Mention branches and keyring.
[releases.git] / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156
157 #include "dev.h"
158 #include "net-sysfs.h"
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static DECLARE_RWSEM(devnet_rename_sem);
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock_irqsave(struct softnet_data *sd,
220                                     unsigned long *flags)
221 {
222         if (IS_ENABLED(CONFIG_RPS))
223                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
224         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
225                 local_irq_save(*flags);
226 }
227
228 static inline void rps_lock_irq_disable(struct softnet_data *sd)
229 {
230         if (IS_ENABLED(CONFIG_RPS))
231                 spin_lock_irq(&sd->input_pkt_queue.lock);
232         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
233                 local_irq_disable();
234 }
235
236 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
237                                           unsigned long *flags)
238 {
239         if (IS_ENABLED(CONFIG_RPS))
240                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
241         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242                 local_irq_restore(*flags);
243 }
244
245 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
246 {
247         if (IS_ENABLED(CONFIG_RPS))
248                 spin_unlock_irq(&sd->input_pkt_queue.lock);
249         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250                 local_irq_enable();
251 }
252
253 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
254                                                        const char *name)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
259         if (!name_node)
260                 return NULL;
261         INIT_HLIST_NODE(&name_node->hlist);
262         name_node->dev = dev;
263         name_node->name = name;
264         return name_node;
265 }
266
267 static struct netdev_name_node *
268 netdev_name_node_head_alloc(struct net_device *dev)
269 {
270         struct netdev_name_node *name_node;
271
272         name_node = netdev_name_node_alloc(dev, dev->name);
273         if (!name_node)
274                 return NULL;
275         INIT_LIST_HEAD(&name_node->list);
276         return name_node;
277 }
278
279 static void netdev_name_node_free(struct netdev_name_node *name_node)
280 {
281         kfree(name_node);
282 }
283
284 static void netdev_name_node_add(struct net *net,
285                                  struct netdev_name_node *name_node)
286 {
287         hlist_add_head_rcu(&name_node->hlist,
288                            dev_name_hash(net, name_node->name));
289 }
290
291 static void netdev_name_node_del(struct netdev_name_node *name_node)
292 {
293         hlist_del_rcu(&name_node->hlist);
294 }
295
296 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
297                                                         const char *name)
298 {
299         struct hlist_head *head = dev_name_hash(net, name);
300         struct netdev_name_node *name_node;
301
302         hlist_for_each_entry(name_node, head, hlist)
303                 if (!strcmp(name_node->name, name))
304                         return name_node;
305         return NULL;
306 }
307
308 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
309                                                             const char *name)
310 {
311         struct hlist_head *head = dev_name_hash(net, name);
312         struct netdev_name_node *name_node;
313
314         hlist_for_each_entry_rcu(name_node, head, hlist)
315                 if (!strcmp(name_node->name, name))
316                         return name_node;
317         return NULL;
318 }
319
320 bool netdev_name_in_use(struct net *net, const char *name)
321 {
322         return netdev_name_node_lookup(net, name);
323 }
324 EXPORT_SYMBOL(netdev_name_in_use);
325
326 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
327 {
328         struct netdev_name_node *name_node;
329         struct net *net = dev_net(dev);
330
331         name_node = netdev_name_node_lookup(net, name);
332         if (name_node)
333                 return -EEXIST;
334         name_node = netdev_name_node_alloc(dev, name);
335         if (!name_node)
336                 return -ENOMEM;
337         netdev_name_node_add(net, name_node);
338         /* The node that holds dev->name acts as a head of per-device list. */
339         list_add_tail_rcu(&name_node->list, &dev->name_node->list);
340
341         return 0;
342 }
343
344 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
345 {
346         list_del(&name_node->list);
347         kfree(name_node->name);
348         netdev_name_node_free(name_node);
349 }
350
351 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
352 {
353         struct netdev_name_node *name_node;
354         struct net *net = dev_net(dev);
355
356         name_node = netdev_name_node_lookup(net, name);
357         if (!name_node)
358                 return -ENOENT;
359         /* lookup might have found our primary name or a name belonging
360          * to another device.
361          */
362         if (name_node == dev->name_node || name_node->dev != dev)
363                 return -EINVAL;
364
365         netdev_name_node_del(name_node);
366         synchronize_rcu();
367         __netdev_name_node_alt_destroy(name_node);
368
369         return 0;
370 }
371
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374         struct netdev_name_node *name_node, *tmp;
375
376         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377                 __netdev_name_node_alt_destroy(name_node);
378 }
379
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383         struct netdev_name_node *name_node;
384         struct net *net = dev_net(dev);
385
386         ASSERT_RTNL();
387
388         write_lock(&dev_base_lock);
389         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
390         netdev_name_node_add(net, dev->name_node);
391         hlist_add_head_rcu(&dev->index_hlist,
392                            dev_index_hash(net, dev->ifindex));
393         write_unlock(&dev_base_lock);
394
395         netdev_for_each_altname(dev, name_node)
396                 netdev_name_node_add(net, name_node);
397
398         /* We reserved the ifindex, this can't fail */
399         WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
400
401         dev_base_seq_inc(net);
402 }
403
404 /* Device list removal
405  * caller must respect a RCU grace period before freeing/reusing dev
406  */
407 static void unlist_netdevice(struct net_device *dev, bool lock)
408 {
409         struct netdev_name_node *name_node;
410         struct net *net = dev_net(dev);
411
412         ASSERT_RTNL();
413
414         xa_erase(&net->dev_by_index, dev->ifindex);
415
416         netdev_for_each_altname(dev, name_node)
417                 netdev_name_node_del(name_node);
418
419         /* Unlink dev from the device chain */
420         if (lock)
421                 write_lock(&dev_base_lock);
422         list_del_rcu(&dev->dev_list);
423         netdev_name_node_del(dev->name_node);
424         hlist_del_rcu(&dev->index_hlist);
425         if (lock)
426                 write_unlock(&dev_base_lock);
427
428         dev_base_seq_inc(dev_net(dev));
429 }
430
431 /*
432  *      Our notifier list
433  */
434
435 static RAW_NOTIFIER_HEAD(netdev_chain);
436
437 /*
438  *      Device drivers call our routines to queue packets here. We empty the
439  *      queue in the local softnet handler.
440  */
441
442 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
443 EXPORT_PER_CPU_SYMBOL(softnet_data);
444
445 #ifdef CONFIG_LOCKDEP
446 /*
447  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
448  * according to dev->type
449  */
450 static const unsigned short netdev_lock_type[] = {
451          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
452          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
453          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
454          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
455          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
456          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
457          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
458          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
459          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
460          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
461          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
462          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
463          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
464          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
465          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
466
467 static const char *const netdev_lock_name[] = {
468         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
469         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
470         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
471         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
472         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
473         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
474         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
475         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
476         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
477         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
478         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
479         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
480         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
481         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
482         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
483
484 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
485 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
486
487 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
488 {
489         int i;
490
491         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
492                 if (netdev_lock_type[i] == dev_type)
493                         return i;
494         /* the last key is used by default */
495         return ARRAY_SIZE(netdev_lock_type) - 1;
496 }
497
498 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
499                                                  unsigned short dev_type)
500 {
501         int i;
502
503         i = netdev_lock_pos(dev_type);
504         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
505                                    netdev_lock_name[i]);
506 }
507
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510         int i;
511
512         i = netdev_lock_pos(dev->type);
513         lockdep_set_class_and_name(&dev->addr_list_lock,
514                                    &netdev_addr_lock_key[i],
515                                    netdev_lock_name[i]);
516 }
517 #else
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519                                                  unsigned short dev_type)
520 {
521 }
522
523 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
524 {
525 }
526 #endif
527
528 /*******************************************************************************
529  *
530  *              Protocol management and registration routines
531  *
532  *******************************************************************************/
533
534
535 /*
536  *      Add a protocol ID to the list. Now that the input handler is
537  *      smarter we can dispense with all the messy stuff that used to be
538  *      here.
539  *
540  *      BEWARE!!! Protocol handlers, mangling input packets,
541  *      MUST BE last in hash buckets and checking protocol handlers
542  *      MUST start from promiscuous ptype_all chain in net_bh.
543  *      It is true now, do not change it.
544  *      Explanation follows: if protocol handler, mangling packet, will
545  *      be the first on list, it is not able to sense, that packet
546  *      is cloned and should be copied-on-write, so that it will
547  *      change it and subsequent readers will get broken packet.
548  *                                                      --ANK (980803)
549  */
550
551 static inline struct list_head *ptype_head(const struct packet_type *pt)
552 {
553         if (pt->type == htons(ETH_P_ALL))
554                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
555         else
556                 return pt->dev ? &pt->dev->ptype_specific :
557                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
558 }
559
560 /**
561  *      dev_add_pack - add packet handler
562  *      @pt: packet type declaration
563  *
564  *      Add a protocol handler to the networking stack. The passed &packet_type
565  *      is linked into kernel lists and may not be freed until it has been
566  *      removed from the kernel lists.
567  *
568  *      This call does not sleep therefore it can not
569  *      guarantee all CPU's that are in middle of receiving packets
570  *      will see the new packet type (until the next received packet).
571  */
572
573 void dev_add_pack(struct packet_type *pt)
574 {
575         struct list_head *head = ptype_head(pt);
576
577         spin_lock(&ptype_lock);
578         list_add_rcu(&pt->list, head);
579         spin_unlock(&ptype_lock);
580 }
581 EXPORT_SYMBOL(dev_add_pack);
582
583 /**
584  *      __dev_remove_pack        - remove packet handler
585  *      @pt: packet type declaration
586  *
587  *      Remove a protocol handler that was previously added to the kernel
588  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
589  *      from the kernel lists and can be freed or reused once this function
590  *      returns.
591  *
592  *      The packet type might still be in use by receivers
593  *      and must not be freed until after all the CPU's have gone
594  *      through a quiescent state.
595  */
596 void __dev_remove_pack(struct packet_type *pt)
597 {
598         struct list_head *head = ptype_head(pt);
599         struct packet_type *pt1;
600
601         spin_lock(&ptype_lock);
602
603         list_for_each_entry(pt1, head, list) {
604                 if (pt == pt1) {
605                         list_del_rcu(&pt->list);
606                         goto out;
607                 }
608         }
609
610         pr_warn("dev_remove_pack: %p not found\n", pt);
611 out:
612         spin_unlock(&ptype_lock);
613 }
614 EXPORT_SYMBOL(__dev_remove_pack);
615
616 /**
617  *      dev_remove_pack  - remove packet handler
618  *      @pt: packet type declaration
619  *
620  *      Remove a protocol handler that was previously added to the kernel
621  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
622  *      from the kernel lists and can be freed or reused once this function
623  *      returns.
624  *
625  *      This call sleeps to guarantee that no CPU is looking at the packet
626  *      type after return.
627  */
628 void dev_remove_pack(struct packet_type *pt)
629 {
630         __dev_remove_pack(pt);
631
632         synchronize_net();
633 }
634 EXPORT_SYMBOL(dev_remove_pack);
635
636
637 /*******************************************************************************
638  *
639  *                          Device Interface Subroutines
640  *
641  *******************************************************************************/
642
643 /**
644  *      dev_get_iflink  - get 'iflink' value of a interface
645  *      @dev: targeted interface
646  *
647  *      Indicates the ifindex the interface is linked to.
648  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
649  */
650
651 int dev_get_iflink(const struct net_device *dev)
652 {
653         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
654                 return dev->netdev_ops->ndo_get_iflink(dev);
655
656         return dev->ifindex;
657 }
658 EXPORT_SYMBOL(dev_get_iflink);
659
660 /**
661  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
662  *      @dev: targeted interface
663  *      @skb: The packet.
664  *
665  *      For better visibility of tunnel traffic OVS needs to retrieve
666  *      egress tunnel information for a packet. Following API allows
667  *      user to get this info.
668  */
669 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
670 {
671         struct ip_tunnel_info *info;
672
673         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
674                 return -EINVAL;
675
676         info = skb_tunnel_info_unclone(skb);
677         if (!info)
678                 return -ENOMEM;
679         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
680                 return -EINVAL;
681
682         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
683 }
684 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
685
686 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
687 {
688         int k = stack->num_paths++;
689
690         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
691                 return NULL;
692
693         return &stack->path[k];
694 }
695
696 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
697                           struct net_device_path_stack *stack)
698 {
699         const struct net_device *last_dev;
700         struct net_device_path_ctx ctx = {
701                 .dev    = dev,
702         };
703         struct net_device_path *path;
704         int ret = 0;
705
706         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
707         stack->num_paths = 0;
708         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
709                 last_dev = ctx.dev;
710                 path = dev_fwd_path(stack);
711                 if (!path)
712                         return -1;
713
714                 memset(path, 0, sizeof(struct net_device_path));
715                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
716                 if (ret < 0)
717                         return -1;
718
719                 if (WARN_ON_ONCE(last_dev == ctx.dev))
720                         return -1;
721         }
722
723         if (!ctx.dev)
724                 return ret;
725
726         path = dev_fwd_path(stack);
727         if (!path)
728                 return -1;
729         path->type = DEV_PATH_ETHERNET;
730         path->dev = ctx.dev;
731
732         return ret;
733 }
734 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
735
736 /**
737  *      __dev_get_by_name       - find a device by its name
738  *      @net: the applicable net namespace
739  *      @name: name to find
740  *
741  *      Find an interface by name. Must be called under RTNL semaphore
742  *      or @dev_base_lock. If the name is found a pointer to the device
743  *      is returned. If the name is not found then %NULL is returned. The
744  *      reference counters are not incremented so the caller must be
745  *      careful with locks.
746  */
747
748 struct net_device *__dev_get_by_name(struct net *net, const char *name)
749 {
750         struct netdev_name_node *node_name;
751
752         node_name = netdev_name_node_lookup(net, name);
753         return node_name ? node_name->dev : NULL;
754 }
755 EXPORT_SYMBOL(__dev_get_by_name);
756
757 /**
758  * dev_get_by_name_rcu  - find a device by its name
759  * @net: the applicable net namespace
760  * @name: name to find
761  *
762  * Find an interface by name.
763  * If the name is found a pointer to the device is returned.
764  * If the name is not found then %NULL is returned.
765  * The reference counters are not incremented so the caller must be
766  * careful with locks. The caller must hold RCU lock.
767  */
768
769 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
770 {
771         struct netdev_name_node *node_name;
772
773         node_name = netdev_name_node_lookup_rcu(net, name);
774         return node_name ? node_name->dev : NULL;
775 }
776 EXPORT_SYMBOL(dev_get_by_name_rcu);
777
778 /* Deprecated for new users, call netdev_get_by_name() instead */
779 struct net_device *dev_get_by_name(struct net *net, const char *name)
780 {
781         struct net_device *dev;
782
783         rcu_read_lock();
784         dev = dev_get_by_name_rcu(net, name);
785         dev_hold(dev);
786         rcu_read_unlock();
787         return dev;
788 }
789 EXPORT_SYMBOL(dev_get_by_name);
790
791 /**
792  *      netdev_get_by_name() - find a device by its name
793  *      @net: the applicable net namespace
794  *      @name: name to find
795  *      @tracker: tracking object for the acquired reference
796  *      @gfp: allocation flags for the tracker
797  *
798  *      Find an interface by name. This can be called from any
799  *      context and does its own locking. The returned handle has
800  *      the usage count incremented and the caller must use netdev_put() to
801  *      release it when it is no longer needed. %NULL is returned if no
802  *      matching device is found.
803  */
804 struct net_device *netdev_get_by_name(struct net *net, const char *name,
805                                       netdevice_tracker *tracker, gfp_t gfp)
806 {
807         struct net_device *dev;
808
809         dev = dev_get_by_name(net, name);
810         if (dev)
811                 netdev_tracker_alloc(dev, tracker, gfp);
812         return dev;
813 }
814 EXPORT_SYMBOL(netdev_get_by_name);
815
816 /**
817  *      __dev_get_by_index - find a device by its ifindex
818  *      @net: the applicable net namespace
819  *      @ifindex: index of device
820  *
821  *      Search for an interface by index. Returns %NULL if the device
822  *      is not found or a pointer to the device. The device has not
823  *      had its reference counter increased so the caller must be careful
824  *      about locking. The caller must hold either the RTNL semaphore
825  *      or @dev_base_lock.
826  */
827
828 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
829 {
830         struct net_device *dev;
831         struct hlist_head *head = dev_index_hash(net, ifindex);
832
833         hlist_for_each_entry(dev, head, index_hlist)
834                 if (dev->ifindex == ifindex)
835                         return dev;
836
837         return NULL;
838 }
839 EXPORT_SYMBOL(__dev_get_by_index);
840
841 /**
842  *      dev_get_by_index_rcu - find a device by its ifindex
843  *      @net: the applicable net namespace
844  *      @ifindex: index of device
845  *
846  *      Search for an interface by index. Returns %NULL if the device
847  *      is not found or a pointer to the device. The device has not
848  *      had its reference counter increased so the caller must be careful
849  *      about locking. The caller must hold RCU lock.
850  */
851
852 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
853 {
854         struct net_device *dev;
855         struct hlist_head *head = dev_index_hash(net, ifindex);
856
857         hlist_for_each_entry_rcu(dev, head, index_hlist)
858                 if (dev->ifindex == ifindex)
859                         return dev;
860
861         return NULL;
862 }
863 EXPORT_SYMBOL(dev_get_by_index_rcu);
864
865 /* Deprecated for new users, call netdev_get_by_index() instead */
866 struct net_device *dev_get_by_index(struct net *net, int ifindex)
867 {
868         struct net_device *dev;
869
870         rcu_read_lock();
871         dev = dev_get_by_index_rcu(net, ifindex);
872         dev_hold(dev);
873         rcu_read_unlock();
874         return dev;
875 }
876 EXPORT_SYMBOL(dev_get_by_index);
877
878 /**
879  *      netdev_get_by_index() - find a device by its ifindex
880  *      @net: the applicable net namespace
881  *      @ifindex: index of device
882  *      @tracker: tracking object for the acquired reference
883  *      @gfp: allocation flags for the tracker
884  *
885  *      Search for an interface by index. Returns NULL if the device
886  *      is not found or a pointer to the device. The device returned has
887  *      had a reference added and the pointer is safe until the user calls
888  *      netdev_put() to indicate they have finished with it.
889  */
890 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
891                                        netdevice_tracker *tracker, gfp_t gfp)
892 {
893         struct net_device *dev;
894
895         dev = dev_get_by_index(net, ifindex);
896         if (dev)
897                 netdev_tracker_alloc(dev, tracker, gfp);
898         return dev;
899 }
900 EXPORT_SYMBOL(netdev_get_by_index);
901
902 /**
903  *      dev_get_by_napi_id - find a device by napi_id
904  *      @napi_id: ID of the NAPI struct
905  *
906  *      Search for an interface by NAPI ID. Returns %NULL if the device
907  *      is not found or a pointer to the device. The device has not had
908  *      its reference counter increased so the caller must be careful
909  *      about locking. The caller must hold RCU lock.
910  */
911
912 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
913 {
914         struct napi_struct *napi;
915
916         WARN_ON_ONCE(!rcu_read_lock_held());
917
918         if (napi_id < MIN_NAPI_ID)
919                 return NULL;
920
921         napi = napi_by_id(napi_id);
922
923         return napi ? napi->dev : NULL;
924 }
925 EXPORT_SYMBOL(dev_get_by_napi_id);
926
927 /**
928  *      netdev_get_name - get a netdevice name, knowing its ifindex.
929  *      @net: network namespace
930  *      @name: a pointer to the buffer where the name will be stored.
931  *      @ifindex: the ifindex of the interface to get the name from.
932  */
933 int netdev_get_name(struct net *net, char *name, int ifindex)
934 {
935         struct net_device *dev;
936         int ret;
937
938         down_read(&devnet_rename_sem);
939         rcu_read_lock();
940
941         dev = dev_get_by_index_rcu(net, ifindex);
942         if (!dev) {
943                 ret = -ENODEV;
944                 goto out;
945         }
946
947         strcpy(name, dev->name);
948
949         ret = 0;
950 out:
951         rcu_read_unlock();
952         up_read(&devnet_rename_sem);
953         return ret;
954 }
955
956 /**
957  *      dev_getbyhwaddr_rcu - find a device by its hardware address
958  *      @net: the applicable net namespace
959  *      @type: media type of device
960  *      @ha: hardware address
961  *
962  *      Search for an interface by MAC address. Returns NULL if the device
963  *      is not found or a pointer to the device.
964  *      The caller must hold RCU or RTNL.
965  *      The returned device has not had its ref count increased
966  *      and the caller must therefore be careful about locking
967  *
968  */
969
970 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
971                                        const char *ha)
972 {
973         struct net_device *dev;
974
975         for_each_netdev_rcu(net, dev)
976                 if (dev->type == type &&
977                     !memcmp(dev->dev_addr, ha, dev->addr_len))
978                         return dev;
979
980         return NULL;
981 }
982 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
983
984 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
985 {
986         struct net_device *dev, *ret = NULL;
987
988         rcu_read_lock();
989         for_each_netdev_rcu(net, dev)
990                 if (dev->type == type) {
991                         dev_hold(dev);
992                         ret = dev;
993                         break;
994                 }
995         rcu_read_unlock();
996         return ret;
997 }
998 EXPORT_SYMBOL(dev_getfirstbyhwtype);
999
1000 /**
1001  *      __dev_get_by_flags - find any device with given flags
1002  *      @net: the applicable net namespace
1003  *      @if_flags: IFF_* values
1004  *      @mask: bitmask of bits in if_flags to check
1005  *
1006  *      Search for any interface with the given flags. Returns NULL if a device
1007  *      is not found or a pointer to the device. Must be called inside
1008  *      rtnl_lock(), and result refcount is unchanged.
1009  */
1010
1011 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1012                                       unsigned short mask)
1013 {
1014         struct net_device *dev, *ret;
1015
1016         ASSERT_RTNL();
1017
1018         ret = NULL;
1019         for_each_netdev(net, dev) {
1020                 if (((dev->flags ^ if_flags) & mask) == 0) {
1021                         ret = dev;
1022                         break;
1023                 }
1024         }
1025         return ret;
1026 }
1027 EXPORT_SYMBOL(__dev_get_by_flags);
1028
1029 /**
1030  *      dev_valid_name - check if name is okay for network device
1031  *      @name: name string
1032  *
1033  *      Network device names need to be valid file names to
1034  *      allow sysfs to work.  We also disallow any kind of
1035  *      whitespace.
1036  */
1037 bool dev_valid_name(const char *name)
1038 {
1039         if (*name == '\0')
1040                 return false;
1041         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1042                 return false;
1043         if (!strcmp(name, ".") || !strcmp(name, ".."))
1044                 return false;
1045
1046         while (*name) {
1047                 if (*name == '/' || *name == ':' || isspace(*name))
1048                         return false;
1049                 name++;
1050         }
1051         return true;
1052 }
1053 EXPORT_SYMBOL(dev_valid_name);
1054
1055 /**
1056  *      __dev_alloc_name - allocate a name for a device
1057  *      @net: network namespace to allocate the device name in
1058  *      @name: name format string
1059  *      @res: result name string
1060  *
1061  *      Passed a format string - eg "lt%d" it will try and find a suitable
1062  *      id. It scans list of devices to build up a free map, then chooses
1063  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1064  *      while allocating the name and adding the device in order to avoid
1065  *      duplicates.
1066  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1067  *      Returns the number of the unit assigned or a negative errno code.
1068  */
1069
1070 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1071 {
1072         int i = 0;
1073         const char *p;
1074         const int max_netdevices = 8*PAGE_SIZE;
1075         unsigned long *inuse;
1076         struct net_device *d;
1077         char buf[IFNAMSIZ];
1078
1079         /* Verify the string as this thing may have come from the user.
1080          * There must be one "%d" and no other "%" characters.
1081          */
1082         p = strchr(name, '%');
1083         if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1084                 return -EINVAL;
1085
1086         /* Use one page as a bit array of possible slots */
1087         inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1088         if (!inuse)
1089                 return -ENOMEM;
1090
1091         for_each_netdev(net, d) {
1092                 struct netdev_name_node *name_node;
1093
1094                 netdev_for_each_altname(d, name_node) {
1095                         if (!sscanf(name_node->name, name, &i))
1096                                 continue;
1097                         if (i < 0 || i >= max_netdevices)
1098                                 continue;
1099
1100                         /* avoid cases where sscanf is not exact inverse of printf */
1101                         snprintf(buf, IFNAMSIZ, name, i);
1102                         if (!strncmp(buf, name_node->name, IFNAMSIZ))
1103                                 __set_bit(i, inuse);
1104                 }
1105                 if (!sscanf(d->name, name, &i))
1106                         continue;
1107                 if (i < 0 || i >= max_netdevices)
1108                         continue;
1109
1110                 /* avoid cases where sscanf is not exact inverse of printf */
1111                 snprintf(buf, IFNAMSIZ, name, i);
1112                 if (!strncmp(buf, d->name, IFNAMSIZ))
1113                         __set_bit(i, inuse);
1114         }
1115
1116         i = find_first_zero_bit(inuse, max_netdevices);
1117         bitmap_free(inuse);
1118         if (i == max_netdevices)
1119                 return -ENFILE;
1120
1121         /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1122         strscpy(buf, name, IFNAMSIZ);
1123         snprintf(res, IFNAMSIZ, buf, i);
1124         return i;
1125 }
1126
1127 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1128 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1129                                const char *want_name, char *out_name,
1130                                int dup_errno)
1131 {
1132         if (!dev_valid_name(want_name))
1133                 return -EINVAL;
1134
1135         if (strchr(want_name, '%'))
1136                 return __dev_alloc_name(net, want_name, out_name);
1137
1138         if (netdev_name_in_use(net, want_name))
1139                 return -dup_errno;
1140         if (out_name != want_name)
1141                 strscpy(out_name, want_name, IFNAMSIZ);
1142         return 0;
1143 }
1144
1145 /**
1146  *      dev_alloc_name - allocate a name for a device
1147  *      @dev: device
1148  *      @name: name format string
1149  *
1150  *      Passed a format string - eg "lt%d" it will try and find a suitable
1151  *      id. It scans list of devices to build up a free map, then chooses
1152  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1153  *      while allocating the name and adding the device in order to avoid
1154  *      duplicates.
1155  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1156  *      Returns the number of the unit assigned or a negative errno code.
1157  */
1158
1159 int dev_alloc_name(struct net_device *dev, const char *name)
1160 {
1161         return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1162 }
1163 EXPORT_SYMBOL(dev_alloc_name);
1164
1165 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1166                               const char *name)
1167 {
1168         int ret;
1169
1170         ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1171         return ret < 0 ? ret : 0;
1172 }
1173
1174 /**
1175  *      dev_change_name - change name of a device
1176  *      @dev: device
1177  *      @newname: name (or format string) must be at least IFNAMSIZ
1178  *
1179  *      Change name of a device, can pass format strings "eth%d".
1180  *      for wildcarding.
1181  */
1182 int dev_change_name(struct net_device *dev, const char *newname)
1183 {
1184         unsigned char old_assign_type;
1185         char oldname[IFNAMSIZ];
1186         int err = 0;
1187         int ret;
1188         struct net *net;
1189
1190         ASSERT_RTNL();
1191         BUG_ON(!dev_net(dev));
1192
1193         net = dev_net(dev);
1194
1195         down_write(&devnet_rename_sem);
1196
1197         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1198                 up_write(&devnet_rename_sem);
1199                 return 0;
1200         }
1201
1202         memcpy(oldname, dev->name, IFNAMSIZ);
1203
1204         err = dev_get_valid_name(net, dev, newname);
1205         if (err < 0) {
1206                 up_write(&devnet_rename_sem);
1207                 return err;
1208         }
1209
1210         if (oldname[0] && !strchr(oldname, '%'))
1211                 netdev_info(dev, "renamed from %s%s\n", oldname,
1212                             dev->flags & IFF_UP ? " (while UP)" : "");
1213
1214         old_assign_type = dev->name_assign_type;
1215         dev->name_assign_type = NET_NAME_RENAMED;
1216
1217 rollback:
1218         ret = device_rename(&dev->dev, dev->name);
1219         if (ret) {
1220                 memcpy(dev->name, oldname, IFNAMSIZ);
1221                 dev->name_assign_type = old_assign_type;
1222                 up_write(&devnet_rename_sem);
1223                 return ret;
1224         }
1225
1226         up_write(&devnet_rename_sem);
1227
1228         netdev_adjacent_rename_links(dev, oldname);
1229
1230         write_lock(&dev_base_lock);
1231         netdev_name_node_del(dev->name_node);
1232         write_unlock(&dev_base_lock);
1233
1234         synchronize_rcu();
1235
1236         write_lock(&dev_base_lock);
1237         netdev_name_node_add(net, dev->name_node);
1238         write_unlock(&dev_base_lock);
1239
1240         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1241         ret = notifier_to_errno(ret);
1242
1243         if (ret) {
1244                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1245                 if (err >= 0) {
1246                         err = ret;
1247                         down_write(&devnet_rename_sem);
1248                         memcpy(dev->name, oldname, IFNAMSIZ);
1249                         memcpy(oldname, newname, IFNAMSIZ);
1250                         dev->name_assign_type = old_assign_type;
1251                         old_assign_type = NET_NAME_RENAMED;
1252                         goto rollback;
1253                 } else {
1254                         netdev_err(dev, "name change rollback failed: %d\n",
1255                                    ret);
1256                 }
1257         }
1258
1259         return err;
1260 }
1261
1262 /**
1263  *      dev_set_alias - change ifalias of a device
1264  *      @dev: device
1265  *      @alias: name up to IFALIASZ
1266  *      @len: limit of bytes to copy from info
1267  *
1268  *      Set ifalias for a device,
1269  */
1270 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1271 {
1272         struct dev_ifalias *new_alias = NULL;
1273
1274         if (len >= IFALIASZ)
1275                 return -EINVAL;
1276
1277         if (len) {
1278                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1279                 if (!new_alias)
1280                         return -ENOMEM;
1281
1282                 memcpy(new_alias->ifalias, alias, len);
1283                 new_alias->ifalias[len] = 0;
1284         }
1285
1286         mutex_lock(&ifalias_mutex);
1287         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1288                                         mutex_is_locked(&ifalias_mutex));
1289         mutex_unlock(&ifalias_mutex);
1290
1291         if (new_alias)
1292                 kfree_rcu(new_alias, rcuhead);
1293
1294         return len;
1295 }
1296 EXPORT_SYMBOL(dev_set_alias);
1297
1298 /**
1299  *      dev_get_alias - get ifalias of a device
1300  *      @dev: device
1301  *      @name: buffer to store name of ifalias
1302  *      @len: size of buffer
1303  *
1304  *      get ifalias for a device.  Caller must make sure dev cannot go
1305  *      away,  e.g. rcu read lock or own a reference count to device.
1306  */
1307 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1308 {
1309         const struct dev_ifalias *alias;
1310         int ret = 0;
1311
1312         rcu_read_lock();
1313         alias = rcu_dereference(dev->ifalias);
1314         if (alias)
1315                 ret = snprintf(name, len, "%s", alias->ifalias);
1316         rcu_read_unlock();
1317
1318         return ret;
1319 }
1320
1321 /**
1322  *      netdev_features_change - device changes features
1323  *      @dev: device to cause notification
1324  *
1325  *      Called to indicate a device has changed features.
1326  */
1327 void netdev_features_change(struct net_device *dev)
1328 {
1329         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1330 }
1331 EXPORT_SYMBOL(netdev_features_change);
1332
1333 /**
1334  *      netdev_state_change - device changes state
1335  *      @dev: device to cause notification
1336  *
1337  *      Called to indicate a device has changed state. This function calls
1338  *      the notifier chains for netdev_chain and sends a NEWLINK message
1339  *      to the routing socket.
1340  */
1341 void netdev_state_change(struct net_device *dev)
1342 {
1343         if (dev->flags & IFF_UP) {
1344                 struct netdev_notifier_change_info change_info = {
1345                         .info.dev = dev,
1346                 };
1347
1348                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1349                                               &change_info.info);
1350                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1351         }
1352 }
1353 EXPORT_SYMBOL(netdev_state_change);
1354
1355 /**
1356  * __netdev_notify_peers - notify network peers about existence of @dev,
1357  * to be called when rtnl lock is already held.
1358  * @dev: network device
1359  *
1360  * Generate traffic such that interested network peers are aware of
1361  * @dev, such as by generating a gratuitous ARP. This may be used when
1362  * a device wants to inform the rest of the network about some sort of
1363  * reconfiguration such as a failover event or virtual machine
1364  * migration.
1365  */
1366 void __netdev_notify_peers(struct net_device *dev)
1367 {
1368         ASSERT_RTNL();
1369         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1370         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1371 }
1372 EXPORT_SYMBOL(__netdev_notify_peers);
1373
1374 /**
1375  * netdev_notify_peers - notify network peers about existence of @dev
1376  * @dev: network device
1377  *
1378  * Generate traffic such that interested network peers are aware of
1379  * @dev, such as by generating a gratuitous ARP. This may be used when
1380  * a device wants to inform the rest of the network about some sort of
1381  * reconfiguration such as a failover event or virtual machine
1382  * migration.
1383  */
1384 void netdev_notify_peers(struct net_device *dev)
1385 {
1386         rtnl_lock();
1387         __netdev_notify_peers(dev);
1388         rtnl_unlock();
1389 }
1390 EXPORT_SYMBOL(netdev_notify_peers);
1391
1392 static int napi_threaded_poll(void *data);
1393
1394 static int napi_kthread_create(struct napi_struct *n)
1395 {
1396         int err = 0;
1397
1398         /* Create and wake up the kthread once to put it in
1399          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1400          * warning and work with loadavg.
1401          */
1402         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1403                                 n->dev->name, n->napi_id);
1404         if (IS_ERR(n->thread)) {
1405                 err = PTR_ERR(n->thread);
1406                 pr_err("kthread_run failed with err %d\n", err);
1407                 n->thread = NULL;
1408         }
1409
1410         return err;
1411 }
1412
1413 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1414 {
1415         const struct net_device_ops *ops = dev->netdev_ops;
1416         int ret;
1417
1418         ASSERT_RTNL();
1419         dev_addr_check(dev);
1420
1421         if (!netif_device_present(dev)) {
1422                 /* may be detached because parent is runtime-suspended */
1423                 if (dev->dev.parent)
1424                         pm_runtime_resume(dev->dev.parent);
1425                 if (!netif_device_present(dev))
1426                         return -ENODEV;
1427         }
1428
1429         /* Block netpoll from trying to do any rx path servicing.
1430          * If we don't do this there is a chance ndo_poll_controller
1431          * or ndo_poll may be running while we open the device
1432          */
1433         netpoll_poll_disable(dev);
1434
1435         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1436         ret = notifier_to_errno(ret);
1437         if (ret)
1438                 return ret;
1439
1440         set_bit(__LINK_STATE_START, &dev->state);
1441
1442         if (ops->ndo_validate_addr)
1443                 ret = ops->ndo_validate_addr(dev);
1444
1445         if (!ret && ops->ndo_open)
1446                 ret = ops->ndo_open(dev);
1447
1448         netpoll_poll_enable(dev);
1449
1450         if (ret)
1451                 clear_bit(__LINK_STATE_START, &dev->state);
1452         else {
1453                 dev->flags |= IFF_UP;
1454                 dev_set_rx_mode(dev);
1455                 dev_activate(dev);
1456                 add_device_randomness(dev->dev_addr, dev->addr_len);
1457         }
1458
1459         return ret;
1460 }
1461
1462 /**
1463  *      dev_open        - prepare an interface for use.
1464  *      @dev: device to open
1465  *      @extack: netlink extended ack
1466  *
1467  *      Takes a device from down to up state. The device's private open
1468  *      function is invoked and then the multicast lists are loaded. Finally
1469  *      the device is moved into the up state and a %NETDEV_UP message is
1470  *      sent to the netdev notifier chain.
1471  *
1472  *      Calling this function on an active interface is a nop. On a failure
1473  *      a negative errno code is returned.
1474  */
1475 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1476 {
1477         int ret;
1478
1479         if (dev->flags & IFF_UP)
1480                 return 0;
1481
1482         ret = __dev_open(dev, extack);
1483         if (ret < 0)
1484                 return ret;
1485
1486         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1487         call_netdevice_notifiers(NETDEV_UP, dev);
1488
1489         return ret;
1490 }
1491 EXPORT_SYMBOL(dev_open);
1492
1493 static void __dev_close_many(struct list_head *head)
1494 {
1495         struct net_device *dev;
1496
1497         ASSERT_RTNL();
1498         might_sleep();
1499
1500         list_for_each_entry(dev, head, close_list) {
1501                 /* Temporarily disable netpoll until the interface is down */
1502                 netpoll_poll_disable(dev);
1503
1504                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1505
1506                 clear_bit(__LINK_STATE_START, &dev->state);
1507
1508                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1509                  * can be even on different cpu. So just clear netif_running().
1510                  *
1511                  * dev->stop() will invoke napi_disable() on all of it's
1512                  * napi_struct instances on this device.
1513                  */
1514                 smp_mb__after_atomic(); /* Commit netif_running(). */
1515         }
1516
1517         dev_deactivate_many(head);
1518
1519         list_for_each_entry(dev, head, close_list) {
1520                 const struct net_device_ops *ops = dev->netdev_ops;
1521
1522                 /*
1523                  *      Call the device specific close. This cannot fail.
1524                  *      Only if device is UP
1525                  *
1526                  *      We allow it to be called even after a DETACH hot-plug
1527                  *      event.
1528                  */
1529                 if (ops->ndo_stop)
1530                         ops->ndo_stop(dev);
1531
1532                 dev->flags &= ~IFF_UP;
1533                 netpoll_poll_enable(dev);
1534         }
1535 }
1536
1537 static void __dev_close(struct net_device *dev)
1538 {
1539         LIST_HEAD(single);
1540
1541         list_add(&dev->close_list, &single);
1542         __dev_close_many(&single);
1543         list_del(&single);
1544 }
1545
1546 void dev_close_many(struct list_head *head, bool unlink)
1547 {
1548         struct net_device *dev, *tmp;
1549
1550         /* Remove the devices that don't need to be closed */
1551         list_for_each_entry_safe(dev, tmp, head, close_list)
1552                 if (!(dev->flags & IFF_UP))
1553                         list_del_init(&dev->close_list);
1554
1555         __dev_close_many(head);
1556
1557         list_for_each_entry_safe(dev, tmp, head, close_list) {
1558                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1559                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1560                 if (unlink)
1561                         list_del_init(&dev->close_list);
1562         }
1563 }
1564 EXPORT_SYMBOL(dev_close_many);
1565
1566 /**
1567  *      dev_close - shutdown an interface.
1568  *      @dev: device to shutdown
1569  *
1570  *      This function moves an active device into down state. A
1571  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1572  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1573  *      chain.
1574  */
1575 void dev_close(struct net_device *dev)
1576 {
1577         if (dev->flags & IFF_UP) {
1578                 LIST_HEAD(single);
1579
1580                 list_add(&dev->close_list, &single);
1581                 dev_close_many(&single, true);
1582                 list_del(&single);
1583         }
1584 }
1585 EXPORT_SYMBOL(dev_close);
1586
1587
1588 /**
1589  *      dev_disable_lro - disable Large Receive Offload on a device
1590  *      @dev: device
1591  *
1592  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1593  *      called under RTNL.  This is needed if received packets may be
1594  *      forwarded to another interface.
1595  */
1596 void dev_disable_lro(struct net_device *dev)
1597 {
1598         struct net_device *lower_dev;
1599         struct list_head *iter;
1600
1601         dev->wanted_features &= ~NETIF_F_LRO;
1602         netdev_update_features(dev);
1603
1604         if (unlikely(dev->features & NETIF_F_LRO))
1605                 netdev_WARN(dev, "failed to disable LRO!\n");
1606
1607         netdev_for_each_lower_dev(dev, lower_dev, iter)
1608                 dev_disable_lro(lower_dev);
1609 }
1610 EXPORT_SYMBOL(dev_disable_lro);
1611
1612 /**
1613  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1614  *      @dev: device
1615  *
1616  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1617  *      called under RTNL.  This is needed if Generic XDP is installed on
1618  *      the device.
1619  */
1620 static void dev_disable_gro_hw(struct net_device *dev)
1621 {
1622         dev->wanted_features &= ~NETIF_F_GRO_HW;
1623         netdev_update_features(dev);
1624
1625         if (unlikely(dev->features & NETIF_F_GRO_HW))
1626                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1627 }
1628
1629 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1630 {
1631 #define N(val)                                          \
1632         case NETDEV_##val:                              \
1633                 return "NETDEV_" __stringify(val);
1634         switch (cmd) {
1635         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1636         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1637         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1638         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1639         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1640         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1641         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1642         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1643         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1644         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1645         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1646         N(XDP_FEAT_CHANGE)
1647         }
1648 #undef N
1649         return "UNKNOWN_NETDEV_EVENT";
1650 }
1651 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1652
1653 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1654                                    struct net_device *dev)
1655 {
1656         struct netdev_notifier_info info = {
1657                 .dev = dev,
1658         };
1659
1660         return nb->notifier_call(nb, val, &info);
1661 }
1662
1663 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1664                                              struct net_device *dev)
1665 {
1666         int err;
1667
1668         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1669         err = notifier_to_errno(err);
1670         if (err)
1671                 return err;
1672
1673         if (!(dev->flags & IFF_UP))
1674                 return 0;
1675
1676         call_netdevice_notifier(nb, NETDEV_UP, dev);
1677         return 0;
1678 }
1679
1680 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1681                                                 struct net_device *dev)
1682 {
1683         if (dev->flags & IFF_UP) {
1684                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1685                                         dev);
1686                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1687         }
1688         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1689 }
1690
1691 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1692                                                  struct net *net)
1693 {
1694         struct net_device *dev;
1695         int err;
1696
1697         for_each_netdev(net, dev) {
1698                 err = call_netdevice_register_notifiers(nb, dev);
1699                 if (err)
1700                         goto rollback;
1701         }
1702         return 0;
1703
1704 rollback:
1705         for_each_netdev_continue_reverse(net, dev)
1706                 call_netdevice_unregister_notifiers(nb, dev);
1707         return err;
1708 }
1709
1710 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1711                                                     struct net *net)
1712 {
1713         struct net_device *dev;
1714
1715         for_each_netdev(net, dev)
1716                 call_netdevice_unregister_notifiers(nb, dev);
1717 }
1718
1719 static int dev_boot_phase = 1;
1720
1721 /**
1722  * register_netdevice_notifier - register a network notifier block
1723  * @nb: notifier
1724  *
1725  * Register a notifier to be called when network device events occur.
