Mention branches and keyring.
[releases.git] / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/rwsem.h>
87 #include <linux/string.h>
88 #include <linux/mm.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/errno.h>
92 #include <linux/interrupt.h>
93 #include <linux/if_ether.h>
94 #include <linux/netdevice.h>
95 #include <linux/etherdevice.h>
96 #include <linux/ethtool.h>
97 #include <linux/notifier.h>
98 #include <linux/skbuff.h>
99 #include <linux/bpf.h>
100 #include <linux/bpf_trace.h>
101 #include <net/net_namespace.h>
102 #include <net/sock.h>
103 #include <net/busy_poll.h>
104 #include <linux/rtnetlink.h>
105 #include <linux/stat.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <linux/highmem.h>
113 #include <linux/init.h>
114 #include <linux/module.h>
115 #include <linux/netpoll.h>
116 #include <linux/rcupdate.h>
117 #include <linux/delay.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <net/mpls.h>
129 #include <linux/ipv6.h>
130 #include <linux/in.h>
131 #include <linux/jhash.h>
132 #include <linux/random.h>
133 #include <trace/events/napi.h>
134 #include <trace/events/net.h>
135 #include <trace/events/skb.h>
136 #include <linux/pci.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_ingress.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149
150 #include "net-sysfs.h"
151
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;       /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166                                          struct net_device *dev,
167                                          struct netdev_notifier_info *info);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198 static DECLARE_RWSEM(devnet_rename_sem);
199
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202         while (++net->dev_base_seq == 0)
203                 ;
204 }
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
234 {
235         struct net *net = dev_net(dev);
236
237         ASSERT_RTNL();
238
239         write_lock_bh(&dev_base_lock);
240         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242         hlist_add_head_rcu(&dev->index_hlist,
243                            dev_index_hash(net, dev->ifindex));
244         write_unlock_bh(&dev_base_lock);
245
246         dev_base_seq_inc(net);
247 }
248
249 /* Device list removal
250  * caller must respect a RCU grace period before freeing/reusing dev
251  */
252 static void unlist_netdevice(struct net_device *dev)
253 {
254         ASSERT_RTNL();
255
256         /* Unlink dev from the device chain */
257         write_lock_bh(&dev_base_lock);
258         list_del_rcu(&dev->dev_list);
259         hlist_del_rcu(&dev->name_hlist);
260         hlist_del_rcu(&dev->index_hlist);
261         write_unlock_bh(&dev_base_lock);
262
263         dev_base_seq_inc(dev_net(dev));
264 }
265
266 /*
267  *      Our notifier list
268  */
269
270 static RAW_NOTIFIER_HEAD(netdev_chain);
271
272 /*
273  *      Device drivers call our routines to queue packets here. We empty the
274  *      queue in the local softnet handler.
275  */
276
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
279
280 #ifdef CONFIG_LOCKDEP
281 /*
282  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
283  * according to dev->type
284  */
285 static const unsigned short netdev_lock_type[] = {
286          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
287          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
288          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
289          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
290          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
291          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
292          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
293          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
294          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
295          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
296          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
297          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
298          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
299          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
300          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
301
302 static const char *const netdev_lock_name[] = {
303         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
304         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
305         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
306         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
307         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
308         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
309         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
310         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
311         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
312         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
313         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
314         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
315         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
316         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
317         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
318
319 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
321
322 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
323 {
324         int i;
325
326         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
327                 if (netdev_lock_type[i] == dev_type)
328                         return i;
329         /* the last key is used by default */
330         return ARRAY_SIZE(netdev_lock_type) - 1;
331 }
332
333 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
334                                                  unsigned short dev_type)
335 {
336         int i;
337
338         i = netdev_lock_pos(dev_type);
339         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
340                                    netdev_lock_name[i]);
341 }
342
343 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
344 {
345         int i;
346
347         i = netdev_lock_pos(dev->type);
348         lockdep_set_class_and_name(&dev->addr_list_lock,
349                                    &netdev_addr_lock_key[i],
350                                    netdev_lock_name[i]);
351 }
352 #else
353 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
354                                                  unsigned short dev_type)
355 {
356 }
357 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
358 {
359 }
360 #endif
361
362 /*******************************************************************************
363  *
364  *              Protocol management and registration routines
365  *
366  *******************************************************************************/
367
368
369 /*
370  *      Add a protocol ID to the list. Now that the input handler is
371  *      smarter we can dispense with all the messy stuff that used to be
372  *      here.
373  *
374  *      BEWARE!!! Protocol handlers, mangling input packets,
375  *      MUST BE last in hash buckets and checking protocol handlers
376  *      MUST start from promiscuous ptype_all chain in net_bh.
377  *      It is true now, do not change it.
378  *      Explanation follows: if protocol handler, mangling packet, will
379  *      be the first on list, it is not able to sense, that packet
380  *      is cloned and should be copied-on-write, so that it will
381  *      change it and subsequent readers will get broken packet.
382  *                                                      --ANK (980803)
383  */
384
385 static inline struct list_head *ptype_head(const struct packet_type *pt)
386 {
387         if (pt->type == htons(ETH_P_ALL))
388                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
389         else
390                 return pt->dev ? &pt->dev->ptype_specific :
391                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
392 }
393
394 /**
395  *      dev_add_pack - add packet handler
396  *      @pt: packet type declaration
397  *
398  *      Add a protocol handler to the networking stack. The passed &packet_type
399  *      is linked into kernel lists and may not be freed until it has been
400  *      removed from the kernel lists.
401  *
402  *      This call does not sleep therefore it can not
403  *      guarantee all CPU's that are in middle of receiving packets
404  *      will see the new packet type (until the next received packet).
405  */
406
407 void dev_add_pack(struct packet_type *pt)
408 {
409         struct list_head *head = ptype_head(pt);
410
411         spin_lock(&ptype_lock);
412         list_add_rcu(&pt->list, head);
413         spin_unlock(&ptype_lock);
414 }
415 EXPORT_SYMBOL(dev_add_pack);
416
417 /**
418  *      __dev_remove_pack        - remove packet handler
419  *      @pt: packet type declaration
420  *
421  *      Remove a protocol handler that was previously added to the kernel
422  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
423  *      from the kernel lists and can be freed or reused once this function
424  *      returns.
425  *
426  *      The packet type might still be in use by receivers
427  *      and must not be freed until after all the CPU's have gone
428  *      through a quiescent state.
429  */
430 void __dev_remove_pack(struct packet_type *pt)
431 {
432         struct list_head *head = ptype_head(pt);
433         struct packet_type *pt1;
434
435         spin_lock(&ptype_lock);
436
437         list_for_each_entry(pt1, head, list) {
438                 if (pt == pt1) {
439                         list_del_rcu(&pt->list);
440                         goto out;
441                 }
442         }
443
444         pr_warn("dev_remove_pack: %p not found\n", pt);
445 out:
446         spin_unlock(&ptype_lock);
447 }
448 EXPORT_SYMBOL(__dev_remove_pack);
449
450 /**
451  *      dev_remove_pack  - remove packet handler
452  *      @pt: packet type declaration
453  *
454  *      Remove a protocol handler that was previously added to the kernel
455  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
456  *      from the kernel lists and can be freed or reused once this function
457  *      returns.
458  *
459  *      This call sleeps to guarantee that no CPU is looking at the packet
460  *      type after return.
461  */
462 void dev_remove_pack(struct packet_type *pt)
463 {
464         __dev_remove_pack(pt);
465
466         synchronize_net();
467 }
468 EXPORT_SYMBOL(dev_remove_pack);
469
470
471 /**
472  *      dev_add_offload - register offload handlers
473  *      @po: protocol offload declaration
474  *
475  *      Add protocol offload handlers to the networking stack. The passed
476  *      &proto_offload is linked into kernel lists and may not be freed until
477  *      it has been removed from the kernel lists.
478  *
479  *      This call does not sleep therefore it can not
480  *      guarantee all CPU's that are in middle of receiving packets
481  *      will see the new offload handlers (until the next received packet).
482  */
483 void dev_add_offload(struct packet_offload *po)
484 {
485         struct packet_offload *elem;
486
487         spin_lock(&offload_lock);
488         list_for_each_entry(elem, &offload_base, list) {
489                 if (po->priority < elem->priority)
490                         break;
491         }
492         list_add_rcu(&po->list, elem->list.prev);
493         spin_unlock(&offload_lock);
494 }
495 EXPORT_SYMBOL(dev_add_offload);
496
497 /**
498  *      __dev_remove_offload     - remove offload handler
499  *      @po: packet offload declaration
500  *
501  *      Remove a protocol offload handler that was previously added to the
502  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
503  *      is removed from the kernel lists and can be freed or reused once this
504  *      function returns.
505  *
506  *      The packet type might still be in use by receivers
507  *      and must not be freed until after all the CPU's have gone
508  *      through a quiescent state.
509  */
510 static void __dev_remove_offload(struct packet_offload *po)
511 {
512         struct list_head *head = &offload_base;
513         struct packet_offload *po1;
514
515         spin_lock(&offload_lock);
516
517         list_for_each_entry(po1, head, list) {
518                 if (po == po1) {
519                         list_del_rcu(&po->list);
520                         goto out;
521                 }
522         }
523
524         pr_warn("dev_remove_offload: %p not found\n", po);
525 out:
526         spin_unlock(&offload_lock);
527 }
528
529 /**
530  *      dev_remove_offload       - remove packet offload handler
531  *      @po: packet offload declaration
532  *
533  *      Remove a packet offload handler that was previously added to the kernel
534  *      offload handlers by dev_add_offload(). The passed &offload_type is
535  *      removed from the kernel lists and can be freed or reused once this
536  *      function returns.
537  *
538  *      This call sleeps to guarantee that no CPU is looking at the packet
539  *      type after return.
540  */
541 void dev_remove_offload(struct packet_offload *po)
542 {
543         __dev_remove_offload(po);
544
545         synchronize_net();
546 }
547 EXPORT_SYMBOL(dev_remove_offload);
548
549 /******************************************************************************
550  *
551  *                    Device Boot-time Settings Routines
552  *
553  ******************************************************************************/
554
555 /* Boot time configuration table */
556 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
557
558 /**
559  *      netdev_boot_setup_add   - add new setup entry
560  *      @name: name of the device
561  *      @map: configured settings for the device
562  *
563  *      Adds new setup entry to the dev_boot_setup list.  The function
564  *      returns 0 on error and 1 on success.  This is a generic routine to
565  *      all netdevices.
566  */
567 static int netdev_boot_setup_add(char *name, struct ifmap *map)
568 {
569         struct netdev_boot_setup *s;
570         int i;
571
572         s = dev_boot_setup;
573         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
574                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
575                         memset(s[i].name, 0, sizeof(s[i].name));
576                         strlcpy(s[i].name, name, IFNAMSIZ);
577                         memcpy(&s[i].map, map, sizeof(s[i].map));
578                         break;
579                 }
580         }
581
582         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
583 }
584
585 /**
586  * netdev_boot_setup_check      - check boot time settings
587  * @dev: the netdevice
588  *
589  * Check boot time settings for the device.
590  * The found settings are set for the device to be used
591  * later in the device probing.
592  * Returns 0 if no settings found, 1 if they are.
593  */
594 int netdev_boot_setup_check(struct net_device *dev)
595 {
596         struct netdev_boot_setup *s = dev_boot_setup;
597         int i;
598
599         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
600                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
601                     !strcmp(dev->name, s[i].name)) {
602                         dev->irq = s[i].map.irq;
603                         dev->base_addr = s[i].map.base_addr;
604                         dev->mem_start = s[i].map.mem_start;
605                         dev->mem_end = s[i].map.mem_end;
606                         return 1;
607                 }
608         }
609         return 0;
610 }
611 EXPORT_SYMBOL(netdev_boot_setup_check);
612
613
614 /**
615  * netdev_boot_base     - get address from boot time settings
616  * @prefix: prefix for network device
617  * @unit: id for network device
618  *
619  * Check boot time settings for the base address of device.
620  * The found settings are set for the device to be used
621  * later in the device probing.
622  * Returns 0 if no settings found.
623  */
624 unsigned long netdev_boot_base(const char *prefix, int unit)
625 {
626         const struct netdev_boot_setup *s = dev_boot_setup;
627         char name[IFNAMSIZ];
628         int i;
629
630         sprintf(name, "%s%d", prefix, unit);
631
632         /*
633          * If device already registered then return base of 1
634          * to indicate not to probe for this interface
635          */
636         if (__dev_get_by_name(&init_net, name))
637                 return 1;
638
639         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
640                 if (!strcmp(name, s[i].name))
641                         return s[i].map.base_addr;
642         return 0;
643 }
644
645 /*
646  * Saves at boot time configured settings for any netdevice.
647  */
648 int __init netdev_boot_setup(char *str)
649 {
650         int ints[5];
651         struct ifmap map;
652
653         str = get_options(str, ARRAY_SIZE(ints), ints);
654         if (!str || !*str)
655                 return 0;
656
657         /* Save settings */
658         memset(&map, 0, sizeof(map));
659         if (ints[0] > 0)
660                 map.irq = ints[1];
661         if (ints[0] > 1)
662                 map.base_addr = ints[2];
663         if (ints[0] > 2)
664                 map.mem_start = ints[3];
665         if (ints[0] > 3)
666                 map.mem_end = ints[4];
667
668         /* Add new entry to the list */
669         return netdev_boot_setup_add(str, &map);
670 }
671
672 __setup("netdev=", netdev_boot_setup);
673
674 /*******************************************************************************
675  *
676  *                          Device Interface Subroutines
677  *
678  *******************************************************************************/
679
680 /**
681  *      dev_get_iflink  - get 'iflink' value of a interface
682  *      @dev: targeted interface
683  *
684  *      Indicates the ifindex the interface is linked to.
685  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
686  */
687
688 int dev_get_iflink(const struct net_device *dev)
689 {
690         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
691                 return dev->netdev_ops->ndo_get_iflink(dev);
692
693         return dev->ifindex;
694 }
695 EXPORT_SYMBOL(dev_get_iflink);
696
697 /**
698  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
699  *      @dev: targeted interface
700  *      @skb: The packet.
701  *
702  *      For better visibility of tunnel traffic OVS needs to retrieve
703  *      egress tunnel information for a packet. Following API allows
704  *      user to get this info.
705  */
706 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
707 {
708         struct ip_tunnel_info *info;
709
710         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
711                 return -EINVAL;
712
713         info = skb_tunnel_info_unclone(skb);
714         if (!info)
715                 return -ENOMEM;
716         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
717                 return -EINVAL;
718
719         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
720 }
721 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
722
723 /**
724  *      __dev_get_by_name       - find a device by its name
725  *      @net: the applicable net namespace
726  *      @name: name to find
727  *
728  *      Find an interface by name. Must be called under RTNL semaphore
729  *      or @dev_base_lock. If the name is found a pointer to the device
730  *      is returned. If the name is not found then %NULL is returned. The
731  *      reference counters are not incremented so the caller must be
732  *      careful with locks.
733  */
734
735 struct net_device *__dev_get_by_name(struct net *net, const char *name)
736 {
737         struct net_device *dev;
738         struct hlist_head *head = dev_name_hash(net, name);
739
740         hlist_for_each_entry(dev, head, name_hlist)
741                 if (!strncmp(dev->name, name, IFNAMSIZ))
742                         return dev;
743
744         return NULL;
745 }
746 EXPORT_SYMBOL(__dev_get_by_name);
747
748 /**
749  * dev_get_by_name_rcu  - find a device by its name
750  * @net: the applicable net namespace
751  * @name: name to find
752  *
753  * Find an interface by name.
754  * If the name is found a pointer to the device is returned.
755  * If the name is not found then %NULL is returned.
756  * The reference counters are not incremented so the caller must be
757  * careful with locks. The caller must hold RCU lock.
758  */
759
760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 {
762         struct net_device *dev;
763         struct hlist_head *head = dev_name_hash(net, name);
764
765         hlist_for_each_entry_rcu(dev, head, name_hlist)
766                 if (!strncmp(dev->name, name, IFNAMSIZ))
767                         return dev;
768
769         return NULL;
770 }
771 EXPORT_SYMBOL(dev_get_by_name_rcu);
772
773 /**
774  *      dev_get_by_name         - find a device by its name
775  *      @net: the applicable net namespace
776  *      @name: name to find
777  *
778  *      Find an interface by name. This can be called from any
779  *      context and does its own locking. The returned handle has
780  *      the usage count incremented and the caller must use dev_put() to
781  *      release it when it is no longer needed. %NULL is returned if no
782  *      matching device is found.
783  */
784
785 struct net_device *dev_get_by_name(struct net *net, const char *name)
786 {
787         struct net_device *dev;
788
789         rcu_read_lock();
790         dev = dev_get_by_name_rcu(net, name);
791         if (dev)
792                 dev_hold(dev);
793         rcu_read_unlock();
794         return dev;
795 }
796 EXPORT_SYMBOL(dev_get_by_name);
797
798 /**
799  *      __dev_get_by_index - find a device by its ifindex
800  *      @net: the applicable net namespace
801  *      @ifindex: index of device
802  *
803  *      Search for an interface by index. Returns %NULL if the device
804  *      is not found or a pointer to the device. The device has not
805  *      had its reference counter increased so the caller must be careful
806  *      about locking. The caller must hold either the RTNL semaphore
807  *      or @dev_base_lock.
808  */
809
810 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
811 {
812         struct net_device *dev;
813         struct hlist_head *head = dev_index_hash(net, ifindex);
814
815         hlist_for_each_entry(dev, head, index_hlist)
816                 if (dev->ifindex == ifindex)
817                         return dev;
818
819         return NULL;
820 }
821 EXPORT_SYMBOL(__dev_get_by_index);
822
823 /**
824  *      dev_get_by_index_rcu - find a device by its ifindex
825  *      @net: the applicable net namespace
826  *      @ifindex: index of device
827  *
828  *      Search for an interface by index. Returns %NULL if the device
829  *      is not found or a pointer to the device. The device has not
830  *      had its reference counter increased so the caller must be careful
831  *      about locking. The caller must hold RCU lock.
832  */
833
834 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
835 {
836         struct net_device *dev;
837         struct hlist_head *head = dev_index_hash(net, ifindex);
838
839         hlist_for_each_entry_rcu(dev, head, index_hlist)
840                 if (dev->ifindex == ifindex)
841                         return dev;
842
843         return NULL;
844 }
845 EXPORT_SYMBOL(dev_get_by_index_rcu);
846
847
848 /**
849  *      dev_get_by_index - find a device by its ifindex
850  *      @net: the applicable net namespace
851  *      @ifindex: index of device
852  *
853  *      Search for an interface by index. Returns NULL if the device
854  *      is not found or a pointer to the device. The device returned has
855  *      had a reference added and the pointer is safe until the user calls
856  *      dev_put to indicate they have finished with it.
857  */
858
859 struct net_device *dev_get_by_index(struct net *net, int ifindex)
860 {
861         struct net_device *dev;
862
863         rcu_read_lock();
864         dev = dev_get_by_index_rcu(net, ifindex);
865         if (dev)
866                 dev_hold(dev);
867         rcu_read_unlock();
868         return dev;
869 }
870 EXPORT_SYMBOL(dev_get_by_index);
871
872 /**
873  *      dev_get_by_napi_id - find a device by napi_id
874  *      @napi_id: ID of the NAPI struct
875  *
876  *      Search for an interface by NAPI ID. Returns %NULL if the device
877  *      is not found or a pointer to the device. The device has not had
878  *      its reference counter increased so the caller must be careful
879  *      about locking. The caller must hold RCU lock.
880  */
881
882 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
883 {
884         struct napi_struct *napi;
885
886         WARN_ON_ONCE(!rcu_read_lock_held());
887
888         if (napi_id < MIN_NAPI_ID)
889                 return NULL;
890
891         napi = napi_by_id(napi_id);
892
893         return napi ? napi->dev : NULL;
894 }
895 EXPORT_SYMBOL(dev_get_by_napi_id);
896
897 /**
898  *      netdev_get_name - get a netdevice name, knowing its ifindex.
899  *      @net: network namespace
900  *      @name: a pointer to the buffer where the name will be stored.
901  *      @ifindex: the ifindex of the interface to get the name from.
902  */
903 int netdev_get_name(struct net *net, char *name, int ifindex)
904 {
905         struct net_device *dev;
906         int ret;
907
908         down_read(&devnet_rename_sem);
909         rcu_read_lock();
910
911         dev = dev_get_by_index_rcu(net, ifindex);
912         if (!dev) {
913                 ret = -ENODEV;
914                 goto out;
915         }
916
917         strcpy(name, dev->name);
918
919         ret = 0;
920 out:
921         rcu_read_unlock();
922         up_read(&devnet_rename_sem);
923         return ret;
924 }
925
926 /**
927  *      dev_getbyhwaddr_rcu - find a device by its hardware address
928  *      @net: the applicable net namespace
929  *      @type: media type of device
930  *      @ha: hardware address
931  *
932  *      Search for an interface by MAC address. Returns NULL if the device
933  *      is not found or a pointer to the device.
934  *      The caller must hold RCU or RTNL.
935  *      The returned device has not had its ref count increased
936  *      and the caller must therefore be careful about locking
937  *
938  */
939
940 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
941                                        const char *ha)
942 {
943         struct net_device *dev;
944
945         for_each_netdev_rcu(net, dev)
946                 if (dev->type == type &&
947                     !memcmp(dev->dev_addr, ha, dev->addr_len))
948                         return dev;
949
950         return NULL;
951 }
952 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
953
954 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
955 {
956         struct net_device *dev;
957
958         ASSERT_RTNL();
959         for_each_netdev(net, dev)
960                 if (dev->type == type)
961                         return dev;
962
963         return NULL;
964 }
965 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
966
967 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
968 {
969         struct net_device *dev, *ret = NULL;
970
971         rcu_read_lock();
972         for_each_netdev_rcu(net, dev)
973                 if (dev->type == type) {
974                         dev_hold(dev);
975                         ret = dev;
976                         break;
977                 }
978         rcu_read_unlock();
979         return ret;
980 }
981 EXPORT_SYMBOL(dev_getfirstbyhwtype);
982
983 /**
984  *      __dev_get_by_flags - find any device with given flags
985  *      @net: the applicable net namespace
986  *      @if_flags: IFF_* values
987  *      @mask: bitmask of bits in if_flags to check
988  *
989  *      Search for any interface with the given flags. Returns NULL if a device
990  *      is not found or a pointer to the device. Must be called inside
991  *      rtnl_lock(), and result refcount is unchanged.
992  */
993
994 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
995                                       unsigned short mask)
996 {
997         struct net_device *dev, *ret;
998
999         ASSERT_RTNL();
1000
1001         ret = NULL;
1002         for_each_netdev(net, dev) {
1003                 if (((dev->flags ^ if_flags) & mask) == 0) {
1004                         ret = dev;
1005                         break;
1006                 }
1007         }
1008         return ret;
1009 }
1010 EXPORT_SYMBOL(__dev_get_by_flags);
1011
1012 /**
1013  *      dev_valid_name - check if name is okay for network device
1014  *      @name: name string
1015  *
1016  *      Network device names need to be valid file names to
1017  *      to allow sysfs to work.  We also disallow any kind of
1018  *      whitespace.
1019  */
1020 bool dev_valid_name(const char *name)
1021 {
1022         if (*name == '\0')
1023                 return false;
1024         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1025                 return false;
1026         if (!strcmp(name, ".") || !strcmp(name, ".."))
1027                 return false;
1028
1029         while (*name) {
1030                 if (*name == '/' || *name == ':' || isspace(*name))
1031                         return false;
1032                 name++;
1033         }
1034         return true;
1035 }
1036 EXPORT_SYMBOL(dev_valid_name);
1037
1038 /**
1039  *      __dev_alloc_name - allocate a name for a device
1040  *      @net: network namespace to allocate the device name in
1041  *      @name: name format string
1042  *      @buf:  scratch buffer and result name string
1043  *
1044  *      Passed a format string - eg "lt%d" it will try and find a suitable
1045  *      id. It scans list of devices to build up a free map, then chooses
1046  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1047  *      while allocating the name and adding the device in order to avoid
1048  *      duplicates.
1049  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1050  *      Returns the number of the unit assigned or a negative errno code.
1051  */
1052
1053 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1054 {
1055         int i = 0;
1056         const char *p;
1057         const int max_netdevices = 8*PAGE_SIZE;
1058         unsigned long *inuse;
1059         struct net_device *d;
1060
1061         p = strnchr(name, IFNAMSIZ-1, '%');
1062         if (p) {
1063                 /*
1064                  * Verify the string as this thing may have come from
1065                  * the user.  There must be either one "%d" and no other "%"
1066                  * characters.
1067                  */
1068                 if (p[1] != 'd' || strchr(p + 2, '%'))
1069                         return -EINVAL;
1070
1071                 /* Use one page as a bit array of possible slots */
1072                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1073                 if (!inuse)
1074                         return -ENOMEM;
1075
1076                 for_each_netdev(net, d) {
1077                         if (!sscanf(d->name, name, &i))
1078                                 continue;
1079                         if (i < 0 || i >= max_netdevices)
1080                                 continue;
1081
1082                         /*  avoid cases where sscanf is not exact inverse of printf */
1083                         snprintf(buf, IFNAMSIZ, name, i);
1084                         if (!strncmp(buf, d->name, IFNAMSIZ))
1085                                 set_bit(i, inuse);
1086                 }
1087
1088                 i = find_first_zero_bit(inuse, max_netdevices);
1089                 free_page((unsigned long) inuse);
1090         }
1091
1092         if (buf != name)
1093                 snprintf(buf, IFNAMSIZ, name, i);
1094         if (!__dev_get_by_name(net, buf))
1095                 return i;
1096
1097         /* It is possible to run out of possible slots
1098          * when the name is long and there isn't enough space left
1099          * for the digits, or if all bits are used.
1100          */
1101         return -ENFILE;
1102 }
1103
1104 /**
1105  *      dev_alloc_name - allocate a name for a device
1106  *      @dev: device
1107  *      @name: name format string
1108  *
1109  *      Passed a format string - eg "lt%d" it will try and find a suitable
1110  *      id. It scans list of devices to build up a free map, then chooses
1111  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1112  *      while allocating the name and adding the device in order to avoid
1113  *      duplicates.
1114  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1115  *      Returns the number of the unit assigned or a negative errno code.
1116  */
1117
1118 int dev_alloc_name(struct net_device *dev, const char *name)
1119 {
1120         char buf[IFNAMSIZ];
1121         struct net *net;
1122         int ret;
1123
1124         BUG_ON(!dev_net(dev));
1125         net = dev_net(dev);
1126         ret = __dev_alloc_name(net, name, buf);
1127         if (ret >= 0)
1128                 strlcpy(dev->name, buf, IFNAMSIZ);
1129         return ret;
1130 }
1131 EXPORT_SYMBOL(dev_alloc_name);
1132
1133 static int dev_alloc_name_ns(struct net *net,
1134                              struct net_device *dev,
1135                              const char *name)
1136 {
1137         char buf[IFNAMSIZ];
1138         int ret;
1139
1140         ret = __dev_alloc_name(net, name, buf);
1141         if (ret >= 0)
1142                 strlcpy(dev->name, buf, IFNAMSIZ);
1143         return ret;
1144 }
1145
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147                        const char *name)
1148 {
1149         BUG_ON(!net);
1150
1151         if (!dev_valid_name(name))
1152                 return -EINVAL;
1153
1154         if (strchr(name, '%'))
1155                 return dev_alloc_name_ns(net, dev, name);
1156         else if (__dev_get_by_name(net, name))
1157                 return -EEXIST;
1158         else if (dev->name != name)
1159                 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161         return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164
1165 /**
1166  *      dev_change_name - change name of a device
1167  *      @dev: device
1168  *      @newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *      Change name of a device, can pass format strings "eth%d".
1171  *      for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175         unsigned char old_assign_type;
1176         char oldname[IFNAMSIZ];
1177         int err = 0;
1178         int ret;
1179         struct net *net;
1180
1181         ASSERT_RTNL();
1182         BUG_ON(!dev_net(dev));
1183
1184         net = dev_net(dev);
1185         if (dev->flags & IFF_UP)
1186                 return -EBUSY;
1187
1188         down_write(&devnet_rename_sem);
1189
1190         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191                 up_write(&devnet_rename_sem);
1192                 return 0;
1193         }
1194
1195         memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197         err = dev_get_valid_name(net, dev, newname);
1198         if (err < 0) {
1199                 up_write(&devnet_rename_sem);
1200                 return err;
1201         }
1202
1203         if (oldname[0] && !strchr(oldname, '%'))
1204                 netdev_info(dev, "renamed from %s\n", oldname);
1205
1206         old_assign_type = dev->name_assign_type;
1207         dev->name_assign_type = NET_NAME_RENAMED;
1208
1209 rollback:
1210         ret = device_rename(&dev->dev, dev->name);
1211         if (ret) {
1212                 memcpy(dev->name, oldname, IFNAMSIZ);
1213                 dev->name_assign_type = old_assign_type;
1214                 up_write(&devnet_rename_sem);
1215                 return ret;
1216         }
1217
1218         up_write(&devnet_rename_sem);
1219
1220         netdev_adjacent_rename_links(dev, oldname);
1221
1222         write_lock_bh(&dev_base_lock);
1223         hlist_del_rcu(&dev->name_hlist);
1224         write_unlock_bh(&dev_base_lock);
1225
1226         synchronize_rcu();
1227
1228         write_lock_bh(&dev_base_lock);
1229         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230         write_unlock_bh(&dev_base_lock);
1231
1232         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233         ret = notifier_to_errno(ret);
1234
1235         if (ret) {
1236                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237                 if (err >= 0) {
1238                         err = ret;
1239                         down_write(&devnet_rename_sem);
1240                         memcpy(dev->name, oldname, IFNAMSIZ);
1241                         memcpy(oldname, newname, IFNAMSIZ);
1242                         dev->name_assign_type = old_assign_type;
1243                         old_assign_type = NET_NAME_RENAMED;
1244                         goto rollback;
1245                 } else {
1246                         pr_err("%s: name change rollback failed: %d\n",
1247                                dev->name, ret);
1248                 }
1249         }
1250
1251         return err;
1252 }
1253
1254 /**
1255  *      dev_set_alias - change ifalias of a device
1256  *      @dev: device
1257  *      @alias: name up to IFALIASZ
1258  *      @len: limit of bytes to copy from info
1259  *
1260  *      Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264         char *new_ifalias;
1265
1266         ASSERT_RTNL();
1267
1268         if (len >= IFALIASZ)
1269                 return -EINVAL;
1270
1271         if (!len) {
1272                 kfree(dev->ifalias);
1273                 dev->ifalias = NULL;
1274                 return 0;
1275         }
1276
1277         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1278         if (!new_ifalias)
1279                 return -ENOMEM;
1280         dev->ifalias = new_ifalias;
1281         memcpy(dev->ifalias, alias, len);
1282         dev->ifalias[len] = 0;
1283
1284         return len;
1285 }
1286
1287
1288 /**
1289  *      netdev_features_change - device changes features
1290  *      @dev: device to cause notification
1291  *
1292  *      Called to indicate a device has changed features.
1293  */
1294 void netdev_features_change(struct net_device *dev)
1295 {
1296         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1297 }
1298 EXPORT_SYMBOL(netdev_features_change);
1299
1300 /**
1301  *      netdev_state_change - device changes state
1302  *      @dev: device to cause notification
1303  *
1304  *      Called to indicate a device has changed state. This function calls
1305  *      the notifier chains for netdev_chain and sends a NEWLINK message
1306  *      to the routing socket.
