3ec203bbd5593c811f519f230618ebf16a45bf3e
[releases.git] / checkpoint.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
30                                                 unsigned char reason)
31 {
32         f2fs_build_fault_attr(sbi, 0, 0);
33         set_ckpt_flags(sbi, CP_ERROR_FLAG);
34         if (!end_io) {
35                 f2fs_flush_merged_writes(sbi);
36
37                 f2fs_handle_stop(sbi, reason);
38         }
39 }
40
41 /*
42  * We guarantee no failure on the returned page.
43  */
44 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
45 {
46         struct address_space *mapping = META_MAPPING(sbi);
47         struct page *page;
48 repeat:
49         page = f2fs_grab_cache_page(mapping, index, false);
50         if (!page) {
51                 cond_resched();
52                 goto repeat;
53         }
54         f2fs_wait_on_page_writeback(page, META, true, true);
55         if (!PageUptodate(page))
56                 SetPageUptodate(page);
57         return page;
58 }
59
60 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
61                                                         bool is_meta)
62 {
63         struct address_space *mapping = META_MAPPING(sbi);
64         struct page *page;
65         struct f2fs_io_info fio = {
66                 .sbi = sbi,
67                 .type = META,
68                 .op = REQ_OP_READ,
69                 .op_flags = REQ_META | REQ_PRIO,
70                 .old_blkaddr = index,
71                 .new_blkaddr = index,
72                 .encrypted_page = NULL,
73                 .is_por = !is_meta ? 1 : 0,
74         };
75         int err;
76
77         if (unlikely(!is_meta))
78                 fio.op_flags &= ~REQ_META;
79 repeat:
80         page = f2fs_grab_cache_page(mapping, index, false);
81         if (!page) {
82                 cond_resched();
83                 goto repeat;
84         }
85         if (PageUptodate(page))
86                 goto out;
87
88         fio.page = page;
89
90         err = f2fs_submit_page_bio(&fio);
91         if (err) {
92                 f2fs_put_page(page, 1);
93                 return ERR_PTR(err);
94         }
95
96         f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE);
97
98         lock_page(page);
99         if (unlikely(page->mapping != mapping)) {
100                 f2fs_put_page(page, 1);
101                 goto repeat;
102         }
103
104         if (unlikely(!PageUptodate(page))) {
105                 f2fs_handle_page_eio(sbi, page->index, META);
106                 f2fs_put_page(page, 1);
107                 return ERR_PTR(-EIO);
108         }
109 out:
110         return page;
111 }
112
113 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
114 {
115         return __get_meta_page(sbi, index, true);
116 }
117
118 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
119 {
120         struct page *page;
121         int count = 0;
122
123 retry:
124         page = __get_meta_page(sbi, index, true);
125         if (IS_ERR(page)) {
126                 if (PTR_ERR(page) == -EIO &&
127                                 ++count <= DEFAULT_RETRY_IO_COUNT)
128                         goto retry;
129                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
130         }
131         return page;
132 }
133
134 /* for POR only */
135 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
136 {
137         return __get_meta_page(sbi, index, false);
138 }
139
140 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
141                                                         int type)
142 {
143         struct seg_entry *se;
144         unsigned int segno, offset;
145         bool exist;
146
147         if (type == DATA_GENERIC)
148                 return true;
149
150         segno = GET_SEGNO(sbi, blkaddr);
151         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
152         se = get_seg_entry(sbi, segno);
153
154         exist = f2fs_test_bit(offset, se->cur_valid_map);
155         if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) {
156                 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
157                          blkaddr, exist);
158                 set_sbi_flag(sbi, SBI_NEED_FSCK);
159                 return exist;
160         }
161
162         if (!exist && type == DATA_GENERIC_ENHANCE) {
163                 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
164                          blkaddr, exist);
165                 set_sbi_flag(sbi, SBI_NEED_FSCK);
166                 dump_stack();
167         }
168         return exist;
169 }
170
171 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
172                                         block_t blkaddr, int type)
173 {
174         switch (type) {
175         case META_NAT:
176                 break;
177         case META_SIT:
178                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
179                         return false;
180                 break;
181         case META_SSA:
182                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
183                         blkaddr < SM_I(sbi)->ssa_blkaddr))
184                         return false;
185                 break;
186         case META_CP:
187                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
188                         blkaddr < __start_cp_addr(sbi)))
189                         return false;
190                 break;
191         case META_POR:
192                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
193                         blkaddr < MAIN_BLKADDR(sbi)))
194                         return false;
195                 break;
196         case DATA_GENERIC:
197         case DATA_GENERIC_ENHANCE:
198         case DATA_GENERIC_ENHANCE_READ:
199         case DATA_GENERIC_ENHANCE_UPDATE:
200                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
201                                 blkaddr < MAIN_BLKADDR(sbi))) {
202                         f2fs_warn(sbi, "access invalid blkaddr:%u",
203                                   blkaddr);
204                         set_sbi_flag(sbi, SBI_NEED_FSCK);
205                         dump_stack();
206                         return false;
207                 } else {
208                         return __is_bitmap_valid(sbi, blkaddr, type);
209                 }
210                 break;
211         case META_GENERIC:
212                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
213                         blkaddr >= MAIN_BLKADDR(sbi)))
214                         return false;
215                 break;
216         default:
217                 BUG();
218         }
219
220         return true;
221 }
222
223 /*
224  * Readahead CP/NAT/SIT/SSA/POR pages
225  */
226 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
227                                                         int type, bool sync)
228 {
229         struct page *page;
230         block_t blkno = start;
231         struct f2fs_io_info fio = {
232                 .sbi = sbi,
233                 .type = META,
234                 .op = REQ_OP_READ,
235                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
236                 .encrypted_page = NULL,
237                 .in_list = 0,
238                 .is_por = (type == META_POR) ? 1 : 0,
239         };
240         struct blk_plug plug;
241         int err;
242
243         if (unlikely(type == META_POR))
244                 fio.op_flags &= ~REQ_META;
245
246         blk_start_plug(&plug);
247         for (; nrpages-- > 0; blkno++) {
248
249                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