1726  * The notifier passed is linked into the kernel structures and must
1727  * not be reused until it has been unregistered. A negative errno code
1728  * is returned on a failure.
1729  *
1730  * When registered all registration and up events are replayed
1731  * to the new notifier to allow device to have a race free
1732  * view of the network device list.
1733  */
1734
1735 int register_netdevice_notifier(struct notifier_block *nb)
1736 {
1737         struct net *net;
1738         int err;
1739
1740         /* Close race with setup_net() and cleanup_net() */
1741         down_write(&pernet_ops_rwsem);
1742         rtnl_lock();
1743         err = raw_notifier_chain_register(&netdev_chain, nb);
1744         if (err)
1745                 goto unlock;
1746         if (dev_boot_phase)
1747                 goto unlock;
1748         for_each_net(net) {
1749                 err = call_netdevice_register_net_notifiers(nb, net);
1750                 if (err)
1751                         goto rollback;
1752         }
1753
1754 unlock:
1755         rtnl_unlock();
1756         up_write(&pernet_ops_rwsem);
1757         return err;
1758
1759 rollback:
1760         for_each_net_continue_reverse(net)
1761                 call_netdevice_unregister_net_notifiers(nb, net);
1762
1763         raw_notifier_chain_unregister(&netdev_chain, nb);
1764         goto unlock;
1765 }
1766 EXPORT_SYMBOL(register_netdevice_notifier);
1767
1768 /**
1769  * unregister_netdevice_notifier - unregister a network notifier block
1770  * @nb: notifier
1771  *
1772  * Unregister a notifier previously registered by
1773  * register_netdevice_notifier(). The notifier is unlinked into the
1774  * kernel structures and may then be reused. A negative errno code
1775  * is returned on a failure.
1776  *
1777  * After unregistering unregister and down device events are synthesized
1778  * for all devices on the device list to the removed notifier to remove
1779  * the need for special case cleanup code.
1780  */
1781
1782 int unregister_netdevice_notifier(struct notifier_block *nb)
1783 {
1784         struct net *net;
1785         int err;
1786
1787         /* Close race with setup_net() and cleanup_net() */
1788         down_write(&pernet_ops_rwsem);
1789         rtnl_lock();
1790         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1791         if (err)
1792                 goto unlock;
1793
1794         for_each_net(net)
1795                 call_netdevice_unregister_net_notifiers(nb, net);
1796
1797 unlock:
1798         rtnl_unlock();
1799         up_write(&pernet_ops_rwsem);
1800         return err;
1801 }
1802 EXPORT_SYMBOL(unregister_netdevice_notifier);
1803
1804 static int __register_netdevice_notifier_net(struct net *net,
1805                                              struct notifier_block *nb,
1806                                              bool ignore_call_fail)
1807 {
1808         int err;
1809
1810         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1811         if (err)
1812                 return err;
1813         if (dev_boot_phase)
1814                 return 0;
1815
1816         err = call_netdevice_register_net_notifiers(nb, net);
1817         if (err && !ignore_call_fail)
1818                 goto chain_unregister;
1819
1820         return 0;
1821
1822 chain_unregister:
1823         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1824         return err;
1825 }
1826
1827 static int __unregister_netdevice_notifier_net(struct net *net,
1828                                                struct notifier_block *nb)
1829 {
1830         int err;
1831
1832         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1833         if (err)
1834                 return err;
1835
1836         call_netdevice_unregister_net_notifiers(nb, net);
1837         return 0;
1838 }
1839
1840 /**
1841  * register_netdevice_notifier_net - register a per-netns network notifier block
1842  * @net: network namespace
1843  * @nb: notifier
1844  *
1845  * Register a notifier to be called when network device events occur.
1846  * The notifier passed is linked into the kernel structures and must
1847  * not be reused until it has been unregistered. A negative errno code
1848  * is returned on a failure.
1849  *
1850  * When registered all registration and up events are replayed
1851  * to the new notifier to allow device to have a race free
1852  * view of the network device list.
1853  */
1854
1855 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1856 {
1857         int err;
1858
1859         rtnl_lock();
1860         err = __register_netdevice_notifier_net(net, nb, false);
1861         rtnl_unlock();
1862         return err;
1863 }
1864 EXPORT_SYMBOL(register_netdevice_notifier_net);
1865
1866 /**
1867  * unregister_netdevice_notifier_net - unregister a per-netns
1868  *                                     network notifier block
1869  * @net: network namespace
1870  * @nb: notifier
1871  *
1872  * Unregister a notifier previously registered by
1873  * register_netdevice_notifier_net(). The notifier is unlinked from the
1874  * kernel structures and may then be reused. A negative errno code
1875  * is returned on a failure.
1876  *
1877  * After unregistering unregister and down device events are synthesized
1878  * for all devices on the device list to the removed notifier to remove
1879  * the need for special case cleanup code.
1880  */
1881
1882 int unregister_netdevice_notifier_net(struct net *net,
1883                                       struct notifier_block *nb)
1884 {
1885         int err;
1886
1887         rtnl_lock();
1888         err = __unregister_netdevice_notifier_net(net, nb);
1889         rtnl_unlock();
1890         return err;
1891 }
1892 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1893
1894 static void __move_netdevice_notifier_net(struct net *src_net,
1895                                           struct net *dst_net,
1896                                           struct notifier_block *nb)
1897 {
1898         __unregister_netdevice_notifier_net(src_net, nb);
1899         __register_netdevice_notifier_net(dst_net, nb, true);
1900 }
1901
1902 int register_netdevice_notifier_dev_net(struct net_device *dev,
1903                                         struct notifier_block *nb,
1904                                         struct netdev_net_notifier *nn)
1905 {
1906         int err;
1907
1908         rtnl_lock();
1909         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1910         if (!err) {
1911                 nn->nb = nb;
1912                 list_add(&nn->list, &dev->net_notifier_list);
1913         }
1914         rtnl_unlock();
1915         return err;
1916 }
1917 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1918
1919 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1920                                           struct notifier_block *nb,
1921                                           struct netdev_net_notifier *nn)
1922 {
1923         int err;
1924
1925         rtnl_lock();
1926         list_del(&nn->list);
1927         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1928         rtnl_unlock();
1929         return err;
1930 }
1931 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1932
1933 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1934                                              struct net *net)
1935 {
1936         struct netdev_net_notifier *nn;
1937
1938         list_for_each_entry(nn, &dev->net_notifier_list, list)
1939                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1940 }
1941
1942 /**
1943  *      call_netdevice_notifiers_info - call all network notifier blocks
1944  *      @val: value passed unmodified to notifier function
1945  *      @info: notifier information data
1946  *
1947  *      Call all network notifier blocks.  Parameters and return value
1948  *      are as for raw_notifier_call_chain().
1949  */
1950
1951 int call_netdevice_notifiers_info(unsigned long val,
1952                                   struct netdev_notifier_info *info)
1953 {
1954         struct net *net = dev_net(info->dev);
1955         int ret;
1956
1957         ASSERT_RTNL();
1958
1959         /* Run per-netns notifier block chain first, then run the global one.
1960          * Hopefully, one day, the global one is going to be removed after
1961          * all notifier block registrators get converted to be per-netns.
1962          */
1963         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1964         if (ret & NOTIFY_STOP_MASK)
1965                 return ret;
1966         return raw_notifier_call_chain(&netdev_chain, val, info);
1967 }
1968
1969 /**
1970  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1971  *                                             for and rollback on error
1972  *      @val_up: value passed unmodified to notifier function
1973  *      @val_down: value passed unmodified to the notifier function when
1974  *                 recovering from an error on @val_up
1975  *      @info: notifier information data
1976  *
1977  *      Call all per-netns network notifier blocks, but not notifier blocks on
1978  *      the global notifier chain. Parameters and return value are as for
1979  *      raw_notifier_call_chain_robust().
1980  */
1981
1982 static int
1983 call_netdevice_notifiers_info_robust(unsigned long val_up,
1984                                      unsigned long val_down,
1985                                      struct netdev_notifier_info *info)
1986 {
1987         struct net *net = dev_net(info->dev);
1988
1989         ASSERT_RTNL();
1990
1991         return raw_notifier_call_chain_robust(&net->netdev_chain,
1992                                               val_up, val_down, info);
1993 }
1994
1995 static int call_netdevice_notifiers_extack(unsigned long val,
1996                                            struct net_device *dev,
1997                                            struct netlink_ext_ack *extack)
1998 {
1999         struct netdev_notifier_info info = {
2000                 .dev = dev,
2001                 .extack = extack,
2002         };
2003
2004         return call_netdevice_notifiers_info(val, &info);
2005 }
2006
2007 /**
2008  *      call_netdevice_notifiers - call all network notifier blocks
2009  *      @val: value passed unmodified to notifier function
2010  *      @dev: net_device pointer passed unmodified to notifier function
2011  *
2012  *      Call all network notifier blocks.  Parameters and return value
2013  *      are as for raw_notifier_call_chain().
2014  */
2015
2016 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2017 {
2018         return call_netdevice_notifiers_extack(val, dev, NULL);
2019 }
2020 EXPORT_SYMBOL(call_netdevice_notifiers);
2021
2022 /**
2023  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2024  *      @val: value passed unmodified to notifier function
2025  *      @dev: net_device pointer passed unmodified to notifier function
2026  *      @arg: additional u32 argument passed to the notifier function
2027  *
2028  *      Call all network notifier blocks.  Parameters and return value
2029  *      are as for raw_notifier_call_chain().
2030  */
2031 static int call_netdevice_notifiers_mtu(unsigned long val,
2032                                         struct net_device *dev, u32 arg)
2033 {
2034         struct netdev_notifier_info_ext info = {
2035                 .info.dev = dev,
2036                 .ext.mtu = arg,
2037         };
2038
2039         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2040
2041         return call_netdevice_notifiers_info(val, &info.info);
2042 }
2043
2044 #ifdef CONFIG_NET_INGRESS
2045 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2046
2047 void net_inc_ingress_queue(void)
2048 {
2049         static_branch_inc(&ingress_needed_key);
2050 }
2051 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2052
2053 void net_dec_ingress_queue(void)
2054 {
2055         static_branch_dec(&ingress_needed_key);
2056 }
2057 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2058 #endif
2059
2060 #ifdef CONFIG_NET_EGRESS
2061 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2062
2063 void net_inc_egress_queue(void)
2064 {
2065         static_branch_inc(&egress_needed_key);
2066 }
2067 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2068
2069 void net_dec_egress_queue(void)
2070 {
2071         static_branch_dec(&egress_needed_key);
2072 }
2073 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2074 #endif
2075
2076 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2077 EXPORT_SYMBOL(netstamp_needed_key);
2078 #ifdef CONFIG_JUMP_LABEL
2079 static atomic_t netstamp_needed_deferred;
2080 static atomic_t netstamp_wanted;
2081 static void netstamp_clear(struct work_struct *work)
2082 {
2083         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2084         int wanted;
2085
2086         wanted = atomic_add_return(deferred, &netstamp_wanted);
2087         if (wanted > 0)
2088                 static_branch_enable(&netstamp_needed_key);
2089         else
2090                 static_branch_disable(&netstamp_needed_key);
2091 }
2092 static DECLARE_WORK(netstamp_work, netstamp_clear);
2093 #endif
2094
2095 void net_enable_timestamp(void)
2096 {
2097 #ifdef CONFIG_JUMP_LABEL
2098         int wanted = atomic_read(&netstamp_wanted);
2099
2100         while (wanted > 0) {
2101                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2102                         return;
2103         }
2104         atomic_inc(&netstamp_needed_deferred);
2105         schedule_work(&netstamp_work);
2106 #else
2107         static_branch_inc(&netstamp_needed_key);
2108 #endif
2109 }
2110 EXPORT_SYMBOL(net_enable_timestamp);
2111
2112 void net_disable_timestamp(void)
2113 {
2114 #ifdef CONFIG_JUMP_LABEL
2115         int wanted = atomic_read(&netstamp_wanted);
2116
2117         while (wanted > 1) {
2118                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2119                         return;
2120         }
2121         atomic_dec(&netstamp_needed_deferred);
2122         schedule_work(&netstamp_work);
2123 #else
2124         static_branch_dec(&netstamp_needed_key);
2125 #endif
2126 }
2127 EXPORT_SYMBOL(net_disable_timestamp);
2128
2129 static inline void net_timestamp_set(struct sk_buff *skb)
2130 {
2131         skb->tstamp = 0;
2132         skb->mono_delivery_time = 0;
2133         if (static_branch_unlikely(&netstamp_needed_key))
2134                 skb->tstamp = ktime_get_real();
2135 }
2136
2137 #define net_timestamp_check(COND, SKB)                          \
2138         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2139                 if ((COND) && !(SKB)->tstamp)                   \
2140                         (SKB)->tstamp = ktime_get_real();       \
2141         }                                                       \
2142
2143 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2144 {
2145         return __is_skb_forwardable(dev, skb, true);
2146 }
2147 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2148
2149 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2150                               bool check_mtu)
2151 {
2152         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2153
2154         if (likely(!ret)) {
2155                 skb->protocol = eth_type_trans(skb, dev);
2156                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2157         }
2158
2159         return ret;
2160 }
2161
2162 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2163 {
2164         return __dev_forward_skb2(dev, skb, true);
2165 }
2166 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2167
2168 /**
2169  * dev_forward_skb - loopback an skb to another netif
2170  *
2171  * @dev: destination network device
2172  * @skb: buffer to forward
2173  *
2174  * return values:
2175  *      NET_RX_SUCCESS  (no congestion)
2176  *      NET_RX_DROP     (packet was dropped, but freed)
2177  *
2178  * dev_forward_skb can be used for injecting an skb from the
2179  * start_xmit function of one device into the receive queue
2180  * of another device.
2181  *
2182  * The receiving device may be in another namespace, so
2183  * we have to clear all information in the skb that could
2184  * impact namespace isolation.
2185  */
2186 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2187 {
2188         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2189 }
2190 EXPORT_SYMBOL_GPL(dev_forward_skb);
2191
2192 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2193 {
2194         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2195 }
2196
2197 static inline int deliver_skb(struct sk_buff *skb,
2198                               struct packet_type *pt_prev,
2199                               struct net_device *orig_dev)
2200 {
2201         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2202                 return -ENOMEM;
2203         refcount_inc(&skb->users);
2204         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2205 }
2206
2207 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2208                                           struct packet_type **pt,
2209                                           struct net_device *orig_dev,
2210                                           __be16 type,
2211                                           struct list_head *ptype_list)
2212 {
2213         struct packet_type *ptype, *pt_prev = *pt;
2214
2215         list_for_each_entry_rcu(ptype, ptype_list, list) {
2216                 if (ptype->type != type)
2217                         continue;
2218                 if (pt_prev)
2219                         deliver_skb(skb, pt_prev, orig_dev);
2220                 pt_prev = ptype;
2221         }
2222         *pt = pt_prev;
2223 }
2224
2225 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2226 {
2227         if (!ptype->af_packet_priv || !skb->sk)
2228                 return false;
2229
2230         if (ptype->id_match)
2231                 return ptype->id_match(ptype, skb->sk);
2232         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2233                 return true;
2234
2235         return false;
2236 }
2237
2238 /**
2239  * dev_nit_active - return true if any network interface taps are in use
2240  *
2241  * @dev: network device to check for the presence of taps
2242  */
2243 bool dev_nit_active(struct net_device *dev)
2244 {
2245         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2246 }
2247 EXPORT_SYMBOL_GPL(dev_nit_active);
2248
2249 /*
2250  *      Support routine. Sends outgoing frames to any network
2251  *      taps currently in use.
2252  */
2253
2254 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2255 {
2256         struct packet_type *ptype;
2257         struct sk_buff *skb2 = NULL;
2258         struct packet_type *pt_prev = NULL;
2259         struct list_head *ptype_list = &ptype_all;
2260
2261         rcu_read_lock();
2262 again:
2263         list_for_each_entry_rcu(ptype, ptype_list, list) {
2264                 if (READ_ONCE(ptype->ignore_outgoing))
2265                         continue;
2266
2267                 /* Never send packets back to the socket
2268                  * they originated from - MvS (miquels@drinkel.ow.org)
2269                  */
2270                 if (skb_loop_sk(ptype, skb))
2271                         continue;
2272
2273                 if (pt_prev) {
2274                         deliver_skb(skb2, pt_prev, skb->dev);
2275                         pt_prev = ptype;
2276                         continue;
2277                 }
2278
2279                 /* need to clone skb, done only once */
2280                 skb2 = skb_clone(skb, GFP_ATOMIC);
2281                 if (!skb2)
2282                         goto out_unlock;
2283
2284                 net_timestamp_set(skb2);
2285
2286                 /* skb->nh should be correctly
2287                  * set by sender, so that the second statement is
2288                  * just protection against buggy protocols.
2289                  */
2290                 skb_reset_mac_header(skb2);
2291
2292                 if (skb_network_header(skb2) < skb2->data ||
2293                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2294                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2295                                              ntohs(skb2->protocol),
2296                                              dev->name);
2297                         skb_reset_network_header(skb2);
2298                 }
2299
2300                 skb2->transport_header = skb2->network_header;
2301                 skb2->pkt_type = PACKET_OUTGOING;
2302                 pt_prev = ptype;
2303         }
2304
2305         if (ptype_list == &ptype_all) {
2306                 ptype_list = &dev->ptype_all;
2307                 goto again;
2308         }
2309 out_unlock:
2310         if (pt_prev) {
2311                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2312                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2313                 else
2314                         kfree_skb(skb2);
2315         }
2316         rcu_read_unlock();
2317 }
2318 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2319
2320 /**
2321  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2322  * @dev: Network device
2323  * @txq: number of queues available
2324  *
2325  * If real_num_tx_queues is changed the tc mappings may no longer be
2326  * valid. To resolve this verify the tc mapping remains valid and if
2327  * not NULL the mapping. With no priorities mapping to this
2328  * offset/count pair it will no longer be used. In the worst case TC0
2329  * is invalid nothing can be done so disable priority mappings. If is
2330  * expected that drivers will fix this mapping if they can before
2331  * calling netif_set_real_num_tx_queues.
2332  */
2333 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2334 {
2335         int i;
2336         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2337
2338         /* If TC0 is invalidated disable TC mapping */
2339         if (tc->offset + tc->count > txq) {
2340                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2341                 dev->num_tc = 0;
2342                 return;
2343         }
2344
2345         /* Invalidated prio to tc mappings set to TC0 */
2346         for (i = 1; i < TC_BITMASK + 1; i++) {
2347                 int q = netdev_get_prio_tc_map(dev, i);
2348
2349                 tc = &dev->tc_to_txq[q];
2350                 if (tc->offset + tc->count > txq) {
2351                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2352                                     i, q);
2353                         netdev_set_prio_tc_map(dev, i, 0);
2354                 }
2355         }
2356 }
2357
2358 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2359 {
2360         if (dev->num_tc) {
2361                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2362                 int i;
2363
2364                 /* walk through the TCs and see if it falls into any of them */
2365                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2366                         if ((txq - tc->offset) < tc->count)
2367                                 return i;
2368                 }
2369
2370                 /* didn't find it, just return -1 to indicate no match */
2371                 return -1;
2372         }
2373
2374         return 0;
2375 }
2376 EXPORT_SYMBOL(netdev_txq_to_tc);
2377
2378 #ifdef CONFIG_XPS
2379 static struct static_key xps_needed __read_mostly;
2380 static struct static_key xps_rxqs_needed __read_mostly;
2381 static DEFINE_MUTEX(xps_map_mutex);
2382 #define xmap_dereference(P)             \
2383         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2384
2385 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2386                              struct xps_dev_maps *old_maps, int tci, u16 index)
2387 {
2388         struct xps_map *map = NULL;
2389         int pos;
2390
2391         map = xmap_dereference(dev_maps->attr_map[tci]);
2392         if (!map)
2393                 return false;
2394
2395         for (pos = map->len; pos--;) {
2396                 if (map->queues[pos] != index)
2397                         continue;
2398
2399                 if (map->len > 1) {
2400                         map->queues[pos] = map->queues[--map->len];
2401                         break;
2402                 }
2403
2404                 if (old_maps)
2405                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2406                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2407                 kfree_rcu(map, rcu);
2408                 return false;
2409         }
2410
2411         return true;
2412 }
2413
2414 static bool remove_xps_queue_cpu(struct net_device *dev,
2415                                  struct xps_dev_maps *dev_maps,
2416                                  int cpu, u16 offset, u16 count)
2417 {
2418         int num_tc = dev_maps->num_tc;
2419         bool active = false;
2420         int tci;
2421
2422         for (tci = cpu * num_tc; num_tc--; tci++) {
2423                 int i, j;
2424
2425                 for (i = count, j = offset; i--; j++) {
2426                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2427                                 break;
2428                 }
2429
2430                 active |= i < 0;
2431         }
2432
2433         return active;
2434 }
2435
2436 static void reset_xps_maps(struct net_device *dev,
2437                            struct xps_dev_maps *dev_maps,
2438                            enum xps_map_type type)
2439 {
2440         static_key_slow_dec_cpuslocked(&xps_needed);
2441         if (type == XPS_RXQS)
2442                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2443
2444         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2445
2446         kfree_rcu(dev_maps, rcu);
2447 }
2448
2449 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2450                            u16 offset, u16 count)
2451 {
2452         struct xps_dev_maps *dev_maps;
2453         bool active = false;
2454         int i, j;
2455
2456         dev_maps = xmap_dereference(dev->xps_maps[type]);
2457         if (!dev_maps)
2458                 return;
2459
2460         for (j = 0; j < dev_maps->nr_ids; j++)
2461                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2462         if (!active)
2463                 reset_xps_maps(dev, dev_maps, type);
2464
2465         if (type == XPS_CPUS) {
2466                 for (i = offset + (count - 1); count--; i--)
2467                         netdev_queue_numa_node_write(
2468                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2469         }
2470 }
2471
2472 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2473                                    u16 count)
2474 {
2475         if (!static_key_false(&xps_needed))
2476                 return;
2477
2478         cpus_read_lock();
2479         mutex_lock(&xps_map_mutex);
2480
2481         if (static_key_false(&xps_rxqs_needed))
2482                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2483
2484         clean_xps_maps(dev, XPS_CPUS, offset, count);
2485
2486         mutex_unlock(&xps_map_mutex);
2487         cpus_read_unlock();
2488 }
2489
2490 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2491 {
2492         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2493 }
2494
2495 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2496                                       u16 index, bool is_rxqs_map)
2497 {
2498         struct xps_map *new_map;
2499         int alloc_len = XPS_MIN_MAP_ALLOC;
2500         int i, pos;
2501
2502         for (pos = 0; map && pos < map->len; pos++) {
2503                 if (map->queues[pos] != index)
2504                         continue;
2505                 return map;
2506         }
2507
2508         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2509         if (map) {
2510                 if (pos < map->alloc_len)
2511                         return map;
2512
2513                 alloc_len = map->alloc_len * 2;
2514         }
2515
2516         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2517          *  map
2518          */
2519         if (is_rxqs_map)
2520                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2521         else
2522                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2523                                        cpu_to_node(attr_index));
2524         if (!new_map)
2525                 return NULL;
2526
2527         for (i = 0; i < pos; i++)
2528                 new_map->queues[i] = map->queues[i];
2529         new_map->alloc_len = alloc_len;
2530         new_map->len = pos;
2531
2532         return new_map;
2533 }
2534
2535 /* Copy xps maps at a given index */
2536 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2537                               struct xps_dev_maps *new_dev_maps, int index,
2538                               int tc, bool skip_tc)
2539 {
2540         int i, tci = index * dev_maps->num_tc;
2541         struct xps_map *map;
2542
2543         /* copy maps belonging to foreign traffic classes */
2544         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2545                 if (i == tc && skip_tc)
2546                         continue;
2547
2548                 /* fill in the new device map from the old device map */
2549                 map = xmap_dereference(dev_maps->attr_map[tci]);
2550                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2551         }
2552 }
2553
2554 /* Must be called under cpus_read_lock */
2555 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2556                           u16 index, enum xps_map_type type)
2557 {
2558         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2559         const unsigned long *online_mask = NULL;
2560         bool active = false, copy = false;
2561         int i, j, tci, numa_node_id = -2;
2562         int maps_sz, num_tc = 1, tc = 0;
2563         struct xps_map *map, *new_map;
2564         unsigned int nr_ids;
2565
2566         WARN_ON_ONCE(index >= dev->num_tx_queues);
2567
2568         if (dev->num_tc) {
2569                 /* Do not allow XPS on subordinate device directly */
2570                 num_tc = dev->num_tc;
2571                 if (num_tc < 0)
2572                         return -EINVAL;
2573
2574                 /* If queue belongs to subordinate dev use its map */
2575                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2576
2577                 tc = netdev_txq_to_tc(dev, index);
2578                 if (tc < 0)
2579                         return -EINVAL;
2580         }
2581
2582         mutex_lock(&xps_map_mutex);
2583
2584         dev_maps = xmap_dereference(dev->xps_maps[type]);
2585         if (type == XPS_RXQS) {
2586                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2587                 nr_ids = dev->num_rx_queues;
2588         } else {
2589                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2590                 if (num_possible_cpus() > 1)
2591                         online_mask = cpumask_bits(cpu_online_mask);
2592                 nr_ids = nr_cpu_ids;
2593         }
2594
2595         if (maps_sz < L1_CACHE_BYTES)
2596                 maps_sz = L1_CACHE_BYTES;
2597
2598         /* The old dev_maps could be larger or smaller than the one we're
2599          * setting up now, as dev->num_tc or nr_ids could have been updated in
2600          * between. We could try to be smart, but let's be safe instead and only
2601          * copy foreign traffic classes if the two map sizes match.
2602          */
2603         if (dev_maps &&
2604             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2605                 copy = true;
2606
2607         /* allocate memory for queue storage */
2608         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2609              j < nr_ids;) {
2610                 if (!new_dev_maps) {
2611                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2612                         if (!new_dev_maps) {
2613                                 mutex_unlock(&xps_map_mutex);
2614                                 return -ENOMEM;
2615                         }
2616
2617                         new_dev_maps->nr_ids = nr_ids;
2618                         new_dev_maps->num_tc = num_tc;
2619                 }
2620
2621                 tci = j * num_tc + tc;
2622                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2623
2624                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2625                 if (!map)
2626                         goto error;
2627
2628                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2629         }
2630
2631         if (!new_dev_maps)
2632                 goto out_no_new_maps;
2633
2634         if (!dev_maps) {
2635                 /* Increment static keys at most once per type */
2636                 static_key_slow_inc_cpuslocked(&xps_needed);
2637                 if (type == XPS_RXQS)
2638                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2639         }
2640
2641         for (j = 0; j < nr_ids; j++) {
2642                 bool skip_tc = false;
2643
2644                 tci = j * num_tc + tc;
2645                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2646                     netif_attr_test_online(j, online_mask, nr_ids)) {
2647                         /* add tx-queue to CPU/rx-queue maps */
2648                         int pos = 0;
2649
2650                         skip_tc = true;
2651
2652                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2653                         while ((pos < map->len) && (map->queues[pos] != index))
2654                                 pos++;
2655
2656                         if (pos == map->len)
2657                                 map->queues[map->len++] = index;
2658 #ifdef CONFIG_NUMA
2659                         if (type == XPS_CPUS) {
2660                                 if (numa_node_id == -2)
2661                                         numa_node_id = cpu_to_node(j);
2662                                 else if (numa_node_id != cpu_to_node(j))
2663                                         numa_node_id = -1;
2664                         }
2665 #endif
2666                 }
2667
2668                 if (copy)
2669                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2670                                           skip_tc);
2671         }
2672
2673         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2674
2675         /* Cleanup old maps */
2676         if (!dev_maps)
2677                 goto out_no_old_maps;
2678
2679         for (j = 0; j < dev_maps->nr_ids; j++) {
2680                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2681                         map = xmap_dereference(dev_maps->attr_map[tci]);
2682                         if (!map)
2683                                 continue;
2684
2685                         if (copy) {
2686                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2687                                 if (map == new_map)
2688                                         continue;
2689                         }
2690
2691                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2692                         kfree_rcu(map, rcu);
2693                 }
2694         }
2695
2696         old_dev_maps = dev_maps;
2697
2698 out_no_old_maps:
2699         dev_maps = new_dev_maps;
2700         active = true;
2701
2702 out_no_new_maps:
2703         if (type == XPS_CPUS)
2704                 /* update Tx queue numa node */
2705                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2706                                              (numa_node_id >= 0) ?
2707                                              numa_node_id : NUMA_NO_NODE);
2708
2709         if (!dev_maps)
2710                 goto out_no_maps;
2711
2712         /* removes tx-queue from unused CPUs/rx-queues */
2713         for (j = 0; j < dev_maps->nr_ids; j++) {
2714                 tci = j * dev_maps->num_tc;
2715
2716                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2717                         if (i == tc &&
2718                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2719                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2720                                 continue;
2721
2722                         active |= remove_xps_queue(dev_maps,
2723                                                    copy ? old_dev_maps : NULL,
2724                                                    tci, index);
2725                 }
2726         }
2727
2728         if (old_dev_maps)
2729                 kfree_rcu(old_dev_maps, rcu);
2730
2731         /* free map if not active */
2732         if (!active)
2733                 reset_xps_maps(dev, dev_maps, type);
2734
2735 out_no_maps:
2736         mutex_unlock(&xps_map_mutex);
2737
2738         return 0;
2739 error:
2740         /* remove any maps that we added */
2741         for (j = 0; j < nr_ids; j++) {
2742                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2743                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2744                         map = copy ?
2745                               xmap_dereference(dev_maps->attr_map[tci]) :
2746                               NULL;
2747                         if (new_map && new_map != map)
2748                                 kfree(new_map);
2749                 }
2750         }
2751
2752         mutex_unlock(&xps_map_mutex);
2753
2754         kfree(new_dev_maps);
2755         return -ENOMEM;
2756 }
2757 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2758
2759 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2760                         u16 index)
2761 {
2762         int ret;
2763
2764         cpus_read_lock();
2765         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2766         cpus_read_unlock();
2767
2768         return ret;
2769 }
2770 EXPORT_SYMBOL(netif_set_xps_queue);
2771
2772 #endif
2773 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2774 {
2775         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2776
2777         /* Unbind any subordinate channels */
2778         while (txq-- != &dev->_tx[0]) {
2779                 if (txq->sb_dev)
2780                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2781         }
2782 }
2783
2784 void netdev_reset_tc(struct net_device *dev)
2785 {
2786 #ifdef CONFIG_XPS
2787         netif_reset_xps_queues_gt(dev, 0);
2788 #endif
2789         netdev_unbind_all_sb_channels(dev);
2790
2791         /* Reset TC configuration of device */
2792         dev->num_tc = 0;
2793         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2794         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2795 }
2796 EXPORT_SYMBOL(netdev_reset_tc);
2797
2798 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2799 {
2800         if (tc >= dev->num_tc)
2801                 return -EINVAL;
2802
2803 #ifdef CONFIG_XPS
2804         netif_reset_xps_queues(dev, offset, count);
2805 #endif
2806         dev->tc_to_txq[tc].count = count;
2807         dev->tc_to_txq[tc].offset = offset;
2808         return 0;
2809 }
2810 EXPORT_SYMBOL(netdev_set_tc_queue);
2811
2812 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2813 {
2814         if (num_tc > TC_MAX_QUEUE)
2815                 return -EINVAL;
2816
2817 #ifdef CONFIG_XPS
2818         netif_reset_xps_queues_gt(dev, 0);
2819 #endif
2820         netdev_unbind_all_sb_channels(dev);
2821
2822         dev->num_tc = num_tc;
2823         return 0;
2824 }
2825 EXPORT_SYMBOL(netdev_set_num_tc);
2826
2827 void netdev_unbind_sb_channel(struct net_device *dev,
2828                               struct net_device *sb_dev)
2829 {
2830         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2831
2832 #ifdef CONFIG_XPS
2833         netif_reset_xps_queues_gt(sb_dev, 0);
2834 #endif
2835         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2836         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2837
2838         while (txq-- != &dev->_tx[0]) {
2839                 if (txq->sb_dev == sb_dev)
2840                         txq->sb_dev = NULL;
2841         }
2842 }
2843 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2844
2845 int netdev_bind_sb_channel_queue(struct net_device *dev,
2846                                  struct net_device *sb_dev,
2847                                  u8 tc, u16 count, u16 offset)
2848 {
2849         /* Make certain the sb_dev and dev are already configured */
2850         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2851                 return -EINVAL;
2852
2853         /* We cannot hand out queues we don't have */
2854         if ((offset + count) > dev->real_num_tx_queues)
2855                 return -EINVAL;
2856
2857         /* Record the mapping */
2858         sb_dev->tc_to_txq[tc].count = count;
2859         sb_dev->tc_to_txq[tc].offset = offset;
2860
2861         /* Provide a way for Tx queue to find the tc_to_txq map or
2862          * XPS map for itself.
2863          */
2864         while (count--)
2865                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2866
2867         return 0;
2868 }
2869 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2870
2871 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2872 {
2873         /* Do not use a multiqueue device to represent a subordinate channel */
2874         if (netif_is_multiqueue(dev))
2875                 return -ENODEV;
2876
2877         /* We allow channels 1 - 32767 to be used for subordinate channels.
2878          * Channel 0 is meant to be "native" mode and used only to represent
2879          * the main root device. We allow writing 0 to reset the device back
2880          * to normal mode after being used as a subordinate channel.
2881          */
2882         if (channel > S16_MAX)
2883                 return -EINVAL;
2884
2885         dev->num_tc = -channel;
2886
2887         return 0;
2888 }
2889 EXPORT_SYMBOL(netdev_set_sb_channel);
2890
2891 /*
2892  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2893  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2894  */
2895 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2896 {
2897         bool disabling;
2898         int rc;
2899
2900         disabling = txq < dev->real_num_tx_queues;
2901
2902         if (txq < 1 || txq > dev->num_tx_queues)
2903                 return -EINVAL;
2904
2905         if (dev->reg_state == NETREG_REGISTERED ||
2906             dev->reg_state == NETREG_UNREGISTERING) {
2907                 ASSERT_RTNL();
2908
2909                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2910                                                   txq);
2911                 if (rc)
2912                         return rc;
2913
2914                 if (dev->num_tc)
2915                         netif_setup_tc(dev, txq);
2916
2917                 dev_qdisc_change_real_num_tx(dev, txq);
2918
2919                 dev->real_num_tx_queues = txq;
2920
2921                 if (disabling) {
2922                         synchronize_net();
2923                         qdisc_reset_all_tx_gt(dev, txq);
2924 #ifdef CONFIG_XPS
2925                         netif_reset_xps_queues_gt(dev, txq);
2926 #endif
2927                 }
2928         } else {
2929                 dev->real_num_tx_queues = txq;
2930         }
2931
2932         return 0;
2933 }
2934 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2935
2936 #ifdef CONFIG_SYSFS
2937 /**
2938  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2939  *      @dev: Network device
2940  *      @rxq: Actual number of RX queues
2941  *
2942  *      This must be called either with the rtnl_lock held or before
2943  *      registration of the net device.  Returns 0 on success, or a
2944  *      negative error code.  If called before registration, it always
2945  *      succeeds.
2946  */
2947 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2948 {
2949         int rc;
2950
2951         if (rxq < 1 || rxq > dev->num_rx_queues)
2952                 return -EINVAL;
2953
2954         if (dev->reg_state == NETREG_REGISTERED) {
2955                 ASSERT_RTNL();
2956
2957                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2958                                                   rxq);
2959                 if (rc)
2960                         return rc;
2961         }
2962
2963         dev->real_num_rx_queues = rxq;
2964         return 0;
2965 }
2966 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2967 #endif
2968
2969 /**
2970  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2971  *      @dev: Network device
2972  *      @txq: Actual number of TX queues
2973  *      @rxq: Actual number of RX queues
2974  *
2975  *      Set the real number of both TX and RX queues.
2976  *      Does nothing if the number of queues is already correct.
2977  */
2978 int netif_set_real_num_queues(struct net_device *dev,
2979                               unsigned int txq, unsigned int rxq)
2980 {
2981         unsigned int old_rxq = dev->real_num_rx_queues;
2982         int err;
2983
2984         if (txq < 1 || txq > dev->num_tx_queues ||
2985             rxq < 1 || rxq > dev->num_rx_queues)
2986                 return -EINVAL;
2987
2988         /* Start from increases, so the error path only does decreases -
2989          * decreases can't fail.
2990          */
2991         if (rxq > dev->real_num_rx_queues) {
2992                 err = netif_set_real_num_rx_queues(dev, rxq);
2993                 if (err)
2994                         return err;
2995         }
2996         if (txq > dev->real_num_tx_queues) {
2997                 err = netif_set_real_num_tx_queues(dev, txq);
2998                 if (err)
2999                         goto undo_rx;
3000         }
3001         if (rxq < dev->real_num_rx_queues)
3002                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3003         if (txq < dev->real_num_tx_queues)
3004                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3005
3006         return 0;
3007 undo_rx:
3008         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3009         return err;
3010 }
3011 EXPORT_SYMBOL(netif_set_real_num_queues);
3012
3013 /**
3014  * netif_set_tso_max_size() - set the max size of TSO frames supported
3015  * @dev:        netdev to update
3016  * @size:       max skb->len of a TSO frame
3017  *
3018  * Set the limit on the size of TSO super-frames the device can handle.
3019  * Unless explicitly set the stack will assume the value of
3020  * %GSO_LEGACY_MAX_SIZE.
3021  */
3022 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3023 {
3024         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3025         if (size < READ_ONCE(dev->gso_max_size))
3026                 netif_set_gso_max_size(dev, size);
3027         if (size < READ_ONCE(dev->gso_ipv4_max_size))
3028                 netif_set_gso_ipv4_max_size(dev, size);
3029 }
3030 EXPORT_SYMBOL(netif_set_tso_max_size);
3031
3032 /**
3033  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3034  * @dev:        netdev to update
3035  * @segs:       max number of TCP segments
3036  *
3037  * Set the limit on the number of TCP segments the device can generate from
3038  * a single TSO super-frame.
3039  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3040  */
3041 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3042 {
3043         dev->tso_max_segs = segs;
3044         if (segs < READ_ONCE(dev->gso_max_segs))
3045                 netif_set_gso_max_segs(dev, segs);
3046 }
3047 EXPORT_SYMBOL(netif_set_tso_max_segs);
3048
3049 /**
3050  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3051  * @to:         netdev to update
3052  * @from:       netdev from which to copy the limits
3053  */
3054 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3055 {
3056         netif_set_tso_max_size(to, from->tso_max_size);
3057         netif_set_tso_max_segs(to, from->tso_max_segs);
3058 }
3059 EXPORT_SYMBOL(netif_inherit_tso_max);
3060
3061 /**
3062  * netif_get_num_default_rss_queues - default number of RSS queues
3063  *
3064  * Default value is the number of physical cores if there are only 1 or 2, or
3065  * divided by 2 if there are more.
3066  */
3067 int netif_get_num_default_rss_queues(void)
3068 {
3069         cpumask_var_t cpus;
3070         int cpu, count = 0;
3071
3072         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3073                 return 1;
3074
3075         cpumask_copy(cpus, cpu_online_mask);
3076         for_each_cpu(cpu, cpus) {
3077                 ++count;
3078                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3079         }
3080         free_cpumask_var(cpus);
3081
3082         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3083 }
3084 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3085
3086 static void __netif_reschedule(struct Qdisc *q)
3087 {
3088         struct softnet_data *sd;
3089         unsigned long flags;
3090
3091         local_irq_save(flags);
3092         sd = this_cpu_ptr(&softnet_data);
3093         q->next_sched = NULL;
3094         *sd->output_queue_tailp = q;
3095         sd->output_queue_tailp = &q->next_sched;
3096         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3097         local_irq_restore(flags);
3098 }
3099
3100 void __netif_schedule(struct Qdisc *q)
3101 {
3102         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3103                 __netif_reschedule(q);
3104 }
3105 EXPORT_SYMBOL(__netif_schedule);
3106
3107 struct dev_kfree_skb_cb {
3108         enum skb_drop_reason reason;
3109 };
3110
3111 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3112 {
3113         return (struct dev_kfree_skb_cb *)skb->cb;
3114 }
3115
3116 void netif_schedule_queue(struct netdev_queue *txq)
3117 {
3118         rcu_read_lock();
3119         if (!netif_xmit_stopped(txq)) {
3120                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3121
3122                 __netif_schedule(q);
3123         }
3124         rcu_read_unlock();
3125 }
3126 EXPORT_SYMBOL(netif_schedule_queue);
3127
3128 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3129 {
3130         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3131                 struct Qdisc *q;
3132
3133                 rcu_read_lock();
3134                 q = rcu_dereference(dev_queue->qdisc);
3135                 __netif_schedule(q);
3136                 rcu_read_unlock();
3137         }
3138 }
3139 EXPORT_SYMBOL(netif_tx_wake_queue);
3140
3141 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3142 {
3143         unsigned long flags;
3144
3145         if (unlikely(!skb))
3146                 return;
3147
3148         if (likely(refcount_read(&skb->users) == 1)) {
3149                 smp_rmb();
3150                 refcount_set(&skb->users, 0);
3151         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3152                 return;
3153         }
3154         get_kfree_skb_cb(skb)->reason = reason;
3155         local_irq_save(flags);
3156         skb->next = __this_cpu_read(softnet_data.completion_queue);
3157         __this_cpu_write(softnet_data.completion_queue, skb);
3158         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3159         local_irq_restore(flags);
3160 }
3161 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3162
3163 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3164 {
3165         if (in_hardirq() || irqs_disabled())
3166                 dev_kfree_skb_irq_reason(skb, reason);
3167         else
3168                 kfree_skb_reason(skb, reason);
3169 }
3170 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3171
3172
3173 /**
3174  * netif_device_detach - mark device as removed
3175  * @dev: network device
3176  *
3177  * Mark device as removed from system and therefore no longer available.