1307  */
1308 void netdev_state_change(struct net_device *dev)
1309 {
1310         if (dev->flags & IFF_UP) {
1311                 struct netdev_notifier_change_info change_info;
1312
1313                 change_info.flags_changed = 0;
1314                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1315                                               &change_info.info);
1316                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1317         }
1318 }
1319 EXPORT_SYMBOL(netdev_state_change);
1320
1321 /**
1322  * netdev_notify_peers - notify network peers about existence of @dev
1323  * @dev: network device
1324  *
1325  * Generate traffic such that interested network peers are aware of
1326  * @dev, such as by generating a gratuitous ARP. This may be used when
1327  * a device wants to inform the rest of the network about some sort of
1328  * reconfiguration such as a failover event or virtual machine
1329  * migration.
1330  */
1331 void netdev_notify_peers(struct net_device *dev)
1332 {
1333         rtnl_lock();
1334         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1335         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1336         rtnl_unlock();
1337 }
1338 EXPORT_SYMBOL(netdev_notify_peers);
1339
1340 static int __dev_open(struct net_device *dev)
1341 {
1342         const struct net_device_ops *ops = dev->netdev_ops;
1343         int ret;
1344
1345         ASSERT_RTNL();
1346
1347         if (!netif_device_present(dev))
1348                 return -ENODEV;
1349
1350         /* Block netpoll from trying to do any rx path servicing.
1351          * If we don't do this there is a chance ndo_poll_controller
1352          * or ndo_poll may be running while we open the device
1353          */
1354         netpoll_poll_disable(dev);
1355
1356         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1357         ret = notifier_to_errno(ret);
1358         if (ret)
1359                 return ret;
1360
1361         set_bit(__LINK_STATE_START, &dev->state);
1362
1363         if (ops->ndo_validate_addr)
1364                 ret = ops->ndo_validate_addr(dev);
1365
1366         if (!ret && ops->ndo_open)
1367                 ret = ops->ndo_open(dev);
1368
1369         netpoll_poll_enable(dev);
1370
1371         if (ret)
1372                 clear_bit(__LINK_STATE_START, &dev->state);
1373         else {
1374                 dev->flags |= IFF_UP;
1375                 dev_set_rx_mode(dev);
1376                 dev_activate(dev);
1377                 add_device_randomness(dev->dev_addr, dev->addr_len);
1378         }
1379
1380         return ret;
1381 }
1382
1383 /**
1384  *      dev_open        - prepare an interface for use.
1385  *      @dev:   device to open
1386  *
1387  *      Takes a device from down to up state. The device's private open
1388  *      function is invoked and then the multicast lists are loaded. Finally
1389  *      the device is moved into the up state and a %NETDEV_UP message is
1390  *      sent to the netdev notifier chain.
1391  *
1392  *      Calling this function on an active interface is a nop. On a failure
1393  *      a negative errno code is returned.
1394  */
1395 int dev_open(struct net_device *dev)
1396 {
1397         int ret;
1398
1399         if (dev->flags & IFF_UP)
1400                 return 0;
1401
1402         ret = __dev_open(dev);
1403         if (ret < 0)
1404                 return ret;
1405
1406         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1407         call_netdevice_notifiers(NETDEV_UP, dev);
1408
1409         return ret;
1410 }
1411 EXPORT_SYMBOL(dev_open);
1412
1413 static void __dev_close_many(struct list_head *head)
1414 {
1415         struct net_device *dev;
1416
1417         ASSERT_RTNL();
1418         might_sleep();
1419
1420         list_for_each_entry(dev, head, close_list) {
1421                 /* Temporarily disable netpoll until the interface is down */
1422                 netpoll_poll_disable(dev);
1423
1424                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1425
1426                 clear_bit(__LINK_STATE_START, &dev->state);
1427
1428                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1429                  * can be even on different cpu. So just clear netif_running().
1430                  *
1431                  * dev->stop() will invoke napi_disable() on all of it's
1432                  * napi_struct instances on this device.
1433                  */
1434                 smp_mb__after_atomic(); /* Commit netif_running(). */
1435         }
1436
1437         dev_deactivate_many(head);
1438
1439         list_for_each_entry(dev, head, close_list) {
1440                 const struct net_device_ops *ops = dev->netdev_ops;
1441
1442                 /*
1443                  *      Call the device specific close. This cannot fail.
1444                  *      Only if device is UP
1445                  *
1446                  *      We allow it to be called even after a DETACH hot-plug
1447                  *      event.
1448                  */
1449                 if (ops->ndo_stop)
1450                         ops->ndo_stop(dev);
1451
1452                 dev->flags &= ~IFF_UP;
1453                 netpoll_poll_enable(dev);
1454         }
1455 }
1456
1457 static void __dev_close(struct net_device *dev)
1458 {
1459         LIST_HEAD(single);
1460
1461         list_add(&dev->close_list, &single);
1462         __dev_close_many(&single);
1463         list_del(&single);
1464 }
1465
1466 void dev_close_many(struct list_head *head, bool unlink)
1467 {
1468         struct net_device *dev, *tmp;
1469
1470         /* Remove the devices that don't need to be closed */
1471         list_for_each_entry_safe(dev, tmp, head, close_list)
1472                 if (!(dev->flags & IFF_UP))
1473                         list_del_init(&dev->close_list);
1474
1475         __dev_close_many(head);
1476
1477         list_for_each_entry_safe(dev, tmp, head, close_list) {
1478                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1479                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1480                 if (unlink)
1481                         list_del_init(&dev->close_list);
1482         }
1483 }
1484 EXPORT_SYMBOL(dev_close_many);
1485
1486 /**
1487  *      dev_close - shutdown an interface.
1488  *      @dev: device to shutdown
1489  *
1490  *      This function moves an active device into down state. A
1491  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1492  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1493  *      chain.
1494  */
1495 void dev_close(struct net_device *dev)
1496 {
1497         if (dev->flags & IFF_UP) {
1498                 LIST_HEAD(single);
1499
1500                 list_add(&dev->close_list, &single);
1501                 dev_close_many(&single, true);
1502                 list_del(&single);
1503         }
1504 }
1505 EXPORT_SYMBOL(dev_close);
1506
1507
1508 /**
1509  *      dev_disable_lro - disable Large Receive Offload on a device
1510  *      @dev: device
1511  *
1512  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1513  *      called under RTNL.  This is needed if received packets may be
1514  *      forwarded to another interface.
1515  */
1516 void dev_disable_lro(struct net_device *dev)
1517 {
1518         struct net_device *lower_dev;
1519         struct list_head *iter;
1520
1521         dev->wanted_features &= ~NETIF_F_LRO;
1522         netdev_update_features(dev);
1523
1524         if (unlikely(dev->features & NETIF_F_LRO))
1525                 netdev_WARN(dev, "failed to disable LRO!\n");
1526
1527         netdev_for_each_lower_dev(dev, lower_dev, iter)
1528                 dev_disable_lro(lower_dev);
1529 }
1530 EXPORT_SYMBOL(dev_disable_lro);
1531
1532 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1533                                    struct net_device *dev)
1534 {
1535         struct netdev_notifier_info info;
1536
1537         netdev_notifier_info_init(&info, dev);
1538         return nb->notifier_call(nb, val, &info);
1539 }
1540
1541 static int dev_boot_phase = 1;
1542
1543 /**
1544  * register_netdevice_notifier - register a network notifier block
1545  * @nb: notifier
1546  *
1547  * Register a notifier to be called when network device events occur.
1548  * The notifier passed is linked into the kernel structures and must
1549  * not be reused until it has been unregistered. A negative errno code
1550  * is returned on a failure.
1551  *
1552  * When registered all registration and up events are replayed
1553  * to the new notifier to allow device to have a race free
1554  * view of the network device list.
1555  */
1556
1557 int register_netdevice_notifier(struct notifier_block *nb)
1558 {
1559         struct net_device *dev;
1560         struct net_device *last;
1561         struct net *net;
1562         int err;
1563
1564         rtnl_lock();
1565         err = raw_notifier_chain_register(&netdev_chain, nb);
1566         if (err)
1567                 goto unlock;
1568         if (dev_boot_phase)
1569                 goto unlock;
1570         for_each_net(net) {
1571                 for_each_netdev(net, dev) {
1572                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1573                         err = notifier_to_errno(err);
1574                         if (err)
1575                                 goto rollback;
1576
1577                         if (!(dev->flags & IFF_UP))
1578                                 continue;
1579
1580                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1581                 }
1582         }
1583
1584 unlock:
1585         rtnl_unlock();
1586         return err;
1587
1588 rollback:
1589         last = dev;
1590         for_each_net(net) {
1591                 for_each_netdev(net, dev) {
1592                         if (dev == last)
1593                                 goto outroll;
1594
1595                         if (dev->flags & IFF_UP) {
1596                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1597                                                         dev);
1598                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1599                         }
1600                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1601                 }
1602         }
1603
1604 outroll:
1605         raw_notifier_chain_unregister(&netdev_chain, nb);
1606         goto unlock;
1607 }
1608 EXPORT_SYMBOL(register_netdevice_notifier);
1609
1610 /**
1611  * unregister_netdevice_notifier - unregister a network notifier block
1612  * @nb: notifier
1613  *
1614  * Unregister a notifier previously registered by
1615  * register_netdevice_notifier(). The notifier is unlinked into the
1616  * kernel structures and may then be reused. A negative errno code
1617  * is returned on a failure.
1618  *
1619  * After unregistering unregister and down device events are synthesized
1620  * for all devices on the device list to the removed notifier to remove
1621  * the need for special case cleanup code.
1622  */
1623
1624 int unregister_netdevice_notifier(struct notifier_block *nb)
1625 {
1626         struct net_device *dev;
1627         struct net *net;
1628         int err;
1629
1630         rtnl_lock();
1631         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1632         if (err)
1633                 goto unlock;
1634
1635         for_each_net(net) {
1636                 for_each_netdev(net, dev) {
1637                         if (dev->flags & IFF_UP) {
1638                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1639                                                         dev);
1640                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1641                         }
1642                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1643                 }
1644         }
1645 unlock:
1646         rtnl_unlock();
1647         return err;
1648 }
1649 EXPORT_SYMBOL(unregister_netdevice_notifier);
1650
1651 /**
1652  *      call_netdevice_notifiers_info - call all network notifier blocks
1653  *      @val: value passed unmodified to notifier function
1654  *      @dev: net_device pointer passed unmodified to notifier function
1655  *      @info: notifier information data
1656  *
1657  *      Call all network notifier blocks.  Parameters and return value
1658  *      are as for raw_notifier_call_chain().
1659  */
1660
1661 static int call_netdevice_notifiers_info(unsigned long val,
1662                                          struct net_device *dev,
1663                                          struct netdev_notifier_info *info)
1664 {
1665         ASSERT_RTNL();
1666         netdev_notifier_info_init(info, dev);
1667         return raw_notifier_call_chain(&netdev_chain, val, info);
1668 }
1669
1670 /**
1671  *      call_netdevice_notifiers - call all network notifier blocks
1672  *      @val: value passed unmodified to notifier function
1673  *      @dev: net_device pointer passed unmodified to notifier function
1674  *
1675  *      Call all network notifier blocks.  Parameters and return value
1676  *      are as for raw_notifier_call_chain().
1677  */
1678
1679 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1680 {
1681         struct netdev_notifier_info info;
1682
1683         return call_netdevice_notifiers_info(val, dev, &info);
1684 }
1685 EXPORT_SYMBOL(call_netdevice_notifiers);
1686
1687 /**
1688  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1689  *      @val: value passed unmodified to notifier function
1690  *      @dev: net_device pointer passed unmodified to notifier function
1691  *      @arg: additional u32 argument passed to the notifier function
1692  *
1693  *      Call all network notifier blocks.  Parameters and return value
1694  *      are as for raw_notifier_call_chain().
1695  */
1696 static int call_netdevice_notifiers_mtu(unsigned long val,
1697                                         struct net_device *dev, u32 arg)
1698 {
1699         struct netdev_notifier_info_ext info = {
1700                 .info.dev = dev,
1701                 .ext.mtu = arg,
1702         };
1703
1704         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1705
1706         return call_netdevice_notifiers_info(val, dev, &info.info);
1707 }
1708
1709 #ifdef CONFIG_NET_INGRESS
1710 static struct static_key ingress_needed __read_mostly;
1711
1712 void net_inc_ingress_queue(void)
1713 {
1714         static_key_slow_inc(&ingress_needed);
1715 }
1716 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1717
1718 void net_dec_ingress_queue(void)
1719 {
1720         static_key_slow_dec(&ingress_needed);
1721 }
1722 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1723 #endif
1724
1725 #ifdef CONFIG_NET_EGRESS
1726 static struct static_key egress_needed __read_mostly;
1727
1728 void net_inc_egress_queue(void)
1729 {
1730         static_key_slow_inc(&egress_needed);
1731 }
1732 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1733
1734 void net_dec_egress_queue(void)
1735 {
1736         static_key_slow_dec(&egress_needed);
1737 }
1738 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1739 #endif
1740
1741 static struct static_key netstamp_needed __read_mostly;
1742 #ifdef HAVE_JUMP_LABEL
1743 static atomic_t netstamp_needed_deferred;
1744 static atomic_t netstamp_wanted;
1745 static void netstamp_clear(struct work_struct *work)
1746 {
1747         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1748         int wanted;
1749
1750         wanted = atomic_add_return(deferred, &netstamp_wanted);
1751         if (wanted > 0)
1752                 static_key_enable(&netstamp_needed);
1753         else
1754                 static_key_disable(&netstamp_needed);
1755 }
1756 static DECLARE_WORK(netstamp_work, netstamp_clear);
1757 #endif
1758
1759 void net_enable_timestamp(void)
1760 {
1761 #ifdef HAVE_JUMP_LABEL
1762         int wanted;
1763
1764         while (1) {
1765                 wanted = atomic_read(&netstamp_wanted);
1766                 if (wanted <= 0)
1767                         break;
1768                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1769                         return;
1770         }
1771         atomic_inc(&netstamp_needed_deferred);
1772         schedule_work(&netstamp_work);
1773 #else
1774         static_key_slow_inc(&netstamp_needed);
1775 #endif
1776 }
1777 EXPORT_SYMBOL(net_enable_timestamp);
1778
1779 void net_disable_timestamp(void)
1780 {
1781 #ifdef HAVE_JUMP_LABEL
1782         int wanted;
1783
1784         while (1) {
1785                 wanted = atomic_read(&netstamp_wanted);
1786                 if (wanted <= 1)
1787                         break;
1788                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1789                         return;
1790         }
1791         atomic_dec(&netstamp_needed_deferred);
1792         schedule_work(&netstamp_work);
1793 #else
1794         static_key_slow_dec(&netstamp_needed);
1795 #endif
1796 }
1797 EXPORT_SYMBOL(net_disable_timestamp);
1798
1799 static inline void net_timestamp_set(struct sk_buff *skb)
1800 {
1801         skb->tstamp = 0;
1802         if (static_key_false(&netstamp_needed))
1803                 __net_timestamp(skb);
1804 }
1805
1806 #define net_timestamp_check(COND, SKB)                  \
1807         if (static_key_false(&netstamp_needed)) {               \
1808                 if ((COND) && !(SKB)->tstamp)   \
1809                         __net_timestamp(SKB);           \
1810         }                                               \
1811
1812 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1813 {
1814         unsigned int len;
1815
1816         if (!(dev->flags & IFF_UP))
1817                 return false;
1818
1819         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1820         if (skb->len <= len)
1821                 return true;
1822
1823         /* if TSO is enabled, we don't care about the length as the packet
1824          * could be forwarded without being segmented before
1825          */
1826         if (skb_is_gso(skb))
1827                 return true;
1828
1829         return false;
1830 }
1831 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1832
1833 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1834 {
1835         int ret = ____dev_forward_skb(dev, skb);
1836
1837         if (likely(!ret)) {
1838                 skb->protocol = eth_type_trans(skb, dev);
1839                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1840         }
1841
1842         return ret;
1843 }
1844 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1845
1846 /**
1847  * dev_forward_skb - loopback an skb to another netif
1848  *
1849  * @dev: destination network device
1850  * @skb: buffer to forward
1851  *
1852  * return values:
1853  *      NET_RX_SUCCESS  (no congestion)
1854  *      NET_RX_DROP     (packet was dropped, but freed)
1855  *
1856  * dev_forward_skb can be used for injecting an skb from the
1857  * start_xmit function of one device into the receive queue
1858  * of another device.
1859  *
1860  * The receiving device may be in another namespace, so
1861  * we have to clear all information in the skb that could
1862  * impact namespace isolation.
1863  */
1864 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1865 {
1866         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1867 }
1868 EXPORT_SYMBOL_GPL(dev_forward_skb);
1869
1870 static inline int deliver_skb(struct sk_buff *skb,
1871                               struct packet_type *pt_prev,
1872                               struct net_device *orig_dev)
1873 {
1874         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1875                 return -ENOMEM;
1876         refcount_inc(&skb->users);
1877         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1878 }
1879
1880 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1881                                           struct packet_type **pt,
1882                                           struct net_device *orig_dev,
1883                                           __be16 type,
1884                                           struct list_head *ptype_list)
1885 {
1886         struct packet_type *ptype, *pt_prev = *pt;
1887
1888         list_for_each_entry_rcu(ptype, ptype_list, list) {
1889                 if (ptype->type != type)
1890                         continue;
1891                 if (pt_prev)
1892                         deliver_skb(skb, pt_prev, orig_dev);
1893                 pt_prev = ptype;
1894         }
1895         *pt = pt_prev;
1896 }
1897
1898 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1899 {
1900         if (!ptype->af_packet_priv || !skb->sk)
1901                 return false;
1902
1903         if (ptype->id_match)
1904                 return ptype->id_match(ptype, skb->sk);
1905         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1906                 return true;
1907
1908         return false;
1909 }
1910
1911 /*
1912  *      Support routine. Sends outgoing frames to any network
1913  *      taps currently in use.
1914  */
1915
1916 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1917 {
1918         struct packet_type *ptype;
1919         struct sk_buff *skb2 = NULL;
1920         struct packet_type *pt_prev = NULL;
1921         struct list_head *ptype_list = &ptype_all;
1922
1923         rcu_read_lock();
1924 again:
1925         list_for_each_entry_rcu(ptype, ptype_list, list) {
1926                 /* Never send packets back to the socket
1927                  * they originated from - MvS (miquels@drinkel.ow.org)
1928                  */
1929                 if (skb_loop_sk(ptype, skb))
1930                         continue;
1931
1932                 if (pt_prev) {
1933                         deliver_skb(skb2, pt_prev, skb->dev);
1934                         pt_prev = ptype;
1935                         continue;
1936                 }
1937
1938                 /* need to clone skb, done only once */
1939                 skb2 = skb_clone(skb, GFP_ATOMIC);
1940                 if (!skb2)
1941                         goto out_unlock;
1942
1943                 net_timestamp_set(skb2);
1944
1945                 /* skb->nh should be correctly
1946                  * set by sender, so that the second statement is
1947                  * just protection against buggy protocols.
1948                  */
1949                 skb_reset_mac_header(skb2);
1950
1951                 if (skb_network_header(skb2) < skb2->data ||
1952                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1953                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1954                                              ntohs(skb2->protocol),
1955                                              dev->name);
1956                         skb_reset_network_header(skb2);
1957                 }
1958
1959                 skb2->transport_header = skb2->network_header;
1960                 skb2->pkt_type = PACKET_OUTGOING;
1961                 pt_prev = ptype;
1962         }
1963
1964         if (ptype_list == &ptype_all) {
1965                 ptype_list = &dev->ptype_all;
1966                 goto again;
1967         }
1968 out_unlock:
1969         if (pt_prev) {
1970                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1971                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1972                 else
1973                         kfree_skb(skb2);
1974         }
1975         rcu_read_unlock();
1976 }
1977 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1978
1979 /**
1980  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1981  * @dev: Network device
1982  * @txq: number of queues available
1983  *
1984  * If real_num_tx_queues is changed the tc mappings may no longer be
1985  * valid. To resolve this verify the tc mapping remains valid and if
1986  * not NULL the mapping. With no priorities mapping to this
1987  * offset/count pair it will no longer be used. In the worst case TC0
1988  * is invalid nothing can be done so disable priority mappings. If is
1989  * expected that drivers will fix this mapping if they can before
1990  * calling netif_set_real_num_tx_queues.
1991  */
1992 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1993 {
1994         int i;
1995         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1996
1997         /* If TC0 is invalidated disable TC mapping */
1998         if (tc->offset + tc->count > txq) {
1999                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2000                 dev->num_tc = 0;
2001                 return;
2002         }
2003
2004         /* Invalidated prio to tc mappings set to TC0 */
2005         for (i = 1; i < TC_BITMASK + 1; i++) {
2006                 int q = netdev_get_prio_tc_map(dev, i);
2007
2008                 tc = &dev->tc_to_txq[q];
2009                 if (tc->offset + tc->count > txq) {
2010                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2011                                 i, q);
2012                         netdev_set_prio_tc_map(dev, i, 0);
2013                 }
2014         }
2015 }
2016
2017 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2018 {
2019         if (dev->num_tc) {
2020                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2021                 int i;
2022
2023                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2024                         if ((txq - tc->offset) < tc->count)
2025                                 return i;
2026                 }
2027
2028                 return -1;
2029         }
2030
2031         return 0;
2032 }
2033
2034 #ifdef CONFIG_XPS
2035 static DEFINE_MUTEX(xps_map_mutex);
2036 #define xmap_dereference(P)             \
2037         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2038
2039 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2040                              int tci, u16 index)
2041 {
2042         struct xps_map *map = NULL;
2043         int pos;
2044
2045         if (dev_maps)
2046                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2047         if (!map)
2048                 return false;
2049
2050         for (pos = map->len; pos--;) {
2051                 if (map->queues[pos] != index)
2052                         continue;
2053
2054                 if (map->len > 1) {
2055                         map->queues[pos] = map->queues[--map->len];
2056                         break;
2057                 }
2058
2059                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2060                 kfree_rcu(map, rcu);
2061                 return false;
2062         }
2063
2064         return true;
2065 }
2066
2067 static bool remove_xps_queue_cpu(struct net_device *dev,
2068                                  struct xps_dev_maps *dev_maps,
2069                                  int cpu, u16 offset, u16 count)
2070 {
2071         int num_tc = dev->num_tc ? : 1;
2072         bool active = false;
2073         int tci;
2074
2075         for (tci = cpu * num_tc; num_tc--; tci++) {
2076                 int i, j;
2077
2078                 for (i = count, j = offset; i--; j++) {
2079                         if (!remove_xps_queue(dev_maps, tci, j))
2080                                 break;
2081                 }
2082
2083                 active |= i < 0;
2084         }
2085
2086         return active;
2087 }
2088
2089 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2090                                    u16 count)
2091 {
2092         struct xps_dev_maps *dev_maps;
2093         int cpu, i;
2094         bool active = false;
2095
2096         mutex_lock(&xps_map_mutex);
2097         dev_maps = xmap_dereference(dev->xps_maps);
2098
2099         if (!dev_maps)
2100                 goto out_no_maps;
2101
2102         for_each_possible_cpu(cpu)
2103                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2104                                                offset, count);
2105
2106         if (!active) {
2107                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2108                 kfree_rcu(dev_maps, rcu);
2109         }
2110
2111         for (i = offset + (count - 1); count--; i--)
2112                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2113                                              NUMA_NO_NODE);
2114
2115 out_no_maps:
2116         mutex_unlock(&xps_map_mutex);
2117 }
2118
2119 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2120 {
2121         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2122 }
2123
2124 static struct xps_map *expand_xps_map(struct xps_map *map,
2125                                       int cpu, u16 index)
2126 {
2127         struct xps_map *new_map;
2128         int alloc_len = XPS_MIN_MAP_ALLOC;
2129         int i, pos;
2130
2131         for (pos = 0; map && pos < map->len; pos++) {
2132                 if (map->queues[pos] != index)
2133                         continue;
2134                 return map;
2135         }
2136
2137         /* Need to add queue to this CPU's existing map */
2138         if (map) {
2139                 if (pos < map->alloc_len)
2140                         return map;
2141
2142                 alloc_len = map->alloc_len * 2;
2143         }
2144
2145         /* Need to allocate new map to store queue on this CPU's map */
2146         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2147                                cpu_to_node(cpu));
2148         if (!new_map)
2149                 return NULL;
2150
2151         for (i = 0; i < pos; i++)
2152                 new_map->queues[i] = map->queues[i];
2153         new_map->alloc_len = alloc_len;
2154         new_map->len = pos;
2155
2156         return new_map;
2157 }
2158
2159 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2160                         u16 index)
2161 {
2162         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2163         int i, cpu, tci, numa_node_id = -2;
2164         int maps_sz, num_tc = 1, tc = 0;
2165         struct xps_map *map, *new_map;
2166         bool active = false;
2167
2168         if (dev->num_tc) {
2169                 num_tc = dev->num_tc;
2170                 tc = netdev_txq_to_tc(dev, index);
2171                 if (tc < 0)
2172                         return -EINVAL;
2173         }
2174
2175         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2176         if (maps_sz < L1_CACHE_BYTES)
2177                 maps_sz = L1_CACHE_BYTES;
2178
2179         mutex_lock(&xps_map_mutex);
2180
2181         dev_maps = xmap_dereference(dev->xps_maps);
2182
2183         /* allocate memory for queue storage */
2184         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2185                 if (!new_dev_maps)
2186                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2187                 if (!new_dev_maps) {
2188                         mutex_unlock(&xps_map_mutex);
2189                         return -ENOMEM;
2190                 }
2191
2192                 tci = cpu * num_tc + tc;
2193                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2194                                  NULL;
2195
2196                 map = expand_xps_map(map, cpu, index);
2197                 if (!map)
2198                         goto error;
2199
2200                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2201         }
2202
2203         if (!new_dev_maps)
2204                 goto out_no_new_maps;
2205
2206         for_each_possible_cpu(cpu) {
2207                 /* copy maps belonging to foreign traffic classes */
2208                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2209                         /* fill in the new device map from the old device map */
2210                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2211                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2212                 }
2213
2214                 /* We need to explicitly update tci as prevous loop
2215                  * could break out early if dev_maps is NULL.
2216                  */
2217                 tci = cpu * num_tc + tc;
2218
2219                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2220                         /* add queue to CPU maps */
2221                         int pos = 0;
2222
2223                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2224                         while ((pos < map->len) && (map->queues[pos] != index))
2225                                 pos++;
2226
2227                         if (pos == map->len)
2228                                 map->queues[map->len++] = index;
2229 #ifdef CONFIG_NUMA
2230                         if (numa_node_id == -2)
2231                                 numa_node_id = cpu_to_node(cpu);
2232                         else if (numa_node_id != cpu_to_node(cpu))
2233                                 numa_node_id = -1;
2234 #endif
2235                 } else if (dev_maps) {
2236                         /* fill in the new device map from the old device map */
2237                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2238                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2239                 }
2240
2241                 /* copy maps belonging to foreign traffic classes */
2242                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2243                         /* fill in the new device map from the old device map */
2244                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2245                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2246                 }
2247         }
2248
2249         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2250
2251         /* Cleanup old maps */
2252         if (!dev_maps)
2253                 goto out_no_old_maps;
2254
2255         for_each_possible_cpu(cpu) {
2256                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2257                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2258                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2259                         if (map && map != new_map)
2260                                 kfree_rcu(map, rcu);
2261                 }
2262         }
2263
2264         kfree_rcu(dev_maps, rcu);
2265
2266 out_no_old_maps:
2267         dev_maps = new_dev_maps;
2268         active = true;
2269
2270 out_no_new_maps:
2271         /* update Tx queue numa node */
2272         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2273                                      (numa_node_id >= 0) ? numa_node_id :
2274                                      NUMA_NO_NODE);
2275
2276         if (!dev_maps)
2277                 goto out_no_maps;
2278
2279         /* removes queue from unused CPUs */
2280         for_each_possible_cpu(cpu) {
2281                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2282                         active |= remove_xps_queue(dev_maps, tci, index);
2283                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2284                         active |= remove_xps_queue(dev_maps, tci, index);
2285                 for (i = num_tc - tc, tci++; --i; tci++)
2286                         active |= remove_xps_queue(dev_maps, tci, index);
2287         }
2288
2289         /* free map if not active */
2290         if (!active) {
2291                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2292                 kfree_rcu(dev_maps, rcu);
2293         }
2294
2295 out_no_maps:
2296         mutex_unlock(&xps_map_mutex);
2297
2298         return 0;
2299 error:
2300         /* remove any maps that we added */
2301         for_each_possible_cpu(cpu) {
2302                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2303                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2304                         map = dev_maps ?
2305                               xmap_dereference(dev_maps->cpu_map[tci]) :
2306                               NULL;
2307                         if (new_map && new_map != map)
2308                                 kfree(new_map);
2309                 }
2310         }
2311
2312         mutex_unlock(&xps_map_mutex);
2313
2314         kfree(new_dev_maps);
2315         return -ENOMEM;
2316 }
2317 EXPORT_SYMBOL(netif_set_xps_queue);
2318
2319 #endif
2320 void netdev_reset_tc(struct net_device *dev)
2321 {
2322 #ifdef CONFIG_XPS
2323         netif_reset_xps_queues_gt(dev, 0);
2324 #endif
2325         dev->num_tc = 0;
2326         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2327         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2328 }
2329 EXPORT_SYMBOL(netdev_reset_tc);
2330
2331 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2332 {
2333         if (tc >= dev->num_tc)
2334                 return -EINVAL;
2335
2336 #ifdef CONFIG_XPS
2337         netif_reset_xps_queues(dev, offset, count);
2338 #endif
2339         dev->tc_to_txq[tc].count = count;
2340         dev->tc_to_txq[tc].offset = offset;
2341         return 0;
2342 }
2343 EXPORT_SYMBOL(netdev_set_tc_queue);
2344
2345 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2346 {
2347         if (num_tc > TC_MAX_QUEUE)
2348                 return -EINVAL;
2349
2350 #ifdef CONFIG_XPS
2351         netif_reset_xps_queues_gt(dev, 0);
2352 #endif
2353         dev->num_tc = num_tc;
2354         return 0;
2355 }
2356 EXPORT_SYMBOL(netdev_set_num_tc);
2357
2358 /*
2359  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2360  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2361  */
2362 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2363 {
2364         bool disabling;
2365         int rc;
2366
2367         disabling = txq < dev->real_num_tx_queues;
2368
2369         if (txq < 1 || txq > dev->num_tx_queues)
2370                 return -EINVAL;
2371
2372         if (dev->reg_state == NETREG_REGISTERED ||
2373             dev->reg_state == NETREG_UNREGISTERING) {
2374                 ASSERT_RTNL();
2375
2376                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2377                                                   txq);
2378                 if (rc)
2379                         return rc;
2380
2381                 if (dev->num_tc)
2382                         netif_setup_tc(dev, txq);
2383
2384                 dev->real_num_tx_queues = txq;
2385
2386                 if (disabling) {
2387                         synchronize_net();
2388                         qdisc_reset_all_tx_gt(dev, txq);
2389 #ifdef CONFIG_XPS
2390                         netif_reset_xps_queues_gt(dev, txq);
2391 #endif
2392                 }
2393         } else {
2394                 dev->real_num_tx_queues = txq;
2395         }
2396
2397         return 0;
2398 }
2399 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2400
2401 #ifdef CONFIG_SYSFS
2402 /**
2403  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2404  *      @dev: Network device
2405  *      @rxq: Actual number of RX queues
2406  *
2407  *      This must be called either with the rtnl_lock held or before
2408  *      registration of the net device.  Returns 0 on success, or a
2409  *      negative error code.  If called before registration, it always
2410  *      succeeds.
2411  */
2412 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2413 {
2414         int rc;
2415
2416         if (rxq < 1 || rxq > dev->num_rx_queues)
2417                 return -EINVAL;
2418
2419         if (dev->reg_state == NETREG_REGISTERED) {
2420                 ASSERT_RTNL();
2421
2422                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2423                                                   rxq);
2424                 if (rc)
2425                         return rc;
2426         }
2427
2428         dev->real_num_rx_queues = rxq;
2429         return 0;
2430 }
2431 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2432 #endif
2433
2434 /**
2435  * netif_get_num_default_rss_queues - default number of RSS queues
2436  *
2437  * This routine should set an upper limit on the number of RSS queues
2438  * used by default by multiqueue devices.
