_filter - convert filter program
542  *      @prog: the user passed filter program
543  *      @len: the length of the user passed filter program
544  *      @new_prog: allocated 'struct bpf_prog' or NULL
545  *      @new_len: pointer to store length of converted program
546  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
547  *
548  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
549  * style extended BPF (eBPF).
550  * Conversion workflow:
551  *
552  * 1) First pass for calculating the new program length:
553  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
554  *
555  * 2) 2nd pass to remap in two passes: 1st pass finds new
556  *    jump offsets, 2nd pass remapping:
557  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
558  */
559 static int bpf_convert_filter(struct sock_filter *prog, int len,
560                               struct bpf_prog *new_prog, int *new_len,
561                               bool *seen_ld_abs)
562 {
563         int new_flen = 0, pass = 0, target, i, stack_off;
564         struct bpf_insn *new_insn, *first_insn = NULL;
565         struct sock_filter *fp;
566         int *addrs = NULL;
567         u8 bpf_src;
568
569         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
570         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
571
572         if (len <= 0 || len > BPF_MAXINSNS)
573                 return -EINVAL;
574
575         if (new_prog) {
576                 first_insn = new_prog->insnsi;
577                 addrs = kcalloc(len, sizeof(*addrs),
578                                 GFP_KERNEL | __GFP_NOWARN);
579                 if (!addrs)
580                         return -ENOMEM;
581         }
582
583 do_pass:
584         new_insn = first_insn;
585         fp = prog;
586
587         /* Classic BPF related prologue emission. */
588         if (new_prog) {
589                 /* Classic BPF expects A and X to be reset first. These need
590                  * to be guaranteed to be the first two instructions.
591                  */
592                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
593                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
594
595                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
596                  * In eBPF case it's done by the compiler, here we need to
597                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
598                  */
599                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
600                 if (*seen_ld_abs) {
601                         /* For packet access in classic BPF, cache skb->data
602                          * in callee-saved BPF R8 and skb->len - skb->data_len
603                          * (headlen) in BPF R9. Since classic BPF is read-only
604                          * on CTX, we only need to cache it once.
605                          */
606                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
607                                                   BPF_REG_D, BPF_REG_CTX,
608                                                   offsetof(struct sk_buff, data));
609                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
610                                                   offsetof(struct sk_buff, len));
611                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
612                                                   offsetof(struct sk_buff, data_len));
613                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
614                 }
615         } else {
616                 new_insn += 3;
617         }
618
619         for (i = 0; i < len; fp++, i++) {
620                 struct bpf_insn tmp_insns[32] = { };
621                 struct bpf_insn *insn = tmp_insns;
622
623                 if (addrs)
624                         addrs[i] = new_insn - first_insn;
625
626                 switch (fp->code) {
627                 /* All arithmetic insns and skb loads map as-is. */
628                 case BPF_ALU | BPF_ADD | BPF_X:
629                 case BPF_ALU | BPF_ADD | BPF_K:
630                 case BPF_ALU | BPF_SUB | BPF_X:
631                 case BPF_ALU | BPF_SUB | BPF_K:
632                 case BPF_ALU | BPF_AND | BPF_X:
633                 case BPF_ALU | BPF_AND | BPF_K:
634                 case BPF_ALU | BPF_OR | BPF_X:
635                 case BPF_ALU | BPF_OR | BPF_K:
636                 case BPF_ALU | BPF_LSH | BPF_X:
637                 case BPF_ALU | BPF_LSH | BPF_K:
638                 case BPF_ALU | BPF_RSH | BPF_X:
639                 case BPF_ALU | BPF_RSH | BPF_K:
640                 case BPF_ALU | BPF_XOR | BPF_X:
641                 case BPF_ALU | BPF_XOR | BPF_K:
642                 case BPF_ALU | BPF_MUL | BPF_X:
643                 case BPF_ALU | BPF_MUL | BPF_K:
644                 case BPF_ALU | BPF_DIV | BPF_X:
645                 case BPF_ALU | BPF_DIV | BPF_K:
646                 case BPF_ALU | BPF_MOD | BPF_X:
647                 case BPF_ALU | BPF_MOD | BPF_K:
648                 case BPF_ALU | BPF_NEG:
649                 case BPF_LD | BPF_ABS | BPF_W:
650                 case BPF_LD | BPF_ABS | BPF_H:
651                 case BPF_LD | BPF_ABS | BPF_B:
652                 case BPF_LD | BPF_IND | BPF_W:
653                 case BPF_LD | BPF_IND | BPF_H:
654                 case BPF_LD | BPF_IND | BPF_B:
655                         /* Check for overloaded BPF extension and
656                          * directly convert it if found, otherwise
657                          * just move on with mapping.
658                          */
659                         if (BPF_CLASS(fp->code) == BPF_LD &&
660                             BPF_MODE(fp->code) == BPF_ABS &&
661                             convert_bpf_extensions(fp, &insn))
662                                 break;
663                         if (BPF_CLASS(fp->code) == BPF_LD &&
664                             convert_bpf_ld_abs(fp, &insn)) {
665                                 *seen_ld_abs = true;
666                                 break;
667                         }
668
669                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
670                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
671                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
672                                 /* Error with exception code on div/mod by 0.
673                                  * For cBPF programs, this was always return 0.
674                                  */
675                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
676                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
677                                 *insn++ = BPF_EXIT_INSN();
678                         }
679
680                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
681                         break;
682
683                 /* Jump transformation cannot use BPF block macros
684                  * everywhere as offset calculation and target updates
685                  * require a bit more work than the rest, i.e. jump
686                  * opcodes map as-is, but offsets need adjustment.
687                  */
688
689 #define BPF_EMIT_JMP                                                    \
690         do {                                                            \
691                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
692                 s32 off;                                                \
693                                                                         \
694                 if (target >= len || target < 0)                        \
695                         goto err;                                       \
696                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
697                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
698                 off -= insn - tmp_insns;                                \
699                 /* Reject anything not fitting into insn->off. */       \
700                 if (off < off_min || off > off_max)                     \
701                         goto err;                                       \
702                 insn->off = off;                                        \
703         } while (0)
704
705                 case BPF_JMP | BPF_JA:
706                         target = i + fp->k + 1;
707                         insn->code = fp->code;
708                         BPF_EMIT_JMP;
709                         break;
710
711                 case BPF_JMP | BPF_JEQ | BPF_K:
712                 case BPF_JMP | BPF_JEQ | BPF_X:
713                 case BPF_JMP | BPF_JSET | BPF_K:
714                 case BPF_JMP | BPF_JSET | BPF_X:
715                 case BPF_JMP | BPF_JGT | BPF_K:
716                 case BPF_JMP | BPF_JGT | BPF_X:
717                 case BPF_JMP | BPF_JGE | BPF_K:
718                 case BPF_JMP | BPF_JGE | BPF_X:
719                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
720                                 /* BPF immediates are signed, zero extend
721                                  * immediate into tmp register and use it
722                                  * in compare insn.
723                                  */
724                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
725
726                                 insn->dst_reg = BPF_REG_A;
727                                 insn->src_reg = BPF_REG_TMP;
728                                 bpf_src = BPF_X;
729                         } else {
730                                 insn->dst_reg = BPF_REG_A;
731                                 insn->imm = fp->k;
732                                 bpf_src = BPF_SRC(fp->code);
733                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
734                         }
735
736                         /* Common case where 'jump_false' is next insn. */
737                         if (fp->jf == 0) {
738                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
739                                 target = i + fp->jt + 1;
740                                 BPF_EMIT_JMP;
741                                 break;
742                         }
743
744                         /* Convert some jumps when 'jump_true' is next insn. */
745                         if (fp->jt == 0) {
746                                 switch (BPF_OP(fp->code)) {
747                                 case BPF_JEQ:
748                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
749                                         break;
750                                 case BPF_JGT:
751                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
752                                         break;
753                                 case BPF_JGE:
754                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
755                                         break;
756                                 default:
757                                         goto jmp_rest;
758                                 }
759
760                                 target = i + fp->jf + 1;
761                                 BPF_EMIT_JMP;
762                                 break;
763                         }
764 jmp_rest:
765                         /* Other jumps are mapped into two insns: Jxx and JA. */
766                         target = i + fp->jt + 1;
767                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
768                         BPF_EMIT_JMP;
769                         insn++;
770
771                         insn->code = BPF_JMP | BPF_JA;
772                         target = i + fp->jf + 1;
773                         BPF_EMIT_JMP;
774                         break;
775
776                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
777                 case BPF_LDX | BPF_MSH | BPF_B: {
778                         struct sock_filter tmp = {
779                                 .code   = BPF_LD | BPF_ABS | BPF_B,
780                                 .k      = fp->k,
781                         };
782
783                         *seen_ld_abs = true;
784
785                         /* X = A */
786                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
787                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
788                         convert_bpf_ld_abs(&tmp, &insn);
789                         insn++;
790                         /* A &= 0xf */
791                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
792                         /* A <<= 2 */
793                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
794                         /* tmp = X */
795                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
796                         /* X = A */
797                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
798                         /* A = tmp */
799                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
800                         break;
801                 }
802                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
803                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
804                  */
805                 case BPF_RET | BPF_A:
806                 case BPF_RET | BPF_K:
807                         if (BPF_RVAL(fp->code) == BPF_K)
808                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
809                                                         0, fp->k);
810                         *insn = BPF_EXIT_INSN();
811                         break;
812
813                 /* Store to stack. */
814                 case BPF_ST:
815                 case BPF_STX:
816                         stack_off = fp->k * 4  + 4;
817                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
818                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
819                                             -stack_off);
820                         /* check_load_and_stores() verifies that classic BPF can
821                          * load from stack only after write, so tracking
822                          * stack_depth for ST|STX insns is enough
823                          */
824                         if (new_prog && new_prog->aux->stack_depth < stack_off)
825                                 new_prog->aux->stack_depth = stack_off;
826                         break;
827
828                 /* Load from stack. */
829                 case BPF_LD | BPF_MEM:
830                 case BPF_LDX | BPF_MEM:
831                         stack_off = fp->k * 4  + 4;
832                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
833                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
834                                             -stack_off);
835                         break;
836
837                 /* A = K or X = K */
838                 case BPF_LD | BPF_IMM:
839                 case BPF_LDX | BPF_IMM:
840                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
841                                               BPF_REG_A : BPF_REG_X, fp->k);
842                         break;
843
844                 /* X = A */
845                 case BPF_MISC | BPF_TAX:
846                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
847                         break;
848
849                 /* A = X */
850                 case BPF_MISC | BPF_TXA:
851                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
852                         break;
853
854                 /* A = skb->len or X = skb->len */
855                 case BPF_LD | BPF_W | BPF_LEN:
856                 case BPF_LDX | BPF_W | BPF_LEN:
857                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
858                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
859                                             offsetof(struct sk_buff, len));
860                         break;
861
862                 /* Access seccomp_data fields. */
863                 case BPF_LDX | BPF_ABS | BPF_W:
864                         /* A = *(u32 *) (ctx + K) */
865                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
866                         break;
867
868                 /* Unknown instruction. */
869                 default:
870                         goto err;
871                 }
872
873                 insn++;
874                 if (new_prog)
875                         memcpy(new_insn, tmp_insns,
876                                sizeof(*insn) * (insn - tmp_insns));
877                 new_insn += insn - tmp_insns;
878         }
879
880         if (!new_prog) {
881                 /* Only calculating new length. */
882                 *new_len = new_insn - first_insn;
883                 if (*seen_ld_abs)
884                         *new_len += 4; /* Prologue bits. */
885                 return 0;
886         }
887
888         pass++;
889         if (new_flen != new_insn - first_insn) {
890                 new_flen = new_insn - first_insn;
891                 if (pass > 2)
892                         goto err;
893                 goto do_pass;
894         }
895
896         kfree(addrs);
897         BUG_ON(*new_len != new_flen);
898         return 0;
899 err:
900         kfree(addrs);
901         return -EINVAL;
902 }
903
904 /* Security:
905  *
906  * As we dont want to clear mem[] array for each packet going through
907  * __bpf_prog_run(), we check that filter loaded by user never try to read
908  * a cell if not previously written, and we check all branches to be sure
909  * a malicious user doesn't try to abuse us.
910  */
911 static int check_load_and_stores(const struct sock_filter *filter, int flen)
912 {
913         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
914         int pc, ret = 0;
915
916         BUILD_BUG_ON(BPF_MEMWORDS > 16);
917
918         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
919         if (!masks)
920                 return -ENOMEM;
921
922         memset(masks, 0xff, flen * sizeof(*masks));
923
924         for (pc = 0; pc < flen; pc++) {
925                 memvalid &= masks[pc];
926
927                 switch (filter[pc].code) {
928                 case BPF_ST:
929                 case BPF_STX:
930                         memvalid |= (1 << filter[pc].k);
931                         break;
932                 case BPF_LD | BPF_MEM:
933                 case BPF_LDX | BPF_MEM:
934                         if (!(memvalid & (1 << filter[pc].k))) {
935                                 ret = -EINVAL;
936                                 goto error;
937                         }
938                         break;
939                 case BPF_JMP | BPF_JA:
940                         /* A jump must set masks on target */
941                         masks[pc + 1 + filter[pc].k] &= memvalid;
942                         memvalid = ~0;
943                         break;
944                 case BPF_JMP | BPF_JEQ | BPF_K:
945                 case BPF_JMP | BPF_JEQ | BPF_X:
946                 case BPF_JMP | BPF_JGE | BPF_K:
947                 case BPF_JMP | BPF_JGE | BPF_X:
948                 case BPF_JMP | BPF_JGT | BPF_K:
949                 case BPF_JMP | BPF_JGT | BPF_X:
950                 case BPF_JMP | BPF_JSET | BPF_K:
951                 case BPF_JMP | BPF_JSET | BPF_X:
952                         /* A jump must set masks on targets */
953                         masks[pc + 1 + filter[pc].jt] &= memvalid;
954                         masks[pc + 1 + filter[pc].jf] &= memvalid;
955                         memvalid = ~0;
956                         break;
957                 }
958         }
959 error:
960         kfree(masks);
961         return ret;
962 }
963
964 static bool chk_code_allowed(u16 code_to_probe)
965 {
966         static const bool codes[] = {
967                 /* 32 bit ALU operations */
968                 [BPF_ALU | BPF_ADD | BPF_K] = true,
969                 [BPF_ALU | BPF_ADD | BPF_X] = true,
970                 [BPF_ALU | BPF_SUB | BPF_K] = true,
971                 [BPF_ALU | BPF_SUB | BPF_X] = true,
972                 [BPF_ALU | BPF_MUL | BPF_K] = true,
973                 [BPF_ALU | BPF_MUL | BPF_X] = true,
974                 [BPF_ALU | BPF_DIV | BPF_K] = true,
975                 [BPF_ALU | BPF_DIV | BPF_X] = true,
976                 [BPF_ALU | BPF_MOD | BPF_K] = true,
977                 [BPF_ALU | BPF_MOD | BPF_X] = true,
978                 [BPF_ALU | BPF_AND | BPF_K] = true,
979                 [BPF_ALU | BPF_AND | BPF_X] = true,
980                 [BPF_ALU | BPF_OR | BPF_K] = true,
981                 [BPF_ALU | BPF_OR | BPF_X] = true,
982                 [BPF_ALU | BPF_XOR | BPF_K] = true,
983                 [BPF_ALU | BPF_XOR | BPF_X] = true,
984                 [BPF_ALU | BPF_LSH | BPF_K] = true,
985                 [BPF_ALU | BPF_LSH | BPF_X] = true,
986                 [BPF_ALU | BPF_RSH | BPF_K] = true,
987                 [BPF_ALU | BPF_RSH | BPF_X] = true,
988                 [BPF_ALU | BPF_NEG] = true,
989                 /* Load instructions */
990                 [BPF_LD | BPF_W | BPF_ABS] = true,
991                 [BPF_LD | BPF_H | BPF_ABS] = true,
992                 [BPF_LD | BPF_B | BPF_ABS] = true,
993                 [BPF_LD | BPF_W | BPF_LEN] = true,
994                 [BPF_LD | BPF_W | BPF_IND] = true,
995                 [BPF_LD | BPF_H | BPF_IND] = true,
996                 [BPF_LD | BPF_B | BPF_IND] = true,
997                 [BPF_LD | BPF_IMM] = true,
998                 [BPF_LD | BPF_MEM] = true,
999                 [BPF_LDX | BPF_W | BPF_LEN] = true,
1000                 [BPF_LDX | BPF_B | BPF_MSH] = true,
1001                 [BPF_LDX | BPF_IMM] = true,
1002                 [BPF_LDX | BPF_MEM] = true,
1003                 /* Store instructions */
1004                 [BPF_ST] = true,
1005                 [BPF_STX] = true,
1006                 /* Misc instructions */
1007                 [BPF_MISC | BPF_TAX] = true,
1008                 [BPF_MISC | BPF_TXA] = true,
1009                 /* Return instructions */
1010                 [BPF_RET | BPF_K] = true,
1011                 [BPF_RET | BPF_A] = true,
1012                 /* Jump instructions */
1013                 [BPF_JMP | BPF_JA] = true,
1014                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1015                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1016                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1017                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1018                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1019                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1020                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1021                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1022         };
1023
1024         if (code_to_probe >= ARRAY_SIZE(codes))
1025                 return false;
1026
1027         return codes[code_to_probe];
1028 }
1029
1030 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1031                                 unsigned int flen)
1032 {
1033         if (filter == NULL)
1034                 return false;
1035         if (flen == 0 || flen > BPF_MAXINSNS)
1036                 return false;
1037
1038         return true;
1039 }
1040
1041 /**
1042  *      bpf_check_classic - verify socket filter code
1043  *      @filter: filter to verify
1044  *      @flen: length of filter
1045  *
1046  * Check the user's filter code. If we let some ugly
1047  * filter code slip through kaboom! The filter must contain
1048  * no references or jumps that are out of range, no illegal
1049  * instructions, and must end with a RET instruction.
1050  *
1051  * All jumps are forward as they are not signed.
1052  *
1053  * Returns 0 if the rule set is legal or -EINVAL if not.
1054  */
1055 static int bpf_check_classic(const struct sock_filter *filter,
1056                              unsigned int flen)
1057 {
1058         bool anc_found;
1059         int pc;
1060
1061         /* Check the filter code now */
1062         for (pc = 0; pc < flen; pc++) {
1063                 const struct sock_filter *ftest = &filter[pc];
1064
1065                 /* May we actually operate on this code? */
1066                 if (!chk_code_allowed(ftest->code))
1067                         return -EINVAL;
1068
1069                 /* Some instructions need special checks */
1070                 switch (ftest->code) {
1071                 case BPF_ALU | BPF_DIV | BPF_K:
1072                 case BPF_ALU | BPF_MOD | BPF_K:
1073                         /* Check for division by zero */
1074                         if (ftest->k == 0)
1075                                 return -EINVAL;
1076                         break;
1077                 case BPF_ALU | BPF_LSH | BPF_K:
1078                 case BPF_ALU | BPF_RSH | BPF_K:
1079                         if (ftest->k >= 32)
1080                                 return -EINVAL;
1081                         break;
1082                 case BPF_LD | BPF_MEM:
1083                 case BPF_LDX | BPF_MEM:
1084                 case BPF_ST:
1085                 case BPF_STX:
1086                         /* Check for invalid memory addresses */
1087                         if (ftest->k >= BPF_MEMWORDS)
1088                                 return -EINVAL;
1089                         break;
1090                 case BPF_JMP | BPF_JA:
1091                         /* Note, the large ftest->k might cause loops.
1092                          * Compare this with conditional jumps below,
1093                          * where offsets are limited. --ANK (981016)
1094                          */
1095                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1096                                 return -EINVAL;
1097                         break;
1098                 case BPF_JMP | BPF_JEQ | BPF_K:
1099                 case BPF_JMP | BPF_JEQ | BPF_X:
1100                 case BPF_JMP | BPF_JGE | BPF_K:
1101                 case BPF_JMP | BPF_JGE | BPF_X:
1102                 case BPF_JMP | BPF_JGT | BPF_K:
1103                 case BPF_JMP | BPF_JGT | BPF_X:
1104                 case BPF_JMP | BPF_JSET | BPF_K:
1105                 case BPF_JMP | BPF_JSET | BPF_X:
1106                         /* Both conditionals must be safe */
1107                         if (pc + ftest->jt + 1 >= flen ||
1108                             pc + ftest->jf + 1 >= flen)
1109                                 return -EINVAL;
1110                         break;
1111                 case BPF_LD | BPF_W | BPF_ABS:
1112                 case BPF_LD | BPF_H | BPF_ABS:
1113                 case BPF_LD | BPF_B | BPF_ABS:
1114                         anc_found = false;
1115                         if (bpf_anc_helper(ftest) & BPF_ANC)
1116                                 anc_found = true;
1117                         /* Ancillary operation unknown or unsupported */
1118                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1119                                 return -EINVAL;
1120                 }
1121         }
1122
1123         /* Last instruction must be a RET code */
1124         switch (filter[flen - 1].code) {
1125         case BPF_RET | BPF_K:
1126         case BPF_RET | BPF_A:
1127                 return check_load_and_stores(filter, flen);
1128         }
1129
1130         return -EINVAL;
1131 }
1132
1133 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1134                                       const struct sock_fprog *fprog)
1135 {
1136         unsigned int fsize = bpf_classic_proglen(fprog);
1137         struct sock_fprog_kern *fkprog;
1138
1139         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1140         if (!fp->orig_prog)
1141                 return -ENOMEM;
1142
1143         fkprog = fp->orig_prog;
1144         fkprog->len = fprog->len;
1145
1146         fkprog->filter = kmemdup(fp->insns, fsize,
1147                                  GFP_KERNEL | __GFP_NOWARN);
1148         if (!fkprog->filter) {
1149                 kfree(fp->orig_prog);
1150                 return -ENOMEM;
1151         }
1152
1153         return 0;
1154 }
1155
1156 static void bpf_release_orig_filter(struct bpf_prog *fp)
1157 {
1158         struct sock_fprog_kern *fprog = fp->orig_prog;
1159
1160         if (fprog) {
1161                 kfree(fprog->filter);
1162                 kfree(fprog);
1163         }
1164 }
1165
1166 static void __bpf_prog_release(struct bpf_prog *prog)
1167 {
1168         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1169                 bpf_prog_put(prog);
1170         } else {
1171                 bpf_release_orig_filter(prog);
1172                 bpf_prog_free(prog);
1173         }
1174 }
1175
1176 static void __sk_filter_release(struct sk_filter *fp)
1177 {
1178         __bpf_prog_release(fp->prog);
1179         kfree(fp);
1180 }
1181
1182 /**
1183  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1184  *      @rcu: rcu_head that contains the sk_filter to free
1185  */
1186 static void sk_filter_release_rcu(struct rcu_head *rcu)
1187 {
1188         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1189
1190         __sk_filter_release(fp);
1191 }
1192
1193 /**
1194  *      sk_filter_release - release a socket filter
1195  *      @fp: filter to remove
1196  *
1197  *      Remove a filter from a socket and release its resources.
1198  */
1199 static void sk_filter_release(struct sk_filter *fp)
1200 {
1201         if (refcount_dec_and_test(&fp->refcnt))
1202                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1203 }
1204
1205 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1206 {
1207         u32 filter_size = bpf_prog_size(fp->prog->len);
1208
1209         atomic_sub(filter_size, &sk->sk_omem_alloc);
1210         sk_filter_release(fp);
1211 }
1212
1213 /* try to charge the socket memory if there is space available
1214  * return true on success
1215  */
1216 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1217 {
1218         u32 filter_size = bpf_prog_size(fp->prog->len);
1219         int optmem_max = READ_ONCE(sysctl_optmem_max);
1220
1221         /* same check as in sock_kmalloc() */
1222         if (filter_size <= optmem_max &&
1223             atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1224                 atomic_add(filter_size, &sk->sk_omem_alloc);
1225                 return true;
1226         }
1227         return false;
1228 }
1229
1230 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1231 {
1232         if (!refcount_inc_not_zero(&fp->refcnt))
1233                 return false;
1234
1235         if (!__sk_filter_charge(sk, fp)) {
1236                 sk_filter_release(fp);
1237                 return false;
1238         }
1239         return true;
1240 }
1241
1242 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1243 {
1244         struct sock_filter *old_prog;
1245         struct bpf_prog *old_fp;
1246         int err, new_len, old_len = fp->len;
1247         bool seen_ld_abs = false;
1248
1249         /* We are free to overwrite insns et al right here as it won't be used at
1250          * this point in time anymore internally after the migration to the eBPF
1251          * instruction representation.
1252          */
1253         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1254                      sizeof(struct bpf_insn));
1255
1256         /* Conversion cannot happen on overlapping memory areas,
1257          * so we need to keep the user BPF around until the 2nd
1258          * pass. At this time, the user BPF is stored in fp->insns.
1259          */
1260         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1261                            GFP_KERNEL | __GFP_NOWARN);
1262         if (!old_prog) {
1263                 err = -ENOMEM;
1264                 goto out_err;
1265         }
1266
1267         /* 1st pass: calculate the new program length. */
1268         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1269                                  &seen_ld_abs);
1270         if (err)
1271                 goto out_err_free;
1272
1273         /* Expand fp for appending the new filter representation. */
1274         old_fp = fp;
1275         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1276         if (!fp) {
1277                 /* The old_fp is still around in case we couldn't
1278                  * allocate new memory, so uncharge on that one.
1279                  */
1280                 fp = old_fp;
1281                 err = -ENOMEM;
1282                 goto out_err_free;
1283         }
1284
1285         fp->len = new_len;
1286
1287         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1288         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1289                                  &seen_ld_abs);
1290         if (err)
1291                 /* 2nd bpf_convert_filter() can fail only if it fails
1292                  * to allocate memory, remapping must succeed. Note,
1293                  * that at this time old_fp has already been released
1294                  * by krealloc().
1295                  */
1296                 goto out_err_free;
1297
1298         fp = bpf_prog_select_runtime(fp, &err);
1299         if (err)
1300                 goto out_err_free;
1301
1302         kfree(old_prog);
1303         return fp;
1304
1305 out_err_free:
1306         kfree(old_prog);
1307 out_err:
1308         __bpf_prog_release(fp);
1309         return ERR_PTR(err);
1310 }
1311
1312 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1313                                            bpf_aux_classic_check_t trans)
1314 {
1315         int err;
1316
1317         fp->bpf_func = NULL;
1318         fp->jited = 0;
1319
1320         err = bpf_check_classic(fp->insns, fp->len);
1321         if (err) {
1322                 __bpf_prog_release(fp);
1323                 return ERR_PTR(err);
1324         }
1325
1326         /* There might be additional checks and transformations
1327          * needed on classic filters, f.e. in case of seccomp.
1328          */
1329         if (trans) {
1330                 err = trans(fp->insns, fp->len);
1331                 if (err) {
1332                         __bpf_prog_release(fp);
1333                         return ERR_PTR(err);
1334                 }
1335         }
1336
1337         /* Probe if we can JIT compile the filter and if so, do
1338          * the compilation of the filter.
1339          */
1340         bpf_jit_compile(fp);
1341
1342         /* JIT compiler couldn't process this filter, so do the eBPF translation
1343          * for the optimized interpreter.
1344          */
1345         if (!fp->jited)
1346                 fp = bpf_migrate_filter(fp);
1347
1348         return fp;
1349 }
1350
1351 /**
1352  *      bpf_prog_create - create an unattached filter
1353  *      @pfp: the unattached filter that is created
1354  *      @fprog: the filter program
1355  *
1356  * Create a filter independent of any socket. We first run some
1357  * sanity checks on it to make sure it does not explode on us later.
1358  * If an error occurs or there is insufficient memory for the filter
1359  * a negative errno code is returned. On success the return is zero.
1360  */
1361 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1362 {
1363         unsigned int fsize = bpf_classic_proglen(fprog);
1364         struct bpf_prog *fp;
1365
1366         /* Make sure new filter is there and in the right amounts. */
1367         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1368                 return -EINVAL;
1369
1370         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1371         if (!fp)
1372                 return -ENOMEM;
1373
1374         memcpy(fp->insns, fprog->filter, fsize);
1375
1376         fp->len = fprog->len;
1377         /* Since unattached filters are not copied back to user
1378          * space through sk_get_filter(), we do not need to hold
1379          * a copy here, and can spare us the work.
1380          */
1381         fp->orig_prog = NULL;
1382
1383         /* bpf_prepare_filter() already takes care of freeing
1384          * memory in case something goes wrong.
1385          */
1386         fp = bpf_prepare_filter(fp, NULL);
1387         if (IS_ERR(fp))
1388                 return PTR_ERR(fp);
1389
1390         *pfp = fp;
1391         return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(bpf_prog_create);
1394
1395 /**
1396  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1397  *      @pfp: the unattached filter that is created
1398  *      @fprog: the filter program
1399  *      @trans: post-classic verifier transformation handler
1400  *      @save_orig: save classic BPF program
1401  *
1402  * This function effectively does the same as bpf_prog_create(), only
1403  * that it builds up its insns buffer from user space provided buffer.
1404  * It also allows for passing a bpf_aux_classic_check_t handler.
1405  */
1406 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1407                               bpf_aux_classic_check_t trans, bool save_orig)
1408 {
1409         unsigned int fsize = bpf_classic_proglen(fprog);
1410         struct bpf_prog *fp;
1411         int err;
1412
1413         /* Make sure new filter is there and in the right amounts. */
1414         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1415                 return -EINVAL;
1416
1417         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1418         if (!fp)
1419                 return -ENOMEM;
1420
1421         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1422                 __bpf_prog_free(fp);
1423                 return -EFAULT;
1424         }
1425
1426         fp->len = fprog->len;
1427         fp->orig_prog = NULL;
1428
1429         if (save_orig) {
1430                 err = bpf_prog_store_orig_filter(fp, fprog);
1431                 if (err) {
1432                         __bpf_prog_free(fp);
1433                         return -ENOMEM;
1434                 }
1435         }
1436
1437         /* bpf_prepare_filter() already takes care of freeing
1438          * memory in case something goes wrong.
1439          */
1440         fp = bpf_prepare_filter(fp, trans);
1441         if (IS_ERR(fp))
1442                 return PTR_ERR(fp);
1443
1444         *pfp = fp;
1445         return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1448
1449 void bpf_prog_destroy(struct bpf_prog *fp)
1450 {
1451         __bpf_prog_release(fp);
1452 }
1453 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1454
1455 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1456 {
1457         struct sk_filter *fp, *old_fp;
1458
1459         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1460         if (!fp)
1461                 return -ENOMEM;
1462
1463         fp->prog = prog;
1464
1465         if (!__sk_filter_charge(sk, fp)) {
1466                 kfree(fp);
1467                 return -ENOMEM;
1468         }
1469         refcount_set(&fp->refcnt, 1);
1470
1471         old_fp = rcu_dereference_protected(sk->sk_filter,
1472                                            lockdep_sock_is_held(sk));
1473         rcu_assign_pointer(sk->sk_filter, fp);
1474
1475         if (old_fp)
1476                 sk_filter_uncharge(sk, old_fp);
1477
1478         return 0;
1479 }
1480
1481 static
1482 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1483 {
1484         unsigned int fsize = bpf_classic_proglen(fprog);
1485         struct bpf_prog *prog;
1486         int err;
1487
1488         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1489                 return ERR_PTR(-EPERM);
1490
1491         /* Make sure new filter is there and in the right amounts. */
1492         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1493                 return ERR_PTR(-EINVAL);
1494
1495         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1496         if (!prog)
1497                 return ERR_PTR(-ENOMEM);
1498
1499         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1500                 __bpf_prog_free(prog);
1501                 return ERR_PTR(-EFAULT);
1502         }
1503
1504         prog->len = fprog->len;
1505
1506         err = bpf_prog_store_orig_filter(prog, fprog);
1507         if (err) {
1508                 __bpf_prog_free(prog);
1509                 return ERR_PTR(-ENOMEM);
1510         }
1511
1512         /* bpf_prepare_filter() already takes care of freeing
1513          * memory in case something goes wrong.
1514          */
1515         return bpf_prepare_filter(prog, NULL);
1516 }
1517
1518 /**
1519  *      sk_attach_filter - attach a socket filter
1520  *      @fprog: the filter program
1521  *      @sk: the socket to use
1522  *
1523  * Attach the user's filter code. We first run some sanity checks on
1524  * it to make sure it does not explode on us later. If an error
1525  * occurs or there is insufficient memory for the filter a negative
1526  * errno code is returned. On success the return is zero.
1527  */
1528 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1529 {
1530         struct bpf_prog *prog = __get_filter(fprog, sk);
1531         int err;
1532
1533         if (IS_ERR(prog))
1534                 return PTR_ERR(prog);
1535
1536         err = __sk_attach_prog(prog, sk);
1537         if (err < 0) {
1538                 __bpf_prog_release(prog);
1539                 return err;
1540         }
1541
1542         return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(sk_attach_filter);
1545
1546 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1547 {
1548         struct bpf_prog *prog = __get_filter(fprog, sk);
1549         int err;
1550
1551         if (IS_ERR(prog))
1552                 return PTR_ERR(prog);
1553
1554         if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1555                 err = -ENOMEM;
1556         else
1557                 err = reuseport_attach_prog(sk, prog);
1558
1559         if (err)
1560                 __bpf_prog_release(prog);
1561
1562         return err;
1563 }
1564
1565 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1566 {
1567         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1568                 return ERR_PTR(-EPERM);
1569
1570         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1571 }
1572
1573 int sk_attach_bpf(u32 ufd, struct sock *sk)
1574 {
1575         struct bpf_prog *prog = __get_bpf(ufd, sk);
1576         int err;
1577
1578         if (IS_ERR(prog))
1579                 return PTR_ERR(prog);
1580
1581         err = __sk_attach_prog(prog, sk);
1582         if (err < 0) {
1583                 bpf_prog_put(prog);
1584                 return err;
1585         }
1586
1587         return 0;
1588 }
1589
1590 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1591 {
1592         struct bpf_prog *prog;
1593         int err;
1594
1595         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1596                 return -EPERM;
1597
1598         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1599         if (PTR_ERR(prog) == -EINVAL)
1600                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1601         if (IS_ERR(prog))
1602                 return PTR_ERR(prog);
1603
1604         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1605                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1606                  * bpf prog (e.g. sockmap).  It depends on the
1607                  * limitation imposed by bpf_prog_load().
1608                  * Hence, sysctl_optmem_max is not checked.
1609                  */
1610                 if ((sk->sk_type != SOCK_STREAM &&
1611                      sk->sk_type != SOCK_DGRAM) ||
1612                     (sk->sk_protocol != IPPROTO_UDP &&
1613                      sk->sk_protocol != IPPROTO_TCP) ||
1614                     (sk->sk_family != AF_INET &&
1615                      sk->sk_family != AF_INET6)) {
1616                         err = -ENOTSUPP;
1617                         goto err_prog_put;
1618                 }
1619         } else {
1620                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1621                 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1622                         err = -ENOMEM;
1623                         goto err_prog_put;
1624                 }
1625         }
1626
1627         err = reuseport_attach_prog(sk, prog);
1628 err_prog_put:
1629         if (err)
1630                 bpf_prog_put(prog);
1631
1632         return err;
1633 }
1634
1635 void sk_reuseport_prog_free(struct bpf_prog *prog)
1636 {
1637         if (!prog)
1638                 return;
1639
1640         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1641                 bpf_prog_put(prog);
1642         else
1643                 bpf_prog_destroy(prog);
1644 }
1645
1646 struct bpf_scratchpad {
1647         union {
1648                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1649                 u8     buff[MAX_BPF_STACK];
1650         };
1651 };
1652
1653 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1654
1655 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1656                                           unsigned int write_len)
1657 {
1658         return skb_ensure_writable(skb, write_len);
1659 }
1660
1661 static inline int bpf_try_make_writable(struct sk_buff *skb,
1662                                         unsigned int write_len)
1663 {
1664         int err = __bpf_try_make_writable(skb, write_len);
1665
1666         bpf_compute_data_pointers(skb);
1667         return err;
1668 }
1669
1670 static int bpf_try_make_head_writable(struct sk_buff *skb)
1671 {
1672         return bpf_try_make_writable(skb, skb_headlen(skb));
1673 }
1674
1675 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1676 {
1677         if (skb_at_tc_ingress(skb))
1678                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1679 }
1680
1681 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1682 {
1683         if (skb_at_tc_ingress(skb))
1684                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1685 }
1686
1687 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1688            const void *, from, u32, len, u64, flags)
1689 {
1690         void *ptr;
1691
1692         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1693                 return -EINVAL;
1694         if (unlikely(offset > INT_MAX))
1695                 return -EFAULT;
1696         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1697                 return -EFAULT;
1698
1699         ptr = skb->data + offset;
1700         if (flags & BPF_F_RECOMPUTE_CSUM)
1701                 __skb_postpull_rcsum(skb, ptr, len, offset);
1702
1703         memcpy(ptr, from, len);
1704
1705         if (flags & BPF_F_RECOMPUTE_CSUM)
1706                 __skb_postpush_rcsum(skb, ptr, len, offset);
1707         if (flags & BPF_F_INVALIDATE_HASH)
1708                 skb_clear_hash(skb);
1709
1710         return 0;
1711 }
1712
1713 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1714         .func           = bpf_skb_store_bytes,
1715         .gpl_only       = false,
1716         .ret_type       = RET_INTEGER,
1717         .arg1_type      = ARG_PTR_TO_CTX,
1718         .arg2_type      = ARG_ANYTHING,
1719         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1720         .arg4_type      = ARG_CONST_SIZE,
1721         .arg5_type      = ARG_ANYTHING,
1722 };
1723
1724 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1725            void *, to, u32, len)
1726 {
1727         void *ptr;
1728
1729         if (unlikely(offset > INT_MAX))
1730                 goto err_clear;
1731
1732         ptr = skb_header_pointer(skb, offset, len, to);
1733         if (unlikely(!ptr))
1734                 goto err_clear;
1735         if (ptr != to)
1736                 memcpy(to, ptr, len);
1737
1738         return 0;
1739 err_clear:
1740         memset(to, 0, len);
1741         return -EFAULT;
1742 }
1743
1744 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1745         .func           = bpf_skb_load_bytes,
1746         .gpl_only       = false,
1747         .ret_type       = RET_INTEGER,
1748         .arg1_type      = ARG_PTR_TO_CTX,
1749         .arg2_type      = ARG_ANYTHING,
1750         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1751         .arg4_type      = ARG_CONST_SIZE,
1752 };
1753
1754 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1755            const struct bpf_flow_dissector *, ctx, u32, offset,
1756            void *, to, u32, len)
1757 {
1758         void *ptr;
1759
1760         if (unlikely(offset > 0xffff))
1761                 goto err_clear;
1762
1763         if (unlikely(!ctx->skb))
1764                 goto err_clear;
1765
1766         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1767         if (unlikely(!ptr))
1768                 goto err_clear;
1769         if (ptr != to)
1770                 memcpy(to, ptr, len);
1771
1772         return 0;
1773 err_clear:
1774         memset(to, 0, len);
1775         return -EFAULT;
1776 }
1777
1778 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1779         .func           = bpf_flow_dissector_load_bytes,
1780         .gpl_only       = false,
1781         .ret_type       = RET_INTEGER,
1782         .arg1_type      = ARG_PTR_TO_CTX,
1783         .arg2_type      = ARG_ANYTHING,
1784         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1785         .arg4_type      = ARG_CONST_SIZE,
1786 };
1787
1788 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1789            u32, offset, void *, to, u32, len, u32, start_header)
1790 {
1791         u8 *end = skb_tail_pointer(skb);
1792         u8 *start, *ptr;
1793
1794         if (unlikely(offset > 0xffff))
1795                 goto err_clear;
1796
1797         switch (start_header) {
1798         case BPF_HDR_START_MAC:
1799                 if (unlikely(!skb_mac_header_was_set(skb)))
1800                         goto err_clear;
1801                 start = skb_mac_header(skb);
1802                 break;
1803         case BPF_HDR_START_NET:
1804                 start = skb_network_header(skb);
1805                 break;
1806         default:
1807                 goto err_clear;
1808         }
1809
1810         ptr = start + offset;
1811
1812         if (likely(ptr + len <= end)) {
1813                 memcpy(to, ptr, len);
1814                 return 0;
1815         }
1816
1817 err_clear:
1818         memset(to, 0, len);
1819         return -EFAULT;
1820 }
1821
1822 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1823         .func           = bpf_skb_load_bytes_relative,
1824         .gpl_only       = false,
1825         .ret_type       = RET_INTEGER,
1826         .arg1_type      = ARG_PTR_TO_CTX,
1827         .arg2_type      = ARG_ANYTHING,
1828         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1829         .arg4_type      = ARG_CONST_SIZE,
1830         .arg5_type      = ARG_ANYTHING,
1831 };
1832
1833 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1834 {
1835         /* Idea is the following: should the needed direct read/write
1836          * test fail during runtime, we can pull in more data and redo
1837          * again, since implicitly, we invalidate previous checks here.
1838          *
1839          * Or, since we know how much we need to make read/writeable,
1840          * this can be done once at the program beginning for direct
1841          * access case. By this we overcome limitations of only current
1842          * headroom being accessible.
1843          */
1844         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1845 }
1846
1847 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1848         .func           = bpf_skb_pull_data,
1849         .gpl_only       = false,
1850         .ret_type       = RET_INTEGER,
1851         .arg1_type      = ARG_PTR_TO_CTX,
1852         .arg2_type      = ARG_ANYTHING,
1853 };
1854
1855 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1856 {
1857         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1858 }
1859
1860 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1861         .func           = bpf_sk_fullsock,
1862         .gpl_only       = false,
1863         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1864         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1865 };
1866
1867 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1868                                            unsigned int write_len)
1869 {
1870         return __bpf_try_make_writable(skb, write_len);
1871 }
1872
1873 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1874 {
1875         /* Idea is the following: should the needed direct read/write
1876          * test fail during runtime, we can pull in more data and redo
1877          * again, since implicitly, we invalidate previous checks here.
1878          *
1879          * Or, since we know how much we need to make read/writeable,
1880          * this can be done once at the program beginning for direct
1881          * access case. By this we overcome limitations of only current
1882          * headroom being accessible.