3178  */
3179 void netif_device_detach(struct net_device *dev)
3180 {
3181         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3182             netif_running(dev)) {
3183                 netif_tx_stop_all_queues(dev);
3184         }
3185 }
3186 EXPORT_SYMBOL(netif_device_detach);
3187
3188 /**
3189  * netif_device_attach - mark device as attached
3190  * @dev: network device
3191  *
3192  * Mark device as attached from system and restart if needed.
3193  */
3194 void netif_device_attach(struct net_device *dev)
3195 {
3196         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3197             netif_running(dev)) {
3198                 netif_tx_wake_all_queues(dev);
3199                 __netdev_watchdog_up(dev);
3200         }
3201 }
3202 EXPORT_SYMBOL(netif_device_attach);
3203
3204 /*
3205  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3206  * to be used as a distribution range.
3207  */
3208 static u16 skb_tx_hash(const struct net_device *dev,
3209                        const struct net_device *sb_dev,
3210                        struct sk_buff *skb)
3211 {
3212         u32 hash;
3213         u16 qoffset = 0;
3214         u16 qcount = dev->real_num_tx_queues;
3215
3216         if (dev->num_tc) {
3217                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3218
3219                 qoffset = sb_dev->tc_to_txq[tc].offset;
3220                 qcount = sb_dev->tc_to_txq[tc].count;
3221                 if (unlikely(!qcount)) {
3222                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3223                                              sb_dev->name, qoffset, tc);
3224                         qoffset = 0;
3225                         qcount = dev->real_num_tx_queues;
3226                 }
3227         }
3228
3229         if (skb_rx_queue_recorded(skb)) {
3230                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3231                 hash = skb_get_rx_queue(skb);
3232                 if (hash >= qoffset)
3233                         hash -= qoffset;
3234                 while (unlikely(hash >= qcount))
3235                         hash -= qcount;
3236                 return hash + qoffset;
3237         }
3238
3239         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3240 }
3241
3242 void skb_warn_bad_offload(const struct sk_buff *skb)
3243 {
3244         static const netdev_features_t null_features;
3245         struct net_device *dev = skb->dev;
3246         const char *name = "";
3247
3248         if (!net_ratelimit())
3249                 return;
3250
3251         if (dev) {
3252                 if (dev->dev.parent)
3253                         name = dev_driver_string(dev->dev.parent);
3254                 else
3255                         name = netdev_name(dev);
3256         }
3257         skb_dump(KERN_WARNING, skb, false);
3258         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3259              name, dev ? &dev->features : &null_features,
3260              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3261 }
3262
3263 /*
3264  * Invalidate hardware checksum when packet is to be mangled, and
3265  * complete checksum manually on outgoing path.
3266  */
3267 int skb_checksum_help(struct sk_buff *skb)
3268 {
3269         __wsum csum;
3270         int ret = 0, offset;
3271
3272         if (skb->ip_summed == CHECKSUM_COMPLETE)
3273                 goto out_set_summed;
3274
3275         if (unlikely(skb_is_gso(skb))) {
3276                 skb_warn_bad_offload(skb);
3277                 return -EINVAL;
3278         }
3279
3280         /* Before computing a checksum, we should make sure no frag could
3281          * be modified by an external entity : checksum could be wrong.
3282          */
3283         if (skb_has_shared_frag(skb)) {
3284                 ret = __skb_linearize(skb);
3285                 if (ret)
3286                         goto out;
3287         }
3288
3289         offset = skb_checksum_start_offset(skb);
3290         ret = -EINVAL;
3291         if (unlikely(offset >= skb_headlen(skb))) {
3292                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3293                 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3294                           offset, skb_headlen(skb));
3295                 goto out;
3296         }
3297         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3298
3299         offset += skb->csum_offset;
3300         if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3301                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3302                 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3303                           offset + sizeof(__sum16), skb_headlen(skb));
3304                 goto out;
3305         }
3306         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3307         if (ret)
3308                 goto out;
3309
3310         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3311 out_set_summed:
3312         skb->ip_summed = CHECKSUM_NONE;
3313 out:
3314         return ret;
3315 }
3316 EXPORT_SYMBOL(skb_checksum_help);
3317
3318 int skb_crc32c_csum_help(struct sk_buff *skb)
3319 {
3320         __le32 crc32c_csum;
3321         int ret = 0, offset, start;
3322
3323         if (skb->ip_summed != CHECKSUM_PARTIAL)
3324                 goto out;
3325
3326         if (unlikely(skb_is_gso(skb)))
3327                 goto out;
3328
3329         /* Before computing a checksum, we should make sure no frag could
3330          * be modified by an external entity : checksum could be wrong.
3331          */
3332         if (unlikely(skb_has_shared_frag(skb))) {
3333                 ret = __skb_linearize(skb);
3334                 if (ret)
3335                         goto out;
3336         }
3337         start = skb_checksum_start_offset(skb);
3338         offset = start + offsetof(struct sctphdr, checksum);
3339         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3340                 ret = -EINVAL;
3341                 goto out;
3342         }
3343
3344         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3345         if (ret)
3346                 goto out;
3347
3348         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3349                                                   skb->len - start, ~(__u32)0,
3350                                                   crc32c_csum_stub));
3351         *(__le32 *)(skb->data + offset) = crc32c_csum;
3352         skb_reset_csum_not_inet(skb);
3353 out:
3354         return ret;
3355 }
3356
3357 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3358 {
3359         __be16 type = skb->protocol;
3360
3361         /* Tunnel gso handlers can set protocol to ethernet. */
3362         if (type == htons(ETH_P_TEB)) {
3363                 struct ethhdr *eth;
3364
3365                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3366                         return 0;
3367
3368                 eth = (struct ethhdr *)skb->data;
3369                 type = eth->h_proto;
3370         }
3371
3372         return vlan_get_protocol_and_depth(skb, type, depth);
3373 }
3374
3375
3376 /* Take action when hardware reception checksum errors are detected. */
3377 #ifdef CONFIG_BUG
3378 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3379 {
3380         netdev_err(dev, "hw csum failure\n");
3381         skb_dump(KERN_ERR, skb, true);
3382         dump_stack();
3383 }
3384
3385 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3386 {
3387         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3388 }
3389 EXPORT_SYMBOL(netdev_rx_csum_fault);
3390 #endif
3391
3392 /* XXX: check that highmem exists at all on the given machine. */
3393 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3394 {
3395 #ifdef CONFIG_HIGHMEM
3396         int i;
3397
3398         if (!(dev->features & NETIF_F_HIGHDMA)) {
3399                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3400                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3401
3402                         if (PageHighMem(skb_frag_page(frag)))
3403                                 return 1;
3404                 }
3405         }
3406 #endif
3407         return 0;
3408 }
3409
3410 /* If MPLS offload request, verify we are testing hardware MPLS features
3411  * instead of standard features for the netdev.
3412  */
3413 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3414 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3415                                            netdev_features_t features,
3416                                            __be16 type)
3417 {
3418         if (eth_p_mpls(type))
3419                 features &= skb->dev->mpls_features;
3420
3421         return features;
3422 }
3423 #else
3424 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3425                                            netdev_features_t features,
3426                                            __be16 type)
3427 {
3428         return features;
3429 }
3430 #endif
3431
3432 static netdev_features_t harmonize_features(struct sk_buff *skb,
3433         netdev_features_t features)
3434 {
3435         __be16 type;
3436
3437         type = skb_network_protocol(skb, NULL);
3438         features = net_mpls_features(skb, features, type);
3439
3440         if (skb->ip_summed != CHECKSUM_NONE &&
3441             !can_checksum_protocol(features, type)) {
3442                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3443         }
3444         if (illegal_highdma(skb->dev, skb))
3445                 features &= ~NETIF_F_SG;
3446
3447         return features;
3448 }
3449
3450 netdev_features_t passthru_features_check(struct sk_buff *skb,
3451                                           struct net_device *dev,
3452                                           netdev_features_t features)
3453 {
3454         return features;
3455 }
3456 EXPORT_SYMBOL(passthru_features_check);
3457
3458 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3459                                              struct net_device *dev,
3460                                              netdev_features_t features)
3461 {
3462         return vlan_features_check(skb, features);
3463 }
3464
3465 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3466                                             struct net_device *dev,
3467                                             netdev_features_t features)
3468 {
3469         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3470
3471         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3472                 return features & ~NETIF_F_GSO_MASK;
3473
3474         if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3475                 return features & ~NETIF_F_GSO_MASK;
3476
3477         if (!skb_shinfo(skb)->gso_type) {
3478                 skb_warn_bad_offload(skb);
3479                 return features & ~NETIF_F_GSO_MASK;
3480         }
3481
3482         /* Support for GSO partial features requires software
3483          * intervention before we can actually process the packets
3484          * so we need to strip support for any partial features now
3485          * and we can pull them back in after we have partially
3486          * segmented the frame.
3487          */
3488         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3489                 features &= ~dev->gso_partial_features;
3490
3491         /* Make sure to clear the IPv4 ID mangling feature if the
3492          * IPv4 header has the potential to be fragmented.
3493          */
3494         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3495                 struct iphdr *iph = skb->encapsulation ?
3496                                     inner_ip_hdr(skb) : ip_hdr(skb);
3497
3498                 if (!(iph->frag_off & htons(IP_DF)))
3499                         features &= ~NETIF_F_TSO_MANGLEID;
3500         }
3501
3502         return features;
3503 }
3504
3505 netdev_features_t netif_skb_features(struct sk_buff *skb)
3506 {
3507         struct net_device *dev = skb->dev;
3508         netdev_features_t features = dev->features;
3509
3510         if (skb_is_gso(skb))
3511                 features = gso_features_check(skb, dev, features);
3512
3513         /* If encapsulation offload request, verify we are testing
3514          * hardware encapsulation features instead of standard
3515          * features for the netdev
3516          */
3517         if (skb->encapsulation)
3518                 features &= dev->hw_enc_features;
3519
3520         if (skb_vlan_tagged(skb))
3521                 features = netdev_intersect_features(features,
3522                                                      dev->vlan_features |
3523                                                      NETIF_F_HW_VLAN_CTAG_TX |
3524                                                      NETIF_F_HW_VLAN_STAG_TX);
3525
3526         if (dev->netdev_ops->ndo_features_check)
3527                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3528                                                                 features);
3529         else
3530                 features &= dflt_features_check(skb, dev, features);
3531
3532         return harmonize_features(skb, features);
3533 }
3534 EXPORT_SYMBOL(netif_skb_features);
3535
3536 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3537                     struct netdev_queue *txq, bool more)
3538 {
3539         unsigned int len;
3540         int rc;
3541
3542         if (dev_nit_active(dev))
3543                 dev_queue_xmit_nit(skb, dev);
3544
3545         len = skb->len;
3546         trace_net_dev_start_xmit(skb, dev);
3547         rc = netdev_start_xmit(skb, dev, txq, more);
3548         trace_net_dev_xmit(skb, rc, dev, len);
3549
3550         return rc;
3551 }
3552
3553 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3554                                     struct netdev_queue *txq, int *ret)
3555 {
3556         struct sk_buff *skb = first;
3557         int rc = NETDEV_TX_OK;
3558
3559         while (skb) {
3560                 struct sk_buff *next = skb->next;
3561
3562                 skb_mark_not_on_list(skb);
3563                 rc = xmit_one(skb, dev, txq, next != NULL);
3564                 if (unlikely(!dev_xmit_complete(rc))) {
3565                         skb->next = next;
3566                         goto out;
3567                 }
3568
3569                 skb = next;
3570                 if (netif_tx_queue_stopped(txq) && skb) {
3571                         rc = NETDEV_TX_BUSY;
3572                         break;
3573                 }
3574         }
3575
3576 out:
3577         *ret = rc;
3578         return skb;
3579 }
3580
3581 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3582                                           netdev_features_t features)
3583 {
3584         if (skb_vlan_tag_present(skb) &&
3585             !vlan_hw_offload_capable(features, skb->vlan_proto))
3586                 skb = __vlan_hwaccel_push_inside(skb);
3587         return skb;
3588 }
3589
3590 int skb_csum_hwoffload_help(struct sk_buff *skb,
3591                             const netdev_features_t features)
3592 {
3593         if (unlikely(skb_csum_is_sctp(skb)))
3594                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3595                         skb_crc32c_csum_help(skb);
3596
3597         if (features & NETIF_F_HW_CSUM)
3598                 return 0;
3599
3600         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3601                 switch (skb->csum_offset) {
3602                 case offsetof(struct tcphdr, check):
3603                 case offsetof(struct udphdr, check):
3604                         return 0;
3605                 }
3606         }
3607
3608         return skb_checksum_help(skb);
3609 }
3610 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3611
3612 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3613 {
3614         netdev_features_t features;
3615
3616         features = netif_skb_features(skb);
3617         skb = validate_xmit_vlan(skb, features);
3618         if (unlikely(!skb))
3619                 goto out_null;
3620
3621         skb = sk_validate_xmit_skb(skb, dev);
3622         if (unlikely(!skb))
3623                 goto out_null;
3624
3625         if (netif_needs_gso(skb, features)) {
3626                 struct sk_buff *segs;
3627
3628                 segs = skb_gso_segment(skb, features);
3629                 if (IS_ERR(segs)) {
3630                         goto out_kfree_skb;
3631                 } else if (segs) {
3632                         consume_skb(skb);
3633                         skb = segs;
3634                 }
3635         } else {
3636                 if (skb_needs_linearize(skb, features) &&
3637                     __skb_linearize(skb))
3638                         goto out_kfree_skb;
3639
3640                 /* If packet is not checksummed and device does not
3641                  * support checksumming for this protocol, complete
3642                  * checksumming here.
3643                  */
3644                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3645                         if (skb->encapsulation)
3646                                 skb_set_inner_transport_header(skb,
3647                                                                skb_checksum_start_offset(skb));
3648                         else
3649                                 skb_set_transport_header(skb,
3650                                                          skb_checksum_start_offset(skb));
3651                         if (skb_csum_hwoffload_help(skb, features))
3652                                 goto out_kfree_skb;
3653                 }
3654         }
3655
3656         skb = validate_xmit_xfrm(skb, features, again);
3657
3658         return skb;
3659
3660 out_kfree_skb:
3661         kfree_skb(skb);
3662 out_null:
3663         dev_core_stats_tx_dropped_inc(dev);
3664         return NULL;
3665 }
3666
3667 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3668 {
3669         struct sk_buff *next, *head = NULL, *tail;
3670
3671         for (; skb != NULL; skb = next) {
3672                 next = skb->next;
3673                 skb_mark_not_on_list(skb);
3674
3675                 /* in case skb wont be segmented, point to itself */
3676                 skb->prev = skb;
3677
3678                 skb = validate_xmit_skb(skb, dev, again);
3679                 if (!skb)
3680                         continue;
3681
3682                 if (!head)
3683                         head = skb;
3684                 else
3685                         tail->next = skb;
3686                 /* If skb was segmented, skb->prev points to
3687                  * the last segment. If not, it still contains skb.
3688                  */
3689                 tail = skb->prev;
3690         }
3691         return head;
3692 }
3693 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3694
3695 static void qdisc_pkt_len_init(struct sk_buff *skb)
3696 {
3697         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3698
3699         qdisc_skb_cb(skb)->pkt_len = skb->len;
3700
3701         /* To get more precise estimation of bytes sent on wire,
3702          * we add to pkt_len the headers size of all segments
3703          */
3704         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3705                 u16 gso_segs = shinfo->gso_segs;
3706                 unsigned int hdr_len;
3707
3708                 /* mac layer + network layer */
3709                 hdr_len = skb_transport_offset(skb);
3710
3711                 /* + transport layer */
3712                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3713                         const struct tcphdr *th;
3714                         struct tcphdr _tcphdr;
3715
3716                         th = skb_header_pointer(skb, hdr_len,
3717                                                 sizeof(_tcphdr), &_tcphdr);
3718                         if (likely(th))
3719                                 hdr_len += __tcp_hdrlen(th);
3720                 } else {
3721                         struct udphdr _udphdr;
3722
3723                         if (skb_header_pointer(skb, hdr_len,
3724                                                sizeof(_udphdr), &_udphdr))
3725                                 hdr_len += sizeof(struct udphdr);
3726                 }
3727
3728                 if (shinfo->gso_type & SKB_GSO_DODGY)
3729                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3730                                                 shinfo->gso_size);
3731
3732                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3733         }
3734 }
3735
3736 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3737                              struct sk_buff **to_free,
3738                              struct netdev_queue *txq)
3739 {
3740         int rc;
3741
3742         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3743         if (rc == NET_XMIT_SUCCESS)
3744                 trace_qdisc_enqueue(q, txq, skb);
3745         return rc;
3746 }
3747
3748 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3749                                  struct net_device *dev,
3750                                  struct netdev_queue *txq)
3751 {
3752         spinlock_t *root_lock = qdisc_lock(q);
3753         struct sk_buff *to_free = NULL;
3754         bool contended;
3755         int rc;
3756
3757         qdisc_calculate_pkt_len(skb, q);
3758
3759         tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3760
3761         if (q->flags & TCQ_F_NOLOCK) {
3762                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3763                     qdisc_run_begin(q)) {
3764                         /* Retest nolock_qdisc_is_empty() within the protection
3765                          * of q->seqlock to protect from racing with requeuing.
3766                          */
3767                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3768                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3769                                 __qdisc_run(q);
3770                                 qdisc_run_end(q);
3771
3772                                 goto no_lock_out;
3773                         }
3774
3775                         qdisc_bstats_cpu_update(q, skb);
3776                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3777                             !nolock_qdisc_is_empty(q))
3778                                 __qdisc_run(q);
3779
3780                         qdisc_run_end(q);
3781                         return NET_XMIT_SUCCESS;
3782                 }
3783
3784                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3785                 qdisc_run(q);
3786
3787 no_lock_out:
3788                 if (unlikely(to_free))
3789                         kfree_skb_list_reason(to_free,
3790                                               tcf_get_drop_reason(to_free));
3791                 return rc;
3792         }
3793
3794         if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3795                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3796                 return NET_XMIT_DROP;
3797         }
3798         /*
3799          * Heuristic to force contended enqueues to serialize on a
3800          * separate lock before trying to get qdisc main lock.
3801          * This permits qdisc->running owner to get the lock more
3802          * often and dequeue packets faster.
3803          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3804          * and then other tasks will only enqueue packets. The packets will be
3805          * sent after the qdisc owner is scheduled again. To prevent this
3806          * scenario the task always serialize on the lock.
3807          */
3808         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3809         if (unlikely(contended))
3810                 spin_lock(&q->busylock);
3811
3812         spin_lock(root_lock);
3813         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3814                 __qdisc_drop(skb, &to_free);
3815                 rc = NET_XMIT_DROP;
3816         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3817                    qdisc_run_begin(q)) {
3818                 /*
3819                  * This is a work-conserving queue; there are no old skbs
3820                  * waiting to be sent out; and the qdisc is not running -
3821                  * xmit the skb directly.
3822                  */
3823
3824                 qdisc_bstats_update(q, skb);
3825
3826                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3827                         if (unlikely(contended)) {
3828                                 spin_unlock(&q->busylock);
3829                                 contended = false;
3830                         }
3831                         __qdisc_run(q);
3832                 }
3833
3834                 qdisc_run_end(q);
3835                 rc = NET_XMIT_SUCCESS;
3836         } else {
3837                 WRITE_ONCE(q->owner, smp_processor_id());
3838                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3839                 WRITE_ONCE(q->owner, -1);
3840                 if (qdisc_run_begin(q)) {
3841                         if (unlikely(contended)) {
3842                                 spin_unlock(&q->busylock);
3843                                 contended = false;
3844                         }
3845                         __qdisc_run(q);
3846                         qdisc_run_end(q);
3847                 }
3848         }
3849         spin_unlock(root_lock);
3850         if (unlikely(to_free))
3851                 kfree_skb_list_reason(to_free,
3852                                       tcf_get_drop_reason(to_free));
3853         if (unlikely(contended))
3854                 spin_unlock(&q->busylock);
3855         return rc;
3856 }
3857
3858 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3859 static void skb_update_prio(struct sk_buff *skb)
3860 {
3861         const struct netprio_map *map;
3862         const struct sock *sk;
3863         unsigned int prioidx;
3864
3865         if (skb->priority)
3866                 return;
3867         map = rcu_dereference_bh(skb->dev->priomap);
3868         if (!map)
3869                 return;
3870         sk = skb_to_full_sk(skb);
3871         if (!sk)
3872                 return;
3873
3874         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3875
3876         if (prioidx < map->priomap_len)
3877                 skb->priority = map->priomap[prioidx];
3878 }
3879 #else
3880 #define skb_update_prio(skb)
3881 #endif
3882
3883 /**
3884  *      dev_loopback_xmit - loop back @skb
3885  *      @net: network namespace this loopback is happening in
3886  *      @sk:  sk needed to be a netfilter okfn
3887  *      @skb: buffer to transmit
3888  */
3889 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3890 {
3891         skb_reset_mac_header(skb);
3892         __skb_pull(skb, skb_network_offset(skb));
3893         skb->pkt_type = PACKET_LOOPBACK;
3894         if (skb->ip_summed == CHECKSUM_NONE)
3895                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3896         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3897         skb_dst_force(skb);
3898         netif_rx(skb);
3899         return 0;
3900 }
3901 EXPORT_SYMBOL(dev_loopback_xmit);
3902
3903 #ifdef CONFIG_NET_EGRESS
3904 static struct netdev_queue *
3905 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3906 {
3907         int qm = skb_get_queue_mapping(skb);
3908
3909         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3910 }
3911
3912 static bool netdev_xmit_txqueue_skipped(void)
3913 {
3914         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3915 }
3916
3917 void netdev_xmit_skip_txqueue(bool skip)
3918 {
3919         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3920 }
3921 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3922 #endif /* CONFIG_NET_EGRESS */
3923
3924 #ifdef CONFIG_NET_XGRESS
3925 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3926                   enum skb_drop_reason *drop_reason)
3927 {
3928         int ret = TC_ACT_UNSPEC;
3929 #ifdef CONFIG_NET_CLS_ACT
3930         struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3931         struct tcf_result res;
3932
3933         if (!miniq)
3934                 return ret;
3935
3936         tc_skb_cb(skb)->mru = 0;
3937         tc_skb_cb(skb)->post_ct = false;
3938         tcf_set_drop_reason(skb, *drop_reason);
3939
3940         mini_qdisc_bstats_cpu_update(miniq, skb);
3941         ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3942         /* Only tcf related quirks below. */
3943         switch (ret) {
3944         case TC_ACT_SHOT:
3945                 *drop_reason = tcf_get_drop_reason(skb);
3946                 mini_qdisc_qstats_cpu_drop(miniq);
3947                 break;
3948         case TC_ACT_OK:
3949         case TC_ACT_RECLASSIFY:
3950                 skb->tc_index = TC_H_MIN(res.classid);
3951                 break;
3952         }
3953 #endif /* CONFIG_NET_CLS_ACT */
3954         return ret;
3955 }
3956
3957 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3958
3959 void tcx_inc(void)
3960 {
3961         static_branch_inc(&tcx_needed_key);
3962 }
3963
3964 void tcx_dec(void)
3965 {
3966         static_branch_dec(&tcx_needed_key);
3967 }
3968
3969 static __always_inline enum tcx_action_base
3970 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3971         const bool needs_mac)
3972 {
3973         const struct bpf_mprog_fp *fp;
3974         const struct bpf_prog *prog;
3975         int ret = TCX_NEXT;
3976
3977         if (needs_mac)
3978                 __skb_push(skb, skb->mac_len);
3979         bpf_mprog_foreach_prog(entry, fp, prog) {
3980                 bpf_compute_data_pointers(skb);
3981                 ret = bpf_prog_run(prog, skb);
3982                 if (ret != TCX_NEXT)
3983                         break;
3984         }
3985         if (needs_mac)
3986                 __skb_pull(skb, skb->mac_len);
3987         return tcx_action_code(skb, ret);
3988 }
3989
3990 static __always_inline struct sk_buff *
3991 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3992                    struct net_device *orig_dev, bool *another)
3993 {
3994         struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3995         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3996         int sch_ret;
3997
3998         if (!entry)
3999                 return skb;
4000         if (*pt_prev) {
4001                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4002                 *pt_prev = NULL;
4003         }
4004
4005         qdisc_skb_cb(skb)->pkt_len = skb->len;
4006         tcx_set_ingress(skb, true);
4007
4008         if (static_branch_unlikely(&tcx_needed_key)) {
4009                 sch_ret = tcx_run(entry, skb, true);
4010                 if (sch_ret != TC_ACT_UNSPEC)
4011                         goto ingress_verdict;
4012         }
4013         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4014 ingress_verdict:
4015         switch (sch_ret) {
4016         case TC_ACT_REDIRECT:
4017                 /* skb_mac_header check was done by BPF, so we can safely
4018                  * push the L2 header back before redirecting to another
4019                  * netdev.
4020                  */
4021                 __skb_push(skb, skb->mac_len);
4022                 if (skb_do_redirect(skb) == -EAGAIN) {
4023                         __skb_pull(skb, skb->mac_len);
4024                         *another = true;
4025                         break;
4026                 }
4027                 *ret = NET_RX_SUCCESS;
4028                 return NULL;
4029         case TC_ACT_SHOT:
4030                 kfree_skb_reason(skb, drop_reason);
4031                 *ret = NET_RX_DROP;
4032                 return NULL;
4033         /* used by tc_run */
4034         case TC_ACT_STOLEN:
4035         case TC_ACT_QUEUED:
4036         case TC_ACT_TRAP:
4037                 consume_skb(skb);
4038                 fallthrough;
4039         case TC_ACT_CONSUMED:
4040                 *ret = NET_RX_SUCCESS;
4041                 return NULL;
4042         }
4043
4044         return skb;
4045 }
4046
4047 static __always_inline struct sk_buff *
4048 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4049 {
4050         struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4051         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4052         int sch_ret;
4053
4054         if (!entry)
4055                 return skb;
4056
4057         /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4058          * already set by the caller.
4059          */
4060         if (static_branch_unlikely(&tcx_needed_key)) {
4061                 sch_ret = tcx_run(entry, skb, false);
4062                 if (sch_ret != TC_ACT_UNSPEC)
4063                         goto egress_verdict;
4064         }
4065         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4066 egress_verdict:
4067         switch (sch_ret) {
4068         case TC_ACT_REDIRECT:
4069                 /* No need to push/pop skb's mac_header here on egress! */
4070                 skb_do_redirect(skb);
4071                 *ret = NET_XMIT_SUCCESS;
4072                 return NULL;
4073         case TC_ACT_SHOT:
4074                 kfree_skb_reason(skb, drop_reason);
4075                 *ret = NET_XMIT_DROP;
4076                 return NULL;
4077         /* used by tc_run */
4078         case TC_ACT_STOLEN:
4079         case TC_ACT_QUEUED:
4080         case TC_ACT_TRAP:
4081                 consume_skb(skb);
4082                 fallthrough;
4083         case TC_ACT_CONSUMED:
4084                 *ret = NET_XMIT_SUCCESS;
4085                 return NULL;
4086         }
4087
4088         return skb;
4089 }
4090 #else
4091 static __always_inline struct sk_buff *
4092 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4093                    struct net_device *orig_dev, bool *another)
4094 {
4095         return skb;
4096 }
4097
4098 static __always_inline struct sk_buff *
4099 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4100 {
4101         return skb;
4102 }
4103 #endif /* CONFIG_NET_XGRESS */
4104
4105 #ifdef CONFIG_XPS
4106 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4107                                struct xps_dev_maps *dev_maps, unsigned int tci)
4108 {
4109         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4110         struct xps_map *map;
4111         int queue_index = -1;
4112
4113         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4114                 return queue_index;
4115
4116         tci *= dev_maps->num_tc;
4117         tci += tc;
4118
4119         map = rcu_dereference(dev_maps->attr_map[tci]);
4120         if (map) {
4121                 if (map->len == 1)
4122                         queue_index = map->queues[0];
4123                 else
4124                         queue_index = map->queues[reciprocal_scale(
4125                                                 skb_get_hash(skb), map->len)];
4126                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4127                         queue_index = -1;
4128         }
4129         return queue_index;
4130 }
4131 #endif
4132
4133 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4134                          struct sk_buff *skb)
4135 {
4136 #ifdef CONFIG_XPS
4137         struct xps_dev_maps *dev_maps;
4138         struct sock *sk = skb->sk;
4139         int queue_index = -1;
4140
4141         if (!static_key_false(&xps_needed))
4142                 return -1;
4143
4144         rcu_read_lock();
4145         if (!static_key_false(&xps_rxqs_needed))
4146                 goto get_cpus_map;
4147
4148         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4149         if (dev_maps) {
4150                 int tci = sk_rx_queue_get(sk);
4151
4152                 if (tci >= 0)
4153                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4154                                                           tci);
4155         }
4156
4157 get_cpus_map:
4158         if (queue_index < 0) {
4159                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4160                 if (dev_maps) {
4161                         unsigned int tci = skb->sender_cpu - 1;
4162
4163                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4164                                                           tci);
4165                 }
4166         }
4167         rcu_read_unlock();
4168
4169         return queue_index;
4170 #else
4171         return -1;
4172 #endif
4173 }
4174
4175 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4176                      struct net_device *sb_dev)
4177 {
4178         return 0;
4179 }
4180 EXPORT_SYMBOL(dev_pick_tx_zero);
4181
4182 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4183                        struct net_device *sb_dev)
4184 {
4185         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4186 }
4187 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4188
4189 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4190                      struct net_device *sb_dev)
4191 {
4192         struct sock *sk = skb->sk;
4193         int queue_index = sk_tx_queue_get(sk);
4194
4195         sb_dev = sb_dev ? : dev;
4196
4197         if (queue_index < 0 || skb->ooo_okay ||
4198             queue_index >= dev->real_num_tx_queues) {
4199                 int new_index = get_xps_queue(dev, sb_dev, skb);
4200
4201                 if (new_index < 0)
4202                         new_index = skb_tx_hash(dev, sb_dev, skb);
4203
4204                 if (queue_index != new_index && sk &&
4205                     sk_fullsock(sk) &&
4206                     rcu_access_pointer(sk->sk_dst_cache))
4207                         sk_tx_queue_set(sk, new_index);
4208
4209                 queue_index = new_index;
4210         }
4211
4212         return queue_index;
4213 }
4214 EXPORT_SYMBOL(netdev_pick_tx);
4215
4216 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4217                                          struct sk_buff *skb,
4218                                          struct net_device *sb_dev)
4219 {
4220         int queue_index = 0;
4221
4222 #ifdef CONFIG_XPS
4223         u32 sender_cpu = skb->sender_cpu - 1;
4224
4225         if (sender_cpu >= (u32)NR_CPUS)
4226                 skb->sender_cpu = raw_smp_processor_id() + 1;
4227 #endif
4228
4229         if (dev->real_num_tx_queues != 1) {
4230                 const struct net_device_ops *ops = dev->netdev_ops;
4231
4232                 if (ops->ndo_select_queue)
4233                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4234                 else
4235                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4236
4237                 queue_index = netdev_cap_txqueue(dev, queue_index);
4238         }
4239
4240         skb_set_queue_mapping(skb, queue_index);
4241         return netdev_get_tx_queue(dev, queue_index);
4242 }
4243
4244 /**
4245  * __dev_queue_xmit() - transmit a buffer
4246  * @skb:        buffer to transmit
4247  * @sb_dev:     suboordinate device used for L2 forwarding offload
4248  *
4249  * Queue a buffer for transmission to a network device. The caller must
4250  * have set the device and priority and built the buffer before calling
4251  * this function. The function can be called from an interrupt.
4252  *
4253  * When calling this method, interrupts MUST be enabled. This is because
4254  * the BH enable code must have IRQs enabled so that it will not deadlock.
4255  *
4256  * Regardless of the return value, the skb is consumed, so it is currently
4257  * difficult to retry a send to this method. (You can bump the ref count
4258  * before sending to hold a reference for retry if you are careful.)
4259  *
4260  * Return:
4261  * * 0                          - buffer successfully transmitted
4262  * * positive qdisc return code - NET_XMIT_DROP etc.
4263  * * negative errno             - other errors
4264  */
4265 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4266 {
4267         struct net_device *dev = skb->dev;
4268         struct netdev_queue *txq = NULL;
4269         struct Qdisc *q;
4270         int rc = -ENOMEM;
4271         bool again = false;
4272
4273         skb_reset_mac_header(skb);
4274         skb_assert_len(skb);
4275
4276         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4277                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4278
4279         /* Disable soft irqs for various locks below. Also
4280          * stops preemption for RCU.
4281          */
4282         rcu_read_lock_bh();
4283
4284         skb_update_prio(skb);
4285
4286         qdisc_pkt_len_init(skb);
4287         tcx_set_ingress(skb, false);
4288 #ifdef CONFIG_NET_EGRESS
4289         if (static_branch_unlikely(&egress_needed_key)) {
4290                 if (nf_hook_egress_active()) {
4291                         skb = nf_hook_egress(skb, &rc, dev);
4292                         if (!skb)
4293                                 goto out;
4294                 }
4295
4296                 netdev_xmit_skip_txqueue(false);
4297
4298                 nf_skip_egress(skb, true);
4299                 skb = sch_handle_egress(skb, &rc, dev);
4300                 if (!skb)
4301                         goto out;
4302                 nf_skip_egress(skb, false);
4303
4304                 if (netdev_xmit_txqueue_skipped())
4305                         txq = netdev_tx_queue_mapping(dev, skb);
4306         }
4307 #endif
4308         /* If device/qdisc don't need skb->dst, release it right now while
4309          * its hot in this cpu cache.
4310          */
4311         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4312                 skb_dst_drop(skb);
4313         else
4314                 skb_dst_force(skb);
4315
4316         if (!txq)
4317                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4318
4319         q = rcu_dereference_bh(txq->qdisc);
4320
4321         trace_net_dev_queue(skb);
4322         if (q->enqueue) {
4323                 rc = __dev_xmit_skb(skb, q, dev, txq);
4324                 goto out;
4325         }
4326
4327         /* The device has no queue. Common case for software devices:
4328          * loopback, all the sorts of tunnels...
4329
4330          * Really, it is unlikely that netif_tx_lock protection is necessary
4331          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4332          * counters.)
4333          * However, it is possible, that they rely on protection
4334          * made by us here.
4335
4336          * Check this and shot the lock. It is not prone from deadlocks.
4337          *Either shot noqueue qdisc, it is even simpler 8)
4338          */
4339         if (dev->flags & IFF_UP) {
4340                 int cpu = smp_processor_id(); /* ok because BHs are off */
4341
4342                 /* Other cpus might concurrently change txq->xmit_lock_owner
4343                  * to -1 or to their cpu id, but not to our id.
4344                  */
4345                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4346                         if (dev_xmit_recursion())
4347                                 goto recursion_alert;
4348
4349                         skb = validate_xmit_skb(skb, dev, &again);
4350                         if (!skb)
4351                                 goto out;
4352
4353                         HARD_TX_LOCK(dev, txq, cpu);
4354
4355                         if (!netif_xmit_stopped(txq)) {
4356                                 dev_xmit_recursion_inc();
4357                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4358                                 dev_xmit_recursion_dec();
4359                                 if (dev_xmit_complete(rc)) {
4360                                         HARD_TX_UNLOCK(dev, txq);
4361                                         goto out;
4362                                 }
4363                         }
4364                         HARD_TX_UNLOCK(dev, txq);
4365                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4366                                              dev->name);
4367                 } else {
4368                         /* Recursion is detected! It is possible,
4369                          * unfortunately
4370                          */
4371 recursion_alert:
4372                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4373                                              dev->name);
4374                 }
4375         }
4376
4377         rc = -ENETDOWN;
4378         rcu_read_unlock_bh();
4379
4380         dev_core_stats_tx_dropped_inc(dev);
4381         kfree_skb_list(skb);
4382         return rc;
4383 out:
4384         rcu_read_unlock_bh();
4385         return rc;
4386 }
4387 EXPORT_SYMBOL(__dev_queue_xmit);
4388
4389 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4390 {
4391         struct net_device *dev = skb->dev;
4392         struct sk_buff *orig_skb = skb;
4393         struct netdev_queue *txq;
4394         int ret = NETDEV_TX_BUSY;
4395         bool again = false;
4396
4397         if (unlikely(!netif_running(dev) ||
4398                      !netif_carrier_ok(dev)))
4399                 goto drop;
4400
4401         skb = validate_xmit_skb_list(skb, dev, &again);
4402         if (skb != orig_skb)
4403                 goto drop;
4404
4405         skb_set_queue_mapping(skb, queue_id);
4406         txq = skb_get_tx_queue(dev, skb);
4407
4408         local_bh_disable();
4409
4410         dev_xmit_recursion_inc();
4411         HARD_TX_LOCK(dev, txq, smp_processor_id());
4412         if (!netif_xmit_frozen_or_drv_stopped(txq))
4413                 ret = netdev_start_xmit(skb, dev, txq, false);
4414         HARD_TX_UNLOCK(dev, txq);
4415         dev_xmit_recursion_dec();
4416
4417         local_bh_enable();
4418         return ret;
4419 drop:
4420         dev_core_stats_tx_dropped_inc(dev);
4421         kfree_skb_list(skb);
4422         return NET_XMIT_DROP;
4423 }
4424 EXPORT_SYMBOL(__dev_direct_xmit);
4425
4426 /*************************************************************************
4427  *                      Receiver routines
4428  *************************************************************************/
4429
4430 int netdev_max_backlog __read_mostly = 1000;
4431 EXPORT_SYMBOL(netdev_max_backlog);
4432
4433 int netdev_tstamp_prequeue __read_mostly = 1;
4434 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4435 int netdev_budget __read_mostly = 300;
4436 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4437 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4438 int weight_p __read_mostly = 64;           /* old backlog weight */
4439 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4440 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4441 int dev_rx_weight __read_mostly = 64;
4442 int dev_tx_weight __read_mostly = 64;
4443
4444 /* Called with irq disabled */
4445 static inline void ____napi_schedule(struct softnet_data *sd,
4446                                      struct napi_struct *napi)
4447 {
4448         struct task_struct *thread;
4449
4450         lockdep_assert_irqs_disabled();
4451
4452         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4453                 /* Paired with smp_mb__before_atomic() in
4454                  * napi_enable()/dev_set_threaded().
4455                  * Use READ_ONCE() to guarantee a complete
4456                  * read on napi->thread. Only call
4457                  * wake_up_process() when it's not NULL.
4458                  */
4459                 thread = READ_ONCE(napi->thread);
4460                 if (thread) {
4461                         /* Avoid doing set_bit() if the thread is in
4462                          * INTERRUPTIBLE state, cause napi_thread_wait()
4463                          * makes sure to proceed with napi polling
4464                          * if the thread is explicitly woken from here.
4465                          */
4466                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4467                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4468                         wake_up_process(thread);
4469                         return;
4470                 }
4471         }
4472
4473         list_add_tail(&napi->poll_list, &sd->poll_list);
4474         WRITE_ONCE(napi->list_owner, smp_processor_id());
4475         /* If not called from net_rx_action()
4476          * we have to raise NET_RX_SOFTIRQ.
4477          */
4478         if (!sd->in_net_rx_action)
4479                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4480 }
4481
4482 #ifdef CONFIG_RPS
4483
4484 /* One global table that all flow-based protocols share. */
4485 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4486 EXPORT_SYMBOL(rps_sock_flow_table);
4487 u32 rps_cpu_mask __read_mostly;
4488 EXPORT_SYMBOL(rps_cpu_mask);
4489
4490 struct static_key_false rps_needed __read_mostly;
4491 EXPORT_SYMBOL(rps_needed);
4492 struct static_key_false rfs_needed __read_mostly;
4493 EXPORT_SYMBOL(rfs_needed);
4494
4495 static struct rps_dev_flow *
4496 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4497             struct rps_dev_flow *rflow, u16 next_cpu)
4498 {
4499         if (next_cpu < nr_cpu_ids) {
4500 #ifdef CONFIG_RFS_ACCEL
4501                 struct netdev_rx_queue *rxqueue;
4502                 struct rps_dev_flow_table *flow_table;
4503                 struct rps_dev_flow *old_rflow;
4504                 u32 flow_id;
4505                 u16 rxq_index;
4506                 int rc;
4507
4508                 /* Should we steer this flow to a different hardware queue? */
4509                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4510                     !(dev->features & NETIF_F_NTUPLE))
4511                         goto out;
4512                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4513                 if (rxq_index == skb_get_rx_queue(skb))
4514                         goto out;
4515
4516                 rxqueue = dev->_rx + rxq_index;
4517                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4518                 if (!flow_table)
4519                         goto out;
4520                 flow_id = skb_get_hash(skb) & flow_table->mask;
4521                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4522                                                         rxq_index, flow_id);
4523                 if (rc < 0)
4524                         goto out;
4525                 old_rflow = rflow;
4526                 rflow = &flow_table->flows[flow_id];
4527                 rflow->filter = rc;
4528                 if (old_rflow->filter == rflow->filter)
4529                         old_rflow->filter = RPS_NO_FILTER;
4530         out:
4531 #endif
4532                 rflow->last_qtail =
4533                         per_cpu(softnet_data, next_cpu).input_queue_head;
4534         }
4535
4536         rflow->cpu = next_cpu;
4537         return rflow;
4538 }
4539
4540 /*
4541  * get_rps_cpu is called from netif_receive_skb and returns the target
4542  * CPU from the RPS map of the receiving queue for a given skb.
4543  * rcu_read_lock must be held on entry.