2439  */
2440 int netif_get_num_default_rss_queues(void)
2441 {
2442         return is_kdump_kernel() ?
2443                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2444 }
2445 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2446
2447 static void __netif_reschedule(struct Qdisc *q)
2448 {
2449         struct softnet_data *sd;
2450         unsigned long flags;
2451
2452         local_irq_save(flags);
2453         sd = this_cpu_ptr(&softnet_data);
2454         q->next_sched = NULL;
2455         *sd->output_queue_tailp = q;
2456         sd->output_queue_tailp = &q->next_sched;
2457         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2458         local_irq_restore(flags);
2459 }
2460
2461 void __netif_schedule(struct Qdisc *q)
2462 {
2463         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2464                 __netif_reschedule(q);
2465 }
2466 EXPORT_SYMBOL(__netif_schedule);
2467
2468 struct dev_kfree_skb_cb {
2469         enum skb_free_reason reason;
2470 };
2471
2472 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2473 {
2474         return (struct dev_kfree_skb_cb *)skb->cb;
2475 }
2476
2477 void netif_schedule_queue(struct netdev_queue *txq)
2478 {
2479         rcu_read_lock();
2480         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2481                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2482
2483                 __netif_schedule(q);
2484         }
2485         rcu_read_unlock();
2486 }
2487 EXPORT_SYMBOL(netif_schedule_queue);
2488
2489 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2490 {
2491         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2492                 struct Qdisc *q;
2493
2494                 rcu_read_lock();
2495                 q = rcu_dereference(dev_queue->qdisc);
2496                 __netif_schedule(q);
2497                 rcu_read_unlock();
2498         }
2499 }
2500 EXPORT_SYMBOL(netif_tx_wake_queue);
2501
2502 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2503 {
2504         unsigned long flags;
2505
2506         if (unlikely(!skb))
2507                 return;
2508
2509         if (likely(refcount_read(&skb->users) == 1)) {
2510                 smp_rmb();
2511                 refcount_set(&skb->users, 0);
2512         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2513                 return;
2514         }
2515         get_kfree_skb_cb(skb)->reason = reason;
2516         local_irq_save(flags);
2517         skb->next = __this_cpu_read(softnet_data.completion_queue);
2518         __this_cpu_write(softnet_data.completion_queue, skb);
2519         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2520         local_irq_restore(flags);
2521 }
2522 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2523
2524 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2525 {
2526         if (in_irq() || irqs_disabled())
2527                 __dev_kfree_skb_irq(skb, reason);
2528         else if (unlikely(reason == SKB_REASON_DROPPED))
2529                 kfree_skb(skb);
2530         else
2531                 consume_skb(skb);
2532 }
2533 EXPORT_SYMBOL(__dev_kfree_skb_any);
2534
2535
2536 /**
2537  * netif_device_detach - mark device as removed
2538  * @dev: network device
2539  *
2540  * Mark device as removed from system and therefore no longer available.
2541  */
2542 void netif_device_detach(struct net_device *dev)
2543 {
2544         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2545             netif_running(dev)) {
2546                 netif_tx_stop_all_queues(dev);
2547         }
2548 }
2549 EXPORT_SYMBOL(netif_device_detach);
2550
2551 /**
2552  * netif_device_attach - mark device as attached
2553  * @dev: network device
2554  *
2555  * Mark device as attached from system and restart if needed.
2556  */
2557 void netif_device_attach(struct net_device *dev)
2558 {
2559         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2560             netif_running(dev)) {
2561                 netif_tx_wake_all_queues(dev);
2562                 __netdev_watchdog_up(dev);
2563         }
2564 }
2565 EXPORT_SYMBOL(netif_device_attach);
2566
2567 /*
2568  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2569  * to be used as a distribution range.
2570  */
2571 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2572                   unsigned int num_tx_queues)
2573 {
2574         u32 hash;
2575         u16 qoffset = 0;
2576         u16 qcount = num_tx_queues;
2577
2578         if (skb_rx_queue_recorded(skb)) {
2579                 hash = skb_get_rx_queue(skb);
2580                 while (unlikely(hash >= num_tx_queues))
2581                         hash -= num_tx_queues;
2582                 return hash;
2583         }
2584
2585         if (dev->num_tc) {
2586                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2587
2588                 qoffset = dev->tc_to_txq[tc].offset;
2589                 qcount = dev->tc_to_txq[tc].count;
2590         }
2591
2592         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2593 }
2594 EXPORT_SYMBOL(__skb_tx_hash);
2595
2596 static void skb_warn_bad_offload(const struct sk_buff *skb)
2597 {
2598         static const netdev_features_t null_features;
2599         struct net_device *dev = skb->dev;
2600         const char *name = "";
2601
2602         if (!net_ratelimit())
2603                 return;
2604
2605         if (dev) {
2606                 if (dev->dev.parent)
2607                         name = dev_driver_string(dev->dev.parent);
2608                 else
2609                         name = netdev_name(dev);
2610         }
2611         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2612              "gso_type=%d ip_summed=%d\n",
2613              name, dev ? &dev->features : &null_features,
2614              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2615              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2616              skb_shinfo(skb)->gso_type, skb->ip_summed);
2617 }
2618
2619 /*
2620  * Invalidate hardware checksum when packet is to be mangled, and
2621  * complete checksum manually on outgoing path.
2622  */
2623 int skb_checksum_help(struct sk_buff *skb)
2624 {
2625         __wsum csum;
2626         int ret = 0, offset;
2627
2628         if (skb->ip_summed == CHECKSUM_COMPLETE)
2629                 goto out_set_summed;
2630
2631         if (unlikely(skb_shinfo(skb)->gso_size)) {
2632                 skb_warn_bad_offload(skb);
2633                 return -EINVAL;
2634         }
2635
2636         /* Before computing a checksum, we should make sure no frag could
2637          * be modified by an external entity : checksum could be wrong.
2638          */
2639         if (skb_has_shared_frag(skb)) {
2640                 ret = __skb_linearize(skb);
2641                 if (ret)
2642                         goto out;
2643         }
2644
2645         offset = skb_checksum_start_offset(skb);
2646         BUG_ON(offset >= skb_headlen(skb));
2647         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2648
2649         offset += skb->csum_offset;
2650         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2651
2652         if (skb_cloned(skb) &&
2653             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2654                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2655                 if (ret)
2656                         goto out;
2657         }
2658
2659         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2660 out_set_summed:
2661         skb->ip_summed = CHECKSUM_NONE;
2662 out:
2663         return ret;
2664 }
2665 EXPORT_SYMBOL(skb_checksum_help);
2666
2667 int skb_crc32c_csum_help(struct sk_buff *skb)
2668 {
2669         __le32 crc32c_csum;
2670         int ret = 0, offset, start;
2671
2672         if (skb->ip_summed != CHECKSUM_PARTIAL)
2673                 goto out;
2674
2675         if (unlikely(skb_is_gso(skb)))
2676                 goto out;
2677
2678         /* Before computing a checksum, we should make sure no frag could
2679          * be modified by an external entity : checksum could be wrong.
2680          */
2681         if (unlikely(skb_has_shared_frag(skb))) {
2682                 ret = __skb_linearize(skb);
2683                 if (ret)
2684                         goto out;
2685         }
2686         start = skb_checksum_start_offset(skb);
2687         offset = start + offsetof(struct sctphdr, checksum);
2688         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2689                 ret = -EINVAL;
2690                 goto out;
2691         }
2692         if (skb_cloned(skb) &&
2693             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2694                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2695                 if (ret)
2696                         goto out;
2697         }
2698         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2699                                                   skb->len - start, ~(__u32)0,
2700                                                   crc32c_csum_stub));
2701         *(__le32 *)(skb->data + offset) = crc32c_csum;
2702         skb->ip_summed = CHECKSUM_NONE;
2703         skb->csum_not_inet = 0;
2704 out:
2705         return ret;
2706 }
2707
2708 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2709 {
2710         __be16 type = skb->protocol;
2711
2712         /* Tunnel gso handlers can set protocol to ethernet. */
2713         if (type == htons(ETH_P_TEB)) {
2714                 struct ethhdr *eth;
2715
2716                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2717                         return 0;
2718
2719                 eth = (struct ethhdr *)skb->data;
2720                 type = eth->h_proto;
2721         }
2722
2723         return __vlan_get_protocol(skb, type, depth);
2724 }
2725
2726 /**
2727  *      skb_mac_gso_segment - mac layer segmentation handler.
2728  *      @skb: buffer to segment
2729  *      @features: features for the output path (see dev->features)
2730  */
2731 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2732                                     netdev_features_t features)
2733 {
2734         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2735         struct packet_offload *ptype;
2736         int vlan_depth = skb->mac_len;
2737         __be16 type = skb_network_protocol(skb, &vlan_depth);
2738
2739         if (unlikely(!type))
2740                 return ERR_PTR(-EINVAL);
2741
2742         __skb_pull(skb, vlan_depth);
2743
2744         rcu_read_lock();
2745         list_for_each_entry_rcu(ptype, &offload_base, list) {
2746                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2747                         segs = ptype->callbacks.gso_segment(skb, features);
2748                         break;
2749                 }
2750         }
2751         rcu_read_unlock();
2752
2753         __skb_push(skb, skb->data - skb_mac_header(skb));
2754
2755         return segs;
2756 }
2757 EXPORT_SYMBOL(skb_mac_gso_segment);
2758
2759
2760 /* openvswitch calls this on rx path, so we need a different check.
2761  */
2762 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2763 {
2764         if (tx_path)
2765                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2766                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2767
2768         return skb->ip_summed == CHECKSUM_NONE;
2769 }
2770
2771 /**
2772  *      __skb_gso_segment - Perform segmentation on skb.
2773  *      @skb: buffer to segment
2774  *      @features: features for the output path (see dev->features)
2775  *      @tx_path: whether it is called in TX path
2776  *
2777  *      This function segments the given skb and returns a list of segments.
2778  *
2779  *      It may return NULL if the skb requires no segmentation.  This is
2780  *      only possible when GSO is used for verifying header integrity.
2781  *
2782  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2783  */
2784 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2785                                   netdev_features_t features, bool tx_path)
2786 {
2787         struct sk_buff *segs;
2788
2789         if (unlikely(skb_needs_check(skb, tx_path))) {
2790                 int err;
2791
2792                 /* We're going to init ->check field in TCP or UDP header */
2793                 err = skb_cow_head(skb, 0);
2794                 if (err < 0)
2795                         return ERR_PTR(err);
2796         }
2797
2798         /* Only report GSO partial support if it will enable us to
2799          * support segmentation on this frame without needing additional
2800          * work.
2801          */
2802         if (features & NETIF_F_GSO_PARTIAL) {
2803                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2804                 struct net_device *dev = skb->dev;
2805
2806                 partial_features |= dev->features & dev->gso_partial_features;
2807                 if (!skb_gso_ok(skb, features | partial_features))
2808                         features &= ~NETIF_F_GSO_PARTIAL;
2809         }
2810
2811         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2812                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2813
2814         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2815         SKB_GSO_CB(skb)->encap_level = 0;
2816
2817         skb_reset_mac_header(skb);
2818         skb_reset_mac_len(skb);
2819
2820         segs = skb_mac_gso_segment(skb, features);
2821
2822         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2823                 skb_warn_bad_offload(skb);
2824
2825         return segs;
2826 }
2827 EXPORT_SYMBOL(__skb_gso_segment);
2828
2829 /* Take action when hardware reception checksum errors are detected. */
2830 #ifdef CONFIG_BUG
2831 void netdev_rx_csum_fault(struct net_device *dev)
2832 {
2833         if (net_ratelimit()) {
2834                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2835                 dump_stack();
2836         }
2837 }
2838 EXPORT_SYMBOL(netdev_rx_csum_fault);
2839 #endif
2840
2841 /* Actually, we should eliminate this check as soon as we know, that:
2842  * 1. IOMMU is present and allows to map all the memory.
2843  * 2. No high memory really exists on this machine.
2844  */
2845
2846 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2847 {
2848 #ifdef CONFIG_HIGHMEM
2849         int i;
2850
2851         if (!(dev->features & NETIF_F_HIGHDMA)) {
2852                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2853                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2854
2855                         if (PageHighMem(skb_frag_page(frag)))
2856                                 return 1;
2857                 }
2858         }
2859
2860         if (PCI_DMA_BUS_IS_PHYS) {
2861                 struct device *pdev = dev->dev.parent;
2862
2863                 if (!pdev)
2864                         return 0;
2865                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2866                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2867                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2868
2869                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2870                                 return 1;
2871                 }
2872         }
2873 #endif
2874         return 0;
2875 }
2876
2877 /* If MPLS offload request, verify we are testing hardware MPLS features
2878  * instead of standard features for the netdev.
2879  */
2880 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2881 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2882                                            netdev_features_t features,
2883                                            __be16 type)
2884 {
2885         if (eth_p_mpls(type))
2886                 features &= skb->dev->mpls_features;
2887
2888         return features;
2889 }
2890 #else
2891 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2892                                            netdev_features_t features,
2893                                            __be16 type)
2894 {
2895         return features;
2896 }
2897 #endif
2898
2899 static netdev_features_t harmonize_features(struct sk_buff *skb,
2900         netdev_features_t features)
2901 {
2902         int tmp;
2903         __be16 type;
2904
2905         type = skb_network_protocol(skb, &tmp);
2906         features = net_mpls_features(skb, features, type);
2907
2908         if (skb->ip_summed != CHECKSUM_NONE &&
2909             !can_checksum_protocol(features, type)) {
2910                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2911         }
2912         if (illegal_highdma(skb->dev, skb))
2913                 features &= ~NETIF_F_SG;
2914
2915         return features;
2916 }
2917
2918 netdev_features_t passthru_features_check(struct sk_buff *skb,
2919                                           struct net_device *dev,
2920                                           netdev_features_t features)
2921 {
2922         return features;
2923 }
2924 EXPORT_SYMBOL(passthru_features_check);
2925
2926 static netdev_features_t dflt_features_check(struct sk_buff *skb,
2927                                              struct net_device *dev,
2928                                              netdev_features_t features)
2929 {
2930         return vlan_features_check(skb, features);
2931 }
2932
2933 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2934                                             struct net_device *dev,
2935                                             netdev_features_t features)
2936 {
2937         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2938
2939         if (gso_segs > dev->gso_max_segs)
2940                 return features & ~NETIF_F_GSO_MASK;
2941
2942         /* Support for GSO partial features requires software
2943          * intervention before we can actually process the packets
2944          * so we need to strip support for any partial features now
2945          * and we can pull them back in after we have partially
2946          * segmented the frame.
2947          */
2948         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2949                 features &= ~dev->gso_partial_features;
2950
2951         /* Make sure to clear the IPv4 ID mangling feature if the
2952          * IPv4 header has the potential to be fragmented.
2953          */
2954         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2955                 struct iphdr *iph = skb->encapsulation ?
2956                                     inner_ip_hdr(skb) : ip_hdr(skb);
2957
2958                 if (!(iph->frag_off & htons(IP_DF)))
2959                         features &= ~NETIF_F_TSO_MANGLEID;
2960         }
2961
2962         return features;
2963 }
2964
2965 netdev_features_t netif_skb_features(struct sk_buff *skb)
2966 {
2967         struct net_device *dev = skb->dev;
2968         netdev_features_t features = dev->features;
2969
2970         if (skb_is_gso(skb))
2971                 features = gso_features_check(skb, dev, features);
2972
2973         /* If encapsulation offload request, verify we are testing
2974          * hardware encapsulation features instead of standard
2975          * features for the netdev
2976          */
2977         if (skb->encapsulation)
2978                 features &= dev->hw_enc_features;
2979
2980         if (skb_vlan_tagged(skb))
2981                 features = netdev_intersect_features(features,
2982                                                      dev->vlan_features |
2983                                                      NETIF_F_HW_VLAN_CTAG_TX |
2984                                                      NETIF_F_HW_VLAN_STAG_TX);
2985
2986         if (dev->netdev_ops->ndo_features_check)
2987                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2988                                                                 features);
2989         else
2990                 features &= dflt_features_check(skb, dev, features);
2991
2992         return harmonize_features(skb, features);
2993 }
2994 EXPORT_SYMBOL(netif_skb_features);
2995
2996 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2997                     struct netdev_queue *txq, bool more)
2998 {
2999         unsigned int len;
3000         int rc;
3001
3002         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3003                 dev_queue_xmit_nit(skb, dev);
3004
3005         len = skb->len;
3006         trace_net_dev_start_xmit(skb, dev);
3007         rc = netdev_start_xmit(skb, dev, txq, more);
3008         trace_net_dev_xmit(skb, rc, dev, len);
3009
3010         return rc;
3011 }
3012
3013 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3014                                     struct netdev_queue *txq, int *ret)
3015 {
3016         struct sk_buff *skb = first;
3017         int rc = NETDEV_TX_OK;
3018
3019         while (skb) {
3020                 struct sk_buff *next = skb->next;
3021
3022                 skb->next = NULL;
3023                 rc = xmit_one(skb, dev, txq, next != NULL);
3024                 if (unlikely(!dev_xmit_complete(rc))) {
3025                         skb->next = next;
3026                         goto out;
3027                 }
3028
3029                 skb = next;
3030                 if (netif_tx_queue_stopped(txq) && skb) {
3031                         rc = NETDEV_TX_BUSY;
3032                         break;
3033                 }
3034         }
3035
3036 out:
3037         *ret = rc;
3038         return skb;
3039 }
3040
3041 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3042                                           netdev_features_t features)
3043 {
3044         if (skb_vlan_tag_present(skb) &&
3045             !vlan_hw_offload_capable(features, skb->vlan_proto))
3046                 skb = __vlan_hwaccel_push_inside(skb);
3047         return skb;
3048 }
3049
3050 int skb_csum_hwoffload_help(struct sk_buff *skb,
3051                             const netdev_features_t features)
3052 {
3053         if (unlikely(skb->csum_not_inet))
3054                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3055                         skb_crc32c_csum_help(skb);
3056
3057         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3058 }
3059 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3060
3061 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3062 {
3063         netdev_features_t features;
3064
3065         features = netif_skb_features(skb);
3066         skb = validate_xmit_vlan(skb, features);
3067         if (unlikely(!skb))
3068                 goto out_null;
3069
3070         if (netif_needs_gso(skb, features)) {
3071                 struct sk_buff *segs;
3072
3073                 segs = skb_gso_segment(skb, features);
3074                 if (IS_ERR(segs)) {
3075                         goto out_kfree_skb;
3076                 } else if (segs) {
3077                         consume_skb(skb);
3078                         skb = segs;
3079                 }
3080         } else {
3081                 if (skb_needs_linearize(skb, features) &&
3082                     __skb_linearize(skb))
3083                         goto out_kfree_skb;
3084
3085                 if (validate_xmit_xfrm(skb, features))
3086                         goto out_kfree_skb;
3087
3088                 /* If packet is not checksummed and device does not
3089                  * support checksumming for this protocol, complete
3090                  * checksumming here.
3091                  */
3092                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3093                         if (skb->encapsulation)
3094                                 skb_set_inner_transport_header(skb,
3095                                                                skb_checksum_start_offset(skb));
3096                         else
3097                                 skb_set_transport_header(skb,
3098                                                          skb_checksum_start_offset(skb));
3099                         if (skb_csum_hwoffload_help(skb, features))
3100                                 goto out_kfree_skb;
3101                 }
3102         }
3103
3104         return skb;
3105
3106 out_kfree_skb:
3107         kfree_skb(skb);
3108 out_null:
3109         atomic_long_inc(&dev->tx_dropped);
3110         return NULL;
3111 }
3112
3113 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3114 {
3115         struct sk_buff *next, *head = NULL, *tail;
3116
3117         for (; skb != NULL; skb = next) {
3118                 next = skb->next;
3119                 skb->next = NULL;
3120
3121                 /* in case skb wont be segmented, point to itself */
3122                 skb->prev = skb;
3123
3124                 skb = validate_xmit_skb(skb, dev);
3125                 if (!skb)
3126                         continue;
3127
3128                 if (!head)
3129                         head = skb;
3130                 else
3131                         tail->next = skb;
3132                 /* If skb was segmented, skb->prev points to
3133                  * the last segment. If not, it still contains skb.
3134                  */
3135                 tail = skb->prev;
3136         }
3137         return head;
3138 }
3139 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3140
3141 static void qdisc_pkt_len_init(struct sk_buff *skb)
3142 {
3143         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3144
3145         qdisc_skb_cb(skb)->pkt_len = skb->len;
3146
3147         /* To get more precise estimation of bytes sent on wire,
3148          * we add to pkt_len the headers size of all segments
3149          */
3150         if (shinfo->gso_size)  {
3151                 unsigned int hdr_len;
3152                 u16 gso_segs = shinfo->gso_segs;
3153
3154                 /* mac layer + network layer */
3155                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3156
3157                 /* + transport layer */
3158                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3159                         const struct tcphdr *th;
3160                         struct tcphdr _tcphdr;
3161
3162                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3163                                                 sizeof(_tcphdr), &_tcphdr);
3164                         if (likely(th))
3165                                 hdr_len += __tcp_hdrlen(th);
3166                 } else {
3167                         struct udphdr _udphdr;
3168
3169                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3170                                                sizeof(_udphdr), &_udphdr))
3171                                 hdr_len += sizeof(struct udphdr);
3172                 }
3173
3174                 if (shinfo->gso_type & SKB_GSO_DODGY)
3175                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3176                                                 shinfo->gso_size);
3177
3178                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3179         }
3180 }
3181
3182 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3183                                  struct net_device *dev,
3184                                  struct netdev_queue *txq)
3185 {
3186         spinlock_t *root_lock = qdisc_lock(q);
3187         struct sk_buff *to_free = NULL;
3188         bool contended;
3189         int rc;
3190
3191         qdisc_calculate_pkt_len(skb, q);
3192         /*
3193          * Heuristic to force contended enqueues to serialize on a
3194          * separate lock before trying to get qdisc main lock.
3195          * This permits qdisc->running owner to get the lock more
3196          * often and dequeue packets faster.
3197          */
3198         contended = qdisc_is_running(q);
3199         if (unlikely(contended))
3200                 spin_lock(&q->busylock);
3201
3202         spin_lock(root_lock);
3203         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3204                 __qdisc_drop(skb, &to_free);
3205                 rc = NET_XMIT_DROP;
3206         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3207                    qdisc_run_begin(q)) {
3208                 /*
3209                  * This is a work-conserving queue; there are no old skbs
3210                  * waiting to be sent out; and the qdisc is not running -
3211                  * xmit the skb directly.
3212                  */
3213
3214                 qdisc_bstats_update(q, skb);
3215
3216                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3217                         if (unlikely(contended)) {
3218                                 spin_unlock(&q->busylock);
3219                                 contended = false;
3220                         }
3221                         __qdisc_run(q);
3222                 } else
3223                         qdisc_run_end(q);
3224
3225                 rc = NET_XMIT_SUCCESS;
3226         } else {
3227                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3228                 if (qdisc_run_begin(q)) {
3229                         if (unlikely(contended)) {
3230                                 spin_unlock(&q->busylock);
3231                                 contended = false;
3232                         }
3233                         __qdisc_run(q);
3234                 }
3235         }
3236         spin_unlock(root_lock);
3237         if (unlikely(to_free))
3238                 kfree_skb_list(to_free);
3239         if (unlikely(contended))
3240                 spin_unlock(&q->busylock);
3241         return rc;
3242 }
3243
3244 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3245 static void skb_update_prio(struct sk_buff *skb)
3246 {
3247         const struct netprio_map *map;
3248         const struct sock *sk;
3249         unsigned int prioidx;
3250
3251         if (skb->priority)
3252                 return;
3253         map = rcu_dereference_bh(skb->dev->priomap);
3254         if (!map)
3255                 return;
3256         sk = skb_to_full_sk(skb);
3257         if (!sk)
3258                 return;
3259
3260         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3261
3262         if (prioidx < map->priomap_len)
3263                 skb->priority = map->priomap[prioidx];
3264 }
3265 #else
3266 #define skb_update_prio(skb)
3267 #endif
3268
3269 DEFINE_PER_CPU(int, xmit_recursion);
3270 EXPORT_SYMBOL(xmit_recursion);
3271
3272 /**
3273  *      dev_loopback_xmit - loop back @skb
3274  *      @net: network namespace this loopback is happening in
3275  *      @sk:  sk needed to be a netfilter okfn
3276  *      @skb: buffer to transmit
3277  */
3278 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3279 {
3280         skb_reset_mac_header(skb);
3281         __skb_pull(skb, skb_network_offset(skb));
3282         skb->pkt_type = PACKET_LOOPBACK;
3283         skb->ip_summed = CHECKSUM_UNNECESSARY;
3284         WARN_ON(!skb_dst(skb));
3285         skb_dst_force(skb);
3286         netif_rx_ni(skb);
3287         return 0;
3288 }
3289 EXPORT_SYMBOL(dev_loopback_xmit);
3290
3291 #ifdef CONFIG_NET_EGRESS
3292 static struct sk_buff *
3293 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3294 {
3295         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3296         struct tcf_result cl_res;
3297
3298         if (!cl)
3299                 return skb;
3300
3301         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3302         qdisc_bstats_cpu_update(cl->q, skb);
3303
3304         switch (tcf_classify(skb, cl, &cl_res, false)) {
3305         case TC_ACT_OK:
3306         case TC_ACT_RECLASSIFY:
3307                 skb->tc_index = TC_H_MIN(cl_res.classid);
3308                 break;
3309         case TC_ACT_SHOT:
3310                 qdisc_qstats_cpu_drop(cl->q);
3311                 *ret = NET_XMIT_DROP;
3312                 kfree_skb(skb);
3313                 return NULL;
3314         case TC_ACT_STOLEN:
3315         case TC_ACT_QUEUED:
3316         case TC_ACT_TRAP:
3317                 *ret = NET_XMIT_SUCCESS;
3318                 consume_skb(skb);
3319                 return NULL;
3320         case TC_ACT_REDIRECT:
3321                 /* No need to push/pop skb's mac_header here on egress! */
3322                 skb_do_redirect(skb);
3323                 *ret = NET_XMIT_SUCCESS;
3324                 return NULL;
3325         default:
3326                 break;
3327         }
3328
3329         return skb;
3330 }
3331 #endif /* CONFIG_NET_EGRESS */
3332
3333 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3334 {
3335 #ifdef CONFIG_XPS
3336         struct xps_dev_maps *dev_maps;
3337         struct xps_map *map;
3338         int queue_index = -1;
3339
3340         rcu_read_lock();
3341         dev_maps = rcu_dereference(dev->xps_maps);
3342         if (dev_maps) {
3343                 unsigned int tci = skb->sender_cpu - 1;
3344
3345                 if (dev->num_tc) {
3346                         tci *= dev->num_tc;
3347                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3348                 }
3349
3350                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3351                 if (map) {
3352                         if (map->len == 1)
3353                                 queue_index = map->queues[0];
3354                         else
3355                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3356                                                                            map->len)];
3357                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3358                                 queue_index = -1;
3359                 }
3360         }
3361         rcu_read_unlock();
3362
3363         return queue_index;
3364 #else
3365         return -1;
3366 #endif
3367 }
3368
3369 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3370 {
3371         struct sock *sk = skb->sk;
3372         int queue_index = sk_tx_queue_get(sk);
3373
3374         if (queue_index < 0 || skb->ooo_okay ||
3375             queue_index >= dev->real_num_tx_queues) {
3376                 int new_index = get_xps_queue(dev, skb);
3377
3378                 if (new_index < 0)
3379                         new_index = skb_tx_hash(dev, skb);
3380
3381                 if (queue_index != new_index && sk &&
3382                     sk_fullsock(sk) &&
3383                     rcu_access_pointer(sk->sk_dst_cache))
3384                         sk_tx_queue_set(sk, new_index);
3385
3386                 queue_index = new_index;
3387         }
3388
3389         return queue_index;
3390 }
3391
3392 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3393                                     struct sk_buff *skb,
3394                                     void *accel_priv)
3395 {
3396         int queue_index = 0;
3397
3398 #ifdef CONFIG_XPS
3399         u32 sender_cpu = skb->sender_cpu - 1;
3400
3401         if (sender_cpu >= (u32)NR_CPUS)
3402                 skb->sender_cpu = raw_smp_processor_id() + 1;
3403 #endif
3404
3405         if (dev->real_num_tx_queues != 1) {
3406                 const struct net_device_ops *ops = dev->netdev_ops;
3407
3408                 if (ops->ndo_select_queue)
3409                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3410                                                             __netdev_pick_tx);
3411                 else
3412                         queue_index = __netdev_pick_tx(dev, skb);
3413
3414                 if (!accel_priv)
3415                         queue_index = netdev_cap_txqueue(dev, queue_index);
3416         }
3417
3418         skb_set_queue_mapping(skb, queue_index);
3419         return netdev_get_tx_queue(dev, queue_index);
3420 }
3421
3422 /**
3423  *      __dev_queue_xmit - transmit a buffer
3424  *      @skb: buffer to transmit
3425  *      @accel_priv: private data used for L2 forwarding offload
3426  *
3427  *      Queue a buffer for transmission to a network device. The caller must
3428  *      have set the device and priority and built the buffer before calling
3429  *      this function. The function can be called from an interrupt.
3430  *
3431  *      A negative errno code is returned on a failure. A success does not
3432  *      guarantee the frame will be transmitted as it may be dropped due
3433  *      to congestion or traffic shaping.
3434  *
3435  * -----------------------------------------------------------------------------------
3436  *      I notice this method can also return errors from the queue disciplines,
3437  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3438  *      be positive.
3439  *
3440  *      Regardless of the return value, the skb is consumed, so it is currently
3441  *      difficult to retry a send to this method.  (You can bump the ref count
3442  *      before sending to hold a reference for retry if you are careful.)
3443  *
3444  *      When calling this method, interrupts MUST be enabled.  This is because
3445  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3446  *          --BLG
3447  */
3448 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3449 {
3450         struct net_device *dev = skb->dev;
3451         struct netdev_queue *txq;
3452         struct Qdisc *q;
3453         int rc = -ENOMEM;
3454
3455         skb_reset_mac_header(skb);
3456
3457         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3458                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3459
3460         /* Disable soft irqs for various locks below. Also
3461          * stops preemption for RCU.
3462          */
3463         rcu_read_lock_bh();
3464
3465         skb_update_prio(skb);
3466
3467         qdisc_pkt_len_init(skb);
3468 #ifdef CONFIG_NET_CLS_ACT
3469         skb->tc_at_ingress = 0;
3470 # ifdef CONFIG_NET_EGRESS
3471         if (static_key_false(&egress_needed)) {
3472                 skb = sch_handle_egress(skb, &rc, dev);
3473                 if (!skb)
3474                         goto out;
3475         }
3476 # endif
3477 #endif
3478         /* If device/qdisc don't need skb->dst, release it right now while
3479          * its hot in this cpu cache.
3480          */
3481         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3482                 skb_dst_drop(skb);
3483         else
3484                 skb_dst_force(skb);
3485
3486         txq = netdev_pick_tx(dev, skb, accel_priv);
3487         q = rcu_dereference_bh(txq->qdisc);
3488
3489         trace_net_dev_queue(skb);
3490         if (q->enqueue) {
3491                 rc = __dev_xmit_skb(skb, q, dev, txq);
3492                 goto out;
3493         }
3494
3495         /* The device has no queue. Common case for software devices:
3496          * loopback, all the sorts of tunnels...
3497
3498          * Really, it is unlikely that netif_tx_lock protection is necessary
3499          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3500          * counters.)
3501          * However, it is possible, that they rely on protection
3502          * made by us here.