1883          */
1884         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1885 }
1886
1887 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1888         .func           = sk_skb_pull_data,
1889         .gpl_only       = false,
1890         .ret_type       = RET_INTEGER,
1891         .arg1_type      = ARG_PTR_TO_CTX,
1892         .arg2_type      = ARG_ANYTHING,
1893 };
1894
1895 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1896            u64, from, u64, to, u64, flags)
1897 {
1898         __sum16 *ptr;
1899
1900         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1901                 return -EINVAL;
1902         if (unlikely(offset > 0xffff || offset & 1))
1903                 return -EFAULT;
1904         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1905                 return -EFAULT;
1906
1907         ptr = (__sum16 *)(skb->data + offset);
1908         switch (flags & BPF_F_HDR_FIELD_MASK) {
1909         case 0:
1910                 if (unlikely(from != 0))
1911                         return -EINVAL;
1912
1913                 csum_replace_by_diff(ptr, to);
1914                 break;
1915         case 2:
1916                 csum_replace2(ptr, from, to);
1917                 break;
1918         case 4:
1919                 csum_replace4(ptr, from, to);
1920                 break;
1921         default:
1922                 return -EINVAL;
1923         }
1924
1925         return 0;
1926 }
1927
1928 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1929         .func           = bpf_l3_csum_replace,
1930         .gpl_only       = false,
1931         .ret_type       = RET_INTEGER,
1932         .arg1_type      = ARG_PTR_TO_CTX,
1933         .arg2_type      = ARG_ANYTHING,
1934         .arg3_type      = ARG_ANYTHING,
1935         .arg4_type      = ARG_ANYTHING,
1936         .arg5_type      = ARG_ANYTHING,
1937 };
1938
1939 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1940            u64, from, u64, to, u64, flags)
1941 {
1942         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1943         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1944         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1945         __sum16 *ptr;
1946
1947         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1948                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1949                 return -EINVAL;
1950         if (unlikely(offset > 0xffff || offset & 1))
1951                 return -EFAULT;
1952         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1953                 return -EFAULT;
1954
1955         ptr = (__sum16 *)(skb->data + offset);
1956         if (is_mmzero && !do_mforce && !*ptr)
1957                 return 0;
1958
1959         switch (flags & BPF_F_HDR_FIELD_MASK) {
1960         case 0:
1961                 if (unlikely(from != 0))
1962                         return -EINVAL;
1963
1964                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1965                 break;
1966         case 2:
1967                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1968                 break;
1969         case 4:
1970                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1971                 break;
1972         default:
1973                 return -EINVAL;
1974         }
1975
1976         if (is_mmzero && !*ptr)
1977                 *ptr = CSUM_MANGLED_0;
1978         return 0;
1979 }
1980
1981 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1982         .func           = bpf_l4_csum_replace,
1983         .gpl_only       = false,
1984         .ret_type       = RET_INTEGER,
1985         .arg1_type      = ARG_PTR_TO_CTX,
1986         .arg2_type      = ARG_ANYTHING,
1987         .arg3_type      = ARG_ANYTHING,
1988         .arg4_type      = ARG_ANYTHING,
1989         .arg5_type      = ARG_ANYTHING,
1990 };
1991
1992 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1993            __be32 *, to, u32, to_size, __wsum, seed)
1994 {
1995         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1996         u32 diff_size = from_size + to_size;
1997         int i, j = 0;
1998
1999         /* This is quite flexible, some examples:
2000          *
2001          * from_size == 0, to_size > 0,  seed := csum --> pushing data
2002          * from_size > 0,  to_size == 0, seed := csum --> pulling data
2003          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2004          *
2005          * Even for diffing, from_size and to_size don't need to be equal.
2006          */
2007         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2008                      diff_size > sizeof(sp->diff)))
2009                 return -EINVAL;
2010
2011         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2012                 sp->diff[j] = ~from[i];
2013         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2014                 sp->diff[j] = to[i];
2015
2016         return csum_partial(sp->diff, diff_size, seed);
2017 }
2018
2019 static const struct bpf_func_proto bpf_csum_diff_proto = {
2020         .func           = bpf_csum_diff,
2021         .gpl_only       = false,
2022         .pkt_access     = true,
2023         .ret_type       = RET_INTEGER,
2024         .arg1_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2025         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2026         .arg3_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2027         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2028         .arg5_type      = ARG_ANYTHING,
2029 };
2030
2031 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2032 {
2033         /* The interface is to be used in combination with bpf_csum_diff()
2034          * for direct packet writes. csum rotation for alignment as well
2035          * as emulating csum_sub() can be done from the eBPF program.
2036          */
2037         if (skb->ip_summed == CHECKSUM_COMPLETE)
2038                 return (skb->csum = csum_add(skb->csum, csum));
2039
2040         return -ENOTSUPP;
2041 }
2042
2043 static const struct bpf_func_proto bpf_csum_update_proto = {
2044         .func           = bpf_csum_update,
2045         .gpl_only       = false,
2046         .ret_type       = RET_INTEGER,
2047         .arg1_type      = ARG_PTR_TO_CTX,
2048         .arg2_type      = ARG_ANYTHING,
2049 };
2050
2051 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2052 {
2053         /* The interface is to be used in combination with bpf_skb_adjust_room()
2054          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2055          * is passed as flags, for example.
2056          */
2057         switch (level) {
2058         case BPF_CSUM_LEVEL_INC:
2059                 __skb_incr_checksum_unnecessary(skb);
2060                 break;
2061         case BPF_CSUM_LEVEL_DEC:
2062                 __skb_decr_checksum_unnecessary(skb);
2063                 break;
2064         case BPF_CSUM_LEVEL_RESET:
2065                 __skb_reset_checksum_unnecessary(skb);
2066                 break;
2067         case BPF_CSUM_LEVEL_QUERY:
2068                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2069                        skb->csum_level : -EACCES;
2070         default:
2071                 return -EINVAL;
2072         }
2073
2074         return 0;
2075 }
2076
2077 static const struct bpf_func_proto bpf_csum_level_proto = {
2078         .func           = bpf_csum_level,
2079         .gpl_only       = false,
2080         .ret_type       = RET_INTEGER,
2081         .arg1_type      = ARG_PTR_TO_CTX,
2082         .arg2_type      = ARG_ANYTHING,
2083 };
2084
2085 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2086 {
2087         return dev_forward_skb_nomtu(dev, skb);
2088 }
2089
2090 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2091                                       struct sk_buff *skb)
2092 {
2093         int ret = ____dev_forward_skb(dev, skb, false);
2094
2095         if (likely(!ret)) {
2096                 skb->dev = dev;
2097                 ret = netif_rx(skb);
2098         }
2099
2100         return ret;
2101 }
2102
2103 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2104 {
2105         int ret;
2106
2107         if (dev_xmit_recursion()) {
2108                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2109                 kfree_skb(skb);
2110                 return -ENETDOWN;
2111         }
2112
2113         skb->dev = dev;
2114         skb_clear_tstamp(skb);
2115
2116         dev_xmit_recursion_inc();
2117         ret = dev_queue_xmit(skb);
2118         dev_xmit_recursion_dec();
2119
2120         return ret;
2121 }
2122
2123 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2124                                  u32 flags)
2125 {
2126         unsigned int mlen = skb_network_offset(skb);
2127
2128         if (unlikely(skb->len <= mlen)) {
2129                 kfree_skb(skb);
2130                 return -ERANGE;
2131         }
2132
2133         if (mlen) {
2134                 __skb_pull(skb, mlen);
2135                 if (unlikely(!skb->len)) {
2136                         kfree_skb(skb);
2137                         return -ERANGE;
2138                 }
2139
2140                 /* At ingress, the mac header has already been pulled once.
2141                  * At egress, skb_pospull_rcsum has to be done in case that
2142                  * the skb is originated from ingress (i.e. a forwarded skb)
2143                  * to ensure that rcsum starts at net header.
2144                  */
2145                 if (!skb_at_tc_ingress(skb))
2146                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2147         }
2148         skb_pop_mac_header(skb);
2149         skb_reset_mac_len(skb);
2150         return flags & BPF_F_INGRESS ?
2151                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2152 }
2153
2154 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2155                                  u32 flags)
2156 {
2157         /* Verify that a link layer header is carried */
2158         if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2159                 kfree_skb(skb);
2160                 return -ERANGE;
2161         }
2162
2163         bpf_push_mac_rcsum(skb);
2164         return flags & BPF_F_INGRESS ?
2165                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2166 }
2167
2168 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2169                           u32 flags)
2170 {
2171         if (dev_is_mac_header_xmit(dev))
2172                 return __bpf_redirect_common(skb, dev, flags);
2173         else
2174                 return __bpf_redirect_no_mac(skb, dev, flags);
2175 }
2176
2177 #if IS_ENABLED(CONFIG_IPV6)
2178 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2179                             struct net_device *dev, struct bpf_nh_params *nh)
2180 {
2181         u32 hh_len = LL_RESERVED_SPACE(dev);
2182         const struct in6_addr *nexthop;
2183         struct dst_entry *dst = NULL;
2184         struct neighbour *neigh;
2185
2186         if (dev_xmit_recursion()) {
2187                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2188                 goto out_drop;
2189         }
2190
2191         skb->dev = dev;
2192         skb_clear_tstamp(skb);
2193
2194         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2195                 skb = skb_expand_head(skb, hh_len);
2196                 if (!skb)
2197                         return -ENOMEM;
2198         }
2199
2200         rcu_read_lock();
2201         if (!nh) {
2202                 dst = skb_dst(skb);
2203                 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2204                                       &ipv6_hdr(skb)->daddr);
2205         } else {
2206                 nexthop = &nh->ipv6_nh;
2207         }
2208         neigh = ip_neigh_gw6(dev, nexthop);
2209         if (likely(!IS_ERR(neigh))) {
2210                 int ret;
2211
2212                 sock_confirm_neigh(skb, neigh);
2213                 local_bh_disable();
2214                 dev_xmit_recursion_inc();
2215                 ret = neigh_output(neigh, skb, false);
2216                 dev_xmit_recursion_dec();
2217                 local_bh_enable();
2218                 rcu_read_unlock();
2219                 return ret;
2220         }
2221         rcu_read_unlock_bh();
2222         if (dst)
2223                 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2224 out_drop:
2225         kfree_skb(skb);
2226         return -ENETDOWN;
2227 }
2228
2229 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2230                                    struct bpf_nh_params *nh)
2231 {
2232         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2233         struct net *net = dev_net(dev);
2234         int err, ret = NET_XMIT_DROP;
2235
2236         if (!nh) {
2237                 struct dst_entry *dst;
2238                 struct flowi6 fl6 = {
2239                         .flowi6_flags = FLOWI_FLAG_ANYSRC,
2240                         .flowi6_mark  = skb->mark,
2241                         .flowlabel    = ip6_flowinfo(ip6h),
2242                         .flowi6_oif   = dev->ifindex,
2243                         .flowi6_proto = ip6h->nexthdr,
2244                         .daddr        = ip6h->daddr,
2245                         .saddr        = ip6h->saddr,
2246                 };
2247
2248                 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2249                 if (IS_ERR(dst))
2250                         goto out_drop;
2251
2252                 skb_dst_set(skb, dst);
2253         } else if (nh->nh_family != AF_INET6) {
2254                 goto out_drop;
2255         }
2256
2257         err = bpf_out_neigh_v6(net, skb, dev, nh);
2258         if (unlikely(net_xmit_eval(err)))
2259                 dev->stats.tx_errors++;
2260         else
2261                 ret = NET_XMIT_SUCCESS;
2262         goto out_xmit;
2263 out_drop:
2264         dev->stats.tx_errors++;
2265         kfree_skb(skb);
2266 out_xmit:
2267         return ret;
2268 }
2269 #else
2270 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2271                                    struct bpf_nh_params *nh)
2272 {
2273         kfree_skb(skb);
2274         return NET_XMIT_DROP;
2275 }
2276 #endif /* CONFIG_IPV6 */
2277
2278 #if IS_ENABLED(CONFIG_INET)
2279 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2280                             struct net_device *dev, struct bpf_nh_params *nh)
2281 {
2282         u32 hh_len = LL_RESERVED_SPACE(dev);
2283         struct neighbour *neigh;
2284         bool is_v6gw = false;
2285
2286         if (dev_xmit_recursion()) {
2287                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2288                 goto out_drop;
2289         }
2290
2291         skb->dev = dev;
2292         skb_clear_tstamp(skb);
2293
2294         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2295                 skb = skb_expand_head(skb, hh_len);
2296                 if (!skb)
2297                         return -ENOMEM;
2298         }
2299
2300         rcu_read_lock();
2301         if (!nh) {
2302                 struct dst_entry *dst = skb_dst(skb);
2303                 struct rtable *rt = container_of(dst, struct rtable, dst);
2304
2305                 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2306         } else if (nh->nh_family == AF_INET6) {
2307                 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2308                 is_v6gw = true;
2309         } else if (nh->nh_family == AF_INET) {
2310                 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2311         } else {
2312                 rcu_read_unlock();
2313                 goto out_drop;
2314         }
2315
2316         if (likely(!IS_ERR(neigh))) {
2317                 int ret;
2318
2319                 sock_confirm_neigh(skb, neigh);
2320                 local_bh_disable();
2321                 dev_xmit_recursion_inc();
2322                 ret = neigh_output(neigh, skb, is_v6gw);
2323                 dev_xmit_recursion_dec();
2324                 local_bh_enable();
2325                 rcu_read_unlock();
2326                 return ret;
2327         }
2328         rcu_read_unlock();
2329 out_drop:
2330         kfree_skb(skb);
2331         return -ENETDOWN;
2332 }
2333
2334 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2335                                    struct bpf_nh_params *nh)
2336 {
2337         const struct iphdr *ip4h = ip_hdr(skb);
2338         struct net *net = dev_net(dev);
2339         int err, ret = NET_XMIT_DROP;
2340
2341         if (!nh) {
2342                 struct flowi4 fl4 = {
2343                         .flowi4_flags = FLOWI_FLAG_ANYSRC,
2344                         .flowi4_mark  = skb->mark,
2345                         .flowi4_tos   = RT_TOS(ip4h->tos),
2346                         .flowi4_oif   = dev->ifindex,
2347                         .flowi4_proto = ip4h->protocol,
2348                         .daddr        = ip4h->daddr,
2349                         .saddr        = ip4h->saddr,
2350                 };
2351                 struct rtable *rt;
2352
2353                 rt = ip_route_output_flow(net, &fl4, NULL);
2354                 if (IS_ERR(rt))
2355                         goto out_drop;
2356                 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2357                         ip_rt_put(rt);
2358                         goto out_drop;
2359                 }
2360
2361                 skb_dst_set(skb, &rt->dst);
2362         }
2363
2364         err = bpf_out_neigh_v4(net, skb, dev, nh);
2365         if (unlikely(net_xmit_eval(err)))
2366                 dev->stats.tx_errors++;
2367         else
2368                 ret = NET_XMIT_SUCCESS;
2369         goto out_xmit;
2370 out_drop:
2371         dev->stats.tx_errors++;
2372         kfree_skb(skb);
2373 out_xmit:
2374         return ret;
2375 }
2376 #else
2377 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2378                                    struct bpf_nh_params *nh)
2379 {
2380         kfree_skb(skb);
2381         return NET_XMIT_DROP;
2382 }
2383 #endif /* CONFIG_INET */
2384
2385 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2386                                 struct bpf_nh_params *nh)
2387 {
2388         struct ethhdr *ethh = eth_hdr(skb);
2389
2390         if (unlikely(skb->mac_header >= skb->network_header))
2391                 goto out;
2392         bpf_push_mac_rcsum(skb);
2393         if (is_multicast_ether_addr(ethh->h_dest))
2394                 goto out;
2395
2396         skb_pull(skb, sizeof(*ethh));
2397         skb_unset_mac_header(skb);
2398         skb_reset_network_header(skb);
2399
2400         if (skb->protocol == htons(ETH_P_IP))
2401                 return __bpf_redirect_neigh_v4(skb, dev, nh);
2402         else if (skb->protocol == htons(ETH_P_IPV6))
2403                 return __bpf_redirect_neigh_v6(skb, dev, nh);
2404 out:
2405         kfree_skb(skb);
2406         return -ENOTSUPP;
2407 }
2408
2409 /* Internal, non-exposed redirect flags. */
2410 enum {
2411         BPF_F_NEIGH     = (1ULL << 1),
2412         BPF_F_PEER      = (1ULL << 2),
2413         BPF_F_NEXTHOP   = (1ULL << 3),
2414 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2415 };
2416
2417 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2418 {
2419         struct net_device *dev;
2420         struct sk_buff *clone;
2421         int ret;
2422
2423         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2424                 return -EINVAL;
2425
2426         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2427         if (unlikely(!dev))
2428                 return -EINVAL;
2429
2430         clone = skb_clone(skb, GFP_ATOMIC);
2431         if (unlikely(!clone))
2432                 return -ENOMEM;
2433
2434         /* For direct write, we need to keep the invariant that the skbs
2435          * we're dealing with need to be uncloned. Should uncloning fail
2436          * here, we need to free the just generated clone to unclone once
2437          * again.
2438          */
2439         ret = bpf_try_make_head_writable(skb);
2440         if (unlikely(ret)) {
2441                 kfree_skb(clone);
2442                 return -ENOMEM;
2443         }
2444
2445         return __bpf_redirect(clone, dev, flags);
2446 }
2447
2448 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2449         .func           = bpf_clone_redirect,
2450         .gpl_only       = false,
2451         .ret_type       = RET_INTEGER,
2452         .arg1_type      = ARG_PTR_TO_CTX,
2453         .arg2_type      = ARG_ANYTHING,
2454         .arg3_type      = ARG_ANYTHING,
2455 };
2456
2457 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2458 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2459
2460 int skb_do_redirect(struct sk_buff *skb)
2461 {
2462         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2463         struct net *net = dev_net(skb->dev);
2464         struct net_device *dev;
2465         u32 flags = ri->flags;
2466
2467         dev = dev_get_by_index_rcu(net, ri->tgt_index);
2468         ri->tgt_index = 0;
2469         ri->flags = 0;
2470         if (unlikely(!dev))
2471                 goto out_drop;
2472         if (flags & BPF_F_PEER) {
2473                 const struct net_device_ops *ops = dev->netdev_ops;
2474
2475                 if (unlikely(!ops->ndo_get_peer_dev ||
2476                              !skb_at_tc_ingress(skb)))
2477                         goto out_drop;
2478                 dev = ops->ndo_get_peer_dev(dev);
2479                 if (unlikely(!dev ||
2480                              !(dev->flags & IFF_UP) ||
2481                              net_eq(net, dev_net(dev))))
2482                         goto out_drop;
2483                 skb->dev = dev;
2484                 return -EAGAIN;
2485         }
2486         return flags & BPF_F_NEIGH ?
2487                __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2488                                     &ri->nh : NULL) :
2489                __bpf_redirect(skb, dev, flags);
2490 out_drop:
2491         kfree_skb(skb);
2492         return -EINVAL;
2493 }
2494
2495 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2496 {
2497         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2498
2499         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2500                 return TC_ACT_SHOT;
2501
2502         ri->flags = flags;
2503         ri->tgt_index = ifindex;
2504
2505         return TC_ACT_REDIRECT;
2506 }
2507
2508 static const struct bpf_func_proto bpf_redirect_proto = {
2509         .func           = bpf_redirect,
2510         .gpl_only       = false,
2511         .ret_type       = RET_INTEGER,
2512         .arg1_type      = ARG_ANYTHING,
2513         .arg2_type      = ARG_ANYTHING,
2514 };
2515
2516 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2517 {
2518         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2519
2520         if (unlikely(flags))
2521                 return TC_ACT_SHOT;
2522
2523         ri->flags = BPF_F_PEER;
2524         ri->tgt_index = ifindex;
2525
2526         return TC_ACT_REDIRECT;
2527 }
2528
2529 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2530         .func           = bpf_redirect_peer,
2531         .gpl_only       = false,
2532         .ret_type       = RET_INTEGER,
2533         .arg1_type      = ARG_ANYTHING,
2534         .arg2_type      = ARG_ANYTHING,
2535 };
2536
2537 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2538            int, plen, u64, flags)
2539 {
2540         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2541
2542         if (unlikely((plen && plen < sizeof(*params)) || flags))
2543                 return TC_ACT_SHOT;
2544
2545         ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2546         ri->tgt_index = ifindex;
2547
2548         BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2549         if (plen)
2550                 memcpy(&ri->nh, params, sizeof(ri->nh));
2551
2552         return TC_ACT_REDIRECT;
2553 }
2554
2555 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2556         .func           = bpf_redirect_neigh,
2557         .gpl_only       = false,
2558         .ret_type       = RET_INTEGER,
2559         .arg1_type      = ARG_ANYTHING,
2560         .arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2561         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2562         .arg4_type      = ARG_ANYTHING,
2563 };
2564
2565 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2566 {
2567         msg->apply_bytes = bytes;
2568         return 0;
2569 }
2570
2571 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2572         .func           = bpf_msg_apply_bytes,
2573         .gpl_only       = false,
2574         .ret_type       = RET_INTEGER,
2575         .arg1_type      = ARG_PTR_TO_CTX,
2576         .arg2_type      = ARG_ANYTHING,
2577 };
2578
2579 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2580 {
2581         msg->cork_bytes = bytes;
2582         return 0;
2583 }
2584
2585 static void sk_msg_reset_curr(struct sk_msg *msg)
2586 {
2587         u32 i = msg->sg.start;
2588         u32 len = 0;
2589
2590         do {
2591                 len += sk_msg_elem(msg, i)->length;
2592                 sk_msg_iter_var_next(i);
2593                 if (len >= msg->sg.size)
2594                         break;
2595         } while (i != msg->sg.end);
2596
2597         msg->sg.curr = i;
2598         msg->sg.copybreak = 0;
2599 }
2600
2601 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2602         .func           = bpf_msg_cork_bytes,
2603         .gpl_only       = false,
2604         .ret_type       = RET_INTEGER,
2605         .arg1_type      = ARG_PTR_TO_CTX,
2606         .arg2_type      = ARG_ANYTHING,
2607 };
2608
2609 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2610            u32, end, u64, flags)
2611 {
2612         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2613         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2614         struct scatterlist *sge;
2615         u8 *raw, *to, *from;
2616         struct page *page;
2617
2618         if (unlikely(flags || end <= start))
2619                 return -EINVAL;
2620
2621         /* First find the starting scatterlist element */
2622         i = msg->sg.start;
2623         do {
2624                 offset += len;
2625                 len = sk_msg_elem(msg, i)->length;
2626                 if (start < offset + len)
2627                         break;
2628                 sk_msg_iter_var_next(i);
2629         } while (i != msg->sg.end);
2630
2631         if (unlikely(start >= offset + len))
2632                 return -EINVAL;
2633
2634         first_sge = i;
2635         /* The start may point into the sg element so we need to also
2636          * account for the headroom.
2637          */
2638         bytes_sg_total = start - offset + bytes;
2639         if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2640                 goto out;
2641
2642         /* At this point we need to linearize multiple scatterlist
2643          * elements or a single shared page. Either way we need to
2644          * copy into a linear buffer exclusively owned by BPF. Then
2645          * place the buffer in the scatterlist and fixup the original
2646          * entries by removing the entries now in the linear buffer
2647          * and shifting the remaining entries. For now we do not try
2648          * to copy partial entries to avoid complexity of running out
2649          * of sg_entry slots. The downside is reading a single byte
2650          * will copy the entire sg entry.
2651          */
2652         do {
2653                 copy += sk_msg_elem(msg, i)->length;
2654                 sk_msg_iter_var_next(i);
2655                 if (bytes_sg_total <= copy)
2656                         break;
2657         } while (i != msg->sg.end);
2658         last_sge = i;
2659
2660         if (unlikely(bytes_sg_total > copy))
2661                 return -EINVAL;
2662
2663         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2664                            get_order(copy));
2665         if (unlikely(!page))
2666                 return -ENOMEM;
2667
2668         raw = page_address(page);
2669         i = first_sge;
2670         do {
2671                 sge = sk_msg_elem(msg, i);
2672                 from = sg_virt(sge);
2673                 len = sge->length;
2674                 to = raw + poffset;
2675
2676                 memcpy(to, from, len);
2677                 poffset += len;
2678                 sge->length = 0;
2679                 put_page(sg_page(sge));
2680
2681                 sk_msg_iter_var_next(i);
2682         } while (i != last_sge);
2683
2684         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2685
2686         /* To repair sg ring we need to shift entries. If we only
2687          * had a single entry though we can just replace it and
2688          * be done. Otherwise walk the ring and shift the entries.
2689          */
2690         WARN_ON_ONCE(last_sge == first_sge);
2691         shift = last_sge > first_sge ?
2692                 last_sge - first_sge - 1 :
2693                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2694         if (!shift)
2695                 goto out;
2696
2697         i = first_sge;
2698         sk_msg_iter_var_next(i);
2699         do {
2700                 u32 move_from;
2701
2702                 if (i + shift >= NR_MSG_FRAG_IDS)
2703                         move_from = i + shift - NR_MSG_FRAG_IDS;
2704                 else
2705                         move_from = i + shift;
2706                 if (move_from == msg->sg.end)
2707                         break;
2708
2709                 msg->sg.data[i] = msg->sg.data[move_from];
2710                 msg->sg.data[move_from].length = 0;
2711                 msg->sg.data[move_from].page_link = 0;
2712                 msg->sg.data[move_from].offset = 0;
2713                 sk_msg_iter_var_next(i);
2714         } while (1);
2715
2716         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2717                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2718                       msg->sg.end - shift;
2719 out:
2720         sk_msg_reset_curr(msg);
2721         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2722         msg->data_end = msg->data + bytes;
2723         return 0;
2724 }
2725
2726 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2727         .func           = bpf_msg_pull_data,
2728         .gpl_only       = false,
2729         .ret_type       = RET_INTEGER,
2730         .arg1_type      = ARG_PTR_TO_CTX,
2731         .arg2_type      = ARG_ANYTHING,
2732         .arg3_type      = ARG_ANYTHING,
2733         .arg4_type      = ARG_ANYTHING,
2734 };
2735
2736 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2737            u32, len, u64, flags)
2738 {
2739         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2740         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2741         u8 *raw, *to, *from;
2742         struct page *page;
2743
2744         if (unlikely(flags))
2745                 return -EINVAL;
2746
2747         if (unlikely(len == 0))
2748                 return 0;
2749
2750         /* First find the starting scatterlist element */
2751         i = msg->sg.start;
2752         do {
2753                 offset += l;
2754                 l = sk_msg_elem(msg, i)->length;
2755
2756                 if (start < offset + l)
2757                         break;
2758                 sk_msg_iter_var_next(i);
2759         } while (i != msg->sg.end);
2760
2761         if (start >= offset + l)
2762                 return -EINVAL;
2763
2764         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2765
2766         /* If no space available will fallback to copy, we need at
2767          * least one scatterlist elem available to push data into
2768          * when start aligns to the beginning of an element or two
2769          * when it falls inside an element. We handle the start equals
2770          * offset case because its the common case for inserting a
2771          * header.
2772          */
2773         if (!space || (space == 1 && start != offset))
2774                 copy = msg->sg.data[i].length;
2775
2776         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2777                            get_order(copy + len));
2778         if (unlikely(!page))
2779                 return -ENOMEM;
2780
2781         if (copy) {
2782                 int front, back;
2783
2784                 raw = page_address(page);
2785
2786                 psge = sk_msg_elem(msg, i);
2787                 front = start - offset;
2788                 back = psge->length - front;
2789                 from = sg_virt(psge);
2790
2791                 if (front)
2792                         memcpy(raw, from, front);
2793
2794                 if (back) {
2795                         from += front;
2796                         to = raw + front + len;
2797
2798                         memcpy(to, from, back);
2799                 }
2800
2801                 put_page(sg_page(psge));
2802         } else if (start - offset) {
2803                 psge = sk_msg_elem(msg, i);
2804                 rsge = sk_msg_elem_cpy(msg, i);
2805
2806                 psge->length = start - offset;
2807                 rsge.length -= psge->length;
2808                 rsge.offset += start;
2809
2810                 sk_msg_iter_var_next(i);
2811                 sg_unmark_end(psge);
2812                 sg_unmark_end(&rsge);
2813                 sk_msg_iter_next(msg, end);
2814         }
2815
2816         /* Slot(s) to place newly allocated data */
2817         new = i;
2818
2819         /* Shift one or two slots as needed */
2820         if (!copy) {
2821                 sge = sk_msg_elem_cpy(msg, i);
2822
2823                 sk_msg_iter_var_next(i);
2824                 sg_unmark_end(&sge);
2825                 sk_msg_iter_next(msg, end);
2826
2827                 nsge = sk_msg_elem_cpy(msg, i);
2828                 if (rsge.length) {
2829                         sk_msg_iter_var_next(i);
2830                         nnsge = sk_msg_elem_cpy(msg, i);
2831                 }
2832
2833                 while (i != msg->sg.end) {
2834                         msg->sg.data[i] = sge;
2835                         sge = nsge;
2836                         sk_msg_iter_var_next(i);
2837                         if (rsge.length) {
2838                                 nsge = nnsge;
2839                                 nnsge = sk_msg_elem_cpy(msg, i);
2840                         } else {
2841                                 nsge = sk_msg_elem_cpy(msg, i);
2842                         }
2843                 }
2844         }
2845
2846         /* Place newly allocated data buffer */
2847         sk_mem_charge(msg->sk, len);
2848         msg->sg.size += len;
2849         __clear_bit(new, msg->sg.copy);
2850         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2851         if (rsge.length) {
2852                 get_page(sg_page(&rsge));
2853                 sk_msg_iter_var_next(new);
2854                 msg->sg.data[new] = rsge;
2855         }
2856
2857         sk_msg_reset_curr(msg);
2858         sk_msg_compute_data_pointers(msg);
2859         return 0;
2860 }
2861
2862 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2863         .func           = bpf_msg_push_data,
2864         .gpl_only       = false,
2865         .ret_type       = RET_INTEGER,
2866         .arg1_type      = ARG_PTR_TO_CTX,
2867         .arg2_type      = ARG_ANYTHING,
2868         .arg3_type      = ARG_ANYTHING,
2869         .arg4_type      = ARG_ANYTHING,
2870 };
2871
2872 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2873 {
2874         int prev;
2875
2876         do {
2877                 prev = i;
2878                 sk_msg_iter_var_next(i);
2879                 msg->sg.data[prev] = msg->sg.data[i];
2880         } while (i != msg->sg.end);
2881
2882         sk_msg_iter_prev(msg, end);
2883 }
2884
2885 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2886 {
2887         struct scatterlist tmp, sge;
2888
2889         sk_msg_iter_next(msg, end);
2890         sge = sk_msg_elem_cpy(msg, i);
2891         sk_msg_iter_var_next(i);
2892         tmp = sk_msg_elem_cpy(msg, i);
2893
2894         while (i != msg->sg.end) {
2895                 msg->sg.data[i] = sge;
2896                 sk_msg_iter_var_next(i);
2897                 sge = tmp;
2898                 tmp = sk_msg_elem_cpy(msg, i);
2899         }
2900 }
2901
2902 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2903            u32, len, u64, flags)
2904 {
2905         u32 i = 0, l = 0, space, offset = 0;
2906         u64 last = start + len;
2907         int pop;
2908
2909         if (unlikely(flags))
2910                 return -EINVAL;
2911
2912         /* First find the starting scatterlist element */
2913         i = msg->sg.start;
2914         do {
2915                 offset += l;
2916                 l = sk_msg_elem(msg, i)->length;
2917
2918                 if (start < offset + l)
2919                         break;
2920                 sk_msg_iter_var_next(i);
2921         } while (i != msg->sg.end);
2922
2923         /* Bounds checks: start and pop must be inside message */
2924         if (start >= offset + l || last >= msg->sg.size)
2925                 return -EINVAL;
2926
2927         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2928
2929         pop = len;
2930         /* --------------| offset
2931          * -| start      |-------- len -------|
2932          *
2933          *  |----- a ----|-------- pop -------|----- b ----|
2934          *  |______________________________________________| length
2935          *
2936          *
2937          * a:   region at front of scatter element to save
2938          * b:   region at back of scatter element to save when length > A + pop
2939          * pop: region to pop from element, same as input 'pop' here will be
2940          *      decremented below per iteration.
2941          *
2942          * Two top-level cases to handle when start != offset, first B is non
2943          * zero and second B is zero corresponding to when a pop includes more
2944          * than one element.
2945          *
2946          * Then if B is non-zero AND there is no space allocate space and
2947          * compact A, B regions into page. If there is space shift ring to
2948          * the rigth free'ing the next element in ring to place B, leaving
2949          * A untouched except to reduce length.
2950          */
2951         if (start != offset) {
2952                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2953                 int a = start;
2954                 int b = sge->length - pop - a;
2955
2956                 sk_msg_iter_var_next(i);
2957
2958                 if (pop < sge->length - a) {
2959                         if (space) {
2960                                 sge->length = a;
2961                                 sk_msg_shift_right(msg, i);
2962                                 nsge = sk_msg_elem(msg, i);
2963                                 get_page(sg_page(sge));
2964                                 sg_set_page(nsge,
2965                                             sg_page(sge),
2966                                             b, sge->offset + pop + a);
2967                         } else {
2968                                 struct page *page, *orig;
2969                                 u8 *to, *from;
2970
2971                                 page = alloc_pages(__GFP_NOWARN |
2972                                                    __GFP_COMP   | GFP_ATOMIC,
2973                                                    get_order(a + b));
2974                                 if (unlikely(!page))
2975                                         return -ENOMEM;
2976
2977                                 sge->length = a;
2978                                 orig = sg_page(sge);
2979                                 from = sg_virt(sge);
2980                                 to = page_address(page);
2981                                 memcpy(to, from, a);
2982                                 memcpy(to + a, from + a + pop, b);
2983                                 sg_set_page(sge, page, a + b, 0);
2984                                 put_page(orig);
2985                         }
2986                         pop = 0;
2987                 } else if (pop >= sge->length - a) {
2988                         pop -= (sge->length - a);
2989                         sge->length = a;
2990                 }
2991         }
2992
2993         /* From above the current layout _must_ be as follows,
2994          *
2995          * -| offset
2996          * -| start
2997          *
2998          *  |---- pop ---|---------------- b ------------|
2999          *  |____________________________________________| length
3000          *
3001          * Offset and start of the current msg elem are equal because in the
3002          * previous case we handled offset != start and either consumed the
3003          * entire element and advanced to the next element OR pop == 0.
3004          *
3005          * Two cases to handle here are first pop is less than the length
3006          * leaving some remainder b above. Simply adjust the element's layout
3007          * in this case. Or pop >= length of the element so that b = 0. In this
3008          * case advance to next element decrementing pop.
3009          */
3010         while (pop) {
3011                 struct scatterlist *sge = sk_msg_elem(msg, i);
3012
3013                 if (pop < sge->length) {
3014                         sge->length -= pop;
3015                         sge->offset += pop;
3016                         pop = 0;
3017                 } else {
3018                         pop -= sge->length;
3019                         sk_msg_shift_left(msg, i);
3020                 }
3021                 sk_msg_iter_var_next(i);
3022         }
3023
3024         sk_mem_uncharge(msg->sk, len - pop);
3025         msg->sg.size -= (len - pop);
3026         sk_msg_reset_curr(msg);
3027         sk_msg_compute_data_pointers(msg);
3028         return 0;
3029 }
3030
3031 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3032         .func           = bpf_msg_pop_data,
3033         .gpl_only       = false,
3034         .ret_type       = RET_INTEGER,
3035         .arg1_type      = ARG_PTR_TO_CTX,
3036         .arg2_type      = ARG_ANYTHING,
3037         .arg3_type      = ARG_ANYTHING,
3038         .arg4_type      = ARG_ANYTHING,
3039 };
3040
3041 #ifdef CONFIG_CGROUP_NET_CLASSID
3042 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3043 {
3044         return __task_get_classid(current);
3045 }
3046
3047 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3048         .func           = bpf_get_cgroup_classid_curr,
3049         .gpl_only       = false,
3050         .ret_type       = RET_INTEGER,
3051 };
3052
3053 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3054 {
3055         struct sock *sk = skb_to_full_sk(skb);
3056
3057         if (!sk || !sk_fullsock(sk))
3058                 return 0;
3059
3060         return sock_cgroup_classid(&sk->sk_cgrp_data);
3061 }
3062
3063 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3064         .func           = bpf_skb_cgroup_classid,
3065         .gpl_only       = false,
3066         .ret_type       = RET_INTEGER,
3067         .arg1_type      = ARG_PTR_TO_CTX,
3068 };
3069 #endif
3070
3071 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3072 {
3073         return task_get_classid(skb);
3074 }
3075
3076 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3077         .func           = bpf_get_cgroup_classid,
3078         .gpl_only       = false,
3079         .ret_type       = RET_INTEGER,
3080         .arg1_type      = ARG_PTR_TO_CTX,
3081 };
3082
3083 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3084 {
3085         return dst_tclassid(skb);
3086 }
3087
3088 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3089         .func           = bpf_get_route_realm,
3090         .gpl_only       = false,
3091         .ret_type       = RET_INTEGER,
3092         .arg1_type      = ARG_PTR_TO_CTX,
3093 };
3094
3095 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3096 {
3097         /* If skb_clear_hash() was called due to mangling, we can
3098          * trigger SW recalculation here. Later access to hash
3099          * can then use the inline skb->hash via context directly
3100          * instead of calling this helper again.
3101          */
3102         return skb_get_hash(skb);
3103 }
3104
3105 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3106         .func           = bpf_get_hash_recalc,
3107         .gpl_only       = false,
3108         .ret_type       = RET_INTEGER,
3109         .arg1_type      = ARG_PTR_TO_CTX,
3110 };
3111
3112 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3113 {
3114         /* After all direct packet write, this can be used once for
3115          * triggering a lazy recalc on next skb_get_hash() invocation.
3116          */
3117         skb_clear_hash(skb);
3118         return 0;
3119 }
3120
3121 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3122         .func           = bpf_set_hash_invalid,
3123         .gpl_only       = false,
3124         .ret_type       = RET_INTEGER,
3125         .arg1_type      = ARG_PTR_TO_CTX,
3126 };
3127
3128 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3129 {
3130         /* Set user specified hash as L4(+), so that it gets returned
3131          * on skb_get_hash() call unless BPF prog later on triggers a
3132          * skb_clear_hash().
3133          */
3134         __skb_set_sw_hash(skb, hash, true);
3135         return 0;
3136 }
3137
3138 static const struct bpf_func_proto bpf_set_hash_proto = {
3139         .func           = bpf_set_hash,
3140         .gpl_only       = false,
3141         .ret_type       = RET_INTEGER,
3142         .arg1_type      = ARG_PTR_TO_CTX,
3143         .arg2_type      = ARG_ANYTHING,
3144 };
3145
3146 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3147            u16, vlan_tci)
3148 {
3149         int ret;
3150
3151         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3152                      vlan_proto != htons(ETH_P_8021AD)))
3153                 vlan_proto = htons(ETH_P_8021Q);
3154
3155         bpf_push_mac_rcsum(skb);
3156         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3157         bpf_pull_mac_rcsum(skb);
3158
3159         bpf_compute_data_pointers(skb);
3160         return ret;
3161 }
3162
3163 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3164         .func           = bpf_skb_vlan_push,
3165         .gpl_only       = false,
3166         .ret_type       = RET_INTEGER,
3167         .arg1_type      = ARG_PTR_TO_CTX,
3168         .arg2_type      = ARG_ANYTHING,
3169         .arg3_type      = ARG_ANYTHING,
3170 };
3171
3172 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3173 {
3174         int ret;
3175
3176         bpf_push_mac_rcsum(skb);
3177         ret = skb_vlan_pop(skb);
3178         bpf_pull_mac_rcsum(skb);
3179
3180         bpf_compute_data_pointers(skb);
3181         return ret;
3182 }
3183
3184 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3185         .func           = bpf_skb_vlan_pop,
3186         .gpl_only       = false,
3187         .ret_type       = RET_INTEGER,
3188         .arg1_type      = ARG_PTR_TO_CTX,
3189 };
3190
3191 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3192 {
3193         /* Caller already did skb_cow() with len as headroom,
3194          * so no need to do it here.
3195          */
3196         skb_push(skb, len);
3197         memmove(skb->data, skb->data + len, off);
3198         memset(skb->data + off, 0, len);
3199
3200         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3201          * needed here as it does not change the skb->csum
3202          * result for checksum complete when summing over
3203          * zeroed blocks.
3204          */
3205         return 0;
3206 }
3207
3208 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3209 {
3210         void *old_data;
3211
3212         /* skb_ensure_writable() is not needed here, as we're
3213          * already working on an uncloned skb.
3214          */
3215         if (unlikely(!pskb_may_pull(skb, off + len)))
3216                 return -ENOMEM;
3217
3218         old_data = skb->data;
3219         __skb_pull(skb, len);
3220         skb_postpull_rcsum(skb, old_data + off, len);
3221         memmove(skb->data, old_data, off);
3222
3223         return 0;
3224 }
3225
3226 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3227 {
3228         bool trans_same = skb->transport_header == skb->network_header;
3229         int ret;
3230
3231         /* There's no need for __skb_push()/__skb_pull() pair to
3232          * get to the start of the mac header as we're guaranteed
3233          * to always start from here under eBPF.
3234          */
3235         ret = bpf_skb_generic_push(skb, off, len);
3236         if (likely(!ret)) {
3237                 skb->mac_header -= len;
3238                 skb->network_header -= len;
3239                 if (trans_same)
3240                         skb->transport_header = skb->network_header;
3241         }
3242
3243         return ret;
3244 }
3245
3246 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3247 {
3248         bool trans_same = skb->transport_header == skb->network_header;
3249         int ret;
3250
3251         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3252         ret = bpf_skb_generic_pop(skb, off, len);
3253         if (likely(!ret)) {
3254                 skb->mac_header += len;
3255                 skb->network_header += len;
3256                 if (trans_same)
3257                         skb->transport_header = skb->network_header;
3258         }
3259
3260         return ret;
3261 }
3262
3263 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3264 {
3265         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3266         u32 off = skb_mac_header_len(skb);
3267         int ret;
3268
3269         ret = skb_cow(skb, len_diff);
3270         if (unlikely(ret < 0))
3271                 return ret;
3272
3273         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3274         if (unlikely(ret < 0))
3275                 return ret;
3276
3277         if (skb_is_gso(skb)) {
3278                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3279
3280                 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3281                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3282                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3283                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3284                 }
3285         }
3286
3287         skb->protocol = htons(ETH_P_IPV6);
3288         skb_clear_hash(skb);
3289
3290         return 0;
3291 }
3292
3293 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3294 {
3295         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3296         u32 off = skb_mac_header_len(skb);
3297         int ret;
3298
3299         ret = skb_unclone(skb, GFP_ATOMIC);
3300         if (unlikely(ret < 0))
3301                 return ret;
3302
3303         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3304         if (unlikely(ret < 0))
3305                 return ret;
3306
3307         if (skb_is_gso(skb)) {
3308                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3309
3310                 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3311                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3312                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3313                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3314                 }
3315         }
3316
3317         skb->protocol = htons(ETH_P_IP);
3318         skb_clear_hash(skb);
3319
3320         return 0;
3321 }
3322
3323 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3324 {
3325         __be16 from_proto = skb->protocol;
3326
3327         if (from_proto == htons(ETH_P_IP) &&
3328               to_proto == htons(ETH_P_IPV6))
3329                 return bpf_skb_proto_4_to_6(skb);
3330
3331         if (from_proto == htons(ETH_P_IPV6) &&
3332               to_proto == htons(ETH_P_IP))
3333                 return bpf_skb_proto_6_to_4(skb);
3334
3335         return -ENOTSUPP;
3336 }
3337
3338 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3339            u64, flags)
3340 {
3341         int ret;
3342
3343         if (unlikely(flags))
3344                 return -EINVAL;
3345
3346         /* General idea is that this helper does the basic groundwork
3347          * needed for changing the protocol, and eBPF program fills the
3348          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3349          * and other helpers, rather than passing a raw buffer here.
3350          *
3351          * The rationale is to keep this minimal and without a need to
3352          * deal with raw packet data. F.e. even if we would pass buffers
3353          * here, the program still needs to call the bpf_lX_csum_replace()
3354          * helpers anyway. Plus, this way we keep also separation of
3355          * concerns, since f.e. bpf_skb_store_bytes() should only take
3356          * care of stores.
3357          *
3358          * Currently, additional options and extension header space are
3359          * not supported, but flags register is reserved so we can adapt
3360          * that. For offloads, we mark packet as dodgy, so that headers
3361          * need to be verified first.