4544  */
4545 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4546                        struct rps_dev_flow **rflowp)
4547 {
4548         const struct rps_sock_flow_table *sock_flow_table;
4549         struct netdev_rx_queue *rxqueue = dev->_rx;
4550         struct rps_dev_flow_table *flow_table;
4551         struct rps_map *map;
4552         int cpu = -1;
4553         u32 tcpu;
4554         u32 hash;
4555
4556         if (skb_rx_queue_recorded(skb)) {
4557                 u16 index = skb_get_rx_queue(skb);
4558
4559                 if (unlikely(index >= dev->real_num_rx_queues)) {
4560                         WARN_ONCE(dev->real_num_rx_queues > 1,
4561                                   "%s received packet on queue %u, but number "
4562                                   "of RX queues is %u\n",
4563                                   dev->name, index, dev->real_num_rx_queues);
4564                         goto done;
4565                 }
4566                 rxqueue += index;
4567         }
4568
4569         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4570
4571         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4572         map = rcu_dereference(rxqueue->rps_map);
4573         if (!flow_table && !map)
4574                 goto done;
4575
4576         skb_reset_network_header(skb);
4577         hash = skb_get_hash(skb);
4578         if (!hash)
4579                 goto done;
4580
4581         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4582         if (flow_table && sock_flow_table) {
4583                 struct rps_dev_flow *rflow;
4584                 u32 next_cpu;
4585                 u32 ident;
4586
4587                 /* First check into global flow table if there is a match.
4588                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4589                  */
4590                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4591                 if ((ident ^ hash) & ~rps_cpu_mask)
4592                         goto try_rps;
4593
4594                 next_cpu = ident & rps_cpu_mask;
4595
4596                 /* OK, now we know there is a match,
4597                  * we can look at the local (per receive queue) flow table
4598                  */
4599                 rflow = &flow_table->flows[hash & flow_table->mask];
4600                 tcpu = rflow->cpu;
4601
4602                 /*
4603                  * If the desired CPU (where last recvmsg was done) is
4604                  * different from current CPU (one in the rx-queue flow
4605                  * table entry), switch if one of the following holds:
4606                  *   - Current CPU is unset (>= nr_cpu_ids).
4607                  *   - Current CPU is offline.
4608                  *   - The current CPU's queue tail has advanced beyond the
4609                  *     last packet that was enqueued using this table entry.
4610                  *     This guarantees that all previous packets for the flow
4611                  *     have been dequeued, thus preserving in order delivery.
4612                  */
4613                 if (unlikely(tcpu != next_cpu) &&
4614                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4615                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4616                       rflow->last_qtail)) >= 0)) {
4617                         tcpu = next_cpu;
4618                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4619                 }
4620
4621                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4622                         *rflowp = rflow;
4623                         cpu = tcpu;
4624                         goto done;
4625                 }
4626         }
4627
4628 try_rps:
4629
4630         if (map) {
4631                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4632                 if (cpu_online(tcpu)) {
4633                         cpu = tcpu;
4634                         goto done;
4635                 }
4636         }
4637
4638 done:
4639         return cpu;
4640 }
4641
4642 #ifdef CONFIG_RFS_ACCEL
4643
4644 /**
4645  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4646  * @dev: Device on which the filter was set
4647  * @rxq_index: RX queue index
4648  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4649  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4650  *
4651  * Drivers that implement ndo_rx_flow_steer() should periodically call
4652  * this function for each installed filter and remove the filters for
4653  * which it returns %true.
4654  */
4655 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4656                          u32 flow_id, u16 filter_id)
4657 {
4658         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4659         struct rps_dev_flow_table *flow_table;
4660         struct rps_dev_flow *rflow;
4661         bool expire = true;
4662         unsigned int cpu;
4663
4664         rcu_read_lock();
4665         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4666         if (flow_table && flow_id <= flow_table->mask) {
4667                 rflow = &flow_table->flows[flow_id];
4668                 cpu = READ_ONCE(rflow->cpu);
4669                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4670                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4671                            rflow->last_qtail) <
4672                      (int)(10 * flow_table->mask)))
4673                         expire = false;
4674         }
4675         rcu_read_unlock();
4676         return expire;
4677 }
4678 EXPORT_SYMBOL(rps_may_expire_flow);
4679
4680 #endif /* CONFIG_RFS_ACCEL */
4681
4682 /* Called from hardirq (IPI) context */
4683 static void rps_trigger_softirq(void *data)
4684 {
4685         struct softnet_data *sd = data;
4686
4687         ____napi_schedule(sd, &sd->backlog);
4688         sd->received_rps++;
4689 }
4690
4691 #endif /* CONFIG_RPS */
4692
4693 /* Called from hardirq (IPI) context */
4694 static void trigger_rx_softirq(void *data)
4695 {
4696         struct softnet_data *sd = data;
4697
4698         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4699         smp_store_release(&sd->defer_ipi_scheduled, 0);
4700 }
4701
4702 /*
4703  * After we queued a packet into sd->input_pkt_queue,
4704  * we need to make sure this queue is serviced soon.
4705  *
4706  * - If this is another cpu queue, link it to our rps_ipi_list,
4707  *   and make sure we will process rps_ipi_list from net_rx_action().
4708  *
4709  * - If this is our own queue, NAPI schedule our backlog.
4710  *   Note that this also raises NET_RX_SOFTIRQ.
4711  */
4712 static void napi_schedule_rps(struct softnet_data *sd)
4713 {
4714         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4715
4716 #ifdef CONFIG_RPS
4717         if (sd != mysd) {
4718                 sd->rps_ipi_next = mysd->rps_ipi_list;
4719                 mysd->rps_ipi_list = sd;
4720
4721                 /* If not called from net_rx_action() or napi_threaded_poll()
4722                  * we have to raise NET_RX_SOFTIRQ.
4723                  */
4724                 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4725                         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4726                 return;
4727         }
4728 #endif /* CONFIG_RPS */
4729         __napi_schedule_irqoff(&mysd->backlog);
4730 }
4731
4732 #ifdef CONFIG_NET_FLOW_LIMIT
4733 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4734 #endif
4735
4736 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4737 {
4738 #ifdef CONFIG_NET_FLOW_LIMIT
4739         struct sd_flow_limit *fl;
4740         struct softnet_data *sd;
4741         unsigned int old_flow, new_flow;
4742
4743         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4744                 return false;
4745
4746         sd = this_cpu_ptr(&softnet_data);
4747
4748         rcu_read_lock();
4749         fl = rcu_dereference(sd->flow_limit);
4750         if (fl) {
4751                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4752                 old_flow = fl->history[fl->history_head];
4753                 fl->history[fl->history_head] = new_flow;
4754
4755                 fl->history_head++;
4756                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4757
4758                 if (likely(fl->buckets[old_flow]))
4759                         fl->buckets[old_flow]--;
4760
4761                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4762                         fl->count++;
4763                         rcu_read_unlock();
4764                         return true;
4765                 }
4766         }
4767         rcu_read_unlock();
4768 #endif
4769         return false;
4770 }
4771
4772 /*
4773  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4774  * queue (may be a remote CPU queue).
4775  */
4776 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4777                               unsigned int *qtail)
4778 {
4779         enum skb_drop_reason reason;
4780         struct softnet_data *sd;
4781         unsigned long flags;
4782         unsigned int qlen;
4783
4784         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4785         sd = &per_cpu(softnet_data, cpu);
4786
4787         rps_lock_irqsave(sd, &flags);
4788         if (!netif_running(skb->dev))
4789                 goto drop;
4790         qlen = skb_queue_len(&sd->input_pkt_queue);
4791         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4792                 if (qlen) {
4793 enqueue:
4794                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4795                         input_queue_tail_incr_save(sd, qtail);
4796                         rps_unlock_irq_restore(sd, &flags);
4797                         return NET_RX_SUCCESS;
4798                 }
4799
4800                 /* Schedule NAPI for backlog device
4801                  * We can use non atomic operation since we own the queue lock
4802                  */
4803                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4804                         napi_schedule_rps(sd);
4805                 goto enqueue;
4806         }
4807         reason = SKB_DROP_REASON_CPU_BACKLOG;
4808
4809 drop:
4810         sd->dropped++;
4811         rps_unlock_irq_restore(sd, &flags);
4812
4813         dev_core_stats_rx_dropped_inc(skb->dev);
4814         kfree_skb_reason(skb, reason);
4815         return NET_RX_DROP;
4816 }
4817
4818 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4819 {
4820         struct net_device *dev = skb->dev;
4821         struct netdev_rx_queue *rxqueue;
4822
4823         rxqueue = dev->_rx;
4824
4825         if (skb_rx_queue_recorded(skb)) {
4826                 u16 index = skb_get_rx_queue(skb);
4827
4828                 if (unlikely(index >= dev->real_num_rx_queues)) {
4829                         WARN_ONCE(dev->real_num_rx_queues > 1,
4830                                   "%s received packet on queue %u, but number "
4831                                   "of RX queues is %u\n",
4832                                   dev->name, index, dev->real_num_rx_queues);
4833
4834                         return rxqueue; /* Return first rxqueue */
4835                 }
4836                 rxqueue += index;
4837         }
4838         return rxqueue;
4839 }
4840
4841 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4842                              struct bpf_prog *xdp_prog)
4843 {
4844         void *orig_data, *orig_data_end, *hard_start;
4845         struct netdev_rx_queue *rxqueue;
4846         bool orig_bcast, orig_host;
4847         u32 mac_len, frame_sz;
4848         __be16 orig_eth_type;
4849         struct ethhdr *eth;
4850         u32 metalen, act;
4851         int off;
4852
4853         /* The XDP program wants to see the packet starting at the MAC
4854          * header.
4855          */
4856         mac_len = skb->data - skb_mac_header(skb);
4857         hard_start = skb->data - skb_headroom(skb);
4858
4859         /* SKB "head" area always have tailroom for skb_shared_info */
4860         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4861         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4862
4863         rxqueue = netif_get_rxqueue(skb);
4864         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4865         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4866                          skb_headlen(skb) + mac_len, true);
4867
4868         orig_data_end = xdp->data_end;
4869         orig_data = xdp->data;
4870         eth = (struct ethhdr *)xdp->data;
4871         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4872         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4873         orig_eth_type = eth->h_proto;
4874
4875         act = bpf_prog_run_xdp(xdp_prog, xdp);
4876
4877         /* check if bpf_xdp_adjust_head was used */
4878         off = xdp->data - orig_data;
4879         if (off) {
4880                 if (off > 0)
4881                         __skb_pull(skb, off);
4882                 else if (off < 0)
4883                         __skb_push(skb, -off);
4884
4885                 skb->mac_header += off;
4886                 skb_reset_network_header(skb);
4887         }
4888
4889         /* check if bpf_xdp_adjust_tail was used */
4890         off = xdp->data_end - orig_data_end;
4891         if (off != 0) {
4892                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4893                 skb->len += off; /* positive on grow, negative on shrink */
4894         }
4895
4896         /* check if XDP changed eth hdr such SKB needs update */
4897         eth = (struct ethhdr *)xdp->data;
4898         if ((orig_eth_type != eth->h_proto) ||
4899             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4900                                                   skb->dev->dev_addr)) ||
4901             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4902                 __skb_push(skb, ETH_HLEN);
4903                 skb->pkt_type = PACKET_HOST;
4904                 skb->protocol = eth_type_trans(skb, skb->dev);
4905         }
4906
4907         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4908          * before calling us again on redirect path. We do not call do_redirect
4909          * as we leave that up to the caller.
4910          *
4911          * Caller is responsible for managing lifetime of skb (i.e. calling
4912          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4913          */
4914         switch (act) {
4915         case XDP_REDIRECT:
4916         case XDP_TX:
4917                 __skb_push(skb, mac_len);
4918                 break;
4919         case XDP_PASS:
4920                 metalen = xdp->data - xdp->data_meta;
4921                 if (metalen)
4922                         skb_metadata_set(skb, metalen);
4923                 break;
4924         }
4925
4926         return act;
4927 }
4928
4929 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4930                                      struct xdp_buff *xdp,
4931                                      struct bpf_prog *xdp_prog)
4932 {
4933         u32 act = XDP_DROP;
4934
4935         /* Reinjected packets coming from act_mirred or similar should
4936          * not get XDP generic processing.
4937          */
4938         if (skb_is_redirected(skb))
4939                 return XDP_PASS;
4940
4941         /* XDP packets must be linear and must have sufficient headroom
4942          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4943          * native XDP provides, thus we need to do it here as well.
4944          */
4945         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4946             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4947                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4948                 int troom = skb->tail + skb->data_len - skb->end;
4949
4950                 /* In case we have to go down the path and also linearize,
4951                  * then lets do the pskb_expand_head() work just once here.
4952                  */
4953                 if (pskb_expand_head(skb,
4954                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4955                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4956                         goto do_drop;
4957                 if (skb_linearize(skb))
4958                         goto do_drop;
4959         }
4960
4961         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4962         switch (act) {
4963         case XDP_REDIRECT:
4964         case XDP_TX:
4965         case XDP_PASS:
4966                 break;
4967         default:
4968                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4969                 fallthrough;
4970         case XDP_ABORTED:
4971                 trace_xdp_exception(skb->dev, xdp_prog, act);
4972                 fallthrough;
4973         case XDP_DROP:
4974         do_drop:
4975                 kfree_skb(skb);
4976                 break;
4977         }
4978
4979         return act;
4980 }
4981
4982 /* When doing generic XDP we have to bypass the qdisc layer and the
4983  * network taps in order to match in-driver-XDP behavior. This also means
4984  * that XDP packets are able to starve other packets going through a qdisc,
4985  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4986  * queues, so they do not have this starvation issue.
4987  */
4988 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4989 {
4990         struct net_device *dev = skb->dev;
4991         struct netdev_queue *txq;
4992         bool free_skb = true;
4993         int cpu, rc;
4994
4995         txq = netdev_core_pick_tx(dev, skb, NULL);
4996         cpu = smp_processor_id();
4997         HARD_TX_LOCK(dev, txq, cpu);
4998         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4999                 rc = netdev_start_xmit(skb, dev, txq, 0);
5000                 if (dev_xmit_complete(rc))
5001                         free_skb = false;
5002         }
5003         HARD_TX_UNLOCK(dev, txq);
5004         if (free_skb) {
5005                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5006                 dev_core_stats_tx_dropped_inc(dev);
5007                 kfree_skb(skb);
5008         }
5009 }
5010
5011 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5012
5013 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5014 {
5015         if (xdp_prog) {
5016                 struct xdp_buff xdp;
5017                 u32 act;
5018                 int err;
5019
5020                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5021                 if (act != XDP_PASS) {
5022                         switch (act) {
5023                         case XDP_REDIRECT:
5024                                 err = xdp_do_generic_redirect(skb->dev, skb,
5025                                                               &xdp, xdp_prog);
5026                                 if (err)
5027                                         goto out_redir;
5028                                 break;
5029                         case XDP_TX:
5030                                 generic_xdp_tx(skb, xdp_prog);
5031                                 break;
5032                         }
5033                         return XDP_DROP;
5034                 }
5035         }
5036         return XDP_PASS;
5037 out_redir:
5038         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5039         return XDP_DROP;
5040 }
5041 EXPORT_SYMBOL_GPL(do_xdp_generic);
5042
5043 static int netif_rx_internal(struct sk_buff *skb)
5044 {
5045         int ret;
5046
5047         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5048
5049         trace_netif_rx(skb);
5050
5051 #ifdef CONFIG_RPS
5052         if (static_branch_unlikely(&rps_needed)) {
5053                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5054                 int cpu;
5055
5056                 rcu_read_lock();
5057
5058                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5059                 if (cpu < 0)
5060                         cpu = smp_processor_id();
5061
5062                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5063
5064                 rcu_read_unlock();
5065         } else
5066 #endif
5067         {
5068                 unsigned int qtail;
5069
5070                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5071         }
5072         return ret;
5073 }
5074
5075 /**
5076  *      __netif_rx      -       Slightly optimized version of netif_rx
5077  *      @skb: buffer to post
5078  *
5079  *      This behaves as netif_rx except that it does not disable bottom halves.
5080  *      As a result this function may only be invoked from the interrupt context
5081  *      (either hard or soft interrupt).
5082  */
5083 int __netif_rx(struct sk_buff *skb)
5084 {
5085         int ret;
5086
5087         lockdep_assert_once(hardirq_count() | softirq_count());
5088
5089         trace_netif_rx_entry(skb);
5090         ret = netif_rx_internal(skb);
5091         trace_netif_rx_exit(ret);
5092         return ret;
5093 }
5094 EXPORT_SYMBOL(__netif_rx);
5095
5096 /**
5097  *      netif_rx        -       post buffer to the network code
5098  *      @skb: buffer to post
5099  *
5100  *      This function receives a packet from a device driver and queues it for
5101  *      the upper (protocol) levels to process via the backlog NAPI device. It
5102  *      always succeeds. The buffer may be dropped during processing for
5103  *      congestion control or by the protocol layers.
5104  *      The network buffer is passed via the backlog NAPI device. Modern NIC
5105  *      driver should use NAPI and GRO.
5106  *      This function can used from interrupt and from process context. The
5107  *      caller from process context must not disable interrupts before invoking
5108  *      this function.
5109  *
5110  *      return values:
5111  *      NET_RX_SUCCESS  (no congestion)
5112  *      NET_RX_DROP     (packet was dropped)
5113  *
5114  */
5115 int netif_rx(struct sk_buff *skb)
5116 {
5117         bool need_bh_off = !(hardirq_count() | softirq_count());
5118         int ret;
5119
5120         if (need_bh_off)
5121                 local_bh_disable();
5122         trace_netif_rx_entry(skb);
5123         ret = netif_rx_internal(skb);
5124         trace_netif_rx_exit(ret);
5125         if (need_bh_off)
5126                 local_bh_enable();
5127         return ret;
5128 }
5129 EXPORT_SYMBOL(netif_rx);
5130
5131 static __latent_entropy void net_tx_action(struct softirq_action *h)
5132 {
5133         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5134
5135         if (sd->completion_queue) {
5136                 struct sk_buff *clist;
5137
5138                 local_irq_disable();
5139                 clist = sd->completion_queue;
5140                 sd->completion_queue = NULL;
5141                 local_irq_enable();
5142
5143                 while (clist) {
5144                         struct sk_buff *skb = clist;
5145
5146                         clist = clist->next;
5147
5148                         WARN_ON(refcount_read(&skb->users));
5149                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5150                                 trace_consume_skb(skb, net_tx_action);
5151                         else
5152                                 trace_kfree_skb(skb, net_tx_action,
5153                                                 get_kfree_skb_cb(skb)->reason);
5154
5155                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5156                                 __kfree_skb(skb);
5157                         else
5158                                 __napi_kfree_skb(skb,
5159                                                  get_kfree_skb_cb(skb)->reason);
5160                 }
5161         }
5162
5163         if (sd->output_queue) {
5164                 struct Qdisc *head;
5165
5166                 local_irq_disable();
5167                 head = sd->output_queue;
5168                 sd->output_queue = NULL;
5169                 sd->output_queue_tailp = &sd->output_queue;
5170                 local_irq_enable();
5171
5172                 rcu_read_lock();
5173
5174                 while (head) {
5175                         struct Qdisc *q = head;
5176                         spinlock_t *root_lock = NULL;
5177
5178                         head = head->next_sched;
5179
5180                         /* We need to make sure head->next_sched is read
5181                          * before clearing __QDISC_STATE_SCHED
5182                          */
5183                         smp_mb__before_atomic();
5184
5185                         if (!(q->flags & TCQ_F_NOLOCK)) {
5186                                 root_lock = qdisc_lock(q);
5187                                 spin_lock(root_lock);
5188                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5189                                                      &q->state))) {
5190                                 /* There is a synchronize_net() between
5191                                  * STATE_DEACTIVATED flag being set and
5192                                  * qdisc_reset()/some_qdisc_is_busy() in
5193                                  * dev_deactivate(), so we can safely bail out
5194                                  * early here to avoid data race between
5195                                  * qdisc_deactivate() and some_qdisc_is_busy()
5196                                  * for lockless qdisc.
5197                                  */
5198                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5199                                 continue;
5200                         }
5201
5202                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5203                         qdisc_run(q);
5204                         if (root_lock)
5205                                 spin_unlock(root_lock);
5206                 }
5207
5208                 rcu_read_unlock();
5209         }
5210
5211         xfrm_dev_backlog(sd);
5212 }
5213
5214 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5215 /* This hook is defined here for ATM LANE */
5216 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5217                              unsigned char *addr) __read_mostly;
5218 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5219 #endif
5220
5221 /**
5222  *      netdev_is_rx_handler_busy - check if receive handler is registered
5223  *      @dev: device to check
5224  *
5225  *      Check if a receive handler is already registered for a given device.
5226  *      Return true if there one.
5227  *
5228  *      The caller must hold the rtnl_mutex.
5229  */
5230 bool netdev_is_rx_handler_busy(struct net_device *dev)
5231 {
5232         ASSERT_RTNL();
5233         return dev && rtnl_dereference(dev->rx_handler);
5234 }
5235 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5236
5237 /**
5238  *      netdev_rx_handler_register - register receive handler
5239  *      @dev: device to register a handler for
5240  *      @rx_handler: receive handler to register
5241  *      @rx_handler_data: data pointer that is used by rx handler
5242  *
5243  *      Register a receive handler for a device. This handler will then be
5244  *      called from __netif_receive_skb. A negative errno code is returned
5245  *      on a failure.
5246  *
5247  *      The caller must hold the rtnl_mutex.
5248  *
5249  *      For a general description of rx_handler, see enum rx_handler_result.
5250  */
5251 int netdev_rx_handler_register(struct net_device *dev,
5252                                rx_handler_func_t *rx_handler,
5253                                void *rx_handler_data)
5254 {
5255         if (netdev_is_rx_handler_busy(dev))
5256                 return -EBUSY;
5257
5258         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5259                 return -EINVAL;
5260
5261         /* Note: rx_handler_data must be set before rx_handler */
5262         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5263         rcu_assign_pointer(dev->rx_handler, rx_handler);
5264
5265         return 0;
5266 }
5267 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5268
5269 /**
5270  *      netdev_rx_handler_unregister - unregister receive handler
5271  *      @dev: device to unregister a handler from
5272  *
5273  *      Unregister a receive handler from a device.
5274  *
5275  *      The caller must hold the rtnl_mutex.
5276  */
5277 void netdev_rx_handler_unregister(struct net_device *dev)
5278 {
5279
5280         ASSERT_RTNL();
5281         RCU_INIT_POINTER(dev->rx_handler, NULL);
5282         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5283          * section has a guarantee to see a non NULL rx_handler_data
5284          * as well.
5285          */
5286         synchronize_net();
5287         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5288 }
5289 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5290
5291 /*
5292  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5293  * the special handling of PFMEMALLOC skbs.
5294  */
5295 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5296 {
5297         switch (skb->protocol) {
5298         case htons(ETH_P_ARP):
5299         case htons(ETH_P_IP):
5300         case htons(ETH_P_IPV6):
5301         case htons(ETH_P_8021Q):
5302         case htons(ETH_P_8021AD):
5303                 return true;
5304         default:
5305                 return false;
5306         }
5307 }
5308
5309 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5310                              int *ret, struct net_device *orig_dev)
5311 {
5312         if (nf_hook_ingress_active(skb)) {
5313                 int ingress_retval;
5314
5315                 if (*pt_prev) {
5316                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5317                         *pt_prev = NULL;
5318                 }
5319
5320                 rcu_read_lock();
5321                 ingress_retval = nf_hook_ingress(skb);
5322                 rcu_read_unlock();
5323                 return ingress_retval;
5324         }
5325         return 0;
5326 }
5327
5328 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5329                                     struct packet_type **ppt_prev)
5330 {
5331         struct packet_type *ptype, *pt_prev;
5332         rx_handler_func_t *rx_handler;
5333         struct sk_buff *skb = *pskb;
5334         struct net_device *orig_dev;
5335         bool deliver_exact = false;
5336         int ret = NET_RX_DROP;
5337         __be16 type;
5338
5339         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5340
5341         trace_netif_receive_skb(skb);
5342
5343         orig_dev = skb->dev;
5344
5345         skb_reset_network_header(skb);
5346         if (!skb_transport_header_was_set(skb))
5347                 skb_reset_transport_header(skb);
5348         skb_reset_mac_len(skb);
5349
5350         pt_prev = NULL;
5351
5352 another_round:
5353         skb->skb_iif = skb->dev->ifindex;
5354
5355         __this_cpu_inc(softnet_data.processed);
5356
5357         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5358                 int ret2;
5359
5360                 migrate_disable();
5361                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5362                 migrate_enable();
5363
5364                 if (ret2 != XDP_PASS) {
5365                         ret = NET_RX_DROP;
5366                         goto out;
5367                 }
5368         }
5369
5370         if (eth_type_vlan(skb->protocol)) {
5371                 skb = skb_vlan_untag(skb);
5372                 if (unlikely(!skb))
5373                         goto out;
5374         }
5375
5376         if (skb_skip_tc_classify(skb))
5377                 goto skip_classify;
5378
5379         if (pfmemalloc)
5380                 goto skip_taps;
5381
5382         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5383                 if (pt_prev)
5384                         ret = deliver_skb(skb, pt_prev, orig_dev);
5385                 pt_prev = ptype;
5386         }
5387
5388         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5389                 if (pt_prev)
5390                         ret = deliver_skb(skb, pt_prev, orig_dev);
5391                 pt_prev = ptype;
5392         }
5393
5394 skip_taps:
5395 #ifdef CONFIG_NET_INGRESS
5396         if (static_branch_unlikely(&ingress_needed_key)) {
5397                 bool another = false;
5398
5399                 nf_skip_egress(skb, true);
5400                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5401                                          &another);
5402                 if (another)
5403                         goto another_round;
5404                 if (!skb)
5405                         goto out;
5406
5407                 nf_skip_egress(skb, false);
5408                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5409                         goto out;
5410         }
5411 #endif
5412         skb_reset_redirect(skb);
5413 skip_classify:
5414         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5415                 goto drop;
5416
5417         if (skb_vlan_tag_present(skb)) {
5418                 if (pt_prev) {
5419                         ret = deliver_skb(skb, pt_prev, orig_dev);
5420                         pt_prev = NULL;
5421                 }
5422                 if (vlan_do_receive(&skb))
5423                         goto another_round;
5424                 else if (unlikely(!skb))
5425                         goto out;
5426         }
5427
5428         rx_handler = rcu_dereference(skb->dev->rx_handler);
5429         if (rx_handler) {
5430                 if (pt_prev) {
5431                         ret = deliver_skb(skb, pt_prev, orig_dev);
5432                         pt_prev = NULL;
5433                 }
5434                 switch (rx_handler(&skb)) {
5435                 case RX_HANDLER_CONSUMED:
5436                         ret = NET_RX_SUCCESS;
5437                         goto out;
5438                 case RX_HANDLER_ANOTHER:
5439                         goto another_round;
5440                 case RX_HANDLER_EXACT:
5441                         deliver_exact = true;
5442                         break;
5443                 case RX_HANDLER_PASS:
5444                         break;
5445                 default:
5446                         BUG();
5447                 }
5448         }
5449
5450         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5451 check_vlan_id:
5452                 if (skb_vlan_tag_get_id(skb)) {
5453                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5454                          * find vlan device.
5455                          */
5456                         skb->pkt_type = PACKET_OTHERHOST;
5457                 } else if (eth_type_vlan(skb->protocol)) {
5458                         /* Outer header is 802.1P with vlan 0, inner header is
5459                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5460                          * not find vlan dev for vlan id 0.
5461                          */
5462                         __vlan_hwaccel_clear_tag(skb);
5463                         skb = skb_vlan_untag(skb);
5464                         if (unlikely(!skb))
5465                                 goto out;
5466                         if (vlan_do_receive(&skb))
5467                                 /* After stripping off 802.1P header with vlan 0
5468                                  * vlan dev is found for inner header.
5469                                  */
5470                                 goto another_round;
5471                         else if (unlikely(!skb))
5472                                 goto out;
5473                         else
5474                                 /* We have stripped outer 802.1P vlan 0 header.
5475                                  * But could not find vlan dev.
5476                                  * check again for vlan id to set OTHERHOST.
5477                                  */
5478                                 goto check_vlan_id;
5479                 }
5480                 /* Note: we might in the future use prio bits
5481                  * and set skb->priority like in vlan_do_receive()
5482                  * For the time being, just ignore Priority Code Point
5483                  */
5484                 __vlan_hwaccel_clear_tag(skb);
5485         }
5486
5487         type = skb->protocol;
5488
5489         /* deliver only exact match when indicated */
5490         if (likely(!deliver_exact)) {
5491                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5492                                        &ptype_base[ntohs(type) &
5493                                                    PTYPE_HASH_MASK]);
5494         }
5495
5496         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5497                                &orig_dev->ptype_specific);
5498
5499         if (unlikely(skb->dev != orig_dev)) {
5500                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5501                                        &skb->dev->ptype_specific);
5502         }
5503
5504         if (pt_prev) {
5505                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5506                         goto drop;
5507                 *ppt_prev = pt_prev;
5508         } else {
5509 drop:
5510                 if (!deliver_exact)
5511                         dev_core_stats_rx_dropped_inc(skb->dev);
5512                 else
5513                         dev_core_stats_rx_nohandler_inc(skb->dev);
5514                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5515                 /* Jamal, now you will not able to escape explaining
5516                  * me how you were going to use this. :-)
5517                  */
5518                 ret = NET_RX_DROP;
5519         }
5520
5521 out:
5522         /* The invariant here is that if *ppt_prev is not NULL
5523          * then skb should also be non-NULL.
5524          *
5525          * Apparently *ppt_prev assignment above holds this invariant due to
5526          * skb dereferencing near it.
5527          */
5528         *pskb = skb;
5529         return ret;
5530 }
5531
5532 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5533 {
5534         struct net_device *orig_dev = skb->dev;
5535         struct packet_type *pt_prev = NULL;
5536         int ret;
5537
5538         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5539         if (pt_prev)
5540                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5541                                          skb->dev, pt_prev, orig_dev);
5542         return ret;
5543 }
5544
5545 /**
5546  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5547  *      @skb: buffer to process
5548  *
5549  *      More direct receive version of netif_receive_skb().  It should
5550  *      only be used by callers that have a need to skip RPS and Generic XDP.
5551  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5552  *
5553  *      This function may only be called from softirq context and interrupts
5554  *      should be enabled.
5555  *
5556  *      Return values (usually ignored):
5557  *      NET_RX_SUCCESS: no congestion
5558  *      NET_RX_DROP: packet was dropped
5559  */
5560 int netif_receive_skb_core(struct sk_buff *skb)
5561 {
5562         int ret;
5563
5564         rcu_read_lock();
5565         ret = __netif_receive_skb_one_core(skb, false);
5566         rcu_read_unlock();
5567
5568         return ret;
5569 }
5570 EXPORT_SYMBOL(netif_receive_skb_core);
5571
5572 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5573                                                   struct packet_type *pt_prev,
5574                                                   struct net_device *orig_dev)
5575 {
5576         struct sk_buff *skb, *next;
5577
5578         if (!pt_prev)
5579                 return;
5580         if (list_empty(head))
5581                 return;
5582         if (pt_prev->list_func != NULL)
5583                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5584                                    ip_list_rcv, head, pt_prev, orig_dev);
5585         else
5586                 list_for_each_entry_safe(skb, next, head, list) {
5587                         skb_list_del_init(skb);
5588                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5589                 }
5590 }
5591
5592 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5593 {
5594         /* Fast-path assumptions:
5595          * - There is no RX handler.
5596          * - Only one packet_type matches.
5597          * If either of these fails, we will end up doing some per-packet
5598          * processing in-line, then handling the 'last ptype' for the whole
5599          * sublist.  This can't cause out-of-order delivery to any single ptype,
5600          * because the 'last ptype' must be constant across the sublist, and all
5601          * other ptypes are handled per-packet.
5602          */
5603         /* Current (common) ptype of sublist */
5604         struct packet_type *pt_curr = NULL;
5605         /* Current (common) orig_dev of sublist */
5606         struct net_device *od_curr = NULL;
5607         struct list_head sublist;
5608         struct sk_buff *skb, *next;
5609
5610         INIT_LIST_HEAD(&sublist);
5611         list_for_each_entry_safe(skb, next, head, list) {
5612                 struct net_device *orig_dev = skb->dev;
5613                 struct packet_type *pt_prev = NULL;
5614
5615                 skb_list_del_init(skb);
5616                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5617                 if (!pt_prev)
5618                         continue;
5619                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5620                         /* dispatch old sublist */
5621                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5622                         /* start new sublist */
5623                         INIT_LIST_HEAD(&sublist);
5624                         pt_curr = pt_prev;
5625                         od_curr = orig_dev;
5626                 }
5627                 list_add_tail(&skb->list, &sublist);
5628         }
5629
5630         /* dispatch final sublist */
5631         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5632 }
5633
5634 static int __netif_receive_skb(struct sk_buff *skb)
5635 {
5636         int ret;
5637
5638         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5639                 unsigned int noreclaim_flag;
5640
5641                 /*
5642                  * PFMEMALLOC skbs are special, they should
5643                  * - be delivered to SOCK_MEMALLOC sockets only
5644                  * - stay away from userspace
5645                  * - have bounded memory usage
5646                  *
5647                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5648                  * context down to all allocation sites.
5649                  */
5650                 noreclaim_flag = memalloc_noreclaim_save();
5651                 ret = __netif_receive_skb_one_core(skb, true);
5652                 memalloc_noreclaim_restore(noreclaim_flag);
5653         } else
5654                 ret = __netif_receive_skb_one_core(skb, false);
5655
5656         return ret;
5657 }
5658
5659 static void __netif_receive_skb_list(struct list_head *head)
5660 {
5661         unsigned long noreclaim_flag = 0;
5662         struct sk_buff *skb, *next;
5663         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5664
5665         list_for_each_entry_safe(skb, next, head, list) {
5666                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5667                         struct list_head sublist;
5668
5669                         /* Handle the previous sublist */
5670                         list_cut_before(&sublist, head, &skb->list);
5671                         if (!list_empty(&sublist))
5672                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5673                         pfmemalloc = !pfmemalloc;
5674                         /* See comments in __netif_receive_skb */
5675                         if (pfmemalloc)
5676                                 noreclaim_flag = memalloc_noreclaim_save();
5677                         else
5678                                 memalloc_noreclaim_restore(noreclaim_flag);
5679                 }
5680         }
5681         /* Handle the remaining sublist */
5682         if (!list_empty(head))
5683                 __netif_receive_skb_list_core(head, pfmemalloc);
5684         /* Restore pflags */
5685         if (pfmemalloc)
5686                 memalloc_noreclaim_restore(noreclaim_flag);
5687 }
5688
5689 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5690 {
5691         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5692         struct bpf_prog *new = xdp->prog;
5693         int ret = 0;
5694
5695         switch (xdp->command) {
5696         case XDP_SETUP_PROG:
5697                 rcu_assign_pointer(dev->xdp_prog, new);
5698                 if (old)
5699                         bpf_prog_put(old);
5700
5701                 if (old && !new) {
5702                         static_branch_dec(&generic_xdp_needed_key);
5703                 } else if (new && !old) {
5704                         static_branch_inc(&generic_xdp_needed_key);
5705                         dev_disable_lro(dev);
5706                         dev_disable_gro_hw(dev);
5707                 }
5708                 break;
5709
5710         default:
5711                 ret = -EINVAL;
5712                 break;
5713         }
5714
5715         return ret;
5716 }
5717
5718 static int netif_receive_skb_internal(struct sk_buff *skb)
5719 {
5720         int ret;
5721
5722         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5723
5724         if (skb_defer_rx_timestamp(skb))
5725                 return NET_RX_SUCCESS;
5726
5727         rcu_read_lock();
5728 #ifdef CONFIG_RPS
5729         if (static_branch_unlikely(&rps_needed)) {
5730                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5731                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5732
5733                 if (cpu >= 0) {
5734                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5735                         rcu_read_unlock();
5736                         return ret;
5737                 }
5738         }
5739 #endif
5740         ret = __netif_receive_skb(skb);
5741         rcu_read_unlock();
5742         return ret;
5743 }
5744
5745 void netif_receive_skb_list_internal(struct list_head *head)
5746 {
5747         struct sk_buff *skb, *next;
5748         struct list_head sublist;
5749
5750         INIT_LIST_HEAD(&sublist);
5751         list_for_each_entry_safe(skb, next, head, list) {
5752                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5753                 skb_list_del_init(skb);
5754                 if (!skb_defer_rx_timestamp(skb))
5755                         list_add_tail(&skb->list, &sublist);
5756         }
5757         list_splice_init(&sublist, head);
5758
5759         rcu_read_lock();
5760 #ifdef CONFIG_RPS
5761         if (static_branch_unlikely(&rps_needed)) {
5762                 list_for_each_entry_safe(skb, next, head, list) {
5763                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5764                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5765
5766                         if (cpu >= 0) {
5767                                 /* Will be handled, remove from list */
5768                                 skb_list_del_init(skb);
5769                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5770                         }
5771                 }
5772         }
5773 #endif
5774         __netif_receive_skb_list(head);
5775         rcu_read_unlock();
5776 }
5777
5778 /**
5779  *      netif_receive_skb - process receive buffer from network
5780  *      @skb: buffer to process
5781  *
5782  *      netif_receive_skb() is the main receive data processing function.
5783  *      It always succeeds. The buffer may be dropped during processing
5784  *      for congestion control or by the protocol layers.
5785  *
5786  *      This function may only be called from softirq context and interrupts
5787  *      should be enabled.
5788  *
5789  *      Return values (usually ignored):
5790  *      NET_RX_SUCCESS: no congestion
5791  *      NET_RX_DROP: packet was dropped
5792  */
5793 int netif_receive_skb(struct sk_buff *skb)
5794 {
5795         int ret;
5796
5797         trace_netif_receive_skb_entry(skb);
5798
5799         ret = netif_receive_skb_internal(skb);
5800         trace_netif_receive_skb_exit(ret);
5801
5802         return ret;
5803 }
5804 EXPORT_SYMBOL(netif_receive_skb);
5805
5806 /**
5807  *      netif_receive_skb_list - process many receive buffers from network
5808  *      @head: list of skbs to process.
5809  *
5810  *      Since return value of netif_receive_skb() is normally ignored, and
5811  *      wouldn't be meaningful for a list, this function returns void.
5812  *
5813  *      This function may only be called from softirq context and interrupts
5814  *      should be enabled.
5815  */
5816 void netif_receive_skb_list(struct list_head *head)
5817 {
5818         struct sk_buff *skb;
5819
5820         if (list_empty(head))
5821                 return;
5822         if (trace_netif_receive_skb_list_entry_enabled()) {
5823                 list_for_each_entry(skb, head, list)
5824                         trace_netif_receive_skb_list_entry(skb);
5825         }
5826         netif_receive_skb_list_internal(head);
5827         trace_netif_receive_skb_list_exit(0);
5828 }
5829 EXPORT_SYMBOL(netif_receive_skb_list);
5830
5831 static DEFINE_PER_CPU(struct work_struct, flush_works);
5832
5833 /* Network device is going away, flush any packets still pending */
5834 static void flush_backlog(struct work_struct *work)
5835 {
5836         struct sk_buff *skb, *tmp;
5837         struct softnet_data *sd;
5838
5839         local_bh_disable();
5840         sd = this_cpu_ptr(&softnet_data);
5841
5842         rps_lock_irq_disable(sd);
5843         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5844                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5845                         __skb_unlink(skb, &sd->input_pkt_queue);
5846                         dev_kfree_skb_irq(skb);
5847                         input_queue_head_incr(sd);
5848                 }
5849         }
5850         rps_unlock_irq_enable(sd);
5851
5852         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5853                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5854                         __skb_unlink(skb, &sd->process_queue);
5855                         kfree_skb(skb);
5856                         input_queue_head_incr(sd);
5857                 }
5858         }
5859         local_bh_enable();
5860 }
5861
5862 static bool flush_required(int cpu)
5863 {
5864 #if IS_ENABLED(CONFIG_RPS)
5865         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5866         bool do_flush;
5867
5868         rps_lock_irq_disable(sd);
5869
5870         /* as insertion into process_queue happens with the rps lock held,
5871          * process_queue access may race only with dequeue
5872          */
5873         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5874                    !skb_queue_empty_lockless(&sd->process_queue);
5875         rps_unlock_irq_enable(sd);
5876
5877         return do_flush;
5878 #endif
5879         /* without RPS we can't safely check input_pkt_queue: during a
5880          * concurrent remote skb_queue_splice() we can detect as empty both
5881          * input_pkt_queue and process_queue even if the latter could end-up
5882          * containing a lot of packets.
5883          */
5884         return true;
5885 }
5886
5887 static void flush_all_backlogs(void)
5888 {
5889         static cpumask_t flush_cpus;
5890         unsigned int cpu;
5891
5892         /* since we are under rtnl lock protection we can use static data
5893          * for the cpumask and avoid allocating on stack the possibly
5894          * large mask
5895          */
5896         ASSERT_RTNL();
5897
5898         cpus_read_lock();
5899
5900         cpumask_clear(&flush_cpus);
5901         for_each_online_cpu(cpu) {
5902                 if (flush_required(cpu)) {
5903                         queue_work_on(cpu, system_highpri_wq,
5904                                       per_cpu_ptr(&flush_works, cpu));
5905                         cpumask_set_cpu(cpu, &flush_cpus);
5906                 }
5907         }
5908
5909         /* we can have in flight packet[s] on the cpus we are not flushing,
5910          * synchronize_net() in unregister_netdevice_many() will take care of
5911          * them
5912          */
5913         for_each_cpu(cpu, &flush_cpus)
5914                 flush_work(per_cpu_ptr(&flush_works, cpu));
5915
5916         cpus_read_unlock();
5917 }
5918
5919 static void net_rps_send_ipi(struct softnet_data *remsd)
5920 {
5921 #ifdef CONFIG_RPS
5922         while (remsd) {
5923                 struct softnet_data *next = remsd->rps_ipi_next;
5924
5925                 if (cpu_online(remsd->cpu))
5926                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5927                 remsd = next;
5928         }
5929 #endif
5930 }
5931
5932 /*
5933  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5934  * Note: called with local irq disabled, but exits with local irq enabled.