250                         goto out;
251
252                 switch (type) {
253                 case META_NAT:
254                         if (unlikely(blkno >=
255                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
256                                 blkno = 0;
257                         /* get nat block addr */
258                         fio.new_blkaddr = current_nat_addr(sbi,
259                                         blkno * NAT_ENTRY_PER_BLOCK);
260                         break;
261                 case META_SIT:
262                         if (unlikely(blkno >= TOTAL_SEGS(sbi)))
263                                 goto out;
264                         /* get sit block addr */
265                         fio.new_blkaddr = current_sit_addr(sbi,
266                                         blkno * SIT_ENTRY_PER_BLOCK);
267                         break;
268                 case META_SSA:
269                 case META_CP:
270                 case META_POR:
271                         fio.new_blkaddr = blkno;
272                         break;
273                 default:
274                         BUG();
275                 }
276
277                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
278                                                 fio.new_blkaddr, false);
279                 if (!page)
280                         continue;
281                 if (PageUptodate(page)) {
282                         f2fs_put_page(page, 1);
283                         continue;
284                 }
285
286                 fio.page = page;
287                 err = f2fs_submit_page_bio(&fio);
288                 f2fs_put_page(page, err ? 1 : 0);
289
290                 if (!err)
291                         f2fs_update_iostat(sbi, NULL, FS_META_READ_IO,
292                                                         F2FS_BLKSIZE);
293         }
294 out:
295         blk_finish_plug(&plug);
296         return blkno - start;
297 }
298
299 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
300                                                         unsigned int ra_blocks)
301 {
302         struct page *page;
303         bool readahead = false;
304
305         if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
306                 return;
307
308         page = find_get_page(META_MAPPING(sbi), index);
309         if (!page || !PageUptodate(page))
310                 readahead = true;
311         f2fs_put_page(page, 0);
312
313         if (readahead)
314                 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
315 }
316
317 static int __f2fs_write_meta_page(struct page *page,
318                                 struct writeback_control *wbc,
319                                 enum iostat_type io_type)
320 {
321         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
322
323         trace_f2fs_writepage(page, META);
324
325         if (unlikely(f2fs_cp_error(sbi))) {
326                 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
327                         ClearPageUptodate(page);
328                         dec_page_count(sbi, F2FS_DIRTY_META);
329                         unlock_page(page);
330                         return 0;
331                 }
332                 goto redirty_out;
333         }
334         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
335                 goto redirty_out;
336         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
337                 goto redirty_out;
338
339         f2fs_do_write_meta_page(sbi, page, io_type);
340         dec_page_count(sbi, F2FS_DIRTY_META);
341
342         if (wbc->for_reclaim)
343                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
344
345         unlock_page(page);
346
347         if (unlikely(f2fs_cp_error(sbi)))
348                 f2fs_submit_merged_write(sbi, META);
349
350         return 0;
351
352 redirty_out:
353         redirty_page_for_writepage(wbc, page);
354         return AOP_WRITEPAGE_ACTIVATE;
355 }
356
357 static int f2fs_write_meta_page(struct page *page,
358                                 struct writeback_control *wbc)
359 {
360         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
361 }
362
363 static int f2fs_write_meta_pages(struct address_space *mapping,
364                                 struct writeback_control *wbc)
365 {
366         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
367         long diff, written;
368
369         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
370                 goto skip_write;
371
372         /* collect a number of dirty meta pages and write together */
373         if (wbc->sync_mode != WB_SYNC_ALL &&
374                         get_pages(sbi, F2FS_DIRTY_META) <
375                                         nr_pages_to_skip(sbi, META))
376                 goto skip_write;
377
378         /* if locked failed, cp will flush dirty pages instead */
379         if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
380                 goto skip_write;
381
382         trace_f2fs_writepages(mapping->host, wbc, META);
383         diff = nr_pages_to_write(sbi, META, wbc);
384         written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
385         f2fs_up_write(&sbi->cp_global_sem);
386         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
387         return 0;
388
389 skip_write:
390         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
391         trace_f2fs_writepages(mapping->host, wbc, META);
392         return 0;
393 }
394
395 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
396                                 long nr_to_write, enum iostat_type io_type)
397 {
398         struct address_space *mapping = META_MAPPING(sbi);
399         pgoff_t index = 0, prev = ULONG_MAX;
400         struct pagevec pvec;
401         long nwritten = 0;
402         int nr_pages;
403         struct writeback_control wbc = {
404                 .for_reclaim = 0,
405         };
406         struct blk_plug plug;
407
408         pagevec_init(&pvec);
409
410         blk_start_plug(&plug);
411
412         while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
413                                 PAGECACHE_TAG_DIRTY))) {
414                 int i;
415
416                 for (i = 0; i < nr_pages; i++) {
417                         struct page *page = pvec.pages[i];
418
419                         if (prev == ULONG_MAX)
420                                 prev = page->index - 1;
421                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
422                                 pagevec_release(&pvec);
423                                 goto stop;
424                         }
425
426                         lock_page(page);
427
428                         if (unlikely(page->mapping != mapping)) {
429 continue_unlock:
430                                 unlock_page(page);
431                                 continue;
432                         }
433                         if (!PageDirty(page)) {
434                                 /* someone wrote it for us */
435                                 goto continue_unlock;
436                         }
437
438                         f2fs_wait_on_page_writeback(page, META, true, true);
439
440                         if (!clear_page_dirty_for_io(page))
441                                 goto continue_unlock;
442
443                         if (__f2fs_write_meta_page(page, &wbc, io_type)) {
444                                 unlock_page(page);
445                                 break;