3362          */
3363         ret = bpf_skb_proto_xlat(skb, proto);
3364         bpf_compute_data_pointers(skb);
3365         return ret;
3366 }
3367
3368 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3369         .func           = bpf_skb_change_proto,
3370         .gpl_only       = false,
3371         .ret_type       = RET_INTEGER,
3372         .arg1_type      = ARG_PTR_TO_CTX,
3373         .arg2_type      = ARG_ANYTHING,
3374         .arg3_type      = ARG_ANYTHING,
3375 };
3376
3377 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3378 {
3379         /* We only allow a restricted subset to be changed for now. */
3380         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3381                      !skb_pkt_type_ok(pkt_type)))
3382                 return -EINVAL;
3383
3384         skb->pkt_type = pkt_type;
3385         return 0;
3386 }
3387
3388 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3389         .func           = bpf_skb_change_type,
3390         .gpl_only       = false,
3391         .ret_type       = RET_INTEGER,
3392         .arg1_type      = ARG_PTR_TO_CTX,
3393         .arg2_type      = ARG_ANYTHING,
3394 };
3395
3396 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3397 {
3398         switch (skb->protocol) {
3399         case htons(ETH_P_IP):
3400                 return sizeof(struct iphdr);
3401         case htons(ETH_P_IPV6):
3402                 return sizeof(struct ipv6hdr);
3403         default:
3404                 return ~0U;
3405         }
3406 }
3407
3408 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3409                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3410
3411 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3412                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3413                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3414                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3415                                          BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3416                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3417                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3418
3419 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3420                             u64 flags)
3421 {
3422         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3423         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3424         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3425         unsigned int gso_type = SKB_GSO_DODGY;
3426         int ret;
3427
3428         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3429                 /* udp gso_size delineates datagrams, only allow if fixed */
3430                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3431                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3432                         return -ENOTSUPP;
3433         }
3434
3435         ret = skb_cow_head(skb, len_diff);
3436         if (unlikely(ret < 0))
3437                 return ret;
3438
3439         if (encap) {
3440                 if (skb->protocol != htons(ETH_P_IP) &&
3441                     skb->protocol != htons(ETH_P_IPV6))
3442                         return -ENOTSUPP;
3443
3444                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3445                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3446                         return -EINVAL;
3447
3448                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3449                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3450                         return -EINVAL;
3451
3452                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3453                     inner_mac_len < ETH_HLEN)
3454                         return -EINVAL;
3455
3456                 if (skb->encapsulation)
3457                         return -EALREADY;
3458
3459                 mac_len = skb->network_header - skb->mac_header;
3460                 inner_net = skb->network_header;
3461                 if (inner_mac_len > len_diff)
3462                         return -EINVAL;
3463                 inner_trans = skb->transport_header;
3464         }
3465
3466         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3467         if (unlikely(ret < 0))
3468                 return ret;
3469
3470         if (encap) {
3471                 skb->inner_mac_header = inner_net - inner_mac_len;
3472                 skb->inner_network_header = inner_net;
3473                 skb->inner_transport_header = inner_trans;
3474
3475                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3476                         skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3477                 else
3478                         skb_set_inner_protocol(skb, skb->protocol);
3479
3480                 skb->encapsulation = 1;
3481                 skb_set_network_header(skb, mac_len);
3482
3483                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3484                         gso_type |= SKB_GSO_UDP_TUNNEL;
3485                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3486                         gso_type |= SKB_GSO_GRE;
3487                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3488                         gso_type |= SKB_GSO_IPXIP6;
3489                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3490                         gso_type |= SKB_GSO_IPXIP4;
3491
3492                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3493                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3494                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3495                                         sizeof(struct ipv6hdr) :
3496                                         sizeof(struct iphdr);
3497
3498                         skb_set_transport_header(skb, mac_len + nh_len);
3499                 }
3500
3501                 /* Match skb->protocol to new outer l3 protocol */
3502                 if (skb->protocol == htons(ETH_P_IP) &&
3503                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3504                         skb->protocol = htons(ETH_P_IPV6);
3505                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3506                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3507                         skb->protocol = htons(ETH_P_IP);
3508         }
3509
3510         if (skb_is_gso(skb)) {
3511                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3512
3513                 /* Due to header grow, MSS needs to be downgraded. */
3514                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3515                         skb_decrease_gso_size(shinfo, len_diff);
3516
3517                 /* Header must be checked, and gso_segs recomputed. */
3518                 shinfo->gso_type |= gso_type;
3519                 shinfo->gso_segs = 0;
3520         }
3521
3522         return 0;
3523 }
3524
3525 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3526                               u64 flags)
3527 {
3528         int ret;
3529
3530         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3531                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3532                 return -EINVAL;
3533
3534         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3535                 /* udp gso_size delineates datagrams, only allow if fixed */
3536                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3537                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3538                         return -ENOTSUPP;
3539         }
3540
3541         ret = skb_unclone(skb, GFP_ATOMIC);
3542         if (unlikely(ret < 0))
3543                 return ret;
3544
3545         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3546         if (unlikely(ret < 0))
3547                 return ret;
3548
3549         if (skb_is_gso(skb)) {
3550                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3551
3552                 /* Due to header shrink, MSS can be upgraded. */
3553                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3554                         skb_increase_gso_size(shinfo, len_diff);
3555
3556                 /* Header must be checked, and gso_segs recomputed. */
3557                 shinfo->gso_type |= SKB_GSO_DODGY;
3558                 shinfo->gso_segs = 0;
3559         }
3560
3561         return 0;
3562 }
3563
3564 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3565
3566 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3567            u32, mode, u64, flags)
3568 {
3569         u32 len_diff_abs = abs(len_diff);
3570         bool shrink = len_diff < 0;
3571         int ret = 0;
3572
3573         if (unlikely(flags || mode))
3574                 return -EINVAL;
3575         if (unlikely(len_diff_abs > 0xfffU))
3576                 return -EFAULT;
3577
3578         if (!shrink) {
3579                 ret = skb_cow(skb, len_diff);
3580                 if (unlikely(ret < 0))
3581                         return ret;
3582                 __skb_push(skb, len_diff_abs);
3583                 memset(skb->data, 0, len_diff_abs);
3584         } else {
3585                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3586                         return -ENOMEM;
3587                 __skb_pull(skb, len_diff_abs);
3588         }
3589         if (tls_sw_has_ctx_rx(skb->sk)) {
3590                 struct strp_msg *rxm = strp_msg(skb);
3591
3592                 rxm->full_len += len_diff;
3593         }
3594         return ret;
3595 }
3596
3597 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3598         .func           = sk_skb_adjust_room,
3599         .gpl_only       = false,
3600         .ret_type       = RET_INTEGER,
3601         .arg1_type      = ARG_PTR_TO_CTX,
3602         .arg2_type      = ARG_ANYTHING,
3603         .arg3_type      = ARG_ANYTHING,
3604         .arg4_type      = ARG_ANYTHING,
3605 };
3606
3607 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3608            u32, mode, u64, flags)
3609 {
3610         u32 len_cur, len_diff_abs = abs(len_diff);
3611         u32 len_min = bpf_skb_net_base_len(skb);
3612         u32 len_max = BPF_SKB_MAX_LEN;
3613         __be16 proto = skb->protocol;
3614         bool shrink = len_diff < 0;
3615         u32 off;
3616         int ret;
3617
3618         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3619                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3620                 return -EINVAL;
3621         if (unlikely(len_diff_abs > 0xfffU))
3622                 return -EFAULT;
3623         if (unlikely(proto != htons(ETH_P_IP) &&
3624                      proto != htons(ETH_P_IPV6)))
3625                 return -ENOTSUPP;
3626
3627         off = skb_mac_header_len(skb);
3628         switch (mode) {
3629         case BPF_ADJ_ROOM_NET:
3630                 off += bpf_skb_net_base_len(skb);
3631                 break;
3632         case BPF_ADJ_ROOM_MAC:
3633                 break;
3634         default:
3635                 return -ENOTSUPP;
3636         }
3637
3638         len_cur = skb->len - skb_network_offset(skb);
3639         if ((shrink && (len_diff_abs >= len_cur ||
3640                         len_cur - len_diff_abs < len_min)) ||
3641             (!shrink && (skb->len + len_diff_abs > len_max &&
3642                          !skb_is_gso(skb))))
3643                 return -ENOTSUPP;
3644
3645         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3646                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3647         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3648                 __skb_reset_checksum_unnecessary(skb);
3649
3650         bpf_compute_data_pointers(skb);
3651         return ret;
3652 }
3653
3654 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3655         .func           = bpf_skb_adjust_room,
3656         .gpl_only       = false,
3657         .ret_type       = RET_INTEGER,
3658         .arg1_type      = ARG_PTR_TO_CTX,
3659         .arg2_type      = ARG_ANYTHING,
3660         .arg3_type      = ARG_ANYTHING,
3661         .arg4_type      = ARG_ANYTHING,
3662 };
3663
3664 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3665 {
3666         u32 min_len = skb_network_offset(skb);
3667
3668         if (skb_transport_header_was_set(skb))
3669                 min_len = skb_transport_offset(skb);
3670         if (skb->ip_summed == CHECKSUM_PARTIAL)
3671                 min_len = skb_checksum_start_offset(skb) +
3672                           skb->csum_offset + sizeof(__sum16);
3673         return min_len;
3674 }
3675
3676 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3677 {
3678         unsigned int old_len = skb->len;
3679         int ret;
3680
3681         ret = __skb_grow_rcsum(skb, new_len);
3682         if (!ret)
3683                 memset(skb->data + old_len, 0, new_len - old_len);
3684         return ret;
3685 }
3686
3687 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3688 {
3689         return __skb_trim_rcsum(skb, new_len);
3690 }
3691
3692 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3693                                         u64 flags)
3694 {
3695         u32 max_len = BPF_SKB_MAX_LEN;
3696         u32 min_len = __bpf_skb_min_len(skb);
3697         int ret;
3698
3699         if (unlikely(flags || new_len > max_len || new_len < min_len))
3700                 return -EINVAL;
3701         if (skb->encapsulation)
3702                 return -ENOTSUPP;
3703
3704         /* The basic idea of this helper is that it's performing the
3705          * needed work to either grow or trim an skb, and eBPF program
3706          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3707          * bpf_lX_csum_replace() and others rather than passing a raw
3708          * buffer here. This one is a slow path helper and intended
3709          * for replies with control messages.
3710          *
3711          * Like in bpf_skb_change_proto(), we want to keep this rather
3712          * minimal and without protocol specifics so that we are able
3713          * to separate concerns as in bpf_skb_store_bytes() should only
3714          * be the one responsible for writing buffers.
3715          *
3716          * It's really expected to be a slow path operation here for
3717          * control message replies, so we're implicitly linearizing,
3718          * uncloning and drop offloads from the skb by this.
3719          */
3720         ret = __bpf_try_make_writable(skb, skb->len);
3721         if (!ret) {
3722                 if (new_len > skb->len)
3723                         ret = bpf_skb_grow_rcsum(skb, new_len);
3724                 else if (new_len < skb->len)
3725                         ret = bpf_skb_trim_rcsum(skb, new_len);
3726                 if (!ret && skb_is_gso(skb))
3727                         skb_gso_reset(skb);
3728         }
3729         return ret;
3730 }
3731
3732 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3733            u64, flags)
3734 {
3735         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3736
3737         bpf_compute_data_pointers(skb);
3738         return ret;
3739 }
3740
3741 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3742         .func           = bpf_skb_change_tail,
3743         .gpl_only       = false,
3744         .ret_type       = RET_INTEGER,
3745         .arg1_type      = ARG_PTR_TO_CTX,
3746         .arg2_type      = ARG_ANYTHING,
3747         .arg3_type      = ARG_ANYTHING,
3748 };
3749
3750 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3751            u64, flags)
3752 {
3753         return __bpf_skb_change_tail(skb, new_len, flags);
3754 }
3755
3756 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3757         .func           = sk_skb_change_tail,
3758         .gpl_only       = false,
3759         .ret_type       = RET_INTEGER,
3760         .arg1_type      = ARG_PTR_TO_CTX,
3761         .arg2_type      = ARG_ANYTHING,
3762         .arg3_type      = ARG_ANYTHING,
3763 };
3764
3765 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3766                                         u64 flags)
3767 {
3768         u32 max_len = BPF_SKB_MAX_LEN;
3769         u32 new_len = skb->len + head_room;
3770         int ret;
3771
3772         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3773                      new_len < skb->len))
3774                 return -EINVAL;
3775
3776         ret = skb_cow(skb, head_room);
3777         if (likely(!ret)) {
3778                 /* Idea for this helper is that we currently only
3779                  * allow to expand on mac header. This means that
3780                  * skb->protocol network header, etc, stay as is.
3781                  * Compared to bpf_skb_change_tail(), we're more
3782                  * flexible due to not needing to linearize or
3783                  * reset GSO. Intention for this helper is to be
3784                  * used by an L3 skb that needs to push mac header
3785                  * for redirection into L2 device.
3786                  */
3787                 __skb_push(skb, head_room);
3788                 memset(skb->data, 0, head_room);
3789                 skb_reset_mac_header(skb);
3790                 skb_reset_mac_len(skb);
3791         }
3792
3793         return ret;
3794 }
3795
3796 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3797            u64, flags)
3798 {
3799         int ret = __bpf_skb_change_head(skb, head_room, flags);
3800
3801         bpf_compute_data_pointers(skb);
3802         return ret;
3803 }
3804
3805 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3806         .func           = bpf_skb_change_head,
3807         .gpl_only       = false,
3808         .ret_type       = RET_INTEGER,
3809         .arg1_type      = ARG_PTR_TO_CTX,
3810         .arg2_type      = ARG_ANYTHING,
3811         .arg3_type      = ARG_ANYTHING,
3812 };
3813
3814 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3815            u64, flags)
3816 {
3817         return __bpf_skb_change_head(skb, head_room, flags);
3818 }
3819
3820 static const struct bpf_func_proto sk_skb_change_head_proto = {
3821         .func           = sk_skb_change_head,
3822         .gpl_only       = false,
3823         .ret_type       = RET_INTEGER,
3824         .arg1_type      = ARG_PTR_TO_CTX,
3825         .arg2_type      = ARG_ANYTHING,
3826         .arg3_type      = ARG_ANYTHING,
3827 };
3828
3829 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3830 {
3831         return xdp_get_buff_len(xdp);
3832 }
3833
3834 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3835         .func           = bpf_xdp_get_buff_len,
3836         .gpl_only       = false,
3837         .ret_type       = RET_INTEGER,
3838         .arg1_type      = ARG_PTR_TO_CTX,
3839 };
3840
3841 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3842
3843 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3844         .func           = bpf_xdp_get_buff_len,
3845         .gpl_only       = false,
3846         .arg1_type      = ARG_PTR_TO_BTF_ID,
3847         .arg1_btf_id    = &bpf_xdp_get_buff_len_bpf_ids[0],
3848 };
3849
3850 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3851 {
3852         return xdp_data_meta_unsupported(xdp) ? 0 :
3853                xdp->data - xdp->data_meta;
3854 }
3855
3856 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3857 {
3858         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3859         unsigned long metalen = xdp_get_metalen(xdp);
3860         void *data_start = xdp_frame_end + metalen;
3861         void *data = xdp->data + offset;
3862
3863         if (unlikely(data < data_start ||
3864                      data > xdp->data_end - ETH_HLEN))
3865                 return -EINVAL;
3866
3867         if (metalen)
3868                 memmove(xdp->data_meta + offset,
3869                         xdp->data_meta, metalen);
3870         xdp->data_meta += offset;
3871         xdp->data = data;
3872
3873         return 0;
3874 }
3875
3876 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3877         .func           = bpf_xdp_adjust_head,
3878         .gpl_only       = false,
3879         .ret_type       = RET_INTEGER,
3880         .arg1_type      = ARG_PTR_TO_CTX,
3881         .arg2_type      = ARG_ANYTHING,
3882 };
3883
3884 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3885                              void *buf, unsigned long len, bool flush)
3886 {
3887         unsigned long ptr_len, ptr_off = 0;
3888         skb_frag_t *next_frag, *end_frag;
3889         struct skb_shared_info *sinfo;
3890         void *src, *dst;
3891         u8 *ptr_buf;
3892
3893         if (likely(xdp->data_end - xdp->data >= off + len)) {
3894                 src = flush ? buf : xdp->data + off;
3895                 dst = flush ? xdp->data + off : buf;
3896                 memcpy(dst, src, len);
3897                 return;
3898         }
3899
3900         sinfo = xdp_get_shared_info_from_buff(xdp);
3901         end_frag = &sinfo->frags[sinfo->nr_frags];
3902         next_frag = &sinfo->frags[0];
3903
3904         ptr_len = xdp->data_end - xdp->data;
3905         ptr_buf = xdp->data;
3906
3907         while (true) {
3908                 if (off < ptr_off + ptr_len) {
3909                         unsigned long copy_off = off - ptr_off;
3910                         unsigned long copy_len = min(len, ptr_len - copy_off);
3911
3912                         src = flush ? buf : ptr_buf + copy_off;
3913                         dst = flush ? ptr_buf + copy_off : buf;
3914                         memcpy(dst, src, copy_len);
3915
3916                         off += copy_len;
3917                         len -= copy_len;
3918                         buf += copy_len;
3919                 }
3920
3921                 if (!len || next_frag == end_frag)
3922                         break;
3923
3924                 ptr_off += ptr_len;
3925                 ptr_buf = skb_frag_address(next_frag);
3926                 ptr_len = skb_frag_size(next_frag);
3927                 next_frag++;
3928         }
3929 }
3930
3931 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3932 {
3933         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3934         u32 size = xdp->data_end - xdp->data;
3935         void *addr = xdp->data;
3936         int i;
3937
3938         if (unlikely(offset > 0xffff || len > 0xffff))
3939                 return ERR_PTR(-EFAULT);
3940
3941         if (offset + len > xdp_get_buff_len(xdp))
3942                 return ERR_PTR(-EINVAL);
3943
3944         if (offset < size) /* linear area */
3945                 goto out;
3946
3947         offset -= size;
3948         for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3949                 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3950
3951                 if  (offset < frag_size) {
3952                         addr = skb_frag_address(&sinfo->frags[i]);
3953                         size = frag_size;
3954                         break;
3955                 }
3956                 offset -= frag_size;
3957         }
3958 out:
3959         return offset + len <= size ? addr + offset : NULL;
3960 }
3961
3962 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3963            void *, buf, u32, len)
3964 {
3965         void *ptr;
3966
3967         ptr = bpf_xdp_pointer(xdp, offset, len);
3968         if (IS_ERR(ptr))
3969                 return PTR_ERR(ptr);
3970
3971         if (!ptr)
3972                 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3973         else
3974                 memcpy(buf, ptr, len);
3975
3976         return 0;
3977 }
3978
3979 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3980         .func           = bpf_xdp_load_bytes,
3981         .gpl_only       = false,
3982         .ret_type       = RET_INTEGER,
3983         .arg1_type      = ARG_PTR_TO_CTX,
3984         .arg2_type      = ARG_ANYTHING,
3985         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
3986         .arg4_type      = ARG_CONST_SIZE,
3987 };
3988
3989 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3990            void *, buf, u32, len)
3991 {
3992         void *ptr;
3993
3994         ptr = bpf_xdp_pointer(xdp, offset, len);
3995         if (IS_ERR(ptr))
3996                 return PTR_ERR(ptr);
3997
3998         if (!ptr)
3999                 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4000         else
4001                 memcpy(ptr, buf, len);
4002
4003         return 0;
4004 }
4005
4006 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4007         .func           = bpf_xdp_store_bytes,
4008         .gpl_only       = false,
4009         .ret_type       = RET_INTEGER,
4010         .arg1_type      = ARG_PTR_TO_CTX,
4011         .arg2_type      = ARG_ANYTHING,
4012         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4013         .arg4_type      = ARG_CONST_SIZE,
4014 };
4015
4016 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4017 {
4018         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4019         skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4020         struct xdp_rxq_info *rxq = xdp->rxq;
4021         unsigned int tailroom;
4022
4023         if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4024                 return -EOPNOTSUPP;
4025
4026         tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4027         if (unlikely(offset > tailroom))
4028                 return -EINVAL;
4029
4030         memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4031         skb_frag_size_add(frag, offset);
4032         sinfo->xdp_frags_size += offset;
4033
4034         return 0;
4035 }
4036
4037 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4038 {
4039         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4040         int i, n_frags_free = 0, len_free = 0;
4041
4042         if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4043                 return -EINVAL;
4044
4045         for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4046                 skb_frag_t *frag = &sinfo->frags[i];
4047                 int shrink = min_t(int, offset, skb_frag_size(frag));
4048
4049                 len_free += shrink;
4050                 offset -= shrink;
4051
4052                 if (skb_frag_size(frag) == shrink) {
4053                         struct page *page = skb_frag_page(frag);
4054
4055                         __xdp_return(page_address(page), &xdp->rxq->mem,
4056                                      false, NULL);
4057                         n_frags_free++;
4058                 } else {
4059                         skb_frag_size_sub(frag, shrink);
4060                         break;
4061                 }
4062         }
4063         sinfo->nr_frags -= n_frags_free;
4064         sinfo->xdp_frags_size -= len_free;
4065
4066         if (unlikely(!sinfo->nr_frags)) {
4067                 xdp_buff_clear_frags_flag(xdp);
4068                 xdp->data_end -= offset;
4069         }
4070
4071         return 0;
4072 }
4073
4074 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4075 {
4076         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4077         void *data_end = xdp->data_end + offset;
4078
4079         if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4080                 if (offset < 0)
4081                         return bpf_xdp_frags_shrink_tail(xdp, -offset);
4082
4083                 return bpf_xdp_frags_increase_tail(xdp, offset);
4084         }
4085
4086         /* Notice that xdp_data_hard_end have reserved some tailroom */
4087         if (unlikely(data_end > data_hard_end))
4088                 return -EINVAL;
4089
4090         if (unlikely(data_end < xdp->data + ETH_HLEN))
4091                 return -EINVAL;
4092
4093         /* Clear memory area on grow, can contain uninit kernel memory */
4094         if (offset > 0)
4095                 memset(xdp->data_end, 0, offset);
4096
4097         xdp->data_end = data_end;
4098
4099         return 0;
4100 }
4101
4102 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4103         .func           = bpf_xdp_adjust_tail,
4104         .gpl_only       = false,
4105         .ret_type       = RET_INTEGER,
4106         .arg1_type      = ARG_PTR_TO_CTX,
4107         .arg2_type      = ARG_ANYTHING,
4108 };
4109
4110 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4111 {
4112         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4113         void *meta = xdp->data_meta + offset;
4114         unsigned long metalen = xdp->data - meta;
4115
4116         if (xdp_data_meta_unsupported(xdp))
4117                 return -ENOTSUPP;
4118         if (unlikely(meta < xdp_frame_end ||
4119                      meta > xdp->data))
4120                 return -EINVAL;
4121         if (unlikely(xdp_metalen_invalid(metalen)))
4122                 return -EACCES;
4123
4124         xdp->data_meta = meta;
4125
4126         return 0;
4127 }
4128
4129 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4130         .func           = bpf_xdp_adjust_meta,
4131         .gpl_only       = false,
4132         .ret_type       = RET_INTEGER,
4133         .arg1_type      = ARG_PTR_TO_CTX,
4134         .arg2_type      = ARG_ANYTHING,
4135 };
4136
4137 /* XDP_REDIRECT works by a three-step process, implemented in the functions
4138  * below:
4139  *
4140  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4141  *    of the redirect and store it (along with some other metadata) in a per-CPU
4142  *    struct bpf_redirect_info.
4143  *
4144  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4145  *    call xdp_do_redirect() which will use the information in struct
4146  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4147  *    bulk queue structure.
4148  *
4149  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4150  *    which will flush all the different bulk queues, thus completing the
4151  *    redirect.
4152  *
4153  * Pointers to the map entries will be kept around for this whole sequence of
4154  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4155  * the core code; instead, the RCU protection relies on everything happening
4156  * inside a single NAPI poll sequence, which means it's between a pair of calls
4157  * to local_bh_disable()/local_bh_enable().
4158  *
4159  * The map entries are marked as __rcu and the map code makes sure to
4160  * dereference those pointers with rcu_dereference_check() in a way that works
4161  * for both sections that to hold an rcu_read_lock() and sections that are
4162  * called from NAPI without a separate rcu_read_lock(). The code below does not
4163  * use RCU annotations, but relies on those in the map code.
4164  */
4165 void xdp_do_flush(void)
4166 {
4167         __dev_flush();
4168         __cpu_map_flush();
4169         __xsk_map_flush();
4170 }
4171 EXPORT_SYMBOL_GPL(xdp_do_flush);
4172
4173 void bpf_clear_redirect_map(struct bpf_map *map)
4174 {
4175         struct bpf_redirect_info *ri;
4176         int cpu;
4177
4178         for_each_possible_cpu(cpu) {
4179                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4180                 /* Avoid polluting remote cacheline due to writes if
4181                  * not needed. Once we pass this test, we need the
4182                  * cmpxchg() to make sure it hasn't been changed in
4183                  * the meantime by remote CPU.
4184                  */
4185                 if (unlikely(READ_ONCE(ri->map) == map))
4186                         cmpxchg(&ri->map, map, NULL);
4187         }
4188 }
4189
4190 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4191 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4192
4193 u32 xdp_master_redirect(struct xdp_buff *xdp)
4194 {
4195         struct net_device *master, *slave;
4196         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4197
4198         master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4199         slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4200         if (slave && slave != xdp->rxq->dev) {
4201                 /* The target device is different from the receiving device, so
4202                  * redirect it to the new device.
4203                  * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4204                  * drivers to unmap the packet from their rx ring.
4205                  */
4206                 ri->tgt_index = slave->ifindex;
4207                 ri->map_id = INT_MAX;
4208                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4209                 return XDP_REDIRECT;
4210         }
4211         return XDP_TX;
4212 }
4213 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4214
4215 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4216                                         struct net_device *dev,
4217                                         struct xdp_buff *xdp,
4218                                         struct bpf_prog *xdp_prog)
4219 {
4220         enum bpf_map_type map_type = ri->map_type;
4221         void *fwd = ri->tgt_value;
4222         u32 map_id = ri->map_id;
4223         int err;
4224
4225         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4226         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4227
4228         err = __xsk_map_redirect(fwd, xdp);
4229         if (unlikely(err))
4230                 goto err;
4231
4232         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4233         return 0;
4234 err:
4235         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4236         return err;
4237 }
4238
4239 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4240                                                    struct net_device *dev,
4241                                                    struct xdp_frame *xdpf,
4242                                                    struct bpf_prog *xdp_prog)
4243 {
4244         enum bpf_map_type map_type = ri->map_type;
4245         void *fwd = ri->tgt_value;
4246         u32 map_id = ri->map_id;
4247         struct bpf_map *map;
4248         int err;
4249
4250         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4251         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4252
4253         if (unlikely(!xdpf)) {
4254                 err = -EOVERFLOW;
4255                 goto err;
4256         }
4257
4258         switch (map_type) {
4259         case BPF_MAP_TYPE_DEVMAP:
4260                 fallthrough;
4261         case BPF_MAP_TYPE_DEVMAP_HASH:
4262                 map = READ_ONCE(ri->map);
4263                 if (unlikely(map)) {
4264                         WRITE_ONCE(ri->map, NULL);
4265                         err = dev_map_enqueue_multi(xdpf, dev, map,
4266                                                     ri->flags & BPF_F_EXCLUDE_INGRESS);
4267                 } else {
4268                         err = dev_map_enqueue(fwd, xdpf, dev);
4269                 }
4270                 break;
4271         case BPF_MAP_TYPE_CPUMAP:
4272                 err = cpu_map_enqueue(fwd, xdpf, dev);
4273                 break;
4274         case BPF_MAP_TYPE_UNSPEC:
4275                 if (map_id == INT_MAX) {
4276                         fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4277                         if (unlikely(!fwd)) {
4278                                 err = -EINVAL;
4279                                 break;
4280                         }
4281                         err = dev_xdp_enqueue(fwd, xdpf, dev);
4282                         break;
4283                 }
4284                 fallthrough;
4285         default:
4286                 err = -EBADRQC;
4287         }
4288
4289         if (unlikely(err))
4290                 goto err;
4291
4292         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4293         return 0;
4294 err:
4295         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4296         return err;
4297 }
4298
4299 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4300                     struct bpf_prog *xdp_prog)
4301 {
4302         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4303         enum bpf_map_type map_type = ri->map_type;
4304
4305         /* XDP_REDIRECT is not fully supported yet for xdp frags since
4306          * not all XDP capable drivers can map non-linear xdp_frame in
4307          * ndo_xdp_xmit.
4308          */
4309         if (unlikely(xdp_buff_has_frags(xdp) &&
4310                      map_type != BPF_MAP_TYPE_CPUMAP))
4311                 return -EOPNOTSUPP;
4312
4313         if (map_type == BPF_MAP_TYPE_XSKMAP)
4314                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4315
4316         return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4317                                        xdp_prog);
4318 }
4319 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4320
4321 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4322                           struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4323 {
4324         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4325         enum bpf_map_type map_type = ri->map_type;
4326
4327         if (map_type == BPF_MAP_TYPE_XSKMAP)
4328                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4329
4330         return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4331 }
4332 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4333
4334 static int xdp_do_generic_redirect_map(struct net_device *dev,
4335                                        struct sk_buff *skb,
4336                                        struct xdp_buff *xdp,
4337                                        struct bpf_prog *xdp_prog,
4338                                        void *fwd,
4339                                        enum bpf_map_type map_type, u32 map_id)
4340 {
4341         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4342         struct bpf_map *map;
4343         int err;
4344
4345         switch (map_type) {
4346         case BPF_MAP_TYPE_DEVMAP:
4347                 fallthrough;
4348         case BPF_MAP_TYPE_DEVMAP_HASH:
4349                 map = READ_ONCE(ri->map);
4350                 if (unlikely(map)) {
4351                         WRITE_ONCE(ri->map, NULL);
4352                         err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4353                                                      ri->flags & BPF_F_EXCLUDE_INGRESS);
4354                 } else {
4355                         err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4356                 }
4357                 if (unlikely(err))
4358                         goto err;
4359                 break;
4360         case BPF_MAP_TYPE_XSKMAP:
4361                 err = xsk_generic_rcv(fwd, xdp);
4362                 if (err)
4363                         goto err;
4364                 consume_skb(skb);
4365                 break;
4366         case BPF_MAP_TYPE_CPUMAP:
4367                 err = cpu_map_generic_redirect(fwd, skb);
4368                 if (unlikely(err))
4369                         goto err;
4370                 break;
4371         default:
4372                 err = -EBADRQC;
4373                 goto err;
4374         }
4375
4376         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4377         return 0;
4378 err:
4379         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4380         return err;
4381 }
4382
4383 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4384                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4385 {
4386         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4387         enum bpf_map_type map_type = ri->map_type;
4388         void *fwd = ri->tgt_value;
4389         u32 map_id = ri->map_id;
4390         int err;
4391
4392         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4393         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4394
4395         if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4396                 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4397                 if (unlikely(!fwd)) {
4398                         err = -EINVAL;
4399                         goto err;
4400                 }
4401
4402                 err = xdp_ok_fwd_dev(fwd, skb->len);
4403                 if (unlikely(err))
4404                         goto err;
4405
4406                 skb->dev = fwd;
4407                 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4408                 generic_xdp_tx(skb, xdp_prog);
4409                 return 0;
4410         }
4411
4412         return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4413 err:
4414         _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4415         return err;
4416 }
4417
4418 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4419 {
4420         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4421
4422         if (unlikely(flags))
4423                 return XDP_ABORTED;
4424
4425         /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4426          * by map_idr) is used for ifindex based XDP redirect.
4427          */
4428         ri->tgt_index = ifindex;
4429         ri->map_id = INT_MAX;
4430         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4431
4432         return XDP_REDIRECT;
4433 }
4434
4435 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4436         .func           = bpf_xdp_redirect,
4437         .gpl_only       = false,
4438         .ret_type       = RET_INTEGER,
4439         .arg1_type      = ARG_ANYTHING,
4440         .arg2_type      = ARG_ANYTHING,
4441 };
4442
4443 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4444            u64, flags)
4445 {
4446         return map->ops->map_redirect(map, ifindex, flags);
4447 }
4448
4449 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4450         .func           = bpf_xdp_redirect_map,
4451         .gpl_only       = false,
4452         .ret_type       = RET_INTEGER,
4453         .arg1_type      = ARG_CONST_MAP_PTR,
4454         .arg2_type      = ARG_ANYTHING,
4455         .arg3_type      = ARG_ANYTHING,
4456 };
4457
4458 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4459                                   unsigned long off, unsigned long len)
4460 {
4461         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4462
4463         if (unlikely(!ptr))
4464                 return len;
4465         if (ptr != dst_buff)
4466                 memcpy(dst_buff, ptr, len);
4467
4468         return 0;
4469 }
4470
4471 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4472            u64, flags, void *, meta, u64, meta_size)
4473 {
4474         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4475
4476         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4477                 return -EINVAL;
4478         if (unlikely(!skb || skb_size > skb->len))
4479                 return -EFAULT;
4480
4481         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4482                                 bpf_skb_copy);
4483 }
4484
4485 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4486         .func           = bpf_skb_event_output,
4487         .gpl_only       = true,
4488         .ret_type       = RET_INTEGER,
4489         .arg1_type      = ARG_PTR_TO_CTX,
4490         .arg2_type      = ARG_CONST_MAP_PTR,
4491         .arg3_type      = ARG_ANYTHING,
4492         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4493         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4494 };
4495
4496 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4497
4498 const struct bpf_func_proto bpf_skb_output_proto = {
4499         .func           = bpf_skb_event_output,
4500         .gpl_only       = true,
4501         .ret_type       = RET_INTEGER,
4502         .arg1_type      = ARG_PTR_TO_BTF_ID,
4503         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4504         .arg2_type      = ARG_CONST_MAP_PTR,
4505         .arg3_type      = ARG_ANYTHING,
4506         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4507         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4508 };
4509
4510 static unsigned short bpf_tunnel_key_af(u64 flags)
4511 {
4512         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4513 }
4514
4515 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4516            u32, size, u64, flags)
4517 {
4518         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4519         u8 compat[sizeof(struct bpf_tunnel_key)];
4520         void *to_orig = to;
4521         int err;
4522
4523         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4524                                          BPF_F_TUNINFO_FLAGS)))) {
4525                 err = -EINVAL;
4526                 goto err_clear;
4527         }
4528         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4529                 err = -EPROTO;
4530                 goto err_clear;
4531         }
4532         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4533                 err = -EINVAL;
4534                 switch (size) {
4535                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4536                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4537                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4538                         goto set_compat;
4539                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4540                         /* Fixup deprecated structure layouts here, so we have
4541                          * a common path later on.
4542                          */
4543                         if (ip_tunnel_info_af(info) != AF_INET)
4544                                 goto err_clear;
4545 set_compat:
4546                         to = (struct bpf_tunnel_key *)compat;
4547                         break;
4548                 default:
4549                         goto err_clear;
4550                 }
4551         }
4552
4553         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4554         to->tunnel_tos = info->key.tos;
4555         to->tunnel_ttl = info->key.ttl;
4556         if (flags & BPF_F_TUNINFO_FLAGS)
4557                 to->tunnel_flags = info->key.tun_flags;
4558         else
4559                 to->tunnel_ext = 0;
4560
4561         if (flags & BPF_F_TUNINFO_IPV6) {
4562                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4563                        sizeof(to->remote_ipv6));
4564                 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4565                        sizeof(to->local_ipv6));
4566                 to->tunnel_label = be32_to_cpu(info->key.label);
4567         } else {
4568                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4569                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4570                 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4571                 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4572                 to->tunnel_label = 0;
4573         }
4574
4575         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4576                 memcpy(to_orig, to, size);
4577
4578         return 0;
4579 err_clear:
4580         memset(to_orig, 0, size);
4581         return err;
4582 }
4583
4584 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4585         .func           = bpf_skb_get_tunnel_key,
4586         .gpl_only       = false,
4587         .ret_type       = RET_INTEGER,
4588         .arg1_type      = ARG_PTR_TO_CTX,
4589         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4590         .arg3_type      = ARG_CONST_SIZE,
4591         .arg4_type      = ARG_ANYTHING,
4592 };
4593
4594 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4595 {
4596         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4597         int err;
4598
4599         if (unlikely(!info ||
4600                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4601                 err = -ENOENT;
4602                 goto err_clear;
4603         }
4604         if (unlikely(size < info->options_len)) {
4605                 err = -ENOMEM;
4606                 goto err_clear;
4607         }
4608
4609         ip_tunnel_info_opts_get(to, info);
4610         if (size > info->options_len)
4611                 memset(to + info->options_len, 0, size - info->options_len);
4612
4613         return info->options_len;
4614 err_clear:
4615         memset(to, 0, size);
4616         return err;
4617 }
4618
4619 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4620         .func           = bpf_skb_get_tunnel_opt,
4621         .gpl_only       = false,
4622         .ret_type       = RET_INTEGER,
4623         .arg1_type      = ARG_PTR_TO_CTX,
4624         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4625         .arg3_type      = ARG_CONST_SIZE,
4626 };
4627
4628 static struct metadata_dst __percpu *md_dst;
4629
4630 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4631            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4632 {
4633         struct metadata_dst *md = this_cpu_ptr(md_dst);
4634         u8 compat[sizeof(struct bpf_tunnel_key)];
4635         struct ip_tunnel_info *info;
4636
4637         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4638                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4639                 return -EINVAL;
4640         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4641                 switch (size) {
4642                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4643                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4644                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4645                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4646                         /* Fixup deprecated structure layouts here, so we have
4647                          * a common path later on.