5935  */
5936 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5937 {
5938 #ifdef CONFIG_RPS
5939         struct softnet_data *remsd = sd->rps_ipi_list;
5940
5941         if (remsd) {
5942                 sd->rps_ipi_list = NULL;
5943
5944                 local_irq_enable();
5945
5946                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5947                 net_rps_send_ipi(remsd);
5948         } else
5949 #endif
5950                 local_irq_enable();
5951 }
5952
5953 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5954 {
5955 #ifdef CONFIG_RPS
5956         return sd->rps_ipi_list != NULL;
5957 #else
5958         return false;
5959 #endif
5960 }
5961
5962 static int process_backlog(struct napi_struct *napi, int quota)
5963 {
5964         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5965         bool again = true;
5966         int work = 0;
5967
5968         /* Check if we have pending ipi, its better to send them now,
5969          * not waiting net_rx_action() end.
5970          */
5971         if (sd_has_rps_ipi_waiting(sd)) {
5972                 local_irq_disable();
5973                 net_rps_action_and_irq_enable(sd);
5974         }
5975
5976         napi->weight = READ_ONCE(dev_rx_weight);
5977         while (again) {
5978                 struct sk_buff *skb;
5979
5980                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5981                         rcu_read_lock();
5982                         __netif_receive_skb(skb);
5983                         rcu_read_unlock();
5984                         input_queue_head_incr(sd);
5985                         if (++work >= quota)
5986                                 return work;
5987
5988                 }
5989
5990                 rps_lock_irq_disable(sd);
5991                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5992                         /*
5993                          * Inline a custom version of __napi_complete().
5994                          * only current cpu owns and manipulates this napi,
5995                          * and NAPI_STATE_SCHED is the only possible flag set
5996                          * on backlog.
5997                          * We can use a plain write instead of clear_bit(),
5998                          * and we dont need an smp_mb() memory barrier.
5999                          */
6000                         napi->state = 0;
6001                         again = false;
6002                 } else {
6003                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6004                                                    &sd->process_queue);
6005                 }
6006                 rps_unlock_irq_enable(sd);
6007         }
6008
6009         return work;
6010 }
6011
6012 /**
6013  * __napi_schedule - schedule for receive
6014  * @n: entry to schedule
6015  *
6016  * The entry's receive function will be scheduled to run.
6017  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6018  */
6019 void __napi_schedule(struct napi_struct *n)
6020 {
6021         unsigned long flags;
6022
6023         local_irq_save(flags);
6024         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6025         local_irq_restore(flags);
6026 }
6027 EXPORT_SYMBOL(__napi_schedule);
6028
6029 /**
6030  *      napi_schedule_prep - check if napi can be scheduled
6031  *      @n: napi context
6032  *
6033  * Test if NAPI routine is already running, and if not mark
6034  * it as running.  This is used as a condition variable to
6035  * insure only one NAPI poll instance runs.  We also make
6036  * sure there is no pending NAPI disable.
6037  */
6038 bool napi_schedule_prep(struct napi_struct *n)
6039 {
6040         unsigned long new, val = READ_ONCE(n->state);
6041
6042         do {
6043                 if (unlikely(val & NAPIF_STATE_DISABLE))
6044                         return false;
6045                 new = val | NAPIF_STATE_SCHED;
6046
6047                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6048                  * This was suggested by Alexander Duyck, as compiler
6049                  * emits better code than :
6050                  * if (val & NAPIF_STATE_SCHED)
6051                  *     new |= NAPIF_STATE_MISSED;
6052                  */
6053                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6054                                                    NAPIF_STATE_MISSED;
6055         } while (!try_cmpxchg(&n->state, &val, new));
6056
6057         return !(val & NAPIF_STATE_SCHED);
6058 }
6059 EXPORT_SYMBOL(napi_schedule_prep);
6060
6061 /**
6062  * __napi_schedule_irqoff - schedule for receive
6063  * @n: entry to schedule
6064  *
6065  * Variant of __napi_schedule() assuming hard irqs are masked.
6066  *
6067  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6068  * because the interrupt disabled assumption might not be true
6069  * due to force-threaded interrupts and spinlock substitution.
6070  */
6071 void __napi_schedule_irqoff(struct napi_struct *n)
6072 {
6073         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6074                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6075         else
6076                 __napi_schedule(n);
6077 }
6078 EXPORT_SYMBOL(__napi_schedule_irqoff);
6079
6080 bool napi_complete_done(struct napi_struct *n, int work_done)
6081 {
6082         unsigned long flags, val, new, timeout = 0;
6083         bool ret = true;
6084
6085         /*
6086          * 1) Don't let napi dequeue from the cpu poll list
6087          *    just in case its running on a different cpu.
6088          * 2) If we are busy polling, do nothing here, we have
6089          *    the guarantee we will be called later.
6090          */
6091         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6092                                  NAPIF_STATE_IN_BUSY_POLL)))
6093                 return false;
6094
6095         if (work_done) {
6096                 if (n->gro_bitmask)
6097                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6098                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6099         }
6100         if (n->defer_hard_irqs_count > 0) {
6101                 n->defer_hard_irqs_count--;
6102                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6103                 if (timeout)
6104                         ret = false;
6105         }
6106         if (n->gro_bitmask) {
6107                 /* When the NAPI instance uses a timeout and keeps postponing
6108                  * it, we need to bound somehow the time packets are kept in
6109                  * the GRO layer
6110                  */
6111                 napi_gro_flush(n, !!timeout);
6112         }
6113
6114         gro_normal_list(n);
6115
6116         if (unlikely(!list_empty(&n->poll_list))) {
6117                 /* If n->poll_list is not empty, we need to mask irqs */
6118                 local_irq_save(flags);
6119                 list_del_init(&n->poll_list);
6120                 local_irq_restore(flags);
6121         }
6122         WRITE_ONCE(n->list_owner, -1);
6123
6124         val = READ_ONCE(n->state);
6125         do {
6126                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6127
6128                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6129                               NAPIF_STATE_SCHED_THREADED |
6130                               NAPIF_STATE_PREFER_BUSY_POLL);
6131
6132                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6133                  * because we will call napi->poll() one more time.
6134                  * This C code was suggested by Alexander Duyck to help gcc.
6135                  */
6136                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6137                                                     NAPIF_STATE_SCHED;
6138         } while (!try_cmpxchg(&n->state, &val, new));
6139
6140         if (unlikely(val & NAPIF_STATE_MISSED)) {
6141                 __napi_schedule(n);
6142                 return false;
6143         }
6144
6145         if (timeout)
6146                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6147                               HRTIMER_MODE_REL_PINNED);
6148         return ret;
6149 }
6150 EXPORT_SYMBOL(napi_complete_done);
6151
6152 /* must be called under rcu_read_lock(), as we dont take a reference */
6153 struct napi_struct *napi_by_id(unsigned int napi_id)
6154 {
6155         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6156         struct napi_struct *napi;
6157
6158         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6159                 if (napi->napi_id == napi_id)
6160                         return napi;
6161
6162         return NULL;
6163 }
6164
6165 #if defined(CONFIG_NET_RX_BUSY_POLL)
6166
6167 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6168 {
6169         if (!skip_schedule) {
6170                 gro_normal_list(napi);
6171                 __napi_schedule(napi);
6172                 return;
6173         }
6174
6175         if (napi->gro_bitmask) {
6176                 /* flush too old packets
6177                  * If HZ < 1000, flush all packets.
6178                  */
6179                 napi_gro_flush(napi, HZ >= 1000);
6180         }
6181
6182         gro_normal_list(napi);
6183         clear_bit(NAPI_STATE_SCHED, &napi->state);
6184 }
6185
6186 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6187                            u16 budget)
6188 {
6189         bool skip_schedule = false;
6190         unsigned long timeout;
6191         int rc;
6192
6193         /* Busy polling means there is a high chance device driver hard irq
6194          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6195          * set in napi_schedule_prep().
6196          * Since we are about to call napi->poll() once more, we can safely
6197          * clear NAPI_STATE_MISSED.
6198          *
6199          * Note: x86 could use a single "lock and ..." instruction
6200          * to perform these two clear_bit()
6201          */
6202         clear_bit(NAPI_STATE_MISSED, &napi->state);
6203         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6204
6205         local_bh_disable();
6206
6207         if (prefer_busy_poll) {
6208                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6209                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6210                 if (napi->defer_hard_irqs_count && timeout) {
6211                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6212                         skip_schedule = true;
6213                 }
6214         }
6215
6216         /* All we really want here is to re-enable device interrupts.
6217          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6218          */
6219         rc = napi->poll(napi, budget);
6220         /* We can't gro_normal_list() here, because napi->poll() might have
6221          * rearmed the napi (napi_complete_done()) in which case it could
6222          * already be running on another CPU.
6223          */
6224         trace_napi_poll(napi, rc, budget);
6225         netpoll_poll_unlock(have_poll_lock);
6226         if (rc == budget)
6227                 __busy_poll_stop(napi, skip_schedule);
6228         local_bh_enable();
6229 }
6230
6231 void napi_busy_loop(unsigned int napi_id,
6232                     bool (*loop_end)(void *, unsigned long),
6233                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6234 {
6235         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6236         int (*napi_poll)(struct napi_struct *napi, int budget);
6237         void *have_poll_lock = NULL;
6238         struct napi_struct *napi;
6239
6240 restart:
6241         napi_poll = NULL;
6242
6243         rcu_read_lock();
6244
6245         napi = napi_by_id(napi_id);
6246         if (!napi)
6247                 goto out;
6248
6249         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6250                 preempt_disable();
6251         for (;;) {
6252                 int work = 0;
6253
6254                 local_bh_disable();
6255                 if (!napi_poll) {
6256                         unsigned long val = READ_ONCE(napi->state);
6257
6258                         /* If multiple threads are competing for this napi,
6259                          * we avoid dirtying napi->state as much as we can.
6260                          */
6261                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6262                                    NAPIF_STATE_IN_BUSY_POLL)) {
6263                                 if (prefer_busy_poll)
6264                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6265                                 goto count;
6266                         }
6267                         if (cmpxchg(&napi->state, val,
6268                                     val | NAPIF_STATE_IN_BUSY_POLL |
6269                                           NAPIF_STATE_SCHED) != val) {
6270                                 if (prefer_busy_poll)
6271                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6272                                 goto count;
6273                         }
6274                         have_poll_lock = netpoll_poll_lock(napi);
6275                         napi_poll = napi->poll;
6276                 }
6277                 work = napi_poll(napi, budget);
6278                 trace_napi_poll(napi, work, budget);
6279                 gro_normal_list(napi);
6280 count:
6281                 if (work > 0)
6282                         __NET_ADD_STATS(dev_net(napi->dev),
6283                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6284                 local_bh_enable();
6285
6286                 if (!loop_end || loop_end(loop_end_arg, start_time))
6287                         break;
6288
6289                 if (unlikely(need_resched())) {
6290                         if (napi_poll)
6291                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6292                         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6293                                 preempt_enable();
6294                         rcu_read_unlock();
6295                         cond_resched();
6296                         if (loop_end(loop_end_arg, start_time))
6297                                 return;
6298                         goto restart;
6299                 }
6300                 cpu_relax();
6301         }
6302         if (napi_poll)
6303                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6304         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6305                 preempt_enable();
6306 out:
6307         rcu_read_unlock();
6308 }
6309 EXPORT_SYMBOL(napi_busy_loop);
6310
6311 #endif /* CONFIG_NET_RX_BUSY_POLL */
6312
6313 static void napi_hash_add(struct napi_struct *napi)
6314 {
6315         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6316                 return;
6317
6318         spin_lock(&napi_hash_lock);
6319
6320         /* 0..NR_CPUS range is reserved for sender_cpu use */
6321         do {
6322                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6323                         napi_gen_id = MIN_NAPI_ID;
6324         } while (napi_by_id(napi_gen_id));
6325         napi->napi_id = napi_gen_id;
6326
6327         hlist_add_head_rcu(&napi->napi_hash_node,
6328                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6329
6330         spin_unlock(&napi_hash_lock);
6331 }
6332
6333 /* Warning : caller is responsible to make sure rcu grace period
6334  * is respected before freeing memory containing @napi
6335  */
6336 static void napi_hash_del(struct napi_struct *napi)
6337 {
6338         spin_lock(&napi_hash_lock);
6339
6340         hlist_del_init_rcu(&napi->napi_hash_node);
6341
6342         spin_unlock(&napi_hash_lock);
6343 }
6344
6345 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6346 {
6347         struct napi_struct *napi;
6348
6349         napi = container_of(timer, struct napi_struct, timer);
6350
6351         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6352          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6353          */
6354         if (!napi_disable_pending(napi) &&
6355             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6356                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6357                 __napi_schedule_irqoff(napi);
6358         }
6359
6360         return HRTIMER_NORESTART;
6361 }
6362
6363 static void init_gro_hash(struct napi_struct *napi)
6364 {
6365         int i;
6366
6367         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6368                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6369                 napi->gro_hash[i].count = 0;
6370         }
6371         napi->gro_bitmask = 0;
6372 }
6373
6374 int dev_set_threaded(struct net_device *dev, bool threaded)
6375 {
6376         struct napi_struct *napi;
6377         int err = 0;
6378
6379         if (dev->threaded == threaded)
6380                 return 0;
6381
6382         if (threaded) {
6383                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6384                         if (!napi->thread) {
6385                                 err = napi_kthread_create(napi);
6386                                 if (err) {
6387                                         threaded = false;
6388                                         break;
6389                                 }
6390                         }
6391                 }
6392         }
6393
6394         dev->threaded = threaded;
6395
6396         /* Make sure kthread is created before THREADED bit
6397          * is set.
6398          */
6399         smp_mb__before_atomic();
6400
6401         /* Setting/unsetting threaded mode on a napi might not immediately
6402          * take effect, if the current napi instance is actively being
6403          * polled. In this case, the switch between threaded mode and
6404          * softirq mode will happen in the next round of napi_schedule().
6405          * This should not cause hiccups/stalls to the live traffic.
6406          */
6407         list_for_each_entry(napi, &dev->napi_list, dev_list)
6408                 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6409
6410         return err;
6411 }
6412 EXPORT_SYMBOL(dev_set_threaded);
6413
6414 /**
6415  * netif_queue_set_napi - Associate queue with the napi
6416  * @dev: device to which NAPI and queue belong
6417  * @queue_index: Index of queue
6418  * @type: queue type as RX or TX
6419  * @napi: NAPI context, pass NULL to clear previously set NAPI
6420  *
6421  * Set queue with its corresponding napi context. This should be done after
6422  * registering the NAPI handler for the queue-vector and the queues have been
6423  * mapped to the corresponding interrupt vector.
6424  */
6425 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6426                           enum netdev_queue_type type, struct napi_struct *napi)
6427 {
6428         struct netdev_rx_queue *rxq;
6429         struct netdev_queue *txq;
6430
6431         if (WARN_ON_ONCE(napi && !napi->dev))
6432                 return;
6433         if (dev->reg_state >= NETREG_REGISTERED)
6434                 ASSERT_RTNL();
6435
6436         switch (type) {
6437         case NETDEV_QUEUE_TYPE_RX:
6438                 rxq = __netif_get_rx_queue(dev, queue_index);
6439                 rxq->napi = napi;
6440                 return;
6441         case NETDEV_QUEUE_TYPE_TX:
6442                 txq = netdev_get_tx_queue(dev, queue_index);
6443                 txq->napi = napi;
6444                 return;
6445         default:
6446                 return;
6447         }
6448 }
6449 EXPORT_SYMBOL(netif_queue_set_napi);
6450
6451 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6452                            int (*poll)(struct napi_struct *, int), int weight)
6453 {
6454         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6455                 return;
6456
6457         INIT_LIST_HEAD(&napi->poll_list);
6458         INIT_HLIST_NODE(&napi->napi_hash_node);
6459         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6460         napi->timer.function = napi_watchdog;
6461         init_gro_hash(napi);
6462         napi->skb = NULL;
6463         INIT_LIST_HEAD(&napi->rx_list);
6464         napi->rx_count = 0;
6465         napi->poll = poll;
6466         if (weight > NAPI_POLL_WEIGHT)
6467                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6468                                 weight);
6469         napi->weight = weight;
6470         napi->dev = dev;
6471 #ifdef CONFIG_NETPOLL
6472         napi->poll_owner = -1;
6473 #endif
6474         napi->list_owner = -1;
6475         set_bit(NAPI_STATE_SCHED, &napi->state);
6476         set_bit(NAPI_STATE_NPSVC, &napi->state);
6477         list_add_rcu(&napi->dev_list, &dev->napi_list);
6478         napi_hash_add(napi);
6479         napi_get_frags_check(napi);
6480         /* Create kthread for this napi if dev->threaded is set.
6481          * Clear dev->threaded if kthread creation failed so that
6482          * threaded mode will not be enabled in napi_enable().
6483          */
6484         if (dev->threaded && napi_kthread_create(napi))
6485                 dev->threaded = 0;
6486         netif_napi_set_irq(napi, -1);
6487 }
6488 EXPORT_SYMBOL(netif_napi_add_weight);
6489
6490 void napi_disable(struct napi_struct *n)
6491 {
6492         unsigned long val, new;
6493
6494         might_sleep();
6495         set_bit(NAPI_STATE_DISABLE, &n->state);
6496
6497         val = READ_ONCE(n->state);
6498         do {
6499                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6500                         usleep_range(20, 200);
6501                         val = READ_ONCE(n->state);
6502                 }
6503
6504                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6505                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6506         } while (!try_cmpxchg(&n->state, &val, new));
6507
6508         hrtimer_cancel(&n->timer);
6509
6510         clear_bit(NAPI_STATE_DISABLE, &n->state);
6511 }
6512 EXPORT_SYMBOL(napi_disable);
6513
6514 /**
6515  *      napi_enable - enable NAPI scheduling
6516  *      @n: NAPI context
6517  *
6518  * Resume NAPI from being scheduled on this context.
6519  * Must be paired with napi_disable.
6520  */
6521 void napi_enable(struct napi_struct *n)
6522 {
6523         unsigned long new, val = READ_ONCE(n->state);
6524
6525         do {
6526                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6527
6528                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6529                 if (n->dev->threaded && n->thread)
6530                         new |= NAPIF_STATE_THREADED;
6531         } while (!try_cmpxchg(&n->state, &val, new));
6532 }
6533 EXPORT_SYMBOL(napi_enable);
6534
6535 static void flush_gro_hash(struct napi_struct *napi)
6536 {
6537         int i;
6538
6539         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6540                 struct sk_buff *skb, *n;
6541
6542                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6543                         kfree_skb(skb);
6544                 napi->gro_hash[i].count = 0;
6545         }
6546 }
6547
6548 /* Must be called in process context */
6549 void __netif_napi_del(struct napi_struct *napi)
6550 {
6551         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6552                 return;
6553
6554         napi_hash_del(napi);
6555         list_del_rcu(&napi->dev_list);
6556         napi_free_frags(napi);
6557
6558         flush_gro_hash(napi);
6559         napi->gro_bitmask = 0;
6560
6561         if (napi->thread) {
6562                 kthread_stop(napi->thread);
6563                 napi->thread = NULL;
6564         }
6565 }
6566 EXPORT_SYMBOL(__netif_napi_del);
6567
6568 static int __napi_poll(struct napi_struct *n, bool *repoll)
6569 {
6570         int work, weight;
6571
6572         weight = n->weight;
6573
6574         /* This NAPI_STATE_SCHED test is for avoiding a race
6575          * with netpoll's poll_napi().  Only the entity which
6576          * obtains the lock and sees NAPI_STATE_SCHED set will
6577          * actually make the ->poll() call.  Therefore we avoid
6578          * accidentally calling ->poll() when NAPI is not scheduled.
6579          */
6580         work = 0;
6581         if (napi_is_scheduled(n)) {
6582                 work = n->poll(n, weight);
6583                 trace_napi_poll(n, work, weight);
6584
6585                 xdp_do_check_flushed(n);
6586         }
6587
6588         if (unlikely(work > weight))
6589                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6590                                 n->poll, work, weight);
6591
6592         if (likely(work < weight))
6593                 return work;
6594
6595         /* Drivers must not modify the NAPI state if they
6596          * consume the entire weight.  In such cases this code
6597          * still "owns" the NAPI instance and therefore can
6598          * move the instance around on the list at-will.
6599          */
6600         if (unlikely(napi_disable_pending(n))) {
6601                 napi_complete(n);
6602                 return work;
6603         }
6604
6605         /* The NAPI context has more processing work, but busy-polling
6606          * is preferred. Exit early.
6607          */
6608         if (napi_prefer_busy_poll(n)) {
6609                 if (napi_complete_done(n, work)) {
6610                         /* If timeout is not set, we need to make sure
6611                          * that the NAPI is re-scheduled.
6612                          */
6613                         napi_schedule(n);
6614                 }
6615                 return work;
6616         }
6617
6618         if (n->gro_bitmask) {
6619                 /* flush too old packets
6620                  * If HZ < 1000, flush all packets.
6621                  */
6622                 napi_gro_flush(n, HZ >= 1000);
6623         }
6624
6625         gro_normal_list(n);
6626
6627         /* Some drivers may have called napi_schedule
6628          * prior to exhausting their budget.
6629          */
6630         if (unlikely(!list_empty(&n->poll_list))) {
6631                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6632                              n->dev ? n->dev->name : "backlog");
6633                 return work;
6634         }
6635
6636         *repoll = true;
6637
6638         return work;
6639 }
6640
6641 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6642 {
6643         bool do_repoll = false;
6644         void *have;
6645         int work;
6646
6647         list_del_init(&n->poll_list);
6648
6649         have = netpoll_poll_lock(n);
6650
6651         work = __napi_poll(n, &do_repoll);
6652
6653         if (do_repoll)
6654                 list_add_tail(&n->poll_list, repoll);
6655
6656         netpoll_poll_unlock(have);
6657
6658         return work;
6659 }
6660
6661 static int napi_thread_wait(struct napi_struct *napi)
6662 {
6663         bool woken = false;
6664
6665         set_current_state(TASK_INTERRUPTIBLE);
6666
6667         while (!kthread_should_stop()) {
6668                 /* Testing SCHED_THREADED bit here to make sure the current
6669                  * kthread owns this napi and could poll on this napi.
6670                  * Testing SCHED bit is not enough because SCHED bit might be
6671                  * set by some other busy poll thread or by napi_disable().
6672                  */
6673                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6674                         WARN_ON(!list_empty(&napi->poll_list));
6675                         __set_current_state(TASK_RUNNING);
6676                         return 0;
6677                 }
6678
6679                 schedule();
6680                 /* woken being true indicates this thread owns this napi. */
6681                 woken = true;
6682                 set_current_state(TASK_INTERRUPTIBLE);
6683         }
6684         __set_current_state(TASK_RUNNING);
6685
6686         return -1;
6687 }
6688
6689 static void skb_defer_free_flush(struct softnet_data *sd)
6690 {
6691         struct sk_buff *skb, *next;
6692
6693         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6694         if (!READ_ONCE(sd->defer_list))
6695                 return;
6696
6697         spin_lock(&sd->defer_lock);
6698         skb = sd->defer_list;
6699         sd->defer_list = NULL;
6700         sd->defer_count = 0;
6701         spin_unlock(&sd->defer_lock);
6702
6703         while (skb != NULL) {
6704                 next = skb->next;
6705                 napi_consume_skb(skb, 1);
6706                 skb = next;
6707         }
6708 }
6709
6710 static int napi_threaded_poll(void *data)
6711 {
6712         struct napi_struct *napi = data;
6713         struct softnet_data *sd;
6714         void *have;
6715
6716         while (!napi_thread_wait(napi)) {
6717                 unsigned long last_qs = jiffies;
6718
6719                 for (;;) {
6720                         bool repoll = false;
6721
6722                         local_bh_disable();
6723                         sd = this_cpu_ptr(&softnet_data);
6724                         sd->in_napi_threaded_poll = true;
6725
6726                         have = netpoll_poll_lock(napi);
6727                         __napi_poll(napi, &repoll);
6728                         netpoll_poll_unlock(have);
6729
6730                         sd->in_napi_threaded_poll = false;
6731                         barrier();
6732
6733                         if (sd_has_rps_ipi_waiting(sd)) {
6734                                 local_irq_disable();
6735                                 net_rps_action_and_irq_enable(sd);
6736                         }
6737                         skb_defer_free_flush(sd);
6738                         local_bh_enable();
6739
6740                         if (!repoll)
6741                                 break;
6742
6743                         rcu_softirq_qs_periodic(last_qs);
6744                         cond_resched();
6745                 }
6746         }
6747         return 0;
6748 }
6749
6750 static __latent_entropy void net_rx_action(struct softirq_action *h)
6751 {
6752         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6753         unsigned long time_limit = jiffies +
6754                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6755         int budget = READ_ONCE(netdev_budget);
6756         LIST_HEAD(list);
6757         LIST_HEAD(repoll);
6758
6759 start:
6760         sd->in_net_rx_action = true;
6761         local_irq_disable();
6762         list_splice_init(&sd->poll_list, &list);
6763         local_irq_enable();
6764
6765         for (;;) {
6766                 struct napi_struct *n;
6767
6768                 skb_defer_free_flush(sd);
6769
6770                 if (list_empty(&list)) {
6771                         if (list_empty(&repoll)) {
6772                                 sd->in_net_rx_action = false;
6773                                 barrier();
6774                                 /* We need to check if ____napi_schedule()
6775                                  * had refilled poll_list while
6776                                  * sd->in_net_rx_action was true.
6777                                  */
6778                                 if (!list_empty(&sd->poll_list))
6779                                         goto start;
6780                                 if (!sd_has_rps_ipi_waiting(sd))
6781                                         goto end;
6782                         }
6783                         break;
6784                 }
6785
6786                 n = list_first_entry(&list, struct napi_struct, poll_list);
6787                 budget -= napi_poll(n, &repoll);
6788
6789                 /* If softirq window is exhausted then punt.
6790                  * Allow this to run for 2 jiffies since which will allow
6791                  * an average latency of 1.5/HZ.
6792                  */
6793                 if (unlikely(budget <= 0 ||
6794                              time_after_eq(jiffies, time_limit))) {
6795                         sd->time_squeeze++;
6796                         break;
6797                 }
6798         }
6799
6800         local_irq_disable();
6801
6802         list_splice_tail_init(&sd->poll_list, &list);
6803         list_splice_tail(&repoll, &list);
6804         list_splice(&list, &sd->poll_list);
6805         if (!list_empty(&sd->poll_list))
6806                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6807         else
6808                 sd->in_net_rx_action = false;
6809
6810         net_rps_action_and_irq_enable(sd);
6811 end:;
6812 }
6813
6814 struct netdev_adjacent {
6815         struct net_device *dev;
6816         netdevice_tracker dev_tracker;
6817
6818         /* upper master flag, there can only be one master device per list */
6819         bool master;
6820
6821         /* lookup ignore flag */
6822         bool ignore;
6823
6824         /* counter for the number of times this device was added to us */
6825         u16 ref_nr;
6826
6827         /* private field for the users */
6828         void *private;
6829
6830         struct list_head list;
6831         struct rcu_head rcu;
6832 };
6833
6834 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6835                                                  struct list_head *adj_list)
6836 {
6837         struct netdev_adjacent *adj;
6838
6839         list_for_each_entry(adj, adj_list, list) {
6840                 if (adj->dev == adj_dev)
6841                         return adj;
6842         }
6843         return NULL;
6844 }
6845
6846 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6847                                     struct netdev_nested_priv *priv)
6848 {
6849         struct net_device *dev = (struct net_device *)priv->data;
6850
6851         return upper_dev == dev;
6852 }
6853
6854 /**
6855  * netdev_has_upper_dev - Check if device is linked to an upper device
6856  * @dev: device
6857  * @upper_dev: upper device to check
6858  *
6859  * Find out if a device is linked to specified upper device and return true
6860  * in case it is. Note that this checks only immediate upper device,
6861  * not through a complete stack of devices. The caller must hold the RTNL lock.
6862  */
6863 bool netdev_has_upper_dev(struct net_device *dev,
6864                           struct net_device *upper_dev)
6865 {
6866         struct netdev_nested_priv priv = {
6867                 .data = (void *)upper_dev,
6868         };
6869
6870         ASSERT_RTNL();
6871
6872         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6873                                              &priv);
6874 }
6875 EXPORT_SYMBOL(netdev_has_upper_dev);
6876
6877 /**
6878  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6879  * @dev: device
6880  * @upper_dev: upper device to check
6881  *
6882  * Find out if a device is linked to specified upper device and return true
6883  * in case it is. Note that this checks the entire upper device chain.
6884  * The caller must hold rcu lock.
6885  */
6886
6887 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6888                                   struct net_device *upper_dev)
6889 {
6890         struct netdev_nested_priv priv = {
6891                 .data = (void *)upper_dev,
6892         };
6893
6894         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6895                                                &priv);
6896 }
6897 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6898
6899 /**
6900  * netdev_has_any_upper_dev - Check if device is linked to some device
6901  * @dev: device
6902  *
6903  * Find out if a device is linked to an upper device and return true in case
6904  * it is. The caller must hold the RTNL lock.
6905  */
6906 bool netdev_has_any_upper_dev(struct net_device *dev)
6907 {
6908         ASSERT_RTNL();
6909
6910         return !list_empty(&dev->adj_list.upper);
6911 }
6912 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6913
6914 /**
6915  * netdev_master_upper_dev_get - Get master upper device
6916  * @dev: device
6917  *
6918  * Find a master upper device and return pointer to it or NULL in case
6919  * it's not there. The caller must hold the RTNL lock.
6920  */
6921 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6922 {
6923         struct netdev_adjacent *upper;
6924
6925         ASSERT_RTNL();
6926
6927         if (list_empty(&dev->adj_list.upper))
6928                 return NULL;
6929
6930         upper = list_first_entry(&dev->adj_list.upper,
6931                                  struct netdev_adjacent, list);
6932         if (likely(upper->master))
6933                 return upper->dev;
6934         return NULL;
6935 }
6936 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6937
6938 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6939 {
6940         struct netdev_adjacent *upper;
6941
6942         ASSERT_RTNL();
6943
6944         if (list_empty(&dev->adj_list.upper))
6945                 return NULL;
6946
6947         upper = list_first_entry(&dev->adj_list.upper,
6948                                  struct netdev_adjacent, list);
6949         if (likely(upper->master) && !upper->ignore)
6950                 return upper->dev;
6951         return NULL;
6952 }
6953
6954 /**
6955  * netdev_has_any_lower_dev - Check if device is linked to some device
6956  * @dev: device
6957  *
6958  * Find out if a device is linked to a lower device and return true in case
6959  * it is. The caller must hold the RTNL lock.
6960  */
6961 static bool netdev_has_any_lower_dev(struct net_device *dev)
6962 {
6963         ASSERT_RTNL();
6964
6965         return !list_empty(&dev->adj_list.lower);
6966 }
6967
6968 void *netdev_adjacent_get_private(struct list_head *adj_list)
6969 {
6970         struct netdev_adjacent *adj;
6971
6972         adj = list_entry(adj_list, struct netdev_adjacent, list);
6973
6974         return adj->private;
6975 }
6976 EXPORT_SYMBOL(netdev_adjacent_get_private);
6977
6978 /**
6979  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6980  * @dev: device
6981  * @iter: list_head ** of the current position
6982  *
6983  * Gets the next device from the dev's upper list, starting from iter
6984  * position. The caller must hold RCU read lock.
6985  */
6986 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6987                                                  struct list_head **iter)
6988 {
6989         struct netdev_adjacent *upper;
6990
6991         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6992
6993         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6994
6995         if (&upper->list == &dev->adj_list.upper)
6996                 return NULL;
6997
6998         *iter = &upper->list;
6999
7000         return upper->dev;
7001 }
7002 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7003
7004 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7005                                                   struct list_head **iter,
7006                                                   bool *ignore)
7007 {
7008         struct netdev_adjacent *upper;
7009
7010         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7011
7012         if (&upper->list == &dev->adj_list.upper)
7013                 return NULL;
7014
7015         *iter = &upper->list;
7016         *ignore = upper->ignore;
7017
7018         return upper->dev;
7019 }
7020
7021 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7022                                                     struct list_head **iter)
7023 {
7024         struct netdev_adjacent *upper;
7025
7026         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7027
7028         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7029
7030         if (&upper->list == &dev->adj_list.upper)
7031                 return NULL;
7032
7033         *iter = &upper->list;
7034
7035         return upper->dev;
7036 }
7037
7038 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7039                                        int (*fn)(struct net_device *dev,
7040                                          struct netdev_nested_priv *priv),
7041                                        struct netdev_nested_priv *priv)
7042 {
7043         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7044         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7045         int ret, cur = 0;
7046         bool ignore;
7047
7048         now = dev;
7049         iter = &dev->adj_list.upper;
7050
7051         while (1) {
7052                 if (now != dev) {
7053                         ret = fn(now, priv);
7054                         if (ret)
7055                                 return ret;
7056                 }
7057
7058                 next = NULL;
7059                 while (1) {
7060                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7061                         if (!udev)
7062                                 break;
7063                         if (ignore)
7064                                 continue;
7065
7066                         next = udev;
7067                         niter = &udev->adj_list.upper;
7068                         dev_stack[cur] = now;
7069                         iter_stack[cur++] = iter;
7070                         break;
7071                 }
7072
7073                 if (!next) {
7074                         if (!cur)
7075                                 return 0;
7076                         next = dev_stack[--cur];
7077                         niter = iter_stack[cur];
7078                 }
7079
7080                 now = next;
7081                 iter = niter;
7082         }
7083
7084         return 0;
7085 }
7086
7087 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7088                                   int (*fn)(struct net_device *dev,
7089                                             struct netdev_nested_priv *priv),
7090                                   struct netdev_nested_priv *priv)
7091 {
7092         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7093         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7094         int ret, cur = 0;
7095
7096         now = dev;
7097         iter = &dev->adj_list.upper;
7098
7099         while (1) {
7100                 if (now != dev) {
7101                         ret = fn(now, priv);
7102                         if (ret)
7103                                 return ret;
7104                 }
7105
7106                 next = NULL;
7107                 while (1) {
7108                         udev = netdev_next_upper_dev_rcu(now, &iter);
7109                         if (!udev)
7110                                 break;
7111
7112                         next = udev;
7113                         niter = &udev->adj_list.upper;
7114                         dev_stack[cur] = now;
7115                         iter_stack[cur++] = iter;
7116                         break;
7117                 }
7118
7119                 if (!next) {
7120                         if (!cur)
7121                                 return 0;
7122                         next = dev_stack[--cur];
7123                         niter = iter_stack[cur];
7124                 }
7125
7126                 now = next;
7127                 iter = niter;
7128         }
7129
7130         return 0;
7131 }
7132 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7133
7134 static bool __netdev_has_upper_dev(struct net_device *dev,
7135                                    struct net_device *upper_dev)
7136 {
7137         struct netdev_nested_priv priv = {
7138                 .flags = 0,
7139                 .data = (void *)upper_dev,
7140         };
7141
7142         ASSERT_RTNL();
7143
7144         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7145                                            &priv);
7146 }
7147
7148 /**
7149  * netdev_lower_get_next_private - Get the next ->private from the
7150  *                                 lower neighbour list
7151  * @dev: device
7152  * @iter: list_head ** of the current position
7153  *
7154  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7155  * list, starting from iter position. The caller must hold either hold the
7156  * RTNL lock or its own locking that guarantees that the neighbour lower
7157  * list will remain unchanged.
7158  */
7159 void *netdev_lower_get_next_private(struct net_device *dev,
7160                                     struct list_head **iter)
7161 {
7162         struct netdev_adjacent *lower;
7163
7164         lower = list_entry(*iter, struct netdev_adjacent, list);
7165
7166         if (&lower->list == &dev->adj_list.lower)
7167                 return NULL;
7168
7169         *iter = lower->list.next;
7170
7171         return lower->private;
7172 }
7173 EXPORT_SYMBOL(netdev_lower_get_next_private);
7174
7175 /**
7176  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7177  *                                     lower neighbour list, RCU
7178  *                                     variant
7179  * @dev: device
7180  * @iter: list_head ** of the current position
7181  *
7182  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7183  * list, starting from iter position. The caller must hold RCU read lock.
7184  */
7185 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7186                                         struct list_head **iter)
7187 {
7188         struct netdev_adjacent *lower;
7189
7190         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7191
7192         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7193
7194         if (&lower->list == &dev->adj_list.lower)
7195                 return NULL;
7196
7197         *iter = &lower->list;
7198
7199         return lower->private;
7200 }
7201 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7202
7203 /**
7204  * netdev_lower_get_next - Get the next device from the lower neighbour
7205  *                         list
7206  * @dev: device
7207  * @iter: list_head ** of the current position
7208  *
7209  * Gets the next netdev_adjacent from the dev's lower neighbour
7210  * list, starting from iter position. The caller must hold RTNL lock or
7211  * its own locking that guarantees that the neighbour lower
7212  * list will remain unchanged.
7213  */
7214 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7215 {
7216         struct netdev_adjacent *lower;
7217
7218         lower = list_entry(*iter, struct netdev_adjacent, list);
7219
7220         if (&lower->list == &dev->adj_list.lower)
7221                 return NULL;
7222
7223         *iter = lower->list.next;
7224
7225         return lower->dev;
7226 }
7227 EXPORT_SYMBOL(netdev_lower_get_next);
7228
7229 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7230                                                 struct list_head **iter)
7231 {
7232         struct netdev_adjacent *lower;
7233
7234         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7235
7236         if (&lower->list == &dev->adj_list.lower)
7237                 return NULL;
7238
7239         *iter = &lower->list;
7240
7241         return lower->dev;
7242 }
7243
7244 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7245                                                   struct list_head **iter,
7246                                                   bool *ignore)
7247 {
7248         struct netdev_adjacent *lower;
7249
7250         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7251
7252         if (&lower->list == &dev->adj_list.lower)
7253                 return NULL;
7254
7255         *iter = &lower->list;
7256         *ignore = lower->ignore;
7257
7258         return lower->dev;
7259 }
7260
7261 int netdev_walk_all_lower_dev(struct net_device *dev,
7262                               int (*fn)(struct net_device *dev,
7263                                         struct netdev_nested_priv *priv),
7264                               struct netdev_nested_priv *priv)
7265 {
7266         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7267         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7268         int ret, cur = 0;
7269
7270         now = dev;
7271         iter = &dev->adj_list.lower;
7272
7273         while (1) {
7274                 if (now != dev) {
7275                         ret = fn(now, priv);
7276                         if (ret)
7277                                 return ret;
7278                 }
7279
7280                 next = NULL;
7281                 while (1) {
7282                         ldev = netdev_next_lower_dev(now, &iter);
7283                         if (!ldev)
7284                                 break;
7285
7286                         next = ldev;
7287                         niter = &ldev->adj_list.lower;
7288                         dev_stack[cur] = now;
7289                         iter_stack[cur++] = iter;
7290                         break;
7291                 }
7292
7293                 if (!next) {
7294                         if (!cur)
7295                                 return 0;
7296                         next = dev_stack[--cur];
7297                         niter = iter_stack[cur];
7298                 }
7299
7300                 now = next;
7301                 iter = niter;
7302         }
7303
7304         return 0;
7305 }
7306 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7307
7308 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7309                                        int (*fn)(struct net_device *dev,
7310                                          struct netdev_nested_priv *priv),
7311                                        struct netdev_nested_priv *priv)
7312 {
7313         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7314         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7315         int ret, cur = 0;
7316         bool ignore;
7317
7318         now = dev;
7319         iter = &dev->adj_list.lower;
7320
7321         while (1) {
7322                 if (now != dev) {
7323                         ret = fn(now, priv);
7324                         if (ret)
7325                                 return ret;
7326                 }
7327
7328                 next = NULL;
7329                 while (1) {
7330                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7331                         if (!ldev)
7332                                 break;
7333                         if (ignore)
7334                                 continue;
7335
7336                         next = ldev;
7337                         niter = &ldev->adj_list.lower;
7338                         dev_stack[cur] = now;
7339                         iter_stack[cur++] = iter;
7340                         break;
7341                 }
7342
7343                 if (!next) {
7344                         if (!cur)
7345                                 return 0;
7346                         next = dev_stack[--cur];
7347                         niter = iter_stack[cur];
7348                 }
7349
7350                 now = next;
7351                 iter = niter;
7352         }
7353
7354         return 0;
7355 }
7356
7357 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7358                                              struct list_head **iter)
7359 {
7360         struct netdev_adjacent *lower;
7361
7362         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7363         if (&lower->list == &dev->adj_list.lower)
7364                 return NULL;
7365
7366         *iter = &lower->list;
7367
7368         return lower->dev;
7369 }
7370 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7371
7372 static u8 __netdev_upper_depth(struct net_device *dev)
7373 {
7374         struct net_device *udev;
7375         struct list_head *iter;
7376         u8 max_depth = 0;
7377         bool ignore;
7378
7379         for (iter = &dev->adj_list.upper,
7380              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7381              udev;
7382              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7383                 if (ignore)
7384                         continue;
7385                 if (max_depth < udev->upper_level)
7386                         max_depth = udev->upper_level;
7387         }
7388
7389         return max_depth;
7390 }
7391
7392 static u8 __netdev_lower_depth(struct net_device *dev)
7393 {
7394         struct net_device *ldev;
7395         struct list_head *iter;
7396         u8 max_depth = 0;
7397         bool ignore;
7398
7399         for (iter = &dev->adj_list.lower,
7400              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7401              ldev;
7402              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7403                 if (ignore)
7404                         continue;
7405                 if (max_depth < ldev->lower_level)
7406                         max_depth = ldev->lower_level;
7407         }
7408
7409         return max_depth;
7410 }
7411
7412 static int __netdev_update_upper_level(struct net_device *dev,
7413                                        struct netdev_nested_priv *__unused)
7414 {
7415         dev->upper_level = __netdev_upper_depth(dev) + 1;
7416         return 0;
7417 }
7418
7419 #ifdef CONFIG_LOCKDEP
7420 static LIST_HEAD(net_unlink_list);
7421
7422 static void net_unlink_todo(struct net_device *dev)
7423 {
7424         if (list_empty(&dev->unlink_list))
7425                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7426 }
7427 #endif
7428
7429 static int __netdev_update_lower_level(struct net_device *dev,
7430                                        struct netdev_nested_priv *priv)
7431 {
7432         dev->lower_level = __netdev_lower_depth(dev) + 1;
7433
7434 #ifdef CONFIG_LOCKDEP
7435         if (!priv)
7436                 return 0;
7437
7438         if (priv->flags & NESTED_SYNC_IMM)
7439                 dev->nested_level = dev->lower_level - 1;
7440         if (priv->flags & NESTED_SYNC_TODO)
7441                 net_unlink_todo(dev);
7442 #endif
7443         return 0;
7444 }
7445
7446 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7447                                   int (*fn)(struct net_device *dev,
7448                                             struct netdev_nested_priv *priv),
7449                                   struct netdev_nested_priv *priv)
7450 {
7451         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7452         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7453         int ret, cur = 0;
7454
7455         now = dev;
7456         iter = &dev->adj_list.lower;
7457
7458         while (1) {
7459                 if (now != dev) {
7460                         ret = fn(now, priv);
7461                         if (ret)
7462                                 return ret;
7463                 }
7464
7465                 next = NULL;
7466                 while (1) {
7467                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7468                         if (!ldev)
7469                                 break;
7470
7471                         next = ldev;
7472                         niter = &ldev->adj_list.lower;
7473                         dev_stack[cur] = now;
7474                         iter_stack[cur++] = iter;
7475                         break;
7476                 }
7477
7478                 if (!next) {
7479                         if (!cur)
7480                                 return 0;
7481                         next = dev_stack[--cur];
7482                         niter = iter_stack[cur];
7483                 }
7484
7485                 now = next;
7486                 iter = niter;
7487         }
7488
7489         return 0;
7490 }
7491 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7492
7493 /**
7494  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7495  *                                     lower neighbour list, RCU
7496  *                                     variant
7497  * @dev: device
7498  *
7499  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7500  * list. The caller must hold RCU read lock.