446                         }
447                         nwritten++;
448                         prev = page->index;
449                         if (unlikely(nwritten >= nr_to_write))
450                                 break;
451                 }
452                 pagevec_release(&pvec);
453                 cond_resched();
454         }
455 stop:
456         if (nwritten)
457                 f2fs_submit_merged_write(sbi, type);
458
459         blk_finish_plug(&plug);
460
461         return nwritten;
462 }
463
464 static bool f2fs_dirty_meta_folio(struct address_space *mapping,
465                 struct folio *folio)
466 {
467         trace_f2fs_set_page_dirty(&folio->page, META);
468
469         if (!folio_test_uptodate(folio))
470                 folio_mark_uptodate(folio);
471         if (filemap_dirty_folio(mapping, folio)) {
472                 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
473                 set_page_private_reference(&folio->page);
474                 return true;
475         }
476         return false;
477 }
478
479 const struct address_space_operations f2fs_meta_aops = {
480         .writepage      = f2fs_write_meta_page,
481         .writepages     = f2fs_write_meta_pages,
482         .dirty_folio    = f2fs_dirty_meta_folio,
483         .invalidate_folio = f2fs_invalidate_folio,
484         .release_folio  = f2fs_release_folio,
485         .migrate_folio  = filemap_migrate_folio,
486 };
487
488 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
489                                                 unsigned int devidx, int type)
490 {
491         struct inode_management *im = &sbi->im[type];
492         struct ino_entry *e = NULL, *new = NULL;
493
494         if (type == FLUSH_INO) {
495                 rcu_read_lock();
496                 e = radix_tree_lookup(&im->ino_root, ino);
497                 rcu_read_unlock();
498         }
499
500 retry:
501         if (!e)
502                 new = f2fs_kmem_cache_alloc(ino_entry_slab,
503                                                 GFP_NOFS, true, NULL);
504
505         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
506
507         spin_lock(&im->ino_lock);
508         e = radix_tree_lookup(&im->ino_root, ino);
509         if (!e) {
510                 if (!new) {
511                         spin_unlock(&im->ino_lock);
512                         goto retry;
513                 }
514                 e = new;
515                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
516                         f2fs_bug_on(sbi, 1);
517
518                 memset(e, 0, sizeof(struct ino_entry));
519                 e->ino = ino;
520
521                 list_add_tail(&e->list, &im->ino_list);
522                 if (type != ORPHAN_INO)
523                         im->ino_num++;
524         }
525
526         if (type == FLUSH_INO)
527                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
528
529         spin_unlock(&im->ino_lock);
530         radix_tree_preload_end();
531
532         if (new && e != new)
533                 kmem_cache_free(ino_entry_slab, new);
534 }
535
536 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
537 {
538         struct inode_management *im = &sbi->im[type];
539         struct ino_entry *e;
540
541         spin_lock(&im->ino_lock);
542         e = radix_tree_lookup(&im->ino_root, ino);
543         if (e) {
544                 list_del(&e->list);
545                 radix_tree_delete(&im->ino_root, ino);
546                 im->ino_num--;
547                 spin_unlock(&im->ino_lock);
548                 kmem_cache_free(ino_entry_slab, e);
549                 return;
550         }
551         spin_unlock(&im->ino_lock);
552 }
553
554 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
555 {
556         /* add new dirty ino entry into list */
557         __add_ino_entry(sbi, ino, 0, type);
558 }
559
560 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
561 {
562         /* remove dirty ino entry from list */
563         __remove_ino_entry(sbi, ino, type);
564 }
565
566 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
567 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
568 {
569         struct inode_management *im = &sbi->im[mode];
570         struct ino_entry *e;
571
572         spin_lock(&im->ino_lock);
573         e = radix_tree_lookup(&im->ino_root, ino);
574         spin_unlock(&im->ino_lock);
575         return e ? true : false;
576 }
577
578 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
579 {
580         struct ino_entry *e, *tmp;
581         int i;
582
583         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
584                 struct inode_management *im = &sbi->im[i];
585
586                 spin_lock(&im->ino_lock);
587                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
588                         list_del(&e->list);
589                         radix_tree_delete(&im->ino_root, e->ino);
590                         kmem_cache_free(ino_entry_slab, e);
591                         im->ino_num--;
592                 }
593                 spin_unlock(&im->ino_lock);
594         }
595 }
596
597 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
598                                         unsigned int devidx, int type)
599 {
600         __add_ino_entry(sbi, ino, devidx, type);
601 }
602
603 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
604                                         unsigned int devidx, int type)
605 {
606         struct inode_management *im = &sbi->im[type];
607         struct ino_entry *e;
608         bool is_dirty = false;
609
610         spin_lock(&im->ino_lock);
611         e = radix_tree_lookup(&im->ino_root, ino);
612         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
613                 is_dirty = true;
614         spin_unlock(&im->ino_lock);
615         return is_dirty;
616 }
617
618 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
619 {
620         struct inode_management *im = &sbi->im[ORPHAN_INO];
621         int err = 0;
622
623         spin_lock(&im->ino_lock);
624
625         if (time_to_inject(sbi, FAULT_ORPHAN)) {
626                 spin_unlock(&im->ino_lock);
627                 f2fs_show_injection_info(sbi, FAULT_ORPHAN);
628                 return -ENOSPC;
629         }
630
631         if (unlikely(im->ino_num >= sbi->max_orphans))
632                 err = -ENOSPC;
633         else
634                 im->ino_num++;
635         spin_unlock(&im->ino_lock);
636
637         return err;
638 }
639
640 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
641 {
642         struct inode_management *im = &sbi->im[ORPHAN_INO];
643
644         spin_lock(&im->ino_lock);
645         f2fs_bug_on(sbi, im->ino_num == 0);
646         im->ino_num--;
647         spin_unlock(&im->ino_lock);
648 }
649
650 void f2fs_add_orphan_inode(struct inode *inode)
651 {
652         /* add new orphan ino entry into list */
653         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
654         f2fs_update_inode_page(inode);
655 }
656
657 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
658 {
659         /* remove orphan entry from orphan list */
660         __remove_ino_entry(sbi, ino, ORPHAN_INO);
661 }
662
663 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
664 {
665         struct inode *inode;
666         struct node_info ni;
667         int err;
668
669         inode = f2fs_iget_retry(sbi->sb, ino);
670         if (IS_ERR(inode)) {
671                 /*
672                  * there should be a bug that we can't find the entry
673                  * to orphan inode.