4648                          */
4649                         memcpy(compat, from, size);
4650                         memset(compat + size, 0, sizeof(compat) - size);
4651                         from = (const struct bpf_tunnel_key *) compat;
4652                         break;
4653                 default:
4654                         return -EINVAL;
4655                 }
4656         }
4657         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4658                      from->tunnel_ext))
4659                 return -EINVAL;
4660
4661         skb_dst_drop(skb);
4662         dst_hold((struct dst_entry *) md);
4663         skb_dst_set(skb, (struct dst_entry *) md);
4664
4665         info = &md->u.tun_info;
4666         memset(info, 0, sizeof(*info));
4667         info->mode = IP_TUNNEL_INFO_TX;
4668
4669         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4670         if (flags & BPF_F_DONT_FRAGMENT)
4671                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4672         if (flags & BPF_F_ZERO_CSUM_TX)
4673                 info->key.tun_flags &= ~TUNNEL_CSUM;
4674         if (flags & BPF_F_SEQ_NUMBER)
4675                 info->key.tun_flags |= TUNNEL_SEQ;
4676
4677         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4678         info->key.tos = from->tunnel_tos;
4679         info->key.ttl = from->tunnel_ttl;
4680
4681         if (flags & BPF_F_TUNINFO_IPV6) {
4682                 info->mode |= IP_TUNNEL_INFO_IPV6;
4683                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4684                        sizeof(from->remote_ipv6));
4685                 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4686                        sizeof(from->local_ipv6));
4687                 info->key.label = cpu_to_be32(from->tunnel_label) &
4688                                   IPV6_FLOWLABEL_MASK;
4689         } else {
4690                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4691                 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4692                 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4693         }
4694
4695         return 0;
4696 }
4697
4698 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4699         .func           = bpf_skb_set_tunnel_key,
4700         .gpl_only       = false,
4701         .ret_type       = RET_INTEGER,
4702         .arg1_type      = ARG_PTR_TO_CTX,
4703         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4704         .arg3_type      = ARG_CONST_SIZE,
4705         .arg4_type      = ARG_ANYTHING,
4706 };
4707
4708 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4709            const u8 *, from, u32, size)
4710 {
4711         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4712         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4713
4714         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4715                 return -EINVAL;
4716         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4717                 return -ENOMEM;
4718
4719         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4720
4721         return 0;
4722 }
4723
4724 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4725         .func           = bpf_skb_set_tunnel_opt,
4726         .gpl_only       = false,
4727         .ret_type       = RET_INTEGER,
4728         .arg1_type      = ARG_PTR_TO_CTX,
4729         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4730         .arg3_type      = ARG_CONST_SIZE,
4731 };
4732
4733 static const struct bpf_func_proto *
4734 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4735 {
4736         if (!md_dst) {
4737                 struct metadata_dst __percpu *tmp;
4738
4739                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4740                                                 METADATA_IP_TUNNEL,
4741                                                 GFP_KERNEL);
4742                 if (!tmp)
4743                         return NULL;
4744                 if (cmpxchg(&md_dst, NULL, tmp))
4745                         metadata_dst_free_percpu(tmp);
4746         }
4747
4748         switch (which) {
4749         case BPF_FUNC_skb_set_tunnel_key:
4750                 return &bpf_skb_set_tunnel_key_proto;
4751         case BPF_FUNC_skb_set_tunnel_opt:
4752                 return &bpf_skb_set_tunnel_opt_proto;
4753         default:
4754                 return NULL;
4755         }
4756 }
4757
4758 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4759            u32, idx)
4760 {
4761         struct bpf_array *array = container_of(map, struct bpf_array, map);
4762         struct cgroup *cgrp;
4763         struct sock *sk;
4764
4765         sk = skb_to_full_sk(skb);
4766         if (!sk || !sk_fullsock(sk))
4767                 return -ENOENT;
4768         if (unlikely(idx >= array->map.max_entries))
4769                 return -E2BIG;
4770
4771         cgrp = READ_ONCE(array->ptrs[idx]);
4772         if (unlikely(!cgrp))
4773                 return -EAGAIN;
4774
4775         return sk_under_cgroup_hierarchy(sk, cgrp);
4776 }
4777
4778 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4779         .func           = bpf_skb_under_cgroup,
4780         .gpl_only       = false,
4781         .ret_type       = RET_INTEGER,
4782         .arg1_type      = ARG_PTR_TO_CTX,
4783         .arg2_type      = ARG_CONST_MAP_PTR,
4784         .arg3_type      = ARG_ANYTHING,
4785 };
4786
4787 #ifdef CONFIG_SOCK_CGROUP_DATA
4788 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4789 {
4790         struct cgroup *cgrp;
4791
4792         sk = sk_to_full_sk(sk);
4793         if (!sk || !sk_fullsock(sk))
4794                 return 0;
4795
4796         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4797         return cgroup_id(cgrp);
4798 }
4799
4800 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4801 {
4802         return __bpf_sk_cgroup_id(skb->sk);
4803 }
4804
4805 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4806         .func           = bpf_skb_cgroup_id,
4807         .gpl_only       = false,
4808         .ret_type       = RET_INTEGER,
4809         .arg1_type      = ARG_PTR_TO_CTX,
4810 };
4811
4812 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4813                                               int ancestor_level)
4814 {
4815         struct cgroup *ancestor;
4816         struct cgroup *cgrp;
4817
4818         sk = sk_to_full_sk(sk);
4819         if (!sk || !sk_fullsock(sk))
4820                 return 0;
4821
4822         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4823         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4824         if (!ancestor)
4825                 return 0;
4826
4827         return cgroup_id(ancestor);
4828 }
4829
4830 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4831            ancestor_level)
4832 {
4833         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4834 }
4835
4836 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4837         .func           = bpf_skb_ancestor_cgroup_id,
4838         .gpl_only       = false,
4839         .ret_type       = RET_INTEGER,
4840         .arg1_type      = ARG_PTR_TO_CTX,
4841         .arg2_type      = ARG_ANYTHING,
4842 };
4843
4844 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4845 {
4846         return __bpf_sk_cgroup_id(sk);
4847 }
4848
4849 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4850         .func           = bpf_sk_cgroup_id,
4851         .gpl_only       = false,
4852         .ret_type       = RET_INTEGER,
4853         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4854 };
4855
4856 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4857 {
4858         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4859 }
4860
4861 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4862         .func           = bpf_sk_ancestor_cgroup_id,
4863         .gpl_only       = false,
4864         .ret_type       = RET_INTEGER,
4865         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4866         .arg2_type      = ARG_ANYTHING,
4867 };
4868 #endif
4869
4870 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4871                                   unsigned long off, unsigned long len)
4872 {
4873         struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4874
4875         bpf_xdp_copy_buf(xdp, off, dst, len, false);
4876         return 0;
4877 }
4878
4879 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4880            u64, flags, void *, meta, u64, meta_size)
4881 {
4882         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4883
4884         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4885                 return -EINVAL;
4886
4887         if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4888                 return -EFAULT;
4889
4890         return bpf_event_output(map, flags, meta, meta_size, xdp,
4891                                 xdp_size, bpf_xdp_copy);
4892 }
4893
4894 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4895         .func           = bpf_xdp_event_output,
4896         .gpl_only       = true,
4897         .ret_type       = RET_INTEGER,
4898         .arg1_type      = ARG_PTR_TO_CTX,
4899         .arg2_type      = ARG_CONST_MAP_PTR,
4900         .arg3_type      = ARG_ANYTHING,
4901         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4902         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4903 };
4904
4905 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4906
4907 const struct bpf_func_proto bpf_xdp_output_proto = {
4908         .func           = bpf_xdp_event_output,
4909         .gpl_only       = true,
4910         .ret_type       = RET_INTEGER,
4911         .arg1_type      = ARG_PTR_TO_BTF_ID,
4912         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4913         .arg2_type      = ARG_CONST_MAP_PTR,
4914         .arg3_type      = ARG_ANYTHING,
4915         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4916         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4917 };
4918
4919 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4920 {
4921         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4922 }
4923
4924 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4925         .func           = bpf_get_socket_cookie,
4926         .gpl_only       = false,
4927         .ret_type       = RET_INTEGER,
4928         .arg1_type      = ARG_PTR_TO_CTX,
4929 };
4930
4931 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4932 {
4933         return __sock_gen_cookie(ctx->sk);
4934 }
4935
4936 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4937         .func           = bpf_get_socket_cookie_sock_addr,
4938         .gpl_only       = false,
4939         .ret_type       = RET_INTEGER,
4940         .arg1_type      = ARG_PTR_TO_CTX,
4941 };
4942
4943 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4944 {
4945         return __sock_gen_cookie(ctx);
4946 }
4947
4948 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4949         .func           = bpf_get_socket_cookie_sock,
4950         .gpl_only       = false,
4951         .ret_type       = RET_INTEGER,
4952         .arg1_type      = ARG_PTR_TO_CTX,
4953 };
4954
4955 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4956 {
4957         return sk ? sock_gen_cookie(sk) : 0;
4958 }
4959
4960 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4961         .func           = bpf_get_socket_ptr_cookie,
4962         .gpl_only       = false,
4963         .ret_type       = RET_INTEGER,
4964         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4965 };
4966
4967 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4968 {
4969         return __sock_gen_cookie(ctx->sk);
4970 }
4971
4972 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4973         .func           = bpf_get_socket_cookie_sock_ops,
4974         .gpl_only       = false,
4975         .ret_type       = RET_INTEGER,
4976         .arg1_type      = ARG_PTR_TO_CTX,
4977 };
4978
4979 static u64 __bpf_get_netns_cookie(struct sock *sk)
4980 {
4981         const struct net *net = sk ? sock_net(sk) : &init_net;
4982
4983         return net->net_cookie;
4984 }
4985
4986 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4987 {
4988         return __bpf_get_netns_cookie(ctx);
4989 }
4990
4991 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4992         .func           = bpf_get_netns_cookie_sock,
4993         .gpl_only       = false,
4994         .ret_type       = RET_INTEGER,
4995         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4996 };
4997
4998 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4999 {
5000         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5001 }
5002
5003 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5004         .func           = bpf_get_netns_cookie_sock_addr,
5005         .gpl_only       = false,
5006         .ret_type       = RET_INTEGER,
5007         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5008 };
5009
5010 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5011 {
5012         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5013 }
5014
5015 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5016         .func           = bpf_get_netns_cookie_sock_ops,
5017         .gpl_only       = false,
5018         .ret_type       = RET_INTEGER,
5019         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5020 };
5021
5022 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5023 {
5024         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5025 }
5026
5027 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5028         .func           = bpf_get_netns_cookie_sk_msg,
5029         .gpl_only       = false,
5030         .ret_type       = RET_INTEGER,
5031         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5032 };
5033
5034 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5035 {
5036         struct sock *sk = sk_to_full_sk(skb->sk);
5037         kuid_t kuid;
5038
5039         if (!sk || !sk_fullsock(sk))
5040                 return overflowuid;
5041         kuid = sock_net_uid(sock_net(sk), sk);
5042         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5043 }
5044
5045 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5046         .func           = bpf_get_socket_uid,
5047         .gpl_only       = false,
5048         .ret_type       = RET_INTEGER,
5049         .arg1_type      = ARG_PTR_TO_CTX,
5050 };
5051
5052 static int sol_socket_sockopt(struct sock *sk, int optname,
5053                               char *optval, int *optlen,
5054                               bool getopt)
5055 {
5056         switch (optname) {
5057         case SO_REUSEADDR:
5058         case SO_SNDBUF:
5059         case SO_RCVBUF:
5060         case SO_KEEPALIVE:
5061         case SO_PRIORITY:
5062         case SO_REUSEPORT:
5063         case SO_RCVLOWAT:
5064         case SO_MARK:
5065         case SO_MAX_PACING_RATE:
5066         case SO_BINDTOIFINDEX:
5067         case SO_TXREHASH:
5068                 if (*optlen != sizeof(int))
5069                         return -EINVAL;
5070                 break;
5071         case SO_BINDTODEVICE:
5072                 break;
5073         default:
5074                 return -EINVAL;
5075         }
5076
5077         if (getopt) {
5078                 if (optname == SO_BINDTODEVICE)
5079                         return -EINVAL;
5080                 return sk_getsockopt(sk, SOL_SOCKET, optname,
5081                                      KERNEL_SOCKPTR(optval),
5082                                      KERNEL_SOCKPTR(optlen));
5083         }
5084
5085         return sk_setsockopt(sk, SOL_SOCKET, optname,
5086                              KERNEL_SOCKPTR(optval), *optlen);
5087 }
5088
5089 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5090                                   char *optval, int optlen)
5091 {
5092         struct tcp_sock *tp = tcp_sk(sk);
5093         unsigned long timeout;
5094         int val;
5095
5096         if (optlen != sizeof(int))
5097                 return -EINVAL;
5098
5099         val = *(int *)optval;
5100
5101         /* Only some options are supported */
5102         switch (optname) {
5103         case TCP_BPF_IW:
5104                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5105                         return -EINVAL;
5106                 tcp_snd_cwnd_set(tp, val);
5107                 break;
5108         case TCP_BPF_SNDCWND_CLAMP:
5109                 if (val <= 0)
5110                         return -EINVAL;
5111                 tp->snd_cwnd_clamp = val;
5112                 tp->snd_ssthresh = val;
5113                 break;
5114         case TCP_BPF_DELACK_MAX:
5115                 timeout = usecs_to_jiffies(val);
5116                 if (timeout > TCP_DELACK_MAX ||
5117                     timeout < TCP_TIMEOUT_MIN)
5118                         return -EINVAL;
5119                 inet_csk(sk)->icsk_delack_max = timeout;
5120                 break;
5121         case TCP_BPF_RTO_MIN:
5122                 timeout = usecs_to_jiffies(val);
5123                 if (timeout > TCP_RTO_MIN ||
5124                     timeout < TCP_TIMEOUT_MIN)
5125                         return -EINVAL;
5126                 inet_csk(sk)->icsk_rto_min = timeout;
5127                 break;
5128         default:
5129                 return -EINVAL;
5130         }
5131
5132         return 0;
5133 }
5134
5135 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5136                                       int *optlen, bool getopt)
5137 {
5138         struct tcp_sock *tp;
5139         int ret;
5140
5141         if (*optlen < 2)
5142                 return -EINVAL;
5143
5144         if (getopt) {
5145                 if (!inet_csk(sk)->icsk_ca_ops)
5146                         return -EINVAL;
5147                 /* BPF expects NULL-terminated tcp-cc string */
5148                 optval[--(*optlen)] = '\0';
5149                 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5150                                          KERNEL_SOCKPTR(optval),
5151                                          KERNEL_SOCKPTR(optlen));
5152         }
5153
5154         /* "cdg" is the only cc that alloc a ptr
5155          * in inet_csk_ca area.  The bpf-tcp-cc may
5156          * overwrite this ptr after switching to cdg.
5157          */
5158         if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5159                 return -ENOTSUPP;
5160
5161         /* It stops this looping
5162          *
5163          * .init => bpf_setsockopt(tcp_cc) => .init =>
5164          * bpf_setsockopt(tcp_cc)" => .init => ....
5165          *
5166          * The second bpf_setsockopt(tcp_cc) is not allowed
5167          * in order to break the loop when both .init
5168          * are the same bpf prog.
5169          *
5170          * This applies even the second bpf_setsockopt(tcp_cc)
5171          * does not cause a loop.  This limits only the first
5172          * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5173          * pick a fallback cc (eg. peer does not support ECN)
5174          * and the second '.init' cannot fallback to
5175          * another.
5176          */
5177         tp = tcp_sk(sk);
5178         if (tp->bpf_chg_cc_inprogress)
5179                 return -EBUSY;
5180
5181         tp->bpf_chg_cc_inprogress = 1;
5182         ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5183                                 KERNEL_SOCKPTR(optval), *optlen);
5184         tp->bpf_chg_cc_inprogress = 0;
5185         return ret;
5186 }
5187
5188 static int sol_tcp_sockopt(struct sock *sk, int optname,
5189                            char *optval, int *optlen,
5190                            bool getopt)
5191 {
5192         if (sk->sk_prot->setsockopt != tcp_setsockopt)
5193                 return -EINVAL;
5194
5195         switch (optname) {
5196         case TCP_NODELAY:
5197         case TCP_MAXSEG:
5198         case TCP_KEEPIDLE:
5199         case TCP_KEEPINTVL:
5200         case TCP_KEEPCNT:
5201         case TCP_SYNCNT:
5202         case TCP_WINDOW_CLAMP:
5203         case TCP_THIN_LINEAR_TIMEOUTS:
5204         case TCP_USER_TIMEOUT:
5205         case TCP_NOTSENT_LOWAT:
5206         case TCP_SAVE_SYN:
5207                 if (*optlen != sizeof(int))
5208                         return -EINVAL;
5209                 break;
5210         case TCP_CONGESTION:
5211                 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5212         case TCP_SAVED_SYN:
5213                 if (*optlen < 1)
5214                         return -EINVAL;
5215                 break;
5216         default:
5217                 if (getopt)
5218                         return -EINVAL;
5219                 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5220         }
5221
5222         if (getopt) {
5223                 if (optname == TCP_SAVED_SYN) {
5224                         struct tcp_sock *tp = tcp_sk(sk);
5225
5226                         if (!tp->saved_syn ||
5227                             *optlen > tcp_saved_syn_len(tp->saved_syn))
5228                                 return -EINVAL;
5229                         memcpy(optval, tp->saved_syn->data, *optlen);
5230                         /* It cannot free tp->saved_syn here because it
5231                          * does not know if the user space still needs it.
5232                          */
5233                         return 0;
5234                 }
5235
5236                 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5237                                          KERNEL_SOCKPTR(optval),
5238                                          KERNEL_SOCKPTR(optlen));
5239         }
5240
5241         return do_tcp_setsockopt(sk, SOL_TCP, optname,
5242                                  KERNEL_SOCKPTR(optval), *optlen);
5243 }
5244
5245 static int sol_ip_sockopt(struct sock *sk, int optname,
5246                           char *optval, int *optlen,
5247                           bool getopt)
5248 {
5249         if (sk->sk_family != AF_INET)
5250                 return -EINVAL;
5251
5252         switch (optname) {
5253         case IP_TOS:
5254                 if (*optlen != sizeof(int))
5255                         return -EINVAL;
5256                 break;
5257         default:
5258                 return -EINVAL;
5259         }
5260
5261         if (getopt)
5262                 return do_ip_getsockopt(sk, SOL_IP, optname,
5263                                         KERNEL_SOCKPTR(optval),
5264                                         KERNEL_SOCKPTR(optlen));
5265
5266         return do_ip_setsockopt(sk, SOL_IP, optname,
5267                                 KERNEL_SOCKPTR(optval), *optlen);
5268 }
5269
5270 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5271                             char *optval, int *optlen,
5272                             bool getopt)
5273 {
5274         if (sk->sk_family != AF_INET6)
5275                 return -EINVAL;
5276
5277         switch (optname) {
5278         case IPV6_TCLASS:
5279         case IPV6_AUTOFLOWLABEL:
5280                 if (*optlen != sizeof(int))
5281                         return -EINVAL;
5282                 break;
5283         default:
5284                 return -EINVAL;
5285         }
5286
5287         if (getopt)
5288                 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5289                                                       KERNEL_SOCKPTR(optval),
5290                                                       KERNEL_SOCKPTR(optlen));
5291
5292         return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5293                                               KERNEL_SOCKPTR(optval), *optlen);
5294 }
5295
5296 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5297                             char *optval, int optlen)
5298 {
5299         if (!sk_fullsock(sk))
5300                 return -EINVAL;
5301
5302         if (level == SOL_SOCKET)
5303                 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5304         else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5305                 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5306         else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5307                 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5308         else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5309                 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5310
5311         return -EINVAL;
5312 }
5313
5314 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5315                            char *optval, int optlen)
5316 {
5317         if (sk_fullsock(sk))
5318                 sock_owned_by_me(sk);
5319         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5320 }
5321
5322 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5323                             char *optval, int optlen)
5324 {
5325         int err, saved_optlen = optlen;
5326
5327         if (!sk_fullsock(sk)) {
5328                 err = -EINVAL;
5329                 goto done;
5330         }
5331
5332         if (level == SOL_SOCKET)
5333                 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5334         else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5335                 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5336         else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5337                 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5338         else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5339                 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5340         else
5341                 err = -EINVAL;
5342
5343 done:
5344         if (err)
5345                 optlen = 0;
5346         if (optlen < saved_optlen)
5347                 memset(optval + optlen, 0, saved_optlen - optlen);
5348         return err;
5349 }
5350
5351 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5352                            char *optval, int optlen)
5353 {
5354         if (sk_fullsock(sk))
5355                 sock_owned_by_me(sk);
5356         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5357 }
5358
5359 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5360            int, optname, char *, optval, int, optlen)
5361 {
5362         return _bpf_setsockopt(sk, level, optname, optval, optlen);
5363 }
5364
5365 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5366         .func           = bpf_sk_setsockopt,
5367         .gpl_only       = false,
5368         .ret_type       = RET_INTEGER,
5369         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5370         .arg2_type      = ARG_ANYTHING,
5371         .arg3_type      = ARG_ANYTHING,
5372         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5373         .arg5_type      = ARG_CONST_SIZE,
5374 };
5375
5376 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5377            int, optname, char *, optval, int, optlen)
5378 {
5379         return _bpf_getsockopt(sk, level, optname, optval, optlen);
5380 }
5381
5382 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5383         .func           = bpf_sk_getsockopt,
5384         .gpl_only       = false,
5385         .ret_type       = RET_INTEGER,
5386         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5387         .arg2_type      = ARG_ANYTHING,
5388         .arg3_type      = ARG_ANYTHING,
5389         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5390         .arg5_type      = ARG_CONST_SIZE,
5391 };
5392
5393 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5394            int, optname, char *, optval, int, optlen)
5395 {
5396         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5397 }
5398
5399 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5400         .func           = bpf_unlocked_sk_setsockopt,
5401         .gpl_only       = false,
5402         .ret_type       = RET_INTEGER,
5403         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5404         .arg2_type      = ARG_ANYTHING,
5405         .arg3_type      = ARG_ANYTHING,
5406         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5407         .arg5_type      = ARG_CONST_SIZE,
5408 };
5409
5410 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5411            int, optname, char *, optval, int, optlen)
5412 {
5413         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5414 }
5415
5416 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5417         .func           = bpf_unlocked_sk_getsockopt,
5418         .gpl_only       = false,
5419         .ret_type       = RET_INTEGER,
5420         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5421         .arg2_type      = ARG_ANYTHING,
5422         .arg3_type      = ARG_ANYTHING,
5423         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5424         .arg5_type      = ARG_CONST_SIZE,
5425 };
5426
5427 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5428            int, level, int, optname, char *, optval, int, optlen)
5429 {
5430         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5431 }
5432
5433 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5434         .func           = bpf_sock_addr_setsockopt,
5435         .gpl_only       = false,
5436         .ret_type       = RET_INTEGER,
5437         .arg1_type      = ARG_PTR_TO_CTX,
5438         .arg2_type      = ARG_ANYTHING,
5439         .arg3_type      = ARG_ANYTHING,
5440         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5441         .arg5_type      = ARG_CONST_SIZE,
5442 };
5443
5444 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5445            int, level, int, optname, char *, optval, int, optlen)
5446 {
5447         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5448 }
5449
5450 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5451         .func           = bpf_sock_addr_getsockopt,
5452         .gpl_only       = false,
5453         .ret_type       = RET_INTEGER,
5454         .arg1_type      = ARG_PTR_TO_CTX,
5455         .arg2_type      = ARG_ANYTHING,
5456         .arg3_type      = ARG_ANYTHING,
5457         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5458         .arg5_type      = ARG_CONST_SIZE,
5459 };
5460
5461 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5462            int, level, int, optname, char *, optval, int, optlen)
5463 {
5464         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5465 }
5466
5467 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5468         .func           = bpf_sock_ops_setsockopt,
5469         .gpl_only       = false,
5470         .ret_type       = RET_INTEGER,
5471         .arg1_type      = ARG_PTR_TO_CTX,
5472         .arg2_type      = ARG_ANYTHING,
5473         .arg3_type      = ARG_ANYTHING,
5474         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5475         .arg5_type      = ARG_CONST_SIZE,
5476 };
5477
5478 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5479                                 int optname, const u8 **start)
5480 {
5481         struct sk_buff *syn_skb = bpf_sock->syn_skb;
5482         const u8 *hdr_start;
5483         int ret;
5484
5485         if (syn_skb) {
5486                 /* sk is a request_sock here */
5487
5488                 if (optname == TCP_BPF_SYN) {
5489                         hdr_start = syn_skb->data;
5490                         ret = tcp_hdrlen(syn_skb);
5491                 } else if (optname == TCP_BPF_SYN_IP) {
5492                         hdr_start = skb_network_header(syn_skb);
5493                         ret = skb_network_header_len(syn_skb) +
5494                                 tcp_hdrlen(syn_skb);
5495                 } else {
5496                         /* optname == TCP_BPF_SYN_MAC */
5497                         hdr_start = skb_mac_header(syn_skb);
5498                         ret = skb_mac_header_len(syn_skb) +
5499                                 skb_network_header_len(syn_skb) +
5500                                 tcp_hdrlen(syn_skb);
5501                 }
5502         } else {
5503                 struct sock *sk = bpf_sock->sk;
5504                 struct saved_syn *saved_syn;
5505
5506                 if (sk->sk_state == TCP_NEW_SYN_RECV)
5507                         /* synack retransmit. bpf_sock->syn_skb will
5508                          * not be available.  It has to resort to
5509                          * saved_syn (if it is saved).
5510                          */
5511                         saved_syn = inet_reqsk(sk)->saved_syn;
5512                 else
5513                         saved_syn = tcp_sk(sk)->saved_syn;
5514
5515                 if (!saved_syn)
5516                         return -ENOENT;
5517
5518                 if (optname == TCP_BPF_SYN) {
5519                         hdr_start = saved_syn->data +
5520                                 saved_syn->mac_hdrlen +
5521                                 saved_syn->network_hdrlen;
5522                         ret = saved_syn->tcp_hdrlen;
5523                 } else if (optname == TCP_BPF_SYN_IP) {
5524                         hdr_start = saved_syn->data +
5525                                 saved_syn->mac_hdrlen;
5526                         ret = saved_syn->network_hdrlen +
5527                                 saved_syn->tcp_hdrlen;
5528                 } else {
5529                         /* optname == TCP_BPF_SYN_MAC */
5530
5531                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5532                         if (!saved_syn->mac_hdrlen)
5533                                 return -ENOENT;
5534
5535                         hdr_start = saved_syn->data;
5536                         ret = saved_syn->mac_hdrlen +
5537                                 saved_syn->network_hdrlen +
5538                                 saved_syn->tcp_hdrlen;
5539                 }
5540         }
5541
5542         *start = hdr_start;
5543         return ret;
5544 }
5545
5546 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5547            int, level, int, optname, char *, optval, int, optlen)
5548 {
5549         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5550             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5551                 int ret, copy_len = 0;
5552                 const u8 *start;
5553
5554                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5555                 if (ret > 0) {
5556                         copy_len = ret;
5557                         if (optlen < copy_len) {
5558                                 copy_len = optlen;
5559                                 ret = -ENOSPC;
5560                         }
5561
5562                         memcpy(optval, start, copy_len);
5563                 }
5564
5565                 /* Zero out unused buffer at the end */
5566                 memset(optval + copy_len, 0, optlen - copy_len);
5567
5568                 return ret;
5569         }
5570
5571         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5572 }
5573
5574 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5575         .func           = bpf_sock_ops_getsockopt,
5576         .gpl_only       = false,
5577         .ret_type       = RET_INTEGER,
5578         .arg1_type      = ARG_PTR_TO_CTX,
5579         .arg2_type      = ARG_ANYTHING,
5580         .arg3_type      = ARG_ANYTHING,
5581         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5582         .arg5_type      = ARG_CONST_SIZE,
5583 };
5584
5585 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5586            int, argval)
5587 {
5588         struct sock *sk = bpf_sock->sk;
5589         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5590
5591         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5592                 return -EINVAL;
5593
5594         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5595
5596         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5597 }
5598
5599 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5600         .func           = bpf_sock_ops_cb_flags_set,
5601         .gpl_only       = false,
5602         .ret_type       = RET_INTEGER,
5603         .arg1_type      = ARG_PTR_TO_CTX,
5604         .arg2_type      = ARG_ANYTHING,
5605 };
5606
5607 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5608 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5609
5610 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5611            int, addr_len)
5612 {
5613 #ifdef CONFIG_INET
5614         struct sock *sk = ctx->sk;
5615         u32 flags = BIND_FROM_BPF;
5616         int err;
5617
5618         err = -EINVAL;
5619         if (addr_len < offsetofend(struct sockaddr, sa_family))
5620                 return err;
5621         if (addr->sa_family == AF_INET) {
5622                 if (addr_len < sizeof(struct sockaddr_in))
5623                         return err;
5624                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5625                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5626                 return __inet_bind(sk, addr, addr_len, flags);
5627 #if IS_ENABLED(CONFIG_IPV6)
5628         } else if (addr->sa_family == AF_INET6) {
5629                 if (addr_len < SIN6_LEN_RFC2133)
5630                         return err;
5631                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5632                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5633                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5634                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5635                  */
5636                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5637 #endif /* CONFIG_IPV6 */
5638         }
5639 #endif /* CONFIG_INET */
5640
5641         return -EAFNOSUPPORT;
5642 }
5643
5644 static const struct bpf_func_proto bpf_bind_proto = {
5645         .func           = bpf_bind,
5646         .gpl_only       = false,
5647         .ret_type       = RET_INTEGER,
5648         .arg1_type      = ARG_PTR_TO_CTX,
5649         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5650         .arg3_type      = ARG_CONST_SIZE,
5651 };
5652
5653 #ifdef CONFIG_XFRM
5654 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5655            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5656 {
5657         const struct sec_path *sp = skb_sec_path(skb);
5658         const struct xfrm_state *x;
5659
5660         if (!sp || unlikely(index >= sp->len || flags))
5661                 goto err_clear;
5662
5663         x = sp->xvec[index];
5664
5665         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5666                 goto err_clear;
5667
5668         to->reqid = x->props.reqid;
5669         to->spi = x->id.spi;
5670         to->family = x->props.family;
5671         to->ext = 0;
5672
5673         if (to->family == AF_INET6) {
5674                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5675                        sizeof(to->remote_ipv6));
5676         } else {
5677                 to->remote_ipv4 = x->props.saddr.a4;
5678                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5679         }
5680
5681         return 0;
5682 err_clear:
5683         memset(to, 0, size);
5684         return -EINVAL;
5685 }
5686
5687 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5688         .func           = bpf_skb_get_xfrm_state,
5689         .gpl_only       = false,
5690         .ret_type       = RET_INTEGER,
5691         .arg1_type      = ARG_PTR_TO_CTX,
5692         .arg2_type      = ARG_ANYTHING,
5693         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5694         .arg4_type      = ARG_CONST_SIZE,
5695         .arg5_type      = ARG_ANYTHING,
5696 };
5697 #endif
5698
5699 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5700 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5701 {
5702         params->h_vlan_TCI = 0;
5703         params->h_vlan_proto = 0;
5704         if (mtu)
5705                 params->mtu_result = mtu; /* union with tot_len */
5706
5707         return 0;
5708 }
5709 #endif
5710
5711 #if IS_ENABLED(CONFIG_INET)
5712 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5713                                u32 flags, bool check_mtu)
5714 {
5715         struct fib_nh_common *nhc;
5716         struct in_device *in_dev;
5717         struct neighbour *neigh;
5718         struct net_device *dev;
5719         struct fib_result res;
5720         struct flowi4 fl4;
5721         u32 mtu = 0;
5722         int err;
5723
5724         dev = dev_get_by_index_rcu(net, params->ifindex);
5725         if (unlikely(!dev))
5726                 return -ENODEV;
5727
5728         /* verify forwarding is enabled on this interface */
5729         in_dev = __in_dev_get_rcu(dev);
5730         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5731                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5732
5733         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5734                 fl4.flowi4_iif = 1;
5735                 fl4.flowi4_oif = params->ifindex;
5736         } else {
5737                 fl4.flowi4_iif = params->ifindex;
5738                 fl4.flowi4_oif = 0;
5739         }
5740         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5741         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5742         fl4.flowi4_flags = 0;
5743
5744         fl4.flowi4_proto = params->l4_protocol;
5745         fl4.daddr = params->ipv4_dst;
5746         fl4.saddr = params->ipv4_src;
5747         fl4.fl4_sport = params->sport;
5748         fl4.fl4_dport = params->dport;
5749         fl4.flowi4_multipath_hash = 0;
5750
5751         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5752                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5753                 struct fib_table *tb;
5754
5755                 if (flags & BPF_FIB_LOOKUP_TBID) {
5756                         tbid = params->tbid;
5757                         /* zero out for vlan output */
5758                         params->tbid = 0;
5759                 }
5760
5761                 tb = fib_get_table(net, tbid);
5762                 if (unlikely(!tb))
5763                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5764
5765                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5766         } else {
5767                 fl4.flowi4_mark = 0;
5768                 fl4.flowi4_secid = 0;
5769                 fl4.flowi4_tun_key.tun_id = 0;
5770                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5771
5772                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5773         }
5774
5775         if (err) {
5776                 /* map fib lookup errors to RTN_ type */
5777                 if (err == -EINVAL)
5778                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5779                 if (err == -EHOSTUNREACH)
5780                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5781                 if (err == -EACCES)
5782                         return BPF_FIB_LKUP_RET_PROHIBIT;
5783
5784                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5785         }
5786
5787         if (res.type != RTN_UNICAST)
5788                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5789
5790         if (fib_info_num_path(res.fi) > 1)
5791                 fib_select_path(net, &res, &fl4, NULL);
5792
5793         if (check_mtu) {
5794                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5795                 if (params->tot_len > mtu) {
5796                         params->mtu_result = mtu; /* union with tot_len */
5797                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5798                 }
5799         }
5800
5801         nhc = res.nhc;
5802
5803         /* do not handle lwt encaps right now */
5804         if (nhc->nhc_lwtstate)
5805                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5806
5807         dev = nhc->nhc_dev;
5808
5809         params->rt_metric = res.fi->fib_priority;
5810         params->ifindex = dev->ifindex;
5811
5812         if (flags & BPF_FIB_LOOKUP_SRC)
5813                 params->ipv4_src = fib_result_prefsrc(net, &res);
5814
5815         /* xdp and cls_bpf programs are run in RCU-bh so
5816          * rcu_read_lock_bh is not needed here
5817          */
5818         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5819                 if (nhc->nhc_gw_family)
5820                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5821         } else {
5822                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5823
5824                 params->family = AF_INET6;
5825                 *dst = nhc->nhc_gw.ipv6;
5826         }
5827
5828         if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5829                 goto set_fwd_params;
5830
5831         if (likely(nhc->nhc_gw_family != AF_INET6))
5832                 neigh = __ipv4_neigh_lookup_noref(dev,
5833                                                   (__force u32)params->ipv4_dst);
5834         else
5835                 neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
5836
5837         if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5838                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5839         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5840         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5841
5842 set_fwd_params:
5843         return bpf_fib_set_fwd_params(params, mtu);
5844 }
5845 #endif
5846
5847 #if IS_ENABLED(CONFIG_IPV6)
5848 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5849                                u32 flags, bool check_mtu)
5850 {
5851         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5852         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5853         struct fib6_result res = {};
5854         struct neighbour *neigh;
5855         struct net_device *dev;
5856         struct inet6_dev *idev;
5857         struct flowi6 fl6;
5858         int strict = 0;
5859         int oif, err;
5860         u32 mtu = 0;
5861
5862         /* link local addresses are never forwarded */
5863         if (rt6_need_strict(dst) || rt6_need_strict(src))
5864                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5865
5866         dev = dev_get_by_index_rcu(net, params->ifindex);
5867         if (unlikely(!dev))
5868                 return -ENODEV;
5869
5870         idev = __in6_dev_get_safely(dev);
5871         if (unlikely(!idev || !idev->cnf.forwarding))
5872                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5873
5874         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5875                 fl6.flowi6_iif = 1;
5876                 oif = fl6.flowi6_oif = params->ifindex;
5877         } else {
5878                 oif = fl6.flowi6_iif = params->ifindex;
5879                 fl6.flowi6_oif = 0;
5880                 strict = RT6_LOOKUP_F_HAS_SADDR;
5881         }
5882         fl6.flowlabel = params->flowinfo;
5883         fl6.flowi6_scope = 0;
5884         fl6.flowi6_flags = 0;
5885         fl6.mp_hash = 0;
5886
5887         fl6.flowi6_proto = params->l4_protocol;
5888         fl6.daddr = *dst;
5889         fl6.saddr = *src;
5890         fl6.fl6_sport = params->sport;
5891         fl6.fl6_dport = params->dport;
5892
5893         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5894                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5895                 struct fib6_table *tb;
5896
5897                 if (flags & BPF_FIB_LOOKUP_TBID) {
5898                         tbid = params->tbid;
5899                         /* zero out for vlan output */
5900                         params->tbid = 0;
5901                 }
5902
5903                 tb = ipv6_stub->fib6_get_table(net, tbid);
5904                 if (unlikely(!tb))
5905                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5906
5907                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5908                                                    strict);
5909         } else {
5910                 fl6.flowi6_mark = 0;
5911                 fl6.flowi6_secid = 0;
5912                 fl6.flowi6_tun_key.tun_id = 0;
5913                 fl6.flowi6_uid = sock_net_uid(net, NULL);
5914
5915                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5916         }
5917
5918         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5919                      res.f6i == net->ipv6.fib6_null_entry))
5920                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5921
5922         switch (res.fib6_type) {
5923         /* only unicast is forwarded */
5924         case RTN_UNICAST:
5925                 break;
5926         case RTN_BLACKHOLE:
5927                 return BPF_FIB_LKUP_RET_BLACKHOLE;
5928         case RTN_UNREACHABLE:
5929                 return BPF_FIB_LKUP_RET_UNREACHABLE;
5930         case RTN_PROHIBIT:
5931                 return BPF_FIB_LKUP_RET_PROHIBIT;
5932         default:
5933                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5934         }
5935
5936         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5937                                     fl6.flowi6_oif != 0, NULL, strict);
5938
5939         if (check_mtu) {
5940                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5941                 if (params->tot_len > mtu) {
5942                         params->mtu_result = mtu; /* union with tot_len */
5943                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5944                 }
5945         }
5946
5947         if (res.nh->fib_nh_lws)
5948                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5949
5950         if (res.nh->fib_nh_gw_family)
5951                 *dst = res.nh->fib_nh_gw6;
5952
5953         dev = res.nh->fib_nh_dev;
5954         params->rt_metric = res.f6i->fib6_metric;
5955         params->ifindex = dev->ifindex;
5956
5957         if (flags & BPF_FIB_LOOKUP_SRC) {
5958                 if (res.f6i->fib6_prefsrc.plen) {
5959                         *src = res.f6i->fib6_prefsrc.addr;
5960                 } else {
5961                         err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
5962                                                                 &fl6.daddr, 0,
5963                                                                 src);
5964                         if (err)
5965                                 return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
5966                 }
5967         }
5968
5969         if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5970                 goto set_fwd_params;
5971
5972         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5973          * not needed here.
5974          */
5975         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5976         if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5977                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5978         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5979         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5980
5981 set_fwd_params:
5982         return bpf_fib_set_fwd_params(params, mtu);
5983 }
5984 #endif
5985
5986 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
5987                              BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
5988                              BPF_FIB_LOOKUP_SRC)
5989
5990 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5991            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5992 {
5993         if (plen < sizeof(*params))
5994                 return -EINVAL;
5995
5996         if (flags & ~BPF_FIB_LOOKUP_MASK)
5997                 return -EINVAL;
5998
5999         switch (params->family) {
6000 #if IS_ENABLED(CONFIG_INET)
6001         case AF_INET:
6002                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6003                                            flags, true);
6004 #endif
6005 #if IS_ENABLED(CONFIG_IPV6)
6006         case AF_INET6:
6007                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6008                                            flags, true);
6009 #endif
6010         }
6011         return -EAFNOSUPPORT;
6012 }
6013
6014 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6015         .func           = bpf_xdp_fib_lookup,
6016         .gpl_only       = true,
6017         .ret_type       = RET_INTEGER,
6018         .arg1_type      = ARG_PTR_TO_CTX,
6019         .arg2_type      = ARG_PTR_TO_MEM,
6020         .arg3_type      = ARG_CONST_SIZE,
6021         .arg4_type      = ARG_ANYTHING,
6022 };
6023
6024 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6025            struct bpf_fib_lookup *, params, int, plen, u32, flags)
6026 {
6027         struct net *net = dev_net(skb->dev);
6028         int rc = -EAFNOSUPPORT;
6029         bool check_mtu = false;
6030
6031         if (plen < sizeof(*params))
6032                 return -EINVAL;
6033
6034         if (flags & ~BPF_FIB_LOOKUP_MASK)
6035                 return -EINVAL;
6036
6037         if (params->tot_len)
6038                 check_mtu = true;
6039
6040         switch (params->family) {
6041 #if IS_ENABLED(CONFIG_INET)
6042         case AF_INET:
6043                 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6044                 break;
6045 #endif
6046 #if IS_ENABLED(CONFIG_IPV6)
6047         case AF_INET6:
6048                 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6049                 break;
6050 #endif
6051         }
6052
6053         if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6054                 struct net_device *dev;
6055
6056                 /* When tot_len isn't provided by user, check skb
6057                  * against MTU of FIB lookup resulting net_device
6058                  */
6059                 dev = dev_get_by_index_rcu(net, params->ifindex);
6060                 if (!is_skb_forwardable(dev, skb))
6061                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6062
6063                 params->mtu_result = dev->mtu; /* union with tot_len */
6064         }
6065
6066         return rc;
6067 }
6068
6069 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6070         .func           = bpf_skb_fib_lookup,
6071         .gpl_only       = true,
6072         .ret_type       = RET_INTEGER,
6073         .arg1_type      = ARG_PTR_TO_CTX,
6074         .arg2_type      = ARG_PTR_TO_MEM,
6075         .arg3_type      = ARG_CONST_SIZE,
6076         .arg4_type      = ARG_ANYTHING,
6077 };
6078
6079 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6080                                             u32 ifindex)
6081 {
6082         struct net *netns = dev_net(dev_curr);
6083
6084         /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6085         if (ifindex == 0)
6086                 return dev_curr;
6087
6088         return dev_get_by_index_rcu(netns, ifindex);
6089 }
6090
6091 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6092            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6093 {
6094         int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6095         struct net_device *dev = skb->dev;
6096         int skb_len, dev_len;
6097         int mtu;
6098
6099         if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6100                 return -EINVAL;
6101
6102         if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6103                 return -EINVAL;
6104
6105         dev = __dev_via_ifindex(dev, ifindex);
6106         if (unlikely(!dev))
6107                 return -ENODEV;
6108
6109         mtu = READ_ONCE(dev->mtu);
6110
6111         dev_len = mtu + dev->hard_header_len;
6112
6113         /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6114         skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6115
6116         skb_len += len_diff; /* minus result pass check */
6117         if (skb_len <= dev_len) {
6118                 ret = BPF_MTU_CHK_RET_SUCCESS;
6119                 goto out;
6120         }
6121         /* At this point, skb->len exceed MTU, but as it include length of all
6122          * segments, it can still be below MTU.  The SKB can possibly get
6123          * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6124          * must choose if segs are to be MTU checked.