3503
3504          * Check this and shot the lock. It is not prone from deadlocks.
3505          *Either shot noqueue qdisc, it is even simpler 8)
3506          */
3507         if (dev->flags & IFF_UP) {
3508                 int cpu = smp_processor_id(); /* ok because BHs are off */
3509
3510                 if (txq->xmit_lock_owner != cpu) {
3511                         if (unlikely(__this_cpu_read(xmit_recursion) >
3512                                      XMIT_RECURSION_LIMIT))
3513                                 goto recursion_alert;
3514
3515                         skb = validate_xmit_skb(skb, dev);
3516                         if (!skb)
3517                                 goto out;
3518
3519                         HARD_TX_LOCK(dev, txq, cpu);
3520
3521                         if (!netif_xmit_stopped(txq)) {
3522                                 __this_cpu_inc(xmit_recursion);
3523                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3524                                 __this_cpu_dec(xmit_recursion);
3525                                 if (dev_xmit_complete(rc)) {
3526                                         HARD_TX_UNLOCK(dev, txq);
3527                                         goto out;
3528                                 }
3529                         }
3530                         HARD_TX_UNLOCK(dev, txq);
3531                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3532                                              dev->name);
3533                 } else {
3534                         /* Recursion is detected! It is possible,
3535                          * unfortunately
3536                          */
3537 recursion_alert:
3538                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3539                                              dev->name);
3540                 }
3541         }
3542
3543         rc = -ENETDOWN;
3544         rcu_read_unlock_bh();
3545
3546         atomic_long_inc(&dev->tx_dropped);
3547         kfree_skb_list(skb);
3548         return rc;
3549 out:
3550         rcu_read_unlock_bh();
3551         return rc;
3552 }
3553
3554 int dev_queue_xmit(struct sk_buff *skb)
3555 {
3556         return __dev_queue_xmit(skb, NULL);
3557 }
3558 EXPORT_SYMBOL(dev_queue_xmit);
3559
3560 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3561 {
3562         return __dev_queue_xmit(skb, accel_priv);
3563 }
3564 EXPORT_SYMBOL(dev_queue_xmit_accel);
3565
3566
3567 /*************************************************************************
3568  *                      Receiver routines
3569  *************************************************************************/
3570
3571 int netdev_max_backlog __read_mostly = 1000;
3572 EXPORT_SYMBOL(netdev_max_backlog);
3573
3574 int netdev_tstamp_prequeue __read_mostly = 1;
3575 int netdev_budget __read_mostly = 300;
3576 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
3577 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3578 int weight_p __read_mostly = 64;           /* old backlog weight */
3579 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3580 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3581 int dev_rx_weight __read_mostly = 64;
3582 int dev_tx_weight __read_mostly = 64;
3583
3584 /* Called with irq disabled */
3585 static inline void ____napi_schedule(struct softnet_data *sd,
3586                                      struct napi_struct *napi)
3587 {
3588         list_add_tail(&napi->poll_list, &sd->poll_list);
3589         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3590 }
3591
3592 #ifdef CONFIG_RPS
3593
3594 /* One global table that all flow-based protocols share. */
3595 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3596 EXPORT_SYMBOL(rps_sock_flow_table);
3597 u32 rps_cpu_mask __read_mostly;
3598 EXPORT_SYMBOL(rps_cpu_mask);
3599
3600 struct static_key rps_needed __read_mostly;
3601 EXPORT_SYMBOL(rps_needed);
3602 struct static_key rfs_needed __read_mostly;
3603 EXPORT_SYMBOL(rfs_needed);
3604
3605 static struct rps_dev_flow *
3606 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3607             struct rps_dev_flow *rflow, u16 next_cpu)
3608 {
3609         if (next_cpu < nr_cpu_ids) {
3610 #ifdef CONFIG_RFS_ACCEL
3611                 struct netdev_rx_queue *rxqueue;
3612                 struct rps_dev_flow_table *flow_table;
3613                 struct rps_dev_flow *old_rflow;
3614                 u32 flow_id;
3615                 u16 rxq_index;
3616                 int rc;
3617
3618                 /* Should we steer this flow to a different hardware queue? */
3619                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3620                     !(dev->features & NETIF_F_NTUPLE))
3621                         goto out;
3622                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3623                 if (rxq_index == skb_get_rx_queue(skb))
3624                         goto out;
3625
3626                 rxqueue = dev->_rx + rxq_index;
3627                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3628                 if (!flow_table)
3629                         goto out;
3630                 flow_id = skb_get_hash(skb) & flow_table->mask;
3631                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3632                                                         rxq_index, flow_id);
3633                 if (rc < 0)
3634                         goto out;
3635                 old_rflow = rflow;
3636                 rflow = &flow_table->flows[flow_id];
3637                 rflow->filter = rc;
3638                 if (old_rflow->filter == rflow->filter)
3639                         old_rflow->filter = RPS_NO_FILTER;
3640         out:
3641 #endif
3642                 rflow->last_qtail =
3643                         per_cpu(softnet_data, next_cpu).input_queue_head;
3644         }
3645
3646         rflow->cpu = next_cpu;
3647         return rflow;
3648 }
3649
3650 /*
3651  * get_rps_cpu is called from netif_receive_skb and returns the target
3652  * CPU from the RPS map of the receiving queue for a given skb.
3653  * rcu_read_lock must be held on entry.
3654  */
3655 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3656                        struct rps_dev_flow **rflowp)
3657 {
3658         const struct rps_sock_flow_table *sock_flow_table;
3659         struct netdev_rx_queue *rxqueue = dev->_rx;
3660         struct rps_dev_flow_table *flow_table;
3661         struct rps_map *map;
3662         int cpu = -1;
3663         u32 tcpu;
3664         u32 hash;
3665
3666         if (skb_rx_queue_recorded(skb)) {
3667                 u16 index = skb_get_rx_queue(skb);
3668
3669                 if (unlikely(index >= dev->real_num_rx_queues)) {
3670                         WARN_ONCE(dev->real_num_rx_queues > 1,
3671                                   "%s received packet on queue %u, but number "
3672                                   "of RX queues is %u\n",
3673                                   dev->name, index, dev->real_num_rx_queues);
3674                         goto done;
3675                 }
3676                 rxqueue += index;
3677         }
3678
3679         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3680
3681         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3682         map = rcu_dereference(rxqueue->rps_map);
3683         if (!flow_table && !map)
3684                 goto done;
3685
3686         skb_reset_network_header(skb);
3687         hash = skb_get_hash(skb);
3688         if (!hash)
3689                 goto done;
3690
3691         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3692         if (flow_table && sock_flow_table) {
3693                 struct rps_dev_flow *rflow;
3694                 u32 next_cpu;
3695                 u32 ident;
3696
3697                 /* First check into global flow table if there is a match */
3698                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3699                 if ((ident ^ hash) & ~rps_cpu_mask)
3700                         goto try_rps;
3701
3702                 next_cpu = ident & rps_cpu_mask;
3703
3704                 /* OK, now we know there is a match,
3705                  * we can look at the local (per receive queue) flow table
3706                  */
3707                 rflow = &flow_table->flows[hash & flow_table->mask];
3708                 tcpu = rflow->cpu;
3709
3710                 /*
3711                  * If the desired CPU (where last recvmsg was done) is
3712                  * different from current CPU (one in the rx-queue flow
3713                  * table entry), switch if one of the following holds:
3714                  *   - Current CPU is unset (>= nr_cpu_ids).
3715                  *   - Current CPU is offline.
3716                  *   - The current CPU's queue tail has advanced beyond the
3717                  *     last packet that was enqueued using this table entry.
3718                  *     This guarantees that all previous packets for the flow
3719                  *     have been dequeued, thus preserving in order delivery.
3720                  */
3721                 if (unlikely(tcpu != next_cpu) &&
3722                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3723                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3724                       rflow->last_qtail)) >= 0)) {
3725                         tcpu = next_cpu;
3726                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3727                 }
3728
3729                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3730                         *rflowp = rflow;
3731                         cpu = tcpu;
3732                         goto done;
3733                 }
3734         }
3735
3736 try_rps:
3737
3738         if (map) {
3739                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3740                 if (cpu_online(tcpu)) {
3741                         cpu = tcpu;
3742                         goto done;
3743                 }
3744         }
3745
3746 done:
3747         return cpu;
3748 }
3749
3750 #ifdef CONFIG_RFS_ACCEL
3751
3752 /**
3753  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3754  * @dev: Device on which the filter was set
3755  * @rxq_index: RX queue index
3756  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3757  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3758  *
3759  * Drivers that implement ndo_rx_flow_steer() should periodically call
3760  * this function for each installed filter and remove the filters for
3761  * which it returns %true.
3762  */
3763 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3764                          u32 flow_id, u16 filter_id)
3765 {
3766         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3767         struct rps_dev_flow_table *flow_table;
3768         struct rps_dev_flow *rflow;
3769         bool expire = true;
3770         unsigned int cpu;
3771
3772         rcu_read_lock();
3773         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3774         if (flow_table && flow_id <= flow_table->mask) {
3775                 rflow = &flow_table->flows[flow_id];
3776                 cpu = ACCESS_ONCE(rflow->cpu);
3777                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3778                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3779                            rflow->last_qtail) <
3780                      (int)(10 * flow_table->mask)))
3781                         expire = false;
3782         }
3783         rcu_read_unlock();
3784         return expire;
3785 }
3786 EXPORT_SYMBOL(rps_may_expire_flow);
3787
3788 #endif /* CONFIG_RFS_ACCEL */
3789
3790 /* Called from hardirq (IPI) context */
3791 static void rps_trigger_softirq(void *data)
3792 {
3793         struct softnet_data *sd = data;
3794
3795         ____napi_schedule(sd, &sd->backlog);
3796         sd->received_rps++;
3797 }
3798
3799 #endif /* CONFIG_RPS */
3800
3801 /*
3802  * Check if this softnet_data structure is another cpu one
3803  * If yes, queue it to our IPI list and return 1
3804  * If no, return 0
3805  */
3806 static int rps_ipi_queued(struct softnet_data *sd)
3807 {
3808 #ifdef CONFIG_RPS
3809         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3810
3811         if (sd != mysd) {
3812                 sd->rps_ipi_next = mysd->rps_ipi_list;
3813                 mysd->rps_ipi_list = sd;
3814
3815                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3816                 return 1;
3817         }
3818 #endif /* CONFIG_RPS */
3819         return 0;
3820 }
3821
3822 #ifdef CONFIG_NET_FLOW_LIMIT
3823 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3824 #endif
3825
3826 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3827 {
3828 #ifdef CONFIG_NET_FLOW_LIMIT
3829         struct sd_flow_limit *fl;
3830         struct softnet_data *sd;
3831         unsigned int old_flow, new_flow;
3832
3833         if (qlen < (netdev_max_backlog >> 1))
3834                 return false;
3835
3836         sd = this_cpu_ptr(&softnet_data);
3837
3838         rcu_read_lock();
3839         fl = rcu_dereference(sd->flow_limit);
3840         if (fl) {
3841                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3842                 old_flow = fl->history[fl->history_head];
3843                 fl->history[fl->history_head] = new_flow;
3844
3845                 fl->history_head++;
3846                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3847
3848                 if (likely(fl->buckets[old_flow]))
3849                         fl->buckets[old_flow]--;
3850
3851                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3852                         fl->count++;
3853                         rcu_read_unlock();
3854                         return true;
3855                 }
3856         }
3857         rcu_read_unlock();
3858 #endif
3859         return false;
3860 }
3861
3862 /*
3863  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3864  * queue (may be a remote CPU queue).
3865  */
3866 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3867                               unsigned int *qtail)
3868 {
3869         struct softnet_data *sd;
3870         unsigned long flags;
3871         unsigned int qlen;
3872
3873         sd = &per_cpu(softnet_data, cpu);
3874
3875         local_irq_save(flags);
3876
3877         rps_lock(sd);
3878         if (!netif_running(skb->dev))
3879                 goto drop;
3880         qlen = skb_queue_len(&sd->input_pkt_queue);
3881         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3882                 if (qlen) {
3883 enqueue:
3884                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3885                         input_queue_tail_incr_save(sd, qtail);
3886                         rps_unlock(sd);
3887                         local_irq_restore(flags);
3888                         return NET_RX_SUCCESS;
3889                 }
3890
3891                 /* Schedule NAPI for backlog device
3892                  * We can use non atomic operation since we own the queue lock
3893                  */
3894                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3895                         if (!rps_ipi_queued(sd))
3896                                 ____napi_schedule(sd, &sd->backlog);
3897                 }
3898                 goto enqueue;
3899         }
3900
3901 drop:
3902         sd->dropped++;
3903         rps_unlock(sd);
3904
3905         local_irq_restore(flags);
3906
3907         atomic_long_inc(&skb->dev->rx_dropped);
3908         kfree_skb(skb);
3909         return NET_RX_DROP;
3910 }
3911
3912 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3913                                      struct bpf_prog *xdp_prog)
3914 {
3915         struct xdp_buff xdp;
3916         u32 act = XDP_DROP;
3917         void *orig_data;
3918         int hlen, off;
3919         u32 mac_len;
3920
3921         /* Reinjected packets coming from act_mirred or similar should
3922          * not get XDP generic processing.
3923          */
3924         if (skb_cloned(skb))
3925                 return XDP_PASS;
3926
3927         if (skb_linearize(skb))
3928                 goto do_drop;
3929
3930         /* The XDP program wants to see the packet starting at the MAC
3931          * header.
3932          */
3933         mac_len = skb->data - skb_mac_header(skb);
3934         hlen = skb_headlen(skb) + mac_len;
3935         xdp.data = skb->data - mac_len;
3936         xdp.data_end = xdp.data + hlen;
3937         xdp.data_hard_start = skb->data - skb_headroom(skb);
3938         orig_data = xdp.data;
3939
3940         act = bpf_prog_run_xdp(xdp_prog, &xdp);
3941
3942         off = xdp.data - orig_data;
3943         if (off > 0)
3944                 __skb_pull(skb, off);
3945         else if (off < 0)
3946                 __skb_push(skb, -off);
3947         skb->mac_header += off;
3948
3949         switch (act) {
3950         case XDP_REDIRECT:
3951         case XDP_TX:
3952                 __skb_push(skb, mac_len);
3953                 /* fall through */
3954         case XDP_PASS:
3955                 break;
3956
3957         default:
3958                 bpf_warn_invalid_xdp_action(act);
3959                 /* fall through */
3960         case XDP_ABORTED:
3961                 trace_xdp_exception(skb->dev, xdp_prog, act);
3962                 /* fall through */
3963         case XDP_DROP:
3964         do_drop:
3965                 kfree_skb(skb);
3966                 break;
3967         }
3968
3969         return act;
3970 }
3971
3972 /* When doing generic XDP we have to bypass the qdisc layer and the
3973  * network taps in order to match in-driver-XDP behavior.
3974  */
3975 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3976 {
3977         struct net_device *dev = skb->dev;
3978         struct netdev_queue *txq;
3979         bool free_skb = true;
3980         int cpu, rc;
3981
3982         txq = netdev_pick_tx(dev, skb, NULL);
3983         cpu = smp_processor_id();
3984         HARD_TX_LOCK(dev, txq, cpu);
3985         if (!netif_xmit_stopped(txq)) {
3986                 rc = netdev_start_xmit(skb, dev, txq, 0);
3987                 if (dev_xmit_complete(rc))
3988                         free_skb = false;
3989         }
3990         HARD_TX_UNLOCK(dev, txq);
3991         if (free_skb) {
3992                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3993                 kfree_skb(skb);
3994         }
3995 }
3996 EXPORT_SYMBOL_GPL(generic_xdp_tx);
3997
3998 static struct static_key generic_xdp_needed __read_mostly;
3999
4000 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4001 {
4002         if (xdp_prog) {
4003                 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4004                 int err;
4005
4006                 if (act != XDP_PASS) {
4007                         switch (act) {
4008                         case XDP_REDIRECT:
4009                                 err = xdp_do_generic_redirect(skb->dev, skb,
4010                                                               xdp_prog);
4011                                 if (err)
4012                                         goto out_redir;
4013                         /* fallthru to submit skb */
4014                         case XDP_TX:
4015                                 generic_xdp_tx(skb, xdp_prog);
4016                                 break;
4017                         }
4018                         return XDP_DROP;
4019                 }
4020         }
4021         return XDP_PASS;
4022 out_redir:
4023         kfree_skb(skb);
4024         return XDP_DROP;
4025 }
4026 EXPORT_SYMBOL_GPL(do_xdp_generic);
4027
4028 static int netif_rx_internal(struct sk_buff *skb)
4029 {
4030         int ret;
4031
4032         net_timestamp_check(netdev_tstamp_prequeue, skb);
4033
4034         trace_netif_rx(skb);
4035
4036         if (static_key_false(&generic_xdp_needed)) {
4037                 int ret;
4038
4039                 preempt_disable();
4040                 rcu_read_lock();
4041                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4042                 rcu_read_unlock();
4043                 preempt_enable();
4044
4045                 /* Consider XDP consuming the packet a success from
4046                  * the netdev point of view we do not want to count
4047                  * this as an error.
4048                  */
4049                 if (ret != XDP_PASS)
4050                         return NET_RX_SUCCESS;
4051         }
4052
4053 #ifdef CONFIG_RPS
4054         if (static_key_false(&rps_needed)) {
4055                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4056                 int cpu;
4057
4058                 preempt_disable();
4059                 rcu_read_lock();
4060
4061                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4062                 if (cpu < 0)
4063                         cpu = smp_processor_id();
4064
4065                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4066
4067                 rcu_read_unlock();
4068                 preempt_enable();
4069         } else
4070 #endif
4071         {
4072                 unsigned int qtail;
4073
4074                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4075                 put_cpu();
4076         }
4077         return ret;
4078 }
4079
4080 /**
4081  *      netif_rx        -       post buffer to the network code
4082  *      @skb: buffer to post
4083  *
4084  *      This function receives a packet from a device driver and queues it for
4085  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4086  *      may be dropped during processing for congestion control or by the
4087  *      protocol layers.
4088  *
4089  *      return values:
4090  *      NET_RX_SUCCESS  (no congestion)
4091  *      NET_RX_DROP     (packet was dropped)
4092  *
4093  */
4094
4095 int netif_rx(struct sk_buff *skb)
4096 {
4097         trace_netif_rx_entry(skb);
4098
4099         return netif_rx_internal(skb);
4100 }
4101 EXPORT_SYMBOL(netif_rx);
4102
4103 int netif_rx_ni(struct sk_buff *skb)
4104 {
4105         int err;
4106
4107         trace_netif_rx_ni_entry(skb);
4108
4109         preempt_disable();
4110         err = netif_rx_internal(skb);
4111         if (local_softirq_pending())
4112                 do_softirq();
4113         preempt_enable();
4114
4115         return err;
4116 }
4117 EXPORT_SYMBOL(netif_rx_ni);
4118
4119 static __latent_entropy void net_tx_action(struct softirq_action *h)
4120 {
4121         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4122
4123         if (sd->completion_queue) {
4124                 struct sk_buff *clist;
4125
4126                 local_irq_disable();
4127                 clist = sd->completion_queue;
4128                 sd->completion_queue = NULL;
4129                 local_irq_enable();
4130
4131                 while (clist) {
4132                         struct sk_buff *skb = clist;
4133
4134                         clist = clist->next;
4135
4136                         WARN_ON(refcount_read(&skb->users));
4137                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4138                                 trace_consume_skb(skb);
4139                         else
4140                                 trace_kfree_skb(skb, net_tx_action);
4141
4142                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4143                                 __kfree_skb(skb);
4144                         else
4145                                 __kfree_skb_defer(skb);
4146                 }
4147
4148                 __kfree_skb_flush();
4149         }
4150
4151         if (sd->output_queue) {
4152                 struct Qdisc *head;
4153
4154                 local_irq_disable();
4155                 head = sd->output_queue;
4156                 sd->output_queue = NULL;
4157                 sd->output_queue_tailp = &sd->output_queue;
4158                 local_irq_enable();
4159
4160                 while (head) {
4161                         struct Qdisc *q = head;
4162                         spinlock_t *root_lock;
4163
4164                         head = head->next_sched;
4165
4166                         root_lock = qdisc_lock(q);
4167                         spin_lock(root_lock);
4168                         /* We need to make sure head->next_sched is read
4169                          * before clearing __QDISC_STATE_SCHED
4170                          */
4171                         smp_mb__before_atomic();
4172                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4173                         qdisc_run(q);
4174                         spin_unlock(root_lock);
4175                 }
4176         }
4177 }
4178
4179 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4180 /* This hook is defined here for ATM LANE */
4181 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4182                              unsigned char *addr) __read_mostly;
4183 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4184 #endif
4185
4186 static inline struct sk_buff *
4187 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4188                    struct net_device *orig_dev)
4189 {
4190 #ifdef CONFIG_NET_CLS_ACT
4191         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4192         struct tcf_result cl_res;
4193
4194         /* If there's at least one ingress present somewhere (so
4195          * we get here via enabled static key), remaining devices
4196          * that are not configured with an ingress qdisc will bail
4197          * out here.
4198          */
4199         if (!cl)
4200                 return skb;
4201         if (*pt_prev) {
4202                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4203                 *pt_prev = NULL;
4204         }
4205
4206         qdisc_skb_cb(skb)->pkt_len = skb->len;
4207         skb->tc_at_ingress = 1;
4208         qdisc_bstats_cpu_update(cl->q, skb);
4209
4210         switch (tcf_classify(skb, cl, &cl_res, false)) {
4211         case TC_ACT_OK:
4212         case TC_ACT_RECLASSIFY:
4213                 skb->tc_index = TC_H_MIN(cl_res.classid);
4214                 break;
4215         case TC_ACT_SHOT:
4216                 qdisc_qstats_cpu_drop(cl->q);
4217                 kfree_skb(skb);
4218                 return NULL;
4219         case TC_ACT_STOLEN:
4220         case TC_ACT_QUEUED:
4221         case TC_ACT_TRAP:
4222                 consume_skb(skb);
4223                 return NULL;
4224         case TC_ACT_REDIRECT:
4225                 /* skb_mac_header check was done by cls/act_bpf, so
4226                  * we can safely push the L2 header back before
4227                  * redirecting to another netdev
4228                  */
4229                 __skb_push(skb, skb->mac_len);
4230                 skb_do_redirect(skb);
4231                 return NULL;
4232         default:
4233                 break;
4234         }
4235 #endif /* CONFIG_NET_CLS_ACT */
4236         return skb;
4237 }
4238
4239 /**
4240  *      netdev_is_rx_handler_busy - check if receive handler is registered
4241  *      @dev: device to check
4242  *
4243  *      Check if a receive handler is already registered for a given device.
4244  *      Return true if there one.
4245  *
4246  *      The caller must hold the rtnl_mutex.
4247  */
4248 bool netdev_is_rx_handler_busy(struct net_device *dev)
4249 {
4250         ASSERT_RTNL();
4251         return dev && rtnl_dereference(dev->rx_handler);
4252 }
4253 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4254
4255 /**
4256  *      netdev_rx_handler_register - register receive handler
4257  *      @dev: device to register a handler for
4258  *      @rx_handler: receive handler to register
4259  *      @rx_handler_data: data pointer that is used by rx handler
4260  *
4261  *      Register a receive handler for a device. This handler will then be
4262  *      called from __netif_receive_skb. A negative errno code is returned
4263  *      on a failure.
4264  *
4265  *      The caller must hold the rtnl_mutex.
4266  *
4267  *      For a general description of rx_handler, see enum rx_handler_result.
4268  */
4269 int netdev_rx_handler_register(struct net_device *dev,
4270                                rx_handler_func_t *rx_handler,
4271                                void *rx_handler_data)
4272 {
4273         if (netdev_is_rx_handler_busy(dev))
4274                 return -EBUSY;
4275
4276         /* Note: rx_handler_data must be set before rx_handler */
4277         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4278         rcu_assign_pointer(dev->rx_handler, rx_handler);
4279
4280         return 0;
4281 }
4282 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4283
4284 /**
4285  *      netdev_rx_handler_unregister - unregister receive handler
4286  *      @dev: device to unregister a handler from
4287  *
4288  *      Unregister a receive handler from a device.
4289  *
4290  *      The caller must hold the rtnl_mutex.
4291  */
4292 void netdev_rx_handler_unregister(struct net_device *dev)
4293 {
4294
4295         ASSERT_RTNL();
4296         RCU_INIT_POINTER(dev->rx_handler, NULL);
4297         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4298          * section has a guarantee to see a non NULL rx_handler_data
4299          * as well.
4300          */
4301         synchronize_net();
4302         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4303 }
4304 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4305
4306 /*
4307  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4308  * the special handling of PFMEMALLOC skbs.
4309  */
4310 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4311 {
4312         switch (skb->protocol) {
4313         case htons(ETH_P_ARP):
4314         case htons(ETH_P_IP):
4315         case htons(ETH_P_IPV6):
4316         case htons(ETH_P_8021Q):
4317         case htons(ETH_P_8021AD):
4318                 return true;
4319         default:
4320                 return false;
4321         }
4322 }
4323
4324 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4325                              int *ret, struct net_device *orig_dev)
4326 {
4327 #ifdef CONFIG_NETFILTER_INGRESS
4328         if (nf_hook_ingress_active(skb)) {
4329                 int ingress_retval;
4330
4331                 if (*pt_prev) {
4332                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4333                         *pt_prev = NULL;
4334                 }
4335
4336                 rcu_read_lock();
4337                 ingress_retval = nf_hook_ingress(skb);
4338                 rcu_read_unlock();
4339                 return ingress_retval;
4340         }
4341 #endif /* CONFIG_NETFILTER_INGRESS */
4342         return 0;
4343 }
4344
4345 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4346 {
4347         struct packet_type *ptype, *pt_prev;
4348         rx_handler_func_t *rx_handler;
4349         struct net_device *orig_dev;
4350         bool deliver_exact = false;
4351         int ret = NET_RX_DROP;
4352         __be16 type;
4353
4354         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4355
4356         trace_netif_receive_skb(skb);
4357
4358         orig_dev = skb->dev;
4359
4360         skb_reset_network_header(skb);
4361         if (!skb_transport_header_was_set(skb))
4362                 skb_reset_transport_header(skb);
4363         skb_reset_mac_len(skb);
4364
4365         pt_prev = NULL;
4366
4367 another_round:
4368         skb->skb_iif = skb->dev->ifindex;
4369
4370         __this_cpu_inc(softnet_data.processed);
4371
4372         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4373             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4374                 skb = skb_vlan_untag(skb);
4375                 if (unlikely(!skb))
4376                         goto out;
4377         }
4378
4379         if (skb_skip_tc_classify(skb))
4380                 goto skip_classify;
4381
4382         if (pfmemalloc)
4383                 goto skip_taps;
4384
4385         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4386                 if (pt_prev)
4387                         ret = deliver_skb(skb, pt_prev, orig_dev);
4388                 pt_prev = ptype;
4389         }
4390
4391         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4392                 if (pt_prev)
4393                         ret = deliver_skb(skb, pt_prev, orig_dev);
4394                 pt_prev = ptype;
4395         }
4396
4397 skip_taps:
4398 #ifdef CONFIG_NET_INGRESS
4399         if (static_key_false(&ingress_needed)) {
4400                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4401                 if (!skb)
4402                         goto out;
4403
4404                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4405                         goto out;
4406         }
4407 #endif
4408         skb_reset_tc(skb);
4409 skip_classify:
4410         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4411                 goto drop;
4412
4413         if (skb_vlan_tag_present(skb)) {
4414                 if (pt_prev) {
4415                         ret = deliver_skb(skb, pt_prev, orig_dev);
4416                         pt_prev = NULL;
4417                 }
4418                 if (vlan_do_receive(&skb))
4419                         goto another_round;
4420                 else if (unlikely(!skb))
4421                         goto out;
4422         }
4423
4424         rx_handler = rcu_dereference(skb->dev->rx_handler);
4425         if (rx_handler) {
4426                 if (pt_prev) {
4427                         ret = deliver_skb(skb, pt_prev, orig_dev);
4428                         pt_prev = NULL;
4429                 }
4430                 switch (rx_handler(&skb)) {
4431                 case RX_HANDLER_CONSUMED:
4432                         ret = NET_RX_SUCCESS;
4433                         goto out;
4434                 case RX_HANDLER_ANOTHER:
4435                         goto another_round;
4436                 case RX_HANDLER_EXACT:
4437                         deliver_exact = true;
4438                 case RX_HANDLER_PASS:
4439                         break;
4440                 default:
4441                         BUG();
4442                 }
4443         }
4444
4445         if (unlikely(skb_vlan_tag_present(skb))) {
4446                 if (skb_vlan_tag_get_id(skb))
4447                         skb->pkt_type = PACKET_OTHERHOST;
4448                 /* Note: we might in the future use prio bits
4449                  * and set skb->priority like in vlan_do_receive()
4450                  * For the time being, just ignore Priority Code Point
4451                  */
4452                 skb->vlan_tci = 0;
4453         }
4454
4455         type = skb->protocol;
4456
4457         /* deliver only exact match when indicated */
4458         if (likely(!deliver_exact)) {
4459                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4460                                        &ptype_base[ntohs(type) &
4461                                                    PTYPE_HASH_MASK]);
4462         }
4463
4464         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4465                                &orig_dev->ptype_specific);
4466
4467         if (unlikely(skb->dev != orig_dev)) {
4468                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4469                                        &skb->dev->ptype_specific);
4470         }
4471
4472         if (pt_prev) {
4473                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4474                         goto drop;
4475                 else
4476                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4477         } else {
4478 drop:
4479                 if (!deliver_exact)
4480                         atomic_long_inc(&skb->dev->rx_dropped);
4481                 else
4482                         atomic_long_inc(&skb->dev->rx_nohandler);
4483                 kfree_skb(skb);
4484                 /* Jamal, now you will not able to escape explaining
4485                  * me how you were going to use this. :-)
4486                  */
4487                 ret = NET_RX_DROP;
4488         }
4489
4490 out:
4491         return ret;
4492 }
4493
4494 static int __netif_receive_skb(struct sk_buff *skb)
4495 {
4496         int ret;
4497
4498         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4499                 unsigned int noreclaim_flag;
4500
4501                 /*
4502                  * PFMEMALLOC skbs are special, they should
4503                  * - be delivered to SOCK_MEMALLOC sockets only
4504                  * - stay away from userspace
4505                  * - have bounded memory usage
4506                  *
4507                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4508                  * context down to all allocation sites.
4509                  */
4510                 noreclaim_flag = memalloc_noreclaim_save();
4511                 ret = __netif_receive_skb_core(skb, true);
4512                 memalloc_noreclaim_restore(noreclaim_flag);
4513         } else
4514                 ret = __netif_receive_skb_core(skb, false);
4515
4516         return ret;
4517 }
4518
4519 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4520 {
4521         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4522         struct bpf_prog *new = xdp->prog;
4523         int ret = 0;
4524
4525         switch (xdp->command) {
4526         case XDP_SETUP_PROG:
4527                 rcu_assign_pointer(dev->xdp_prog, new);
4528                 if (old)
4529                         bpf_prog_put(old);
4530
4531                 if (old && !new) {
4532                         static_key_slow_dec(&generic_xdp_needed);
4533                 } else if (new && !old) {
4534                         static_key_slow_inc(&generic_xdp_needed);
4535                         dev_disable_lro(dev);
4536                 }
4537                 break;
4538
4539         case XDP_QUERY_PROG:
4540                 xdp->prog_attached = !!old;
4541                 xdp->prog_id = old ? old->aux->id : 0;
4542                 break;
4543
4544         default:
4545                 ret = -EINVAL;
4546                 break;
4547         }
4548
4549         return ret;
4550 }
4551
4552 static int netif_receive_skb_internal(struct sk_buff *skb)
4553 {
4554         int ret;
4555
4556         net_timestamp_check(netdev_tstamp_prequeue, skb);
4557
4558         if (skb_defer_rx_timestamp(skb))
4559                 return NET_RX_SUCCESS;
4560
4561         if (static_key_false(&generic_xdp_needed)) {
4562                 int ret;
4563
4564                 preempt_disable();
4565                 rcu_read_lock();
4566                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4567                 rcu_read_unlock();
4568                 preempt_enable();
4569
4570                 if (ret != XDP_PASS)
4571                         return NET_RX_DROP;
4572         }
4573
4574         rcu_read_lock();
4575 #ifdef CONFIG_RPS
4576         if (static_key_false(&rps_needed)) {
4577                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4578                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4579
4580                 if (cpu >= 0) {
4581                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4582                         rcu_read_unlock();
4583                         return ret;
4584                 }
4585         }
4586 #endif
4587         ret = __netif_receive_skb(skb);
4588         rcu_read_unlock();
4589         return ret;
4590 }
4591
4592 /**
4593  *      netif_receive_skb - process receive buffer from network
4594  *      @skb: buffer to process
4595  *
4596  *      netif_receive_skb() is the main receive data processing function.