674                  */
675                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
676                 return PTR_ERR(inode);
677         }
678
679         err = f2fs_dquot_initialize(inode);
680         if (err) {
681                 iput(inode);
682                 goto err_out;
683         }
684
685         clear_nlink(inode);
686
687         /* truncate all the data during iput */
688         iput(inode);
689
690         err = f2fs_get_node_info(sbi, ino, &ni, false);
691         if (err)
692                 goto err_out;
693
694         /* ENOMEM was fully retried in f2fs_evict_inode. */
695         if (ni.blk_addr != NULL_ADDR) {
696                 err = -EIO;
697                 goto err_out;
698         }
699         return 0;
700
701 err_out:
702         set_sbi_flag(sbi, SBI_NEED_FSCK);
703         f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
704                   __func__, ino);
705         return err;
706 }
707
708 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
709 {
710         block_t start_blk, orphan_blocks, i, j;
711         unsigned int s_flags = sbi->sb->s_flags;
712         int err = 0;
713 #ifdef CONFIG_QUOTA
714         int quota_enabled;
715 #endif
716
717         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
718                 return 0;
719
720         if (bdev_read_only(sbi->sb->s_bdev)) {
721                 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
722                 return 0;
723         }
724
725         if (s_flags & SB_RDONLY) {
726                 f2fs_info(sbi, "orphan cleanup on readonly fs");
727                 sbi->sb->s_flags &= ~SB_RDONLY;
728         }
729
730 #ifdef CONFIG_QUOTA
731         /*
732          * Turn on quotas which were not enabled for read-only mounts if
733          * filesystem has quota feature, so that they are updated correctly.
734          */
735         quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
736 #endif
737
738         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
739         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
740
741         f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
742
743         for (i = 0; i < orphan_blocks; i++) {
744                 struct page *page;
745                 struct f2fs_orphan_block *orphan_blk;
746
747                 page = f2fs_get_meta_page(sbi, start_blk + i);
748                 if (IS_ERR(page)) {
749                         err = PTR_ERR(page);
750                         goto out;
751                 }
752
753                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
754                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
755                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
756
757                         err = recover_orphan_inode(sbi, ino);
758                         if (err) {
759                                 f2fs_put_page(page, 1);
760                                 goto out;
761                         }
762                 }
763                 f2fs_put_page(page, 1);
764         }
765         /* clear Orphan Flag */
766         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
767 out:
768         set_sbi_flag(sbi, SBI_IS_RECOVERED);
769
770 #ifdef CONFIG_QUOTA
771         /* Turn quotas off */
772         if (quota_enabled)
773                 f2fs_quota_off_umount(sbi->sb);
774 #endif
775         sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
776
777         return err;
778 }
779
780 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
781 {
782         struct list_head *head;
783         struct f2fs_orphan_block *orphan_blk = NULL;
784         unsigned int nentries = 0;
785         unsigned short index = 1;
786         unsigned short orphan_blocks;
787         struct page *page = NULL;
788         struct ino_entry *orphan = NULL;
789         struct inode_management *im = &sbi->im[ORPHAN_INO];
790
791         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
792
793         /*
794          * we don't need to do spin_lock(&im->ino_lock) here, since all the
795          * orphan inode operations are covered under f2fs_lock_op().
796          * And, spin_lock should be avoided due to page operations below.
797          */
798         head = &im->ino_list;
799
800         /* loop for each orphan inode entry and write them in Jornal block */
801         list_for_each_entry(orphan, head, list) {
802                 if (!page) {
803                         page = f2fs_grab_meta_page(sbi, start_blk++);
804                         orphan_blk =
805                                 (struct f2fs_orphan_block *)page_address(page);
806                         memset(orphan_blk, 0, sizeof(*orphan_blk));
807                 }
808
809                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
810
811                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
812                         /*
813                          * an orphan block is full of 1020 entries,
814                          * then we need to flush current orphan blocks
815                          * and bring another one in memory
816                          */
817                         orphan_blk->blk_addr = cpu_to_le16(index);
818                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
819                         orphan_blk->entry_count = cpu_to_le32(nentries);
820                         set_page_dirty(page);
821                         f2fs_put_page(page, 1);
822                         index++;
823                         nentries = 0;
824                         page = NULL;
825                 }
826         }
827
828         if (page) {
829                 orphan_blk->blk_addr = cpu_to_le16(index);
830                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
831                 orphan_blk->entry_count = cpu_to_le32(nentries);
832                 set_page_dirty(page);
833                 f2fs_put_page(page, 1);
834         }
835 }
836
837 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
838                                                 struct f2fs_checkpoint *ckpt)
839 {
840         unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
841         __u32 chksum;
842
843         chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
844         if (chksum_ofs < CP_CHKSUM_OFFSET) {
845                 chksum_ofs += sizeof(chksum);
846                 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
847                                                 F2FS_BLKSIZE - chksum_ofs);
848         }
849         return chksum;
850 }
851
852 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
853                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
854                 unsigned long long *version)
855 {
856         size_t crc_offset = 0;
857         __u32 crc;
858
859         *cp_page = f2fs_get_meta_page(sbi, cp_addr);
860         if (IS_ERR(*cp_page))
861                 return PTR_ERR(*cp_page);
862
863         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
864
865         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
866         if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
867                         crc_offset > CP_CHKSUM_OFFSET) {
868                 f2fs_put_page(*cp_page, 1);
869                 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
870                 return -EINVAL;
871         }
872
873         crc = f2fs_checkpoint_chksum(sbi, *cp_block);
874         if (crc != cur_cp_crc(*cp_block)) {
875                 f2fs_put_page(*cp_page, 1);
876                 f2fs_warn(sbi, "invalid crc value");