7501  */
7502 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7503 {
7504         struct netdev_adjacent *lower;
7505
7506         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7507                         struct netdev_adjacent, list);
7508         if (lower)
7509                 return lower->private;
7510         return NULL;
7511 }
7512 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7513
7514 /**
7515  * netdev_master_upper_dev_get_rcu - Get master upper device
7516  * @dev: device
7517  *
7518  * Find a master upper device and return pointer to it or NULL in case
7519  * it's not there. The caller must hold the RCU read lock.
7520  */
7521 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7522 {
7523         struct netdev_adjacent *upper;
7524
7525         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7526                                        struct netdev_adjacent, list);
7527         if (upper && likely(upper->master))
7528                 return upper->dev;
7529         return NULL;
7530 }
7531 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7532
7533 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7534                               struct net_device *adj_dev,
7535                               struct list_head *dev_list)
7536 {
7537         char linkname[IFNAMSIZ+7];
7538
7539         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7540                 "upper_%s" : "lower_%s", adj_dev->name);
7541         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7542                                  linkname);
7543 }
7544 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7545                                char *name,
7546                                struct list_head *dev_list)
7547 {
7548         char linkname[IFNAMSIZ+7];
7549
7550         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7551                 "upper_%s" : "lower_%s", name);
7552         sysfs_remove_link(&(dev->dev.kobj), linkname);
7553 }
7554
7555 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7556                                                  struct net_device *adj_dev,
7557                                                  struct list_head *dev_list)
7558 {
7559         return (dev_list == &dev->adj_list.upper ||
7560                 dev_list == &dev->adj_list.lower) &&
7561                 net_eq(dev_net(dev), dev_net(adj_dev));
7562 }
7563
7564 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7565                                         struct net_device *adj_dev,
7566                                         struct list_head *dev_list,
7567                                         void *private, bool master)
7568 {
7569         struct netdev_adjacent *adj;
7570         int ret;
7571
7572         adj = __netdev_find_adj(adj_dev, dev_list);
7573
7574         if (adj) {
7575                 adj->ref_nr += 1;
7576                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7577                          dev->name, adj_dev->name, adj->ref_nr);
7578
7579                 return 0;
7580         }
7581
7582         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7583         if (!adj)
7584                 return -ENOMEM;
7585
7586         adj->dev = adj_dev;
7587         adj->master = master;
7588         adj->ref_nr = 1;
7589         adj->private = private;
7590         adj->ignore = false;
7591         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7592
7593         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7594                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7595
7596         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7597                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7598                 if (ret)
7599                         goto free_adj;
7600         }
7601
7602         /* Ensure that master link is always the first item in list. */
7603         if (master) {
7604                 ret = sysfs_create_link(&(dev->dev.kobj),
7605                                         &(adj_dev->dev.kobj), "master");
7606                 if (ret)
7607                         goto remove_symlinks;
7608
7609                 list_add_rcu(&adj->list, dev_list);
7610         } else {
7611                 list_add_tail_rcu(&adj->list, dev_list);
7612         }
7613
7614         return 0;
7615
7616 remove_symlinks:
7617         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7618                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7619 free_adj:
7620         netdev_put(adj_dev, &adj->dev_tracker);
7621         kfree(adj);
7622
7623         return ret;
7624 }
7625
7626 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7627                                          struct net_device *adj_dev,
7628                                          u16 ref_nr,
7629                                          struct list_head *dev_list)
7630 {
7631         struct netdev_adjacent *adj;
7632
7633         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7634                  dev->name, adj_dev->name, ref_nr);
7635
7636         adj = __netdev_find_adj(adj_dev, dev_list);
7637
7638         if (!adj) {
7639                 pr_err("Adjacency does not exist for device %s from %s\n",
7640                        dev->name, adj_dev->name);
7641                 WARN_ON(1);
7642                 return;
7643         }
7644
7645         if (adj->ref_nr > ref_nr) {
7646                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7647                          dev->name, adj_dev->name, ref_nr,
7648                          adj->ref_nr - ref_nr);
7649                 adj->ref_nr -= ref_nr;
7650                 return;
7651         }
7652
7653         if (adj->master)
7654                 sysfs_remove_link(&(dev->dev.kobj), "master");
7655
7656         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7657                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7658
7659         list_del_rcu(&adj->list);
7660         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7661                  adj_dev->name, dev->name, adj_dev->name);
7662         netdev_put(adj_dev, &adj->dev_tracker);
7663         kfree_rcu(adj, rcu);
7664 }
7665
7666 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7667                                             struct net_device *upper_dev,
7668                                             struct list_head *up_list,
7669                                             struct list_head *down_list,
7670                                             void *private, bool master)
7671 {
7672         int ret;
7673
7674         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7675                                            private, master);
7676         if (ret)
7677                 return ret;
7678
7679         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7680                                            private, false);
7681         if (ret) {
7682                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7683                 return ret;
7684         }
7685
7686         return 0;
7687 }
7688
7689 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7690                                                struct net_device *upper_dev,
7691                                                u16 ref_nr,
7692                                                struct list_head *up_list,
7693                                                struct list_head *down_list)
7694 {
7695         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7696         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7697 }
7698
7699 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7700                                                 struct net_device *upper_dev,
7701                                                 void *private, bool master)
7702 {
7703         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7704                                                 &dev->adj_list.upper,
7705                                                 &upper_dev->adj_list.lower,
7706                                                 private, master);
7707 }
7708
7709 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7710                                                    struct net_device *upper_dev)
7711 {
7712         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7713                                            &dev->adj_list.upper,
7714                                            &upper_dev->adj_list.lower);
7715 }
7716
7717 static int __netdev_upper_dev_link(struct net_device *dev,
7718                                    struct net_device *upper_dev, bool master,
7719                                    void *upper_priv, void *upper_info,
7720                                    struct netdev_nested_priv *priv,
7721                                    struct netlink_ext_ack *extack)
7722 {
7723         struct netdev_notifier_changeupper_info changeupper_info = {
7724                 .info = {
7725                         .dev = dev,
7726                         .extack = extack,
7727                 },
7728                 .upper_dev = upper_dev,
7729                 .master = master,
7730                 .linking = true,
7731                 .upper_info = upper_info,
7732         };
7733         struct net_device *master_dev;
7734         int ret = 0;
7735
7736         ASSERT_RTNL();
7737
7738         if (dev == upper_dev)
7739                 return -EBUSY;
7740
7741         /* To prevent loops, check if dev is not upper device to upper_dev. */
7742         if (__netdev_has_upper_dev(upper_dev, dev))
7743                 return -EBUSY;
7744
7745         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7746                 return -EMLINK;
7747
7748         if (!master) {
7749                 if (__netdev_has_upper_dev(dev, upper_dev))
7750                         return -EEXIST;
7751         } else {
7752                 master_dev = __netdev_master_upper_dev_get(dev);
7753                 if (master_dev)
7754                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7755         }
7756
7757         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7758                                             &changeupper_info.info);
7759         ret = notifier_to_errno(ret);
7760         if (ret)
7761                 return ret;
7762
7763         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7764                                                    master);
7765         if (ret)
7766                 return ret;
7767
7768         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7769                                             &changeupper_info.info);
7770         ret = notifier_to_errno(ret);
7771         if (ret)
7772                 goto rollback;
7773
7774         __netdev_update_upper_level(dev, NULL);
7775         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7776
7777         __netdev_update_lower_level(upper_dev, priv);
7778         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7779                                     priv);
7780
7781         return 0;
7782
7783 rollback:
7784         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7785
7786         return ret;
7787 }
7788
7789 /**
7790  * netdev_upper_dev_link - Add a link to the upper device
7791  * @dev: device
7792  * @upper_dev: new upper device
7793  * @extack: netlink extended ack
7794  *
7795  * Adds a link to device which is upper to this one. The caller must hold
7796  * the RTNL lock. On a failure a negative errno code is returned.
7797  * On success the reference counts are adjusted and the function
7798  * returns zero.
7799  */
7800 int netdev_upper_dev_link(struct net_device *dev,
7801                           struct net_device *upper_dev,
7802                           struct netlink_ext_ack *extack)
7803 {
7804         struct netdev_nested_priv priv = {
7805                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7806                 .data = NULL,
7807         };
7808
7809         return __netdev_upper_dev_link(dev, upper_dev, false,
7810                                        NULL, NULL, &priv, extack);
7811 }
7812 EXPORT_SYMBOL(netdev_upper_dev_link);
7813
7814 /**
7815  * netdev_master_upper_dev_link - Add a master link to the upper device
7816  * @dev: device
7817  * @upper_dev: new upper device
7818  * @upper_priv: upper device private
7819  * @upper_info: upper info to be passed down via notifier
7820  * @extack: netlink extended ack
7821  *
7822  * Adds a link to device which is upper to this one. In this case, only
7823  * one master upper device can be linked, although other non-master devices
7824  * might be linked as well. The caller must hold the RTNL lock.
7825  * On a failure a negative errno code is returned. On success the reference
7826  * counts are adjusted and the function returns zero.
7827  */
7828 int netdev_master_upper_dev_link(struct net_device *dev,
7829                                  struct net_device *upper_dev,
7830                                  void *upper_priv, void *upper_info,
7831                                  struct netlink_ext_ack *extack)
7832 {
7833         struct netdev_nested_priv priv = {
7834                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7835                 .data = NULL,
7836         };
7837
7838         return __netdev_upper_dev_link(dev, upper_dev, true,
7839                                        upper_priv, upper_info, &priv, extack);
7840 }
7841 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7842
7843 static void __netdev_upper_dev_unlink(struct net_device *dev,
7844                                       struct net_device *upper_dev,
7845                                       struct netdev_nested_priv *priv)
7846 {
7847         struct netdev_notifier_changeupper_info changeupper_info = {
7848                 .info = {
7849                         .dev = dev,
7850                 },
7851                 .upper_dev = upper_dev,
7852                 .linking = false,
7853         };
7854
7855         ASSERT_RTNL();
7856
7857         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7858
7859         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7860                                       &changeupper_info.info);
7861
7862         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7863
7864         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7865                                       &changeupper_info.info);
7866
7867         __netdev_update_upper_level(dev, NULL);
7868         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7869
7870         __netdev_update_lower_level(upper_dev, priv);
7871         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7872                                     priv);
7873 }
7874
7875 /**
7876  * netdev_upper_dev_unlink - Removes a link to upper device
7877  * @dev: device
7878  * @upper_dev: new upper device
7879  *
7880  * Removes a link to device which is upper to this one. The caller must hold
7881  * the RTNL lock.
7882  */
7883 void netdev_upper_dev_unlink(struct net_device *dev,
7884                              struct net_device *upper_dev)
7885 {
7886         struct netdev_nested_priv priv = {
7887                 .flags = NESTED_SYNC_TODO,
7888                 .data = NULL,
7889         };
7890
7891         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7892 }
7893 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7894
7895 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7896                                       struct net_device *lower_dev,
7897                                       bool val)
7898 {
7899         struct netdev_adjacent *adj;
7900
7901         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7902         if (adj)
7903                 adj->ignore = val;
7904
7905         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7906         if (adj)
7907                 adj->ignore = val;
7908 }
7909
7910 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7911                                         struct net_device *lower_dev)
7912 {
7913         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7914 }
7915
7916 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7917                                        struct net_device *lower_dev)
7918 {
7919         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7920 }
7921
7922 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7923                                    struct net_device *new_dev,
7924                                    struct net_device *dev,
7925                                    struct netlink_ext_ack *extack)
7926 {
7927         struct netdev_nested_priv priv = {
7928                 .flags = 0,
7929                 .data = NULL,
7930         };
7931         int err;
7932
7933         if (!new_dev)
7934                 return 0;
7935
7936         if (old_dev && new_dev != old_dev)
7937                 netdev_adjacent_dev_disable(dev, old_dev);
7938         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7939                                       extack);
7940         if (err) {
7941                 if (old_dev && new_dev != old_dev)
7942                         netdev_adjacent_dev_enable(dev, old_dev);
7943                 return err;
7944         }
7945
7946         return 0;
7947 }
7948 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7949
7950 void netdev_adjacent_change_commit(struct net_device *old_dev,
7951                                    struct net_device *new_dev,
7952                                    struct net_device *dev)
7953 {
7954         struct netdev_nested_priv priv = {
7955                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7956                 .data = NULL,
7957         };
7958
7959         if (!new_dev || !old_dev)
7960                 return;
7961
7962         if (new_dev == old_dev)
7963                 return;
7964
7965         netdev_adjacent_dev_enable(dev, old_dev);
7966         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7967 }
7968 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7969
7970 void netdev_adjacent_change_abort(struct net_device *old_dev,
7971                                   struct net_device *new_dev,
7972                                   struct net_device *dev)
7973 {
7974         struct netdev_nested_priv priv = {
7975                 .flags = 0,
7976                 .data = NULL,
7977         };
7978
7979         if (!new_dev)
7980                 return;
7981
7982         if (old_dev && new_dev != old_dev)
7983                 netdev_adjacent_dev_enable(dev, old_dev);
7984
7985         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7986 }
7987 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7988
7989 /**
7990  * netdev_bonding_info_change - Dispatch event about slave change
7991  * @dev: device
7992  * @bonding_info: info to dispatch
7993  *
7994  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7995  * The caller must hold the RTNL lock.
7996  */
7997 void netdev_bonding_info_change(struct net_device *dev,
7998                                 struct netdev_bonding_info *bonding_info)
7999 {
8000         struct netdev_notifier_bonding_info info = {
8001                 .info.dev = dev,
8002         };
8003
8004         memcpy(&info.bonding_info, bonding_info,
8005                sizeof(struct netdev_bonding_info));
8006         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8007                                       &info.info);
8008 }
8009 EXPORT_SYMBOL(netdev_bonding_info_change);
8010
8011 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8012                                            struct netlink_ext_ack *extack)
8013 {
8014         struct netdev_notifier_offload_xstats_info info = {
8015                 .info.dev = dev,
8016                 .info.extack = extack,
8017                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8018         };
8019         int err;
8020         int rc;
8021
8022         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8023                                          GFP_KERNEL);
8024         if (!dev->offload_xstats_l3)
8025                 return -ENOMEM;
8026
8027         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8028                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
8029                                                   &info.info);
8030         err = notifier_to_errno(rc);
8031         if (err)
8032                 goto free_stats;
8033
8034         return 0;
8035
8036 free_stats:
8037         kfree(dev->offload_xstats_l3);
8038         dev->offload_xstats_l3 = NULL;
8039         return err;
8040 }
8041
8042 int netdev_offload_xstats_enable(struct net_device *dev,
8043                                  enum netdev_offload_xstats_type type,
8044                                  struct netlink_ext_ack *extack)
8045 {
8046         ASSERT_RTNL();
8047
8048         if (netdev_offload_xstats_enabled(dev, type))
8049                 return -EALREADY;
8050
8051         switch (type) {
8052         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8053                 return netdev_offload_xstats_enable_l3(dev, extack);
8054         }
8055
8056         WARN_ON(1);
8057         return -EINVAL;
8058 }
8059 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8060
8061 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8062 {
8063         struct netdev_notifier_offload_xstats_info info = {
8064                 .info.dev = dev,
8065                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8066         };
8067
8068         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8069                                       &info.info);
8070         kfree(dev->offload_xstats_l3);
8071         dev->offload_xstats_l3 = NULL;
8072 }
8073
8074 int netdev_offload_xstats_disable(struct net_device *dev,
8075                                   enum netdev_offload_xstats_type type)
8076 {
8077         ASSERT_RTNL();
8078
8079         if (!netdev_offload_xstats_enabled(dev, type))
8080                 return -EALREADY;
8081
8082         switch (type) {
8083         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8084                 netdev_offload_xstats_disable_l3(dev);
8085                 return 0;
8086         }
8087
8088         WARN_ON(1);
8089         return -EINVAL;
8090 }
8091 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8092
8093 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8094 {
8095         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8096 }
8097
8098 static struct rtnl_hw_stats64 *
8099 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8100                               enum netdev_offload_xstats_type type)
8101 {
8102         switch (type) {
8103         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8104                 return dev->offload_xstats_l3;
8105         }
8106
8107         WARN_ON(1);
8108         return NULL;
8109 }
8110
8111 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8112                                    enum netdev_offload_xstats_type type)
8113 {
8114         ASSERT_RTNL();
8115
8116         return netdev_offload_xstats_get_ptr(dev, type);
8117 }
8118 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8119
8120 struct netdev_notifier_offload_xstats_ru {
8121         bool used;
8122 };
8123
8124 struct netdev_notifier_offload_xstats_rd {
8125         struct rtnl_hw_stats64 stats;
8126         bool used;
8127 };
8128
8129 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8130                                   const struct rtnl_hw_stats64 *src)
8131 {
8132         dest->rx_packets          += src->rx_packets;
8133         dest->tx_packets          += src->tx_packets;
8134         dest->rx_bytes            += src->rx_bytes;
8135         dest->tx_bytes            += src->tx_bytes;
8136         dest->rx_errors           += src->rx_errors;
8137         dest->tx_errors           += src->tx_errors;
8138         dest->rx_dropped          += src->rx_dropped;
8139         dest->tx_dropped          += src->tx_dropped;
8140         dest->multicast           += src->multicast;
8141 }
8142
8143 static int netdev_offload_xstats_get_used(struct net_device *dev,
8144                                           enum netdev_offload_xstats_type type,
8145                                           bool *p_used,
8146                                           struct netlink_ext_ack *extack)
8147 {
8148         struct netdev_notifier_offload_xstats_ru report_used = {};
8149         struct netdev_notifier_offload_xstats_info info = {
8150                 .info.dev = dev,
8151                 .info.extack = extack,
8152                 .type = type,
8153                 .report_used = &report_used,
8154         };
8155         int rc;
8156
8157         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8158         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8159                                            &info.info);
8160         *p_used = report_used.used;
8161         return notifier_to_errno(rc);
8162 }
8163
8164 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8165                                            enum netdev_offload_xstats_type type,
8166                                            struct rtnl_hw_stats64 *p_stats,
8167                                            bool *p_used,
8168                                            struct netlink_ext_ack *extack)
8169 {
8170         struct netdev_notifier_offload_xstats_rd report_delta = {};
8171         struct netdev_notifier_offload_xstats_info info = {
8172                 .info.dev = dev,
8173                 .info.extack = extack,
8174                 .type = type,
8175                 .report_delta = &report_delta,
8176         };
8177         struct rtnl_hw_stats64 *stats;
8178         int rc;
8179
8180         stats = netdev_offload_xstats_get_ptr(dev, type);
8181         if (WARN_ON(!stats))
8182                 return -EINVAL;
8183
8184         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8185                                            &info.info);
8186
8187         /* Cache whatever we got, even if there was an error, otherwise the
8188          * successful stats retrievals would get lost.
8189          */
8190         netdev_hw_stats64_add(stats, &report_delta.stats);
8191
8192         if (p_stats)
8193                 *p_stats = *stats;
8194         *p_used = report_delta.used;
8195
8196         return notifier_to_errno(rc);
8197 }
8198
8199 int netdev_offload_xstats_get(struct net_device *dev,
8200                               enum netdev_offload_xstats_type type,
8201                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8202                               struct netlink_ext_ack *extack)
8203 {
8204         ASSERT_RTNL();
8205
8206         if (p_stats)
8207                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8208                                                        p_used, extack);
8209         else
8210                 return netdev_offload_xstats_get_used(dev, type, p_used,
8211                                                       extack);
8212 }
8213 EXPORT_SYMBOL(netdev_offload_xstats_get);
8214
8215 void
8216 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8217                                    const struct rtnl_hw_stats64 *stats)
8218 {
8219         report_delta->used = true;
8220         netdev_hw_stats64_add(&report_delta->stats, stats);
8221 }
8222 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8223
8224 void
8225 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8226 {
8227         report_used->used = true;
8228 }
8229 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8230
8231 void netdev_offload_xstats_push_delta(struct net_device *dev,
8232                                       enum netdev_offload_xstats_type type,
8233                                       const struct rtnl_hw_stats64 *p_stats)
8234 {
8235         struct rtnl_hw_stats64 *stats;
8236
8237         ASSERT_RTNL();
8238
8239         stats = netdev_offload_xstats_get_ptr(dev, type);
8240         if (WARN_ON(!stats))
8241                 return;
8242
8243         netdev_hw_stats64_add(stats, p_stats);
8244 }
8245 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8246
8247 /**
8248  * netdev_get_xmit_slave - Get the xmit slave of master device
8249  * @dev: device
8250  * @skb: The packet
8251  * @all_slaves: assume all the slaves are active
8252  *
8253  * The reference counters are not incremented so the caller must be
8254  * careful with locks. The caller must hold RCU lock.
8255  * %NULL is returned if no slave is found.
8256  */
8257
8258 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8259                                          struct sk_buff *skb,
8260                                          bool all_slaves)
8261 {
8262         const struct net_device_ops *ops = dev->netdev_ops;
8263
8264         if (!ops->ndo_get_xmit_slave)
8265                 return NULL;
8266         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8267 }
8268 EXPORT_SYMBOL(netdev_get_xmit_slave);
8269
8270 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8271                                                   struct sock *sk)
8272 {
8273         const struct net_device_ops *ops = dev->netdev_ops;
8274
8275         if (!ops->ndo_sk_get_lower_dev)
8276                 return NULL;
8277         return ops->ndo_sk_get_lower_dev(dev, sk);
8278 }
8279
8280 /**
8281  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8282  * @dev: device
8283  * @sk: the socket
8284  *
8285  * %NULL is returned if no lower device is found.
8286  */
8287
8288 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8289                                             struct sock *sk)
8290 {
8291         struct net_device *lower;
8292
8293         lower = netdev_sk_get_lower_dev(dev, sk);
8294         while (lower) {
8295                 dev = lower;
8296                 lower = netdev_sk_get_lower_dev(dev, sk);
8297         }
8298
8299         return dev;
8300 }
8301 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8302
8303 static void netdev_adjacent_add_links(struct net_device *dev)
8304 {
8305         struct netdev_adjacent *iter;
8306
8307         struct net *net = dev_net(dev);
8308
8309         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8310                 if (!net_eq(net, dev_net(iter->dev)))
8311                         continue;
8312                 netdev_adjacent_sysfs_add(iter->dev, dev,
8313                                           &iter->dev->adj_list.lower);
8314                 netdev_adjacent_sysfs_add(dev, iter->dev,
8315                                           &dev->adj_list.upper);
8316         }
8317
8318         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8319                 if (!net_eq(net, dev_net(iter->dev)))
8320                         continue;
8321                 netdev_adjacent_sysfs_add(iter->dev, dev,
8322                                           &iter->dev->adj_list.upper);
8323                 netdev_adjacent_sysfs_add(dev, iter->dev,
8324                                           &dev->adj_list.lower);
8325         }
8326 }
8327
8328 static void netdev_adjacent_del_links(struct net_device *dev)
8329 {
8330         struct netdev_adjacent *iter;
8331
8332         struct net *net = dev_net(dev);
8333
8334         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8335                 if (!net_eq(net, dev_net(iter->dev)))
8336                         continue;
8337                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8338                                           &iter->dev->adj_list.lower);
8339                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8340                                           &dev->adj_list.upper);
8341         }
8342
8343         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8344                 if (!net_eq(net, dev_net(iter->dev)))
8345                         continue;
8346                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8347                                           &iter->dev->adj_list.upper);
8348                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8349                                           &dev->adj_list.lower);
8350         }
8351 }
8352
8353 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8354 {
8355         struct netdev_adjacent *iter;
8356
8357         struct net *net = dev_net(dev);
8358
8359         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8360                 if (!net_eq(net, dev_net(iter->dev)))
8361                         continue;
8362                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8363                                           &iter->dev->adj_list.lower);
8364                 netdev_adjacent_sysfs_add(iter->dev, dev,
8365                                           &iter->dev->adj_list.lower);
8366         }
8367
8368         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8369                 if (!net_eq(net, dev_net(iter->dev)))
8370                         continue;
8371                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8372                                           &iter->dev->adj_list.upper);
8373                 netdev_adjacent_sysfs_add(iter->dev, dev,
8374                                           &iter->dev->adj_list.upper);
8375         }
8376 }
8377
8378 void *netdev_lower_dev_get_private(struct net_device *dev,
8379                                    struct net_device *lower_dev)
8380 {
8381         struct netdev_adjacent *lower;
8382
8383         if (!lower_dev)
8384                 return NULL;
8385         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8386         if (!lower)
8387                 return NULL;
8388
8389         return lower->private;
8390 }
8391 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8392
8393
8394 /**
8395  * netdev_lower_state_changed - Dispatch event about lower device state change
8396  * @lower_dev: device
8397  * @lower_state_info: state to dispatch
8398  *
8399  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8400  * The caller must hold the RTNL lock.
8401  */
8402 void netdev_lower_state_changed(struct net_device *lower_dev,
8403                                 void *lower_state_info)
8404 {
8405         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8406                 .info.dev = lower_dev,
8407         };
8408
8409         ASSERT_RTNL();
8410         changelowerstate_info.lower_state_info = lower_state_info;
8411         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8412                                       &changelowerstate_info.info);
8413 }
8414 EXPORT_SYMBOL(netdev_lower_state_changed);
8415
8416 static void dev_change_rx_flags(struct net_device *dev, int flags)
8417 {
8418         const struct net_device_ops *ops = dev->netdev_ops;
8419
8420         if (ops->ndo_change_rx_flags)
8421                 ops->ndo_change_rx_flags(dev, flags);
8422 }
8423
8424 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8425 {
8426         unsigned int old_flags = dev->flags;
8427         kuid_t uid;
8428         kgid_t gid;
8429
8430         ASSERT_RTNL();
8431
8432         dev->flags |= IFF_PROMISC;
8433         dev->promiscuity += inc;
8434         if (dev->promiscuity == 0) {
8435                 /*
8436                  * Avoid overflow.
8437                  * If inc causes overflow, untouch promisc and return error.
8438                  */
8439                 if (inc < 0)
8440                         dev->flags &= ~IFF_PROMISC;
8441                 else {
8442                         dev->promiscuity -= inc;
8443                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8444                         return -EOVERFLOW;
8445                 }
8446         }
8447         if (dev->flags != old_flags) {
8448                 netdev_info(dev, "%s promiscuous mode\n",
8449                             dev->flags & IFF_PROMISC ? "entered" : "left");
8450                 if (audit_enabled) {
8451                         current_uid_gid(&uid, &gid);
8452                         audit_log(audit_context(), GFP_ATOMIC,
8453                                   AUDIT_ANOM_PROMISCUOUS,
8454                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8455                                   dev->name, (dev->flags & IFF_PROMISC),
8456                                   (old_flags & IFF_PROMISC),
8457                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8458                                   from_kuid(&init_user_ns, uid),
8459                                   from_kgid(&init_user_ns, gid),
8460                                   audit_get_sessionid(current));
8461                 }
8462
8463                 dev_change_rx_flags(dev, IFF_PROMISC);
8464         }
8465         if (notify)
8466                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8467         return 0;
8468 }
8469
8470 /**
8471  *      dev_set_promiscuity     - update promiscuity count on a device
8472  *      @dev: device
8473  *      @inc: modifier
8474  *
8475  *      Add or remove promiscuity from a device. While the count in the device
8476  *      remains above zero the interface remains promiscuous. Once it hits zero
8477  *      the device reverts back to normal filtering operation. A negative inc
8478  *      value is used to drop promiscuity on the device.
8479  *      Return 0 if successful or a negative errno code on error.
8480  */
8481 int dev_set_promiscuity(struct net_device *dev, int inc)
8482 {
8483         unsigned int old_flags = dev->flags;
8484         int err;
8485
8486         err = __dev_set_promiscuity(dev, inc, true);
8487         if (err < 0)
8488                 return err;
8489         if (dev->flags != old_flags)
8490                 dev_set_rx_mode(dev);
8491         return err;
8492 }
8493 EXPORT_SYMBOL(dev_set_promiscuity);
8494
8495 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8496 {
8497         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8498
8499         ASSERT_RTNL();
8500
8501         dev->flags |= IFF_ALLMULTI;
8502         dev->allmulti += inc;
8503         if (dev->allmulti == 0) {
8504                 /*
8505                  * Avoid overflow.
8506                  * If inc causes overflow, untouch allmulti and return error.
8507                  */
8508                 if (inc < 0)
8509                         dev->flags &= ~IFF_ALLMULTI;
8510                 else {
8511                         dev->allmulti -= inc;
8512                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8513                         return -EOVERFLOW;
8514                 }
8515         }
8516         if (dev->flags ^ old_flags) {
8517                 netdev_info(dev, "%s allmulticast mode\n",
8518                             dev->flags & IFF_ALLMULTI ? "entered" : "left");
8519                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8520                 dev_set_rx_mode(dev);
8521                 if (notify)
8522                         __dev_notify_flags(dev, old_flags,
8523                                            dev->gflags ^ old_gflags, 0, NULL);
8524         }
8525         return 0;
8526 }
8527
8528 /**
8529  *      dev_set_allmulti        - update allmulti count on a device
8530  *      @dev: device
8531  *      @inc: modifier
8532  *
8533  *      Add or remove reception of all multicast frames to a device. While the
8534  *      count in the device remains above zero the interface remains listening
8535  *      to all interfaces. Once it hits zero the device reverts back to normal
8536  *      filtering operation. A negative @inc value is used to drop the counter
8537  *      when releasing a resource needing all multicasts.
8538  *      Return 0 if successful or a negative errno code on error.
8539  */
8540
8541 int dev_set_allmulti(struct net_device *dev, int inc)
8542 {
8543         return __dev_set_allmulti(dev, inc, true);
8544 }
8545 EXPORT_SYMBOL(dev_set_allmulti);
8546
8547 /*
8548  *      Upload unicast and multicast address lists to device and
8549  *      configure RX filtering. When the device doesn't support unicast
8550  *      filtering it is put in promiscuous mode while unicast addresses
8551  *      are present.
8552  */
8553 void __dev_set_rx_mode(struct net_device *dev)
8554 {
8555         const struct net_device_ops *ops = dev->netdev_ops;
8556
8557         /* dev_open will call this function so the list will stay sane. */
8558         if (!(dev->flags&IFF_UP))
8559                 return;
8560
8561         if (!netif_device_present(dev))
8562                 return;
8563
8564         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8565                 /* Unicast addresses changes may only happen under the rtnl,
8566                  * therefore calling __dev_set_promiscuity here is safe.
8567                  */
8568                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8569                         __dev_set_promiscuity(dev, 1, false);
8570                         dev->uc_promisc = true;
8571                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8572                         __dev_set_promiscuity(dev, -1, false);
8573                         dev->uc_promisc = false;
8574                 }
8575         }
8576
8577         if (ops->ndo_set_rx_mode)
8578                 ops->ndo_set_rx_mode(dev);
8579 }
8580
8581 void dev_set_rx_mode(struct net_device *dev)
8582 {
8583         netif_addr_lock_bh(dev);
8584         __dev_set_rx_mode(dev);
8585         netif_addr_unlock_bh(dev);
8586 }
8587
8588 /**
8589  *      dev_get_flags - get flags reported to userspace
8590  *      @dev: device
8591  *
8592  *      Get the combination of flag bits exported through APIs to userspace.
8593  */
8594 unsigned int dev_get_flags(const struct net_device *dev)
8595 {
8596         unsigned int flags;
8597
8598         flags = (dev->flags & ~(IFF_PROMISC |
8599                                 IFF_ALLMULTI |
8600                                 IFF_RUNNING |
8601                                 IFF_LOWER_UP |
8602                                 IFF_DORMANT)) |
8603                 (dev->gflags & (IFF_PROMISC |
8604                                 IFF_ALLMULTI));
8605
8606         if (netif_running(dev)) {
8607                 if (netif_oper_up(dev))
8608                         flags |= IFF_RUNNING;
8609                 if (netif_carrier_ok(dev))
8610                         flags |= IFF_LOWER_UP;
8611                 if (netif_dormant(dev))
8612                         flags |= IFF_DORMANT;
8613         }
8614
8615         return flags;
8616 }
8617 EXPORT_SYMBOL(dev_get_flags);
8618
8619 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8620                        struct netlink_ext_ack *extack)
8621 {
8622         unsigned int old_flags = dev->flags;
8623         int ret;
8624
8625         ASSERT_RTNL();
8626
8627         /*
8628          *      Set the flags on our device.
8629          */
8630
8631         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8632                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8633                                IFF_AUTOMEDIA)) |
8634                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8635                                     IFF_ALLMULTI));
8636
8637         /*
8638          *      Load in the correct multicast list now the flags have changed.
8639          */
8640
8641         if ((old_flags ^ flags) & IFF_MULTICAST)
8642                 dev_change_rx_flags(dev, IFF_MULTICAST);
8643
8644         dev_set_rx_mode(dev);
8645
8646         /*
8647          *      Have we downed the interface. We handle IFF_UP ourselves
8648          *      according to user attempts to set it, rather than blindly
8649          *      setting it.
8650          */
8651
8652         ret = 0;
8653         if ((old_flags ^ flags) & IFF_UP) {
8654                 if (old_flags & IFF_UP)
8655                         __dev_close(dev);
8656                 else
8657                         ret = __dev_open(dev, extack);
8658         }
8659
8660         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8661                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8662                 unsigned int old_flags = dev->flags;
8663
8664                 dev->gflags ^= IFF_PROMISC;
8665
8666                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8667                         if (dev->flags != old_flags)
8668                                 dev_set_rx_mode(dev);
8669         }
8670
8671         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8672          * is important. Some (broken) drivers set IFF_PROMISC, when
8673          * IFF_ALLMULTI is requested not asking us and not reporting.
8674          */
8675         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8676                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8677
8678                 dev->gflags ^= IFF_ALLMULTI;
8679                 __dev_set_allmulti(dev, inc, false);
8680         }
8681
8682         return ret;
8683 }
8684
8685 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8686                         unsigned int gchanges, u32 portid,
8687                         const struct nlmsghdr *nlh)
8688 {
8689         unsigned int changes = dev->flags ^ old_flags;
8690
8691         if (gchanges)
8692                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8693
8694         if (changes & IFF_UP) {
8695                 if (dev->flags & IFF_UP)
8696                         call_netdevice_notifiers(NETDEV_UP, dev);
8697                 else
8698                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8699         }
8700
8701         if (dev->flags & IFF_UP &&
8702             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8703                 struct netdev_notifier_change_info change_info = {
8704                         .info = {
8705                                 .dev = dev,
8706                         },
8707                         .flags_changed = changes,
8708                 };
8709
8710                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8711         }
8712 }
8713
8714 /**
8715  *      dev_change_flags - change device settings
8716  *      @dev: device
8717  *      @flags: device state flags
8718  *      @extack: netlink extended ack
8719  *
8720  *      Change settings on device based state flags. The flags are
8721  *      in the userspace exported format.
8722  */
8723 int dev_change_flags(struct net_device *dev, unsigned int flags,
8724                      struct netlink_ext_ack *extack)
8725 {
8726         int ret;
8727         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8728
8729         ret = __dev_change_flags(dev, flags, extack);
8730         if (ret < 0)
8731                 return ret;
8732
8733         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8734         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8735         return ret;
8736 }
8737 EXPORT_SYMBOL(dev_change_flags);
8738
8739 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8740 {
8741         const struct net_device_ops *ops = dev->netdev_ops;
8742
8743         if (ops->ndo_change_mtu)
8744                 return ops->ndo_change_mtu(dev, new_mtu);
8745
8746         /* Pairs with all the lockless reads of dev->mtu in the stack */
8747         WRITE_ONCE(dev->mtu, new_mtu);
8748         return 0;
8749 }
8750 EXPORT_SYMBOL(__dev_set_mtu);
8751
8752 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8753                      struct netlink_ext_ack *extack)
8754 {
8755         /* MTU must be positive, and in range */
8756         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8757                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8758                 return -EINVAL;
8759         }
8760
8761         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8762                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8763                 return -EINVAL;
8764         }
8765         return 0;
8766 }
8767
8768 /**
8769  *      dev_set_mtu_ext - Change maximum transfer unit
8770  *      @dev: device
8771  *      @new_mtu: new transfer unit
8772  *      @extack: netlink extended ack
8773  *
8774  *      Change the maximum transfer size of the network device.
8775  */
8776 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8777                     struct netlink_ext_ack *extack)
8778 {
8779         int err, orig_mtu;
8780
8781         if (new_mtu == dev->mtu)
8782                 return 0;
8783
8784         err = dev_validate_mtu(dev, new_mtu, extack);
8785         if (err)
8786                 return err;
8787
8788         if (!netif_device_present(dev))
8789                 return -ENODEV;
8790
8791         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8792         err = notifier_to_errno(err);
8793         if (err)
8794                 return err;
8795
8796         orig_mtu = dev->mtu;
8797         err = __dev_set_mtu(dev, new_mtu);
8798
8799         if (!err) {
8800                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8801                                                    orig_mtu);
8802                 err = notifier_to_errno(err);
8803                 if (err) {
8804                         /* setting mtu back and notifying everyone again,
8805                          * so that they have a chance to revert changes.