6125          */
6126         if (skb_is_gso(skb)) {
6127                 ret = BPF_MTU_CHK_RET_SUCCESS;
6128
6129                 if (flags & BPF_MTU_CHK_SEGS &&
6130                     !skb_gso_validate_network_len(skb, mtu))
6131                         ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6132         }
6133 out:
6134         /* BPF verifier guarantees valid pointer */
6135         *mtu_len = mtu;
6136
6137         return ret;
6138 }
6139
6140 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6141            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6142 {
6143         struct net_device *dev = xdp->rxq->dev;
6144         int xdp_len = xdp->data_end - xdp->data;
6145         int ret = BPF_MTU_CHK_RET_SUCCESS;
6146         int mtu, dev_len;
6147
6148         /* XDP variant doesn't support multi-buffer segment check (yet) */
6149         if (unlikely(flags))
6150                 return -EINVAL;
6151
6152         dev = __dev_via_ifindex(dev, ifindex);
6153         if (unlikely(!dev))
6154                 return -ENODEV;
6155
6156         mtu = READ_ONCE(dev->mtu);
6157
6158         /* Add L2-header as dev MTU is L3 size */
6159         dev_len = mtu + dev->hard_header_len;
6160
6161         /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6162         if (*mtu_len)
6163                 xdp_len = *mtu_len + dev->hard_header_len;
6164
6165         xdp_len += len_diff; /* minus result pass check */
6166         if (xdp_len > dev_len)
6167                 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6168
6169         /* BPF verifier guarantees valid pointer */
6170         *mtu_len = mtu;
6171
6172         return ret;
6173 }
6174
6175 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6176         .func           = bpf_skb_check_mtu,
6177         .gpl_only       = true,
6178         .ret_type       = RET_INTEGER,
6179         .arg1_type      = ARG_PTR_TO_CTX,
6180         .arg2_type      = ARG_ANYTHING,
6181         .arg3_type      = ARG_PTR_TO_INT,
6182         .arg4_type      = ARG_ANYTHING,
6183         .arg5_type      = ARG_ANYTHING,
6184 };
6185
6186 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6187         .func           = bpf_xdp_check_mtu,
6188         .gpl_only       = true,
6189         .ret_type       = RET_INTEGER,
6190         .arg1_type      = ARG_PTR_TO_CTX,
6191         .arg2_type      = ARG_ANYTHING,
6192         .arg3_type      = ARG_PTR_TO_INT,
6193         .arg4_type      = ARG_ANYTHING,
6194         .arg5_type      = ARG_ANYTHING,
6195 };
6196
6197 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6198 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6199 {
6200         int err;
6201         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6202
6203         if (!seg6_validate_srh(srh, len, false))
6204                 return -EINVAL;
6205
6206         switch (type) {
6207         case BPF_LWT_ENCAP_SEG6_INLINE:
6208                 if (skb->protocol != htons(ETH_P_IPV6))
6209                         return -EBADMSG;
6210
6211                 err = seg6_do_srh_inline(skb, srh);
6212                 break;
6213         case BPF_LWT_ENCAP_SEG6:
6214                 skb_reset_inner_headers(skb);
6215                 skb->encapsulation = 1;
6216                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6217                 break;
6218         default:
6219                 return -EINVAL;
6220         }
6221
6222         bpf_compute_data_pointers(skb);
6223         if (err)
6224                 return err;
6225
6226         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6227
6228         return seg6_lookup_nexthop(skb, NULL, 0);
6229 }
6230 #endif /* CONFIG_IPV6_SEG6_BPF */
6231
6232 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6233 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6234                              bool ingress)
6235 {
6236         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6237 }
6238 #endif
6239
6240 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6241            u32, len)
6242 {
6243         switch (type) {
6244 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6245         case BPF_LWT_ENCAP_SEG6:
6246         case BPF_LWT_ENCAP_SEG6_INLINE:
6247                 return bpf_push_seg6_encap(skb, type, hdr, len);
6248 #endif
6249 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6250         case BPF_LWT_ENCAP_IP:
6251                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6252 #endif
6253         default:
6254                 return -EINVAL;
6255         }
6256 }
6257
6258 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6259            void *, hdr, u32, len)
6260 {
6261         switch (type) {
6262 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6263         case BPF_LWT_ENCAP_IP:
6264                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6265 #endif
6266         default:
6267                 return -EINVAL;
6268         }
6269 }
6270
6271 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6272         .func           = bpf_lwt_in_push_encap,
6273         .gpl_only       = false,
6274         .ret_type       = RET_INTEGER,
6275         .arg1_type      = ARG_PTR_TO_CTX,
6276         .arg2_type      = ARG_ANYTHING,
6277         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6278         .arg4_type      = ARG_CONST_SIZE
6279 };
6280
6281 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6282         .func           = bpf_lwt_xmit_push_encap,
6283         .gpl_only       = false,
6284         .ret_type       = RET_INTEGER,
6285         .arg1_type      = ARG_PTR_TO_CTX,
6286         .arg2_type      = ARG_ANYTHING,
6287         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6288         .arg4_type      = ARG_CONST_SIZE
6289 };
6290
6291 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6292 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6293            const void *, from, u32, len)
6294 {
6295         struct seg6_bpf_srh_state *srh_state =
6296                 this_cpu_ptr(&seg6_bpf_srh_states);
6297         struct ipv6_sr_hdr *srh = srh_state->srh;
6298         void *srh_tlvs, *srh_end, *ptr;
6299         int srhoff = 0;
6300
6301         if (srh == NULL)
6302                 return -EINVAL;
6303
6304         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6305         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6306
6307         ptr = skb->data + offset;
6308         if (ptr >= srh_tlvs && ptr + len <= srh_end)
6309                 srh_state->valid = false;
6310         else if (ptr < (void *)&srh->flags ||
6311                  ptr + len > (void *)&srh->segments)
6312                 return -EFAULT;
6313
6314         if (unlikely(bpf_try_make_writable(skb, offset + len)))
6315                 return -EFAULT;
6316         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6317                 return -EINVAL;
6318         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6319
6320         memcpy(skb->data + offset, from, len);
6321         return 0;
6322 }
6323
6324 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6325         .func           = bpf_lwt_seg6_store_bytes,
6326         .gpl_only       = false,
6327         .ret_type       = RET_INTEGER,
6328         .arg1_type      = ARG_PTR_TO_CTX,
6329         .arg2_type      = ARG_ANYTHING,
6330         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6331         .arg4_type      = ARG_CONST_SIZE
6332 };
6333
6334 static void bpf_update_srh_state(struct sk_buff *skb)
6335 {
6336         struct seg6_bpf_srh_state *srh_state =
6337                 this_cpu_ptr(&seg6_bpf_srh_states);
6338         int srhoff = 0;
6339
6340         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6341                 srh_state->srh = NULL;
6342         } else {
6343                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6344                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6345                 srh_state->valid = true;
6346         }
6347 }
6348
6349 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6350            u32, action, void *, param, u32, param_len)
6351 {
6352         struct seg6_bpf_srh_state *srh_state =
6353                 this_cpu_ptr(&seg6_bpf_srh_states);
6354         int hdroff = 0;
6355         int err;
6356
6357         switch (action) {
6358         case SEG6_LOCAL_ACTION_END_X:
6359                 if (!seg6_bpf_has_valid_srh(skb))
6360                         return -EBADMSG;
6361                 if (param_len != sizeof(struct in6_addr))
6362                         return -EINVAL;
6363                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6364         case SEG6_LOCAL_ACTION_END_T:
6365                 if (!seg6_bpf_has_valid_srh(skb))
6366                         return -EBADMSG;
6367                 if (param_len != sizeof(int))
6368                         return -EINVAL;
6369                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6370         case SEG6_LOCAL_ACTION_END_DT6:
6371                 if (!seg6_bpf_has_valid_srh(skb))
6372                         return -EBADMSG;
6373                 if (param_len != sizeof(int))
6374                         return -EINVAL;
6375
6376                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6377                         return -EBADMSG;
6378                 if (!pskb_pull(skb, hdroff))
6379                         return -EBADMSG;
6380
6381                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6382                 skb_reset_network_header(skb);
6383                 skb_reset_transport_header(skb);
6384                 skb->encapsulation = 0;
6385
6386                 bpf_compute_data_pointers(skb);
6387                 bpf_update_srh_state(skb);
6388                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6389         case SEG6_LOCAL_ACTION_END_B6:
6390                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6391                         return -EBADMSG;
6392                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6393                                           param, param_len);
6394                 if (!err)
6395                         bpf_update_srh_state(skb);
6396
6397                 return err;
6398         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6399                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6400                         return -EBADMSG;
6401                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6402                                           param, param_len);
6403                 if (!err)
6404                         bpf_update_srh_state(skb);
6405
6406                 return err;
6407         default:
6408                 return -EINVAL;
6409         }
6410 }
6411
6412 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6413         .func           = bpf_lwt_seg6_action,
6414         .gpl_only       = false,
6415         .ret_type       = RET_INTEGER,
6416         .arg1_type      = ARG_PTR_TO_CTX,
6417         .arg2_type      = ARG_ANYTHING,
6418         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6419         .arg4_type      = ARG_CONST_SIZE
6420 };
6421
6422 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6423            s32, len)
6424 {
6425         struct seg6_bpf_srh_state *srh_state =
6426                 this_cpu_ptr(&seg6_bpf_srh_states);
6427         struct ipv6_sr_hdr *srh = srh_state->srh;
6428         void *srh_end, *srh_tlvs, *ptr;
6429         struct ipv6hdr *hdr;
6430         int srhoff = 0;
6431         int ret;
6432
6433         if (unlikely(srh == NULL))
6434                 return -EINVAL;
6435
6436         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6437                         ((srh->first_segment + 1) << 4));
6438         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6439                         srh_state->hdrlen);
6440         ptr = skb->data + offset;
6441
6442         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6443                 return -EFAULT;
6444         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6445                 return -EFAULT;
6446
6447         if (len > 0) {
6448                 ret = skb_cow_head(skb, len);
6449                 if (unlikely(ret < 0))
6450                         return ret;
6451
6452                 ret = bpf_skb_net_hdr_push(skb, offset, len);
6453         } else {
6454                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6455         }
6456
6457         bpf_compute_data_pointers(skb);
6458         if (unlikely(ret < 0))
6459                 return ret;
6460
6461         hdr = (struct ipv6hdr *)skb->data;
6462         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6463
6464         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6465                 return -EINVAL;
6466         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6467         srh_state->hdrlen += len;
6468         srh_state->valid = false;
6469         return 0;
6470 }
6471
6472 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6473         .func           = bpf_lwt_seg6_adjust_srh,
6474         .gpl_only       = false,
6475         .ret_type       = RET_INTEGER,
6476         .arg1_type      = ARG_PTR_TO_CTX,
6477         .arg2_type      = ARG_ANYTHING,
6478         .arg3_type      = ARG_ANYTHING,
6479 };
6480 #endif /* CONFIG_IPV6_SEG6_BPF */
6481
6482 #ifdef CONFIG_INET
6483 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6484                               int dif, int sdif, u8 family, u8 proto)
6485 {
6486         struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6487         bool refcounted = false;
6488         struct sock *sk = NULL;
6489
6490         if (family == AF_INET) {
6491                 __be32 src4 = tuple->ipv4.saddr;
6492                 __be32 dst4 = tuple->ipv4.daddr;
6493
6494                 if (proto == IPPROTO_TCP)
6495                         sk = __inet_lookup(net, hinfo, NULL, 0,
6496                                            src4, tuple->ipv4.sport,
6497                                            dst4, tuple->ipv4.dport,
6498                                            dif, sdif, &refcounted);
6499                 else
6500                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6501                                                dst4, tuple->ipv4.dport,
6502                                                dif, sdif, &udp_table, NULL);
6503 #if IS_ENABLED(CONFIG_IPV6)
6504         } else {
6505                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6506                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6507
6508                 if (proto == IPPROTO_TCP)
6509                         sk = __inet6_lookup(net, hinfo, NULL, 0,
6510                                             src6, tuple->ipv6.sport,
6511                                             dst6, ntohs(tuple->ipv6.dport),
6512                                             dif, sdif, &refcounted);
6513                 else if (likely(ipv6_bpf_stub))
6514                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6515                                                             src6, tuple->ipv6.sport,
6516                                                             dst6, tuple->ipv6.dport,
6517                                                             dif, sdif,
6518                                                             &udp_table, NULL);
6519 #endif
6520         }
6521
6522         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6523                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6524                 sk = NULL;
6525         }
6526         return sk;
6527 }
6528
6529 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6530  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6531  */
6532 static struct sock *
6533 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6534                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6535                  u64 flags, int sdif)
6536 {
6537         struct sock *sk = NULL;
6538         struct net *net;
6539         u8 family;
6540
6541         if (len == sizeof(tuple->ipv4))
6542                 family = AF_INET;
6543         else if (len == sizeof(tuple->ipv6))
6544                 family = AF_INET6;
6545         else
6546                 return NULL;
6547
6548         if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6549                 goto out;
6550
6551         if (sdif < 0) {
6552                 if (family == AF_INET)
6553                         sdif = inet_sdif(skb);
6554                 else
6555                         sdif = inet6_sdif(skb);
6556         }
6557
6558         if ((s32)netns_id < 0) {
6559                 net = caller_net;
6560                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6561         } else {
6562                 net = get_net_ns_by_id(caller_net, netns_id);
6563                 if (unlikely(!net))
6564                         goto out;
6565                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6566                 put_net(net);
6567         }
6568
6569 out:
6570         return sk;
6571 }
6572
6573 static struct sock *
6574 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6575                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6576                 u64 flags, int sdif)
6577 {
6578         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6579                                            ifindex, proto, netns_id, flags,
6580                                            sdif);
6581
6582         if (sk) {
6583                 struct sock *sk2 = sk_to_full_sk(sk);
6584
6585                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6586                  * sock refcnt is decremented to prevent a request_sock leak.
6587                  */
6588                 if (!sk_fullsock(sk2))
6589                         sk2 = NULL;
6590                 if (sk2 != sk) {
6591                         sock_gen_put(sk);
6592                         /* Ensure there is no need to bump sk2 refcnt */
6593                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6594                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6595                                 return NULL;
6596                         }
6597                         sk = sk2;
6598                 }
6599         }
6600
6601         return sk;
6602 }
6603
6604 static struct sock *
6605 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6606                u8 proto, u64 netns_id, u64 flags)
6607 {
6608         struct net *caller_net;
6609         int ifindex;
6610
6611         if (skb->dev) {
6612                 caller_net = dev_net(skb->dev);
6613                 ifindex = skb->dev->ifindex;
6614         } else {
6615                 caller_net = sock_net(skb->sk);
6616                 ifindex = 0;
6617         }
6618
6619         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6620                                 netns_id, flags, -1);
6621 }
6622
6623 static struct sock *
6624 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6625               u8 proto, u64 netns_id, u64 flags)
6626 {
6627         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6628                                          flags);
6629
6630         if (sk) {
6631                 struct sock *sk2 = sk_to_full_sk(sk);
6632
6633                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6634                  * sock refcnt is decremented to prevent a request_sock leak.
6635                  */
6636                 if (!sk_fullsock(sk2))
6637                         sk2 = NULL;
6638                 if (sk2 != sk) {
6639                         sock_gen_put(sk);
6640                         /* Ensure there is no need to bump sk2 refcnt */
6641                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6642                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6643                                 return NULL;
6644                         }
6645                         sk = sk2;
6646                 }
6647         }
6648
6649         return sk;
6650 }
6651
6652 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6653            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6654 {
6655         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6656                                              netns_id, flags);
6657 }
6658
6659 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6660         .func           = bpf_skc_lookup_tcp,
6661         .gpl_only       = false,
6662         .pkt_access     = true,
6663         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6664         .arg1_type      = ARG_PTR_TO_CTX,
6665         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6666         .arg3_type      = ARG_CONST_SIZE,
6667         .arg4_type      = ARG_ANYTHING,
6668         .arg5_type      = ARG_ANYTHING,
6669 };
6670
6671 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6672            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6673 {
6674         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6675                                             netns_id, flags);
6676 }
6677
6678 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6679         .func           = bpf_sk_lookup_tcp,
6680         .gpl_only       = false,
6681         .pkt_access     = true,
6682         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6683         .arg1_type      = ARG_PTR_TO_CTX,
6684         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6685         .arg3_type      = ARG_CONST_SIZE,
6686         .arg4_type      = ARG_ANYTHING,
6687         .arg5_type      = ARG_ANYTHING,
6688 };
6689
6690 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6691            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6692 {
6693         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6694                                             netns_id, flags);
6695 }
6696
6697 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6698         .func           = bpf_sk_lookup_udp,
6699         .gpl_only       = false,
6700         .pkt_access     = true,
6701         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6702         .arg1_type      = ARG_PTR_TO_CTX,
6703         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6704         .arg3_type      = ARG_CONST_SIZE,
6705         .arg4_type      = ARG_ANYTHING,
6706         .arg5_type      = ARG_ANYTHING,
6707 };
6708
6709 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6710            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6711 {
6712         struct net_device *dev = skb->dev;
6713         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6714         struct net *caller_net = dev_net(dev);
6715
6716         return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6717                                                ifindex, IPPROTO_TCP, netns_id,
6718                                                flags, sdif);
6719 }
6720
6721 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6722         .func           = bpf_tc_skc_lookup_tcp,
6723         .gpl_only       = false,
6724         .pkt_access     = true,
6725         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6726         .arg1_type      = ARG_PTR_TO_CTX,
6727         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6728         .arg3_type      = ARG_CONST_SIZE,
6729         .arg4_type      = ARG_ANYTHING,
6730         .arg5_type      = ARG_ANYTHING,
6731 };
6732
6733 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6734            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6735 {
6736         struct net_device *dev = skb->dev;
6737         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6738         struct net *caller_net = dev_net(dev);
6739
6740         return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6741                                               ifindex, IPPROTO_TCP, netns_id,
6742                                               flags, sdif);
6743 }
6744
6745 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6746         .func           = bpf_tc_sk_lookup_tcp,
6747         .gpl_only       = false,
6748         .pkt_access     = true,
6749         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6750         .arg1_type      = ARG_PTR_TO_CTX,
6751         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6752         .arg3_type      = ARG_CONST_SIZE,
6753         .arg4_type      = ARG_ANYTHING,
6754         .arg5_type      = ARG_ANYTHING,
6755 };
6756
6757 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6758            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6759 {
6760         struct net_device *dev = skb->dev;
6761         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6762         struct net *caller_net = dev_net(dev);
6763
6764         return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6765                                               ifindex, IPPROTO_UDP, netns_id,
6766                                               flags, sdif);
6767 }
6768
6769 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6770         .func           = bpf_tc_sk_lookup_udp,
6771         .gpl_only       = false,
6772         .pkt_access     = true,
6773         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6774         .arg1_type      = ARG_PTR_TO_CTX,
6775         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6776         .arg3_type      = ARG_CONST_SIZE,
6777         .arg4_type      = ARG_ANYTHING,
6778         .arg5_type      = ARG_ANYTHING,
6779 };
6780
6781 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6782 {
6783         if (sk && sk_is_refcounted(sk))
6784                 sock_gen_put(sk);
6785         return 0;
6786 }
6787
6788 static const struct bpf_func_proto bpf_sk_release_proto = {
6789         .func           = bpf_sk_release,
6790         .gpl_only       = false,
6791         .ret_type       = RET_INTEGER,
6792         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6793 };
6794
6795 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6796            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6797 {
6798         struct net_device *dev = ctx->rxq->dev;
6799         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6800         struct net *caller_net = dev_net(dev);
6801
6802         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6803                                               ifindex, IPPROTO_UDP, netns_id,
6804                                               flags, sdif);
6805 }
6806
6807 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6808         .func           = bpf_xdp_sk_lookup_udp,
6809         .gpl_only       = false,
6810         .pkt_access     = true,
6811         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6812         .arg1_type      = ARG_PTR_TO_CTX,
6813         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6814         .arg3_type      = ARG_CONST_SIZE,
6815         .arg4_type      = ARG_ANYTHING,
6816         .arg5_type      = ARG_ANYTHING,
6817 };
6818
6819 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6820            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6821 {
6822         struct net_device *dev = ctx->rxq->dev;
6823         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6824         struct net *caller_net = dev_net(dev);
6825
6826         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6827                                                ifindex, IPPROTO_TCP, netns_id,
6828                                                flags, sdif);
6829 }
6830
6831 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6832         .func           = bpf_xdp_skc_lookup_tcp,
6833         .gpl_only       = false,
6834         .pkt_access     = true,
6835         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6836         .arg1_type      = ARG_PTR_TO_CTX,
6837         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6838         .arg3_type      = ARG_CONST_SIZE,
6839         .arg4_type      = ARG_ANYTHING,
6840         .arg5_type      = ARG_ANYTHING,
6841 };
6842
6843 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6844            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6845 {
6846         struct net_device *dev = ctx->rxq->dev;
6847         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6848         struct net *caller_net = dev_net(dev);
6849
6850         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6851                                               ifindex, IPPROTO_TCP, netns_id,
6852                                               flags, sdif);
6853 }
6854
6855 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6856         .func           = bpf_xdp_sk_lookup_tcp,
6857         .gpl_only       = false,
6858         .pkt_access     = true,
6859         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6860         .arg1_type      = ARG_PTR_TO_CTX,
6861         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6862         .arg3_type      = ARG_CONST_SIZE,
6863         .arg4_type      = ARG_ANYTHING,
6864         .arg5_type      = ARG_ANYTHING,
6865 };
6866
6867 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6868            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6869 {
6870         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6871                                                sock_net(ctx->sk), 0,
6872                                                IPPROTO_TCP, netns_id, flags,
6873                                                -1);
6874 }
6875
6876 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6877         .func           = bpf_sock_addr_skc_lookup_tcp,
6878         .gpl_only       = false,
6879         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6880         .arg1_type      = ARG_PTR_TO_CTX,
6881         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6882         .arg3_type      = ARG_CONST_SIZE,
6883         .arg4_type      = ARG_ANYTHING,
6884         .arg5_type      = ARG_ANYTHING,
6885 };
6886
6887 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6888            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6889 {
6890         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6891                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
6892                                               netns_id, flags, -1);
6893 }
6894
6895 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6896         .func           = bpf_sock_addr_sk_lookup_tcp,
6897         .gpl_only       = false,
6898         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6899         .arg1_type      = ARG_PTR_TO_CTX,
6900         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6901         .arg3_type      = ARG_CONST_SIZE,
6902         .arg4_type      = ARG_ANYTHING,
6903         .arg5_type      = ARG_ANYTHING,
6904 };
6905
6906 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6907            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6908 {
6909         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6910                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
6911                                               netns_id, flags, -1);
6912 }
6913
6914 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6915         .func           = bpf_sock_addr_sk_lookup_udp,
6916         .gpl_only       = false,
6917         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6918         .arg1_type      = ARG_PTR_TO_CTX,
6919         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6920         .arg3_type      = ARG_CONST_SIZE,
6921         .arg4_type      = ARG_ANYTHING,
6922         .arg5_type      = ARG_ANYTHING,
6923 };
6924
6925 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6926                                   struct bpf_insn_access_aux *info)
6927 {
6928         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6929                                           icsk_retransmits))
6930                 return false;
6931
6932         if (off % size != 0)
6933                 return false;
6934
6935         switch (off) {
6936         case offsetof(struct bpf_tcp_sock, bytes_received):
6937         case offsetof(struct bpf_tcp_sock, bytes_acked):
6938                 return size == sizeof(__u64);
6939         default:
6940                 return size == sizeof(__u32);
6941         }
6942 }
6943
6944 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6945                                     const struct bpf_insn *si,
6946                                     struct bpf_insn *insn_buf,
6947                                     struct bpf_prog *prog, u32 *target_size)
6948 {
6949         struct bpf_insn *insn = insn_buf;
6950
6951 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6952         do {                                                            \
6953                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6954                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6955                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6956                                       si->dst_reg, si->src_reg,         \
6957                                       offsetof(struct tcp_sock, FIELD)); \
6958         } while (0)
6959
6960 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6961         do {                                                            \
6962                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6963                                           FIELD) >                      \
6964                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6965                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6966                                         struct inet_connection_sock,    \
6967                                         FIELD),                         \
6968                                       si->dst_reg, si->src_reg,         \
6969                                       offsetof(                         \
6970                                         struct inet_connection_sock,    \
6971                                         FIELD));                        \
6972         } while (0)
6973
6974         if (insn > insn_buf)
6975                 return insn - insn_buf;
6976
6977         switch (si->off) {
6978         case offsetof(struct bpf_tcp_sock, rtt_min):
6979                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6980                              sizeof(struct minmax));
6981                 BUILD_BUG_ON(sizeof(struct minmax) <
6982                              sizeof(struct minmax_sample));
6983
6984                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6985                                       offsetof(struct tcp_sock, rtt_min) +
6986                                       offsetof(struct minmax_sample, v));
6987                 break;
6988         case offsetof(struct bpf_tcp_sock, snd_cwnd):
6989                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6990                 break;
6991         case offsetof(struct bpf_tcp_sock, srtt_us):
6992                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6993                 break;
6994         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6995                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6996                 break;
6997         case offsetof(struct bpf_tcp_sock, rcv_nxt):
6998                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6999                 break;
7000         case offsetof(struct bpf_tcp_sock, snd_nxt):
7001                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7002                 break;
7003         case offsetof(struct bpf_tcp_sock, snd_una):
7004                 BPF_TCP_SOCK_GET_COMMON(snd_una);
7005                 break;
7006         case offsetof(struct bpf_tcp_sock, mss_cache):
7007                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
7008                 break;
7009         case offsetof(struct bpf_tcp_sock, ecn_flags):
7010                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7011                 break;
7012         case offsetof(struct bpf_tcp_sock, rate_delivered):
7013                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7014                 break;
7015         case offsetof(struct bpf_tcp_sock, rate_interval_us):
7016                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7017                 break;
7018         case offsetof(struct bpf_tcp_sock, packets_out):
7019                 BPF_TCP_SOCK_GET_COMMON(packets_out);
7020                 break;
7021         case offsetof(struct bpf_tcp_sock, retrans_out):
7022                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
7023                 break;
7024         case offsetof(struct bpf_tcp_sock, total_retrans):
7025                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
7026                 break;
7027         case offsetof(struct bpf_tcp_sock, segs_in):
7028                 BPF_TCP_SOCK_GET_COMMON(segs_in);
7029                 break;
7030         case offsetof(struct bpf_tcp_sock, data_segs_in):
7031                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7032                 break;
7033         case offsetof(struct bpf_tcp_sock, segs_out):
7034                 BPF_TCP_SOCK_GET_COMMON(segs_out);
7035                 break;
7036         case offsetof(struct bpf_tcp_sock, data_segs_out):
7037                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7038                 break;
7039         case offsetof(struct bpf_tcp_sock, lost_out):
7040                 BPF_TCP_SOCK_GET_COMMON(lost_out);
7041                 break;
7042         case offsetof(struct bpf_tcp_sock, sacked_out):
7043                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
7044                 break;
7045         case offsetof(struct bpf_tcp_sock, bytes_received):
7046                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
7047                 break;
7048         case offsetof(struct bpf_tcp_sock, bytes_acked):
7049                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7050                 break;
7051         case offsetof(struct bpf_tcp_sock, dsack_dups):
7052                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7053                 break;
7054         case offsetof(struct bpf_tcp_sock, delivered):
7055                 BPF_TCP_SOCK_GET_COMMON(delivered);
7056                 break;
7057         case offsetof(struct bpf_tcp_sock, delivered_ce):
7058                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7059                 break;
7060         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7061                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7062                 break;
7063         }
7064
7065         return insn - insn_buf;
7066 }
7067
7068 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7069 {
7070         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7071                 return (unsigned long)sk;
7072
7073         return (unsigned long)NULL;
7074 }
7075
7076 const struct bpf_func_proto bpf_tcp_sock_proto = {
7077         .func           = bpf_tcp_sock,
7078         .gpl_only       = false,
7079         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
7080         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
7081 };
7082
7083 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7084 {
7085         sk = sk_to_full_sk(sk);
7086
7087         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7088                 return (unsigned long)sk;
7089
7090         return (unsigned long)NULL;
7091 }
7092
7093 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7094         .func           = bpf_get_listener_sock,
7095         .gpl_only       = false,
7096         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7097         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
7098 };
7099
7100 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7101 {
7102         unsigned int iphdr_len;
7103
7104         switch (skb_protocol(skb, true)) {
7105         case cpu_to_be16(ETH_P_IP):
7106                 iphdr_len = sizeof(struct iphdr);
7107                 break;
7108         case cpu_to_be16(ETH_P_IPV6):
7109                 iphdr_len = sizeof(struct ipv6hdr);
7110                 break;
7111         default:
7112                 return 0;
7113         }
7114
7115         if (skb_headlen(skb) < iphdr_len)
7116                 return 0;
7117
7118         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7119                 return 0;
7120
7121         return INET_ECN_set_ce(skb);
7122 }
7123
7124 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7125                                   struct bpf_insn_access_aux *info)
7126 {
7127         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7128                 return false;
7129
7130         if (off % size != 0)
7131                 return false;
7132
7133         switch (off) {
7134         default:
7135                 return size == sizeof(__u32);
7136         }
7137 }
7138
7139 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7140                                     const struct bpf_insn *si,
7141                                     struct bpf_insn *insn_buf,
7142                                     struct bpf_prog *prog, u32 *target_size)
7143 {
7144         struct bpf_insn *insn = insn_buf;
7145
7146 #define BPF_XDP_SOCK_GET(FIELD)                                         \
7147         do {                                                            \
7148                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
7149                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
7150                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7151                                       si->dst_reg, si->src_reg,         \
7152                                       offsetof(struct xdp_sock, FIELD)); \
7153         } while (0)
7154
7155         switch (si->off) {
7156         case offsetof(struct bpf_xdp_sock, queue_id):
7157                 BPF_XDP_SOCK_GET(queue_id);
7158                 break;
7159         }
7160
7161         return insn - insn_buf;
7162 }
7163
7164 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7165         .func           = bpf_skb_ecn_set_ce,
7166         .gpl_only       = false,
7167         .ret_type       = RET_INTEGER,
7168         .arg1_type      = ARG_PTR_TO_CTX,
7169 };
7170
7171 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7172            struct tcphdr *, th, u32, th_len)
7173 {
7174 #ifdef CONFIG_SYN_COOKIES
7175         u32 cookie;
7176         int ret;
7177
7178         if (unlikely(!sk || th_len < sizeof(*th)))
7179                 return -EINVAL;
7180
7181         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7182         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7183                 return -EINVAL;
7184
7185         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7186                 return -EINVAL;
7187
7188         if (!th->ack || th->rst || th->syn)
7189                 return -ENOENT;
7190
7191         if (unlikely(iph_len < sizeof(struct iphdr)))
7192                 return -EINVAL;
7193
7194         if (tcp_synq_no_recent_overflow(sk))
7195                 return -ENOENT;
7196
7197         cookie = ntohl(th->ack_seq) - 1;
7198
7199         /* Both struct iphdr and struct ipv6hdr have the version field at the
7200          * same offset so we can cast to the shorter header (struct iphdr).
7201          */
7202         switch (((struct iphdr *)iph)->version) {
7203         case 4:
7204                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7205                         return -EINVAL;
7206
7207                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7208                 break;
7209
7210 #if IS_BUILTIN(CONFIG_IPV6)
7211         case 6:
7212                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7213                         return -EINVAL;
7214
7215                 if (sk->sk_family != AF_INET6)
7216                         return -EINVAL;
7217
7218                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7219                 break;
7220 #endif /* CONFIG_IPV6 */
7221
7222         default:
7223                 return -EPROTONOSUPPORT;
7224         }
7225
7226         if (ret > 0)
7227                 return 0;
7228
7229         return -ENOENT;
7230 #else
7231         return -ENOTSUPP;
7232 #endif
7233 }
7234
7235 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7236         .func           = bpf_tcp_check_syncookie,
7237         .gpl_only       = true,
7238         .pkt_access     = true,
7239         .ret_type       = RET_INTEGER,
7240         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7241         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7242         .arg3_type      = ARG_CONST_SIZE,
7243         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7244         .arg5_type      = ARG_CONST_SIZE,
7245 };
7246
7247 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7248            struct tcphdr *, th, u32, th_len)
7249 {
7250 #ifdef CONFIG_SYN_COOKIES
7251         u32 cookie;
7252         u16 mss;
7253
7254         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7255                 return -EINVAL;
7256
7257         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7258                 return -EINVAL;
7259
7260         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7261                 return -ENOENT;
7262
7263         if (!th->syn || th->ack || th->fin || th->rst)
7264                 return -EINVAL;
7265
7266         if (unlikely(iph_len < sizeof(struct iphdr)))
7267                 return -EINVAL;
7268
7269         /* Both struct iphdr and struct ipv6hdr have the version field at the
7270          * same offset so we can cast to the shorter header (struct iphdr).
7271          */
7272         switch (((struct iphdr *)iph)->version) {
7273         case 4:
7274                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7275                         return -EINVAL;
7276
7277                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7278                 break;
7279
7280 #if IS_BUILTIN(CONFIG_IPV6)
7281         case 6:
7282                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7283                         return -EINVAL;
7284
7285                 if (sk->sk_family != AF_INET6)
7286                         return -EINVAL;
7287
7288                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7289                 break;
7290 #endif /* CONFIG_IPV6 */
7291
7292         default:
7293                 return -EPROTONOSUPPORT;
7294         }
7295         if (mss == 0)
7296                 return -ENOENT;
7297
7298         return cookie | ((u64)mss << 32);
7299 #else
7300         return -EOPNOTSUPP;
7301 #endif /* CONFIG_SYN_COOKIES */
7302 }
7303
7304 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7305         .func           = bpf_tcp_gen_syncookie,
7306         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
7307         .pkt_access     = true,
7308         .ret_type       = RET_INTEGER,
7309         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7310         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7311         .arg3_type      = ARG_CONST_SIZE,
7312         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7313         .arg5_type      = ARG_CONST_SIZE,
7314 };
7315
7316 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7317 {
7318         if (!sk || flags != 0)
7319                 return -EINVAL;
7320         if (!skb_at_tc_ingress(skb))
7321                 return -EOPNOTSUPP;
7322         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7323                 return -ENETUNREACH;
7324         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7325                 return -ESOCKTNOSUPPORT;
7326         if (sk_unhashed(sk))
7327                 return -EOPNOTSUPP;
7328         if (sk_is_refcounted(sk) &&
7329             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7330                 return -ENOENT;
7331
7332         skb_orphan(skb);
7333         skb->sk = sk;
7334         skb->destructor = sock_pfree;
7335
7336         return 0;
7337 }
7338
7339 static const struct bpf_func_proto bpf_sk_assign_proto = {
7340         .func           = bpf_sk_assign,
7341         .gpl_only       = false,
7342         .ret_type       = RET_INTEGER,
7343         .arg1_type      = ARG_PTR_TO_CTX,
7344         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7345         .arg3_type      = ARG_ANYTHING,
7346 };
7347
7348 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7349                                     u8 search_kind, const u8 *magic,
7350                                     u8 magic_len, bool *eol)
7351 {
7352         u8 kind, kind_len;
7353
7354         *eol = false;
7355
7356         while (op < opend) {
7357                 kind = op[0];
7358
7359                 if (kind == TCPOPT_EOL) {
7360                         *eol = true;
7361                         return ERR_PTR(-ENOMSG);
7362                 } else if (kind == TCPOPT_NOP) {
7363                         op++;
7364                         continue;
7365                 }
7366
7367                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7368                         /* Something is wrong in the received header.
7369                          * Follow the TCP stack's tcp_parse_options()
7370                          * and just bail here.
7371                          */
7372                         return ERR_PTR(-EFAULT);
7373
7374                 kind_len = op[1];
7375                 if (search_kind == kind) {
7376                         if (!magic_len)
7377                                 return op;
7378
7379                         if (magic_len > kind_len - 2)
7380                                 return ERR_PTR(-ENOMSG);
7381
7382                         if (!memcmp(&op[2], magic, magic_len))
7383                                 return op;
7384                 }
7385
7386                 op += kind_len;
7387         }
7388
7389         return ERR_PTR(-ENOMSG);
7390 }
7391
7392 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7393            void *, search_res, u32, len, u64, flags)
7394 {
7395         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7396         const u8 *op, *opend, *magic, *search = search_res;
7397         u8 search_kind, search_len, copy_len, magic_len;
7398         int ret;
7399
7400         /* 2 byte is the minimal option len except TCPOPT_NOP and
7401          * TCPOPT_EOL which are useless for the bpf prog to learn
7402          * and this helper disallow loading them also.
7403          */
7404         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7405                 return -EINVAL;
7406
7407         search_kind = search[0];
7408         search_len = search[1];
7409
7410         if (search_len > len || search_kind == TCPOPT_NOP ||
7411             search_kind == TCPOPT_EOL)
7412                 return -EINVAL;
7413
7414         if (search_kind == TCPOPT_EXP || search_kind == 253) {
7415                 /* 16 or 32 bit magic.  +2 for kind and kind length */
7416                 if (search_len != 4 && search_len != 6)
7417                         return -EINVAL;
7418                 magic = &search[2];
7419                 magic_len = search_len - 2;
7420         } else {
7421                 if (search_len)
7422                         return -EINVAL;
7423                 magic = NULL;
7424                 magic_len = 0;
7425         }
7426
7427         if (load_syn) {
7428                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7429                 if (ret < 0)
7430                         return ret;
7431
7432                 opend = op + ret;
7433                 op += sizeof(struct tcphdr);
7434         } else {
7435                 if (!bpf_sock->skb ||
7436                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7437                         /* This bpf_sock->op cannot call this helper */
7438                         return -EPERM;
7439
7440                 opend = bpf_sock->skb_data_end;
7441                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7442         }
7443
7444         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7445                                 &eol);
7446         if (IS_ERR(op))
7447                 return PTR_ERR(op);
7448
7449         copy_len = op[1];
7450         ret = copy_len;
7451         if (copy_len > len) {
7452                 ret = -ENOSPC;
7453                 copy_len = len;
7454         }
7455
7456         memcpy(search_res, op, copy_len);
7457         return ret;
7458 }
7459
7460 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7461         .func           = bpf_sock_ops_load_hdr_opt,
7462         .gpl_only       = false,
7463         .ret_type       = RET_INTEGER,
7464         .arg1_type      = ARG_PTR_TO_CTX,
7465         .arg2_type      = ARG_PTR_TO_MEM,
7466         .arg3_type      = ARG_CONST_SIZE,
7467         .arg4_type      = ARG_ANYTHING,
7468 };
7469
7470 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7471            const void *, from, u32, len, u64, flags)
7472 {
7473         u8 new_kind, new_kind_len, magic_len = 0, *opend;
7474         const u8 *op, *new_op, *magic = NULL;
7475         struct sk_buff *skb;
7476         bool eol;
7477
7478         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7479                 return -EPERM;
7480
7481         if (len < 2 || flags)
7482                 return -EINVAL;
7483
7484         new_op = from;
7485         new_kind = new_op[0];
7486         new_kind_len = new_op[1];
7487
7488         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7489             new_kind == TCPOPT_EOL)
7490                 return -EINVAL;
7491
7492         if (new_kind_len > bpf_sock->remaining_opt_len)
7493                 return -ENOSPC;
7494
7495         /* 253 is another experimental kind */
7496         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7497                 if (new_kind_len < 4)
7498                         return -EINVAL;
7499                 /* Match for the 2 byte magic also.
7500                  * RFC 6994: the magic could be 2 or 4 bytes.
7501                  * Hence, matching by 2 byte only is on the
7502                  * conservative side but it is the right
7503                  * thing to do for the 'search-for-duplication'
7504                  * purpose.
7505                  */
7506                 magic = &new_op[2];
7507                 magic_len = 2;
7508         }
7509
7510         /* Check for duplication */
7511         skb = bpf_sock->skb;
7512         op = skb->data + sizeof(struct tcphdr);
7513         opend = bpf_sock->skb_data_end;
7514
7515         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7516                                 &eol);
7517         if (!IS_ERR(op))
7518                 return -EEXIST;
7519
7520         if (PTR_ERR(op) != -ENOMSG)
7521                 return PTR_ERR(op);
7522
7523         if (eol)
7524                 /* The option has been ended.  Treat it as no more
7525                  * header option can be written.