877                 return -EINVAL;
878         }
879
880         *version = cur_cp_version(*cp_block);
881         return 0;
882 }
883
884 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
885                                 block_t cp_addr, unsigned long long *version)
886 {
887         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
888         struct f2fs_checkpoint *cp_block = NULL;
889         unsigned long long cur_version = 0, pre_version = 0;
890         unsigned int cp_blocks;
891         int err;
892
893         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
894                                         &cp_page_1, version);
895         if (err)
896                 return NULL;
897
898         cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
899
900         if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) {
901                 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
902                           le32_to_cpu(cp_block->cp_pack_total_block_count));
903                 goto invalid_cp;
904         }
905         pre_version = *version;
906
907         cp_addr += cp_blocks - 1;
908         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
909                                         &cp_page_2, version);
910         if (err)
911                 goto invalid_cp;
912         cur_version = *version;
913
914         if (cur_version == pre_version) {
915                 *version = cur_version;
916                 f2fs_put_page(cp_page_2, 1);
917                 return cp_page_1;
918         }
919         f2fs_put_page(cp_page_2, 1);
920 invalid_cp:
921         f2fs_put_page(cp_page_1, 1);
922         return NULL;
923 }
924
925 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
926 {
927         struct f2fs_checkpoint *cp_block;
928         struct f2fs_super_block *fsb = sbi->raw_super;
929         struct page *cp1, *cp2, *cur_page;
930         unsigned long blk_size = sbi->blocksize;
931         unsigned long long cp1_version = 0, cp2_version = 0;
932         unsigned long long cp_start_blk_no;
933         unsigned int cp_blks = 1 + __cp_payload(sbi);
934         block_t cp_blk_no;
935         int i;
936         int err;
937
938         sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
939                                   GFP_KERNEL);
940         if (!sbi->ckpt)
941                 return -ENOMEM;
942         /*
943          * Finding out valid cp block involves read both
944          * sets( cp pack 1 and cp pack 2)
945          */
946         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
947         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
948
949         /* The second checkpoint pack should start at the next segment */
950         cp_start_blk_no += ((unsigned long long)1) <<
951                                 le32_to_cpu(fsb->log_blocks_per_seg);
952         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
953
954         if (cp1 && cp2) {
955                 if (ver_after(cp2_version, cp1_version))
956                         cur_page = cp2;
957                 else
958                         cur_page = cp1;
959         } else if (cp1) {
960                 cur_page = cp1;
961         } else if (cp2) {
962                 cur_page = cp2;
963         } else {
964                 err = -EFSCORRUPTED;
965                 goto fail_no_cp;
966         }
967
968         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
969         memcpy(sbi->ckpt, cp_block, blk_size);
970
971         if (cur_page == cp1)
972                 sbi->cur_cp_pack = 1;
973         else
974                 sbi->cur_cp_pack = 2;
975
976         /* Sanity checking of checkpoint */
977         if (f2fs_sanity_check_ckpt(sbi)) {
978                 err = -EFSCORRUPTED;
979                 goto free_fail_no_cp;
980         }
981
982         if (cp_blks <= 1)
983                 goto done;
984
985         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
986         if (cur_page == cp2)
987                 cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg));
988
989         for (i = 1; i < cp_blks; i++) {
990                 void *sit_bitmap_ptr;
991                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
992
993                 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
994                 if (IS_ERR(cur_page)) {
995                         err = PTR_ERR(cur_page);
996                         goto free_fail_no_cp;
997                 }
998                 sit_bitmap_ptr = page_address(cur_page);
999                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
1000                 f2fs_put_page(cur_page, 1);
1001         }
1002 done:
1003         f2fs_put_page(cp1, 1);
1004         f2fs_put_page(cp2, 1);
1005         return 0;
1006
1007 free_fail_no_cp:
1008         f2fs_put_page(cp1, 1);
1009         f2fs_put_page(cp2, 1);
1010 fail_no_cp:
1011         kvfree(sbi->ckpt);
1012         return err;
1013 }
1014
1015 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
1016 {
1017         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1018         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1019
1020         if (is_inode_flag_set(inode, flag))
1021                 return;
1022
1023         set_inode_flag(inode, flag);
1024         list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
1025         stat_inc_dirty_inode(sbi, type);
1026 }
1027
1028 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1029 {
1030         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1031
1032         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1033                 return;
1034
1035         list_del_init(&F2FS_I(inode)->dirty_list);
1036         clear_inode_flag(inode, flag);
1037         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1038 }
1039
1040 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1041 {
1042         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1043         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1044
1045         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1046                         !S_ISLNK(inode->i_mode))
1047                 return;
1048
1049         spin_lock(&sbi->inode_lock[type]);
1050         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1051                 __add_dirty_inode(inode, type);
1052         inode_inc_dirty_pages(inode);
1053         spin_unlock(&sbi->inode_lock[type]);
1054
1055         set_page_private_reference(&folio->page);
1056 }
1057
1058 void f2fs_remove_dirty_inode(struct inode *inode)
1059 {
1060         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1061         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1062
1063         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1064                         !S_ISLNK(inode->i_mode))
1065                 return;
1066
1067         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1068                 return;
1069
1070         spin_lock(&sbi->inode_lock[type]);
1071         __remove_dirty_inode(inode, type);
1072         spin_unlock(&sbi->inode_lock[type]);
1073 }
1074
1075 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1076                                                 bool from_cp)
1077 {
1078         struct list_head *head;
1079         struct inode *inode;
1080         struct f2fs_inode_info *fi;
1081         bool is_dir = (type == DIR_INODE);
1082         unsigned long ino = 0;
1083
1084         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1085                                 get_pages(sbi, is_dir ?