8806                          */
8807                         __dev_set_mtu(dev, orig_mtu);
8808                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8809                                                      new_mtu);
8810                 }
8811         }
8812         return err;
8813 }
8814
8815 int dev_set_mtu(struct net_device *dev, int new_mtu)
8816 {
8817         struct netlink_ext_ack extack;
8818         int err;
8819
8820         memset(&extack, 0, sizeof(extack));
8821         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8822         if (err && extack._msg)
8823                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8824         return err;
8825 }
8826 EXPORT_SYMBOL(dev_set_mtu);
8827
8828 /**
8829  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8830  *      @dev: device
8831  *      @new_len: new tx queue length
8832  */
8833 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8834 {
8835         unsigned int orig_len = dev->tx_queue_len;
8836         int res;
8837
8838         if (new_len != (unsigned int)new_len)
8839                 return -ERANGE;
8840
8841         if (new_len != orig_len) {
8842                 dev->tx_queue_len = new_len;
8843                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8844                 res = notifier_to_errno(res);
8845                 if (res)
8846                         goto err_rollback;
8847                 res = dev_qdisc_change_tx_queue_len(dev);
8848                 if (res)
8849                         goto err_rollback;
8850         }
8851
8852         return 0;
8853
8854 err_rollback:
8855         netdev_err(dev, "refused to change device tx_queue_len\n");
8856         dev->tx_queue_len = orig_len;
8857         return res;
8858 }
8859
8860 /**
8861  *      dev_set_group - Change group this device belongs to
8862  *      @dev: device
8863  *      @new_group: group this device should belong to
8864  */
8865 void dev_set_group(struct net_device *dev, int new_group)
8866 {
8867         dev->group = new_group;
8868 }
8869
8870 /**
8871  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8872  *      @dev: device
8873  *      @addr: new address
8874  *      @extack: netlink extended ack
8875  */
8876 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8877                               struct netlink_ext_ack *extack)
8878 {
8879         struct netdev_notifier_pre_changeaddr_info info = {
8880                 .info.dev = dev,
8881                 .info.extack = extack,
8882                 .dev_addr = addr,
8883         };
8884         int rc;
8885
8886         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8887         return notifier_to_errno(rc);
8888 }
8889 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8890
8891 /**
8892  *      dev_set_mac_address - Change Media Access Control Address
8893  *      @dev: device
8894  *      @sa: new address
8895  *      @extack: netlink extended ack
8896  *
8897  *      Change the hardware (MAC) address of the device
8898  */
8899 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8900                         struct netlink_ext_ack *extack)
8901 {
8902         const struct net_device_ops *ops = dev->netdev_ops;
8903         int err;
8904
8905         if (!ops->ndo_set_mac_address)
8906                 return -EOPNOTSUPP;
8907         if (sa->sa_family != dev->type)
8908                 return -EINVAL;
8909         if (!netif_device_present(dev))
8910                 return -ENODEV;
8911         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8912         if (err)
8913                 return err;
8914         if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8915                 err = ops->ndo_set_mac_address(dev, sa);
8916                 if (err)
8917                         return err;
8918         }
8919         dev->addr_assign_type = NET_ADDR_SET;
8920         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8921         add_device_randomness(dev->dev_addr, dev->addr_len);
8922         return 0;
8923 }
8924 EXPORT_SYMBOL(dev_set_mac_address);
8925
8926 static DECLARE_RWSEM(dev_addr_sem);
8927
8928 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8929                              struct netlink_ext_ack *extack)
8930 {
8931         int ret;
8932
8933         down_write(&dev_addr_sem);
8934         ret = dev_set_mac_address(dev, sa, extack);
8935         up_write(&dev_addr_sem);
8936         return ret;
8937 }
8938 EXPORT_SYMBOL(dev_set_mac_address_user);
8939
8940 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8941 {
8942         size_t size = sizeof(sa->sa_data_min);
8943         struct net_device *dev;
8944         int ret = 0;
8945
8946         down_read(&dev_addr_sem);
8947         rcu_read_lock();
8948
8949         dev = dev_get_by_name_rcu(net, dev_name);
8950         if (!dev) {
8951                 ret = -ENODEV;
8952                 goto unlock;
8953         }
8954         if (!dev->addr_len)
8955                 memset(sa->sa_data, 0, size);
8956         else
8957                 memcpy(sa->sa_data, dev->dev_addr,
8958                        min_t(size_t, size, dev->addr_len));
8959         sa->sa_family = dev->type;
8960
8961 unlock:
8962         rcu_read_unlock();
8963         up_read(&dev_addr_sem);
8964         return ret;
8965 }
8966 EXPORT_SYMBOL(dev_get_mac_address);
8967
8968 /**
8969  *      dev_change_carrier - Change device carrier
8970  *      @dev: device
8971  *      @new_carrier: new value
8972  *
8973  *      Change device carrier
8974  */
8975 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8976 {
8977         const struct net_device_ops *ops = dev->netdev_ops;
8978
8979         if (!ops->ndo_change_carrier)
8980                 return -EOPNOTSUPP;
8981         if (!netif_device_present(dev))
8982                 return -ENODEV;
8983         return ops->ndo_change_carrier(dev, new_carrier);
8984 }
8985
8986 /**
8987  *      dev_get_phys_port_id - Get device physical port ID
8988  *      @dev: device
8989  *      @ppid: port ID
8990  *
8991  *      Get device physical port ID
8992  */
8993 int dev_get_phys_port_id(struct net_device *dev,
8994                          struct netdev_phys_item_id *ppid)
8995 {
8996         const struct net_device_ops *ops = dev->netdev_ops;
8997
8998         if (!ops->ndo_get_phys_port_id)
8999                 return -EOPNOTSUPP;
9000         return ops->ndo_get_phys_port_id(dev, ppid);
9001 }
9002
9003 /**
9004  *      dev_get_phys_port_name - Get device physical port name
9005  *      @dev: device
9006  *      @name: port name
9007  *      @len: limit of bytes to copy to name
9008  *
9009  *      Get device physical port name
9010  */
9011 int dev_get_phys_port_name(struct net_device *dev,
9012                            char *name, size_t len)
9013 {
9014         const struct net_device_ops *ops = dev->netdev_ops;
9015         int err;
9016
9017         if (ops->ndo_get_phys_port_name) {
9018                 err = ops->ndo_get_phys_port_name(dev, name, len);
9019                 if (err != -EOPNOTSUPP)
9020                         return err;
9021         }
9022         return devlink_compat_phys_port_name_get(dev, name, len);
9023 }
9024
9025 /**
9026  *      dev_get_port_parent_id - Get the device's port parent identifier
9027  *      @dev: network device
9028  *      @ppid: pointer to a storage for the port's parent identifier
9029  *      @recurse: allow/disallow recursion to lower devices
9030  *
9031  *      Get the devices's port parent identifier
9032  */
9033 int dev_get_port_parent_id(struct net_device *dev,
9034                            struct netdev_phys_item_id *ppid,
9035                            bool recurse)
9036 {
9037         const struct net_device_ops *ops = dev->netdev_ops;
9038         struct netdev_phys_item_id first = { };
9039         struct net_device *lower_dev;
9040         struct list_head *iter;
9041         int err;
9042
9043         if (ops->ndo_get_port_parent_id) {
9044                 err = ops->ndo_get_port_parent_id(dev, ppid);
9045                 if (err != -EOPNOTSUPP)
9046                         return err;
9047         }
9048
9049         err = devlink_compat_switch_id_get(dev, ppid);
9050         if (!recurse || err != -EOPNOTSUPP)
9051                 return err;
9052
9053         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9054                 err = dev_get_port_parent_id(lower_dev, ppid, true);
9055                 if (err)
9056                         break;
9057                 if (!first.id_len)
9058                         first = *ppid;
9059                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9060                         return -EOPNOTSUPP;
9061         }
9062
9063         return err;
9064 }
9065 EXPORT_SYMBOL(dev_get_port_parent_id);
9066
9067 /**
9068  *      netdev_port_same_parent_id - Indicate if two network devices have
9069  *      the same port parent identifier
9070  *      @a: first network device
9071  *      @b: second network device
9072  */
9073 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9074 {
9075         struct netdev_phys_item_id a_id = { };
9076         struct netdev_phys_item_id b_id = { };
9077
9078         if (dev_get_port_parent_id(a, &a_id, true) ||
9079             dev_get_port_parent_id(b, &b_id, true))
9080                 return false;
9081
9082         return netdev_phys_item_id_same(&a_id, &b_id);
9083 }
9084 EXPORT_SYMBOL(netdev_port_same_parent_id);
9085
9086 /**
9087  *      dev_change_proto_down - set carrier according to proto_down.
9088  *
9089  *      @dev: device
9090  *      @proto_down: new value
9091  */
9092 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9093 {
9094         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9095                 return -EOPNOTSUPP;
9096         if (!netif_device_present(dev))
9097                 return -ENODEV;
9098         if (proto_down)
9099                 netif_carrier_off(dev);
9100         else
9101                 netif_carrier_on(dev);
9102         dev->proto_down = proto_down;
9103         return 0;
9104 }
9105
9106 /**
9107  *      dev_change_proto_down_reason - proto down reason
9108  *
9109  *      @dev: device
9110  *      @mask: proto down mask
9111  *      @value: proto down value
9112  */
9113 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9114                                   u32 value)
9115 {
9116         int b;
9117
9118         if (!mask) {
9119                 dev->proto_down_reason = value;
9120         } else {
9121                 for_each_set_bit(b, &mask, 32) {
9122                         if (value & (1 << b))
9123                                 dev->proto_down_reason |= BIT(b);
9124                         else
9125                                 dev->proto_down_reason &= ~BIT(b);
9126                 }
9127         }
9128 }
9129
9130 struct bpf_xdp_link {
9131         struct bpf_link link;
9132         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9133         int flags;
9134 };
9135
9136 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9137 {
9138         if (flags & XDP_FLAGS_HW_MODE)
9139                 return XDP_MODE_HW;
9140         if (flags & XDP_FLAGS_DRV_MODE)
9141                 return XDP_MODE_DRV;
9142         if (flags & XDP_FLAGS_SKB_MODE)
9143                 return XDP_MODE_SKB;
9144         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9145 }
9146
9147 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9148 {
9149         switch (mode) {
9150         case XDP_MODE_SKB:
9151                 return generic_xdp_install;
9152         case XDP_MODE_DRV:
9153         case XDP_MODE_HW:
9154                 return dev->netdev_ops->ndo_bpf;
9155         default:
9156                 return NULL;
9157         }
9158 }
9159
9160 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9161                                          enum bpf_xdp_mode mode)
9162 {
9163         return dev->xdp_state[mode].link;
9164 }
9165
9166 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9167                                      enum bpf_xdp_mode mode)
9168 {
9169         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9170
9171         if (link)
9172                 return link->link.prog;
9173         return dev->xdp_state[mode].prog;
9174 }
9175
9176 u8 dev_xdp_prog_count(struct net_device *dev)
9177 {
9178         u8 count = 0;
9179         int i;
9180
9181         for (i = 0; i < __MAX_XDP_MODE; i++)
9182                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9183                         count++;
9184         return count;
9185 }
9186 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9187
9188 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9189 {
9190         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9191
9192         return prog ? prog->aux->id : 0;
9193 }
9194
9195 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9196                              struct bpf_xdp_link *link)
9197 {
9198         dev->xdp_state[mode].link = link;
9199         dev->xdp_state[mode].prog = NULL;
9200 }
9201
9202 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9203                              struct bpf_prog *prog)
9204 {
9205         dev->xdp_state[mode].link = NULL;
9206         dev->xdp_state[mode].prog = prog;
9207 }
9208
9209 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9210                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9211                            u32 flags, struct bpf_prog *prog)
9212 {
9213         struct netdev_bpf xdp;
9214         int err;
9215
9216         memset(&xdp, 0, sizeof(xdp));
9217         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9218         xdp.extack = extack;
9219         xdp.flags = flags;
9220         xdp.prog = prog;
9221
9222         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9223          * "moved" into driver), so they don't increment it on their own, but
9224          * they do decrement refcnt when program is detached or replaced.
9225          * Given net_device also owns link/prog, we need to bump refcnt here
9226          * to prevent drivers from underflowing it.
9227          */
9228         if (prog)
9229                 bpf_prog_inc(prog);
9230         err = bpf_op(dev, &xdp);
9231         if (err) {
9232                 if (prog)
9233                         bpf_prog_put(prog);
9234                 return err;
9235         }
9236
9237         if (mode != XDP_MODE_HW)
9238                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9239
9240         return 0;
9241 }
9242
9243 static void dev_xdp_uninstall(struct net_device *dev)
9244 {
9245         struct bpf_xdp_link *link;
9246         struct bpf_prog *prog;
9247         enum bpf_xdp_mode mode;
9248         bpf_op_t bpf_op;
9249
9250         ASSERT_RTNL();
9251
9252         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9253                 prog = dev_xdp_prog(dev, mode);
9254                 if (!prog)
9255                         continue;
9256
9257                 bpf_op = dev_xdp_bpf_op(dev, mode);
9258                 if (!bpf_op)
9259                         continue;
9260
9261                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9262
9263                 /* auto-detach link from net device */
9264                 link = dev_xdp_link(dev, mode);
9265                 if (link)
9266                         link->dev = NULL;
9267                 else
9268                         bpf_prog_put(prog);
9269
9270                 dev_xdp_set_link(dev, mode, NULL);
9271         }
9272 }
9273
9274 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9275                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9276                           struct bpf_prog *old_prog, u32 flags)
9277 {
9278         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9279         struct bpf_prog *cur_prog;
9280         struct net_device *upper;
9281         struct list_head *iter;
9282         enum bpf_xdp_mode mode;
9283         bpf_op_t bpf_op;
9284         int err;
9285
9286         ASSERT_RTNL();
9287
9288         /* either link or prog attachment, never both */
9289         if (link && (new_prog || old_prog))
9290                 return -EINVAL;
9291         /* link supports only XDP mode flags */
9292         if (link && (flags & ~XDP_FLAGS_MODES)) {
9293                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9294                 return -EINVAL;
9295         }
9296         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9297         if (num_modes > 1) {
9298                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9299                 return -EINVAL;
9300         }
9301         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9302         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9303                 NL_SET_ERR_MSG(extack,
9304                                "More than one program loaded, unset mode is ambiguous");
9305                 return -EINVAL;
9306         }
9307         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9308         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9309                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9310                 return -EINVAL;
9311         }
9312
9313         mode = dev_xdp_mode(dev, flags);
9314         /* can't replace attached link */
9315         if (dev_xdp_link(dev, mode)) {
9316                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9317                 return -EBUSY;
9318         }
9319
9320         /* don't allow if an upper device already has a program */
9321         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9322                 if (dev_xdp_prog_count(upper) > 0) {
9323                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9324                         return -EEXIST;
9325                 }
9326         }
9327
9328         cur_prog = dev_xdp_prog(dev, mode);
9329         /* can't replace attached prog with link */
9330         if (link && cur_prog) {
9331                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9332                 return -EBUSY;
9333         }
9334         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9335                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9336                 return -EEXIST;
9337         }
9338
9339         /* put effective new program into new_prog */
9340         if (link)
9341                 new_prog = link->link.prog;
9342
9343         if (new_prog) {
9344                 bool offload = mode == XDP_MODE_HW;
9345                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9346                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9347
9348                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9349                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9350                         return -EBUSY;
9351                 }
9352                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9353                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9354                         return -EEXIST;
9355                 }
9356                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9357                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9358                         return -EINVAL;
9359                 }
9360                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9361                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9362                         return -EINVAL;
9363                 }
9364                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9365                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9366                         return -EINVAL;
9367                 }
9368                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9369                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9370                         return -EINVAL;
9371                 }
9372         }
9373
9374         /* don't call drivers if the effective program didn't change */
9375         if (new_prog != cur_prog) {
9376                 bpf_op = dev_xdp_bpf_op(dev, mode);
9377                 if (!bpf_op) {
9378                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9379                         return -EOPNOTSUPP;
9380                 }
9381
9382                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9383                 if (err)
9384                         return err;
9385         }
9386
9387         if (link)
9388                 dev_xdp_set_link(dev, mode, link);
9389         else
9390                 dev_xdp_set_prog(dev, mode, new_prog);
9391         if (cur_prog)
9392                 bpf_prog_put(cur_prog);
9393
9394         return 0;
9395 }
9396
9397 static int dev_xdp_attach_link(struct net_device *dev,
9398                                struct netlink_ext_ack *extack,
9399                                struct bpf_xdp_link *link)
9400 {
9401         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9402 }
9403
9404 static int dev_xdp_detach_link(struct net_device *dev,
9405                                struct netlink_ext_ack *extack,
9406                                struct bpf_xdp_link *link)
9407 {
9408         enum bpf_xdp_mode mode;
9409         bpf_op_t bpf_op;
9410
9411         ASSERT_RTNL();
9412
9413         mode = dev_xdp_mode(dev, link->flags);
9414         if (dev_xdp_link(dev, mode) != link)
9415                 return -EINVAL;
9416
9417         bpf_op = dev_xdp_bpf_op(dev, mode);
9418         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9419         dev_xdp_set_link(dev, mode, NULL);
9420         return 0;
9421 }
9422
9423 static void bpf_xdp_link_release(struct bpf_link *link)
9424 {
9425         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9426
9427         rtnl_lock();
9428
9429         /* if racing with net_device's tear down, xdp_link->dev might be
9430          * already NULL, in which case link was already auto-detached
9431          */
9432         if (xdp_link->dev) {
9433                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9434                 xdp_link->dev = NULL;
9435         }
9436
9437         rtnl_unlock();
9438 }
9439
9440 static int bpf_xdp_link_detach(struct bpf_link *link)
9441 {
9442         bpf_xdp_link_release(link);
9443         return 0;
9444 }
9445
9446 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9447 {
9448         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9449
9450         kfree(xdp_link);
9451 }
9452
9453 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9454                                      struct seq_file *seq)
9455 {
9456         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9457         u32 ifindex = 0;
9458
9459         rtnl_lock();
9460         if (xdp_link->dev)
9461                 ifindex = xdp_link->dev->ifindex;
9462         rtnl_unlock();
9463
9464         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9465 }
9466
9467 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9468                                        struct bpf_link_info *info)
9469 {
9470         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9471         u32 ifindex = 0;
9472
9473         rtnl_lock();
9474         if (xdp_link->dev)
9475                 ifindex = xdp_link->dev->ifindex;
9476         rtnl_unlock();
9477
9478         info->xdp.ifindex = ifindex;
9479         return 0;
9480 }
9481
9482 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9483                                struct bpf_prog *old_prog)
9484 {
9485         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9486         enum bpf_xdp_mode mode;
9487         bpf_op_t bpf_op;
9488         int err = 0;
9489
9490         rtnl_lock();
9491
9492         /* link might have been auto-released already, so fail */
9493         if (!xdp_link->dev) {
9494                 err = -ENOLINK;
9495                 goto out_unlock;
9496         }
9497
9498         if (old_prog && link->prog != old_prog) {
9499                 err = -EPERM;
9500                 goto out_unlock;
9501         }
9502         old_prog = link->prog;
9503         if (old_prog->type != new_prog->type ||
9504             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9505                 err = -EINVAL;
9506                 goto out_unlock;
9507         }
9508
9509         if (old_prog == new_prog) {
9510                 /* no-op, don't disturb drivers */
9511                 bpf_prog_put(new_prog);
9512                 goto out_unlock;
9513         }
9514
9515         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9516         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9517         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9518                               xdp_link->flags, new_prog);
9519         if (err)
9520                 goto out_unlock;
9521
9522         old_prog = xchg(&link->prog, new_prog);
9523         bpf_prog_put(old_prog);
9524
9525 out_unlock:
9526         rtnl_unlock();
9527         return err;
9528 }
9529
9530 static const struct bpf_link_ops bpf_xdp_link_lops = {
9531         .release = bpf_xdp_link_release,
9532         .dealloc = bpf_xdp_link_dealloc,
9533         .detach = bpf_xdp_link_detach,
9534         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9535         .fill_link_info = bpf_xdp_link_fill_link_info,
9536         .update_prog = bpf_xdp_link_update,
9537 };
9538
9539 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9540 {
9541         struct net *net = current->nsproxy->net_ns;
9542         struct bpf_link_primer link_primer;
9543         struct netlink_ext_ack extack = {};
9544         struct bpf_xdp_link *link;
9545         struct net_device *dev;
9546         int err, fd;
9547
9548         rtnl_lock();
9549         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9550         if (!dev) {
9551                 rtnl_unlock();
9552                 return -EINVAL;
9553         }
9554
9555         link = kzalloc(sizeof(*link), GFP_USER);
9556         if (!link) {
9557                 err = -ENOMEM;
9558                 goto unlock;
9559         }
9560
9561         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9562         link->dev = dev;
9563         link->flags = attr->link_create.flags;
9564
9565         err = bpf_link_prime(&link->link, &link_primer);
9566         if (err) {
9567                 kfree(link);
9568                 goto unlock;
9569         }
9570
9571         err = dev_xdp_attach_link(dev, &extack, link);
9572         rtnl_unlock();
9573
9574         if (err) {
9575                 link->dev = NULL;
9576                 bpf_link_cleanup(&link_primer);
9577                 trace_bpf_xdp_link_attach_failed(extack._msg);
9578                 goto out_put_dev;
9579         }
9580
9581         fd = bpf_link_settle(&link_primer);
9582         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9583         dev_put(dev);
9584         return fd;
9585
9586 unlock:
9587         rtnl_unlock();
9588
9589 out_put_dev:
9590         dev_put(dev);
9591         return err;
9592 }
9593
9594 /**
9595  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9596  *      @dev: device
9597  *      @extack: netlink extended ack
9598  *      @fd: new program fd or negative value to clear
9599  *      @expected_fd: old program fd that userspace expects to replace or clear
9600  *      @flags: xdp-related flags
9601  *
9602  *      Set or clear a bpf program for a device
9603  */
9604 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9605                       int fd, int expected_fd, u32 flags)
9606 {
9607         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9608         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9609         int err;
9610
9611         ASSERT_RTNL();
9612
9613         if (fd >= 0) {
9614                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9615                                                  mode != XDP_MODE_SKB);
9616                 if (IS_ERR(new_prog))
9617                         return PTR_ERR(new_prog);
9618         }
9619
9620         if (expected_fd >= 0) {
9621                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9622                                                  mode != XDP_MODE_SKB);
9623                 if (IS_ERR(old_prog)) {
9624                         err = PTR_ERR(old_prog);
9625                         old_prog = NULL;
9626                         goto err_out;
9627                 }
9628         }
9629
9630         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9631
9632 err_out:
9633         if (err && new_prog)
9634                 bpf_prog_put(new_prog);
9635         if (old_prog)
9636                 bpf_prog_put(old_prog);
9637         return err;
9638 }
9639
9640 /**
9641  * dev_index_reserve() - allocate an ifindex in a namespace
9642  * @net: the applicable net namespace
9643  * @ifindex: requested ifindex, pass %0 to get one allocated
9644  *
9645  * Allocate a ifindex for a new device. Caller must either use the ifindex
9646  * to store the device (via list_netdevice()) or call dev_index_release()
9647  * to give the index up.
9648  *
9649  * Return: a suitable unique value for a new device interface number or -errno.
9650  */
9651 static int dev_index_reserve(struct net *net, u32 ifindex)
9652 {
9653         int err;
9654
9655         if (ifindex > INT_MAX) {
9656                 DEBUG_NET_WARN_ON_ONCE(1);
9657                 return -EINVAL;
9658         }
9659
9660         if (!ifindex)
9661                 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9662                                       xa_limit_31b, &net->ifindex, GFP_KERNEL);
9663         else
9664                 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9665         if (err < 0)
9666                 return err;
9667
9668         return ifindex;
9669 }
9670
9671 static void dev_index_release(struct net *net, int ifindex)
9672 {
9673         /* Expect only unused indexes, unlist_netdevice() removes the used */
9674         WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9675 }
9676
9677 /* Delayed registration/unregisteration */
9678 LIST_HEAD(net_todo_list);
9679 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9680
9681 static void net_set_todo(struct net_device *dev)
9682 {
9683         list_add_tail(&dev->todo_list, &net_todo_list);
9684         atomic_inc(&dev_net(dev)->dev_unreg_count);
9685 }
9686
9687 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9688         struct net_device *upper, netdev_features_t features)
9689 {
9690         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9691         netdev_features_t feature;
9692         int feature_bit;
9693
9694         for_each_netdev_feature(upper_disables, feature_bit) {
9695                 feature = __NETIF_F_BIT(feature_bit);
9696                 if (!(upper->wanted_features & feature)
9697                     && (features & feature)) {
9698                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9699                                    &feature, upper->name);
9700                         features &= ~feature;
9701                 }
9702         }
9703
9704         return features;
9705 }
9706
9707 static void netdev_sync_lower_features(struct net_device *upper,
9708         struct net_device *lower, netdev_features_t features)
9709 {
9710         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9711         netdev_features_t feature;
9712         int feature_bit;
9713
9714         for_each_netdev_feature(upper_disables, feature_bit) {
9715                 feature = __NETIF_F_BIT(feature_bit);
9716                 if (!(features & feature) && (lower->features & feature)) {
9717                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9718                                    &feature, lower->name);
9719                         lower->wanted_features &= ~feature;
9720                         __netdev_update_features(lower);
9721
9722                         if (unlikely(lower->features & feature))
9723                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9724                                             &feature, lower->name);
9725                         else
9726                                 netdev_features_change(lower);
9727                 }
9728         }
9729 }
9730
9731 static netdev_features_t netdev_fix_features(struct net_device *dev,
9732         netdev_features_t features)
9733 {
9734         /* Fix illegal checksum combinations */
9735         if ((features & NETIF_F_HW_CSUM) &&
9736             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9737                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9738                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9739         }
9740
9741         /* TSO requires that SG is present as well. */
9742         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9743                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9744                 features &= ~NETIF_F_ALL_TSO;
9745         }
9746
9747         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9748                                         !(features & NETIF_F_IP_CSUM)) {
9749                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9750                 features &= ~NETIF_F_TSO;
9751                 features &= ~NETIF_F_TSO_ECN;
9752         }
9753
9754         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9755                                          !(features & NETIF_F_IPV6_CSUM)) {
9756                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9757                 features &= ~NETIF_F_TSO6;
9758         }
9759
9760         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9761         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9762                 features &= ~NETIF_F_TSO_MANGLEID;
9763
9764         /* TSO ECN requires that TSO is present as well. */
9765         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9766                 features &= ~NETIF_F_TSO_ECN;
9767
9768         /* Software GSO depends on SG. */
9769         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9770                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9771                 features &= ~NETIF_F_GSO;
9772         }
9773
9774         /* GSO partial features require GSO partial be set */
9775         if ((features & dev->gso_partial_features) &&
9776             !(features & NETIF_F_GSO_PARTIAL)) {
9777                 netdev_dbg(dev,
9778                            "Dropping partially supported GSO features since no GSO partial.\n");
9779                 features &= ~dev->gso_partial_features;
9780         }
9781
9782         if (!(features & NETIF_F_RXCSUM)) {
9783                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9784                  * successfully merged by hardware must also have the
9785                  * checksum verified by hardware.  If the user does not
9786                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9787                  */
9788                 if (features & NETIF_F_GRO_HW) {
9789                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9790                         features &= ~NETIF_F_GRO_HW;
9791                 }
9792         }
9793
9794         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9795         if (features & NETIF_F_RXFCS) {
9796                 if (features & NETIF_F_LRO) {
9797                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9798                         features &= ~NETIF_F_LRO;
9799                 }
9800
9801                 if (features & NETIF_F_GRO_HW) {
9802                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9803                         features &= ~NETIF_F_GRO_HW;
9804                 }
9805         }
9806
9807         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9808                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9809                 features &= ~NETIF_F_LRO;
9810         }
9811
9812         if (features & NETIF_F_HW_TLS_TX) {
9813                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9814                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9815                 bool hw_csum = features & NETIF_F_HW_CSUM;
9816
9817                 if (!ip_csum && !hw_csum) {
9818                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9819                         features &= ~NETIF_F_HW_TLS_TX;
9820                 }
9821         }
9822
9823         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9824                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9825                 features &= ~NETIF_F_HW_TLS_RX;
9826         }
9827
9828         return features;
9829 }
9830
9831 int __netdev_update_features(struct net_device *dev)
9832 {
9833         struct net_device *upper, *lower;
9834         netdev_features_t features;
9835         struct list_head *iter;
9836         int err = -1;
9837
9838         ASSERT_RTNL();
9839
9840         features = netdev_get_wanted_features(dev);
9841
9842         if (dev->netdev_ops->ndo_fix_features)
9843                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9844
9845         /* driver might be less strict about feature dependencies */
9846         features = netdev_fix_features(dev, features);
9847
9848         /* some features can't be enabled if they're off on an upper device */
9849         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9850                 features = netdev_sync_upper_features(dev, upper, features);
9851
9852         if (dev->features == features)
9853                 goto sync_lower;
9854
9855         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9856                 &dev->features, &features);
9857
9858         if (dev->netdev_ops->ndo_set_features)
9859                 err = dev->netdev_ops->ndo_set_features(dev, features);
9860         else
9861                 err = 0;
9862
9863         if (unlikely(err < 0)) {
9864                 netdev_err(dev,
9865                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9866                         err, &features, &dev->features);
9867                 /* return non-0 since some features might have changed and
9868                  * it's better to fire a spurious notification than miss it
9869                  */
9870                 return -1;
9871         }
9872
9873 sync_lower:
9874         /* some features must be disabled on lower devices when disabled
9875          * on an upper device (think: bonding master or bridge)
9876          */
9877         netdev_for_each_lower_dev(dev, lower, iter)
9878                 netdev_sync_lower_features(dev, lower, features);
9879
9880         if (!err) {
9881                 netdev_features_t diff = features ^ dev->features;
9882
9883                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9884                         /* udp_tunnel_{get,drop}_rx_info both need
9885                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9886                          * device, or they won't do anything.
9887                          * Thus we need to update dev->features
9888                          * *before* calling udp_tunnel_get_rx_info,
9889                          * but *after* calling udp_tunnel_drop_rx_info.
9890                          */
9891                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9892                                 dev->features = features;
9893                                 udp_tunnel_get_rx_info(dev);
9894                         } else {
9895                                 udp_tunnel_drop_rx_info(dev);
9896                         }
9897                 }
9898
9899                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9900                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9901                                 dev->features = features;
9902                                 err |= vlan_get_rx_ctag_filter_info(dev);
9903                         } else {
9904                                 vlan_drop_rx_ctag_filter_info(dev);
9905                         }
9906                 }
9907
9908                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9909                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9910                                 dev->features = features;
9911                                 err |= vlan_get_rx_stag_filter_info(dev);
9912                         } else {
9913                                 vlan_drop_rx_stag_filter_info(dev);
9914                         }
9915                 }
9916
9917                 dev->features = features;
9918         }
9919
9920         return err < 0 ? 0 : 1;
9921 }
9922
9923 /**
9924  *      netdev_update_features - recalculate device features
9925  *      @dev: the device to check
9926  *
9927  *      Recalculate dev->features set and send notifications if it
9928  *      has changed. Should be called after driver or hardware dependent
9929  *      conditions might have changed that influence the features.
9930  */
9931 void netdev_update_features(struct net_device *dev)
9932 {
9933         if (__netdev_update_features(dev))
9934                 netdev_features_change(dev);
9935 }
9936 EXPORT_SYMBOL(netdev_update_features);
9937
9938 /**
9939  *      netdev_change_features - recalculate device features
9940  *      @dev: the device to check
9941  *
9942  *      Recalculate dev->features set and send notifications even
9943  *      if they have not changed. Should be called instead of
9944  *      netdev_update_features() if also dev->vlan_features might
9945  *      have changed to allow the changes to be propagated to stacked
9946  *      VLAN devices.
9947  */
9948 void netdev_change_features(struct net_device *dev)
9949 {
9950         __netdev_update_features(dev);
9951         netdev_features_change(dev);
9952 }
9953 EXPORT_SYMBOL(netdev_change_features);
9954
9955 /**
9956  *      netif_stacked_transfer_operstate -      transfer operstate
9957  *      @rootdev: the root or lower level device to transfer state from
9958  *      @dev: the device to transfer operstate to
9959  *
9960  *      Transfer operational state from root to device. This is normally
9961  *      called when a stacking relationship exists between the root
9962  *      device and the device(a leaf device).
9963  */
9964 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9965                                         struct net_device *dev)
9966 {
9967         if (rootdev->operstate == IF_OPER_DORMANT)
9968                 netif_dormant_on(dev);
9969         else
9970                 netif_dormant_off(dev);
9971
9972         if (rootdev->operstate == IF_OPER_TESTING)
9973                 netif_testing_on(dev);
9974         else
9975                 netif_testing_off(dev);
9976
9977         if (netif_carrier_ok(rootdev))
9978                 netif_carrier_on(dev);
9979         else
9980                 netif_carrier_off(dev);
9981 }
9982 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9983
9984 static int netif_alloc_rx_queues(struct net_device *dev)
9985 {
9986         unsigned int i, count = dev->num_rx_queues;
9987         struct netdev_rx_queue *rx;
9988         size_t sz = count * sizeof(*rx);
9989         int err = 0;
9990
9991         BUG_ON(count < 1);
9992
9993         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9994         if (!rx)
9995                 return -ENOMEM;
9996
9997         dev->_rx = rx;
9998
9999         for (i = 0; i < count; i++) {
10000                 rx[i].dev = dev;
10001
10002                 /* XDP RX-queue setup */
10003                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10004                 if (err < 0)
10005                         goto err_rxq_info;
10006         }
10007         return 0;
10008
10009 err_rxq_info:
10010         /* Rollback successful reg's and free other resources */
10011         while (i--)
10012                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10013         kvfree(dev->_rx);
10014         dev->_rx = NULL;
10015         return err;
10016 }
10017
10018 static void netif_free_rx_queues(struct net_device *dev)
10019 {
10020         unsigned int i, count = dev->num_rx_queues;
10021
10022         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10023         if (!dev->_rx)
10024                 return;
10025
10026         for (i = 0; i < count; i++)
10027                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10028
10029         kvfree(dev->_rx);
10030 }
10031
10032 static void netdev_init_one_queue(struct net_device *dev,
10033                                   struct netdev_queue *queue, void *_unused)
10034 {
10035         /* Initialize queue lock */
10036         spin_lock_init(&queue->_xmit_lock);
10037         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10038         queue->xmit_lock_owner = -1;
10039         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10040         queue->dev = dev;
10041 #ifdef CONFIG_BQL
10042         dql_init(&queue->dql, HZ);
10043 #endif
10044 }
10045
10046 static void netif_free_tx_queues(struct net_device *dev)
10047 {
10048         kvfree(dev->_tx);
10049 }
10050
10051 static int netif_alloc_netdev_queues(struct net_device *dev)
10052 {
10053         unsigned int count = dev->num_tx_queues;
10054         struct netdev_queue *tx;
10055         size_t sz = count * sizeof(*tx);
10056
10057         if (count < 1 || count > 0xffff)
10058                 return -EINVAL;
10059
10060         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10061         if (!tx)
10062                 return -ENOMEM;
10063
10064         dev->_tx = tx;
10065
10066         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10067         spin_lock_init(&dev->tx_global_lock);
10068
10069         return 0;
10070 }
10071
10072 void netif_tx_stop_all_queues(struct net_device *dev)
10073 {
10074         unsigned int i;
10075
10076         for (i = 0; i < dev->num_tx_queues; i++) {
10077                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10078
10079                 netif_tx_stop_queue(txq);
10080         }
10081 }
10082 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10083
10084 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10085 {
10086         void __percpu *v;
10087
10088         /* Drivers implementing ndo_get_peer_dev must support tstat
10089          * accounting, so that skb_do_redirect() can bump the dev's
10090          * RX stats upon network namespace switch.
10091          */
10092         if (dev->netdev_ops->ndo_get_peer_dev &&
10093             dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10094                 return -EOPNOTSUPP;
10095
10096         switch (dev->pcpu_stat_type) {
10097         case NETDEV_PCPU_STAT_NONE:
10098                 return 0;
10099         case NETDEV_PCPU_STAT_LSTATS:
10100                 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10101                 break;
10102         case NETDEV_PCPU_STAT_TSTATS:
10103                 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10104                 break;
10105         case NETDEV_PCPU_STAT_DSTATS:
10106                 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10107                 break;
10108         default:
10109                 return -EINVAL;
10110         }
10111
10112         return v ? 0 : -ENOMEM;
10113 }
10114
10115 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10116 {
10117         switch (dev->pcpu_stat_type) {
10118         case NETDEV_PCPU_STAT_NONE:
10119                 return;
10120         case NETDEV_PCPU_STAT_LSTATS:
10121                 free_percpu(dev->lstats);
10122                 break;
10123         case NETDEV_PCPU_STAT_TSTATS:
10124                 free_percpu(dev->tstats);
10125                 break;
10126         case NETDEV_PCPU_STAT_DSTATS:
10127                 free_percpu(dev->dstats);
10128                 break;
10129         }
10130 }
10131
10132 /**
10133  * register_netdevice() - register a network device
10134  * @dev: device to register
10135  *
10136  * Take a prepared network device structure and make it externally accessible.
10137  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10138  * Callers must hold the rtnl lock - you may want register_netdev()
10139  * instead of this.
10140  */
10141 int register_netdevice(struct net_device *dev)
10142 {
10143         int ret;
10144         struct net *net = dev_net(dev);
10145
10146         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10147                      NETDEV_FEATURE_COUNT);
10148         BUG_ON(dev_boot_phase);
10149         ASSERT_RTNL();
10150
10151         might_sleep();
10152
10153         /* When net_device's are persistent, this will be fatal. */
10154         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10155         BUG_ON(!net);
10156
10157         ret = ethtool_check_ops(dev->ethtool_ops);
10158         if (ret)
10159                 return ret;
10160
10161         spin_lock_init(&dev->addr_list_lock);
10162         netdev_set_addr_lockdep_class(dev);
10163
10164         ret = dev_get_valid_name(net, dev, dev->name);
10165         if (ret < 0)
10166                 goto out;
10167
10168         ret = -ENOMEM;
10169         dev->name_node = netdev_name_node_head_alloc(dev);
10170         if (!dev->name_node)
10171                 goto out;
10172
10173         /* Init, if this function is available */
10174         if (dev->netdev_ops->ndo_init) {
10175                 ret = dev->netdev_ops->ndo_init(dev);
10176                 if (ret) {
10177                         if (ret > 0)
10178                                 ret = -EIO;
10179                         goto err_free_name;
10180                 }
10181         }
10182
10183         if (((dev->hw_features | dev->features) &
10184              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10185             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10186              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10187                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10188                 ret = -EINVAL;
10189                 goto err_uninit;
10190         }
10191
10192         ret = netdev_do_alloc_pcpu_stats(dev);
10193         if (ret)
10194                 goto err_uninit;
10195
10196         ret = dev_index_reserve(net, dev->ifindex);
10197         if (ret < 0)
10198                 goto err_free_pcpu;
10199         dev->ifindex = ret;
10200
10201         /* Transfer changeable features to wanted_features and enable
10202          * software offloads (GSO and GRO).
10203          */
10204         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10205         dev->features |= NETIF_F_SOFT_FEATURES;
10206
10207         if (dev->udp_tunnel_nic_info) {
10208                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10209                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10210         }
10211
10212         dev->wanted_features = dev->features & dev->hw_features;
10213
10214         if (!(dev->flags & IFF_LOOPBACK))
10215                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10216
10217         /* If IPv4 TCP segmentation offload is supported we should also
10218          * allow the device to enable segmenting the frame with the option
10219          * of ignoring a static IP ID value.  This doesn't enable the
10220          * feature itself but allows the user to enable it later.
10221          */
10222         if (dev->hw_features & NETIF_F_TSO)
10223                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10224         if (dev->vlan_features & NETIF_F_TSO)
10225                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10226         if (dev->mpls_features & NETIF_F_TSO)
10227                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10228         if (dev->hw_enc_features & NETIF_F_TSO)
10229                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10230
10231         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10232          */
10233         dev->vlan_features |= NETIF_F_HIGHDMA;
10234
10235         /* Make NETIF_F_SG inheritable to tunnel devices.
10236          */
10237         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10238
10239         /* Make NETIF_F_SG inheritable to MPLS.
10240          */
10241         dev->mpls_features |= NETIF_F_SG;
10242
10243         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10244         ret = notifier_to_errno(ret);
10245         if (ret)
10246                 goto err_ifindex_release;
10247
10248         ret = netdev_register_kobject(dev);
10249         write_lock(&dev_base_lock);
10250         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10251         write_unlock(&dev_base_lock);
10252         if (ret)
10253                 goto err_uninit_notify;
10254
10255         __netdev_update_features(dev);
10256
10257         /*
10258          *      Default initial state at registry is that the
10259          *      device is present.
10260          */
10261
10262         set_bit(__LINK_STATE_PRESENT, &dev->state);
10263
10264         linkwatch_init_dev(dev);
10265
10266         dev_init_scheduler(dev);
10267
10268         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10269         list_netdevice(dev);
10270
10271         add_device_randomness(dev->dev_addr, dev->addr_len);
10272
10273         /* If the device has permanent device address, driver should
10274          * set dev_addr and also addr_assign_type should be set to
10275          * NET_ADDR_PERM (default value).
10276          */
10277         if (dev->addr_assign_type == NET_ADDR_PERM)
10278                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10279
10280         /* Notify protocols, that a new device appeared. */
10281         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10282         ret = notifier_to_errno(ret);
10283         if (ret) {
10284                 /* Expect explicit free_netdev() on failure */
10285                 dev->needs_free_netdev = false;
10286                 unregister_netdevice_queue(dev, NULL);
10287                 goto out;
10288         }
10289         /*
10290          *      Prevent userspace races by waiting until the network
10291          *      device is fully setup before sending notifications.
10292          */
10293         if (!dev->rtnl_link_ops ||
10294             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10295                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10296
10297 out:
10298         return ret;
10299
10300 err_uninit_notify:
10301         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10302 err_ifindex_release:
10303         dev_index_release(net, dev->ifindex);
10304 err_free_pcpu:
10305         netdev_do_free_pcpu_stats(dev);
10306 err_uninit:
10307         if (dev->netdev_ops->ndo_uninit)
10308                 dev->netdev_ops->ndo_uninit(dev);
10309         if (dev->priv_destructor)
10310                 dev->priv_destructor(dev);
10311 err_free_name:
10312         netdev_name_node_free(dev->name_node);
10313         goto out;
10314 }
10315 EXPORT_SYMBOL(register_netdevice);
10316
10317 /**
10318  *      init_dummy_netdev       - init a dummy network device for NAPI
10319  *      @dev: device to init
10320  *
10321  *      This takes a network device structure and initialize the minimum
10322  *      amount of fields so it can be used to schedule NAPI polls without
10323  *      registering a full blown interface. This is to be used by drivers
10324  *      that need to tie several hardware interfaces to a single NAPI
10325  *      poll scheduler due to HW limitations.
10326  */
10327 int init_dummy_netdev(struct net_device *dev)
10328 {
10329         /* Clear everything. Note we don't initialize spinlocks
10330          * are they aren't supposed to be taken by any of the
10331          * NAPI code and this dummy netdev is supposed to be
10332          * only ever used for NAPI polls
10333          */
10334         memset(dev, 0, sizeof(struct net_device));
10335
10336         /* make sure we BUG if trying to hit standard
10337          * register/unregister code path
10338          */
10339         dev->reg_state = NETREG_DUMMY;
10340
10341         /* NAPI wants this */
10342         INIT_LIST_HEAD(&dev->napi_list);
10343
10344         /* a dummy interface is started by default */
10345         set_bit(__LINK_STATE_PRESENT, &dev->state);
10346         set_bit(__LINK_STATE_START, &dev->state);
10347
10348         /* napi_busy_loop stats accounting wants this */
10349         dev_net_set(dev, &init_net);
10350
10351         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10352          * because users of this 'device' dont need to change
10353          * its refcount.
10354          */
10355
10356         return 0;
10357 }
10358 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10359
10360
10361 /**
10362  *      register_netdev - register a network device
10363  *      @dev: device to register
10364  *
10365  *      Take a completed network device structure and add it to the kernel
10366  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10367  *      chain. 0 is returned on success. A negative errno code is returned
10368  *      on a failure to set up the device, or if the name is a duplicate.
10369  *
10370  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10371  *      and expands the device name if you passed a format string to
10372  *      alloc_netdev.