4597  *      It always succeeds. The buffer may be dropped during processing
4598  *      for congestion control or by the protocol layers.
4599  *
4600  *      This function may only be called from softirq context and interrupts
4601  *      should be enabled.
4602  *
4603  *      Return values (usually ignored):
4604  *      NET_RX_SUCCESS: no congestion
4605  *      NET_RX_DROP: packet was dropped
4606  */
4607 int netif_receive_skb(struct sk_buff *skb)
4608 {
4609         trace_netif_receive_skb_entry(skb);
4610
4611         return netif_receive_skb_internal(skb);
4612 }
4613 EXPORT_SYMBOL(netif_receive_skb);
4614
4615 DEFINE_PER_CPU(struct work_struct, flush_works);
4616
4617 /* Network device is going away, flush any packets still pending */
4618 static void flush_backlog(struct work_struct *work)
4619 {
4620         struct sk_buff *skb, *tmp;
4621         struct softnet_data *sd;
4622
4623         local_bh_disable();
4624         sd = this_cpu_ptr(&softnet_data);
4625
4626         local_irq_disable();
4627         rps_lock(sd);
4628         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4629                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4630                         __skb_unlink(skb, &sd->input_pkt_queue);
4631                         dev_kfree_skb_irq(skb);
4632                         input_queue_head_incr(sd);
4633                 }
4634         }
4635         rps_unlock(sd);
4636         local_irq_enable();
4637
4638         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4639                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4640                         __skb_unlink(skb, &sd->process_queue);
4641                         kfree_skb(skb);
4642                         input_queue_head_incr(sd);
4643                 }
4644         }
4645         local_bh_enable();
4646 }
4647
4648 static void flush_all_backlogs(void)
4649 {
4650         unsigned int cpu;
4651
4652         get_online_cpus();
4653
4654         for_each_online_cpu(cpu)
4655                 queue_work_on(cpu, system_highpri_wq,
4656                               per_cpu_ptr(&flush_works, cpu));
4657
4658         for_each_online_cpu(cpu)
4659                 flush_work(per_cpu_ptr(&flush_works, cpu));
4660
4661         put_online_cpus();
4662 }
4663
4664 static int napi_gro_complete(struct sk_buff *skb)
4665 {
4666         struct packet_offload *ptype;
4667         __be16 type = skb->protocol;
4668         struct list_head *head = &offload_base;
4669         int err = -ENOENT;
4670
4671         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4672
4673         if (NAPI_GRO_CB(skb)->count == 1) {
4674                 skb_shinfo(skb)->gso_size = 0;
4675                 goto out;
4676         }
4677
4678         rcu_read_lock();
4679         list_for_each_entry_rcu(ptype, head, list) {
4680                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4681                         continue;
4682
4683                 err = ptype->callbacks.gro_complete(skb, 0);
4684                 break;
4685         }
4686         rcu_read_unlock();
4687
4688         if (err) {
4689                 WARN_ON(&ptype->list == head);
4690                 kfree_skb(skb);
4691                 return NET_RX_SUCCESS;
4692         }
4693
4694 out:
4695         return netif_receive_skb_internal(skb);
4696 }
4697
4698 /* napi->gro_list contains packets ordered by age.
4699  * youngest packets at the head of it.
4700  * Complete skbs in reverse order to reduce latencies.
4701  */
4702 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4703 {
4704         struct sk_buff *skb, *prev = NULL;
4705
4706         /* scan list and build reverse chain */
4707         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4708                 skb->prev = prev;
4709                 prev = skb;
4710         }
4711
4712         for (skb = prev; skb; skb = prev) {
4713                 skb->next = NULL;
4714
4715                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4716                         return;
4717
4718                 prev = skb->prev;
4719                 napi_gro_complete(skb);
4720                 napi->gro_count--;
4721         }
4722
4723         napi->gro_list = NULL;
4724 }
4725 EXPORT_SYMBOL(napi_gro_flush);
4726
4727 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4728 {
4729         struct sk_buff *p;
4730         unsigned int maclen = skb->dev->hard_header_len;
4731         u32 hash = skb_get_hash_raw(skb);
4732
4733         for (p = napi->gro_list; p; p = p->next) {
4734                 unsigned long diffs;
4735
4736                 NAPI_GRO_CB(p)->flush = 0;
4737
4738                 if (hash != skb_get_hash_raw(p)) {
4739                         NAPI_GRO_CB(p)->same_flow = 0;
4740                         continue;
4741                 }
4742
4743                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4744                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4745                 diffs |= skb_metadata_dst_cmp(p, skb);
4746                 if (maclen == ETH_HLEN)
4747                         diffs |= compare_ether_header(skb_mac_header(p),
4748                                                       skb_mac_header(skb));
4749                 else if (!diffs)
4750                         diffs = memcmp(skb_mac_header(p),
4751                                        skb_mac_header(skb),
4752                                        maclen);
4753                 NAPI_GRO_CB(p)->same_flow = !diffs;
4754         }
4755 }
4756
4757 static void skb_gro_reset_offset(struct sk_buff *skb)
4758 {
4759         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4760         const skb_frag_t *frag0 = &pinfo->frags[0];
4761
4762         NAPI_GRO_CB(skb)->data_offset = 0;
4763         NAPI_GRO_CB(skb)->frag0 = NULL;
4764         NAPI_GRO_CB(skb)->frag0_len = 0;
4765
4766         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4767             pinfo->nr_frags &&
4768             !PageHighMem(skb_frag_page(frag0)) &&
4769             (!NET_IP_ALIGN || !(skb_frag_off(frag0) & 3))) {
4770                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4771                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4772                                                     skb_frag_size(frag0),
4773                                                     skb->end - skb->tail);
4774         }
4775 }
4776
4777 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4778 {
4779         struct skb_shared_info *pinfo = skb_shinfo(skb);
4780
4781         BUG_ON(skb->end - skb->tail < grow);
4782
4783         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4784
4785         skb->data_len -= grow;
4786         skb->tail += grow;
4787
4788         pinfo->frags[0].page_offset += grow;
4789         skb_frag_size_sub(&pinfo->frags[0], grow);
4790
4791         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4792                 skb_frag_unref(skb, 0);
4793                 memmove(pinfo->frags, pinfo->frags + 1,
4794                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4795         }
4796 }
4797
4798 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4799 {
4800         struct sk_buff **pp = NULL;
4801         struct packet_offload *ptype;
4802         __be16 type = skb->protocol;
4803         struct list_head *head = &offload_base;
4804         int same_flow;
4805         enum gro_result ret;
4806         int grow;
4807
4808         if (netif_elide_gro(skb->dev))
4809                 goto normal;
4810
4811         gro_list_prepare(napi, skb);
4812
4813         rcu_read_lock();
4814         list_for_each_entry_rcu(ptype, head, list) {
4815                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4816                         continue;
4817
4818                 skb_set_network_header(skb, skb_gro_offset(skb));
4819                 skb_reset_mac_len(skb);
4820                 NAPI_GRO_CB(skb)->same_flow = 0;
4821                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4822                 NAPI_GRO_CB(skb)->free = 0;
4823                 NAPI_GRO_CB(skb)->encap_mark = 0;
4824                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4825                 NAPI_GRO_CB(skb)->is_fou = 0;
4826                 NAPI_GRO_CB(skb)->is_atomic = 1;
4827                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4828
4829                 /* Setup for GRO checksum validation */
4830                 switch (skb->ip_summed) {
4831                 case CHECKSUM_COMPLETE:
4832                         NAPI_GRO_CB(skb)->csum = skb->csum;
4833                         NAPI_GRO_CB(skb)->csum_valid = 1;
4834                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4835                         break;
4836                 case CHECKSUM_UNNECESSARY:
4837                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4838                         NAPI_GRO_CB(skb)->csum_valid = 0;
4839                         break;
4840                 default:
4841                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4842                         NAPI_GRO_CB(skb)->csum_valid = 0;
4843                 }
4844
4845                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4846                 break;
4847         }
4848         rcu_read_unlock();
4849
4850         if (&ptype->list == head)
4851                 goto normal;
4852
4853         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4854                 ret = GRO_CONSUMED;
4855                 goto ok;
4856         }
4857
4858         same_flow = NAPI_GRO_CB(skb)->same_flow;
4859         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4860
4861         if (pp) {
4862                 struct sk_buff *nskb = *pp;
4863
4864                 *pp = nskb->next;
4865                 nskb->next = NULL;
4866                 napi_gro_complete(nskb);
4867                 napi->gro_count--;
4868         }
4869
4870         if (same_flow)
4871                 goto ok;
4872
4873         if (NAPI_GRO_CB(skb)->flush)
4874                 goto normal;
4875
4876         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4877                 struct sk_buff *nskb = napi->gro_list;
4878
4879                 /* locate the end of the list to select the 'oldest' flow */
4880                 while (nskb->next) {
4881                         pp = &nskb->next;
4882                         nskb = *pp;
4883                 }
4884                 *pp = NULL;
4885                 nskb->next = NULL;
4886                 napi_gro_complete(nskb);
4887         } else {
4888                 napi->gro_count++;
4889         }
4890         NAPI_GRO_CB(skb)->count = 1;
4891         NAPI_GRO_CB(skb)->age = jiffies;
4892         NAPI_GRO_CB(skb)->last = skb;
4893         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4894         skb->next = napi->gro_list;
4895         napi->gro_list = skb;
4896         ret = GRO_HELD;
4897
4898 pull:
4899         grow = skb_gro_offset(skb) - skb_headlen(skb);
4900         if (grow > 0)
4901                 gro_pull_from_frag0(skb, grow);
4902 ok:
4903         return ret;
4904
4905 normal:
4906         ret = GRO_NORMAL;
4907         goto pull;
4908 }
4909
4910 struct packet_offload *gro_find_receive_by_type(__be16 type)
4911 {
4912         struct list_head *offload_head = &offload_base;
4913         struct packet_offload *ptype;
4914
4915         list_for_each_entry_rcu(ptype, offload_head, list) {
4916                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4917                         continue;
4918                 return ptype;
4919         }
4920         return NULL;
4921 }
4922 EXPORT_SYMBOL(gro_find_receive_by_type);
4923
4924 struct packet_offload *gro_find_complete_by_type(__be16 type)
4925 {
4926         struct list_head *offload_head = &offload_base;
4927         struct packet_offload *ptype;
4928
4929         list_for_each_entry_rcu(ptype, offload_head, list) {
4930                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4931                         continue;
4932                 return ptype;
4933         }
4934         return NULL;
4935 }
4936 EXPORT_SYMBOL(gro_find_complete_by_type);
4937
4938 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4939 {
4940         skb_dst_drop(skb);
4941         secpath_reset(skb);
4942         kmem_cache_free(skbuff_head_cache, skb);
4943 }
4944
4945 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4946 {
4947         switch (ret) {
4948         case GRO_NORMAL:
4949                 if (netif_receive_skb_internal(skb))
4950                         ret = GRO_DROP;
4951                 break;
4952
4953         case GRO_DROP:
4954                 kfree_skb(skb);
4955                 break;
4956
4957         case GRO_MERGED_FREE:
4958                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4959                         napi_skb_free_stolen_head(skb);
4960                 else
4961                         __kfree_skb(skb);
4962                 break;
4963
4964         case GRO_HELD:
4965         case GRO_MERGED:
4966         case GRO_CONSUMED:
4967                 break;
4968         }
4969
4970         return ret;
4971 }
4972
4973 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4974 {
4975         skb_mark_napi_id(skb, napi);
4976         trace_napi_gro_receive_entry(skb);
4977
4978         skb_gro_reset_offset(skb);
4979
4980         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4981 }
4982 EXPORT_SYMBOL(napi_gro_receive);
4983
4984 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4985 {
4986         if (unlikely(skb->pfmemalloc)) {
4987                 consume_skb(skb);
4988                 return;
4989         }
4990         __skb_pull(skb, skb_headlen(skb));
4991         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4992         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4993         skb->vlan_tci = 0;
4994         skb->dev = napi->dev;
4995         skb->skb_iif = 0;
4996
4997         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
4998         skb->pkt_type = PACKET_HOST;
4999
5000         skb->encapsulation = 0;
5001         skb_shinfo(skb)->gso_type = 0;
5002         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5003         secpath_reset(skb);
5004
5005         napi->skb = skb;
5006 }
5007
5008 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5009 {
5010         struct sk_buff *skb = napi->skb;
5011
5012         if (!skb) {
5013                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5014                 if (skb) {
5015                         napi->skb = skb;
5016                         skb_mark_napi_id(skb, napi);
5017                 }
5018         }
5019         return skb;
5020 }
5021 EXPORT_SYMBOL(napi_get_frags);
5022
5023 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5024                                       struct sk_buff *skb,
5025                                       gro_result_t ret)
5026 {
5027         switch (ret) {
5028         case GRO_NORMAL:
5029         case GRO_HELD:
5030                 __skb_push(skb, ETH_HLEN);
5031                 skb->protocol = eth_type_trans(skb, skb->dev);
5032                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5033                         ret = GRO_DROP;
5034                 break;
5035
5036         case GRO_DROP:
5037                 napi_reuse_skb(napi, skb);
5038                 break;
5039
5040         case GRO_MERGED_FREE:
5041                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5042                         napi_skb_free_stolen_head(skb);
5043                 else
5044                         napi_reuse_skb(napi, skb);
5045                 break;
5046
5047         case GRO_MERGED:
5048         case GRO_CONSUMED:
5049                 break;
5050         }
5051
5052         return ret;
5053 }
5054
5055 /* Upper GRO stack assumes network header starts at gro_offset=0
5056  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5057  * We copy ethernet header into skb->data to have a common layout.
5058  */
5059 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5060 {
5061         struct sk_buff *skb = napi->skb;
5062         const struct ethhdr *eth;
5063         unsigned int hlen = sizeof(*eth);
5064
5065         napi->skb = NULL;
5066
5067         skb_reset_mac_header(skb);
5068         skb_gro_reset_offset(skb);
5069
5070         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5071                 eth = skb_gro_header_slow(skb, hlen, 0);
5072                 if (unlikely(!eth)) {
5073                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5074                                              __func__, napi->dev->name);
5075                         napi_reuse_skb(napi, skb);
5076                         return NULL;
5077                 }
5078         } else {
5079                 eth = (const struct ethhdr *)skb->data;
5080                 gro_pull_from_frag0(skb, hlen);
5081                 NAPI_GRO_CB(skb)->frag0 += hlen;
5082                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5083         }
5084         __skb_pull(skb, hlen);
5085
5086         /*
5087          * This works because the only protocols we care about don't require
5088          * special handling.
5089          * We'll fix it up properly in napi_frags_finish()
5090          */
5091         skb->protocol = eth->h_proto;
5092
5093         return skb;
5094 }
5095
5096 gro_result_t napi_gro_frags(struct napi_struct *napi)
5097 {
5098         struct sk_buff *skb = napi_frags_skb(napi);
5099
5100         if (!skb)
5101                 return GRO_DROP;
5102
5103         trace_napi_gro_frags_entry(skb);
5104
5105         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5106 }
5107 EXPORT_SYMBOL(napi_gro_frags);
5108
5109 /* Compute the checksum from gro_offset and return the folded value
5110  * after adding in any pseudo checksum.
5111  */
5112 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5113 {
5114         __wsum wsum;
5115         __sum16 sum;
5116
5117         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5118
5119         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5120         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5121         if (likely(!sum)) {
5122                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5123                     !skb->csum_complete_sw)
5124                         netdev_rx_csum_fault(skb->dev);
5125         }
5126
5127         NAPI_GRO_CB(skb)->csum = wsum;
5128         NAPI_GRO_CB(skb)->csum_valid = 1;
5129
5130         return sum;
5131 }
5132 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5133
5134 static void net_rps_send_ipi(struct softnet_data *remsd)
5135 {
5136 #ifdef CONFIG_RPS
5137         while (remsd) {
5138                 struct softnet_data *next = remsd->rps_ipi_next;
5139
5140                 if (cpu_online(remsd->cpu))
5141                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5142                 remsd = next;
5143         }
5144 #endif
5145 }
5146
5147 /*
5148  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5149  * Note: called with local irq disabled, but exits with local irq enabled.
5150  */
5151 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5152 {
5153 #ifdef CONFIG_RPS
5154         struct softnet_data *remsd = sd->rps_ipi_list;
5155
5156         if (remsd) {
5157                 sd->rps_ipi_list = NULL;
5158
5159                 local_irq_enable();
5160
5161                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5162                 net_rps_send_ipi(remsd);
5163         } else
5164 #endif
5165                 local_irq_enable();
5166 }
5167
5168 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5169 {
5170 #ifdef CONFIG_RPS
5171         return sd->rps_ipi_list != NULL;
5172 #else
5173         return false;
5174 #endif
5175 }
5176
5177 static int process_backlog(struct napi_struct *napi, int quota)
5178 {
5179         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5180         bool again = true;
5181         int work = 0;
5182
5183         /* Check if we have pending ipi, its better to send them now,
5184          * not waiting net_rx_action() end.
5185          */
5186         if (sd_has_rps_ipi_waiting(sd)) {
5187                 local_irq_disable();
5188                 net_rps_action_and_irq_enable(sd);
5189         }
5190
5191         napi->weight = READ_ONCE(dev_rx_weight);
5192         while (again) {
5193                 struct sk_buff *skb;
5194
5195                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5196                         rcu_read_lock();
5197                         __netif_receive_skb(skb);
5198                         rcu_read_unlock();
5199                         input_queue_head_incr(sd);
5200                         if (++work >= quota)
5201                                 return work;
5202
5203                 }
5204
5205                 local_irq_disable();
5206                 rps_lock(sd);
5207                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5208                         /*
5209                          * Inline a custom version of __napi_complete().
5210                          * only current cpu owns and manipulates this napi,
5211                          * and NAPI_STATE_SCHED is the only possible flag set
5212                          * on backlog.
5213                          * We can use a plain write instead of clear_bit(),
5214                          * and we dont need an smp_mb() memory barrier.
5215                          */
5216                         napi->state = 0;
5217                         again = false;
5218                 } else {
5219                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5220                                                    &sd->process_queue);
5221                 }
5222                 rps_unlock(sd);
5223                 local_irq_enable();
5224         }
5225
5226         return work;
5227 }
5228
5229 /**
5230  * __napi_schedule - schedule for receive
5231  * @n: entry to schedule
5232  *
5233  * The entry's receive function will be scheduled to run.
5234  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5235  */
5236 void __napi_schedule(struct napi_struct *n)
5237 {
5238         unsigned long flags;
5239
5240         local_irq_save(flags);
5241         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5242         local_irq_restore(flags);
5243 }
5244 EXPORT_SYMBOL(__napi_schedule);
5245
5246 /**
5247  *      napi_schedule_prep - check if napi can be scheduled
5248  *      @n: napi context
5249  *
5250  * Test if NAPI routine is already running, and if not mark
5251  * it as running.  This is used as a condition variable
5252  * insure only one NAPI poll instance runs.  We also make
5253  * sure there is no pending NAPI disable.
5254  */
5255 bool napi_schedule_prep(struct napi_struct *n)
5256 {
5257         unsigned long val, new;
5258
5259         do {
5260                 val = READ_ONCE(n->state);
5261                 if (unlikely(val & NAPIF_STATE_DISABLE))
5262                         return false;
5263                 new = val | NAPIF_STATE_SCHED;
5264
5265                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5266                  * This was suggested by Alexander Duyck, as compiler
5267                  * emits better code than :
5268                  * if (val & NAPIF_STATE_SCHED)
5269                  *     new |= NAPIF_STATE_MISSED;
5270                  */
5271                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5272                                                    NAPIF_STATE_MISSED;
5273         } while (cmpxchg(&n->state, val, new) != val);
5274
5275         return !(val & NAPIF_STATE_SCHED);
5276 }
5277 EXPORT_SYMBOL(napi_schedule_prep);
5278
5279 /**
5280  * __napi_schedule_irqoff - schedule for receive
5281  * @n: entry to schedule
5282  *
5283  * Variant of __napi_schedule() assuming hard irqs are masked.
5284  *
5285  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5286  * because the interrupt disabled assumption might not be true
5287  * due to force-threaded interrupts and spinlock substitution.
5288  */
5289 void __napi_schedule_irqoff(struct napi_struct *n)
5290 {
5291         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5292                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5293         else
5294                 __napi_schedule(n);
5295 }
5296 EXPORT_SYMBOL(__napi_schedule_irqoff);
5297
5298 bool napi_complete_done(struct napi_struct *n, int work_done)
5299 {
5300         unsigned long flags, val, new;
5301
5302         /*
5303          * 1) Don't let napi dequeue from the cpu poll list
5304          *    just in case its running on a different cpu.
5305          * 2) If we are busy polling, do nothing here, we have
5306          *    the guarantee we will be called later.
5307          */
5308         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5309                                  NAPIF_STATE_IN_BUSY_POLL)))
5310                 return false;
5311
5312         if (n->gro_list) {
5313                 unsigned long timeout = 0;
5314
5315                 if (work_done)
5316                         timeout = n->dev->gro_flush_timeout;
5317
5318                 /* When the NAPI instance uses a timeout and keeps postponing
5319                  * it, we need to bound somehow the time packets are kept in
5320                  * the GRO layer
5321                  */
5322                 napi_gro_flush(n, !!timeout);
5323                 if (timeout)
5324                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5325                                       HRTIMER_MODE_REL_PINNED);
5326         }
5327         if (unlikely(!list_empty(&n->poll_list))) {
5328                 /* If n->poll_list is not empty, we need to mask irqs */
5329                 local_irq_save(flags);
5330                 list_del_init(&n->poll_list);
5331                 local_irq_restore(flags);
5332         }
5333
5334         do {
5335                 val = READ_ONCE(n->state);
5336
5337                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5338
5339                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5340
5341                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5342                  * because we will call napi->poll() one more time.
5343                  * This C code was suggested by Alexander Duyck to help gcc.
5344                  */
5345                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5346                                                     NAPIF_STATE_SCHED;
5347         } while (cmpxchg(&n->state, val, new) != val);
5348
5349         if (unlikely(val & NAPIF_STATE_MISSED)) {
5350                 __napi_schedule(n);
5351                 return false;
5352         }
5353
5354         return true;
5355 }
5356 EXPORT_SYMBOL(napi_complete_done);
5357
5358 /* must be called under rcu_read_lock(), as we dont take a reference */
5359 static struct napi_struct *napi_by_id(unsigned int napi_id)
5360 {
5361         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5362         struct napi_struct *napi;
5363
5364         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5365                 if (napi->napi_id == napi_id)
5366                         return napi;
5367
5368         return NULL;
5369 }
5370
5371 #if defined(CONFIG_NET_RX_BUSY_POLL)
5372
5373 #define BUSY_POLL_BUDGET 8
5374
5375 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5376 {
5377         int rc;
5378
5379         /* Busy polling means there is a high chance device driver hard irq
5380          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5381          * set in napi_schedule_prep().
5382          * Since we are about to call napi->poll() once more, we can safely
5383          * clear NAPI_STATE_MISSED.
5384          *
5385          * Note: x86 could use a single "lock and ..." instruction
5386          * to perform these two clear_bit()
5387          */
5388         clear_bit(NAPI_STATE_MISSED, &napi->state);
5389         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5390
5391         local_bh_disable();
5392
5393         /* All we really want here is to re-enable device interrupts.
5394          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5395          */
5396         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5397         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5398         netpoll_poll_unlock(have_poll_lock);
5399         if (rc == BUSY_POLL_BUDGET)
5400                 __napi_schedule(napi);
5401         local_bh_enable();
5402 }
5403
5404 void napi_busy_loop(unsigned int napi_id,
5405                     bool (*loop_end)(void *, unsigned long),
5406                     void *loop_end_arg)
5407 {
5408         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5409         int (*napi_poll)(struct napi_struct *napi, int budget);
5410         void *have_poll_lock = NULL;
5411         struct napi_struct *napi;
5412
5413 restart:
5414         napi_poll = NULL;
5415
5416         rcu_read_lock();
5417
5418         napi = napi_by_id(napi_id);
5419         if (!napi)
5420                 goto out;
5421
5422         preempt_disable();
5423         for (;;) {
5424                 int work = 0;
5425
5426                 local_bh_disable();
5427                 if (!napi_poll) {
5428                         unsigned long val = READ_ONCE(napi->state);
5429
5430                         /* If multiple threads are competing for this napi,
5431                          * we avoid dirtying napi->state as much as we can.
5432                          */
5433                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5434                                    NAPIF_STATE_IN_BUSY_POLL))
5435                                 goto count;
5436                         if (cmpxchg(&napi->state, val,
5437                                     val | NAPIF_STATE_IN_BUSY_POLL |
5438                                           NAPIF_STATE_SCHED) != val)
5439                                 goto count;
5440                         have_poll_lock = netpoll_poll_lock(napi);
5441                         napi_poll = napi->poll;
5442                 }
5443                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5444                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5445 count:
5446                 if (work > 0)
5447                         __NET_ADD_STATS(dev_net(napi->dev),
5448                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5449                 local_bh_enable();
5450
5451                 if (!loop_end || loop_end(loop_end_arg, start_time))
5452                         break;
5453
5454                 if (unlikely(need_resched())) {
5455                         if (napi_poll)
5456                                 busy_poll_stop(napi, have_poll_lock);
5457                         preempt_enable();
5458                         rcu_read_unlock();
5459                         cond_resched();
5460                         if (loop_end(loop_end_arg, start_time))
5461                                 return;
5462                         goto restart;
5463                 }
5464                 cpu_relax();
5465         }
5466         if (napi_poll)
5467                 busy_poll_stop(napi, have_poll_lock);
5468         preempt_enable();
5469 out:
5470         rcu_read_unlock();
5471 }
5472 EXPORT_SYMBOL(napi_busy_loop);
5473
5474 #endif /* CONFIG_NET_RX_BUSY_POLL */
5475
5476 static void napi_hash_add(struct napi_struct *napi)
5477 {
5478         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5479             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5480                 return;
5481
5482         spin_lock(&napi_hash_lock);
5483
5484         /* 0..NR_CPUS range is reserved for sender_cpu use */
5485         do {
5486                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5487                         napi_gen_id = MIN_NAPI_ID;
5488         } while (napi_by_id(napi_gen_id));
5489         napi->napi_id = napi_gen_id;
5490
5491         hlist_add_head_rcu(&napi->napi_hash_node,
5492                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5493
5494         spin_unlock(&napi_hash_lock);
5495 }
5496
5497 /* Warning : caller is responsible to make sure rcu grace period
5498  * is respected before freeing memory containing @napi
5499  */
5500 bool napi_hash_del(struct napi_struct *napi)
5501 {
5502         bool rcu_sync_needed = false;
5503
5504         spin_lock(&napi_hash_lock);
5505
5506         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5507                 rcu_sync_needed = true;
5508                 hlist_del_rcu(&napi->napi_hash_node);
5509         }
5510         spin_unlock(&napi_hash_lock);
5511         return rcu_sync_needed;
5512 }
5513 EXPORT_SYMBOL_GPL(napi_hash_del);
5514
5515 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5516 {
5517         struct napi_struct *napi;
5518
5519         napi = container_of(timer, struct napi_struct, timer);
5520
5521         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5522          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5523          */
5524         if (napi->gro_list && !napi_disable_pending(napi) &&
5525             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5526                 __napi_schedule_irqoff(napi);
5527
5528         return HRTIMER_NORESTART;
5529 }
5530
5531 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5532                     int (*poll)(struct napi_struct *, int), int weight)
5533 {
5534         INIT_LIST_HEAD(&napi->poll_list);
5535         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5536         napi->timer.function = napi_watchdog;
5537         napi->gro_count = 0;
5538         napi->gro_list = NULL;
5539         napi->skb = NULL;
5540         napi->poll = poll;
5541         if (weight > NAPI_POLL_WEIGHT)
5542                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5543                             weight, dev->name);
5544         napi->weight = weight;
5545         napi->dev = dev;
5546 #ifdef CONFIG_NETPOLL
5547         napi->poll_owner = -1;
5548 #endif
5549         set_bit(NAPI_STATE_SCHED, &napi->state);
5550         set_bit(NAPI_STATE_NPSVC, &napi->state);
5551         list_add_rcu(&napi->dev_list, &dev->napi_list);
5552         napi_hash_add(napi);
5553 }
5554 EXPORT_SYMBOL(netif_napi_add);
5555
5556 void napi_disable(struct napi_struct *n)
5557 {
5558         might_sleep();
5559         set_bit(NAPI_STATE_DISABLE, &n->state);
5560
5561         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5562                 msleep(1);
5563         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5564                 msleep(1);
5565
5566         hrtimer_cancel(&n->timer);
5567
5568         clear_bit(NAPI_STATE_DISABLE, &n->state);
5569 }
5570 EXPORT_SYMBOL(napi_disable);
5571
5572 /* Must be called in process context */
5573 void netif_napi_del(struct napi_struct *napi)
5574 {
5575         might_sleep();
5576         if (napi_hash_del(napi))
5577                 synchronize_net();
5578         list_del_init(&napi->dev_list);
5579         napi_free_frags(napi);
5580
5581         kfree_skb_list(napi->gro_list);
5582         napi->gro_list = NULL;
5583         napi->gro_count = 0;
5584 }
5585 EXPORT_SYMBOL(netif_napi_del);
5586
5587 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5588 {
5589         void *have;
5590         int work, weight;
5591
5592         list_del_init(&n->poll_list);
5593
5594         have = netpoll_poll_lock(n);
5595
5596         weight = n->weight;
5597
5598         /* This NAPI_STATE_SCHED test is for avoiding a race
5599          * with netpoll's poll_napi().  Only the entity which
5600          * obtains the lock and sees NAPI_STATE_SCHED set will
5601          * actually make the ->poll() call.  Therefore we avoid
5602          * accidentally calling ->poll() when NAPI is not scheduled.
5603          */
5604         work = 0;
5605         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5606                 work = n->poll(n, weight);
5607                 trace_napi_poll(n, work, weight);
5608         }
5609
5610         WARN_ON_ONCE(work > weight);
5611
5612         if (likely(work < weight))
5613                 goto out_unlock;
5614
5615         /* Drivers must not modify the NAPI state if they
5616          * consume the entire weight.  In such cases this code
5617          * still "owns" the NAPI instance and therefore can
5618          * move the instance around on the list at-will.
5619          */
5620         if (unlikely(napi_disable_pending(n))) {
5621                 napi_complete(n);
5622                 goto out_unlock;
5623         }
5624
5625         if (n->gro_list) {
5626                 /* flush too old packets
5627                  * If HZ < 1000, flush all packets.
5628                  */
5629                 napi_gro_flush(n, HZ >= 1000);
5630         }
5631
5632         /* Some drivers may have called napi_schedule
5633          * prior to exhausting their budget.