1086                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1087 retry:
1088         if (unlikely(f2fs_cp_error(sbi))) {
1089                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1090                                 get_pages(sbi, is_dir ?
1091                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1092                 return -EIO;
1093         }
1094
1095         spin_lock(&sbi->inode_lock[type]);
1096
1097         head = &sbi->inode_list[type];
1098         if (list_empty(head)) {
1099                 spin_unlock(&sbi->inode_lock[type]);
1100                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1101                                 get_pages(sbi, is_dir ?
1102                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1103                 return 0;
1104         }
1105         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1106         inode = igrab(&fi->vfs_inode);
1107         spin_unlock(&sbi->inode_lock[type]);
1108         if (inode) {
1109                 unsigned long cur_ino = inode->i_ino;
1110
1111                 if (from_cp)
1112                         F2FS_I(inode)->cp_task = current;
1113                 F2FS_I(inode)->wb_task = current;
1114
1115                 filemap_fdatawrite(inode->i_mapping);
1116
1117                 F2FS_I(inode)->wb_task = NULL;
1118                 if (from_cp)
1119                         F2FS_I(inode)->cp_task = NULL;
1120
1121                 iput(inode);
1122                 /* We need to give cpu to another writers. */
1123                 if (ino == cur_ino)
1124                         cond_resched();
1125                 else
1126                         ino = cur_ino;
1127         } else {
1128                 /*
1129                  * We should submit bio, since it exists several
1130                  * wribacking dentry pages in the freeing inode.
1131                  */
1132                 f2fs_submit_merged_write(sbi, DATA);
1133                 cond_resched();
1134         }
1135         goto retry;
1136 }
1137
1138 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1139 {
1140         struct list_head *head = &sbi->inode_list[DIRTY_META];
1141         struct inode *inode;
1142         struct f2fs_inode_info *fi;
1143         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1144
1145         while (total--) {
1146                 if (unlikely(f2fs_cp_error(sbi)))
1147                         return -EIO;
1148
1149                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1150                 if (list_empty(head)) {
1151                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1152                         return 0;
1153                 }
1154                 fi = list_first_entry(head, struct f2fs_inode_info,
1155                                                         gdirty_list);
1156                 inode = igrab(&fi->vfs_inode);
1157                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1158                 if (inode) {
1159                         sync_inode_metadata(inode, 0);
1160
1161                         /* it's on eviction */
1162                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1163                                 f2fs_update_inode_page(inode);
1164                         iput(inode);
1165                 }
1166         }
1167         return 0;
1168 }
1169
1170 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1171 {
1172         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1173         struct f2fs_nm_info *nm_i = NM_I(sbi);
1174         nid_t last_nid = nm_i->next_scan_nid;
1175
1176         next_free_nid(sbi, &last_nid);
1177         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1178         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1179         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1180         ckpt->next_free_nid = cpu_to_le32(last_nid);
1181 }
1182
1183 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1184 {
1185         bool ret = false;
1186
1187         if (!is_journalled_quota(sbi))
1188                 return false;
1189
1190         if (!f2fs_down_write_trylock(&sbi->quota_sem))
1191                 return true;
1192         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1193                 ret = false;
1194         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1195                 ret = false;
1196         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1197                 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1198                 ret = true;
1199         } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1200                 ret = true;
1201         }
1202         f2fs_up_write(&sbi->quota_sem);
1203         return ret;
1204 }
1205
1206 /*
1207  * Freeze all the FS-operations for checkpoint.
1208  */
1209 static int block_operations(struct f2fs_sb_info *sbi)
1210 {
1211         struct writeback_control wbc = {
1212                 .sync_mode = WB_SYNC_ALL,
1213                 .nr_to_write = LONG_MAX,
1214                 .for_reclaim = 0,
1215         };
1216         int err = 0, cnt = 0;
1217
1218         /*
1219          * Let's flush inline_data in dirty node pages.
1220          */
1221         f2fs_flush_inline_data(sbi);
1222
1223 retry_flush_quotas:
1224         f2fs_lock_all(sbi);
1225         if (__need_flush_quota(sbi)) {
1226                 int locked;
1227
1228                 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1229                         set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1230                         set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1231                         goto retry_flush_dents;
1232                 }
1233                 f2fs_unlock_all(sbi);
1234
1235                 /* only failed during mount/umount/freeze/quotactl */
1236                 locked = down_read_trylock(&sbi->sb->s_umount);
1237                 f2fs_quota_sync(sbi->sb, -1);
1238                 if (locked)
1239                         up_read(&sbi->sb->s_umount);
1240                 cond_resched();
1241                 goto retry_flush_quotas;
1242         }
1243
1244 retry_flush_dents:
1245         /* write all the dirty dentry pages */
1246         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1247                 f2fs_unlock_all(sbi);
1248                 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
1249                 if (err)
1250                         return err;
1251                 cond_resched();
1252                 goto retry_flush_quotas;
1253         }
1254
1255         /*
1256          * POR: we should ensure that there are no dirty node pages
1257          * until finishing nat/sit flush. inode->i_blocks can be updated.