10373  */
10374 int register_netdev(struct net_device *dev)
10375 {
10376         int err;
10377
10378         if (rtnl_lock_killable())
10379                 return -EINTR;
10380         err = register_netdevice(dev);
10381         rtnl_unlock();
10382         return err;
10383 }
10384 EXPORT_SYMBOL(register_netdev);
10385
10386 int netdev_refcnt_read(const struct net_device *dev)
10387 {
10388 #ifdef CONFIG_PCPU_DEV_REFCNT
10389         int i, refcnt = 0;
10390
10391         for_each_possible_cpu(i)
10392                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10393         return refcnt;
10394 #else
10395         return refcount_read(&dev->dev_refcnt);
10396 #endif
10397 }
10398 EXPORT_SYMBOL(netdev_refcnt_read);
10399
10400 int netdev_unregister_timeout_secs __read_mostly = 10;
10401
10402 #define WAIT_REFS_MIN_MSECS 1
10403 #define WAIT_REFS_MAX_MSECS 250
10404 /**
10405  * netdev_wait_allrefs_any - wait until all references are gone.
10406  * @list: list of net_devices to wait on
10407  *
10408  * This is called when unregistering network devices.
10409  *
10410  * Any protocol or device that holds a reference should register
10411  * for netdevice notification, and cleanup and put back the
10412  * reference if they receive an UNREGISTER event.
10413  * We can get stuck here if buggy protocols don't correctly
10414  * call dev_put.
10415  */
10416 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10417 {
10418         unsigned long rebroadcast_time, warning_time;
10419         struct net_device *dev;
10420         int wait = 0;
10421
10422         rebroadcast_time = warning_time = jiffies;
10423
10424         list_for_each_entry(dev, list, todo_list)
10425                 if (netdev_refcnt_read(dev) == 1)
10426                         return dev;
10427
10428         while (true) {
10429                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10430                         rtnl_lock();
10431
10432                         /* Rebroadcast unregister notification */
10433                         list_for_each_entry(dev, list, todo_list)
10434                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10435
10436                         __rtnl_unlock();
10437                         rcu_barrier();
10438                         rtnl_lock();
10439
10440                         list_for_each_entry(dev, list, todo_list)
10441                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10442                                              &dev->state)) {
10443                                         /* We must not have linkwatch events
10444                                          * pending on unregister. If this
10445                                          * happens, we simply run the queue
10446                                          * unscheduled, resulting in a noop
10447                                          * for this device.
10448                                          */
10449                                         linkwatch_run_queue();
10450                                         break;
10451                                 }
10452
10453                         __rtnl_unlock();
10454
10455                         rebroadcast_time = jiffies;
10456                 }
10457
10458                 if (!wait) {
10459                         rcu_barrier();
10460                         wait = WAIT_REFS_MIN_MSECS;
10461                 } else {
10462                         msleep(wait);
10463                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10464                 }
10465
10466                 list_for_each_entry(dev, list, todo_list)
10467                         if (netdev_refcnt_read(dev) == 1)
10468                                 return dev;
10469
10470                 if (time_after(jiffies, warning_time +
10471                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10472                         list_for_each_entry(dev, list, todo_list) {
10473                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10474                                          dev->name, netdev_refcnt_read(dev));
10475                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10476                         }
10477
10478                         warning_time = jiffies;
10479                 }
10480         }
10481 }
10482
10483 /* The sequence is:
10484  *
10485  *      rtnl_lock();
10486  *      ...
10487  *      register_netdevice(x1);
10488  *      register_netdevice(x2);
10489  *      ...
10490  *      unregister_netdevice(y1);
10491  *      unregister_netdevice(y2);
10492  *      ...
10493  *      rtnl_unlock();
10494  *      free_netdev(y1);
10495  *      free_netdev(y2);
10496  *
10497  * We are invoked by rtnl_unlock().
10498  * This allows us to deal with problems:
10499  * 1) We can delete sysfs objects which invoke hotplug
10500  *    without deadlocking with linkwatch via keventd.
10501  * 2) Since we run with the RTNL semaphore not held, we can sleep
10502  *    safely in order to wait for the netdev refcnt to drop to zero.
10503  *
10504  * We must not return until all unregister events added during
10505  * the interval the lock was held have been completed.
10506  */
10507 void netdev_run_todo(void)
10508 {
10509         struct net_device *dev, *tmp;
10510         struct list_head list;
10511 #ifdef CONFIG_LOCKDEP
10512         struct list_head unlink_list;
10513
10514         list_replace_init(&net_unlink_list, &unlink_list);
10515
10516         while (!list_empty(&unlink_list)) {
10517                 struct net_device *dev = list_first_entry(&unlink_list,
10518                                                           struct net_device,
10519                                                           unlink_list);
10520                 list_del_init(&dev->unlink_list);
10521                 dev->nested_level = dev->lower_level - 1;
10522         }
10523 #endif
10524
10525         /* Snapshot list, allow later requests */
10526         list_replace_init(&net_todo_list, &list);
10527
10528         __rtnl_unlock();
10529
10530         /* Wait for rcu callbacks to finish before next phase */
10531         if (!list_empty(&list))
10532                 rcu_barrier();
10533
10534         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10535                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10536                         netdev_WARN(dev, "run_todo but not unregistering\n");
10537                         list_del(&dev->todo_list);
10538                         continue;
10539                 }
10540
10541                 write_lock(&dev_base_lock);
10542                 dev->reg_state = NETREG_UNREGISTERED;
10543                 write_unlock(&dev_base_lock);
10544                 linkwatch_sync_dev(dev);
10545         }
10546
10547         while (!list_empty(&list)) {
10548                 dev = netdev_wait_allrefs_any(&list);
10549                 list_del(&dev->todo_list);
10550
10551                 /* paranoia */
10552                 BUG_ON(netdev_refcnt_read(dev) != 1);
10553                 BUG_ON(!list_empty(&dev->ptype_all));
10554                 BUG_ON(!list_empty(&dev->ptype_specific));
10555                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10556                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10557
10558                 netdev_do_free_pcpu_stats(dev);
10559                 if (dev->priv_destructor)
10560                         dev->priv_destructor(dev);
10561                 if (dev->needs_free_netdev)
10562                         free_netdev(dev);
10563
10564                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10565                         wake_up(&netdev_unregistering_wq);
10566
10567                 /* Free network device */
10568                 kobject_put(&dev->dev.kobj);
10569         }
10570 }
10571
10572 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10573  * all the same fields in the same order as net_device_stats, with only
10574  * the type differing, but rtnl_link_stats64 may have additional fields
10575  * at the end for newer counters.
10576  */
10577 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10578                              const struct net_device_stats *netdev_stats)
10579 {
10580         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10581         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10582         u64 *dst = (u64 *)stats64;
10583
10584         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10585         for (i = 0; i < n; i++)
10586                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10587         /* zero out counters that only exist in rtnl_link_stats64 */
10588         memset((char *)stats64 + n * sizeof(u64), 0,
10589                sizeof(*stats64) - n * sizeof(u64));
10590 }
10591 EXPORT_SYMBOL(netdev_stats_to_stats64);
10592
10593 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10594                 struct net_device *dev)
10595 {
10596         struct net_device_core_stats __percpu *p;
10597
10598         p = alloc_percpu_gfp(struct net_device_core_stats,
10599                              GFP_ATOMIC | __GFP_NOWARN);
10600
10601         if (p && cmpxchg(&dev->core_stats, NULL, p))
10602                 free_percpu(p);
10603
10604         /* This READ_ONCE() pairs with the cmpxchg() above */
10605         return READ_ONCE(dev->core_stats);
10606 }
10607
10608 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10609 {
10610         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10611         struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10612         unsigned long __percpu *field;
10613
10614         if (unlikely(!p)) {
10615                 p = netdev_core_stats_alloc(dev);
10616                 if (!p)
10617                         return;
10618         }
10619
10620         field = (__force unsigned long __percpu *)((__force void *)p + offset);
10621         this_cpu_inc(*field);
10622 }
10623 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10624
10625 /**
10626  *      dev_get_stats   - get network device statistics
10627  *      @dev: device to get statistics from
10628  *      @storage: place to store stats
10629  *
10630  *      Get network statistics from device. Return @storage.
10631  *      The device driver may provide its own method by setting
10632  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10633  *      otherwise the internal statistics structure is used.
10634  */
10635 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10636                                         struct rtnl_link_stats64 *storage)
10637 {
10638         const struct net_device_ops *ops = dev->netdev_ops;
10639         const struct net_device_core_stats __percpu *p;
10640
10641         if (ops->ndo_get_stats64) {
10642                 memset(storage, 0, sizeof(*storage));
10643                 ops->ndo_get_stats64(dev, storage);
10644         } else if (ops->ndo_get_stats) {
10645                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10646         } else {
10647                 netdev_stats_to_stats64(storage, &dev->stats);
10648         }
10649
10650         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10651         p = READ_ONCE(dev->core_stats);
10652         if (p) {
10653                 const struct net_device_core_stats *core_stats;
10654                 int i;
10655
10656                 for_each_possible_cpu(i) {
10657                         core_stats = per_cpu_ptr(p, i);
10658                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10659                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10660                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10661                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10662                 }
10663         }
10664         return storage;
10665 }
10666 EXPORT_SYMBOL(dev_get_stats);
10667
10668 /**
10669  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10670  *      @s: place to store stats
10671  *      @netstats: per-cpu network stats to read from
10672  *
10673  *      Read per-cpu network statistics and populate the related fields in @s.
10674  */
10675 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10676                            const struct pcpu_sw_netstats __percpu *netstats)
10677 {
10678         int cpu;
10679
10680         for_each_possible_cpu(cpu) {
10681                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10682                 const struct pcpu_sw_netstats *stats;
10683                 unsigned int start;
10684
10685                 stats = per_cpu_ptr(netstats, cpu);
10686                 do {
10687                         start = u64_stats_fetch_begin(&stats->syncp);
10688                         rx_packets = u64_stats_read(&stats->rx_packets);
10689                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10690                         tx_packets = u64_stats_read(&stats->tx_packets);
10691                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10692                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10693
10694                 s->rx_packets += rx_packets;
10695                 s->rx_bytes   += rx_bytes;
10696                 s->tx_packets += tx_packets;
10697                 s->tx_bytes   += tx_bytes;
10698         }
10699 }
10700 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10701
10702 /**
10703  *      dev_get_tstats64 - ndo_get_stats64 implementation
10704  *      @dev: device to get statistics from
10705  *      @s: place to store stats
10706  *
10707  *      Populate @s from dev->stats and dev->tstats. Can be used as
10708  *      ndo_get_stats64() callback.
10709  */
10710 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10711 {
10712         netdev_stats_to_stats64(s, &dev->stats);
10713         dev_fetch_sw_netstats(s, dev->tstats);
10714 }
10715 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10716
10717 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10718 {
10719         struct netdev_queue *queue = dev_ingress_queue(dev);
10720
10721 #ifdef CONFIG_NET_CLS_ACT
10722         if (queue)
10723                 return queue;
10724         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10725         if (!queue)
10726                 return NULL;
10727         netdev_init_one_queue(dev, queue, NULL);
10728         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10729         RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10730         rcu_assign_pointer(dev->ingress_queue, queue);
10731 #endif
10732         return queue;
10733 }
10734
10735 static const struct ethtool_ops default_ethtool_ops;
10736
10737 void netdev_set_default_ethtool_ops(struct net_device *dev,
10738                                     const struct ethtool_ops *ops)
10739 {
10740         if (dev->ethtool_ops == &default_ethtool_ops)
10741                 dev->ethtool_ops = ops;
10742 }
10743 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10744
10745 /**
10746  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10747  * @dev: netdev to enable the IRQ coalescing on
10748  *
10749  * Sets a conservative default for SW IRQ coalescing. Users can use
10750  * sysfs attributes to override the default values.
10751  */
10752 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10753 {
10754         WARN_ON(dev->reg_state == NETREG_REGISTERED);
10755
10756         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10757                 dev->gro_flush_timeout = 20000;
10758                 dev->napi_defer_hard_irqs = 1;
10759         }
10760 }
10761 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10762
10763 void netdev_freemem(struct net_device *dev)
10764 {
10765         char *addr = (char *)dev - dev->padded;
10766
10767         kvfree(addr);
10768 }
10769
10770 /**
10771  * alloc_netdev_mqs - allocate network device
10772  * @sizeof_priv: size of private data to allocate space for
10773  * @name: device name format string
10774  * @name_assign_type: origin of device name
10775  * @setup: callback to initialize device
10776  * @txqs: the number of TX subqueues to allocate
10777  * @rxqs: the number of RX subqueues to allocate
10778  *
10779  * Allocates a struct net_device with private data area for driver use
10780  * and performs basic initialization.  Also allocates subqueue structs
10781  * for each queue on the device.
10782  */
10783 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10784                 unsigned char name_assign_type,
10785                 void (*setup)(struct net_device *),
10786                 unsigned int txqs, unsigned int rxqs)
10787 {
10788         struct net_device *dev;
10789         unsigned int alloc_size;
10790         struct net_device *p;
10791
10792         BUG_ON(strlen(name) >= sizeof(dev->name));
10793
10794         if (txqs < 1) {
10795                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10796                 return NULL;
10797         }
10798
10799         if (rxqs < 1) {
10800                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10801                 return NULL;
10802         }
10803
10804         alloc_size = sizeof(struct net_device);
10805         if (sizeof_priv) {
10806                 /* ensure 32-byte alignment of private area */
10807                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10808                 alloc_size += sizeof_priv;
10809         }
10810         /* ensure 32-byte alignment of whole construct */
10811         alloc_size += NETDEV_ALIGN - 1;
10812
10813         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10814         if (!p)
10815                 return NULL;
10816
10817         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10818         dev->padded = (char *)dev - (char *)p;
10819
10820         ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10821 #ifdef CONFIG_PCPU_DEV_REFCNT
10822         dev->pcpu_refcnt = alloc_percpu(int);
10823         if (!dev->pcpu_refcnt)
10824                 goto free_dev;
10825         __dev_hold(dev);
10826 #else
10827         refcount_set(&dev->dev_refcnt, 1);
10828 #endif
10829
10830         if (dev_addr_init(dev))
10831                 goto free_pcpu;
10832
10833         dev_mc_init(dev);
10834         dev_uc_init(dev);
10835
10836         dev_net_set(dev, &init_net);
10837
10838         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10839         dev->xdp_zc_max_segs = 1;
10840         dev->gso_max_segs = GSO_MAX_SEGS;
10841         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10842         dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10843         dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10844         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10845         dev->tso_max_segs = TSO_MAX_SEGS;
10846         dev->upper_level = 1;
10847         dev->lower_level = 1;
10848 #ifdef CONFIG_LOCKDEP
10849         dev->nested_level = 0;
10850         INIT_LIST_HEAD(&dev->unlink_list);
10851 #endif
10852
10853         INIT_LIST_HEAD(&dev->napi_list);
10854         INIT_LIST_HEAD(&dev->unreg_list);
10855         INIT_LIST_HEAD(&dev->close_list);
10856         INIT_LIST_HEAD(&dev->link_watch_list);
10857         INIT_LIST_HEAD(&dev->adj_list.upper);
10858         INIT_LIST_HEAD(&dev->adj_list.lower);
10859         INIT_LIST_HEAD(&dev->ptype_all);
10860         INIT_LIST_HEAD(&dev->ptype_specific);
10861         INIT_LIST_HEAD(&dev->net_notifier_list);
10862 #ifdef CONFIG_NET_SCHED
10863         hash_init(dev->qdisc_hash);
10864 #endif
10865         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10866         setup(dev);
10867
10868         if (!dev->tx_queue_len) {
10869                 dev->priv_flags |= IFF_NO_QUEUE;
10870                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10871         }
10872
10873         dev->num_tx_queues = txqs;
10874         dev->real_num_tx_queues = txqs;
10875         if (netif_alloc_netdev_queues(dev))
10876                 goto free_all;
10877
10878         dev->num_rx_queues = rxqs;
10879         dev->real_num_rx_queues = rxqs;
10880         if (netif_alloc_rx_queues(dev))
10881                 goto free_all;
10882
10883         strcpy(dev->name, name);
10884         dev->name_assign_type = name_assign_type;
10885         dev->group = INIT_NETDEV_GROUP;
10886         if (!dev->ethtool_ops)
10887                 dev->ethtool_ops = &default_ethtool_ops;
10888
10889         nf_hook_netdev_init(dev);
10890
10891         return dev;
10892
10893 free_all:
10894         free_netdev(dev);
10895         return NULL;
10896
10897 free_pcpu:
10898 #ifdef CONFIG_PCPU_DEV_REFCNT
10899         free_percpu(dev->pcpu_refcnt);
10900 free_dev:
10901 #endif
10902         netdev_freemem(dev);
10903         return NULL;
10904 }
10905 EXPORT_SYMBOL(alloc_netdev_mqs);
10906
10907 /**
10908  * free_netdev - free network device
10909  * @dev: device
10910  *
10911  * This function does the last stage of destroying an allocated device
10912  * interface. The reference to the device object is released. If this
10913  * is the last reference then it will be freed.Must be called in process
10914  * context.
10915  */
10916 void free_netdev(struct net_device *dev)
10917 {
10918         struct napi_struct *p, *n;
10919
10920         might_sleep();
10921
10922         /* When called immediately after register_netdevice() failed the unwind
10923          * handling may still be dismantling the device. Handle that case by
10924          * deferring the free.
10925          */
10926         if (dev->reg_state == NETREG_UNREGISTERING) {
10927                 ASSERT_RTNL();
10928                 dev->needs_free_netdev = true;
10929                 return;
10930         }
10931
10932         netif_free_tx_queues(dev);
10933         netif_free_rx_queues(dev);
10934
10935         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10936
10937         /* Flush device addresses */
10938         dev_addr_flush(dev);
10939
10940         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10941                 netif_napi_del(p);
10942
10943         ref_tracker_dir_exit(&dev->refcnt_tracker);
10944 #ifdef CONFIG_PCPU_DEV_REFCNT
10945         free_percpu(dev->pcpu_refcnt);
10946         dev->pcpu_refcnt = NULL;
10947 #endif
10948         free_percpu(dev->core_stats);
10949         dev->core_stats = NULL;
10950         free_percpu(dev->xdp_bulkq);
10951         dev->xdp_bulkq = NULL;
10952
10953         /*  Compatibility with error handling in drivers */
10954         if (dev->reg_state == NETREG_UNINITIALIZED) {
10955                 netdev_freemem(dev);
10956                 return;
10957         }
10958
10959         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10960         dev->reg_state = NETREG_RELEASED;
10961
10962         /* will free via device release */
10963         put_device(&dev->dev);
10964 }
10965 EXPORT_SYMBOL(free_netdev);
10966
10967 /**
10968  *      synchronize_net -  Synchronize with packet receive processing
10969  *
10970  *      Wait for packets currently being received to be done.
10971  *      Does not block later packets from starting.
10972  */
10973 void synchronize_net(void)
10974 {
10975         might_sleep();
10976         if (rtnl_is_locked())
10977                 synchronize_rcu_expedited();
10978         else
10979                 synchronize_rcu();
10980 }
10981 EXPORT_SYMBOL(synchronize_net);
10982
10983 /**
10984  *      unregister_netdevice_queue - remove device from the kernel
10985  *      @dev: device
10986  *      @head: list
10987  *
10988  *      This function shuts down a device interface and removes it
10989  *      from the kernel tables.
10990  *      If head not NULL, device is queued to be unregistered later.
10991  *
10992  *      Callers must hold the rtnl semaphore.  You may want
10993  *      unregister_netdev() instead of this.
10994  */
10995
10996 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10997 {
10998         ASSERT_RTNL();
10999
11000         if (head) {
11001                 list_move_tail(&dev->unreg_list, head);
11002         } else {
11003                 LIST_HEAD(single);
11004
11005                 list_add(&dev->unreg_list, &single);
11006                 unregister_netdevice_many(&single);
11007         }
11008 }
11009 EXPORT_SYMBOL(unregister_netdevice_queue);
11010
11011 void unregister_netdevice_many_notify(struct list_head *head,
11012                                       u32 portid, const struct nlmsghdr *nlh)
11013 {
11014         struct net_device *dev, *tmp;
11015         LIST_HEAD(close_head);
11016
11017         BUG_ON(dev_boot_phase);
11018         ASSERT_RTNL();
11019
11020         if (list_empty(head))
11021                 return;
11022
11023         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11024                 /* Some devices call without registering
11025                  * for initialization unwind. Remove those
11026                  * devices and proceed with the remaining.
11027                  */
11028                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11029                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11030                                  dev->name, dev);
11031
11032                         WARN_ON(1);
11033                         list_del(&dev->unreg_list);
11034                         continue;
11035                 }
11036                 dev->dismantle = true;
11037                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11038         }
11039
11040         /* If device is running, close it first. */
11041         list_for_each_entry(dev, head, unreg_list)
11042                 list_add_tail(&dev->close_list, &close_head);
11043         dev_close_many(&close_head, true);
11044
11045         list_for_each_entry(dev, head, unreg_list) {
11046                 /* And unlink it from device chain. */
11047                 write_lock(&dev_base_lock);
11048                 unlist_netdevice(dev, false);
11049                 dev->reg_state = NETREG_UNREGISTERING;
11050                 write_unlock(&dev_base_lock);
11051         }
11052         flush_all_backlogs();
11053
11054         synchronize_net();
11055
11056         list_for_each_entry(dev, head, unreg_list) {
11057                 struct sk_buff *skb = NULL;
11058
11059                 /* Shutdown queueing discipline. */
11060                 dev_shutdown(dev);
11061                 dev_tcx_uninstall(dev);
11062                 dev_xdp_uninstall(dev);
11063                 bpf_dev_bound_netdev_unregister(dev);
11064
11065                 netdev_offload_xstats_disable_all(dev);
11066
11067                 /* Notify protocols, that we are about to destroy
11068                  * this device. They should clean all the things.
11069                  */
11070                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11071
11072                 if (!dev->rtnl_link_ops ||
11073                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11074                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11075                                                      GFP_KERNEL, NULL, 0,
11076                                                      portid, nlh);
11077
11078                 /*
11079                  *      Flush the unicast and multicast chains
11080                  */
11081                 dev_uc_flush(dev);
11082                 dev_mc_flush(dev);
11083
11084                 netdev_name_node_alt_flush(dev);
11085                 netdev_name_node_free(dev->name_node);
11086
11087                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11088
11089                 if (dev->netdev_ops->ndo_uninit)
11090                         dev->netdev_ops->ndo_uninit(dev);
11091
11092                 if (skb)
11093                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11094
11095                 /* Notifier chain MUST detach us all upper devices. */
11096                 WARN_ON(netdev_has_any_upper_dev(dev));
11097                 WARN_ON(netdev_has_any_lower_dev(dev));
11098
11099                 /* Remove entries from kobject tree */
11100                 netdev_unregister_kobject(dev);
11101 #ifdef CONFIG_XPS
11102                 /* Remove XPS queueing entries */
11103                 netif_reset_xps_queues_gt(dev, 0);
11104 #endif
11105         }
11106
11107         synchronize_net();
11108
11109         list_for_each_entry(dev, head, unreg_list) {
11110                 netdev_put(dev, &dev->dev_registered_tracker);
11111                 net_set_todo(dev);
11112         }
11113
11114         list_del(head);
11115 }
11116
11117 /**
11118  *      unregister_netdevice_many - unregister many devices
11119  *      @head: list of devices
11120  *
11121  *  Note: As most callers use a stack allocated list_head,
11122  *  we force a list_del() to make sure stack wont be corrupted later.
11123  */
11124 void unregister_netdevice_many(struct list_head *head)
11125 {
11126         unregister_netdevice_many_notify(head, 0, NULL);
11127 }
11128 EXPORT_SYMBOL(unregister_netdevice_many);
11129
11130 /**
11131  *      unregister_netdev - remove device from the kernel
11132  *      @dev: device
11133  *
11134  *      This function shuts down a device interface and removes it
11135  *      from the kernel tables.
11136  *
11137  *      This is just a wrapper for unregister_netdevice that takes
11138  *      the rtnl semaphore.  In general you want to use this and not
11139  *      unregister_netdevice.
11140  */
11141 void unregister_netdev(struct net_device *dev)
11142 {
11143         rtnl_lock();
11144         unregister_netdevice(dev);
11145         rtnl_unlock();
11146 }
11147 EXPORT_SYMBOL(unregister_netdev);
11148
11149 /**
11150  *      __dev_change_net_namespace - move device to different nethost namespace
11151  *      @dev: device
11152  *      @net: network namespace
11153  *      @pat: If not NULL name pattern to try if the current device name
11154  *            is already taken in the destination network namespace.
11155  *      @new_ifindex: If not zero, specifies device index in the target
11156  *                    namespace.
11157  *
11158  *      This function shuts down a device interface and moves it
11159  *      to a new network namespace. On success 0 is returned, on
11160  *      a failure a netagive errno code is returned.
11161  *
11162  *      Callers must hold the rtnl semaphore.
11163  */
11164
11165 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11166                                const char *pat, int new_ifindex)
11167 {
11168         struct netdev_name_node *name_node;
11169         struct net *net_old = dev_net(dev);
11170         char new_name[IFNAMSIZ] = {};
11171         int err, new_nsid;
11172
11173         ASSERT_RTNL();
11174
11175         /* Don't allow namespace local devices to be moved. */
11176         err = -EINVAL;
11177         if (dev->features & NETIF_F_NETNS_LOCAL)
11178                 goto out;
11179
11180         /* Ensure the device has been registrered */
11181         if (dev->reg_state != NETREG_REGISTERED)
11182                 goto out;
11183
11184         /* Get out if there is nothing todo */
11185         err = 0;
11186         if (net_eq(net_old, net))
11187                 goto out;
11188
11189         /* Pick the destination device name, and ensure
11190          * we can use it in the destination network namespace.
11191          */
11192         err = -EEXIST;
11193         if (netdev_name_in_use(net, dev->name)) {
11194                 /* We get here if we can't use the current device name */
11195                 if (!pat)
11196                         goto out;
11197                 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11198                 if (err < 0)
11199                         goto out;
11200         }
11201         /* Check that none of the altnames conflicts. */
11202         err = -EEXIST;
11203         netdev_for_each_altname(dev, name_node)
11204                 if (netdev_name_in_use(net, name_node->name))
11205                         goto out;
11206
11207         /* Check that new_ifindex isn't used yet. */
11208         if (new_ifindex) {
11209                 err = dev_index_reserve(net, new_ifindex);
11210                 if (err < 0)
11211                         goto out;
11212         } else {
11213                 /* If there is an ifindex conflict assign a new one */
11214                 err = dev_index_reserve(net, dev->ifindex);
11215                 if (err == -EBUSY)
11216                         err = dev_index_reserve(net, 0);
11217                 if (err < 0)
11218                         goto out;
11219                 new_ifindex = err;
11220         }
11221
11222         /*
11223          * And now a mini version of register_netdevice unregister_netdevice.
11224          */
11225
11226         /* If device is running close it first. */
11227         dev_close(dev);
11228
11229         /* And unlink it from device chain */
11230         unlist_netdevice(dev, true);
11231
11232         synchronize_net();
11233
11234         /* Shutdown queueing discipline. */
11235         dev_shutdown(dev);
11236
11237         /* Notify protocols, that we are about to destroy
11238          * this device. They should clean all the things.
11239          *
11240          * Note that dev->reg_state stays at NETREG_REGISTERED.
11241          * This is wanted because this way 8021q and macvlan know
11242          * the device is just moving and can keep their slaves up.
11243          */
11244         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11245         rcu_barrier();
11246
11247         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11248
11249         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11250                             new_ifindex);
11251
11252         /*
11253          *      Flush the unicast and multicast chains
11254          */
11255         dev_uc_flush(dev);
11256         dev_mc_flush(dev);
11257
11258         /* Send a netdev-removed uevent to the old namespace */
11259         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11260         netdev_adjacent_del_links(dev);
11261
11262         /* Move per-net netdevice notifiers that are following the netdevice */
11263         move_netdevice_notifiers_dev_net(dev, net);
11264
11265         /* Actually switch the network namespace */
11266         dev_net_set(dev, net);
11267         dev->ifindex = new_ifindex;
11268
11269         if (new_name[0]) /* Rename the netdev to prepared name */
11270                 strscpy(dev->name, new_name, IFNAMSIZ);
11271
11272         /* Fixup kobjects */
11273         dev_set_uevent_suppress(&dev->dev, 1);
11274         err = device_rename(&dev->dev, dev->name);
11275         dev_set_uevent_suppress(&dev->dev, 0);
11276         WARN_ON(err);
11277
11278         /* Send a netdev-add uevent to the new namespace */
11279         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11280         netdev_adjacent_add_links(dev);
11281
11282         /* Adapt owner in case owning user namespace of target network
11283          * namespace is different from the original one.
11284          */
11285         err = netdev_change_owner(dev, net_old, net);
11286         WARN_ON(err);
11287
11288         /* Add the device back in the hashes */
11289         list_netdevice(dev);
11290
11291         /* Notify protocols, that a new device appeared. */
11292         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11293
11294         /*
11295          *      Prevent userspace races by waiting until the network
11296          *      device is fully setup before sending notifications.
11297          */
11298         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11299
11300         synchronize_net();
11301         err = 0;
11302 out:
11303         return err;
11304 }
11305 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11306
11307 static int dev_cpu_dead(unsigned int oldcpu)
11308 {
11309         struct sk_buff **list_skb;
11310         struct sk_buff *skb;
11311         unsigned int cpu;
11312         struct softnet_data *sd, *oldsd, *remsd = NULL;
11313
11314         local_irq_disable();
11315         cpu = smp_processor_id();
11316         sd = &per_cpu(softnet_data, cpu);
11317         oldsd = &per_cpu(softnet_data, oldcpu);
11318
11319         /* Find end of our completion_queue. */
11320         list_skb = &sd->completion_queue;
11321         while (*list_skb)
11322                 list_skb = &(*list_skb)->next;
11323         /* Append completion queue from offline CPU. */
11324         *list_skb = oldsd->completion_queue;
11325         oldsd->completion_queue = NULL;
11326
11327         /* Append output queue from offline CPU. */
11328         if (oldsd->output_queue) {
11329                 *sd->output_queue_tailp = oldsd->output_queue;
11330                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11331                 oldsd->output_queue = NULL;
11332                 oldsd->output_queue_tailp = &oldsd->output_queue;
11333         }
11334         /* Append NAPI poll list from offline CPU, with one exception :
11335          * process_backlog() must be called by cpu owning percpu backlog.
11336          * We properly handle process_queue & input_pkt_queue later.
11337          */
11338         while (!list_empty(&oldsd->poll_list)) {
11339                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11340                                                             struct napi_struct,
11341                                                             poll_list);
11342
11343                 list_del_init(&napi->poll_list);
11344                 if (napi->poll == process_backlog)
11345                         napi->state = 0;
11346                 else
11347                         ____napi_schedule(sd, napi);
11348         }
11349
11350         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11351         local_irq_enable();
11352
11353 #ifdef CONFIG_RPS
11354         remsd = oldsd->rps_ipi_list;
11355         oldsd->rps_ipi_list = NULL;
11356 #endif
11357         /* send out pending IPI's on offline CPU */
11358         net_rps_send_ipi(remsd);
11359
11360         /* Process offline CPU's input_pkt_queue */
11361         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11362                 netif_rx(skb);
11363                 input_queue_head_incr(oldsd);
11364         }
11365         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11366                 netif_rx(skb);
11367                 input_queue_head_incr(oldsd);
11368         }
11369
11370         return 0;
11371 }
11372
11373 /**
11374  *      netdev_increment_features - increment feature set by one
11375  *      @all: current feature set
11376  *      @one: new feature set
11377  *      @mask: mask feature set
11378  *
11379  *      Computes a new feature set after adding a device with feature set
11380  *      @one to the master device with current feature set @all.  Will not
11381  *      enable anything that is off in @mask. Returns the new feature set.
11382  */
11383 netdev_features_t netdev_increment_features(netdev_features_t all,
11384         netdev_features_t one, netdev_features_t mask)
11385 {
11386         if (mask & NETIF_F_HW_CSUM)
11387                 mask |= NETIF_F_CSUM_MASK;
11388         mask |= NETIF_F_VLAN_CHALLENGED;
11389
11390         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11391         all &= one | ~NETIF_F_ALL_FOR_ALL;
11392
11393         /* If one device supports hw checksumming, set for all. */
11394         if (all & NETIF_F_HW_CSUM)
11395                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11396
11397         return all;
11398 }
11399 EXPORT_SYMBOL(netdev_increment_features);
11400
11401 static struct hlist_head * __net_init netdev_create_hash(void)
11402 {
11403         int i;
11404         struct hlist_head *hash;
11405
11406         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11407         if (hash != NULL)
11408                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11409                         INIT_HLIST_HEAD(&hash[i]);
11410
11411         return hash;
11412 }
11413
11414 /* Initialize per network namespace state */
11415 static int __net_init netdev_init(struct net *net)
11416 {
11417         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11418                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11419
11420         INIT_LIST_HEAD(&net->dev_base_head);
11421
11422         net->dev_name_head = netdev_create_hash();
11423         if (net->dev_name_head == NULL)
11424                 goto err_name;
11425
11426         net->dev_index_head = netdev_create_hash();
11427         if (net->dev_index_head == NULL)
11428                 goto err_idx;
11429
11430         xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11431
11432         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11433
11434         return 0;
11435
11436 err_idx:
11437         kfree(net->dev_name_head);
11438 err_name:
11439         return -ENOMEM;
11440 }
11441
11442 /**
11443  *      netdev_drivername - network driver for the device
11444  *      @dev: network device
11445  *
11446  *      Determine network driver for device.
11447  */
11448 const char *netdev_drivername(const struct net_device *dev)
11449 {
11450         const struct device_driver *driver;
11451         const struct device *parent;
11452         const char *empty = "";
11453
11454         parent = dev->dev.parent;
11455         if (!parent)
11456                 return empty;
11457
11458         driver = parent->driver;
11459         if (driver && driver->name)
11460                 return driver->name;
11461         return empty;
11462 }
11463
11464 static void __netdev_printk(const char *level, const struct net_device *dev,
11465                             struct va_format *vaf)
11466 {
11467         if (dev && dev->dev.parent) {
11468                 dev_printk_emit(level[1] - '0',
11469                                 dev->dev.parent,
11470                                 "%s %s %s%s: %pV",
11471                                 dev_driver_string(dev->dev.parent),
11472                                 dev_name(dev->dev.parent),
11473                                 netdev_name(dev), netdev_reg_state(dev),
11474                                 vaf);
11475         } else if (dev) {
11476                 printk("%s%s%s: %pV",
11477                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11478         } else {
11479                 printk("%s(NULL net_device): %pV", level, vaf);
11480         }
11481 }
11482
11483 void netdev_printk(const char *level, const struct net_device *dev,
11484                    const char *format, ...)
11485 {
11486         struct va_format vaf;
11487         va_list args;
11488
11489         va_start(args, format);
11490
11491         vaf.fmt = format;
11492         vaf.va = &args;
11493
11494         __netdev_printk(level, dev, &vaf);
11495
11496         va_end(args);
11497 }
11498 EXPORT_SYMBOL(netdev_printk);
11499
11500 #define define_netdev_printk_level(func, level)                 \
11501 void func(const struct net_device *dev, const char *fmt, ...)   \
11502 {                                                               \
11503         struct va_format vaf;                                   \
11504         va_list args;                                           \
11505                                                                 \
11506         va_start(args, fmt);                                    \
11507                                                                 \
11508         vaf.fmt = fmt;                                          \
11509         vaf.va = &args;                                         \
11510                                                                 \
11511         __netdev_printk(level, dev, &vaf);                      \
11512                                                                 \
11513         va_end(args);                                           \
11514 }                                                               \
11515 EXPORT_SYMBOL(func);
11516
11517 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11518 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11519 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11520 define_netdev_printk_level(netdev_err, KERN_ERR);
11521 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11522 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11523 define_netdev_printk_level(netdev_info, KERN_INFO);
11524
11525 static void __net_exit netdev_exit(struct net *net)
11526 {
11527         kfree(net->dev_name_head);
11528         kfree(net->dev_index_head);
11529         xa_destroy(&net->dev_by_index);
11530         if (net != &init_net)
11531                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11532 }
11533
11534 static struct pernet_operations __net_initdata netdev_net_ops = {
11535         .init = netdev_init,
11536         .exit = netdev_exit,
11537 };
11538
11539 static void __net_exit default_device_exit_net(struct net *net)
11540 {
11541         struct netdev_name_node *name_node, *tmp;
11542         struct net_device *dev, *aux;
11543         /*
11544          * Push all migratable network devices back to the
11545          * initial network namespace
11546          */
11547         ASSERT_RTNL();
11548         for_each_netdev_safe(net, dev, aux) {
11549                 int err;
11550                 char fb_name[IFNAMSIZ];
11551
11552                 /* Ignore unmoveable devices (i.e. loopback) */
11553                 if (dev->features & NETIF_F_NETNS_LOCAL)
11554                         continue;
11555
11556                 /* Leave virtual devices for the generic cleanup */
11557                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11558                         continue;
11559
11560                 /* Push remaining network devices to init_net */
11561                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11562                 if (netdev_name_in_use(&init_net, fb_name))
11563                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11564
11565                 netdev_for_each_altname_safe(dev, name_node, tmp)
11566                         if (netdev_name_in_use(&init_net, name_node->name)) {
11567                                 netdev_name_node_del(name_node);
11568                                 synchronize_rcu();
11569                                 __netdev_name_node_alt_destroy(name_node);
11570                         }
11571
11572                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11573                 if (err) {
11574                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11575                                  __func__, dev->name, err);
11576                         BUG();
11577                 }
11578         }
11579 }
11580
11581 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11582 {
11583         /* At exit all network devices most be removed from a network
11584          * namespace.  Do this in the reverse order of registration.
11585          * Do this across as many network namespaces as possible to
11586          * improve batching efficiency.
11587          */
11588         struct net_device *dev;
11589         struct net *net;
11590         LIST_HEAD(dev_kill_list);
11591
11592         rtnl_lock();
11593         list_for_each_entry(net, net_list, exit_list) {
11594                 default_device_exit_net(net);
11595                 cond_resched();
11596         }
11597
11598         list_for_each_entry(net, net_list, exit_list) {
11599                 for_each_netdev_reverse(net, dev) {
11600                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11601                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11602                         else
11603                                 unregister_netdevice_queue(dev, &dev_kill_list);
11604                 }
11605         }
11606         unregister_netdevice_many(&dev_kill_list);
11607         rtnl_unlock();
11608 }
11609
11610 static struct pernet_operations __net_initdata default_device_ops = {
11611         .exit_batch = default_device_exit_batch,
11612 };
11613
11614 static void __init net_dev_struct_check(void)
11615 {
11616         /* TX read-mostly hotpath */
11617         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11618         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11619         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11620         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11621         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11622         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11623         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11624         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11625         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11626         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11627         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11628         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11629         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11630 #ifdef CONFIG_XPS
11631         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11632 #endif
11633 #ifdef CONFIG_NETFILTER_EGRESS
11634         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11635 #endif
11636 #ifdef CONFIG_NET_XGRESS
11637         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11638 #endif
11639         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11640
11641         /* TXRX read-mostly hotpath */
11642         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11643         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11644         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11645         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11646         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11647         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11648         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11649
11650         /* RX read-mostly hotpath */
11651         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11652         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11653         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11654         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11655         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11656         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11657         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11658         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11659         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11660         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11661         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11662 #ifdef CONFIG_NETPOLL
11663         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11664 #endif
11665 #ifdef CONFIG_NET_XGRESS
11666         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11667 #endif
11668         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11669 }
11670
11671 /*
11672  *      Initialize the DEV module. At boot time this walks the device list and
11673  *      unhooks any devices that fail to initialise (normally hardware not
11674  *      present) and leaves us with a valid list of present and active devices.
11675  *
11676  */
11677
11678 /*
11679  *       This is called single threaded during boot, so no need
11680  *       to take the rtnl semaphore.
11681  */
11682 static int __init net_dev_init(void)
11683 {
11684         int i, rc = -ENOMEM;
11685
11686         BUG_ON(!dev_boot_phase);
11687
11688         net_dev_struct_check();
11689
11690         if (dev_proc_init())
11691                 goto out;
11692
11693         if (netdev_kobject_init())
11694                 goto out;
11695
11696         INIT_LIST_HEAD(&ptype_all);
11697         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11698                 INIT_LIST_HEAD(&ptype_base[i]);
11699
11700         if (register_pernet_subsys(&netdev_net_ops))
11701                 goto out;
11702
11703         /*
11704          *      Initialise the packet receive queues.
11705          */
11706
11707         for_each_possible_cpu(i) {
11708                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11709                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11710
11711                 INIT_WORK(flush, flush_backlog);
11712
11713                 skb_queue_head_init(&sd->input_pkt_queue);
11714                 skb_queue_head_init(&sd->process_queue);
11715 #ifdef CONFIG_XFRM_OFFLOAD
11716                 skb_queue_head_init(&sd->xfrm_backlog);
11717 #endif
11718                 INIT_LIST_HEAD(&sd->poll_list);
11719                 sd->output_queue_tailp = &sd->output_queue;
11720 #ifdef CONFIG_RPS
11721                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11722                 sd->cpu = i;
11723 #endif
11724                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11725                 spin_lock_init(&sd->defer_lock);
11726
11727                 init_gro_hash(&sd->backlog);
11728                 sd->backlog.poll = process_backlog;
11729                 sd->backlog.weight = weight_p;
11730         }
11731
11732         dev_boot_phase = 0;
11733
11734         /* The loopback device is special if any other network devices
11735          * is present in a network namespace the loopback device must
11736          * be present. Since we now dynamically allocate and free the
11737          * loopback device ensure this invariant is maintained by
11738          * keeping the loopback device as the first device on the
11739          * list of network devices.  Ensuring the loopback devices
11740          * is the first device that appears and the last network device
11741          * that disappears.
11742          */
11743         if (register_pernet_device(&loopback_net_ops))
11744                 goto out;
11745
11746         if (register_pernet_device(&default_device_ops))
11747                 goto out;
11748
11749         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11750         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11751
11752         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11753                                        NULL, dev_cpu_dead);
11754         WARN_ON(rc < 0);
11755         rc = 0;
11756 out:
11757         return rc;
11758 }
11759
11760 subsys_initcall(net_dev_init);