5634          */
5635         if (unlikely(!list_empty(&n->poll_list))) {
5636                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5637                              n->dev ? n->dev->name : "backlog");
5638                 goto out_unlock;
5639         }
5640
5641         list_add_tail(&n->poll_list, repoll);
5642
5643 out_unlock:
5644         netpoll_poll_unlock(have);
5645
5646         return work;
5647 }
5648
5649 static __latent_entropy void net_rx_action(struct softirq_action *h)
5650 {
5651         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5652         unsigned long time_limit = jiffies +
5653                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
5654         int budget = READ_ONCE(netdev_budget);
5655         LIST_HEAD(list);
5656         LIST_HEAD(repoll);
5657
5658         local_irq_disable();
5659         list_splice_init(&sd->poll_list, &list);
5660         local_irq_enable();
5661
5662         for (;;) {
5663                 struct napi_struct *n;
5664
5665                 if (list_empty(&list)) {
5666                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5667                                 goto out;
5668                         break;
5669                 }
5670
5671                 n = list_first_entry(&list, struct napi_struct, poll_list);
5672                 budget -= napi_poll(n, &repoll);
5673
5674                 /* If softirq window is exhausted then punt.
5675                  * Allow this to run for 2 jiffies since which will allow
5676                  * an average latency of 1.5/HZ.
5677                  */
5678                 if (unlikely(budget <= 0 ||
5679                              time_after_eq(jiffies, time_limit))) {
5680                         sd->time_squeeze++;
5681                         break;
5682                 }
5683         }
5684
5685         local_irq_disable();
5686
5687         list_splice_tail_init(&sd->poll_list, &list);
5688         list_splice_tail(&repoll, &list);
5689         list_splice(&list, &sd->poll_list);
5690         if (!list_empty(&sd->poll_list))
5691                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5692
5693         net_rps_action_and_irq_enable(sd);
5694 out:
5695         __kfree_skb_flush();
5696 }
5697
5698 struct netdev_adjacent {
5699         struct net_device *dev;
5700
5701         /* upper master flag, there can only be one master device per list */
5702         bool master;
5703
5704         /* counter for the number of times this device was added to us */
5705         u16 ref_nr;
5706
5707         /* private field for the users */
5708         void *private;
5709
5710         struct list_head list;
5711         struct rcu_head rcu;
5712 };
5713
5714 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5715                                                  struct list_head *adj_list)
5716 {
5717         struct netdev_adjacent *adj;
5718
5719         list_for_each_entry(adj, adj_list, list) {
5720                 if (adj->dev == adj_dev)
5721                         return adj;
5722         }
5723         return NULL;
5724 }
5725
5726 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5727 {
5728         struct net_device *dev = data;
5729
5730         return upper_dev == dev;
5731 }
5732
5733 /**
5734  * netdev_has_upper_dev - Check if device is linked to an upper device
5735  * @dev: device
5736  * @upper_dev: upper device to check
5737  *
5738  * Find out if a device is linked to specified upper device and return true
5739  * in case it is. Note that this checks only immediate upper device,
5740  * not through a complete stack of devices. The caller must hold the RTNL lock.
5741  */
5742 bool netdev_has_upper_dev(struct net_device *dev,
5743                           struct net_device *upper_dev)
5744 {
5745         ASSERT_RTNL();
5746
5747         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5748                                              upper_dev);
5749 }
5750 EXPORT_SYMBOL(netdev_has_upper_dev);
5751
5752 /**
5753  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5754  * @dev: device
5755  * @upper_dev: upper device to check
5756  *
5757  * Find out if a device is linked to specified upper device and return true
5758  * in case it is. Note that this checks the entire upper device chain.
5759  * The caller must hold rcu lock.
5760  */
5761
5762 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5763                                   struct net_device *upper_dev)
5764 {
5765         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5766                                                upper_dev);
5767 }
5768 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5769
5770 /**
5771  * netdev_has_any_upper_dev - Check if device is linked to some device
5772  * @dev: device
5773  *
5774  * Find out if a device is linked to an upper device and return true in case
5775  * it is. The caller must hold the RTNL lock.
5776  */
5777 bool netdev_has_any_upper_dev(struct net_device *dev)
5778 {
5779         ASSERT_RTNL();
5780
5781         return !list_empty(&dev->adj_list.upper);
5782 }
5783 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5784
5785 /**
5786  * netdev_master_upper_dev_get - Get master upper device
5787  * @dev: device
5788  *
5789  * Find a master upper device and return pointer to it or NULL in case
5790  * it's not there. The caller must hold the RTNL lock.
5791  */
5792 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5793 {
5794         struct netdev_adjacent *upper;
5795
5796         ASSERT_RTNL();
5797
5798         if (list_empty(&dev->adj_list.upper))
5799                 return NULL;
5800
5801         upper = list_first_entry(&dev->adj_list.upper,
5802                                  struct netdev_adjacent, list);
5803         if (likely(upper->master))
5804                 return upper->dev;
5805         return NULL;
5806 }
5807 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5808
5809 /**
5810  * netdev_has_any_lower_dev - Check if device is linked to some device
5811  * @dev: device
5812  *
5813  * Find out if a device is linked to a lower device and return true in case
5814  * it is. The caller must hold the RTNL lock.
5815  */
5816 static bool netdev_has_any_lower_dev(struct net_device *dev)
5817 {
5818         ASSERT_RTNL();
5819
5820         return !list_empty(&dev->adj_list.lower);
5821 }
5822
5823 void *netdev_adjacent_get_private(struct list_head *adj_list)
5824 {
5825         struct netdev_adjacent *adj;
5826
5827         adj = list_entry(adj_list, struct netdev_adjacent, list);
5828
5829         return adj->private;
5830 }
5831 EXPORT_SYMBOL(netdev_adjacent_get_private);
5832
5833 /**
5834  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5835  * @dev: device
5836  * @iter: list_head ** of the current position
5837  *
5838  * Gets the next device from the dev's upper list, starting from iter
5839  * position. The caller must hold RCU read lock.
5840  */
5841 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5842                                                  struct list_head **iter)
5843 {
5844         struct netdev_adjacent *upper;
5845
5846         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5847
5848         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5849
5850         if (&upper->list == &dev->adj_list.upper)
5851                 return NULL;
5852
5853         *iter = &upper->list;
5854
5855         return upper->dev;
5856 }
5857 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5858
5859 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5860                                                     struct list_head **iter)
5861 {
5862         struct netdev_adjacent *upper;
5863
5864         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5865
5866         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5867
5868         if (&upper->list == &dev->adj_list.upper)
5869                 return NULL;
5870
5871         *iter = &upper->list;
5872
5873         return upper->dev;
5874 }
5875
5876 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5877                                   int (*fn)(struct net_device *dev,
5878                                             void *data),
5879                                   void *data)
5880 {
5881         struct net_device *udev;
5882         struct list_head *iter;
5883         int ret;
5884
5885         for (iter = &dev->adj_list.upper,
5886              udev = netdev_next_upper_dev_rcu(dev, &iter);
5887              udev;
5888              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5889                 /* first is the upper device itself */
5890                 ret = fn(udev, data);
5891                 if (ret)
5892                         return ret;
5893
5894                 /* then look at all of its upper devices */
5895                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5896                 if (ret)
5897                         return ret;
5898         }
5899
5900         return 0;
5901 }
5902 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5903
5904 /**
5905  * netdev_lower_get_next_private - Get the next ->private from the
5906  *                                 lower neighbour list
5907  * @dev: device
5908  * @iter: list_head ** of the current position
5909  *
5910  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5911  * list, starting from iter position. The caller must hold either hold the
5912  * RTNL lock or its own locking that guarantees that the neighbour lower
5913  * list will remain unchanged.
5914  */
5915 void *netdev_lower_get_next_private(struct net_device *dev,
5916                                     struct list_head **iter)
5917 {
5918         struct netdev_adjacent *lower;
5919
5920         lower = list_entry(*iter, struct netdev_adjacent, list);
5921
5922         if (&lower->list == &dev->adj_list.lower)
5923                 return NULL;
5924
5925         *iter = lower->list.next;
5926
5927         return lower->private;
5928 }
5929 EXPORT_SYMBOL(netdev_lower_get_next_private);
5930
5931 /**
5932  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5933  *                                     lower neighbour list, RCU
5934  *                                     variant
5935  * @dev: device
5936  * @iter: list_head ** of the current position
5937  *
5938  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5939  * list, starting from iter position. The caller must hold RCU read lock.
5940  */
5941 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5942                                         struct list_head **iter)
5943 {
5944         struct netdev_adjacent *lower;
5945
5946         WARN_ON_ONCE(!rcu_read_lock_held());
5947
5948         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5949
5950         if (&lower->list == &dev->adj_list.lower)
5951                 return NULL;
5952
5953         *iter = &lower->list;
5954
5955         return lower->private;
5956 }
5957 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5958
5959 /**
5960  * netdev_lower_get_next - Get the next device from the lower neighbour
5961  *                         list
5962  * @dev: device
5963  * @iter: list_head ** of the current position
5964  *
5965  * Gets the next netdev_adjacent from the dev's lower neighbour
5966  * list, starting from iter position. The caller must hold RTNL lock or
5967  * its own locking that guarantees that the neighbour lower
5968  * list will remain unchanged.
5969  */
5970 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5971 {
5972         struct netdev_adjacent *lower;
5973
5974         lower = list_entry(*iter, struct netdev_adjacent, list);
5975
5976         if (&lower->list == &dev->adj_list.lower)
5977                 return NULL;
5978
5979         *iter = lower->list.next;
5980
5981         return lower->dev;
5982 }
5983 EXPORT_SYMBOL(netdev_lower_get_next);
5984
5985 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5986                                                 struct list_head **iter)
5987 {
5988         struct netdev_adjacent *lower;
5989
5990         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5991
5992         if (&lower->list == &dev->adj_list.lower)
5993                 return NULL;
5994
5995         *iter = &lower->list;
5996
5997         return lower->dev;
5998 }
5999
6000 int netdev_walk_all_lower_dev(struct net_device *dev,
6001                               int (*fn)(struct net_device *dev,
6002                                         void *data),
6003                               void *data)
6004 {
6005         struct net_device *ldev;
6006         struct list_head *iter;
6007         int ret;
6008
6009         for (iter = &dev->adj_list.lower,
6010              ldev = netdev_next_lower_dev(dev, &iter);
6011              ldev;
6012              ldev = netdev_next_lower_dev(dev, &iter)) {
6013                 /* first is the lower device itself */
6014                 ret = fn(ldev, data);
6015                 if (ret)
6016                         return ret;
6017
6018                 /* then look at all of its lower devices */
6019                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6020                 if (ret)
6021                         return ret;
6022         }
6023
6024         return 0;
6025 }
6026 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6027
6028 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6029                                                     struct list_head **iter)
6030 {
6031         struct netdev_adjacent *lower;
6032
6033         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6034         if (&lower->list == &dev->adj_list.lower)
6035                 return NULL;
6036
6037         *iter = &lower->list;
6038
6039         return lower->dev;
6040 }
6041
6042 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6043                                   int (*fn)(struct net_device *dev,
6044                                             void *data),
6045                                   void *data)
6046 {
6047         struct net_device *ldev;
6048         struct list_head *iter;
6049         int ret;
6050
6051         for (iter = &dev->adj_list.lower,
6052              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6053              ldev;
6054              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6055                 /* first is the lower device itself */
6056                 ret = fn(ldev, data);
6057                 if (ret)
6058                         return ret;
6059
6060                 /* then look at all of its lower devices */
6061                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6062                 if (ret)
6063                         return ret;
6064         }
6065
6066         return 0;
6067 }
6068 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6069
6070 /**
6071  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6072  *                                     lower neighbour list, RCU
6073  *                                     variant
6074  * @dev: device
6075  *
6076  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6077  * list. The caller must hold RCU read lock.
6078  */
6079 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6080 {
6081         struct netdev_adjacent *lower;
6082
6083         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6084                         struct netdev_adjacent, list);
6085         if (lower)
6086                 return lower->private;
6087         return NULL;
6088 }
6089 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6090
6091 /**
6092  * netdev_master_upper_dev_get_rcu - Get master upper device
6093  * @dev: device
6094  *
6095  * Find a master upper device and return pointer to it or NULL in case
6096  * it's not there. The caller must hold the RCU read lock.
6097  */
6098 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6099 {
6100         struct netdev_adjacent *upper;
6101
6102         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6103                                        struct netdev_adjacent, list);
6104         if (upper && likely(upper->master))
6105                 return upper->dev;
6106         return NULL;
6107 }
6108 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6109
6110 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6111                               struct net_device *adj_dev,
6112                               struct list_head *dev_list)
6113 {
6114         char linkname[IFNAMSIZ+7];
6115
6116         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6117                 "upper_%s" : "lower_%s", adj_dev->name);
6118         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6119                                  linkname);
6120 }
6121 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6122                                char *name,
6123                                struct list_head *dev_list)
6124 {
6125         char linkname[IFNAMSIZ+7];
6126
6127         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6128                 "upper_%s" : "lower_%s", name);
6129         sysfs_remove_link(&(dev->dev.kobj), linkname);
6130 }
6131
6132 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6133                                                  struct net_device *adj_dev,
6134                                                  struct list_head *dev_list)
6135 {
6136         return (dev_list == &dev->adj_list.upper ||
6137                 dev_list == &dev->adj_list.lower) &&
6138                 net_eq(dev_net(dev), dev_net(adj_dev));
6139 }
6140
6141 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6142                                         struct net_device *adj_dev,
6143                                         struct list_head *dev_list,
6144                                         void *private, bool master)
6145 {
6146         struct netdev_adjacent *adj;
6147         int ret;
6148
6149         adj = __netdev_find_adj(adj_dev, dev_list);
6150
6151         if (adj) {
6152                 adj->ref_nr += 1;
6153                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6154                          dev->name, adj_dev->name, adj->ref_nr);
6155
6156                 return 0;
6157         }
6158
6159         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6160         if (!adj)
6161                 return -ENOMEM;
6162
6163         adj->dev = adj_dev;
6164         adj->master = master;
6165         adj->ref_nr = 1;
6166         adj->private = private;
6167         dev_hold(adj_dev);
6168
6169         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6170                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6171
6172         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6173                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6174                 if (ret)
6175                         goto free_adj;
6176         }
6177
6178         /* Ensure that master link is always the first item in list. */
6179         if (master) {
6180                 ret = sysfs_create_link(&(dev->dev.kobj),
6181                                         &(adj_dev->dev.kobj), "master");
6182                 if (ret)
6183                         goto remove_symlinks;
6184
6185                 list_add_rcu(&adj->list, dev_list);
6186         } else {
6187                 list_add_tail_rcu(&adj->list, dev_list);
6188         }
6189
6190         return 0;
6191
6192 remove_symlinks:
6193         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6194                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6195 free_adj:
6196         kfree(adj);
6197         dev_put(adj_dev);
6198
6199         return ret;
6200 }
6201
6202 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6203                                          struct net_device *adj_dev,
6204                                          u16 ref_nr,
6205                                          struct list_head *dev_list)
6206 {
6207         struct netdev_adjacent *adj;
6208
6209         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6210                  dev->name, adj_dev->name, ref_nr);
6211
6212         adj = __netdev_find_adj(adj_dev, dev_list);
6213
6214         if (!adj) {
6215                 pr_err("Adjacency does not exist for device %s from %s\n",
6216                        dev->name, adj_dev->name);
6217                 WARN_ON(1);
6218                 return;
6219         }
6220
6221         if (adj->ref_nr > ref_nr) {
6222                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6223                          dev->name, adj_dev->name, ref_nr,
6224                          adj->ref_nr - ref_nr);
6225                 adj->ref_nr -= ref_nr;
6226                 return;
6227         }
6228
6229         if (adj->master)
6230                 sysfs_remove_link(&(dev->dev.kobj), "master");
6231
6232         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6233                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6234
6235         list_del_rcu(&adj->list);
6236         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6237                  adj_dev->name, dev->name, adj_dev->name);
6238         dev_put(adj_dev);
6239         kfree_rcu(adj, rcu);
6240 }
6241
6242 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6243                                             struct net_device *upper_dev,
6244                                             struct list_head *up_list,
6245                                             struct list_head *down_list,
6246                                             void *private, bool master)
6247 {
6248         int ret;
6249
6250         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6251                                            private, master);
6252         if (ret)
6253                 return ret;
6254
6255         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6256                                            private, false);
6257         if (ret) {
6258                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6259                 return ret;
6260         }
6261
6262         return 0;
6263 }
6264
6265 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6266                                                struct net_device *upper_dev,
6267                                                u16 ref_nr,
6268                                                struct list_head *up_list,
6269                                                struct list_head *down_list)
6270 {
6271         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6272         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6273 }
6274
6275 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6276                                                 struct net_device *upper_dev,
6277                                                 void *private, bool master)
6278 {
6279         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6280                                                 &dev->adj_list.upper,
6281                                                 &upper_dev->adj_list.lower,
6282                                                 private, master);
6283 }
6284
6285 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6286                                                    struct net_device *upper_dev)
6287 {
6288         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6289                                            &dev->adj_list.upper,
6290                                            &upper_dev->adj_list.lower);
6291 }
6292
6293 static int __netdev_upper_dev_link(struct net_device *dev,
6294                                    struct net_device *upper_dev, bool master,
6295                                    void *upper_priv, void *upper_info)
6296 {
6297         struct netdev_notifier_changeupper_info changeupper_info;
6298         int ret = 0;
6299
6300         ASSERT_RTNL();
6301
6302         if (dev == upper_dev)
6303                 return -EBUSY;
6304
6305         /* To prevent loops, check if dev is not upper device to upper_dev. */
6306         if (netdev_has_upper_dev(upper_dev, dev))
6307                 return -EBUSY;
6308
6309         if (netdev_has_upper_dev(dev, upper_dev))
6310                 return -EEXIST;
6311
6312         if (master && netdev_master_upper_dev_get(dev))
6313                 return -EBUSY;
6314
6315         changeupper_info.upper_dev = upper_dev;
6316         changeupper_info.master = master;
6317         changeupper_info.linking = true;
6318         changeupper_info.upper_info = upper_info;
6319
6320         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6321                                             &changeupper_info.info);
6322         ret = notifier_to_errno(ret);
6323         if (ret)
6324                 return ret;
6325
6326         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6327                                                    master);
6328         if (ret)
6329                 return ret;
6330
6331         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6332                                             &changeupper_info.info);
6333         ret = notifier_to_errno(ret);
6334         if (ret)
6335                 goto rollback;
6336
6337         return 0;
6338
6339 rollback:
6340         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6341
6342         return ret;
6343 }
6344
6345 /**
6346  * netdev_upper_dev_link - Add a link to the upper device
6347  * @dev: device
6348  * @upper_dev: new upper device
6349  *
6350  * Adds a link to device which is upper to this one. The caller must hold
6351  * the RTNL lock. On a failure a negative errno code is returned.
6352  * On success the reference counts are adjusted and the function
6353  * returns zero.
6354  */
6355 int netdev_upper_dev_link(struct net_device *dev,
6356                           struct net_device *upper_dev)
6357 {
6358         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6359 }
6360 EXPORT_SYMBOL(netdev_upper_dev_link);
6361
6362 /**
6363  * netdev_master_upper_dev_link - Add a master link to the upper device
6364  * @dev: device
6365  * @upper_dev: new upper device
6366  * @upper_priv: upper device private
6367  * @upper_info: upper info to be passed down via notifier
6368  *
6369  * Adds a link to device which is upper to this one. In this case, only
6370  * one master upper device can be linked, although other non-master devices
6371  * might be linked as well. The caller must hold the RTNL lock.
6372  * On a failure a negative errno code is returned. On success the reference
6373  * counts are adjusted and the function returns zero.
6374  */
6375 int netdev_master_upper_dev_link(struct net_device *dev,
6376                                  struct net_device *upper_dev,
6377                                  void *upper_priv, void *upper_info)
6378 {
6379         return __netdev_upper_dev_link(dev, upper_dev, true,
6380                                        upper_priv, upper_info);
6381 }
6382 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6383
6384 /**
6385  * netdev_upper_dev_unlink - Removes a link to upper device
6386  * @dev: device
6387  * @upper_dev: new upper device
6388  *
6389  * Removes a link to device which is upper to this one. The caller must hold
6390  * the RTNL lock.
6391  */
6392 void netdev_upper_dev_unlink(struct net_device *dev,
6393                              struct net_device *upper_dev)
6394 {
6395         struct netdev_notifier_changeupper_info changeupper_info;
6396
6397         ASSERT_RTNL();
6398
6399         changeupper_info.upper_dev = upper_dev;
6400         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6401         changeupper_info.linking = false;
6402
6403         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6404                                       &changeupper_info.info);
6405
6406         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6407
6408         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6409                                       &changeupper_info.info);
6410 }
6411 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6412
6413 /**
6414  * netdev_bonding_info_change - Dispatch event about slave change
6415  * @dev: device
6416  * @bonding_info: info to dispatch
6417  *
6418  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6419  * The caller must hold the RTNL lock.
6420  */
6421 void netdev_bonding_info_change(struct net_device *dev,
6422                                 struct netdev_bonding_info *bonding_info)
6423 {
6424         struct netdev_notifier_bonding_info     info;
6425
6426         memcpy(&info.bonding_info, bonding_info,
6427                sizeof(struct netdev_bonding_info));
6428         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6429                                       &info.info);
6430 }
6431 EXPORT_SYMBOL(netdev_bonding_info_change);
6432
6433 static void netdev_adjacent_add_links(struct net_device *dev)
6434 {
6435         struct netdev_adjacent *iter;
6436
6437         struct net *net = dev_net(dev);
6438
6439         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6440                 if (!net_eq(net, dev_net(iter->dev)))
6441                         continue;
6442                 netdev_adjacent_sysfs_add(iter->dev, dev,
6443                                           &iter->dev->adj_list.lower);
6444                 netdev_adjacent_sysfs_add(dev, iter->dev,
6445                                           &dev->adj_list.upper);
6446         }
6447
6448         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6449                 if (!net_eq(net, dev_net(iter->dev)))
6450                         continue;
6451                 netdev_adjacent_sysfs_add(iter->dev, dev,
6452                                           &iter->dev->adj_list.upper);
6453                 netdev_adjacent_sysfs_add(dev, iter->dev,
6454                                           &dev->adj_list.lower);
6455         }
6456 }
6457
6458 static void netdev_adjacent_del_links(struct net_device *dev)
6459 {
6460         struct netdev_adjacent *iter;
6461
6462         struct net *net = dev_net(dev);
6463
6464         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6465                 if (!net_eq(net, dev_net(iter->dev)))
6466                         continue;
6467                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6468                                           &iter->dev->adj_list.lower);
6469                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6470                                           &dev->adj_list.upper);
6471         }
6472
6473         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6474                 if (!net_eq(net, dev_net(iter->dev)))
6475                         continue;
6476                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6477                                           &iter->dev->adj_list.upper);
6478                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6479                                           &dev->adj_list.lower);
6480         }
6481 }
6482
6483 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6484 {
6485         struct netdev_adjacent *iter;
6486
6487         struct net *net = dev_net(dev);
6488
6489         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6490                 if (!net_eq(net, dev_net(iter->dev)))
6491                         continue;
6492                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6493                                           &iter->dev->adj_list.lower);
6494                 netdev_adjacent_sysfs_add(iter->dev, dev,
6495                                           &iter->dev->adj_list.lower);
6496         }
6497
6498         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6499                 if (!net_eq(net, dev_net(iter->dev)))
6500                         continue;
6501                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6502                                           &iter->dev->adj_list.upper);
6503                 netdev_adjacent_sysfs_add(iter->dev, dev,
6504                                           &iter->dev->adj_list.upper);
6505         }
6506 }
6507
6508 void *netdev_lower_dev_get_private(struct net_device *dev,
6509                                    struct net_device *lower_dev)
6510 {
6511         struct netdev_adjacent *lower;
6512
6513         if (!lower_dev)
6514                 return NULL;
6515         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6516         if (!lower)
6517                 return NULL;
6518
6519         return lower->private;
6520 }
6521 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6522
6523
6524 int dev_get_nest_level(struct net_device *dev)
6525 {
6526         struct net_device *lower = NULL;
6527         struct list_head *iter;
6528         int max_nest = -1;
6529         int nest;
6530
6531         ASSERT_RTNL();
6532
6533         netdev_for_each_lower_dev(dev, lower, iter) {
6534                 nest = dev_get_nest_level(lower);
6535                 if (max_nest < nest)
6536                         max_nest = nest;
6537         }
6538
6539         return max_nest + 1;
6540 }
6541 EXPORT_SYMBOL(dev_get_nest_level);
6542
6543 /**
6544  * netdev_lower_change - Dispatch event about lower device state change
6545  * @lower_dev: device
6546  * @lower_state_info: state to dispatch
6547  *
6548  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6549  * The caller must hold the RTNL lock.
6550  */
6551 void netdev_lower_state_changed(struct net_device *lower_dev,
6552                                 void *lower_state_info)
6553 {
6554         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6555
6556         ASSERT_RTNL();
6557         changelowerstate_info.lower_state_info = lower_state_info;
6558         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6559                                       &changelowerstate_info.info);
6560 }
6561 EXPORT_SYMBOL(netdev_lower_state_changed);
6562
6563 static void dev_change_rx_flags(struct net_device *dev, int flags)
6564 {
6565         const struct net_device_ops *ops = dev->netdev_ops;
6566
6567         if (ops->ndo_change_rx_flags)
6568                 ops->ndo_change_rx_flags(dev, flags);
6569 }
6570
6571 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6572 {
6573         unsigned int old_flags = dev->flags;
6574         kuid_t uid;
6575         kgid_t gid;
6576
6577         ASSERT_RTNL();
6578
6579         dev->flags |= IFF_PROMISC;
6580         dev->promiscuity += inc;
6581         if (dev->promiscuity == 0) {
6582                 /*
6583                  * Avoid overflow.
6584                  * If inc causes overflow, untouch promisc and return error.
6585                  */
6586                 if (inc < 0)
6587                         dev->flags &= ~IFF_PROMISC;
6588                 else {
6589                         dev->promiscuity -= inc;
6590                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6591                                 dev->name);
6592                         return -EOVERFLOW;
6593                 }
6594         }
6595         if (dev->flags != old_flags) {
6596                 pr_info("device %s %s promiscuous mode\n",
6597                         dev->name,
6598                         dev->flags & IFF_PROMISC ? "entered" : "left");
6599                 if (audit_enabled) {
6600                         current_uid_gid(&uid, &gid);
6601                         audit_log(current->audit_context, GFP_ATOMIC,
6602                                 AUDIT_ANOM_PROMISCUOUS,
6603                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6604                                 dev->name, (dev->flags & IFF_PROMISC),
6605                                 (old_flags & IFF_PROMISC),
6606                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6607                                 from_kuid(&init_user_ns, uid),
6608                                 from_kgid(&init_user_ns, gid),
6609                                 audit_get_sessionid(current));
6610                 }
6611
6612                 dev_change_rx_flags(dev, IFF_PROMISC);
6613         }
6614         if (notify)
6615                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6616         return 0;
6617 }
6618
6619 /**
6620  *      dev_set_promiscuity     - update promiscuity count on a device
6621  *      @dev: device
6622  *      @inc: modifier
6623  *
6624  *      Add or remove promiscuity from a device. While the count in the device
6625  *      remains above zero the interface remains promiscuous. Once it hits zero
6626  *      the device reverts back to normal filtering operation. A negative inc
6627  *      value is used to drop promiscuity on the device.
6628  *      Return 0 if successful or a negative errno code on error.
6629  */
6630 int dev_set_promiscuity(struct net_device *dev, int inc)
6631 {
6632         unsigned int old_flags = dev->flags;
6633         int err;
6634
6635         err = __dev_set_promiscuity(dev, inc, true);
6636         if (err < 0)
6637                 return err;
6638         if (dev->flags != old_flags)
6639                 dev_set_rx_mode(dev);
6640         return err;
6641 }
6642 EXPORT_SYMBOL(dev_set_promiscuity);
6643
6644 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6645 {
6646         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6647
6648         ASSERT_RTNL();
6649
6650         dev->flags |= IFF_ALLMULTI;
6651         dev->allmulti += inc;
6652         if (dev->allmulti == 0) {
6653                 /*
6654                  * Avoid overflow.
6655                  * If inc causes overflow, untouch allmulti and return error.
6656                  */
6657                 if (inc < 0)
6658                         dev->flags &= ~IFF_ALLMULTI;
6659                 else {
6660                         dev->allmulti -= inc;
6661                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6662                                 dev->name);
6663                         return -EOVERFLOW;
6664                 }
6665         }
6666         if (dev->flags ^ old_flags) {
6667                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6668                 dev_set_rx_mode(dev);
6669                 if (notify)
6670                         __dev_notify_flags(dev, old_flags,
6671                                            dev->gflags ^ old_gflags);
6672         }
6673         return 0;
6674 }
6675
6676 /**
6677  *      dev_set_allmulti        - update allmulti count on a device
6678  *      @dev: device
6679  *      @inc: modifier
6680  *
6681  *      Add or remove reception of all multicast frames to a device. While the
6682  *      count in the device remains above zero the interface remains listening
6683  *      to all interfaces. Once it hits zero the device reverts back to normal
6684  *      filtering operation. A negative @inc value is used to drop the counter
6685  *      when releasing a resource needing all multicasts.
6686  *      Return 0 if successful or a negative errno code on error.
6687  */
6688
6689 int dev_set_allmulti(struct net_device *dev, int inc)
6690 {
6691         return __dev_set_allmulti(dev, inc, true);
6692 }
6693 EXPORT_SYMBOL(dev_set_allmulti);
6694
6695 /*
6696  *      Upload unicast and multicast address lists to device and
6697  *      configure RX filtering. When the device doesn't support unicast
6698  *      filtering it is put in promiscuous mode while unicast addresses
6699  *      are present.
6700  */
6701 void __dev_set_rx_mode(struct net_device *dev)
6702 {
6703         const struct net_device_ops *ops = dev->netdev_ops;
6704
6705         /* dev_open will call this function so the list will stay sane. */
6706         if (!(dev->flags&IFF_UP))
6707                 return;
6708
6709         if (!netif_device_present(dev))
6710                 return;
6711
6712         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6713                 /* Unicast addresses changes may only happen under the rtnl,
6714                  * therefore calling __dev_set_promiscuity here is safe.
6715                  */
6716                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6717                         __dev_set_promiscuity(dev, 1, false);
6718                         dev->uc_promisc = true;
6719                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6720                         __dev_set_promiscuity(dev, -1, false);
6721                         dev->uc_promisc = false;
6722                 }
6723         }
6724
6725         if (ops->ndo_set_rx_mode)
6726                 ops->ndo_set_rx_mode(dev);
6727 }
6728
6729 void dev_set_rx_mode(struct net_device *dev)
6730 {
6731         netif_addr_lock_bh(dev);
6732         __dev_set_rx_mode(dev);
6733         netif_addr_unlock_bh(dev);
6734 }
6735
6736 /**
6737  *      dev_get_flags - get flags reported to userspace
6738  *      @dev: device
6739  *
6740  *      Get the combination of flag bits exported through APIs to userspace.
6741  */
6742 unsigned int dev_get_flags(const struct net_device *dev)
6743 {
6744         unsigned int flags;
6745
6746         flags = (dev->flags & ~(IFF_PROMISC |
6747                                 IFF_ALLMULTI |
6748                                 IFF_RUNNING |
6749                                 IFF_LOWER_UP |
6750                                 IFF_DORMANT)) |
6751                 (dev->gflags & (IFF_PROMISC |
6752                                 IFF_ALLMULTI));
6753
6754         if (netif_running(dev)) {
6755                 if (netif_oper_up(dev))
6756                         flags |= IFF_RUNNING;
6757                 if (netif_carrier_ok(dev))
6758                         flags |= IFF_LOWER_UP;
6759                 if (netif_dormant(dev))
6760                         flags |= IFF_DORMANT;
6761         }
6762
6763         return flags;
6764 }
6765 EXPORT_SYMBOL(dev_get_flags);
6766
6767 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6768 {
6769         unsigned int old_flags = dev->flags;
6770         int ret;
6771
6772         ASSERT_RTNL();
6773
6774         /*
6775          *      Set the flags on our device.