7526                  */
7527                 return -ENOSPC;
7528
7529         /* No duplication found.  Store the header option. */
7530         memcpy(opend, from, new_kind_len);
7531
7532         bpf_sock->remaining_opt_len -= new_kind_len;
7533         bpf_sock->skb_data_end += new_kind_len;
7534
7535         return 0;
7536 }
7537
7538 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7539         .func           = bpf_sock_ops_store_hdr_opt,
7540         .gpl_only       = false,
7541         .ret_type       = RET_INTEGER,
7542         .arg1_type      = ARG_PTR_TO_CTX,
7543         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7544         .arg3_type      = ARG_CONST_SIZE,
7545         .arg4_type      = ARG_ANYTHING,
7546 };
7547
7548 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7549            u32, len, u64, flags)
7550 {
7551         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7552                 return -EPERM;
7553
7554         if (flags || len < 2)
7555                 return -EINVAL;
7556
7557         if (len > bpf_sock->remaining_opt_len)
7558                 return -ENOSPC;
7559
7560         bpf_sock->remaining_opt_len -= len;
7561
7562         return 0;
7563 }
7564
7565 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7566         .func           = bpf_sock_ops_reserve_hdr_opt,
7567         .gpl_only       = false,
7568         .ret_type       = RET_INTEGER,
7569         .arg1_type      = ARG_PTR_TO_CTX,
7570         .arg2_type      = ARG_ANYTHING,
7571         .arg3_type      = ARG_ANYTHING,
7572 };
7573
7574 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7575            u64, tstamp, u32, tstamp_type)
7576 {
7577         /* skb_clear_delivery_time() is done for inet protocol */
7578         if (skb->protocol != htons(ETH_P_IP) &&
7579             skb->protocol != htons(ETH_P_IPV6))
7580                 return -EOPNOTSUPP;
7581
7582         switch (tstamp_type) {
7583         case BPF_SKB_TSTAMP_DELIVERY_MONO:
7584                 if (!tstamp)
7585                         return -EINVAL;
7586                 skb->tstamp = tstamp;
7587                 skb->mono_delivery_time = 1;
7588                 break;
7589         case BPF_SKB_TSTAMP_UNSPEC:
7590                 if (tstamp)
7591                         return -EINVAL;
7592                 skb->tstamp = 0;
7593                 skb->mono_delivery_time = 0;
7594                 break;
7595         default:
7596                 return -EINVAL;
7597         }
7598
7599         return 0;
7600 }
7601
7602 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7603         .func           = bpf_skb_set_tstamp,
7604         .gpl_only       = false,
7605         .ret_type       = RET_INTEGER,
7606         .arg1_type      = ARG_PTR_TO_CTX,
7607         .arg2_type      = ARG_ANYTHING,
7608         .arg3_type      = ARG_ANYTHING,
7609 };
7610
7611 #ifdef CONFIG_SYN_COOKIES
7612 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7613            struct tcphdr *, th, u32, th_len)
7614 {
7615         u32 cookie;
7616         u16 mss;
7617
7618         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7619                 return -EINVAL;
7620
7621         mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7622         cookie = __cookie_v4_init_sequence(iph, th, &mss);
7623
7624         return cookie | ((u64)mss << 32);
7625 }
7626
7627 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7628         .func           = bpf_tcp_raw_gen_syncookie_ipv4,
7629         .gpl_only       = true, /* __cookie_v4_init_sequence() is GPL */
7630         .pkt_access     = true,
7631         .ret_type       = RET_INTEGER,
7632         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7633         .arg1_size      = sizeof(struct iphdr),
7634         .arg2_type      = ARG_PTR_TO_MEM,
7635         .arg3_type      = ARG_CONST_SIZE,
7636 };
7637
7638 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7639            struct tcphdr *, th, u32, th_len)
7640 {
7641 #if IS_BUILTIN(CONFIG_IPV6)
7642         const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7643                 sizeof(struct ipv6hdr);
7644         u32 cookie;
7645         u16 mss;
7646
7647         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7648                 return -EINVAL;
7649
7650         mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7651         cookie = __cookie_v6_init_sequence(iph, th, &mss);
7652
7653         return cookie | ((u64)mss << 32);
7654 #else
7655         return -EPROTONOSUPPORT;
7656 #endif
7657 }
7658
7659 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7660         .func           = bpf_tcp_raw_gen_syncookie_ipv6,
7661         .gpl_only       = true, /* __cookie_v6_init_sequence() is GPL */
7662         .pkt_access     = true,
7663         .ret_type       = RET_INTEGER,
7664         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7665         .arg1_size      = sizeof(struct ipv6hdr),
7666         .arg2_type      = ARG_PTR_TO_MEM,
7667         .arg3_type      = ARG_CONST_SIZE,
7668 };
7669
7670 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7671            struct tcphdr *, th)
7672 {
7673         u32 cookie = ntohl(th->ack_seq) - 1;
7674
7675         if (__cookie_v4_check(iph, th, cookie) > 0)
7676                 return 0;
7677
7678         return -EACCES;
7679 }
7680
7681 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7682         .func           = bpf_tcp_raw_check_syncookie_ipv4,
7683         .gpl_only       = true, /* __cookie_v4_check is GPL */
7684         .pkt_access     = true,
7685         .ret_type       = RET_INTEGER,
7686         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7687         .arg1_size      = sizeof(struct iphdr),
7688         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7689         .arg2_size      = sizeof(struct tcphdr),
7690 };
7691
7692 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7693            struct tcphdr *, th)
7694 {
7695 #if IS_BUILTIN(CONFIG_IPV6)
7696         u32 cookie = ntohl(th->ack_seq) - 1;
7697
7698         if (__cookie_v6_check(iph, th, cookie) > 0)
7699                 return 0;
7700
7701         return -EACCES;
7702 #else
7703         return -EPROTONOSUPPORT;
7704 #endif
7705 }
7706
7707 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7708         .func           = bpf_tcp_raw_check_syncookie_ipv6,
7709         .gpl_only       = true, /* __cookie_v6_check is GPL */
7710         .pkt_access     = true,
7711         .ret_type       = RET_INTEGER,
7712         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7713         .arg1_size      = sizeof(struct ipv6hdr),
7714         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7715         .arg2_size      = sizeof(struct tcphdr),
7716 };
7717 #endif /* CONFIG_SYN_COOKIES */
7718
7719 #endif /* CONFIG_INET */
7720
7721 bool bpf_helper_changes_pkt_data(void *func)
7722 {
7723         if (func == bpf_skb_vlan_push ||
7724             func == bpf_skb_vlan_pop ||
7725             func == bpf_skb_store_bytes ||
7726             func == bpf_skb_change_proto ||
7727             func == bpf_skb_change_head ||
7728             func == sk_skb_change_head ||
7729             func == bpf_skb_change_tail ||
7730             func == sk_skb_change_tail ||
7731             func == bpf_skb_adjust_room ||
7732             func == sk_skb_adjust_room ||
7733             func == bpf_skb_pull_data ||
7734             func == sk_skb_pull_data ||
7735             func == bpf_clone_redirect ||
7736             func == bpf_l3_csum_replace ||
7737             func == bpf_l4_csum_replace ||
7738             func == bpf_xdp_adjust_head ||
7739             func == bpf_xdp_adjust_meta ||
7740             func == bpf_msg_pull_data ||
7741             func == bpf_msg_push_data ||
7742             func == bpf_msg_pop_data ||
7743             func == bpf_xdp_adjust_tail ||
7744 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7745             func == bpf_lwt_seg6_store_bytes ||
7746             func == bpf_lwt_seg6_adjust_srh ||
7747             func == bpf_lwt_seg6_action ||
7748 #endif
7749 #ifdef CONFIG_INET
7750             func == bpf_sock_ops_store_hdr_opt ||
7751 #endif
7752             func == bpf_lwt_in_push_encap ||
7753             func == bpf_lwt_xmit_push_encap)
7754                 return true;
7755
7756         return false;
7757 }
7758
7759 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7760 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7761
7762 static const struct bpf_func_proto *
7763 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7764 {
7765         const struct bpf_func_proto *func_proto;
7766
7767         func_proto = cgroup_common_func_proto(func_id, prog);
7768         if (func_proto)
7769                 return func_proto;
7770
7771         func_proto = cgroup_current_func_proto(func_id, prog);
7772         if (func_proto)
7773                 return func_proto;
7774
7775         switch (func_id) {
7776         case BPF_FUNC_get_socket_cookie:
7777                 return &bpf_get_socket_cookie_sock_proto;
7778         case BPF_FUNC_get_netns_cookie:
7779                 return &bpf_get_netns_cookie_sock_proto;
7780         case BPF_FUNC_perf_event_output:
7781                 return &bpf_event_output_data_proto;
7782         case BPF_FUNC_sk_storage_get:
7783                 return &bpf_sk_storage_get_cg_sock_proto;
7784         case BPF_FUNC_ktime_get_coarse_ns:
7785                 return &bpf_ktime_get_coarse_ns_proto;
7786         default:
7787                 return bpf_base_func_proto(func_id);
7788         }
7789 }
7790
7791 static const struct bpf_func_proto *
7792 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7793 {
7794         const struct bpf_func_proto *func_proto;
7795
7796         func_proto = cgroup_common_func_proto(func_id, prog);
7797         if (func_proto)
7798                 return func_proto;
7799
7800         func_proto = cgroup_current_func_proto(func_id, prog);
7801         if (func_proto)
7802                 return func_proto;
7803
7804         switch (func_id) {
7805         case BPF_FUNC_bind:
7806                 switch (prog->expected_attach_type) {
7807                 case BPF_CGROUP_INET4_CONNECT:
7808                 case BPF_CGROUP_INET6_CONNECT:
7809                         return &bpf_bind_proto;
7810                 default:
7811                         return NULL;
7812                 }
7813         case BPF_FUNC_get_socket_cookie:
7814                 return &bpf_get_socket_cookie_sock_addr_proto;
7815         case BPF_FUNC_get_netns_cookie:
7816                 return &bpf_get_netns_cookie_sock_addr_proto;
7817         case BPF_FUNC_perf_event_output:
7818                 return &bpf_event_output_data_proto;
7819 #ifdef CONFIG_INET
7820         case BPF_FUNC_sk_lookup_tcp:
7821                 return &bpf_sock_addr_sk_lookup_tcp_proto;
7822         case BPF_FUNC_sk_lookup_udp:
7823                 return &bpf_sock_addr_sk_lookup_udp_proto;
7824         case BPF_FUNC_sk_release:
7825                 return &bpf_sk_release_proto;
7826         case BPF_FUNC_skc_lookup_tcp:
7827                 return &bpf_sock_addr_skc_lookup_tcp_proto;
7828 #endif /* CONFIG_INET */
7829         case BPF_FUNC_sk_storage_get:
7830                 return &bpf_sk_storage_get_proto;
7831         case BPF_FUNC_sk_storage_delete:
7832                 return &bpf_sk_storage_delete_proto;
7833         case BPF_FUNC_setsockopt:
7834                 switch (prog->expected_attach_type) {
7835                 case BPF_CGROUP_INET4_BIND:
7836                 case BPF_CGROUP_INET6_BIND:
7837                 case BPF_CGROUP_INET4_CONNECT:
7838                 case BPF_CGROUP_INET6_CONNECT:
7839                 case BPF_CGROUP_UDP4_RECVMSG:
7840                 case BPF_CGROUP_UDP6_RECVMSG:
7841                 case BPF_CGROUP_UDP4_SENDMSG:
7842                 case BPF_CGROUP_UDP6_SENDMSG:
7843                 case BPF_CGROUP_INET4_GETPEERNAME:
7844                 case BPF_CGROUP_INET6_GETPEERNAME:
7845                 case BPF_CGROUP_INET4_GETSOCKNAME:
7846                 case BPF_CGROUP_INET6_GETSOCKNAME:
7847                         return &bpf_sock_addr_setsockopt_proto;
7848                 default:
7849                         return NULL;
7850                 }
7851         case BPF_FUNC_getsockopt:
7852                 switch (prog->expected_attach_type) {
7853                 case BPF_CGROUP_INET4_BIND:
7854                 case BPF_CGROUP_INET6_BIND:
7855                 case BPF_CGROUP_INET4_CONNECT:
7856                 case BPF_CGROUP_INET6_CONNECT:
7857                 case BPF_CGROUP_UDP4_RECVMSG:
7858                 case BPF_CGROUP_UDP6_RECVMSG:
7859                 case BPF_CGROUP_UDP4_SENDMSG:
7860                 case BPF_CGROUP_UDP6_SENDMSG:
7861                 case BPF_CGROUP_INET4_GETPEERNAME:
7862                 case BPF_CGROUP_INET6_GETPEERNAME:
7863                 case BPF_CGROUP_INET4_GETSOCKNAME:
7864                 case BPF_CGROUP_INET6_GETSOCKNAME:
7865                         return &bpf_sock_addr_getsockopt_proto;
7866                 default:
7867                         return NULL;
7868                 }
7869         default:
7870                 return bpf_sk_base_func_proto(func_id);
7871         }
7872 }
7873
7874 static const struct bpf_func_proto *
7875 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7876 {
7877         switch (func_id) {
7878         case BPF_FUNC_skb_load_bytes:
7879                 return &bpf_skb_load_bytes_proto;
7880         case BPF_FUNC_skb_load_bytes_relative:
7881                 return &bpf_skb_load_bytes_relative_proto;
7882         case BPF_FUNC_get_socket_cookie:
7883                 return &bpf_get_socket_cookie_proto;
7884         case BPF_FUNC_get_socket_uid:
7885                 return &bpf_get_socket_uid_proto;
7886         case BPF_FUNC_perf_event_output:
7887                 return &bpf_skb_event_output_proto;
7888         default:
7889                 return bpf_sk_base_func_proto(func_id);
7890         }
7891 }
7892
7893 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7894 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7895
7896 static const struct bpf_func_proto *
7897 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7898 {
7899         const struct bpf_func_proto *func_proto;
7900
7901         func_proto = cgroup_common_func_proto(func_id, prog);
7902         if (func_proto)
7903                 return func_proto;
7904
7905         switch (func_id) {
7906         case BPF_FUNC_sk_fullsock:
7907                 return &bpf_sk_fullsock_proto;
7908         case BPF_FUNC_sk_storage_get:
7909                 return &bpf_sk_storage_get_proto;
7910         case BPF_FUNC_sk_storage_delete:
7911                 return &bpf_sk_storage_delete_proto;
7912         case BPF_FUNC_perf_event_output:
7913                 return &bpf_skb_event_output_proto;
7914 #ifdef CONFIG_SOCK_CGROUP_DATA
7915         case BPF_FUNC_skb_cgroup_id:
7916                 return &bpf_skb_cgroup_id_proto;
7917         case BPF_FUNC_skb_ancestor_cgroup_id:
7918                 return &bpf_skb_ancestor_cgroup_id_proto;
7919         case BPF_FUNC_sk_cgroup_id:
7920                 return &bpf_sk_cgroup_id_proto;
7921         case BPF_FUNC_sk_ancestor_cgroup_id:
7922                 return &bpf_sk_ancestor_cgroup_id_proto;
7923 #endif
7924 #ifdef CONFIG_INET
7925         case BPF_FUNC_sk_lookup_tcp:
7926                 return &bpf_sk_lookup_tcp_proto;
7927         case BPF_FUNC_sk_lookup_udp:
7928                 return &bpf_sk_lookup_udp_proto;
7929         case BPF_FUNC_sk_release:
7930                 return &bpf_sk_release_proto;
7931         case BPF_FUNC_skc_lookup_tcp:
7932                 return &bpf_skc_lookup_tcp_proto;
7933         case BPF_FUNC_tcp_sock:
7934                 return &bpf_tcp_sock_proto;
7935         case BPF_FUNC_get_listener_sock:
7936                 return &bpf_get_listener_sock_proto;
7937         case BPF_FUNC_skb_ecn_set_ce:
7938                 return &bpf_skb_ecn_set_ce_proto;
7939 #endif
7940         default:
7941                 return sk_filter_func_proto(func_id, prog);
7942         }
7943 }
7944
7945 static const struct bpf_func_proto *
7946 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7947 {
7948         switch (func_id) {
7949         case BPF_FUNC_skb_store_bytes:
7950                 return &bpf_skb_store_bytes_proto;
7951         case BPF_FUNC_skb_load_bytes:
7952                 return &bpf_skb_load_bytes_proto;
7953         case BPF_FUNC_skb_load_bytes_relative:
7954                 return &bpf_skb_load_bytes_relative_proto;
7955         case BPF_FUNC_skb_pull_data:
7956                 return &bpf_skb_pull_data_proto;
7957         case BPF_FUNC_csum_diff:
7958                 return &bpf_csum_diff_proto;
7959         case BPF_FUNC_csum_update:
7960                 return &bpf_csum_update_proto;
7961         case BPF_FUNC_csum_level:
7962                 return &bpf_csum_level_proto;
7963         case BPF_FUNC_l3_csum_replace:
7964                 return &bpf_l3_csum_replace_proto;
7965         case BPF_FUNC_l4_csum_replace:
7966                 return &bpf_l4_csum_replace_proto;
7967         case BPF_FUNC_clone_redirect:
7968                 return &bpf_clone_redirect_proto;
7969         case BPF_FUNC_get_cgroup_classid:
7970                 return &bpf_get_cgroup_classid_proto;
7971         case BPF_FUNC_skb_vlan_push:
7972                 return &bpf_skb_vlan_push_proto;
7973         case BPF_FUNC_skb_vlan_pop:
7974                 return &bpf_skb_vlan_pop_proto;
7975         case BPF_FUNC_skb_change_proto:
7976                 return &bpf_skb_change_proto_proto;
7977         case BPF_FUNC_skb_change_type:
7978                 return &bpf_skb_change_type_proto;
7979         case BPF_FUNC_skb_adjust_room:
7980                 return &bpf_skb_adjust_room_proto;
7981         case BPF_FUNC_skb_change_tail:
7982                 return &bpf_skb_change_tail_proto;
7983         case BPF_FUNC_skb_change_head:
7984                 return &bpf_skb_change_head_proto;
7985         case BPF_FUNC_skb_get_tunnel_key:
7986                 return &bpf_skb_get_tunnel_key_proto;
7987         case BPF_FUNC_skb_set_tunnel_key:
7988                 return bpf_get_skb_set_tunnel_proto(func_id);
7989         case BPF_FUNC_skb_get_tunnel_opt:
7990                 return &bpf_skb_get_tunnel_opt_proto;
7991         case BPF_FUNC_skb_set_tunnel_opt:
7992                 return bpf_get_skb_set_tunnel_proto(func_id);
7993         case BPF_FUNC_redirect:
7994                 return &bpf_redirect_proto;
7995         case BPF_FUNC_redirect_neigh:
7996                 return &bpf_redirect_neigh_proto;
7997         case BPF_FUNC_redirect_peer:
7998                 return &bpf_redirect_peer_proto;
7999         case BPF_FUNC_get_route_realm:
8000                 return &bpf_get_route_realm_proto;
8001         case BPF_FUNC_get_hash_recalc:
8002                 return &bpf_get_hash_recalc_proto;
8003         case BPF_FUNC_set_hash_invalid:
8004                 return &bpf_set_hash_invalid_proto;
8005         case BPF_FUNC_set_hash:
8006                 return &bpf_set_hash_proto;
8007         case BPF_FUNC_perf_event_output:
8008                 return &bpf_skb_event_output_proto;
8009         case BPF_FUNC_get_smp_processor_id:
8010                 return &bpf_get_smp_processor_id_proto;
8011         case BPF_FUNC_skb_under_cgroup:
8012                 return &bpf_skb_under_cgroup_proto;
8013         case BPF_FUNC_get_socket_cookie:
8014                 return &bpf_get_socket_cookie_proto;
8015         case BPF_FUNC_get_socket_uid:
8016                 return &bpf_get_socket_uid_proto;
8017         case BPF_FUNC_fib_lookup:
8018                 return &bpf_skb_fib_lookup_proto;
8019         case BPF_FUNC_check_mtu:
8020                 return &bpf_skb_check_mtu_proto;
8021         case BPF_FUNC_sk_fullsock:
8022                 return &bpf_sk_fullsock_proto;
8023         case BPF_FUNC_sk_storage_get:
8024                 return &bpf_sk_storage_get_proto;
8025         case BPF_FUNC_sk_storage_delete:
8026                 return &bpf_sk_storage_delete_proto;
8027 #ifdef CONFIG_XFRM
8028         case BPF_FUNC_skb_get_xfrm_state:
8029                 return &bpf_skb_get_xfrm_state_proto;
8030 #endif
8031 #ifdef CONFIG_CGROUP_NET_CLASSID
8032         case BPF_FUNC_skb_cgroup_classid:
8033                 return &bpf_skb_cgroup_classid_proto;
8034 #endif
8035 #ifdef CONFIG_SOCK_CGROUP_DATA
8036         case BPF_FUNC_skb_cgroup_id:
8037                 return &bpf_skb_cgroup_id_proto;
8038         case BPF_FUNC_skb_ancestor_cgroup_id:
8039                 return &bpf_skb_ancestor_cgroup_id_proto;
8040 #endif
8041 #ifdef CONFIG_INET
8042         case BPF_FUNC_sk_lookup_tcp:
8043                 return &bpf_tc_sk_lookup_tcp_proto;
8044         case BPF_FUNC_sk_lookup_udp:
8045                 return &bpf_tc_sk_lookup_udp_proto;
8046         case BPF_FUNC_sk_release:
8047                 return &bpf_sk_release_proto;
8048         case BPF_FUNC_tcp_sock:
8049                 return &bpf_tcp_sock_proto;
8050         case BPF_FUNC_get_listener_sock:
8051                 return &bpf_get_listener_sock_proto;
8052         case BPF_FUNC_skc_lookup_tcp:
8053                 return &bpf_tc_skc_lookup_tcp_proto;
8054         case BPF_FUNC_tcp_check_syncookie:
8055                 return &bpf_tcp_check_syncookie_proto;
8056         case BPF_FUNC_skb_ecn_set_ce:
8057                 return &bpf_skb_ecn_set_ce_proto;
8058         case BPF_FUNC_tcp_gen_syncookie:
8059                 return &bpf_tcp_gen_syncookie_proto;
8060         case BPF_FUNC_sk_assign:
8061                 return &bpf_sk_assign_proto;
8062         case BPF_FUNC_skb_set_tstamp:
8063                 return &bpf_skb_set_tstamp_proto;
8064 #ifdef CONFIG_SYN_COOKIES
8065         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8066                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8067         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8068                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8069         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8070                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8071         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8072                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8073 #endif
8074 #endif
8075         default:
8076                 return bpf_sk_base_func_proto(func_id);
8077         }
8078 }
8079
8080 static const struct bpf_func_proto *
8081 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8082 {
8083         switch (func_id) {
8084         case BPF_FUNC_perf_event_output:
8085                 return &bpf_xdp_event_output_proto;
8086         case BPF_FUNC_get_smp_processor_id:
8087                 return &bpf_get_smp_processor_id_proto;
8088         case BPF_FUNC_csum_diff:
8089                 return &bpf_csum_diff_proto;
8090         case BPF_FUNC_xdp_adjust_head:
8091                 return &bpf_xdp_adjust_head_proto;
8092         case BPF_FUNC_xdp_adjust_meta:
8093                 return &bpf_xdp_adjust_meta_proto;
8094         case BPF_FUNC_redirect:
8095                 return &bpf_xdp_redirect_proto;
8096         case BPF_FUNC_redirect_map:
8097                 return &bpf_xdp_redirect_map_proto;
8098         case BPF_FUNC_xdp_adjust_tail:
8099                 return &bpf_xdp_adjust_tail_proto;
8100         case BPF_FUNC_xdp_get_buff_len:
8101                 return &bpf_xdp_get_buff_len_proto;
8102         case BPF_FUNC_xdp_load_bytes:
8103                 return &bpf_xdp_load_bytes_proto;
8104         case BPF_FUNC_xdp_store_bytes:
8105                 return &bpf_xdp_store_bytes_proto;
8106         case BPF_FUNC_fib_lookup:
8107                 return &bpf_xdp_fib_lookup_proto;
8108         case BPF_FUNC_check_mtu:
8109                 return &bpf_xdp_check_mtu_proto;
8110 #ifdef CONFIG_INET
8111         case BPF_FUNC_sk_lookup_udp:
8112                 return &bpf_xdp_sk_lookup_udp_proto;
8113         case BPF_FUNC_sk_lookup_tcp:
8114                 return &bpf_xdp_sk_lookup_tcp_proto;
8115         case BPF_FUNC_sk_release:
8116                 return &bpf_sk_release_proto;
8117         case BPF_FUNC_skc_lookup_tcp:
8118                 return &bpf_xdp_skc_lookup_tcp_proto;
8119         case BPF_FUNC_tcp_check_syncookie:
8120                 return &bpf_tcp_check_syncookie_proto;
8121         case BPF_FUNC_tcp_gen_syncookie:
8122                 return &bpf_tcp_gen_syncookie_proto;
8123 #ifdef CONFIG_SYN_COOKIES
8124         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8125                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8126         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8127                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8128         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8129                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8130         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8131                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8132 #endif
8133 #endif
8134         default:
8135                 return bpf_sk_base_func_proto(func_id);
8136         }
8137
8138 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8139         /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8140          * kfuncs are defined in two different modules, and we want to be able
8141          * to use them interchangably with the same BTF type ID. Because modules
8142          * can't de-duplicate BTF IDs between each other, we need the type to be
8143          * referenced in the vmlinux BTF or the verifier will get confused about
8144          * the different types. So we add this dummy type reference which will
8145          * be included in vmlinux BTF, allowing both modules to refer to the
8146          * same type ID.
8147          */
8148         BTF_TYPE_EMIT(struct nf_conn___init);
8149 #endif
8150 }
8151
8152 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8153 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8154
8155 static const struct bpf_func_proto *
8156 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8157 {
8158         const struct bpf_func_proto *func_proto;
8159
8160         func_proto = cgroup_common_func_proto(func_id, prog);
8161         if (func_proto)
8162                 return func_proto;
8163
8164         switch (func_id) {
8165         case BPF_FUNC_setsockopt:
8166                 return &bpf_sock_ops_setsockopt_proto;
8167         case BPF_FUNC_getsockopt:
8168                 return &bpf_sock_ops_getsockopt_proto;
8169         case BPF_FUNC_sock_ops_cb_flags_set:
8170                 return &bpf_sock_ops_cb_flags_set_proto;
8171         case BPF_FUNC_sock_map_update:
8172                 return &bpf_sock_map_update_proto;
8173         case BPF_FUNC_sock_hash_update:
8174                 return &bpf_sock_hash_update_proto;
8175         case BPF_FUNC_get_socket_cookie:
8176                 return &bpf_get_socket_cookie_sock_ops_proto;
8177         case BPF_FUNC_perf_event_output:
8178                 return &bpf_event_output_data_proto;
8179         case BPF_FUNC_sk_storage_get:
8180                 return &bpf_sk_storage_get_proto;
8181         case BPF_FUNC_sk_storage_delete:
8182                 return &bpf_sk_storage_delete_proto;
8183         case BPF_FUNC_get_netns_cookie:
8184                 return &bpf_get_netns_cookie_sock_ops_proto;
8185 #ifdef CONFIG_INET
8186         case BPF_FUNC_load_hdr_opt:
8187                 return &bpf_sock_ops_load_hdr_opt_proto;
8188         case BPF_FUNC_store_hdr_opt:
8189                 return &bpf_sock_ops_store_hdr_opt_proto;
8190         case BPF_FUNC_reserve_hdr_opt:
8191                 return &bpf_sock_ops_reserve_hdr_opt_proto;
8192         case BPF_FUNC_tcp_sock:
8193                 return &bpf_tcp_sock_proto;
8194 #endif /* CONFIG_INET */
8195         default:
8196                 return bpf_sk_base_func_proto(func_id);
8197         }
8198 }
8199
8200 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8201 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8202
8203 static const struct bpf_func_proto *
8204 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8205 {
8206         switch (func_id) {
8207         case BPF_FUNC_msg_redirect_map:
8208                 return &bpf_msg_redirect_map_proto;
8209         case BPF_FUNC_msg_redirect_hash:
8210                 return &bpf_msg_redirect_hash_proto;
8211         case BPF_FUNC_msg_apply_bytes:
8212                 return &bpf_msg_apply_bytes_proto;
8213         case BPF_FUNC_msg_cork_bytes:
8214                 return &bpf_msg_cork_bytes_proto;
8215         case BPF_FUNC_msg_pull_data:
8216                 return &bpf_msg_pull_data_proto;
8217         case BPF_FUNC_msg_push_data:
8218                 return &bpf_msg_push_data_proto;
8219         case BPF_FUNC_msg_pop_data:
8220                 return &bpf_msg_pop_data_proto;
8221         case BPF_FUNC_perf_event_output:
8222                 return &bpf_event_output_data_proto;
8223         case BPF_FUNC_get_current_uid_gid:
8224                 return &bpf_get_current_uid_gid_proto;
8225         case BPF_FUNC_get_current_pid_tgid:
8226                 return &bpf_get_current_pid_tgid_proto;
8227         case BPF_FUNC_sk_storage_get:
8228                 return &bpf_sk_storage_get_proto;
8229         case BPF_FUNC_sk_storage_delete:
8230                 return &bpf_sk_storage_delete_proto;
8231         case BPF_FUNC_get_netns_cookie:
8232                 return &bpf_get_netns_cookie_sk_msg_proto;
8233 #ifdef CONFIG_CGROUPS
8234         case BPF_FUNC_get_current_cgroup_id:
8235                 return &bpf_get_current_cgroup_id_proto;
8236         case BPF_FUNC_get_current_ancestor_cgroup_id:
8237                 return &bpf_get_current_ancestor_cgroup_id_proto;
8238 #endif
8239 #ifdef CONFIG_CGROUP_NET_CLASSID
8240         case BPF_FUNC_get_cgroup_classid:
8241                 return &bpf_get_cgroup_classid_curr_proto;
8242 #endif
8243         default:
8244                 return bpf_sk_base_func_proto(func_id);
8245         }
8246 }
8247
8248 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8249 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8250
8251 static const struct bpf_func_proto *
8252 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8253 {
8254         switch (func_id) {
8255         case BPF_FUNC_skb_store_bytes:
8256                 return &bpf_skb_store_bytes_proto;
8257         case BPF_FUNC_skb_load_bytes:
8258                 return &bpf_skb_load_bytes_proto;
8259         case BPF_FUNC_skb_pull_data:
8260                 return &sk_skb_pull_data_proto;
8261         case BPF_FUNC_skb_change_tail:
8262                 return &sk_skb_change_tail_proto;
8263         case BPF_FUNC_skb_change_head:
8264                 return &sk_skb_change_head_proto;
8265         case BPF_FUNC_skb_adjust_room:
8266                 return &sk_skb_adjust_room_proto;
8267         case BPF_FUNC_get_socket_cookie:
8268                 return &bpf_get_socket_cookie_proto;
8269         case BPF_FUNC_get_socket_uid:
8270                 return &bpf_get_socket_uid_proto;
8271         case BPF_FUNC_sk_redirect_map:
8272                 return &bpf_sk_redirect_map_proto;
8273         case BPF_FUNC_sk_redirect_hash:
8274                 return &bpf_sk_redirect_hash_proto;
8275         case BPF_FUNC_perf_event_output:
8276                 return &bpf_skb_event_output_proto;
8277 #ifdef CONFIG_INET
8278         case BPF_FUNC_sk_lookup_tcp:
8279                 return &bpf_sk_lookup_tcp_proto;
8280         case BPF_FUNC_sk_lookup_udp:
8281                 return &bpf_sk_lookup_udp_proto;
8282         case BPF_FUNC_sk_release:
8283                 return &bpf_sk_release_proto;
8284         case BPF_FUNC_skc_lookup_tcp:
8285                 return &bpf_skc_lookup_tcp_proto;
8286 #endif
8287         default:
8288                 return bpf_sk_base_func_proto(func_id);
8289         }
8290 }
8291
8292 static const struct bpf_func_proto *
8293 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8294 {
8295         switch (func_id) {
8296         case BPF_FUNC_skb_load_bytes:
8297                 return &bpf_flow_dissector_load_bytes_proto;
8298         default:
8299                 return bpf_sk_base_func_proto(func_id);
8300         }
8301 }
8302
8303 static const struct bpf_func_proto *
8304 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8305 {
8306         switch (func_id) {
8307         case BPF_FUNC_skb_load_bytes:
8308                 return &bpf_skb_load_bytes_proto;
8309         case BPF_FUNC_skb_pull_data:
8310                 return &bpf_skb_pull_data_proto;
8311         case BPF_FUNC_csum_diff:
8312                 return &bpf_csum_diff_proto;
8313         case BPF_FUNC_get_cgroup_classid:
8314                 return &bpf_get_cgroup_classid_proto;
8315         case BPF_FUNC_get_route_realm:
8316                 return &bpf_get_route_realm_proto;
8317         case BPF_FUNC_get_hash_recalc:
8318                 return &bpf_get_hash_recalc_proto;
8319         case BPF_FUNC_perf_event_output:
8320                 return &bpf_skb_event_output_proto;
8321         case BPF_FUNC_get_smp_processor_id:
8322                 return &bpf_get_smp_processor_id_proto;
8323         case BPF_FUNC_skb_under_cgroup:
8324                 return &bpf_skb_under_cgroup_proto;
8325         default:
8326                 return bpf_sk_base_func_proto(func_id);
8327         }
8328 }
8329
8330 static const struct bpf_func_proto *
8331 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8332 {
8333         switch (func_id) {
8334         case BPF_FUNC_lwt_push_encap:
8335                 return &bpf_lwt_in_push_encap_proto;
8336         default:
8337                 return lwt_out_func_proto(func_id, prog);
8338         }
8339 }
8340
8341 static const struct bpf_func_proto *
8342 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8343 {
8344         switch (func_id) {
8345         case BPF_FUNC_skb_get_tunnel_key:
8346                 return &bpf_skb_get_tunnel_key_proto;
8347         case BPF_FUNC_skb_set_tunnel_key:
8348                 return bpf_get_skb_set_tunnel_proto(func_id);
8349         case BPF_FUNC_skb_get_tunnel_opt:
8350                 return &bpf_skb_get_tunnel_opt_proto;
8351         case BPF_FUNC_skb_set_tunnel_opt:
8352                 return bpf_get_skb_set_tunnel_proto(func_id);
8353         case BPF_FUNC_redirect:
8354                 return &bpf_redirect_proto;
8355         case BPF_FUNC_clone_redirect:
8356                 return &bpf_clone_redirect_proto;
8357         case BPF_FUNC_skb_change_tail:
8358                 return &bpf_skb_change_tail_proto;
8359         case BPF_FUNC_skb_change_head:
8360                 return &bpf_skb_change_head_proto;
8361         case BPF_FUNC_skb_store_bytes:
8362                 return &bpf_skb_store_bytes_proto;
8363         case BPF_FUNC_csum_update:
8364                 return &bpf_csum_update_proto;
8365         case BPF_FUNC_csum_level:
8366                 return &bpf_csum_level_proto;
8367         case BPF_FUNC_l3_csum_replace:
8368                 return &bpf_l3_csum_replace_proto;
8369         case BPF_FUNC_l4_csum_replace:
8370                 return &bpf_l4_csum_replace_proto;
8371         case BPF_FUNC_set_hash_invalid:
8372                 return &bpf_set_hash_invalid_proto;
8373         case BPF_FUNC_lwt_push_encap:
8374                 return &bpf_lwt_xmit_push_encap_proto;
8375         default:
8376                 return lwt_out_func_proto(func_id, prog);
8377         }
8378 }
8379
8380 static const struct bpf_func_proto *
8381 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8382 {
8383         switch (func_id) {
8384 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8385         case BPF_FUNC_lwt_seg6_store_bytes:
8386                 return &bpf_lwt_seg6_store_bytes_proto;
8387         case BPF_FUNC_lwt_seg6_action:
8388                 return &bpf_lwt_seg6_action_proto;
8389         case BPF_FUNC_lwt_seg6_adjust_srh:
8390                 return &bpf_lwt_seg6_adjust_srh_proto;
8391 #endif
8392         default:
8393                 return lwt_out_func_proto(func_id, prog);
8394         }
8395 }
8396
8397 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8398                                     const struct bpf_prog *prog,
8399                                     struct bpf_insn_access_aux *info)
8400 {
8401         const int size_default = sizeof(__u32);
8402
8403         if (off < 0 || off >= sizeof(struct __sk_buff))
8404                 return false;
8405
8406         /* The verifier guarantees that size > 0. */
8407         if (off % size != 0)
8408                 return false;
8409
8410         switch (off) {
8411         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8412                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8413                         return false;
8414                 break;
8415         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8416         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8417         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8418         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8419         case bpf_ctx_range(struct __sk_buff, data):
8420         case bpf_ctx_range(struct __sk_buff, data_meta):
8421         case bpf_ctx_range(struct __sk_buff, data_end):
8422                 if (size != size_default)
8423                         return false;
8424                 break;
8425         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8426                 return false;
8427         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8428                 if (type == BPF_WRITE || size != sizeof(__u64))
8429                         return false;
8430                 break;
8431         case bpf_ctx_range(struct __sk_buff, tstamp):
8432                 if (size != sizeof(__u64))
8433                         return false;
8434                 break;
8435         case offsetof(struct __sk_buff, sk):
8436                 if (type == BPF_WRITE || size != sizeof(__u64))
8437                         return false;
8438                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8439                 break;
8440         case offsetof(struct __sk_buff, tstamp_type):
8441                 return false;
8442         case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8443                 /* Explicitly prohibit access to padding in __sk_buff. */
8444                 return false;
8445         default:
8446                 /* Only narrow read access allowed for now. */
8447                 if (type == BPF_WRITE) {
8448                         if (size != size_default)
8449                                 return false;
8450                 } else {
8451                         bpf_ctx_record_field_size(info, size_default);
8452                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8453                                 return false;
8454                 }
8455         }
8456
8457         return true;
8458 }
8459
8460 static bool sk_filter_is_valid_access(int off, int size,
8461                                       enum bpf_access_type type,
8462                                       const struct bpf_prog *prog,
8463                                       struct bpf_insn_access_aux *info)
8464 {
8465         switch (off) {
8466         case bpf_ctx_range(struct __sk_buff, tc_classid):
8467         case bpf_ctx_range(struct __sk_buff, data):
8468         case bpf_ctx_range(struct __sk_buff, data_meta):
8469         case bpf_ctx_range(struct __sk_buff, data_end):
8470         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8471         case bpf_ctx_range(struct __sk_buff, tstamp):
8472         case bpf_ctx_range(struct __sk_buff, wire_len):
8473         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8474                 return false;
8475         }
8476
8477         if (type == BPF_WRITE) {
8478                 switch (off) {
8479                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8480                         break;
8481                 default:
8482                         return false;
8483                 }
8484         }
8485
8486         return bpf_skb_is_valid_access(off, size, type, prog, info);
8487 }
8488
8489 static bool cg_skb_is_valid_access(int off, int size,
8490                                    enum bpf_access_type type,
8491                                    const struct bpf_prog *prog,
8492                                    struct bpf_insn_access_aux *info)
8493 {
8494         switch (off) {
8495         case bpf_ctx_range(struct __sk_buff, tc_classid):
8496         case bpf_ctx_range(struct __sk_buff, data_meta):
8497         case bpf_ctx_range(struct __sk_buff, wire_len):
8498                 return false;
8499         case bpf_ctx_range(struct __sk_buff, data):
8500         case bpf_ctx_range(struct __sk_buff, data_end):
8501                 if (!bpf_capable())
8502                         return false;
8503                 break;
8504         }
8505
8506         if (type == BPF_WRITE) {
8507                 switch (off) {
8508                 case bpf_ctx_range(struct __sk_buff, mark):
8509                 case bpf_ctx_range(struct __sk_buff, priority):
8510                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8511                         break;
8512                 case bpf_ctx_range(struct __sk_buff, tstamp):
8513                         if (!bpf_capable())
8514                                 return false;
8515                         break;
8516                 default:
8517                         return false;
8518                 }
8519         }
8520
8521         switch (off) {
8522         case bpf_ctx_range(struct __sk_buff, data):
8523                 info->reg_type = PTR_TO_PACKET;
8524                 break;
8525         case bpf_ctx_range(struct __sk_buff, data_end):
8526                 info->reg_type = PTR_TO_PACKET_END;
8527                 break;
8528         }
8529
8530         return bpf_skb_is_valid_access(off, size, type, prog, info);
8531 }
8532
8533 static bool lwt_is_valid_access(int off, int size,
8534                                 enum bpf_access_type type,
8535                                 const struct bpf_prog *prog,
8536                                 struct bpf_insn_access_aux *info)
8537 {
8538         switch (off) {
8539         case bpf_ctx_range(struct __sk_buff, tc_classid):
8540         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8541         case bpf_ctx_range(struct __sk_buff, data_meta):
8542         case bpf_ctx_range(struct __sk_buff, tstamp):
8543         case bpf_ctx_range(struct __sk_buff, wire_len):
8544         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8545                 return false;
8546         }
8547
8548         if (type == BPF_WRITE) {
8549                 switch (off) {
8550                 case bpf_ctx_range(struct __sk_buff, mark):
8551                 case bpf_ctx_range(struct __sk_buff, priority):
8552                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8553                         break;
8554                 default:
8555                         return false;
8556                 }
8557         }
8558
8559         switch (off) {
8560         case bpf_ctx_range(struct __sk_buff, data):
8561                 info->reg_type = PTR_TO_PACKET;
8562                 break;
8563         case bpf_ctx_range(struct __sk_buff, data_end):
8564                 info->reg_type = PTR_TO_PACKET_END;
8565                 break;
8566         }
8567
8568         return bpf_skb_is_valid_access(off, size, type, prog, info);
8569 }
8570
8571 /* Attach type specific accesses */
8572 static bool __sock_filter_check_attach_type(int off,
8573                                             enum bpf_access_type access_type,
8574                                             enum bpf_attach_type attach_type)
8575 {
8576         switch (off) {
8577         case offsetof(struct bpf_sock, bound_dev_if):
8578         case offsetof(struct bpf_sock, mark):
8579         case offsetof(struct bpf_sock, priority):
8580                 switch (attach_type) {
8581                 case BPF_CGROUP_INET_SOCK_CREATE:
8582                 case BPF_CGROUP_INET_SOCK_RELEASE:
8583                         goto full_access;
8584                 default:
8585                         return false;
8586                 }
8587         case bpf_ctx_range(struct bpf_sock, src_ip4):
8588                 switch (attach_type) {
8589                 case BPF_CGROUP_INET4_POST_BIND:
8590                         goto read_only;
8591                 default:
8592                         return false;
8593                 }
8594         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8595                 switch (attach_type) {
8596                 case BPF_CGROUP_INET6_POST_BIND:
8597                         goto read_only;
8598                 default:
8599                         return false;
8600                 }
8601         case bpf_ctx_range(struct bpf_sock, src_port):
8602                 switch (attach_type) {
8603                 case BPF_CGROUP_INET4_POST_BIND:
8604                 case BPF_CGROUP_INET6_POST_BIND:
8605                         goto read_only;
8606                 default:
8607                         return false;
8608                 }
8609         }
8610 read_only:
8611         return access_type == BPF_READ;
8612 full_access:
8613         return true;
8614 }
8615
8616 bool bpf_sock_common_is_valid_access(int off, int size,
8617                                      enum bpf_access_type type,
8618                                      struct bpf_insn_access_aux *info)
8619 {
8620         switch (off) {
8621         case bpf_ctx_range_till(struct bpf_sock, type, priority):
8622                 return false;
8623         default:
8624                 return bpf_sock_is_valid_access(off, size, type, info);
8625         }
8626 }
8627
8628 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8629                               struct bpf_insn_access_aux *info)
8630 {
8631         const int size_default = sizeof(__u32);
8632         int field_size;
8633
8634         if (off < 0 || off >= sizeof(struct bpf_sock))
8635                 return false;
8636         if (off % size != 0)
8637                 return false;
8638
8639         switch (off) {
8640         case offsetof(struct bpf_sock, state):
8641         case offsetof(struct bpf_sock, family):
8642         case offsetof(struct bpf_sock, type):
8643         case offsetof(struct bpf_sock, protocol):
8644         case offsetof(struct bpf_sock, src_port):
8645         case offsetof(struct bpf_sock, rx_queue_mapping):
8646         case bpf_ctx_range(struct bpf_sock, src_ip4):
8647         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8648         case bpf_ctx_range(struct bpf_sock, dst_ip4):
8649         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8650                 bpf_ctx_record_field_size(info, size_default);
8651                 return bpf_ctx_narrow_access_ok(off, size, size_default);
8652         case bpf_ctx_range(struct bpf_sock, dst_port):
8653                 field_size = size == size_default ?
8654                         size_default : sizeof_field(struct bpf_sock, dst_port);
8655                 bpf_ctx_record_field_size(info, field_size);
8656                 return bpf_ctx_narrow_access_ok(off, size, field_size);
8657         case offsetofend(struct bpf_sock, dst_port) ...
8658              offsetof(struct bpf_sock, dst_ip4) - 1:
8659                 return false;
8660         }
8661
8662         return size == size_default;
8663 }
8664
8665 static bool sock_filter_is_valid_access(int off, int size,
8666                                         enum bpf_access_type type,
8667                                         const struct bpf_prog *prog,
8668                                         struct bpf_insn_access_aux *info)
8669 {
8670         if (!bpf_sock_is_valid_access(off, size, type, info))
8671                 return false;
8672         return __sock_filter_check_attach_type(off, type,
8673                                                prog->expected_attach_type);
8674 }
8675
8676 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8677                              const struct bpf_prog *prog)
8678 {
8679         /* Neither direct read nor direct write requires any preliminary
8680          * action.
8681          */
8682         return 0;
8683 }
8684
8685 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8686                                 const struct bpf_prog *prog, int drop_verdict)
8687 {
8688         struct bpf_insn *insn = insn_buf;
8689
8690         if (!direct_write)
8691                 return 0;
8692
8693         /* if (!skb->cloned)
8694          *       goto start;
8695          *
8696          * (Fast-path, otherwise approximation that we might be
8697          *  a clone, do the rest in helper.)
8698          */
8699         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8700         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8701         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8702
8703         /* ret = bpf_skb_pull_data(skb, 0); */
8704         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8705         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8706         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8707                                BPF_FUNC_skb_pull_data);
8708         /* if (!ret)
8709          *      goto restore;
8710          * return TC_ACT_SHOT;
8711          */
8712         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8713         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8714         *insn++ = BPF_EXIT_INSN();
8715
8716         /* restore: */
8717         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8718         /* start: */
8719         *insn++ = prog->insnsi[0];
8720
8721         return insn - insn_buf;
8722 }
8723
8724 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8725                           struct bpf_insn *insn_buf)
8726 {
8727         bool indirect = BPF_MODE(orig->code) == BPF_IND;
8728         struct bpf_insn *insn = insn_buf;
8729
8730         if (!indirect) {
8731                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8732         } else {
8733                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8734                 if (orig->imm)
8735                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8736         }
8737         /* We're guaranteed here that CTX is in R6. */
8738         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8739
8740         switch (BPF_SIZE(orig->code)) {
8741         case BPF_B:
8742                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8743                 break;
8744         case BPF_H:
8745                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8746                 break;
8747         case BPF_W:
8748                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8749                 break;
8750         }
8751
8752         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8753         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8754         *insn++ = BPF_EXIT_INSN();
8755
8756         return insn - insn_buf;
8757 }
8758
8759 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8760                                const struct bpf_prog *prog)
8761 {
8762         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8763 }
8764
8765 static bool tc_cls_act_is_valid_access(int off, int size,
8766                                        enum bpf_access_type type,
8767                                        const struct bpf_prog *prog,
8768                                        struct bpf_insn_access_aux *info)
8769 {
8770         if (type == BPF_WRITE) {
8771                 switch (off) {
8772                 case bpf_ctx_range(struct __sk_buff, mark):
8773                 case bpf_ctx_range(struct __sk_buff, tc_index):
8774                 case bpf_ctx_range(struct __sk_buff, priority):
8775                 case bpf_ctx_range(struct __sk_buff, tc_classid):
8776                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8777                 case bpf_ctx_range(struct __sk_buff, tstamp):
8778                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8779                         break;
8780                 default:
8781                         return false;
8782                 }
8783         }
8784
8785         switch (off) {
8786         case bpf_ctx_range(struct __sk_buff, data):
8787                 info->reg_type = PTR_TO_PACKET;
8788                 break;
8789         case bpf_ctx_range(struct __sk_buff, data_meta):
8790                 info->reg_type = PTR_TO_PACKET_META;
8791                 break;
8792         case bpf_ctx_range(struct __sk_buff, data_end):
8793                 info->reg_type = PTR_TO_PACKET_END;
8794                 break;
8795         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8796                 return false;
8797         case offsetof(struct __sk_buff, tstamp_type):
8798                 /* The convert_ctx_access() on reading and writing
8799                  * __sk_buff->tstamp depends on whether the bpf prog
8800                  * has used __sk_buff->tstamp_type or not.
8801                  * Thus, we need to set prog->tstamp_type_access
8802                  * earlier during is_valid_access() here.
8803                  */
8804                 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
8805                 return size == sizeof(__u8);
8806         }
8807
8808         return bpf_skb_is_valid_access(off, size, type, prog, info);
8809 }
8810
8811 DEFINE_MUTEX(nf_conn_btf_access_lock);
8812 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8813
8814 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, const struct btf *btf,
8815                               const struct btf_type *t, int off, int size,
8816                               enum bpf_access_type atype, u32 *next_btf_id,
8817                               enum bpf_type_flag *flag);
8818 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8819
8820 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8821                                         const struct btf *btf,
8822                                         const struct btf_type *t, int off,
8823                                         int size, enum bpf_access_type atype,
8824                                         u32 *next_btf_id,
8825                                         enum bpf_type_flag *flag)
8826 {
8827         int ret = -EACCES;
8828
8829         if (atype == BPF_READ)
8830                 return btf_struct_access(log, btf, t, off, size, atype, next_btf_id,
8831                                          flag);
8832
8833         mutex_lock(&nf_conn_btf_access_lock);
8834         if (nfct_btf_struct_access)
8835                 ret = nfct_btf_struct_access(log, btf, t, off, size, atype, next_btf_id, flag);
8836         mutex_unlock(&nf_conn_btf_access_lock);
8837
8838         return ret;
8839 }
8840
8841 static bool __is_valid_xdp_access(int off, int size)
8842 {
8843         if (off < 0 || off >= sizeof(struct xdp_md))
8844                 return false;
8845         if (off % size != 0)
8846                 return false;
8847         if (size != sizeof(__u32))
8848                 return false;
8849
8850         return true;
8851 }
8852
8853 static bool xdp_is_valid_access(int off, int size,
8854                                 enum bpf_access_type type,
8855                                 const struct bpf_prog *prog,
8856                                 struct bpf_insn_access_aux *info)
8857 {
8858         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8859                 switch (off) {
8860                 case offsetof(struct xdp_md, egress_ifindex):
8861                         return false;
8862                 }
8863         }
8864
8865         if (type == BPF_WRITE) {
8866                 if (bpf_prog_is_dev_bound(prog->aux)) {
8867                         switch (off) {
8868                         case offsetof(struct xdp_md, rx_queue_index):
8869                                 return __is_valid_xdp_access(off, size);
8870                         }
8871                 }
8872                 return false;
8873         }
8874
8875         switch (off) {
8876         case offsetof(struct xdp_md, data):
8877                 info->reg_type = PTR_TO_PACKET;
8878                 break;
8879         case offsetof(struct xdp_md, data_meta):
8880                 info->reg_type = PTR_TO_PACKET_META;
8881                 break;
8882         case offsetof(struct xdp_md, data_end):
8883                 info->reg_type = PTR_TO_PACKET_END;
8884                 break;
8885         }
8886
8887         return __is_valid_xdp_access(off, size);
8888 }
8889
8890 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8891 {
8892         const u32 act_max = XDP_REDIRECT;
8893
8894         pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8895                      act > act_max ? "Illegal" : "Driver unsupported",
8896                      act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8897 }
8898 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8899
8900 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
8901                                  const struct btf *btf,
8902                                  const struct btf_type *t, int off,
8903                                  int size, enum bpf_access_type atype,
8904                                  u32 *next_btf_id,
8905                                  enum bpf_type_flag *flag)
8906 {
8907         int ret = -EACCES;
8908
8909         if (atype == BPF_READ)
8910                 return btf_struct_access(log, btf, t, off, size, atype, next_btf_id,
8911                                          flag);
8912
8913         mutex_lock(&nf_conn_btf_access_lock);
8914         if (nfct_btf_struct_access)
8915                 ret = nfct_btf_struct_access(log, btf, t, off, size, atype, next_btf_id, flag);
8916         mutex_unlock(&nf_conn_btf_access_lock);
8917
8918         return ret;
8919 }
8920
8921 static bool sock_addr_is_valid_access(int off, int size,
8922                                       enum bpf_access_type type,
8923                                       const struct bpf_prog *prog,
8924                                       struct bpf_insn_access_aux *info)
8925 {
8926         const int size_default = sizeof(__u32);
8927
8928         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8929                 return false;
8930         if (off % size != 0)
8931                 return false;
8932
8933         /* Disallow access to IPv6 fields from IPv4 contex and vise
8934          * versa.