1258          */
1259         f2fs_down_write(&sbi->node_change);
1260
1261         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1262                 f2fs_up_write(&sbi->node_change);
1263                 f2fs_unlock_all(sbi);
1264                 err = f2fs_sync_inode_meta(sbi);
1265                 if (err)
1266                         return err;
1267                 cond_resched();
1268                 goto retry_flush_quotas;
1269         }
1270
1271 retry_flush_nodes:
1272         f2fs_down_write(&sbi->node_write);
1273
1274         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1275                 f2fs_up_write(&sbi->node_write);
1276                 atomic_inc(&sbi->wb_sync_req[NODE]);
1277                 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1278                 atomic_dec(&sbi->wb_sync_req[NODE]);
1279                 if (err) {
1280                         f2fs_up_write(&sbi->node_change);
1281                         f2fs_unlock_all(sbi);
1282                         return err;
1283                 }
1284                 cond_resched();
1285                 goto retry_flush_nodes;
1286         }
1287
1288         /*
1289          * sbi->node_change is used only for AIO write_begin path which produces
1290          * dirty node blocks and some checkpoint values by block allocation.
1291          */
1292         __prepare_cp_block(sbi);
1293         f2fs_up_write(&sbi->node_change);
1294         return err;
1295 }
1296
1297 static void unblock_operations(struct f2fs_sb_info *sbi)
1298 {
1299         f2fs_up_write(&sbi->node_write);
1300         f2fs_unlock_all(sbi);
1301 }
1302
1303 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1304 {
1305         DEFINE_WAIT(wait);
1306
1307         for (;;) {
1308                 if (!get_pages(sbi, type))
1309                         break;
1310
1311                 if (unlikely(f2fs_cp_error(sbi) &&
1312                         !is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
1313                         break;
1314
1315                 if (type == F2FS_DIRTY_META)
1316                         f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1317                                                         FS_CP_META_IO);
1318                 else if (type == F2FS_WB_CP_DATA)
1319                         f2fs_submit_merged_write(sbi, DATA);
1320
1321                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1322                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1323         }
1324         finish_wait(&sbi->cp_wait, &wait);
1325 }
1326
1327 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1328 {
1329         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1330         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1331         unsigned long flags;
1332
1333         if (cpc->reason & CP_UMOUNT) {
1334                 if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1335                         NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) {
1336                         clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1337                         f2fs_notice(sbi, "Disable nat_bits due to no space");
1338                 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1339                                                 f2fs_nat_bitmap_enabled(sbi)) {
1340                         f2fs_enable_nat_bits(sbi);
1341                         set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1342                         f2fs_notice(sbi, "Rebuild and enable nat_bits");
1343                 }
1344         }
1345
1346         spin_lock_irqsave(&sbi->cp_lock, flags);
1347
1348         if (cpc->reason & CP_TRIMMED)
1349                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1350         else
1351                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1352
1353         if (cpc->reason & CP_UMOUNT)
1354                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1355         else
1356                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1357
1358         if (cpc->reason & CP_FASTBOOT)
1359                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1360         else
1361                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1362
1363         if (orphan_num)
1364                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1365         else
1366                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1367
1368         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1369                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1370
1371         if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1372                 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1373         else
1374                 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1375
1376         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1377                 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1378         else
1379                 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1380
1381         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1382                 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1383         else
1384                 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1385
1386         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1387                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1388         else
1389                 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1390
1391         if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1392                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1393
1394         /* set this flag to activate crc|cp_ver for recovery */
1395         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1396         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1397
1398         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1399 }
1400
1401 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1402         void *src, block_t blk_addr)
1403 {
1404         struct writeback_control wbc = {
1405                 .for_reclaim = 0,
1406         };
1407
1408         /*
1409          * pagevec_lookup_tag and lock_page again will take
1410          * some extra time. Therefore, f2fs_update_meta_pages and
1411          * f2fs_sync_meta_pages are combined in this function.
1412          */
1413         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1414         int err;
1415
1416         f2fs_wait_on_page_writeback(page, META, true, true);
1417
1418         memcpy(page_address(page), src, PAGE_SIZE);
1419
1420         set_page_dirty(page);
1421         if (unlikely(!clear_page_dirty_for_io(page)))
1422                 f2fs_bug_on(sbi, 1);
1423
1424         /* writeout cp pack 2 page */
1425         err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1426         if (unlikely(err && f2fs_cp_error(sbi))) {
1427                 f2fs_put_page(page, 1);
1428                 return;
1429         }
1430
1431         f2fs_bug_on(sbi, err);
1432         f2fs_put_page(page, 0);
1433
1434         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1435         f2fs_submit_merged_write(sbi, META_FLUSH);
1436 }
1437
1438 static inline u64 get_sectors_written(struct block_device *bdev)
1439 {
1440         return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1441 }
1442
1443 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1444 {
1445         if (f2fs_is_multi_device(sbi)) {
1446                 u64 sectors = 0;
1447                 int i;
1448
1449                 for (i = 0; i < sbi->s_ndevs; i++)
1450                         sectors += get_sectors_written(FDEV(i).bdev);
1451
1452                 return sectors;
1453         }
1454
1455         return get_sectors_written(sbi->sb->s_bdev);
1456 }
1457
1458 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1459 {
1460         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1461         struct f2fs_nm_info *nm_i = NM_I(sbi);
1462         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1463         block_t start_blk;
1464         unsigned int data_sum_blocks, orphan_blocks;
1465         __u32 crc32 = 0;
1466         int i;
1467         int cp_payload_blks = __cp_payload(sbi);
1468         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1469         u64 kbytes_written;
1470         int err;
1471
1472         /* Flush all the NAT/SIT pages */
1473         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1474
1475         /* start to update checkpoint, cp ver is already updated previously */
1476         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1477         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1478         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1479                 ckpt->cur_node_segno[i] =
1480                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1481                 ckpt->cur_node_blkoff[i] =