6776          */
6777
6778         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6779                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6780                                IFF_AUTOMEDIA)) |
6781                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6782                                     IFF_ALLMULTI));
6783
6784         /*
6785          *      Load in the correct multicast list now the flags have changed.
6786          */
6787
6788         if ((old_flags ^ flags) & IFF_MULTICAST)
6789                 dev_change_rx_flags(dev, IFF_MULTICAST);
6790
6791         dev_set_rx_mode(dev);
6792
6793         /*
6794          *      Have we downed the interface. We handle IFF_UP ourselves
6795          *      according to user attempts to set it, rather than blindly
6796          *      setting it.
6797          */
6798
6799         ret = 0;
6800         if ((old_flags ^ flags) & IFF_UP) {
6801                 if (old_flags & IFF_UP)
6802                         __dev_close(dev);
6803                 else
6804                         ret = __dev_open(dev);
6805         }
6806
6807         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6808                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6809                 unsigned int old_flags = dev->flags;
6810
6811                 dev->gflags ^= IFF_PROMISC;
6812
6813                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6814                         if (dev->flags != old_flags)
6815                                 dev_set_rx_mode(dev);
6816         }
6817
6818         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6819          * is important. Some (broken) drivers set IFF_PROMISC, when
6820          * IFF_ALLMULTI is requested not asking us and not reporting.
6821          */
6822         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6823                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6824
6825                 dev->gflags ^= IFF_ALLMULTI;
6826                 __dev_set_allmulti(dev, inc, false);
6827         }
6828
6829         return ret;
6830 }
6831
6832 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6833                         unsigned int gchanges)
6834 {
6835         unsigned int changes = dev->flags ^ old_flags;
6836
6837         if (gchanges)
6838                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6839
6840         if (changes & IFF_UP) {
6841                 if (dev->flags & IFF_UP)
6842                         call_netdevice_notifiers(NETDEV_UP, dev);
6843                 else
6844                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6845         }
6846
6847         if (dev->flags & IFF_UP &&
6848             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6849                 struct netdev_notifier_change_info change_info;
6850
6851                 change_info.flags_changed = changes;
6852                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6853                                               &change_info.info);
6854         }
6855 }
6856
6857 /**
6858  *      dev_change_flags - change device settings
6859  *      @dev: device
6860  *      @flags: device state flags
6861  *
6862  *      Change settings on device based state flags. The flags are
6863  *      in the userspace exported format.
6864  */
6865 int dev_change_flags(struct net_device *dev, unsigned int flags)
6866 {
6867         int ret;
6868         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6869
6870         ret = __dev_change_flags(dev, flags);
6871         if (ret < 0)
6872                 return ret;
6873
6874         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6875         __dev_notify_flags(dev, old_flags, changes);
6876         return ret;
6877 }
6878 EXPORT_SYMBOL(dev_change_flags);
6879
6880 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6881 {
6882         const struct net_device_ops *ops = dev->netdev_ops;
6883
6884         if (ops->ndo_change_mtu)
6885                 return ops->ndo_change_mtu(dev, new_mtu);
6886
6887         /* Pairs with all the lockless reads of dev->mtu in the stack */
6888         WRITE_ONCE(dev->mtu, new_mtu);
6889         return 0;
6890 }
6891 EXPORT_SYMBOL(__dev_set_mtu);
6892
6893 /**
6894  *      dev_set_mtu - Change maximum transfer unit
6895  *      @dev: device
6896  *      @new_mtu: new transfer unit
6897  *
6898  *      Change the maximum transfer size of the network device.
6899  */
6900 int dev_set_mtu(struct net_device *dev, int new_mtu)
6901 {
6902         int err, orig_mtu;
6903
6904         if (new_mtu == dev->mtu)
6905                 return 0;
6906
6907         err = dev_validate_mtu(dev, new_mtu);
6908         if (err)
6909                 return err;
6910
6911         if (!netif_device_present(dev))
6912                 return -ENODEV;
6913
6914         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6915         err = notifier_to_errno(err);
6916         if (err)
6917                 return err;
6918
6919         orig_mtu = dev->mtu;
6920         err = __dev_set_mtu(dev, new_mtu);
6921
6922         if (!err) {
6923                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
6924                                                    orig_mtu);
6925                 err = notifier_to_errno(err);
6926                 if (err) {
6927                         /* setting mtu back and notifying everyone again,
6928                          * so that they have a chance to revert changes.
6929                          */
6930                         __dev_set_mtu(dev, orig_mtu);
6931                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
6932                                                      new_mtu);
6933                 }
6934         }
6935         return err;
6936 }
6937 EXPORT_SYMBOL(dev_set_mtu);
6938
6939 /**
6940  *      dev_set_group - Change group this device belongs to
6941  *      @dev: device
6942  *      @new_group: group this device should belong to
6943  */
6944 void dev_set_group(struct net_device *dev, int new_group)
6945 {
6946         dev->group = new_group;
6947 }
6948 EXPORT_SYMBOL(dev_set_group);
6949
6950 /**
6951  *      dev_set_mac_address - Change Media Access Control Address
6952  *      @dev: device
6953  *      @sa: new address
6954  *
6955  *      Change the hardware (MAC) address of the device
6956  */
6957 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6958 {
6959         const struct net_device_ops *ops = dev->netdev_ops;
6960         int err;
6961
6962         if (!ops->ndo_set_mac_address)
6963                 return -EOPNOTSUPP;
6964         if (sa->sa_family != dev->type)
6965                 return -EINVAL;
6966         if (!netif_device_present(dev))
6967                 return -ENODEV;
6968         err = ops->ndo_set_mac_address(dev, sa);
6969         if (err)
6970                 return err;
6971         dev->addr_assign_type = NET_ADDR_SET;
6972         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6973         add_device_randomness(dev->dev_addr, dev->addr_len);
6974         return 0;
6975 }
6976 EXPORT_SYMBOL(dev_set_mac_address);
6977
6978 /**
6979  *      dev_change_carrier - Change device carrier
6980  *      @dev: device
6981  *      @new_carrier: new value
6982  *
6983  *      Change device carrier
6984  */
6985 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6986 {
6987         const struct net_device_ops *ops = dev->netdev_ops;
6988
6989         if (!ops->ndo_change_carrier)
6990                 return -EOPNOTSUPP;
6991         if (!netif_device_present(dev))
6992                 return -ENODEV;
6993         return ops->ndo_change_carrier(dev, new_carrier);
6994 }
6995 EXPORT_SYMBOL(dev_change_carrier);
6996
6997 /**
6998  *      dev_get_phys_port_id - Get device physical port ID
6999  *      @dev: device
7000  *      @ppid: port ID
7001  *
7002  *      Get device physical port ID
7003  */
7004 int dev_get_phys_port_id(struct net_device *dev,
7005                          struct netdev_phys_item_id *ppid)
7006 {
7007         const struct net_device_ops *ops = dev->netdev_ops;
7008
7009         if (!ops->ndo_get_phys_port_id)
7010                 return -EOPNOTSUPP;
7011         return ops->ndo_get_phys_port_id(dev, ppid);
7012 }
7013 EXPORT_SYMBOL(dev_get_phys_port_id);
7014
7015 /**
7016  *      dev_get_phys_port_name - Get device physical port name
7017  *      @dev: device
7018  *      @name: port name
7019  *      @len: limit of bytes to copy to name
7020  *
7021  *      Get device physical port name
7022  */
7023 int dev_get_phys_port_name(struct net_device *dev,
7024                            char *name, size_t len)
7025 {
7026         const struct net_device_ops *ops = dev->netdev_ops;
7027
7028         if (!ops->ndo_get_phys_port_name)
7029                 return -EOPNOTSUPP;
7030         return ops->ndo_get_phys_port_name(dev, name, len);
7031 }
7032 EXPORT_SYMBOL(dev_get_phys_port_name);
7033
7034 /**
7035  *      dev_change_proto_down - update protocol port state information
7036  *      @dev: device
7037  *      @proto_down: new value
7038  *
7039  *      This info can be used by switch drivers to set the phys state of the
7040  *      port.
7041  */
7042 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7043 {
7044         const struct net_device_ops *ops = dev->netdev_ops;
7045
7046         if (!ops->ndo_change_proto_down)
7047                 return -EOPNOTSUPP;
7048         if (!netif_device_present(dev))
7049                 return -ENODEV;
7050         return ops->ndo_change_proto_down(dev, proto_down);
7051 }
7052 EXPORT_SYMBOL(dev_change_proto_down);
7053
7054 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
7055 {
7056         struct netdev_xdp xdp;
7057
7058         memset(&xdp, 0, sizeof(xdp));
7059         xdp.command = XDP_QUERY_PROG;
7060
7061         /* Query must always succeed. */
7062         WARN_ON(xdp_op(dev, &xdp) < 0);
7063         if (prog_id)
7064                 *prog_id = xdp.prog_id;
7065
7066         return xdp.prog_attached;
7067 }
7068
7069 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
7070                            struct netlink_ext_ack *extack, u32 flags,
7071                            struct bpf_prog *prog)
7072 {
7073         struct netdev_xdp xdp;
7074
7075         memset(&xdp, 0, sizeof(xdp));
7076         if (flags & XDP_FLAGS_HW_MODE)
7077                 xdp.command = XDP_SETUP_PROG_HW;
7078         else
7079                 xdp.command = XDP_SETUP_PROG;
7080         xdp.extack = extack;
7081         xdp.flags = flags;
7082         xdp.prog = prog;
7083
7084         return xdp_op(dev, &xdp);
7085 }
7086
7087 /**
7088  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7089  *      @dev: device
7090  *      @extack: netlink extended ack
7091  *      @fd: new program fd or negative value to clear
7092  *      @flags: xdp-related flags
7093  *
7094  *      Set or clear a bpf program for a device
7095  */
7096 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7097                       int fd, u32 flags)
7098 {
7099         const struct net_device_ops *ops = dev->netdev_ops;
7100         struct bpf_prog *prog = NULL;
7101         xdp_op_t xdp_op, xdp_chk;
7102         int err;
7103
7104         ASSERT_RTNL();
7105
7106         xdp_op = xdp_chk = ops->ndo_xdp;
7107         if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7108                 return -EOPNOTSUPP;
7109         if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7110                 xdp_op = generic_xdp_install;
7111         if (xdp_op == xdp_chk)
7112                 xdp_chk = generic_xdp_install;
7113
7114         if (fd >= 0) {
7115                 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7116                         return -EEXIST;
7117                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7118                     __dev_xdp_attached(dev, xdp_op, NULL))
7119                         return -EBUSY;
7120
7121                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7122                 if (IS_ERR(prog))
7123                         return PTR_ERR(prog);
7124         }
7125
7126         err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7127         if (err < 0 && prog)
7128                 bpf_prog_put(prog);
7129
7130         return err;
7131 }
7132
7133 /**
7134  *      dev_new_index   -       allocate an ifindex
7135  *      @net: the applicable net namespace
7136  *
7137  *      Returns a suitable unique value for a new device interface
7138  *      number.  The caller must hold the rtnl semaphore or the
7139  *      dev_base_lock to be sure it remains unique.
7140  */
7141 static int dev_new_index(struct net *net)
7142 {
7143         int ifindex = net->ifindex;
7144
7145         for (;;) {
7146                 if (++ifindex <= 0)
7147                         ifindex = 1;
7148                 if (!__dev_get_by_index(net, ifindex))
7149                         return net->ifindex = ifindex;
7150         }
7151 }
7152
7153 /* Delayed registration/unregisteration */
7154 static LIST_HEAD(net_todo_list);
7155 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7156
7157 static void net_set_todo(struct net_device *dev)
7158 {
7159         list_add_tail(&dev->todo_list, &net_todo_list);
7160         dev_net(dev)->dev_unreg_count++;
7161 }
7162
7163 static void rollback_registered_many(struct list_head *head)
7164 {
7165         struct net_device *dev, *tmp;
7166         LIST_HEAD(close_head);
7167
7168         BUG_ON(dev_boot_phase);
7169         ASSERT_RTNL();
7170
7171         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7172                 /* Some devices call without registering
7173                  * for initialization unwind. Remove those
7174                  * devices and proceed with the remaining.
7175                  */
7176                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7177                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7178                                  dev->name, dev);
7179
7180                         WARN_ON(1);
7181                         list_del(&dev->unreg_list);
7182                         continue;
7183                 }
7184                 dev->dismantle = true;
7185                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7186         }
7187
7188         /* If device is running, close it first. */
7189         list_for_each_entry(dev, head, unreg_list)
7190                 list_add_tail(&dev->close_list, &close_head);
7191         dev_close_many(&close_head, true);
7192
7193         list_for_each_entry(dev, head, unreg_list) {
7194                 /* And unlink it from device chain. */
7195                 unlist_netdevice(dev);
7196
7197                 dev->reg_state = NETREG_UNREGISTERING;
7198         }
7199         flush_all_backlogs();
7200
7201         synchronize_net();
7202
7203         list_for_each_entry(dev, head, unreg_list) {
7204                 struct sk_buff *skb = NULL;
7205
7206                 /* Shutdown queueing discipline. */
7207                 dev_shutdown(dev);
7208
7209
7210                 /* Notify protocols, that we are about to destroy
7211                  * this device. They should clean all the things.
7212                  */
7213                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7214
7215                 if (!dev->rtnl_link_ops ||
7216                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7217                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7218                                                      GFP_KERNEL);
7219
7220                 /*
7221                  *      Flush the unicast and multicast chains
7222                  */
7223                 dev_uc_flush(dev);
7224                 dev_mc_flush(dev);
7225
7226                 if (dev->netdev_ops->ndo_uninit)
7227                         dev->netdev_ops->ndo_uninit(dev);
7228
7229                 if (skb)
7230                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7231
7232                 /* Notifier chain MUST detach us all upper devices. */
7233                 WARN_ON(netdev_has_any_upper_dev(dev));
7234                 WARN_ON(netdev_has_any_lower_dev(dev));
7235
7236                 /* Remove entries from kobject tree */
7237                 netdev_unregister_kobject(dev);
7238 #ifdef CONFIG_XPS
7239                 /* Remove XPS queueing entries */
7240                 netif_reset_xps_queues_gt(dev, 0);
7241 #endif
7242         }
7243
7244         synchronize_net();
7245
7246         list_for_each_entry(dev, head, unreg_list)
7247                 dev_put(dev);
7248 }
7249
7250 static void rollback_registered(struct net_device *dev)
7251 {
7252         LIST_HEAD(single);
7253
7254         list_add(&dev->unreg_list, &single);
7255         rollback_registered_many(&single);
7256         list_del(&single);
7257 }
7258
7259 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7260         struct net_device *upper, netdev_features_t features)
7261 {
7262         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7263         netdev_features_t feature;
7264         int feature_bit;
7265
7266         for_each_netdev_feature(upper_disables, feature_bit) {
7267                 feature = __NETIF_F_BIT(feature_bit);
7268                 if (!(upper->wanted_features & feature)
7269                     && (features & feature)) {
7270                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7271                                    &feature, upper->name);
7272                         features &= ~feature;
7273                 }
7274         }
7275
7276         return features;
7277 }
7278
7279 static void netdev_sync_lower_features(struct net_device *upper,
7280         struct net_device *lower, netdev_features_t features)
7281 {
7282         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7283         netdev_features_t feature;
7284         int feature_bit;
7285
7286         for_each_netdev_feature(upper_disables, feature_bit) {
7287                 feature = __NETIF_F_BIT(feature_bit);
7288                 if (!(features & feature) && (lower->features & feature)) {
7289                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7290                                    &feature, lower->name);
7291                         lower->wanted_features &= ~feature;
7292                         __netdev_update_features(lower);
7293
7294                         if (unlikely(lower->features & feature))
7295                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7296                                             &feature, lower->name);
7297                         else
7298                                 netdev_features_change(lower);
7299                 }
7300         }
7301 }
7302
7303 static netdev_features_t netdev_fix_features(struct net_device *dev,
7304         netdev_features_t features)
7305 {
7306         /* Fix illegal checksum combinations */
7307         if ((features & NETIF_F_HW_CSUM) &&
7308             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7309                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7310                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7311         }
7312
7313         /* TSO requires that SG is present as well. */
7314         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7315                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7316                 features &= ~NETIF_F_ALL_TSO;
7317         }
7318
7319         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7320                                         !(features & NETIF_F_IP_CSUM)) {
7321                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7322                 features &= ~NETIF_F_TSO;
7323                 features &= ~NETIF_F_TSO_ECN;
7324         }
7325
7326         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7327                                          !(features & NETIF_F_IPV6_CSUM)) {
7328                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7329                 features &= ~NETIF_F_TSO6;
7330         }
7331
7332         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7333         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7334                 features &= ~NETIF_F_TSO_MANGLEID;
7335
7336         /* TSO ECN requires that TSO is present as well. */
7337         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7338                 features &= ~NETIF_F_TSO_ECN;
7339
7340         /* Software GSO depends on SG. */
7341         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7342                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7343                 features &= ~NETIF_F_GSO;
7344         }
7345
7346         /* GSO partial features require GSO partial be set */
7347         if ((features & dev->gso_partial_features) &&
7348             !(features & NETIF_F_GSO_PARTIAL)) {
7349                 netdev_dbg(dev,
7350                            "Dropping partially supported GSO features since no GSO partial.\n");
7351                 features &= ~dev->gso_partial_features;
7352         }
7353
7354         return features;
7355 }
7356
7357 int __netdev_update_features(struct net_device *dev)
7358 {
7359         struct net_device *upper, *lower;
7360         netdev_features_t features;
7361         struct list_head *iter;
7362         int err = -1;
7363
7364         ASSERT_RTNL();
7365
7366         features = netdev_get_wanted_features(dev);
7367
7368         if (dev->netdev_ops->ndo_fix_features)
7369                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7370
7371         /* driver might be less strict about feature dependencies */
7372         features = netdev_fix_features(dev, features);
7373
7374         /* some features can't be enabled if they're off an an upper device */
7375         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7376                 features = netdev_sync_upper_features(dev, upper, features);
7377
7378         if (dev->features == features)
7379                 goto sync_lower;
7380
7381         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7382                 &dev->features, &features);
7383
7384         if (dev->netdev_ops->ndo_set_features)
7385                 err = dev->netdev_ops->ndo_set_features(dev, features);
7386         else
7387                 err = 0;
7388
7389         if (unlikely(err < 0)) {
7390                 netdev_err(dev,
7391                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7392                         err, &features, &dev->features);
7393                 /* return non-0 since some features might have changed and
7394                  * it's better to fire a spurious notification than miss it
7395                  */
7396                 return -1;
7397         }
7398
7399 sync_lower:
7400         /* some features must be disabled on lower devices when disabled
7401          * on an upper device (think: bonding master or bridge)
7402          */
7403         netdev_for_each_lower_dev(dev, lower, iter)
7404                 netdev_sync_lower_features(dev, lower, features);
7405
7406         if (!err) {
7407                 netdev_features_t diff = features ^ dev->features;
7408
7409                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7410                         /* udp_tunnel_{get,drop}_rx_info both need
7411                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7412                          * device, or they won't do anything.
7413                          * Thus we need to update dev->features
7414                          * *before* calling udp_tunnel_get_rx_info,
7415                          * but *after* calling udp_tunnel_drop_rx_info.
7416                          */
7417                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7418                                 dev->features = features;
7419                                 udp_tunnel_get_rx_info(dev);
7420                         } else {
7421                                 udp_tunnel_drop_rx_info(dev);
7422                         }
7423                 }
7424
7425                 dev->features = features;
7426         }
7427
7428         return err < 0 ? 0 : 1;
7429 }
7430
7431 /**
7432  *      netdev_update_features - recalculate device features
7433  *      @dev: the device to check
7434  *
7435  *      Recalculate dev->features set and send notifications if it
7436  *      has changed. Should be called after driver or hardware dependent
7437  *      conditions might have changed that influence the features.
7438  */
7439 void netdev_update_features(struct net_device *dev)
7440 {
7441         if (__netdev_update_features(dev))
7442                 netdev_features_change(dev);
7443 }
7444 EXPORT_SYMBOL(netdev_update_features);
7445
7446 /**
7447  *      netdev_change_features - recalculate device features
7448  *      @dev: the device to check
7449  *
7450  *      Recalculate dev->features set and send notifications even
7451  *      if they have not changed. Should be called instead of
7452  *      netdev_update_features() if also dev->vlan_features might
7453  *      have changed to allow the changes to be propagated to stacked
7454  *      VLAN devices.
7455  */
7456 void netdev_change_features(struct net_device *dev)
7457 {
7458         __netdev_update_features(dev);
7459         netdev_features_change(dev);
7460 }
7461 EXPORT_SYMBOL(netdev_change_features);
7462
7463 /**
7464  *      netif_stacked_transfer_operstate -      transfer operstate
7465  *      @rootdev: the root or lower level device to transfer state from
7466  *      @dev: the device to transfer operstate to
7467  *
7468  *      Transfer operational state from root to device. This is normally
7469  *      called when a stacking relationship exists between the root
7470  *      device and the device(a leaf device).
7471  */
7472 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7473                                         struct net_device *dev)
7474 {
7475         if (rootdev->operstate == IF_OPER_DORMANT)
7476                 netif_dormant_on(dev);
7477         else
7478                 netif_dormant_off(dev);
7479
7480         if (netif_carrier_ok(rootdev))
7481                 netif_carrier_on(dev);
7482         else
7483                 netif_carrier_off(dev);
7484 }
7485 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7486
7487 #ifdef CONFIG_SYSFS
7488 static int netif_alloc_rx_queues(struct net_device *dev)
7489 {
7490         unsigned int i, count = dev->num_rx_queues;
7491         struct netdev_rx_queue *rx;
7492         size_t sz = count * sizeof(*rx);
7493
7494         BUG_ON(count < 1);
7495
7496         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7497         if (!rx)
7498                 return -ENOMEM;
7499
7500         dev->_rx = rx;
7501
7502         for (i = 0; i < count; i++)
7503                 rx[i].dev = dev;
7504         return 0;
7505 }
7506 #endif
7507
7508 static void netdev_init_one_queue(struct net_device *dev,
7509                                   struct netdev_queue *queue, void *_unused)
7510 {
7511         /* Initialize queue lock */
7512         spin_lock_init(&queue->_xmit_lock);
7513         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7514         queue->xmit_lock_owner = -1;
7515         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7516         queue->dev = dev;
7517 #ifdef CONFIG_BQL
7518         dql_init(&queue->dql, HZ);
7519 #endif
7520 }
7521
7522 static void netif_free_tx_queues(struct net_device *dev)
7523 {
7524         kvfree(dev->_tx);
7525 }
7526
7527 static int netif_alloc_netdev_queues(struct net_device *dev)
7528 {
7529         unsigned int count = dev->num_tx_queues;
7530         struct netdev_queue *tx;
7531         size_t sz = count * sizeof(*tx);
7532
7533         if (count < 1 || count > 0xffff)
7534                 return -EINVAL;
7535
7536         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7537         if (!tx)
7538                 return -ENOMEM;
7539
7540         dev->_tx = tx;
7541
7542         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7543         spin_lock_init(&dev->tx_global_lock);
7544
7545         return 0;
7546 }
7547
7548 void netif_tx_stop_all_queues(struct net_device *dev)
7549 {
7550         unsigned int i;
7551
7552         for (i = 0; i < dev->num_tx_queues; i++) {
7553                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7554
7555                 netif_tx_stop_queue(txq);
7556         }
7557 }
7558 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7559
7560 /**
7561  *      register_netdevice      - register a network device
7562  *      @dev: device to register
7563  *
7564  *      Take a completed network device structure and add it to the kernel
7565  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7566  *      chain. 0 is returned on success. A negative errno code is returned
7567  *      on a failure to set up the device, or if the name is a duplicate.
7568  *
7569  *      Callers must hold the rtnl semaphore. You may want
7570  *      register_netdev() instead of this.
7571  *
7572  *      BUGS:
7573  *      The locking appears insufficient to guarantee two parallel registers
7574  *      will not get the same name.
7575  */
7576
7577 int register_netdevice(struct net_device *dev)
7578 {
7579         int ret;
7580         struct net *net = dev_net(dev);
7581
7582         BUG_ON(dev_boot_phase);
7583         ASSERT_RTNL();
7584
7585         might_sleep();
7586
7587         /* When net_device's are persistent, this will be fatal. */
7588         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7589         BUG_ON(!net);
7590
7591         spin_lock_init(&dev->addr_list_lock);
7592         netdev_set_addr_lockdep_class(dev);
7593
7594         ret = dev_get_valid_name(net, dev, dev->name);
7595         if (ret < 0)
7596                 goto out;
7597
7598         /* Init, if this function is available */
7599         if (dev->netdev_ops->ndo_init) {
7600                 ret = dev->netdev_ops->ndo_init(dev);
7601                 if (ret) {
7602                         if (ret > 0)
7603                                 ret = -EIO;
7604                         goto out;
7605                 }
7606         }
7607
7608         if (((dev->hw_features | dev->features) &
7609              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7610             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7611              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7612                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7613                 ret = -EINVAL;
7614                 goto err_uninit;
7615         }
7616
7617         ret = -EBUSY;
7618         if (!dev->ifindex)
7619                 dev->ifindex = dev_new_index(net);
7620         else if (__dev_get_by_index(net, dev->ifindex))
7621                 goto err_uninit;
7622
7623         /* Transfer changeable features to wanted_features and enable
7624          * software offloads (GSO and GRO).
7625          */
7626         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7627         dev->features |= NETIF_F_SOFT_FEATURES;
7628
7629         if (dev->netdev_ops->ndo_udp_tunnel_add) {
7630                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7631                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7632         }
7633
7634         dev->wanted_features = dev->features & dev->hw_features;
7635
7636         if (!(dev->flags & IFF_LOOPBACK))
7637                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7638
7639         /* If IPv4 TCP segmentation offload is supported we should also
7640          * allow the device to enable segmenting the frame with the option
7641          * of ignoring a static IP ID value.  This doesn't enable the
7642          * feature itself but allows the user to enable it later.
7643          */
7644         if (dev->hw_features & NETIF_F_TSO)
7645                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7646         if (dev->vlan_features & NETIF_F_TSO)
7647                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7648         if (dev->mpls_features & NETIF_F_TSO)
7649                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7650         if (dev->hw_enc_features & NETIF_F_TSO)
7651                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7652
7653         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7654          */
7655         dev->vlan_features |= NETIF_F_HIGHDMA;
7656
7657         /* Make NETIF_F_SG inheritable to tunnel devices.
7658          */
7659         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7660
7661         /* Make NETIF_F_SG inheritable to MPLS.
7662          */
7663         dev->mpls_features |= NETIF_F_SG;
7664
7665         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7666         ret = notifier_to_errno(ret);
7667         if (ret)
7668                 goto err_uninit;
7669
7670         ret = netdev_register_kobject(dev);
7671         if (ret) {
7672                 dev->reg_state = NETREG_UNREGISTERED;
7673                 goto err_uninit;
7674         }
7675         dev->reg_state = NETREG_REGISTERED;
7676
7677         __netdev_update_features(dev);
7678
7679         /*
7680          *      Default initial state at registry is that the
7681          *      device is present.
7682          */
7683
7684         set_bit(__LINK_STATE_PRESENT, &dev->state);
7685
7686         linkwatch_init_dev(dev);
7687
7688         dev_init_scheduler(dev);
7689         dev_hold(dev);
7690         list_netdevice(dev);
7691         add_device_randomness(dev->dev_addr, dev->addr_len);
7692
7693         /* If the device has permanent device address, driver should
7694          * set dev_addr and also addr_assign_type should be set to
7695          * NET_ADDR_PERM (default value).
7696          */
7697         if (dev->addr_assign_type == NET_ADDR_PERM)
7698                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7699
7700         /* Notify protocols, that a new device appeared. */
7701         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7702         ret = notifier_to_errno(ret);
7703         if (ret) {
7704                 rollback_registered(dev);
7705                 rcu_barrier();
7706
7707                 dev->reg_state = NETREG_UNREGISTERED;
7708                 /* We should put the kobject that hold in
7709                  * netdev_unregister_kobject(), otherwise
7710                  * the net device cannot be freed when
7711                  * driver calls free_netdev(), because the
7712                  * kobject is being hold.
7713                  */
7714                 kobject_put(&dev->dev.kobj);
7715         }
7716         /*
7717          *      Prevent userspace races by waiting until the network
7718          *      device is fully setup before sending notifications.
7719          */
7720         if (!dev->rtnl_link_ops ||
7721             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7722                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7723
7724 out:
7725         return ret;
7726
7727 err_uninit:
7728         if (dev->netdev_ops->ndo_uninit)
7729                 dev->netdev_ops->ndo_uninit(dev);
7730         if (dev->priv_destructor)
7731                 dev->priv_destructor(dev);
7732         goto out;
7733 }
7734 EXPORT_SYMBOL(register_netdevice);
7735
7736 /**
7737  *      init_dummy_netdev       - init a dummy network device for NAPI
7738  *      @dev: device to init
7739  *
7740  *      This takes a network device structure and initialize the minimum
7741  *      amount of fields so it can be used to schedule NAPI polls without
7742  *      registering a full blown interface. This is to be used by drivers
7743  *      that need to tie several hardware interfaces to a single NAPI
7744  *      poll scheduler due to HW limitations.
7745  */
7746 int init_dummy_netdev(struct net_device *dev)
7747 {
7748         /* Clear everything. Note we don't initialize spinlocks
7749          * are they aren't supposed to be taken by any of the
7750          * NAPI code and this dummy netdev is supposed to be
7751          * only ever used for NAPI polls
7752          */
7753         memset(dev, 0, sizeof(struct net_device));
7754
7755         /* make sure we BUG if trying to hit standard
7756          * register/unregister code path
7757          */
7758         dev->reg_state = NETREG_DUMMY;
7759
7760         /* NAPI wants this */
7761         INIT_LIST_HEAD(&dev->napi_list);
7762
7763         /* a dummy interface is started by default */
7764         set_bit(__LINK_STATE_PRESENT, &dev->state);
7765         set_bit(__LINK_STATE_START, &dev->state);
7766
7767         /* napi_busy_loop stats accounting wants this */
7768         dev_net_set(dev, &init_net);
7769
7770         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7771          * because users of this 'device' dont need to change
7772          * its refcount.
7773          */
7774
7775         return 0;
7776 }
7777 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7778
7779
7780 int dev_validate_mtu(struct net_device *dev, int new_mtu)
7781 {
7782         /* MTU must be positive, and in range */
7783         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7784                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7785                                     dev->name, new_mtu, dev->min_mtu);
7786                 return -EINVAL;
7787         }
7788
7789         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7790                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7791                                     dev->name, new_mtu, dev->max_mtu);
7792                 return -EINVAL;
7793         }
7794         return 0;
7795 }
7796
7797 /**
7798  *      register_netdev - register a network device
7799  *      @dev: device to register
7800  *
7801  *      Take a completed network device structure and add it to the kernel
7802  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7803  *      chain. 0 is returned on success. A negative errno code is returned
7804  *      on a failure to set up the device, or if the name is a duplicate.
7805  *
7806  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7807  *      and expands the device name if you passed a format string to
7808  *      alloc_netdev.
7809  */
7810 int register_netdev(struct net_device *dev)
7811 {
7812         int err;
7813
7814         rtnl_lock();
7815         err = register_netdevice(dev);
7816         rtnl_unlock();
7817         return err;
7818 }
7819 EXPORT_SYMBOL(register_netdev);
7820
7821 int netdev_refcnt_read(const struct net_device *dev)
7822 {
7823         int i, refcnt = 0;
7824
7825         for_each_possible_cpu(i)
7826                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7827         return refcnt;
7828 }
7829 EXPORT_SYMBOL(netdev_refcnt_read);
7830
7831 /**
7832  * netdev_wait_allrefs - wait until all references are gone.