8935          */
8936         switch (off) {
8937         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8938                 switch (prog->expected_attach_type) {
8939                 case BPF_CGROUP_INET4_BIND:
8940                 case BPF_CGROUP_INET4_CONNECT:
8941                 case BPF_CGROUP_INET4_GETPEERNAME:
8942                 case BPF_CGROUP_INET4_GETSOCKNAME:
8943                 case BPF_CGROUP_UDP4_SENDMSG:
8944                 case BPF_CGROUP_UDP4_RECVMSG:
8945                         break;
8946                 default:
8947                         return false;
8948                 }
8949                 break;
8950         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8951                 switch (prog->expected_attach_type) {
8952                 case BPF_CGROUP_INET6_BIND:
8953                 case BPF_CGROUP_INET6_CONNECT:
8954                 case BPF_CGROUP_INET6_GETPEERNAME:
8955                 case BPF_CGROUP_INET6_GETSOCKNAME:
8956                 case BPF_CGROUP_UDP6_SENDMSG:
8957                 case BPF_CGROUP_UDP6_RECVMSG:
8958                         break;
8959                 default:
8960                         return false;
8961                 }
8962                 break;
8963         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8964                 switch (prog->expected_attach_type) {
8965                 case BPF_CGROUP_UDP4_SENDMSG:
8966                         break;
8967                 default:
8968                         return false;
8969                 }
8970                 break;
8971         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8972                                 msg_src_ip6[3]):
8973                 switch (prog->expected_attach_type) {
8974                 case BPF_CGROUP_UDP6_SENDMSG:
8975                         break;
8976                 default:
8977                         return false;
8978                 }
8979                 break;
8980         }
8981
8982         switch (off) {
8983         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8984         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8985         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8986         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8987                                 msg_src_ip6[3]):
8988         case bpf_ctx_range(struct bpf_sock_addr, user_port):
8989                 if (type == BPF_READ) {
8990                         bpf_ctx_record_field_size(info, size_default);
8991
8992                         if (bpf_ctx_wide_access_ok(off, size,
8993                                                    struct bpf_sock_addr,
8994                                                    user_ip6))
8995                                 return true;
8996
8997                         if (bpf_ctx_wide_access_ok(off, size,
8998                                                    struct bpf_sock_addr,
8999                                                    msg_src_ip6))
9000                                 return true;
9001
9002                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9003                                 return false;
9004                 } else {
9005                         if (bpf_ctx_wide_access_ok(off, size,
9006                                                    struct bpf_sock_addr,
9007                                                    user_ip6))
9008                                 return true;
9009
9010                         if (bpf_ctx_wide_access_ok(off, size,
9011                                                    struct bpf_sock_addr,
9012                                                    msg_src_ip6))
9013                                 return true;
9014
9015                         if (size != size_default)
9016                                 return false;
9017                 }
9018                 break;
9019         case offsetof(struct bpf_sock_addr, sk):
9020                 if (type != BPF_READ)
9021                         return false;
9022                 if (size != sizeof(__u64))
9023                         return false;
9024                 info->reg_type = PTR_TO_SOCKET;
9025                 break;
9026         default:
9027                 if (type == BPF_READ) {
9028                         if (size != size_default)
9029                                 return false;
9030                 } else {
9031                         return false;
9032                 }
9033         }
9034
9035         return true;
9036 }
9037
9038 static bool sock_ops_is_valid_access(int off, int size,
9039                                      enum bpf_access_type type,
9040                                      const struct bpf_prog *prog,
9041                                      struct bpf_insn_access_aux *info)
9042 {
9043         const int size_default = sizeof(__u32);
9044
9045         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9046                 return false;
9047
9048         /* The verifier guarantees that size > 0. */
9049         if (off % size != 0)
9050                 return false;
9051
9052         if (type == BPF_WRITE) {
9053                 switch (off) {
9054                 case offsetof(struct bpf_sock_ops, reply):
9055                 case offsetof(struct bpf_sock_ops, sk_txhash):
9056                         if (size != size_default)
9057                                 return false;
9058                         break;
9059                 default:
9060                         return false;
9061                 }
9062         } else {
9063                 switch (off) {
9064                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9065                                         bytes_acked):
9066                         if (size != sizeof(__u64))
9067                                 return false;
9068                         break;
9069                 case offsetof(struct bpf_sock_ops, sk):
9070                         if (size != sizeof(__u64))
9071                                 return false;
9072                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
9073                         break;
9074                 case offsetof(struct bpf_sock_ops, skb_data):
9075                         if (size != sizeof(__u64))
9076                                 return false;
9077                         info->reg_type = PTR_TO_PACKET;
9078                         break;
9079                 case offsetof(struct bpf_sock_ops, skb_data_end):
9080                         if (size != sizeof(__u64))
9081                                 return false;
9082                         info->reg_type = PTR_TO_PACKET_END;
9083                         break;
9084                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9085                         bpf_ctx_record_field_size(info, size_default);
9086                         return bpf_ctx_narrow_access_ok(off, size,
9087                                                         size_default);
9088                 default:
9089                         if (size != size_default)
9090                                 return false;
9091                         break;
9092                 }
9093         }
9094
9095         return true;
9096 }
9097
9098 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9099                            const struct bpf_prog *prog)
9100 {
9101         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9102 }
9103
9104 static bool sk_skb_is_valid_access(int off, int size,
9105                                    enum bpf_access_type type,
9106                                    const struct bpf_prog *prog,
9107                                    struct bpf_insn_access_aux *info)
9108 {
9109         switch (off) {
9110         case bpf_ctx_range(struct __sk_buff, tc_classid):
9111         case bpf_ctx_range(struct __sk_buff, data_meta):
9112         case bpf_ctx_range(struct __sk_buff, tstamp):
9113         case bpf_ctx_range(struct __sk_buff, wire_len):
9114         case bpf_ctx_range(struct __sk_buff, hwtstamp):
9115                 return false;
9116         }
9117
9118         if (type == BPF_WRITE) {
9119                 switch (off) {
9120                 case bpf_ctx_range(struct __sk_buff, tc_index):
9121                 case bpf_ctx_range(struct __sk_buff, priority):
9122                         break;
9123                 default:
9124                         return false;
9125                 }
9126         }
9127
9128         switch (off) {
9129         case bpf_ctx_range(struct __sk_buff, mark):
9130                 return false;
9131         case bpf_ctx_range(struct __sk_buff, data):
9132                 info->reg_type = PTR_TO_PACKET;
9133                 break;
9134         case bpf_ctx_range(struct __sk_buff, data_end):
9135                 info->reg_type = PTR_TO_PACKET_END;
9136                 break;
9137         }
9138
9139         return bpf_skb_is_valid_access(off, size, type, prog, info);
9140 }
9141
9142 static bool sk_msg_is_valid_access(int off, int size,
9143                                    enum bpf_access_type type,
9144                                    const struct bpf_prog *prog,
9145                                    struct bpf_insn_access_aux *info)
9146 {
9147         if (type == BPF_WRITE)
9148                 return false;
9149
9150         if (off % size != 0)
9151                 return false;
9152
9153         switch (off) {
9154         case offsetof(struct sk_msg_md, data):
9155                 info->reg_type = PTR_TO_PACKET;
9156                 if (size != sizeof(__u64))
9157                         return false;
9158                 break;
9159         case offsetof(struct sk_msg_md, data_end):
9160                 info->reg_type = PTR_TO_PACKET_END;
9161                 if (size != sizeof(__u64))
9162                         return false;
9163                 break;
9164         case offsetof(struct sk_msg_md, sk):
9165                 if (size != sizeof(__u64))
9166                         return false;
9167                 info->reg_type = PTR_TO_SOCKET;
9168                 break;
9169         case bpf_ctx_range(struct sk_msg_md, family):
9170         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9171         case bpf_ctx_range(struct sk_msg_md, local_ip4):
9172         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9173         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9174         case bpf_ctx_range(struct sk_msg_md, remote_port):
9175         case bpf_ctx_range(struct sk_msg_md, local_port):
9176         case bpf_ctx_range(struct sk_msg_md, size):
9177                 if (size != sizeof(__u32))
9178                         return false;
9179                 break;
9180         default:
9181                 return false;
9182         }
9183         return true;
9184 }
9185
9186 static bool flow_dissector_is_valid_access(int off, int size,
9187                                            enum bpf_access_type type,
9188                                            const struct bpf_prog *prog,
9189                                            struct bpf_insn_access_aux *info)
9190 {
9191         const int size_default = sizeof(__u32);
9192
9193         if (off < 0 || off >= sizeof(struct __sk_buff))
9194                 return false;
9195
9196         if (type == BPF_WRITE)
9197                 return false;
9198
9199         switch (off) {
9200         case bpf_ctx_range(struct __sk_buff, data):
9201                 if (size != size_default)
9202                         return false;
9203                 info->reg_type = PTR_TO_PACKET;
9204                 return true;
9205         case bpf_ctx_range(struct __sk_buff, data_end):
9206                 if (size != size_default)
9207                         return false;
9208                 info->reg_type = PTR_TO_PACKET_END;
9209                 return true;
9210         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9211                 if (size != sizeof(__u64))
9212                         return false;
9213                 info->reg_type = PTR_TO_FLOW_KEYS;
9214                 return true;
9215         default:
9216                 return false;
9217         }
9218 }
9219
9220 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9221                                              const struct bpf_insn *si,
9222                                              struct bpf_insn *insn_buf,
9223                                              struct bpf_prog *prog,
9224                                              u32 *target_size)
9225
9226 {
9227         struct bpf_insn *insn = insn_buf;
9228
9229         switch (si->off) {
9230         case offsetof(struct __sk_buff, data):
9231                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9232                                       si->dst_reg, si->src_reg,
9233                                       offsetof(struct bpf_flow_dissector, data));
9234                 break;
9235
9236         case offsetof(struct __sk_buff, data_end):
9237                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9238                                       si->dst_reg, si->src_reg,
9239                                       offsetof(struct bpf_flow_dissector, data_end));
9240                 break;
9241
9242         case offsetof(struct __sk_buff, flow_keys):
9243                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9244                                       si->dst_reg, si->src_reg,
9245                                       offsetof(struct bpf_flow_dissector, flow_keys));
9246                 break;
9247         }
9248
9249         return insn - insn_buf;
9250 }
9251
9252 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9253                                                      struct bpf_insn *insn)
9254 {
9255         __u8 value_reg = si->dst_reg;
9256         __u8 skb_reg = si->src_reg;
9257         /* AX is needed because src_reg and dst_reg could be the same */
9258         __u8 tmp_reg = BPF_REG_AX;
9259
9260         *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9261                               PKT_VLAN_PRESENT_OFFSET);
9262         *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9263                                 SKB_MONO_DELIVERY_TIME_MASK, 2);
9264         *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9265         *insn++ = BPF_JMP_A(1);
9266         *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9267
9268         return insn;
9269 }
9270
9271 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
9272                                                   struct bpf_insn *insn)
9273 {
9274         /* si->dst_reg = skb_shinfo(SKB); */
9275 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9276         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9277                               BPF_REG_AX, si->src_reg,
9278                               offsetof(struct sk_buff, end));
9279         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9280                               si->dst_reg, si->src_reg,
9281                               offsetof(struct sk_buff, head));
9282         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9283 #else
9284         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9285                               si->dst_reg, si->src_reg,
9286                               offsetof(struct sk_buff, end));
9287 #endif
9288
9289         return insn;
9290 }
9291
9292 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9293                                                 const struct bpf_insn *si,
9294                                                 struct bpf_insn *insn)
9295 {
9296         __u8 value_reg = si->dst_reg;
9297         __u8 skb_reg = si->src_reg;
9298
9299 #ifdef CONFIG_NET_CLS_ACT
9300         /* If the tstamp_type is read,
9301          * the bpf prog is aware the tstamp could have delivery time.
9302          * Thus, read skb->tstamp as is if tstamp_type_access is true.
9303          */
9304         if (!prog->tstamp_type_access) {
9305                 /* AX is needed because src_reg and dst_reg could be the same */
9306                 __u8 tmp_reg = BPF_REG_AX;
9307
9308                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9309                 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9310                                         TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9311                 *insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9312                                         TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9313                 /* skb->tc_at_ingress && skb->mono_delivery_time,
9314                  * read 0 as the (rcv) timestamp.
9315                  */
9316                 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9317                 *insn++ = BPF_JMP_A(1);
9318         }
9319 #endif
9320
9321         *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9322                               offsetof(struct sk_buff, tstamp));
9323         return insn;
9324 }
9325
9326 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9327                                                  const struct bpf_insn *si,
9328                                                  struct bpf_insn *insn)
9329 {
9330         __u8 value_reg = si->src_reg;
9331         __u8 skb_reg = si->dst_reg;
9332
9333 #ifdef CONFIG_NET_CLS_ACT
9334         /* If the tstamp_type is read,
9335          * the bpf prog is aware the tstamp could have delivery time.
9336          * Thus, write skb->tstamp as is if tstamp_type_access is true.
9337          * Otherwise, writing at ingress will have to clear the
9338          * mono_delivery_time bit also.
9339          */
9340         if (!prog->tstamp_type_access) {
9341                 __u8 tmp_reg = BPF_REG_AX;
9342
9343                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9344                 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9345                 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9346                 /* goto <store> */
9347                 *insn++ = BPF_JMP_A(2);
9348                 /* <clear>: mono_delivery_time */
9349                 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9350                 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9351         }
9352 #endif
9353
9354         /* <store>: skb->tstamp = tstamp */
9355         *insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9356                               offsetof(struct sk_buff, tstamp));
9357         return insn;
9358 }
9359
9360 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9361                                   const struct bpf_insn *si,
9362                                   struct bpf_insn *insn_buf,
9363                                   struct bpf_prog *prog, u32 *target_size)
9364 {
9365         struct bpf_insn *insn = insn_buf;
9366         int off;
9367
9368         switch (si->off) {
9369         case offsetof(struct __sk_buff, len):
9370                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9371                                       bpf_target_off(struct sk_buff, len, 4,
9372                                                      target_size));
9373                 break;
9374
9375         case offsetof(struct __sk_buff, protocol):
9376                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9377                                       bpf_target_off(struct sk_buff, protocol, 2,
9378                                                      target_size));
9379                 break;
9380
9381         case offsetof(struct __sk_buff, vlan_proto):
9382                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9383                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
9384                                                      target_size));
9385                 break;
9386
9387         case offsetof(struct __sk_buff, priority):
9388                 if (type == BPF_WRITE)
9389                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9390                                               bpf_target_off(struct sk_buff, priority, 4,
9391                                                              target_size));
9392                 else
9393                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9394                                               bpf_target_off(struct sk_buff, priority, 4,
9395                                                              target_size));
9396                 break;
9397
9398         case offsetof(struct __sk_buff, ingress_ifindex):
9399                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9400                                       bpf_target_off(struct sk_buff, skb_iif, 4,
9401                                                      target_size));
9402                 break;
9403
9404         case offsetof(struct __sk_buff, ifindex):
9405                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9406                                       si->dst_reg, si->src_reg,
9407                                       offsetof(struct sk_buff, dev));
9408                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9409                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9410                                       bpf_target_off(struct net_device, ifindex, 4,
9411                                                      target_size));
9412                 break;
9413
9414         case offsetof(struct __sk_buff, hash):
9415                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9416                                       bpf_target_off(struct sk_buff, hash, 4,
9417                                                      target_size));
9418                 break;
9419
9420         case offsetof(struct __sk_buff, mark):
9421                 if (type == BPF_WRITE)
9422                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9423                                               bpf_target_off(struct sk_buff, mark, 4,
9424                                                              target_size));
9425                 else
9426                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9427                                               bpf_target_off(struct sk_buff, mark, 4,
9428                                                              target_size));
9429                 break;
9430
9431         case offsetof(struct __sk_buff, pkt_type):
9432                 *target_size = 1;
9433                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9434                                       PKT_TYPE_OFFSET);
9435                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9436 #ifdef __BIG_ENDIAN_BITFIELD
9437                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9438 #endif
9439                 break;
9440
9441         case offsetof(struct __sk_buff, queue_mapping):
9442                 if (type == BPF_WRITE) {
9443                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9444                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9445                                               bpf_target_off(struct sk_buff,
9446                                                              queue_mapping,
9447                                                              2, target_size));
9448                 } else {
9449                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9450                                               bpf_target_off(struct sk_buff,
9451                                                              queue_mapping,
9452                                                              2, target_size));
9453                 }
9454                 break;
9455
9456         case offsetof(struct __sk_buff, vlan_present):
9457                 *target_size = 1;
9458                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9459                                       PKT_VLAN_PRESENT_OFFSET);
9460                 if (PKT_VLAN_PRESENT_BIT)
9461                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
9462                 if (PKT_VLAN_PRESENT_BIT < 7)
9463                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
9464                 break;
9465
9466         case offsetof(struct __sk_buff, vlan_tci):
9467                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9468                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
9469                                                      target_size));
9470                 break;
9471
9472         case offsetof(struct __sk_buff, cb[0]) ...
9473              offsetofend(struct __sk_buff, cb[4]) - 1:
9474                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9475                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9476                               offsetof(struct qdisc_skb_cb, data)) %
9477                              sizeof(__u64));
9478
9479                 prog->cb_access = 1;
9480                 off  = si->off;
9481                 off -= offsetof(struct __sk_buff, cb[0]);
9482                 off += offsetof(struct sk_buff, cb);
9483                 off += offsetof(struct qdisc_skb_cb, data);
9484                 if (type == BPF_WRITE)
9485                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9486                                               si->src_reg, off);
9487                 else
9488                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9489                                               si->src_reg, off);
9490                 break;
9491
9492         case offsetof(struct __sk_buff, tc_classid):
9493                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9494
9495                 off  = si->off;
9496                 off -= offsetof(struct __sk_buff, tc_classid);
9497                 off += offsetof(struct sk_buff, cb);
9498                 off += offsetof(struct qdisc_skb_cb, tc_classid);
9499                 *target_size = 2;
9500                 if (type == BPF_WRITE)
9501                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9502                                               si->src_reg, off);
9503                 else
9504                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9505                                               si->src_reg, off);
9506                 break;
9507
9508         case offsetof(struct __sk_buff, data):
9509                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9510                                       si->dst_reg, si->src_reg,
9511                                       offsetof(struct sk_buff, data));
9512                 break;
9513
9514         case offsetof(struct __sk_buff, data_meta):
9515                 off  = si->off;
9516                 off -= offsetof(struct __sk_buff, data_meta);
9517                 off += offsetof(struct sk_buff, cb);
9518                 off += offsetof(struct bpf_skb_data_end, data_meta);
9519                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9520                                       si->src_reg, off);
9521                 break;
9522
9523         case offsetof(struct __sk_buff, data_end):
9524                 off  = si->off;
9525                 off -= offsetof(struct __sk_buff, data_end);
9526                 off += offsetof(struct sk_buff, cb);
9527                 off += offsetof(struct bpf_skb_data_end, data_end);
9528                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9529                                       si->src_reg, off);
9530                 break;
9531
9532         case offsetof(struct __sk_buff, tc_index):
9533 #ifdef CONFIG_NET_SCHED
9534                 if (type == BPF_WRITE)
9535                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9536                                               bpf_target_off(struct sk_buff, tc_index, 2,
9537                                                              target_size));
9538                 else
9539                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9540                                               bpf_target_off(struct sk_buff, tc_index, 2,
9541                                                              target_size));
9542 #else
9543                 *target_size = 2;
9544                 if (type == BPF_WRITE)
9545                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9546                 else
9547                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9548 #endif
9549                 break;
9550
9551         case offsetof(struct __sk_buff, napi_id):
9552 #if defined(CONFIG_NET_RX_BUSY_POLL)
9553                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9554                                       bpf_target_off(struct sk_buff, napi_id, 4,
9555                                                      target_size));
9556                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9557                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9558 #else
9559                 *target_size = 4;
9560                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9561 #endif
9562                 break;
9563         case offsetof(struct __sk_buff, family):
9564                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9565
9566                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9567                                       si->dst_reg, si->src_reg,
9568                                       offsetof(struct sk_buff, sk));
9569                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9570                                       bpf_target_off(struct sock_common,
9571                                                      skc_family,
9572                                                      2, target_size));
9573                 break;
9574         case offsetof(struct __sk_buff, remote_ip4):
9575                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9576
9577                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9578                                       si->dst_reg, si->src_reg,
9579                                       offsetof(struct sk_buff, sk));
9580                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9581                                       bpf_target_off(struct sock_common,
9582                                                      skc_daddr,
9583                                                      4, target_size));
9584                 break;
9585         case offsetof(struct __sk_buff, local_ip4):
9586                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9587                                           skc_rcv_saddr) != 4);
9588
9589                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9590                                       si->dst_reg, si->src_reg,
9591                                       offsetof(struct sk_buff, sk));
9592                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9593                                       bpf_target_off(struct sock_common,
9594                                                      skc_rcv_saddr,
9595                                                      4, target_size));
9596                 break;
9597         case offsetof(struct __sk_buff, remote_ip6[0]) ...
9598              offsetof(struct __sk_buff, remote_ip6[3]):
9599 #if IS_ENABLED(CONFIG_IPV6)
9600                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9601                                           skc_v6_daddr.s6_addr32[0]) != 4);
9602
9603                 off = si->off;
9604                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9605
9606                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9607                                       si->dst_reg, si->src_reg,
9608                                       offsetof(struct sk_buff, sk));
9609                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9610                                       offsetof(struct sock_common,
9611                                                skc_v6_daddr.s6_addr32[0]) +
9612                                       off);
9613 #else
9614                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9615 #endif
9616                 break;
9617         case offsetof(struct __sk_buff, local_ip6[0]) ...
9618              offsetof(struct __sk_buff, local_ip6[3]):
9619 #if IS_ENABLED(CONFIG_IPV6)
9620                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9621                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9622
9623                 off = si->off;
9624                 off -= offsetof(struct __sk_buff, local_ip6[0]);
9625
9626                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9627                                       si->dst_reg, si->src_reg,
9628                                       offsetof(struct sk_buff, sk));
9629                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9630                                       offsetof(struct sock_common,
9631                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9632                                       off);
9633 #else
9634                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9635 #endif
9636                 break;
9637
9638         case offsetof(struct __sk_buff, remote_port):
9639                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9640
9641                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9642                                       si->dst_reg, si->src_reg,
9643                                       offsetof(struct sk_buff, sk));
9644                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9645                                       bpf_target_off(struct sock_common,
9646                                                      skc_dport,
9647                                                      2, target_size));
9648 #ifndef __BIG_ENDIAN_BITFIELD
9649                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9650 #endif
9651                 break;
9652
9653         case offsetof(struct __sk_buff, local_port):
9654                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9655
9656                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9657                                       si->dst_reg, si->src_reg,
9658                                       offsetof(struct sk_buff, sk));
9659                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9660                                       bpf_target_off(struct sock_common,
9661                                                      skc_num, 2, target_size));
9662                 break;
9663
9664         case offsetof(struct __sk_buff, tstamp):
9665                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9666
9667                 if (type == BPF_WRITE)
9668                         insn = bpf_convert_tstamp_write(prog, si, insn);
9669                 else
9670                         insn = bpf_convert_tstamp_read(prog, si, insn);
9671                 break;
9672
9673         case offsetof(struct __sk_buff, tstamp_type):
9674                 insn = bpf_convert_tstamp_type_read(si, insn);
9675                 break;
9676
9677         case offsetof(struct __sk_buff, gso_segs):
9678                 insn = bpf_convert_shinfo_access(si, insn);
9679                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9680                                       si->dst_reg, si->dst_reg,
9681                                       bpf_target_off(struct skb_shared_info,
9682                                                      gso_segs, 2,
9683                                                      target_size));
9684                 break;
9685         case offsetof(struct __sk_buff, gso_size):
9686                 insn = bpf_convert_shinfo_access(si, insn);
9687                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9688                                       si->dst_reg, si->dst_reg,
9689                                       bpf_target_off(struct skb_shared_info,
9690                                                      gso_size, 2,
9691                                                      target_size));
9692                 break;
9693         case offsetof(struct __sk_buff, wire_len):
9694                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9695
9696                 off = si->off;
9697                 off -= offsetof(struct __sk_buff, wire_len);
9698                 off += offsetof(struct sk_buff, cb);
9699                 off += offsetof(struct qdisc_skb_cb, pkt_len);
9700                 *target_size = 4;
9701                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9702                 break;
9703
9704         case offsetof(struct __sk_buff, sk):
9705                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9706                                       si->dst_reg, si->src_reg,
9707                                       offsetof(struct sk_buff, sk));
9708                 break;
9709         case offsetof(struct __sk_buff, hwtstamp):
9710                 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9711                 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9712
9713                 insn = bpf_convert_shinfo_access(si, insn);
9714                 *insn++ = BPF_LDX_MEM(BPF_DW,
9715                                       si->dst_reg, si->dst_reg,
9716                                       bpf_target_off(struct skb_shared_info,
9717                                                      hwtstamps, 8,
9718                                                      target_size));
9719                 break;
9720         }
9721
9722         return insn - insn_buf;
9723 }
9724
9725 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9726                                 const struct bpf_insn *si,
9727                                 struct bpf_insn *insn_buf,
9728                                 struct bpf_prog *prog, u32 *target_size)
9729 {
9730         struct bpf_insn *insn = insn_buf;
9731         int off;
9732
9733         switch (si->off) {
9734         case offsetof(struct bpf_sock, bound_dev_if):
9735                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9736
9737                 if (type == BPF_WRITE)
9738                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9739                                         offsetof(struct sock, sk_bound_dev_if));
9740                 else
9741                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9742                                       offsetof(struct sock, sk_bound_dev_if));
9743                 break;
9744
9745         case offsetof(struct bpf_sock, mark):
9746                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9747
9748                 if (type == BPF_WRITE)
9749                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9750                                         offsetof(struct sock, sk_mark));
9751                 else
9752                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9753                                       offsetof(struct sock, sk_mark));
9754                 break;
9755
9756         case offsetof(struct bpf_sock, priority):
9757                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9758
9759                 if (type == BPF_WRITE)
9760                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9761                                         offsetof(struct sock, sk_priority));
9762                 else
9763                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9764                                       offsetof(struct sock, sk_priority));
9765                 break;
9766
9767         case offsetof(struct bpf_sock, family):
9768                 *insn++ = BPF_LDX_MEM(
9769                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9770                         si->dst_reg, si->src_reg,
9771                         bpf_target_off(struct sock_common,
9772                                        skc_family,
9773                                        sizeof_field(struct sock_common,
9774                                                     skc_family),
9775                                        target_size));
9776                 break;
9777
9778         case offsetof(struct bpf_sock, type):
9779                 *insn++ = BPF_LDX_MEM(
9780                         BPF_FIELD_SIZEOF(struct sock, sk_type),
9781                         si->dst_reg, si->src_reg,
9782                         bpf_target_off(struct sock, sk_type,
9783                                        sizeof_field(struct sock, sk_type),
9784                                        target_size));
9785                 break;
9786
9787         case offsetof(struct bpf_sock, protocol):
9788                 *insn++ = BPF_LDX_MEM(
9789                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9790                         si->dst_reg, si->src_reg,
9791                         bpf_target_off(struct sock, sk_protocol,
9792                                        sizeof_field(struct sock, sk_protocol),
9793                                        target_size));
9794                 break;
9795
9796         case offsetof(struct bpf_sock, src_ip4):
9797                 *insn++ = BPF_LDX_MEM(
9798                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9799                         bpf_target_off(struct sock_common, skc_rcv_saddr,
9800                                        sizeof_field(struct sock_common,
9801                                                     skc_rcv_saddr),
9802                                        target_size));
9803                 break;
9804
9805         case offsetof(struct bpf_sock, dst_ip4):
9806                 *insn++ = BPF_LDX_MEM(
9807                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9808                         bpf_target_off(struct sock_common, skc_daddr,
9809                                        sizeof_field(struct sock_common,
9810                                                     skc_daddr),
9811                                        target_size));
9812                 break;
9813
9814         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9815 #if IS_ENABLED(CONFIG_IPV6)
9816                 off = si->off;
9817                 off -= offsetof(struct bpf_sock, src_ip6[0]);
9818                 *insn++ = BPF_LDX_MEM(
9819                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9820                         bpf_target_off(
9821                                 struct sock_common,
9822                                 skc_v6_rcv_saddr.s6_addr32[0],
9823                                 sizeof_field(struct sock_common,
9824                                              skc_v6_rcv_saddr.s6_addr32[0]),
9825                                 target_size) + off);
9826 #else
9827                 (void)off;
9828                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9829 #endif
9830                 break;
9831
9832         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9833 #if IS_ENABLED(CONFIG_IPV6)
9834                 off = si->off;
9835                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9836                 *insn++ = BPF_LDX_MEM(
9837                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9838                         bpf_target_off(struct sock_common,
9839                                        skc_v6_daddr.s6_addr32[0],
9840                                        sizeof_field(struct sock_common,
9841                                                     skc_v6_daddr.s6_addr32[0]),
9842                                        target_size) + off);
9843 #else
9844                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9845                 *target_size = 4;
9846 #endif
9847                 break;
9848
9849         case offsetof(struct bpf_sock, src_port):
9850                 *insn++ = BPF_LDX_MEM(
9851                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9852                         si->dst_reg, si->src_reg,
9853                         bpf_target_off(struct sock_common, skc_num,
9854                                        sizeof_field(struct sock_common,
9855                                                     skc_num),
9856                                        target_size));
9857                 break;
9858
9859         case offsetof(struct bpf_sock, dst_port):
9860                 *insn++ = BPF_LDX_MEM(
9861                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9862                         si->dst_reg, si->src_reg,
9863                         bpf_target_off(struct sock_common, skc_dport,
9864                                        sizeof_field(struct sock_common,
9865                                                     skc_dport),
9866                                        target_size));
9867                 break;
9868
9869         case offsetof(struct bpf_sock, state):
9870                 *insn++ = BPF_LDX_MEM(
9871                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9872                         si->dst_reg, si->src_reg,
9873                         bpf_target_off(struct sock_common, skc_state,
9874                                        sizeof_field(struct sock_common,
9875                                                     skc_state),
9876                                        target_size));
9877                 break;
9878         case offsetof(struct bpf_sock, rx_queue_mapping):
9879 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9880                 *insn++ = BPF_LDX_MEM(
9881                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9882                         si->dst_reg, si->src_reg,
9883                         bpf_target_off(struct sock, sk_rx_queue_mapping,
9884                                        sizeof_field(struct sock,
9885                                                     sk_rx_queue_mapping),
9886                                        target_size));
9887                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9888                                       1);
9889                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9890 #else
9891                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9892                 *target_size = 2;
9893 #endif
9894                 break;
9895         }
9896
9897         return insn - insn_buf;
9898 }
9899
9900 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9901                                          const struct bpf_insn *si,
9902                                          struct bpf_insn *insn_buf,
9903                                          struct bpf_prog *prog, u32 *target_size)
9904 {
9905         struct bpf_insn *insn = insn_buf;
9906
9907         switch (si->off) {
9908         case offsetof(struct __sk_buff, ifindex):
9909                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9910                                       si->dst_reg, si->src_reg,
9911                                       offsetof(struct sk_buff, dev));
9912                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9913                                       bpf_target_off(struct net_device, ifindex, 4,
9914                                                      target_size));
9915                 break;
9916         default:
9917                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9918                                               target_size);
9919         }
9920
9921         return insn - insn_buf;
9922 }
9923
9924 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9925                                   const struct bpf_insn *si,
9926                                   struct bpf_insn *insn_buf,
9927                                   struct bpf_prog *prog, u32 *target_size)
9928 {
9929         struct bpf_insn *insn = insn_buf;
9930
9931         switch (si->off) {
9932         case offsetof(struct xdp_md, data):
9933                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9934                                       si->dst_reg, si->src_reg,
9935                                       offsetof(struct xdp_buff, data));
9936                 break;
9937         case offsetof(struct xdp_md, data_meta):
9938                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9939                                       si->dst_reg, si->src_reg,
9940                                       offsetof(struct xdp_buff, data_meta));
9941                 break;
9942         case offsetof(struct xdp_md, data_end):
9943                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9944                                       si->dst_reg, si->src_reg,
9945                                       offsetof(struct xdp_buff, data_end));
9946                 break;
9947         case offsetof(struct xdp_md, ingress_ifindex):
9948                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9949                                       si->dst_reg, si->src_reg,
9950                                       offsetof(struct xdp_buff, rxq));
9951                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9952                                       si->dst_reg, si->dst_reg,
9953                                       offsetof(struct xdp_rxq_info, dev));
9954                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9955                                       offsetof(struct net_device, ifindex));
9956                 break;
9957         case offsetof(struct xdp_md, rx_queue_index):
9958                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9959                                       si->dst_reg, si->src_reg,
9960                                       offsetof(struct xdp_buff, rxq));
9961                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9962                                       offsetof(struct xdp_rxq_info,
9963                                                queue_index));
9964                 break;
9965         case offsetof(struct xdp_md, egress_ifindex):
9966                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9967                                       si->dst_reg, si->src_reg,
9968                                       offsetof(struct xdp_buff, txq));
9969                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9970                                       si->dst_reg, si->dst_reg,
9971                                       offsetof(struct xdp_txq_info, dev));
9972                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9973                                       offsetof(struct net_device, ifindex));
9974                 break;
9975         }
9976
9977         return insn - insn_buf;
9978 }
9979
9980 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9981  * context Structure, F is Field in context structure that contains a pointer
9982  * to Nested Structure of type NS that has the field NF.
9983  *
9984  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9985  * sure that SIZE is not greater than actual size of S.F.NF.
9986  *
9987  * If offset OFF is provided, the load happens from that offset relative to
9988  * offset of NF.
9989  */
9990 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
9991         do {                                                                   \
9992                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9993                                       si->src_reg, offsetof(S, F));            \
9994                 *insn++ = BPF_LDX_MEM(                                         \
9995                         SIZE, si->dst_reg, si->dst_reg,                        \
9996                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9997                                        target_size)                            \
9998                                 + OFF);                                        \
9999         } while (0)
10000
10001 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
10002         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
10003                                              BPF_FIELD_SIZEOF(NS, NF), 0)
10004
10005 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10006  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10007  *
10008  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10009  * "register" since two registers available in convert_ctx_access are not
10010  * enough: we can't override neither SRC, since it contains value to store, nor
10011  * DST since it contains pointer to context that may be used by later
10012  * instructions. But we need a temporary place to save pointer to nested
10013  * structure whose field we want to store to.
10014  */
10015 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
10016         do {                                                                   \
10017                 int tmp_reg = BPF_REG_9;                                       \
10018                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
10019                         --tmp_reg;                                             \
10020                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
10021                         --tmp_reg;                                             \
10022                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
10023                                       offsetof(S, TF));                        \
10024                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
10025                                       si->dst_reg, offsetof(S, F));            \
10026                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
10027                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
10028                                        target_size)                            \
10029                                 + OFF);                                        \
10030                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
10031                                       offsetof(S, TF));                        \
10032         } while (0)
10033
10034 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10035                                                       TF)                      \
10036         do {                                                                   \
10037                 if (type == BPF_WRITE) {                                       \
10038                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10039                                                          OFF, TF);             \
10040                 } else {                                                       \
10041                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
10042                                 S, NS, F, NF, SIZE, OFF);  \
10043                 }                                                              \
10044         } while (0)
10045
10046 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
10047         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
10048                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10049
10050 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10051                                         const struct bpf_insn *si,
10052                                         struct bpf_insn *insn_buf,
10053                                         struct bpf_prog *prog, u32 *target_size)
10054 {
10055         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10056         struct bpf_insn *insn = insn_buf;
10057
10058         switch (si->off) {
10059         case offsetof(struct bpf_sock_addr, user_family):
10060                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10061                                             struct sockaddr, uaddr, sa_family);
10062                 break;
10063
10064         case offsetof(struct bpf_sock_addr, user_ip4):
10065                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10066                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10067                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10068                 break;
10069
10070         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10071                 off = si->off;
10072                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10073                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10074                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10075                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10076                         tmp_reg);
10077                 break;
10078
10079         case offsetof(struct bpf_sock_addr, user_port):
10080                 /* To get port we need to know sa_family first and then treat
10081                  * sockaddr as either sockaddr_in or sockaddr_in6.
10082                  * Though we can simplify since port field has same offset and
10083                  * size in both structures.
10084                  * Here we check this invariant and use just one of the
10085                  * structures if it's true.
10086                  */
10087                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10088                              offsetof(struct sockaddr_in6, sin6_port));
10089                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10090                              sizeof_field(struct sockaddr_in6, sin6_port));
10091                 /* Account for sin6_port being smaller than user_port. */
10092                 port_size = min(port_size, BPF_LDST_BYTES(si));
10093                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10094                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10095                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10096                 break;
10097
10098         case offsetof(struct bpf_sock_addr, family):
10099                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10100                                             struct sock, sk, sk_family);
10101                 break;
10102
10103         case offsetof(struct bpf_sock_addr, type):
10104                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10105                                             struct sock, sk, sk_type);
10106                 break;
10107
10108         case offsetof(struct bpf_sock_addr, protocol):
10109                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10110                                             struct sock, sk, sk_protocol);
10111                 break;
10112
10113         case offsetof(struct bpf_sock_addr, msg_src_ip4):
10114                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
10115                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10116                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10117                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10118                 break;
10119
10120         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10121                                 msg_src_ip6[3]):
10122                 off = si->off;
10123                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10124                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10125                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10126                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10127                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10128                 break;
10129         case offsetof(struct bpf_sock_addr, sk):
10130                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10131                                       si->dst_reg, si->src_reg,
10132                                       offsetof(struct bpf_sock_addr_kern, sk));
10133                 break;
10134         }
10135
10136         return insn - insn_buf;
10137 }
10138
10139 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10140                                        const struct bpf_insn *si,
10141                                        struct bpf_insn *insn_buf,
10142                                        struct bpf_prog *prog,
10143                                        u32 *target_size)
10144 {
10145         struct bpf_insn *insn = insn_buf;
10146         int off;
10147
10148 /* Helper macro for adding read access to tcp_sock or sock fields. */
10149 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
10150         do {                                                                  \
10151                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10152                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
10153                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10154                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10155                         reg--;                                                \
10156                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10157                         reg--;                                                \
10158                 if (si->dst_reg == si->src_reg) {                             \
10159                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
10160                                           offsetof(struct bpf_sock_ops_kern,  \
10161                                           temp));                             \
10162                         fullsock_reg = reg;                                   \
10163                         jmp += 2;                                             \
10164                 }                                                             \
10165                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10166                                                 struct bpf_sock_ops_kern,     \
10167                                                 is_fullsock),                 \
10168                                       fullsock_reg, si->src_reg,              \
10169                                       offsetof(struct bpf_sock_ops_kern,      \
10170                                                is_fullsock));                 \
10171                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
10172                 if (si->dst_reg == si->src_reg)                               \
10173                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10174                                       offsetof(struct bpf_sock_ops_kern,      \
10175                                       temp));                                 \
10176                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10177                                                 struct bpf_sock_ops_kern, sk),\
10178                                       si->dst_reg, si->src_reg,               \
10179                                       offsetof(struct bpf_sock_ops_kern, sk));\
10180                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
10181                                                        OBJ_FIELD),            \
10182                                       si->dst_reg, si->dst_reg,               \
10183                                       offsetof(OBJ, OBJ_FIELD));              \
10184                 if (si->dst_reg == si->src_reg) {                             \
10185                         *insn++ = BPF_JMP_A(1);                               \
10186                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10187                                       offsetof(struct bpf_sock_ops_kern,      \
10188                                       temp));                                 \
10189                 }                                                             \
10190         } while (0)
10191
10192 #define SOCK_OPS_GET_SK()                                                             \
10193         do {                                                                  \
10194                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10195                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10196                         reg--;                                                \
10197                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10198                         reg--;                                                \
10199                 if (si->dst_reg == si->src_reg) {                             \
10200                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
10201                                           offsetof(struct bpf_sock_ops_kern,  \
10202                                           temp));                             \
10203                         fullsock_reg = reg;                                   \
10204                         jmp += 2;                                             \
10205                 }                                                             \
10206                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10207                                                 struct bpf_sock_ops_kern,     \
10208                                                 is_fullsock),                 \
10209                                       fullsock_reg, si->src_reg,              \
10210                                       offsetof(struct bpf_sock_ops_kern,      \
10211                                                is_fullsock));                 \
10212                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
10213                 if (si->dst_reg == si->src_reg)                               \
10214                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10215                                       offsetof(struct bpf_sock_ops_kern,      \
10216                                       temp));                                 \
10217                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10218                                                 struct bpf_sock_ops_kern, sk),\
10219                                       si->dst_reg, si->src_reg,               \
10220                                       offsetof(struct bpf_sock_ops_kern, sk));\
10221                 if (si->dst_reg == si->src_reg) {                             \
10222                         *insn++ = BPF_JMP_A(1);                               \
10223                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10224                                       offsetof(struct bpf_sock_ops_kern,      \
10225                                       temp));                                 \
10226                 }                                                             \
10227         } while (0)
10228
10229 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10230                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10231
10232 /* Helper macro for adding write access to tcp_sock or sock fields.
10233  * The macro is called with two registers, dst_reg which contains a pointer
10234  * to ctx (context) and src_reg which contains the value that should be
10235  * stored. However, we need an additional register since we cannot overwrite
10236  * dst_reg because it may be used later in the program.
10237  * Instead we "borrow" one of the other register. We first save its value
10238  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10239  * it at the end of the macro.
10240  */
10241 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
10242         do {                                                                  \
10243                 int reg = BPF_REG_9;                                          \
10244                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
10245                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10246                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10247                         reg--;                                                \
10248                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10249                         reg--;                                                \
10250                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
10251                                       offsetof(struct bpf_sock_ops_kern,      \
10252                                                temp));                        \
10253                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10254                                                 struct bpf_sock_ops_kern,     \
10255                                                 is_fullsock),                 \
10256                                       reg, si->dst_reg,                       \
10257                                       offsetof(struct bpf_sock_ops_kern,      \
10258                                                is_fullsock));                 \
10259                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
10260                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10261                                                 struct bpf_sock_ops_kern, sk),\
10262                                       reg, si->dst_reg,                       \
10263                                       offsetof(struct bpf_sock_ops_kern, sk));\
10264                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
10265                                       reg, si->src_reg,                       \
10266                                       offsetof(OBJ, OBJ_FIELD));              \
10267                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
10268                                       offsetof(struct bpf_sock_ops_kern,      \
10269                                                temp));                        \
10270         } while (0)
10271
10272 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
10273         do {                                                                  \
10274                 if (TYPE == BPF_WRITE)                                        \
10275                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10276                 else                                                          \
10277                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10278         } while (0)
10279
10280         if (insn > insn_buf)
10281                 return insn - insn_buf;
10282
10283         switch (si->off) {
10284         case offsetof(struct bpf_sock_ops, op):
10285                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10286                                                        op),
10287                                       si->dst_reg, si->src_reg,
10288                                       offsetof(struct bpf_sock_ops_kern, op));
10289                 break;
10290
10291         case offsetof(struct bpf_sock_ops, replylong[0]) ...