7833  * @dev: target net_device
7834  *
7835  * This is called when unregistering network devices.
7836  *
7837  * Any protocol or device that holds a reference should register
7838  * for netdevice notification, and cleanup and put back the
7839  * reference if they receive an UNREGISTER event.
7840  * We can get stuck here if buggy protocols don't correctly
7841  * call dev_put.
7842  */
7843 static void netdev_wait_allrefs(struct net_device *dev)
7844 {
7845         unsigned long rebroadcast_time, warning_time;
7846         int refcnt;
7847
7848         linkwatch_forget_dev(dev);
7849
7850         rebroadcast_time = warning_time = jiffies;
7851         refcnt = netdev_refcnt_read(dev);
7852
7853         while (refcnt != 0) {
7854                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7855                         rtnl_lock();
7856
7857                         /* Rebroadcast unregister notification */
7858                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7859
7860                         __rtnl_unlock();
7861                         rcu_barrier();
7862                         rtnl_lock();
7863
7864                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7865                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7866                                      &dev->state)) {
7867                                 /* We must not have linkwatch events
7868                                  * pending on unregister. If this
7869                                  * happens, we simply run the queue
7870                                  * unscheduled, resulting in a noop
7871                                  * for this device.
7872                                  */
7873                                 linkwatch_run_queue();
7874                         }
7875
7876                         __rtnl_unlock();
7877
7878                         rebroadcast_time = jiffies;
7879                 }
7880
7881                 msleep(250);
7882
7883                 refcnt = netdev_refcnt_read(dev);
7884
7885                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7886                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7887                                  dev->name, refcnt);
7888                         warning_time = jiffies;
7889                 }
7890         }
7891 }
7892
7893 /* The sequence is:
7894  *
7895  *      rtnl_lock();
7896  *      ...
7897  *      register_netdevice(x1);
7898  *      register_netdevice(x2);
7899  *      ...
7900  *      unregister_netdevice(y1);
7901  *      unregister_netdevice(y2);
7902  *      ...
7903  *      rtnl_unlock();
7904  *      free_netdev(y1);
7905  *      free_netdev(y2);
7906  *
7907  * We are invoked by rtnl_unlock().
7908  * This allows us to deal with problems:
7909  * 1) We can delete sysfs objects which invoke hotplug
7910  *    without deadlocking with linkwatch via keventd.
7911  * 2) Since we run with the RTNL semaphore not held, we can sleep
7912  *    safely in order to wait for the netdev refcnt to drop to zero.
7913  *
7914  * We must not return until all unregister events added during
7915  * the interval the lock was held have been completed.
7916  */
7917 void netdev_run_todo(void)
7918 {
7919         struct list_head list;
7920
7921         /* Snapshot list, allow later requests */
7922         list_replace_init(&net_todo_list, &list);
7923
7924         __rtnl_unlock();
7925
7926
7927         /* Wait for rcu callbacks to finish before next phase */
7928         if (!list_empty(&list))
7929                 rcu_barrier();
7930
7931         while (!list_empty(&list)) {
7932                 struct net_device *dev
7933                         = list_first_entry(&list, struct net_device, todo_list);
7934                 list_del(&dev->todo_list);
7935
7936                 rtnl_lock();
7937                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7938                 __rtnl_unlock();
7939
7940                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7941                         pr_err("network todo '%s' but state %d\n",
7942                                dev->name, dev->reg_state);
7943                         dump_stack();
7944                         continue;
7945                 }
7946
7947                 dev->reg_state = NETREG_UNREGISTERED;
7948
7949                 netdev_wait_allrefs(dev);
7950
7951                 /* paranoia */
7952                 BUG_ON(netdev_refcnt_read(dev));
7953                 BUG_ON(!list_empty(&dev->ptype_all));
7954                 BUG_ON(!list_empty(&dev->ptype_specific));
7955                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7956                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7957                 WARN_ON(dev->dn_ptr);
7958
7959                 if (dev->priv_destructor)
7960                         dev->priv_destructor(dev);
7961                 if (dev->needs_free_netdev)
7962                         free_netdev(dev);
7963
7964                 /* Report a network device has been unregistered */
7965                 rtnl_lock();
7966                 dev_net(dev)->dev_unreg_count--;
7967                 __rtnl_unlock();
7968                 wake_up(&netdev_unregistering_wq);
7969
7970                 /* Free network device */
7971                 kobject_put(&dev->dev.kobj);
7972         }
7973 }
7974
7975 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7976  * all the same fields in the same order as net_device_stats, with only
7977  * the type differing, but rtnl_link_stats64 may have additional fields
7978  * at the end for newer counters.
7979  */
7980 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7981                              const struct net_device_stats *netdev_stats)
7982 {
7983 #if BITS_PER_LONG == 64
7984         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7985         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7986         /* zero out counters that only exist in rtnl_link_stats64 */
7987         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7988                sizeof(*stats64) - sizeof(*netdev_stats));
7989 #else
7990         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7991         const unsigned long *src = (const unsigned long *)netdev_stats;
7992         u64 *dst = (u64 *)stats64;
7993
7994         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7995         for (i = 0; i < n; i++)
7996                 dst[i] = src[i];
7997         /* zero out counters that only exist in rtnl_link_stats64 */
7998         memset((char *)stats64 + n * sizeof(u64), 0,
7999                sizeof(*stats64) - n * sizeof(u64));
8000 #endif
8001 }
8002 EXPORT_SYMBOL(netdev_stats_to_stats64);
8003
8004 /**
8005  *      dev_get_stats   - get network device statistics
8006  *      @dev: device to get statistics from
8007  *      @storage: place to store stats
8008  *
8009  *      Get network statistics from device. Return @storage.
8010  *      The device driver may provide its own method by setting
8011  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8012  *      otherwise the internal statistics structure is used.
8013  */
8014 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8015                                         struct rtnl_link_stats64 *storage)
8016 {
8017         const struct net_device_ops *ops = dev->netdev_ops;
8018
8019         if (ops->ndo_get_stats64) {
8020                 memset(storage, 0, sizeof(*storage));
8021                 ops->ndo_get_stats64(dev, storage);
8022         } else if (ops->ndo_get_stats) {
8023                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8024         } else {
8025                 netdev_stats_to_stats64(storage, &dev->stats);
8026         }
8027         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8028         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8029         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8030         return storage;
8031 }
8032 EXPORT_SYMBOL(dev_get_stats);
8033
8034 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8035 {
8036         struct netdev_queue *queue = dev_ingress_queue(dev);
8037
8038 #ifdef CONFIG_NET_CLS_ACT
8039         if (queue)
8040                 return queue;
8041         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8042         if (!queue)
8043                 return NULL;
8044         netdev_init_one_queue(dev, queue, NULL);
8045         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8046         queue->qdisc_sleeping = &noop_qdisc;
8047         rcu_assign_pointer(dev->ingress_queue, queue);
8048 #endif
8049         return queue;
8050 }
8051
8052 static const struct ethtool_ops default_ethtool_ops;
8053
8054 void netdev_set_default_ethtool_ops(struct net_device *dev,
8055                                     const struct ethtool_ops *ops)
8056 {
8057         if (dev->ethtool_ops == &default_ethtool_ops)
8058                 dev->ethtool_ops = ops;
8059 }
8060 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8061
8062 void netdev_freemem(struct net_device *dev)
8063 {
8064         char *addr = (char *)dev - dev->padded;
8065
8066         kvfree(addr);
8067 }
8068
8069 /**
8070  * alloc_netdev_mqs - allocate network device
8071  * @sizeof_priv: size of private data to allocate space for
8072  * @name: device name format string
8073  * @name_assign_type: origin of device name
8074  * @setup: callback to initialize device
8075  * @txqs: the number of TX subqueues to allocate
8076  * @rxqs: the number of RX subqueues to allocate
8077  *
8078  * Allocates a struct net_device with private data area for driver use
8079  * and performs basic initialization.  Also allocates subqueue structs
8080  * for each queue on the device.
8081  */
8082 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8083                 unsigned char name_assign_type,
8084                 void (*setup)(struct net_device *),
8085                 unsigned int txqs, unsigned int rxqs)
8086 {
8087         struct net_device *dev;
8088         size_t alloc_size;
8089         struct net_device *p;
8090
8091         BUG_ON(strlen(name) >= sizeof(dev->name));
8092
8093         if (txqs < 1) {
8094                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8095                 return NULL;
8096         }
8097
8098 #ifdef CONFIG_SYSFS
8099         if (rxqs < 1) {
8100                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8101                 return NULL;
8102         }
8103 #endif
8104
8105         alloc_size = sizeof(struct net_device);
8106         if (sizeof_priv) {
8107                 /* ensure 32-byte alignment of private area */
8108                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8109                 alloc_size += sizeof_priv;
8110         }
8111         /* ensure 32-byte alignment of whole construct */
8112         alloc_size += NETDEV_ALIGN - 1;
8113
8114         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8115         if (!p)
8116                 return NULL;
8117
8118         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8119         dev->padded = (char *)dev - (char *)p;
8120
8121         dev->pcpu_refcnt = alloc_percpu(int);
8122         if (!dev->pcpu_refcnt)
8123                 goto free_dev;
8124
8125         if (dev_addr_init(dev))
8126                 goto free_pcpu;
8127
8128         dev_mc_init(dev);
8129         dev_uc_init(dev);
8130
8131         dev_net_set(dev, &init_net);
8132
8133         dev->gso_max_size = GSO_MAX_SIZE;
8134         dev->gso_max_segs = GSO_MAX_SEGS;
8135
8136         INIT_LIST_HEAD(&dev->napi_list);
8137         INIT_LIST_HEAD(&dev->unreg_list);
8138         INIT_LIST_HEAD(&dev->close_list);
8139         INIT_LIST_HEAD(&dev->link_watch_list);
8140         INIT_LIST_HEAD(&dev->adj_list.upper);
8141         INIT_LIST_HEAD(&dev->adj_list.lower);
8142         INIT_LIST_HEAD(&dev->ptype_all);
8143         INIT_LIST_HEAD(&dev->ptype_specific);
8144 #ifdef CONFIG_NET_SCHED
8145         hash_init(dev->qdisc_hash);
8146 #endif
8147         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8148         setup(dev);
8149
8150         if (!dev->tx_queue_len) {
8151                 dev->priv_flags |= IFF_NO_QUEUE;
8152                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8153         }
8154
8155         dev->num_tx_queues = txqs;
8156         dev->real_num_tx_queues = txqs;
8157         if (netif_alloc_netdev_queues(dev))
8158                 goto free_all;
8159
8160 #ifdef CONFIG_SYSFS
8161         dev->num_rx_queues = rxqs;
8162         dev->real_num_rx_queues = rxqs;
8163         if (netif_alloc_rx_queues(dev))
8164                 goto free_all;
8165 #endif
8166
8167         strcpy(dev->name, name);
8168         dev->name_assign_type = name_assign_type;
8169         dev->group = INIT_NETDEV_GROUP;
8170         if (!dev->ethtool_ops)
8171                 dev->ethtool_ops = &default_ethtool_ops;
8172
8173         nf_hook_ingress_init(dev);
8174
8175         return dev;
8176
8177 free_all:
8178         free_netdev(dev);
8179         return NULL;
8180
8181 free_pcpu:
8182         free_percpu(dev->pcpu_refcnt);
8183 free_dev:
8184         netdev_freemem(dev);
8185         return NULL;
8186 }
8187 EXPORT_SYMBOL(alloc_netdev_mqs);
8188
8189 /**
8190  * free_netdev - free network device
8191  * @dev: device
8192  *
8193  * This function does the last stage of destroying an allocated device
8194  * interface. The reference to the device object is released. If this
8195  * is the last reference then it will be freed.Must be called in process
8196  * context.
8197  */
8198 void free_netdev(struct net_device *dev)
8199 {
8200         struct napi_struct *p, *n;
8201         struct bpf_prog *prog;
8202
8203         might_sleep();
8204         netif_free_tx_queues(dev);
8205 #ifdef CONFIG_SYSFS
8206         kvfree(dev->_rx);
8207 #endif
8208
8209         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8210
8211         /* Flush device addresses */
8212         dev_addr_flush(dev);
8213
8214         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8215                 netif_napi_del(p);
8216
8217         free_percpu(dev->pcpu_refcnt);
8218         dev->pcpu_refcnt = NULL;
8219
8220         prog = rcu_dereference_protected(dev->xdp_prog, 1);
8221         if (prog) {
8222                 bpf_prog_put(prog);
8223                 static_key_slow_dec(&generic_xdp_needed);
8224         }
8225
8226         /*  Compatibility with error handling in drivers */
8227         if (dev->reg_state == NETREG_UNINITIALIZED) {
8228                 netdev_freemem(dev);
8229                 return;
8230         }
8231
8232         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8233         dev->reg_state = NETREG_RELEASED;
8234
8235         /* will free via device release */
8236         put_device(&dev->dev);
8237 }
8238 EXPORT_SYMBOL(free_netdev);
8239
8240 /**
8241  *      synchronize_net -  Synchronize with packet receive processing
8242  *
8243  *      Wait for packets currently being received to be done.
8244  *      Does not block later packets from starting.
8245  */
8246 void synchronize_net(void)
8247 {
8248         might_sleep();
8249         if (rtnl_is_locked())
8250                 synchronize_rcu_expedited();
8251         else
8252                 synchronize_rcu();
8253 }
8254 EXPORT_SYMBOL(synchronize_net);
8255
8256 /**
8257  *      unregister_netdevice_queue - remove device from the kernel
8258  *      @dev: device
8259  *      @head: list
8260  *
8261  *      This function shuts down a device interface and removes it
8262  *      from the kernel tables.
8263  *      If head not NULL, device is queued to be unregistered later.
8264  *
8265  *      Callers must hold the rtnl semaphore.  You may want
8266  *      unregister_netdev() instead of this.
8267  */
8268
8269 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8270 {
8271         ASSERT_RTNL();
8272
8273         if (head) {
8274                 list_move_tail(&dev->unreg_list, head);
8275         } else {
8276                 rollback_registered(dev);
8277                 /* Finish processing unregister after unlock */
8278                 net_set_todo(dev);
8279         }
8280 }
8281 EXPORT_SYMBOL(unregister_netdevice_queue);
8282
8283 /**
8284  *      unregister_netdevice_many - unregister many devices
8285  *      @head: list of devices
8286  *
8287  *  Note: As most callers use a stack allocated list_head,
8288  *  we force a list_del() to make sure stack wont be corrupted later.
8289  */
8290 void unregister_netdevice_many(struct list_head *head)
8291 {
8292         struct net_device *dev;
8293
8294         if (!list_empty(head)) {
8295                 rollback_registered_many(head);
8296                 list_for_each_entry(dev, head, unreg_list)
8297                         net_set_todo(dev);
8298                 list_del(head);
8299         }
8300 }
8301 EXPORT_SYMBOL(unregister_netdevice_many);
8302
8303 /**
8304  *      unregister_netdev - remove device from the kernel
8305  *      @dev: device
8306  *
8307  *      This function shuts down a device interface and removes it
8308  *      from the kernel tables.
8309  *
8310  *      This is just a wrapper for unregister_netdevice that takes
8311  *      the rtnl semaphore.  In general you want to use this and not
8312  *      unregister_netdevice.
8313  */
8314 void unregister_netdev(struct net_device *dev)
8315 {
8316         rtnl_lock();
8317         unregister_netdevice(dev);
8318         rtnl_unlock();
8319 }
8320 EXPORT_SYMBOL(unregister_netdev);
8321
8322 /**
8323  *      dev_change_net_namespace - move device to different nethost namespace
8324  *      @dev: device
8325  *      @net: network namespace
8326  *      @pat: If not NULL name pattern to try if the current device name
8327  *            is already taken in the destination network namespace.
8328  *
8329  *      This function shuts down a device interface and moves it
8330  *      to a new network namespace. On success 0 is returned, on
8331  *      a failure a netagive errno code is returned.
8332  *
8333  *      Callers must hold the rtnl semaphore.
8334  */
8335
8336 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8337 {
8338         int err;
8339
8340         ASSERT_RTNL();
8341
8342         /* Don't allow namespace local devices to be moved. */
8343         err = -EINVAL;
8344         if (dev->features & NETIF_F_NETNS_LOCAL)
8345                 goto out;
8346
8347         /* Ensure the device has been registrered */
8348         if (dev->reg_state != NETREG_REGISTERED)
8349                 goto out;
8350
8351         /* Get out if there is nothing todo */
8352         err = 0;
8353         if (net_eq(dev_net(dev), net))
8354                 goto out;
8355
8356         /* Pick the destination device name, and ensure
8357          * we can use it in the destination network namespace.
8358          */
8359         err = -EEXIST;
8360         if (__dev_get_by_name(net, dev->name)) {
8361                 /* We get here if we can't use the current device name */
8362                 if (!pat)
8363                         goto out;
8364                 err = dev_get_valid_name(net, dev, pat);
8365                 if (err < 0)
8366                         goto out;
8367         }
8368
8369         /*
8370          * And now a mini version of register_netdevice unregister_netdevice.
8371          */
8372
8373         /* If device is running close it first. */
8374         dev_close(dev);
8375
8376         /* And unlink it from device chain */
8377         unlist_netdevice(dev);
8378
8379         synchronize_net();
8380
8381         /* Shutdown queueing discipline. */
8382         dev_shutdown(dev);
8383
8384         /* Notify protocols, that we are about to destroy
8385          * this device. They should clean all the things.
8386          *
8387          * Note that dev->reg_state stays at NETREG_REGISTERED.
8388          * This is wanted because this way 8021q and macvlan know
8389          * the device is just moving and can keep their slaves up.
8390          */
8391         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8392         rcu_barrier();
8393         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8394         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8395
8396         /*
8397          *      Flush the unicast and multicast chains
8398          */
8399         dev_uc_flush(dev);
8400         dev_mc_flush(dev);
8401
8402         /* Send a netdev-removed uevent to the old namespace */
8403         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8404         netdev_adjacent_del_links(dev);
8405
8406         /* Actually switch the network namespace */
8407         dev_net_set(dev, net);
8408
8409         /* If there is an ifindex conflict assign a new one */
8410         if (__dev_get_by_index(net, dev->ifindex))
8411                 dev->ifindex = dev_new_index(net);
8412
8413         /* Send a netdev-add uevent to the new namespace */
8414         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8415         netdev_adjacent_add_links(dev);
8416
8417         /* Fixup kobjects */
8418         err = device_rename(&dev->dev, dev->name);
8419         WARN_ON(err);
8420
8421         /* Add the device back in the hashes */
8422         list_netdevice(dev);
8423
8424         /* Notify protocols, that a new device appeared. */
8425         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8426
8427         /*
8428          *      Prevent userspace races by waiting until the network
8429          *      device is fully setup before sending notifications.
8430          */
8431         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8432
8433         synchronize_net();
8434         err = 0;
8435 out:
8436         return err;
8437 }
8438 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8439
8440 static int dev_cpu_dead(unsigned int oldcpu)
8441 {
8442         struct sk_buff **list_skb;
8443         struct sk_buff *skb;
8444         unsigned int cpu;
8445         struct softnet_data *sd, *oldsd, *remsd = NULL;
8446
8447         local_irq_disable();
8448         cpu = smp_processor_id();
8449         sd = &per_cpu(softnet_data, cpu);
8450         oldsd = &per_cpu(softnet_data, oldcpu);
8451
8452         /* Find end of our completion_queue. */
8453         list_skb = &sd->completion_queue;
8454         while (*list_skb)
8455                 list_skb = &(*list_skb)->next;
8456         /* Append completion queue from offline CPU. */
8457         *list_skb = oldsd->completion_queue;
8458         oldsd->completion_queue = NULL;
8459
8460         /* Append output queue from offline CPU. */
8461         if (oldsd->output_queue) {
8462                 *sd->output_queue_tailp = oldsd->output_queue;
8463                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8464                 oldsd->output_queue = NULL;
8465                 oldsd->output_queue_tailp = &oldsd->output_queue;
8466         }
8467         /* Append NAPI poll list from offline CPU, with one exception :
8468          * process_backlog() must be called by cpu owning percpu backlog.
8469          * We properly handle process_queue & input_pkt_queue later.
8470          */
8471         while (!list_empty(&oldsd->poll_list)) {
8472                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8473                                                             struct napi_struct,
8474                                                             poll_list);
8475
8476                 list_del_init(&napi->poll_list);
8477                 if (napi->poll == process_backlog)
8478                         napi->state = 0;
8479                 else
8480                         ____napi_schedule(sd, napi);
8481         }
8482
8483         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8484         local_irq_enable();
8485
8486 #ifdef CONFIG_RPS
8487         remsd = oldsd->rps_ipi_list;
8488         oldsd->rps_ipi_list = NULL;
8489 #endif
8490         /* send out pending IPI's on offline CPU */
8491         net_rps_send_ipi(remsd);
8492
8493         /* Process offline CPU's input_pkt_queue */
8494         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8495                 netif_rx_ni(skb);
8496                 input_queue_head_incr(oldsd);
8497         }
8498         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8499                 netif_rx_ni(skb);
8500                 input_queue_head_incr(oldsd);
8501         }
8502
8503         return 0;
8504 }
8505
8506 /**
8507  *      netdev_increment_features - increment feature set by one
8508  *      @all: current feature set
8509  *      @one: new feature set
8510  *      @mask: mask feature set
8511  *
8512  *      Computes a new feature set after adding a device with feature set
8513  *      @one to the master device with current feature set @all.  Will not
8514  *      enable anything that is off in @mask. Returns the new feature set.
8515  */
8516 netdev_features_t netdev_increment_features(netdev_features_t all,
8517         netdev_features_t one, netdev_features_t mask)
8518 {
8519         if (mask & NETIF_F_HW_CSUM)
8520                 mask |= NETIF_F_CSUM_MASK;
8521         mask |= NETIF_F_VLAN_CHALLENGED;
8522
8523         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8524         all &= one | ~NETIF_F_ALL_FOR_ALL;
8525
8526         /* If one device supports hw checksumming, set for all. */
8527         if (all & NETIF_F_HW_CSUM)
8528                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8529
8530         return all;
8531 }
8532 EXPORT_SYMBOL(netdev_increment_features);
8533
8534 static struct hlist_head * __net_init netdev_create_hash(void)
8535 {
8536         int i;
8537         struct hlist_head *hash;
8538
8539         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8540         if (hash != NULL)
8541                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8542                         INIT_HLIST_HEAD(&hash[i]);
8543
8544         return hash;
8545 }
8546
8547 /* Initialize per network namespace state */
8548 static int __net_init netdev_init(struct net *net)
8549 {
8550         if (net != &init_net)
8551                 INIT_LIST_HEAD(&net->dev_base_head);
8552
8553         net->dev_name_head = netdev_create_hash();
8554         if (net->dev_name_head == NULL)
8555                 goto err_name;
8556
8557         net->dev_index_head = netdev_create_hash();
8558         if (net->dev_index_head == NULL)
8559                 goto err_idx;
8560
8561         return 0;
8562
8563 err_idx:
8564         kfree(net->dev_name_head);
8565 err_name:
8566         return -ENOMEM;
8567 }
8568
8569 /**
8570  *      netdev_drivername - network driver for the device
8571  *      @dev: network device
8572  *
8573  *      Determine network driver for device.
8574  */
8575 const char *netdev_drivername(const struct net_device *dev)
8576 {
8577         const struct device_driver *driver;
8578         const struct device *parent;
8579         const char *empty = "";
8580
8581         parent = dev->dev.parent;
8582         if (!parent)
8583                 return empty;
8584
8585         driver = parent->driver;
8586         if (driver && driver->name)
8587                 return driver->name;
8588         return empty;
8589 }
8590
8591 static void __netdev_printk(const char *level, const struct net_device *dev,
8592                             struct va_format *vaf)
8593 {
8594         if (dev && dev->dev.parent) {
8595                 dev_printk_emit(level[1] - '0',
8596                                 dev->dev.parent,
8597                                 "%s %s %s%s: %pV",
8598                                 dev_driver_string(dev->dev.parent),
8599                                 dev_name(dev->dev.parent),
8600                                 netdev_name(dev), netdev_reg_state(dev),
8601                                 vaf);
8602         } else if (dev) {
8603                 printk("%s%s%s: %pV",
8604                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8605         } else {
8606                 printk("%s(NULL net_device): %pV", level, vaf);
8607         }
8608 }
8609
8610 void netdev_printk(const char *level, const struct net_device *dev,
8611                    const char *format, ...)
8612 {
8613         struct va_format vaf;
8614         va_list args;
8615
8616         va_start(args, format);
8617
8618         vaf.fmt = format;
8619         vaf.va = &args;
8620
8621         __netdev_printk(level, dev, &vaf);
8622
8623         va_end(args);
8624 }
8625 EXPORT_SYMBOL(netdev_printk);
8626
8627 #define define_netdev_printk_level(func, level)                 \
8628 void func(const struct net_device *dev, const char *fmt, ...)   \
8629 {                                                               \
8630         struct va_format vaf;                                   \
8631         va_list args;                                           \
8632                                                                 \
8633         va_start(args, fmt);                                    \
8634                                                                 \
8635         vaf.fmt = fmt;                                          \
8636         vaf.va = &args;                                         \
8637                                                                 \
8638         __netdev_printk(level, dev, &vaf);                      \
8639                                                                 \
8640         va_end(args);                                           \
8641 }                                                               \
8642 EXPORT_SYMBOL(func);
8643
8644 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8645 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8646 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8647 define_netdev_printk_level(netdev_err, KERN_ERR);
8648 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8649 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8650 define_netdev_printk_level(netdev_info, KERN_INFO);
8651
8652 static void __net_exit netdev_exit(struct net *net)
8653 {
8654         kfree(net->dev_name_head);
8655         kfree(net->dev_index_head);
8656 }
8657
8658 static struct pernet_operations __net_initdata netdev_net_ops = {
8659         .init = netdev_init,
8660         .exit = netdev_exit,
8661 };
8662
8663 static void __net_exit default_device_exit(struct net *net)
8664 {
8665         struct net_device *dev, *aux;
8666         /*
8667          * Push all migratable network devices back to the
8668          * initial network namespace
8669          */
8670         rtnl_lock();
8671         for_each_netdev_safe(net, dev, aux) {
8672                 int err;
8673                 char fb_name[IFNAMSIZ];
8674
8675                 /* Ignore unmoveable devices (i.e. loopback) */
8676                 if (dev->features & NETIF_F_NETNS_LOCAL)
8677                         continue;
8678
8679                 /* Leave virtual devices for the generic cleanup */
8680                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
8681                         continue;
8682
8683                 /* Push remaining network devices to init_net */
8684                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8685                 if (__dev_get_by_name(&init_net, fb_name))
8686                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
8687                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8688                 if (err) {
8689                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8690                                  __func__, dev->name, err);
8691                         BUG();
8692                 }
8693         }
8694         rtnl_unlock();
8695 }
8696
8697 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8698 {
8699         /* Return with the rtnl_lock held when there are no network
8700          * devices unregistering in any network namespace in net_list.
8701          */
8702         struct net *net;
8703         bool unregistering;
8704         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8705
8706         add_wait_queue(&netdev_unregistering_wq, &wait);
8707         for (;;) {
8708                 unregistering = false;
8709                 rtnl_lock();
8710                 list_for_each_entry(net, net_list, exit_list) {
8711                         if (net->dev_unreg_count > 0) {
8712                                 unregistering = true;
8713                                 break;
8714                         }
8715                 }
8716                 if (!unregistering)
8717                         break;
8718                 __rtnl_unlock();
8719
8720                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8721         }
8722         remove_wait_queue(&netdev_unregistering_wq, &wait);
8723 }
8724
8725 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8726 {
8727         /* At exit all network devices most be removed from a network
8728          * namespace.  Do this in the reverse order of registration.
8729          * Do this across as many network namespaces as possible to
8730          * improve batching efficiency.
8731          */
8732         struct net_device *dev;
8733         struct net *net;
8734         LIST_HEAD(dev_kill_list);
8735
8736         /* To prevent network device cleanup code from dereferencing
8737          * loopback devices or network devices that have been freed
8738          * wait here for all pending unregistrations to complete,
8739          * before unregistring the loopback device and allowing the
8740          * network namespace be freed.
8741          *
8742          * The netdev todo list containing all network devices
8743          * unregistrations that happen in default_device_exit_batch
8744          * will run in the rtnl_unlock() at the end of
8745          * default_device_exit_batch.
8746          */
8747         rtnl_lock_unregistering(net_list);
8748         list_for_each_entry(net, net_list, exit_list) {
8749                 for_each_netdev_reverse(net, dev) {
8750                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8751                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8752                         else
8753                                 unregister_netdevice_queue(dev, &dev_kill_list);
8754                 }
8755         }
8756         unregister_netdevice_many(&dev_kill_list);
8757         rtnl_unlock();
8758 }
8759
8760 static struct pernet_operations __net_initdata default_device_ops = {
8761         .exit = default_device_exit,
8762         .exit_batch = default_device_exit_batch,
8763 };
8764
8765 /*
8766  *      Initialize the DEV module. At boot time this walks the device list and
8767  *      unhooks any devices that fail to initialise (normally hardware not
8768  *      present) and leaves us with a valid list of present and active devices.
8769  *
8770  */
8771
8772 /*
8773  *       This is called single threaded during boot, so no need
8774  *       to take the rtnl semaphore.
8775  */
8776 static int __init net_dev_init(void)
8777 {
8778         int i, rc = -ENOMEM;
8779
8780         BUG_ON(!dev_boot_phase);
8781
8782         if (dev_proc_init())
8783                 goto out;
8784
8785         if (netdev_kobject_init())
8786                 goto out;
8787
8788         INIT_LIST_HEAD(&ptype_all);
8789         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8790                 INIT_LIST_HEAD(&ptype_base[i]);
8791
8792         INIT_LIST_HEAD(&offload_base);
8793
8794         if (register_pernet_subsys(&netdev_net_ops))
8795                 goto out;
8796
8797         /*
8798          *      Initialise the packet receive queues.
8799          */
8800
8801         for_each_possible_cpu(i) {
8802                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8803                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8804
8805                 INIT_WORK(flush, flush_backlog);
8806
8807                 skb_queue_head_init(&sd->input_pkt_queue);
8808                 skb_queue_head_init(&sd->process_queue);
8809                 INIT_LIST_HEAD(&sd->poll_list);
8810                 sd->output_queue_tailp = &sd->output_queue;
8811 #ifdef CONFIG_RPS
8812                 sd->csd.func = rps_trigger_softirq;
8813                 sd->csd.info = sd;
8814                 sd->cpu = i;
8815 #endif
8816
8817                 sd->backlog.poll = process_backlog;
8818                 sd->backlog.weight = weight_p;
8819         }
8820
8821         dev_boot_phase = 0;
8822
8823         /* The loopback device is special if any other network devices
8824          * is present in a network namespace the loopback device must
8825          * be present. Since we now dynamically allocate and free the
8826          * loopback device ensure this invariant is maintained by
8827          * keeping the loopback device as the first device on the
8828          * list of network devices.  Ensuring the loopback devices
8829          * is the first device that appears and the last network device
8830          * that disappears.
8831          */
8832         if (register_pernet_device(&loopback_net_ops))
8833                 goto out;
8834
8835         if (register_pernet_device(&default_device_ops))
8836                 goto out;
8837
8838         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8839         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8840
8841         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8842                                        NULL, dev_cpu_dead);
8843         WARN_ON(rc < 0);
8844         rc = 0;
8845 out:
8846         return rc;
8847 }
8848
8849 subsys_initcall(net_dev_init);