10292              offsetof(struct bpf_sock_ops, replylong[3]):
10293                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10294                              sizeof_field(struct bpf_sock_ops_kern, reply));
10295                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10296                              sizeof_field(struct bpf_sock_ops_kern, replylong));
10297                 off = si->off;
10298                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10299                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10300                 if (type == BPF_WRITE)
10301                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
10302                                               off);
10303                 else
10304                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10305                                               off);
10306                 break;
10307
10308         case offsetof(struct bpf_sock_ops, family):
10309                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10310
10311                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10312                                               struct bpf_sock_ops_kern, sk),
10313                                       si->dst_reg, si->src_reg,
10314                                       offsetof(struct bpf_sock_ops_kern, sk));
10315                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10316                                       offsetof(struct sock_common, skc_family));
10317                 break;
10318
10319         case offsetof(struct bpf_sock_ops, remote_ip4):
10320                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10321
10322                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10323                                                 struct bpf_sock_ops_kern, sk),
10324                                       si->dst_reg, si->src_reg,
10325                                       offsetof(struct bpf_sock_ops_kern, sk));
10326                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10327                                       offsetof(struct sock_common, skc_daddr));
10328                 break;
10329
10330         case offsetof(struct bpf_sock_ops, local_ip4):
10331                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10332                                           skc_rcv_saddr) != 4);
10333
10334                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10335                                               struct bpf_sock_ops_kern, sk),
10336                                       si->dst_reg, si->src_reg,
10337                                       offsetof(struct bpf_sock_ops_kern, sk));
10338                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10339                                       offsetof(struct sock_common,
10340                                                skc_rcv_saddr));
10341                 break;
10342
10343         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10344              offsetof(struct bpf_sock_ops, remote_ip6[3]):
10345 #if IS_ENABLED(CONFIG_IPV6)
10346                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10347                                           skc_v6_daddr.s6_addr32[0]) != 4);
10348
10349                 off = si->off;
10350                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10351                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10352                                                 struct bpf_sock_ops_kern, sk),
10353                                       si->dst_reg, si->src_reg,
10354                                       offsetof(struct bpf_sock_ops_kern, sk));
10355                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10356                                       offsetof(struct sock_common,
10357                                                skc_v6_daddr.s6_addr32[0]) +
10358                                       off);
10359 #else
10360                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10361 #endif
10362                 break;
10363
10364         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10365              offsetof(struct bpf_sock_ops, local_ip6[3]):
10366 #if IS_ENABLED(CONFIG_IPV6)
10367                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10368                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10369
10370                 off = si->off;
10371                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10372                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10373                                                 struct bpf_sock_ops_kern, sk),
10374                                       si->dst_reg, si->src_reg,
10375                                       offsetof(struct bpf_sock_ops_kern, sk));
10376                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10377                                       offsetof(struct sock_common,
10378                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10379                                       off);
10380 #else
10381                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10382 #endif
10383                 break;
10384
10385         case offsetof(struct bpf_sock_ops, remote_port):
10386                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10387
10388                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10389                                                 struct bpf_sock_ops_kern, sk),
10390                                       si->dst_reg, si->src_reg,
10391                                       offsetof(struct bpf_sock_ops_kern, sk));
10392                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10393                                       offsetof(struct sock_common, skc_dport));
10394 #ifndef __BIG_ENDIAN_BITFIELD
10395                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10396 #endif
10397                 break;
10398
10399         case offsetof(struct bpf_sock_ops, local_port):
10400                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10401
10402                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10403                                                 struct bpf_sock_ops_kern, sk),
10404                                       si->dst_reg, si->src_reg,
10405                                       offsetof(struct bpf_sock_ops_kern, sk));
10406                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10407                                       offsetof(struct sock_common, skc_num));
10408                 break;
10409
10410         case offsetof(struct bpf_sock_ops, is_fullsock):
10411                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10412                                                 struct bpf_sock_ops_kern,
10413                                                 is_fullsock),
10414                                       si->dst_reg, si->src_reg,
10415                                       offsetof(struct bpf_sock_ops_kern,
10416                                                is_fullsock));
10417                 break;
10418
10419         case offsetof(struct bpf_sock_ops, state):
10420                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10421
10422                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10423                                                 struct bpf_sock_ops_kern, sk),
10424                                       si->dst_reg, si->src_reg,
10425                                       offsetof(struct bpf_sock_ops_kern, sk));
10426                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10427                                       offsetof(struct sock_common, skc_state));
10428                 break;
10429
10430         case offsetof(struct bpf_sock_ops, rtt_min):
10431                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10432                              sizeof(struct minmax));
10433                 BUILD_BUG_ON(sizeof(struct minmax) <
10434                              sizeof(struct minmax_sample));
10435
10436                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10437                                                 struct bpf_sock_ops_kern, sk),
10438                                       si->dst_reg, si->src_reg,
10439                                       offsetof(struct bpf_sock_ops_kern, sk));
10440                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10441                                       offsetof(struct tcp_sock, rtt_min) +
10442                                       sizeof_field(struct minmax_sample, t));
10443                 break;
10444
10445         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10446                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10447                                    struct tcp_sock);
10448                 break;
10449
10450         case offsetof(struct bpf_sock_ops, sk_txhash):
10451                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10452                                           struct sock, type);
10453                 break;
10454         case offsetof(struct bpf_sock_ops, snd_cwnd):
10455                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10456                 break;
10457         case offsetof(struct bpf_sock_ops, srtt_us):
10458                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10459                 break;
10460         case offsetof(struct bpf_sock_ops, snd_ssthresh):
10461                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10462                 break;
10463         case offsetof(struct bpf_sock_ops, rcv_nxt):
10464                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10465                 break;
10466         case offsetof(struct bpf_sock_ops, snd_nxt):
10467                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10468                 break;
10469         case offsetof(struct bpf_sock_ops, snd_una):
10470                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10471                 break;
10472         case offsetof(struct bpf_sock_ops, mss_cache):
10473                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10474                 break;
10475         case offsetof(struct bpf_sock_ops, ecn_flags):
10476                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10477                 break;
10478         case offsetof(struct bpf_sock_ops, rate_delivered):
10479                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10480                 break;
10481         case offsetof(struct bpf_sock_ops, rate_interval_us):
10482                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10483                 break;
10484         case offsetof(struct bpf_sock_ops, packets_out):
10485                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10486                 break;
10487         case offsetof(struct bpf_sock_ops, retrans_out):
10488                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10489                 break;
10490         case offsetof(struct bpf_sock_ops, total_retrans):
10491                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10492                 break;
10493         case offsetof(struct bpf_sock_ops, segs_in):
10494                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10495                 break;
10496         case offsetof(struct bpf_sock_ops, data_segs_in):
10497                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10498                 break;
10499         case offsetof(struct bpf_sock_ops, segs_out):
10500                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10501                 break;
10502         case offsetof(struct bpf_sock_ops, data_segs_out):
10503                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10504                 break;
10505         case offsetof(struct bpf_sock_ops, lost_out):
10506                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10507                 break;
10508         case offsetof(struct bpf_sock_ops, sacked_out):
10509                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10510                 break;
10511         case offsetof(struct bpf_sock_ops, bytes_received):
10512                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10513                 break;
10514         case offsetof(struct bpf_sock_ops, bytes_acked):
10515                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10516                 break;
10517         case offsetof(struct bpf_sock_ops, sk):
10518                 SOCK_OPS_GET_SK();
10519                 break;
10520         case offsetof(struct bpf_sock_ops, skb_data_end):
10521                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10522                                                        skb_data_end),
10523                                       si->dst_reg, si->src_reg,
10524                                       offsetof(struct bpf_sock_ops_kern,
10525                                                skb_data_end));
10526                 break;
10527         case offsetof(struct bpf_sock_ops, skb_data):
10528                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10529                                                        skb),
10530                                       si->dst_reg, si->src_reg,
10531                                       offsetof(struct bpf_sock_ops_kern,
10532                                                skb));
10533                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10534                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10535                                       si->dst_reg, si->dst_reg,
10536                                       offsetof(struct sk_buff, data));
10537                 break;
10538         case offsetof(struct bpf_sock_ops, skb_len):
10539                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10540                                                        skb),
10541                                       si->dst_reg, si->src_reg,
10542                                       offsetof(struct bpf_sock_ops_kern,
10543                                                skb));
10544                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10545                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10546                                       si->dst_reg, si->dst_reg,
10547                                       offsetof(struct sk_buff, len));
10548                 break;
10549         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10550                 off = offsetof(struct sk_buff, cb);
10551                 off += offsetof(struct tcp_skb_cb, tcp_flags);
10552                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10553                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10554                                                        skb),
10555                                       si->dst_reg, si->src_reg,
10556                                       offsetof(struct bpf_sock_ops_kern,
10557                                                skb));
10558                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10559                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10560                                                        tcp_flags),
10561                                       si->dst_reg, si->dst_reg, off);
10562                 break;
10563         }
10564         return insn - insn_buf;
10565 }
10566
10567 /* data_end = skb->data + skb_headlen() */
10568 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10569                                                     struct bpf_insn *insn)
10570 {
10571         int reg;
10572         int temp_reg_off = offsetof(struct sk_buff, cb) +
10573                            offsetof(struct sk_skb_cb, temp_reg);
10574
10575         if (si->src_reg == si->dst_reg) {
10576                 /* We need an extra register, choose and save a register. */
10577                 reg = BPF_REG_9;
10578                 if (si->src_reg == reg || si->dst_reg == reg)
10579                         reg--;
10580                 if (si->src_reg == reg || si->dst_reg == reg)
10581                         reg--;
10582                 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10583         } else {
10584                 reg = si->dst_reg;
10585         }
10586
10587         /* reg = skb->data */
10588         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10589                               reg, si->src_reg,
10590                               offsetof(struct sk_buff, data));
10591         /* AX = skb->len */
10592         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10593                               BPF_REG_AX, si->src_reg,
10594                               offsetof(struct sk_buff, len));
10595         /* reg = skb->data + skb->len */
10596         *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10597         /* AX = skb->data_len */
10598         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10599                               BPF_REG_AX, si->src_reg,
10600                               offsetof(struct sk_buff, data_len));
10601
10602         /* reg = skb->data + skb->len - skb->data_len */
10603         *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10604
10605         if (si->src_reg == si->dst_reg) {
10606                 /* Restore the saved register */
10607                 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10608                 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10609                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10610         }
10611
10612         return insn;
10613 }
10614
10615 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10616                                      const struct bpf_insn *si,
10617                                      struct bpf_insn *insn_buf,
10618                                      struct bpf_prog *prog, u32 *target_size)
10619 {
10620         struct bpf_insn *insn = insn_buf;
10621         int off;
10622
10623         switch (si->off) {
10624         case offsetof(struct __sk_buff, data_end):
10625                 insn = bpf_convert_data_end_access(si, insn);
10626                 break;
10627         case offsetof(struct __sk_buff, cb[0]) ...
10628              offsetofend(struct __sk_buff, cb[4]) - 1:
10629                 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10630                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10631                               offsetof(struct sk_skb_cb, data)) %
10632                              sizeof(__u64));
10633
10634                 prog->cb_access = 1;
10635                 off  = si->off;
10636                 off -= offsetof(struct __sk_buff, cb[0]);
10637                 off += offsetof(struct sk_buff, cb);
10638                 off += offsetof(struct sk_skb_cb, data);
10639                 if (type == BPF_WRITE)
10640                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10641                                               si->src_reg, off);
10642                 else
10643                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10644                                               si->src_reg, off);
10645                 break;
10646
10647
10648         default:
10649                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10650                                               target_size);
10651         }
10652
10653         return insn - insn_buf;
10654 }
10655
10656 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10657                                      const struct bpf_insn *si,
10658                                      struct bpf_insn *insn_buf,
10659                                      struct bpf_prog *prog, u32 *target_size)
10660 {
10661         struct bpf_insn *insn = insn_buf;
10662 #if IS_ENABLED(CONFIG_IPV6)
10663         int off;
10664 #endif
10665
10666         /* convert ctx uses the fact sg element is first in struct */
10667         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10668
10669         switch (si->off) {
10670         case offsetof(struct sk_msg_md, data):
10671                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10672                                       si->dst_reg, si->src_reg,
10673                                       offsetof(struct sk_msg, data));
10674                 break;
10675         case offsetof(struct sk_msg_md, data_end):
10676                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10677                                       si->dst_reg, si->src_reg,
10678                                       offsetof(struct sk_msg, data_end));
10679                 break;
10680         case offsetof(struct sk_msg_md, family):
10681                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10682
10683                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10684                                               struct sk_msg, sk),
10685                                       si->dst_reg, si->src_reg,
10686                                       offsetof(struct sk_msg, sk));
10687                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10688                                       offsetof(struct sock_common, skc_family));
10689                 break;
10690
10691         case offsetof(struct sk_msg_md, remote_ip4):
10692                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10693
10694                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10695                                                 struct sk_msg, sk),
10696                                       si->dst_reg, si->src_reg,
10697                                       offsetof(struct sk_msg, sk));
10698                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10699                                       offsetof(struct sock_common, skc_daddr));
10700                 break;
10701
10702         case offsetof(struct sk_msg_md, local_ip4):
10703                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10704                                           skc_rcv_saddr) != 4);
10705
10706                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10707                                               struct sk_msg, sk),
10708                                       si->dst_reg, si->src_reg,
10709                                       offsetof(struct sk_msg, sk));
10710                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10711                                       offsetof(struct sock_common,
10712                                                skc_rcv_saddr));
10713                 break;
10714
10715         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10716              offsetof(struct sk_msg_md, remote_ip6[3]):
10717 #if IS_ENABLED(CONFIG_IPV6)
10718                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10719                                           skc_v6_daddr.s6_addr32[0]) != 4);
10720
10721                 off = si->off;
10722                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10723                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10724                                                 struct sk_msg, sk),
10725                                       si->dst_reg, si->src_reg,
10726                                       offsetof(struct sk_msg, sk));
10727                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10728                                       offsetof(struct sock_common,
10729                                                skc_v6_daddr.s6_addr32[0]) +
10730                                       off);
10731 #else
10732                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10733 #endif
10734                 break;
10735
10736         case offsetof(struct sk_msg_md, local_ip6[0]) ...
10737              offsetof(struct sk_msg_md, local_ip6[3]):
10738 #if IS_ENABLED(CONFIG_IPV6)
10739                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10740                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10741
10742                 off = si->off;
10743                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
10744                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10745                                                 struct sk_msg, sk),
10746                                       si->dst_reg, si->src_reg,
10747                                       offsetof(struct sk_msg, sk));
10748                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10749                                       offsetof(struct sock_common,
10750                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10751                                       off);
10752 #else
10753                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10754 #endif
10755                 break;
10756
10757         case offsetof(struct sk_msg_md, remote_port):
10758                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10759
10760                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10761                                                 struct sk_msg, sk),
10762                                       si->dst_reg, si->src_reg,
10763                                       offsetof(struct sk_msg, sk));
10764                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10765                                       offsetof(struct sock_common, skc_dport));
10766 #ifndef __BIG_ENDIAN_BITFIELD
10767                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10768 #endif
10769                 break;
10770
10771         case offsetof(struct sk_msg_md, local_port):
10772                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10773
10774                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10775                                                 struct sk_msg, sk),
10776                                       si->dst_reg, si->src_reg,
10777                                       offsetof(struct sk_msg, sk));
10778                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10779                                       offsetof(struct sock_common, skc_num));
10780                 break;
10781
10782         case offsetof(struct sk_msg_md, size):
10783                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10784                                       si->dst_reg, si->src_reg,
10785                                       offsetof(struct sk_msg_sg, size));
10786                 break;
10787
10788         case offsetof(struct sk_msg_md, sk):
10789                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10790                                       si->dst_reg, si->src_reg,
10791                                       offsetof(struct sk_msg, sk));
10792                 break;
10793         }
10794
10795         return insn - insn_buf;
10796 }
10797
10798 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10799         .get_func_proto         = sk_filter_func_proto,
10800         .is_valid_access        = sk_filter_is_valid_access,
10801         .convert_ctx_access     = bpf_convert_ctx_access,
10802         .gen_ld_abs             = bpf_gen_ld_abs,
10803 };
10804
10805 const struct bpf_prog_ops sk_filter_prog_ops = {
10806         .test_run               = bpf_prog_test_run_skb,
10807 };
10808
10809 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10810         .get_func_proto         = tc_cls_act_func_proto,
10811         .is_valid_access        = tc_cls_act_is_valid_access,
10812         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
10813         .gen_prologue           = tc_cls_act_prologue,
10814         .gen_ld_abs             = bpf_gen_ld_abs,
10815         .btf_struct_access      = tc_cls_act_btf_struct_access,
10816 };
10817
10818 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10819         .test_run               = bpf_prog_test_run_skb,
10820 };
10821
10822 const struct bpf_verifier_ops xdp_verifier_ops = {
10823         .get_func_proto         = xdp_func_proto,
10824         .is_valid_access        = xdp_is_valid_access,
10825         .convert_ctx_access     = xdp_convert_ctx_access,
10826         .gen_prologue           = bpf_noop_prologue,
10827         .btf_struct_access      = xdp_btf_struct_access,
10828 };
10829
10830 const struct bpf_prog_ops xdp_prog_ops = {
10831         .test_run               = bpf_prog_test_run_xdp,
10832 };
10833
10834 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10835         .get_func_proto         = cg_skb_func_proto,
10836         .is_valid_access        = cg_skb_is_valid_access,
10837         .convert_ctx_access     = bpf_convert_ctx_access,
10838 };
10839
10840 const struct bpf_prog_ops cg_skb_prog_ops = {
10841         .test_run               = bpf_prog_test_run_skb,
10842 };
10843
10844 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10845         .get_func_proto         = lwt_in_func_proto,
10846         .is_valid_access        = lwt_is_valid_access,
10847         .convert_ctx_access     = bpf_convert_ctx_access,
10848 };
10849
10850 const struct bpf_prog_ops lwt_in_prog_ops = {
10851         .test_run               = bpf_prog_test_run_skb,
10852 };
10853
10854 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10855         .get_func_proto         = lwt_out_func_proto,
10856         .is_valid_access        = lwt_is_valid_access,
10857         .convert_ctx_access     = bpf_convert_ctx_access,
10858 };
10859
10860 const struct bpf_prog_ops lwt_out_prog_ops = {
10861         .test_run               = bpf_prog_test_run_skb,
10862 };
10863
10864 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10865         .get_func_proto         = lwt_xmit_func_proto,
10866         .is_valid_access        = lwt_is_valid_access,
10867         .convert_ctx_access     = bpf_convert_ctx_access,
10868         .gen_prologue           = tc_cls_act_prologue,
10869 };
10870
10871 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10872         .test_run               = bpf_prog_test_run_skb,
10873 };
10874
10875 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10876         .get_func_proto         = lwt_seg6local_func_proto,
10877         .is_valid_access        = lwt_is_valid_access,
10878         .convert_ctx_access     = bpf_convert_ctx_access,
10879 };
10880
10881 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10882         .test_run               = bpf_prog_test_run_skb,
10883 };
10884
10885 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10886         .get_func_proto         = sock_filter_func_proto,
10887         .is_valid_access        = sock_filter_is_valid_access,
10888         .convert_ctx_access     = bpf_sock_convert_ctx_access,
10889 };
10890
10891 const struct bpf_prog_ops cg_sock_prog_ops = {
10892 };
10893
10894 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10895         .get_func_proto         = sock_addr_func_proto,
10896         .is_valid_access        = sock_addr_is_valid_access,
10897         .convert_ctx_access     = sock_addr_convert_ctx_access,
10898 };
10899
10900 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10901 };
10902
10903 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10904         .get_func_proto         = sock_ops_func_proto,
10905         .is_valid_access        = sock_ops_is_valid_access,
10906         .convert_ctx_access     = sock_ops_convert_ctx_access,
10907 };
10908
10909 const struct bpf_prog_ops sock_ops_prog_ops = {
10910 };
10911
10912 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10913         .get_func_proto         = sk_skb_func_proto,
10914         .is_valid_access        = sk_skb_is_valid_access,
10915         .convert_ctx_access     = sk_skb_convert_ctx_access,
10916         .gen_prologue           = sk_skb_prologue,
10917 };
10918
10919 const struct bpf_prog_ops sk_skb_prog_ops = {
10920 };
10921
10922 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10923         .get_func_proto         = sk_msg_func_proto,
10924         .is_valid_access        = sk_msg_is_valid_access,
10925         .convert_ctx_access     = sk_msg_convert_ctx_access,
10926         .gen_prologue           = bpf_noop_prologue,
10927 };
10928
10929 const struct bpf_prog_ops sk_msg_prog_ops = {
10930 };
10931
10932 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10933         .get_func_proto         = flow_dissector_func_proto,
10934         .is_valid_access        = flow_dissector_is_valid_access,
10935         .convert_ctx_access     = flow_dissector_convert_ctx_access,
10936 };
10937
10938 const struct bpf_prog_ops flow_dissector_prog_ops = {
10939         .test_run               = bpf_prog_test_run_flow_dissector,
10940 };
10941
10942 int sk_detach_filter(struct sock *sk)
10943 {
10944         int ret = -ENOENT;
10945         struct sk_filter *filter;
10946
10947         if (sock_flag(sk, SOCK_FILTER_LOCKED))
10948                 return -EPERM;
10949
10950         filter = rcu_dereference_protected(sk->sk_filter,
10951                                            lockdep_sock_is_held(sk));
10952         if (filter) {
10953                 RCU_INIT_POINTER(sk->sk_filter, NULL);
10954                 sk_filter_uncharge(sk, filter);
10955                 ret = 0;
10956         }
10957
10958         return ret;
10959 }
10960 EXPORT_SYMBOL_GPL(sk_detach_filter);
10961
10962 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
10963 {
10964         struct sock_fprog_kern *fprog;
10965         struct sk_filter *filter;
10966         int ret = 0;
10967
10968         sockopt_lock_sock(sk);
10969         filter = rcu_dereference_protected(sk->sk_filter,
10970                                            lockdep_sock_is_held(sk));
10971         if (!filter)
10972                 goto out;
10973
10974         /* We're copying the filter that has been originally attached,
10975          * so no conversion/decode needed anymore. eBPF programs that
10976          * have no original program cannot be dumped through this.
10977          */
10978         ret = -EACCES;
10979         fprog = filter->prog->orig_prog;
10980         if (!fprog)
10981                 goto out;
10982
10983         ret = fprog->len;
10984         if (!len)
10985                 /* User space only enquires number of filter blocks. */
10986                 goto out;
10987
10988         ret = -EINVAL;
10989         if (len < fprog->len)
10990                 goto out;
10991
10992         ret = -EFAULT;
10993         if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
10994                 goto out;
10995
10996         /* Instead of bytes, the API requests to return the number
10997          * of filter blocks.
10998          */
10999         ret = fprog->len;
11000 out:
11001         sockopt_release_sock(sk);
11002         return ret;
11003 }
11004
11005 #ifdef CONFIG_INET
11006 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11007                                     struct sock_reuseport *reuse,
11008                                     struct sock *sk, struct sk_buff *skb,
11009                                     struct sock *migrating_sk,
11010                                     u32 hash)
11011 {
11012         reuse_kern->skb = skb;
11013         reuse_kern->sk = sk;
11014         reuse_kern->selected_sk = NULL;
11015         reuse_kern->migrating_sk = migrating_sk;
11016         reuse_kern->data_end = skb->data + skb_headlen(skb);
11017         reuse_kern->hash = hash;
11018         reuse_kern->reuseport_id = reuse->reuseport_id;
11019         reuse_kern->bind_inany = reuse->bind_inany;
11020 }
11021
11022 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11023                                   struct bpf_prog *prog, struct sk_buff *skb,
11024                                   struct sock *migrating_sk,
11025                                   u32 hash)
11026 {
11027         struct sk_reuseport_kern reuse_kern;
11028         enum sk_action action;
11029
11030         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11031         action = bpf_prog_run(prog, &reuse_kern);
11032
11033         if (action == SK_PASS)
11034                 return reuse_kern.selected_sk;
11035         else
11036                 return ERR_PTR(-ECONNREFUSED);
11037 }
11038
11039 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11040            struct bpf_map *, map, void *, key, u32, flags)
11041 {
11042         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11043         struct sock_reuseport *reuse;
11044         struct sock *selected_sk;
11045
11046         selected_sk = map->ops->map_lookup_elem(map, key);
11047         if (!selected_sk)
11048                 return -ENOENT;
11049
11050         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11051         if (!reuse) {
11052                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11053                 if (sk_is_refcounted(selected_sk))
11054                         sock_put(selected_sk);
11055
11056                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
11057                  * The only (!reuse) case here is - the sk has already been
11058                  * unhashed (e.g. by close()), so treat it as -ENOENT.
11059                  *
11060                  * Other maps (e.g. sock_map) do not provide this guarantee and
11061                  * the sk may never be in the reuseport group to begin with.
11062                  */
11063                 return is_sockarray ? -ENOENT : -EINVAL;
11064         }
11065
11066         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11067                 struct sock *sk = reuse_kern->sk;
11068
11069                 if (sk->sk_protocol != selected_sk->sk_protocol)
11070                         return -EPROTOTYPE;
11071                 else if (sk->sk_family != selected_sk->sk_family)
11072                         return -EAFNOSUPPORT;
11073
11074                 /* Catch all. Likely bound to a different sockaddr. */
11075                 return -EBADFD;
11076         }
11077
11078         reuse_kern->selected_sk = selected_sk;
11079
11080         return 0;
11081 }
11082
11083 static const struct bpf_func_proto sk_select_reuseport_proto = {
11084         .func           = sk_select_reuseport,
11085         .gpl_only       = false,
11086         .ret_type       = RET_INTEGER,
11087         .arg1_type      = ARG_PTR_TO_CTX,
11088         .arg2_type      = ARG_CONST_MAP_PTR,
11089         .arg3_type      = ARG_PTR_TO_MAP_KEY,
11090         .arg4_type      = ARG_ANYTHING,
11091 };
11092
11093 BPF_CALL_4(sk_reuseport_load_bytes,
11094            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11095            void *, to, u32, len)
11096 {
11097         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11098 }
11099
11100 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11101         .func           = sk_reuseport_load_bytes,
11102         .gpl_only       = false,
11103         .ret_type       = RET_INTEGER,
11104         .arg1_type      = ARG_PTR_TO_CTX,
11105         .arg2_type      = ARG_ANYTHING,
11106         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
11107         .arg4_type      = ARG_CONST_SIZE,
11108 };
11109
11110 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11111            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11112            void *, to, u32, len, u32, start_header)
11113 {
11114         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11115                                                len, start_header);
11116 }
11117
11118 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11119         .func           = sk_reuseport_load_bytes_relative,
11120         .gpl_only       = false,
11121         .ret_type       = RET_INTEGER,
11122         .arg1_type      = ARG_PTR_TO_CTX,
11123         .arg2_type      = ARG_ANYTHING,
11124         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
11125         .arg4_type      = ARG_CONST_SIZE,
11126         .arg5_type      = ARG_ANYTHING,
11127 };
11128
11129 static const struct bpf_func_proto *
11130 sk_reuseport_func_proto(enum bpf_func_id func_id,
11131                         const struct bpf_prog *prog)
11132 {
11133         switch (func_id) {
11134         case BPF_FUNC_sk_select_reuseport:
11135                 return &sk_select_reuseport_proto;
11136         case BPF_FUNC_skb_load_bytes:
11137                 return &sk_reuseport_load_bytes_proto;
11138         case BPF_FUNC_skb_load_bytes_relative:
11139                 return &sk_reuseport_load_bytes_relative_proto;
11140         case BPF_FUNC_get_socket_cookie:
11141                 return &bpf_get_socket_ptr_cookie_proto;
11142         case BPF_FUNC_ktime_get_coarse_ns:
11143                 return &bpf_ktime_get_coarse_ns_proto;
11144         default:
11145                 return bpf_base_func_proto(func_id);
11146         }
11147 }
11148
11149 static bool
11150 sk_reuseport_is_valid_access(int off, int size,
11151                              enum bpf_access_type type,
11152                              const struct bpf_prog *prog,
11153                              struct bpf_insn_access_aux *info)
11154 {
11155         const u32 size_default = sizeof(__u32);
11156
11157         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11158             off % size || type != BPF_READ)
11159                 return false;
11160
11161         switch (off) {
11162         case offsetof(struct sk_reuseport_md, data):
11163                 info->reg_type = PTR_TO_PACKET;
11164                 return size == sizeof(__u64);
11165
11166         case offsetof(struct sk_reuseport_md, data_end):
11167                 info->reg_type = PTR_TO_PACKET_END;
11168                 return size == sizeof(__u64);
11169
11170         case offsetof(struct sk_reuseport_md, hash):
11171                 return size == size_default;
11172
11173         case offsetof(struct sk_reuseport_md, sk):
11174                 info->reg_type = PTR_TO_SOCKET;
11175                 return size == sizeof(__u64);
11176
11177         case offsetof(struct sk_reuseport_md, migrating_sk):
11178                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11179                 return size == sizeof(__u64);
11180
11181         /* Fields that allow narrowing */
11182         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11183                 if (size < sizeof_field(struct sk_buff, protocol))
11184                         return false;
11185                 fallthrough;
11186         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11187         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11188         case bpf_ctx_range(struct sk_reuseport_md, len):
11189                 bpf_ctx_record_field_size(info, size_default);
11190                 return bpf_ctx_narrow_access_ok(off, size, size_default);
11191
11192         default:
11193                 return false;
11194         }
11195 }
11196
11197 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
11198         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11199                               si->dst_reg, si->src_reg,                 \
11200                               bpf_target_off(struct sk_reuseport_kern, F, \
11201                                              sizeof_field(struct sk_reuseport_kern, F), \
11202                                              target_size));             \
11203         })
11204
11205 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
11206         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
11207                                     struct sk_buff,                     \
11208                                     skb,                                \
11209                                     SKB_FIELD)
11210
11211 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
11212         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
11213                                     struct sock,                        \
11214                                     sk,                                 \
11215                                     SK_FIELD)
11216
11217 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11218                                            const struct bpf_insn *si,
11219                                            struct bpf_insn *insn_buf,
11220                                            struct bpf_prog *prog,
11221                                            u32 *target_size)
11222 {
11223         struct bpf_insn *insn = insn_buf;
11224
11225         switch (si->off) {
11226         case offsetof(struct sk_reuseport_md, data):
11227                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11228                 break;
11229
11230         case offsetof(struct sk_reuseport_md, len):
11231                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11232                 break;
11233
11234         case offsetof(struct sk_reuseport_md, eth_protocol):
11235                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11236                 break;
11237
11238         case offsetof(struct sk_reuseport_md, ip_protocol):
11239                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11240                 break;
11241
11242         case offsetof(struct sk_reuseport_md, data_end):
11243                 SK_REUSEPORT_LOAD_FIELD(data_end);
11244                 break;
11245
11246         case offsetof(struct sk_reuseport_md, hash):
11247                 SK_REUSEPORT_LOAD_FIELD(hash);
11248                 break;
11249
11250         case offsetof(struct sk_reuseport_md, bind_inany):
11251                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11252                 break;
11253
11254         case offsetof(struct sk_reuseport_md, sk):
11255                 SK_REUSEPORT_LOAD_FIELD(sk);
11256                 break;
11257
11258         case offsetof(struct sk_reuseport_md, migrating_sk):
11259                 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11260                 break;
11261         }
11262
11263         return insn - insn_buf;
11264 }
11265
11266 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11267         .get_func_proto         = sk_reuseport_func_proto,
11268         .is_valid_access        = sk_reuseport_is_valid_access,
11269         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
11270 };
11271
11272 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11273 };
11274
11275 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11276 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11277
11278 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11279            struct sock *, sk, u64, flags)
11280 {
11281         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11282                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11283                 return -EINVAL;
11284         if (unlikely(sk && sk_is_refcounted(sk)))
11285                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11286         if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11287                 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11288         if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11289                 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11290
11291         /* Check if socket is suitable for packet L3/L4 protocol */
11292         if (sk && sk->sk_protocol != ctx->protocol)
11293                 return -EPROTOTYPE;
11294         if (sk && sk->sk_family != ctx->family &&
11295             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11296                 return -EAFNOSUPPORT;
11297
11298         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11299                 return -EEXIST;
11300
11301         /* Select socket as lookup result */
11302         ctx->selected_sk = sk;
11303         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11304         return 0;
11305 }
11306
11307 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11308         .func           = bpf_sk_lookup_assign,
11309         .gpl_only       = false,
11310         .ret_type       = RET_INTEGER,
11311         .arg1_type      = ARG_PTR_TO_CTX,
11312         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
11313         .arg3_type      = ARG_ANYTHING,
11314 };
11315
11316 static const struct bpf_func_proto *
11317 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11318 {
11319         switch (func_id) {
11320         case BPF_FUNC_perf_event_output:
11321                 return &bpf_event_output_data_proto;
11322         case BPF_FUNC_sk_assign:
11323                 return &bpf_sk_lookup_assign_proto;
11324         case BPF_FUNC_sk_release:
11325                 return &bpf_sk_release_proto;
11326         default:
11327                 return bpf_sk_base_func_proto(func_id);
11328         }
11329 }
11330
11331 static bool sk_lookup_is_valid_access(int off, int size,
11332                                       enum bpf_access_type type,
11333                                       const struct bpf_prog *prog,
11334                                       struct bpf_insn_access_aux *info)
11335 {
11336         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11337                 return false;
11338         if (off % size != 0)
11339                 return false;
11340         if (type != BPF_READ)
11341                 return false;
11342
11343         switch (off) {
11344         case offsetof(struct bpf_sk_lookup, sk):
11345                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11346                 return size == sizeof(__u64);
11347
11348         case bpf_ctx_range(struct bpf_sk_lookup, family):
11349         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11350         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11351         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11352         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11353         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11354         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11355         case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11356                 bpf_ctx_record_field_size(info, sizeof(__u32));
11357                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11358
11359         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11360                 /* Allow 4-byte access to 2-byte field for backward compatibility */
11361                 if (size == sizeof(__u32))
11362                         return true;
11363                 bpf_ctx_record_field_size(info, sizeof(__be16));
11364                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11365
11366         case offsetofend(struct bpf_sk_lookup, remote_port) ...
11367              offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11368                 /* Allow access to zero padding for backward compatibility */
11369                 bpf_ctx_record_field_size(info, sizeof(__u16));
11370                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11371
11372         default:
11373                 return false;
11374         }
11375 }
11376
11377 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11378                                         const struct bpf_insn *si,
11379                                         struct bpf_insn *insn_buf,
11380                                         struct bpf_prog *prog,
11381                                         u32 *target_size)
11382 {
11383         struct bpf_insn *insn = insn_buf;
11384
11385         switch (si->off) {
11386         case offsetof(struct bpf_sk_lookup, sk):
11387                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11388                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
11389                 break;
11390
11391         case offsetof(struct bpf_sk_lookup, family):
11392                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11393                                       bpf_target_off(struct bpf_sk_lookup_kern,
11394                                                      family, 2, target_size));
11395                 break;
11396
11397         case offsetof(struct bpf_sk_lookup, protocol):
11398                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11399                                       bpf_target_off(struct bpf_sk_lookup_kern,
11400                                                      protocol, 2, target_size));
11401                 break;
11402
11403         case offsetof(struct bpf_sk_lookup, remote_ip4):
11404                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11405                                       bpf_target_off(struct bpf_sk_lookup_kern,
11406                                                      v4.saddr, 4, target_size));
11407                 break;
11408
11409         case offsetof(struct bpf_sk_lookup, local_ip4):
11410                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11411                                       bpf_target_off(struct bpf_sk_lookup_kern,
11412                                                      v4.daddr, 4, target_size));
11413                 break;
11414
11415         case bpf_ctx_range_till(struct bpf_sk_lookup,
11416                                 remote_ip6[0], remote_ip6[3]): {
11417 #if IS_ENABLED(CONFIG_IPV6)
11418                 int off = si->off;
11419
11420                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11421                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11422                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11423                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11424                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11425                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11426 #else
11427                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11428 #endif
11429                 break;
11430         }
11431         case bpf_ctx_range_till(struct bpf_sk_lookup,
11432                                 local_ip6[0], local_ip6[3]): {
11433 #if IS_ENABLED(CONFIG_IPV6)
11434                 int off = si->off;
11435
11436                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11437                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11438                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11439                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11440                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11441                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11442 #else
11443                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11444 #endif
11445                 break;
11446         }
11447         case offsetof(struct bpf_sk_lookup, remote_port):
11448                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11449                                       bpf_target_off(struct bpf_sk_lookup_kern,
11450                                                      sport, 2, target_size));
11451                 break;
11452
11453         case offsetofend(struct bpf_sk_lookup, remote_port):
11454                 *target_size = 2;
11455                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11456                 break;
11457
11458         case offsetof(struct bpf_sk_lookup, local_port):
11459                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11460                                       bpf_target_off(struct bpf_sk_lookup_kern,
11461                                                      dport, 2, target_size));
11462                 break;
11463
11464         case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11465                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11466                                       bpf_target_off(struct bpf_sk_lookup_kern,
11467                                                      ingress_ifindex, 4, target_size));
11468                 break;
11469         }
11470
11471         return insn - insn_buf;
11472 }
11473
11474 const struct bpf_prog_ops sk_lookup_prog_ops = {
11475         .test_run = bpf_prog_test_run_sk_lookup,
11476 };
11477
11478 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11479         .get_func_proto         = sk_lookup_func_proto,
11480         .is_valid_access        = sk_lookup_is_valid_access,
11481         .convert_ctx_access     = sk_lookup_convert_ctx_access,
11482 };
11483
11484 #endif /* CONFIG_INET */
11485
11486 DEFINE_BPF_DISPATCHER(xdp)
11487
11488 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11489 {
11490         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11491 }
11492
11493 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11494 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11495 BTF_SOCK_TYPE_xxx
11496 #undef BTF_SOCK_TYPE
11497
11498 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11499 {
11500         /* tcp6_sock type is not generated in dwarf and hence btf,
11501          * trigger an explicit type generation here.
11502          */
11503         BTF_TYPE_EMIT(struct tcp6_sock);
11504         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11505             sk->sk_family == AF_INET6)
11506                 return (unsigned long)sk;
11507
11508         return (unsigned long)NULL;
11509 }
11510
11511 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11512         .func                   = bpf_skc_to_tcp6_sock,
11513         .gpl_only               = false,
11514         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11515         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11516         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11517 };
11518
11519 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11520 {
11521         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11522                 return (unsigned long)sk;
11523
11524         return (unsigned long)NULL;
11525 }
11526
11527 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11528         .func                   = bpf_skc_to_tcp_sock,
11529         .gpl_only               = false,
11530         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11531         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11532         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11533 };
11534
11535 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11536 {
11537         /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11538          * generated if CONFIG_INET=n. Trigger an explicit generation here.
11539          */
11540         BTF_TYPE_EMIT(struct inet_timewait_sock);
11541         BTF_TYPE_EMIT(struct tcp_timewait_sock);
11542
11543 #ifdef CONFIG_INET
11544         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11545                 return (unsigned long)sk;
11546 #endif
11547
11548 #if IS_BUILTIN(CONFIG_IPV6)
11549         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11550                 return (unsigned long)sk;
11551 #endif
11552
11553         return (unsigned long)NULL;
11554 }
11555
11556 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11557         .func                   = bpf_skc_to_tcp_timewait_sock,
11558         .gpl_only               = false,
11559         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11560         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11561         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11562 };
11563
11564 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11565 {
11566 #ifdef CONFIG_INET
11567         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11568                 return (unsigned long)sk;
11569 #endif
11570
11571 #if IS_BUILTIN(CONFIG_IPV6)
11572         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11573                 return (unsigned long)sk;
11574 #endif
11575
11576         return (unsigned long)NULL;
11577 }
11578
11579 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11580         .func                   = bpf_skc_to_tcp_request_sock,
11581         .gpl_only               = false,
11582         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11583         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11584         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11585 };
11586
11587 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11588 {
11589         /* udp6_sock type is not generated in dwarf and hence btf,
11590          * trigger an explicit type generation here.
11591          */
11592         BTF_TYPE_EMIT(struct udp6_sock);
11593         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11594             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11595                 return (unsigned long)sk;
11596
11597         return (unsigned long)NULL;
11598 }
11599
11600 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11601         .func                   = bpf_skc_to_udp6_sock,
11602         .gpl_only               = false,
11603         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11604         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11605         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11606 };
11607
11608 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11609 {
11610         /* unix_sock type is not generated in dwarf and hence btf,
11611          * trigger an explicit type generation here.
11612          */
11613         BTF_TYPE_EMIT(struct unix_sock);
11614         if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11615                 return (unsigned long)sk;
11616
11617         return (unsigned long)NULL;
11618 }
11619
11620 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11621         .func                   = bpf_skc_to_unix_sock,
11622         .gpl_only               = false,
11623         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11624         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11625         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11626 };
11627
11628 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11629 {
11630         BTF_TYPE_EMIT(struct mptcp_sock);
11631         return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11632 }
11633
11634 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11635         .func           = bpf_skc_to_mptcp_sock,
11636         .gpl_only       = false,
11637         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11638         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
11639         .ret_btf_id     = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11640 };
11641
11642 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11643 {
11644         return (unsigned long)sock_from_file(file);
11645 }
11646
11647 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11648 BTF_ID(struct, socket)
11649 BTF_ID(struct, file)
11650
11651 const struct bpf_func_proto bpf_sock_from_file_proto = {
11652         .func           = bpf_sock_from_file,
11653         .gpl_only       = false,
11654         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11655         .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
11656         .arg1_type      = ARG_PTR_TO_BTF_ID,
11657         .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
11658 };
11659
11660 static const struct bpf_func_proto *
11661 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11662 {
11663         const struct bpf_func_proto *func;
11664
11665         switch (func_id) {
11666         case BPF_FUNC_skc_to_tcp6_sock:
11667                 func = &bpf_skc_to_tcp6_sock_proto;
11668                 break;
11669         case BPF_FUNC_skc_to_tcp_sock:
11670                 func = &bpf_skc_to_tcp_sock_proto;
11671                 break;
11672         case BPF_FUNC_skc_to_tcp_timewait_sock:
11673                 func = &bpf_skc_to_tcp_timewait_sock_proto;
11674                 break;
11675         case BPF_FUNC_skc_to_tcp_request_sock:
11676                 func = &bpf_skc_to_tcp_request_sock_proto;
11677                 break;
11678         case BPF_FUNC_skc_to_udp6_sock:
11679                 func = &bpf_skc_to_udp6_sock_proto;
11680                 break;
11681         case BPF_FUNC_skc_to_unix_sock:
11682                 func = &bpf_skc_to_unix_sock_proto;
11683                 break;
11684         case BPF_FUNC_skc_to_mptcp_sock:
11685                 func = &bpf_skc_to_mptcp_sock_proto;
11686                 break;
11687         case BPF_FUNC_ktime_get_coarse_ns:
11688                 return &bpf_ktime_get_coarse_ns_proto;
11689         default:
11690                 return bpf_base_func_proto(func_id);
11691         }
11692
11693         if (!perfmon_capable())
11694                 return NULL;
11695
11696         return func;
11697 }