1482                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1483                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1484                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1485         }
1486         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1487                 ckpt->cur_data_segno[i] =
1488                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1489                 ckpt->cur_data_blkoff[i] =
1490                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1491                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1492                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1493         }
1494
1495         /* 2 cp + n data seg summary + orphan inode blocks */
1496         data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1497         spin_lock_irqsave(&sbi->cp_lock, flags);
1498         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1499                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1500         else
1501                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1502         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1503
1504         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1505         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1506                         orphan_blocks);
1507
1508         if (__remain_node_summaries(cpc->reason))
1509                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1510                                 cp_payload_blks + data_sum_blocks +
1511                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1512         else
1513                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1514                                 cp_payload_blks + data_sum_blocks +
1515                                 orphan_blocks);
1516
1517         /* update ckpt flag for checkpoint */
1518         update_ckpt_flags(sbi, cpc);
1519
1520         /* update SIT/NAT bitmap */
1521         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1522         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1523
1524         crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1525         *((__le32 *)((unsigned char *)ckpt +
1526                                 le32_to_cpu(ckpt->checksum_offset)))
1527                                 = cpu_to_le32(crc32);
1528
1529         start_blk = __start_cp_next_addr(sbi);
1530
1531         /* write nat bits */
1532         if ((cpc->reason & CP_UMOUNT) &&
1533                         is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1534                 __u64 cp_ver = cur_cp_version(ckpt);
1535                 block_t blk;
1536
1537                 cp_ver |= ((__u64)crc32 << 32);
1538                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1539
1540                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1541                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1542                         f2fs_update_meta_page(sbi, nm_i->nat_bits +
1543                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1544         }
1545
1546         /* write out checkpoint buffer at block 0 */
1547         f2fs_update_meta_page(sbi, ckpt, start_blk++);
1548
1549         for (i = 1; i < 1 + cp_payload_blks; i++)
1550                 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1551                                                         start_blk++);
1552
1553         if (orphan_num) {
1554                 write_orphan_inodes(sbi, start_blk);
1555                 start_blk += orphan_blocks;
1556         }
1557
1558         f2fs_write_data_summaries(sbi, start_blk);
1559         start_blk += data_sum_blocks;
1560
1561         /* Record write statistics in the hot node summary */
1562         kbytes_written = sbi->kbytes_written;
1563         kbytes_written += (f2fs_get_sectors_written(sbi) -
1564                                 sbi->sectors_written_start) >> 1;
1565         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1566
1567         if (__remain_node_summaries(cpc->reason)) {
1568                 f2fs_write_node_summaries(sbi, start_blk);
1569                 start_blk += NR_CURSEG_NODE_TYPE;
1570         }
1571
1572         /* update user_block_counts */
1573         sbi->last_valid_block_count = sbi->total_valid_block_count;
1574         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1575         percpu_counter_set(&sbi->rf_node_block_count, 0);
1576
1577         /* Here, we have one bio having CP pack except cp pack 2 page */
1578         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1579         /* Wait for all dirty meta pages to be submitted for IO */
1580         f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1581
1582         /* wait for previous submitted meta pages writeback */
1583         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1584
1585         /* flush all device cache */
1586         err = f2fs_flush_device_cache(sbi);
1587         if (err)
1588                 return err;
1589
1590         /* barrier and flush checkpoint cp pack 2 page if it can */
1591         commit_checkpoint(sbi, ckpt, start_blk);
1592         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1593
1594         /*
1595          * invalidate intermediate page cache borrowed from meta inode which are
1596          * used for migration of encrypted, verity or compressed inode's blocks.
1597          */
1598         if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1599                 f2fs_sb_has_compression(sbi))
1600                 invalidate_mapping_pages(META_MAPPING(sbi),
1601                                 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1602
1603         f2fs_release_ino_entry(sbi, false);
1604
1605         f2fs_reset_fsync_node_info(sbi);
1606
1607         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1608         clear_sbi_flag(sbi, SBI_NEED_CP);
1609         clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1610
1611         spin_lock(&sbi->stat_lock);
1612         sbi->unusable_block_count = 0;
1613         spin_unlock(&sbi->stat_lock);
1614
1615         __set_cp_next_pack(sbi);
1616
1617         /*
1618          * redirty superblock if metadata like node page or inode cache is
1619          * updated during writing checkpoint.
1620          */
1621         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1622                         get_pages(sbi, F2FS_DIRTY_IMETA))
1623                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1624
1625         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1626
1627         return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1628 }
1629
1630 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1631 {
1632         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1633         unsigned long long ckpt_ver;
1634         int err = 0;
1635
1636         if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1637                 return -EROFS;
1638
1639         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1640                 if (cpc->reason != CP_PAUSE)
1641                         return 0;
1642                 f2fs_warn(sbi, "Start checkpoint disabled!");
1643         }
1644         if (cpc->reason != CP_RESIZE)
1645                 f2fs_down_write(&sbi->cp_global_sem);
1646
1647         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1648                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1649                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1650                 goto out;
1651         if (unlikely(f2fs_cp_error(sbi))) {
1652                 err = -EIO;
1653                 goto out;
1654         }
1655
1656         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1657
1658         err = block_operations(sbi);
1659         if (err)
1660                 goto out;
1661
1662         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1663
1664         f2fs_flush_merged_writes(sbi);
1665
1666         /* this is the case of multiple fstrims without any changes */
1667         if (cpc->reason & CP_DISCARD) {
1668                 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1669                         unblock_operations(sbi);
1670                         goto out;
1671                 }
1672
1673                 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1674                                 SIT_I(sbi)->dirty_sentries == 0 &&
1675                                 prefree_segments(sbi) == 0) {
1676                         f2fs_flush_sit_entries(sbi, cpc);
1677                         f2fs_clear_prefree_segments(sbi, cpc);
1678                         unblock_operations(sbi);
1679                         goto out;
1680                 }
1681         }
1682
1683         /*
1684          * update checkpoint pack index
1685          * Increase the version number so that
1686          * SIT entries and seg summaries are written at correct place
1687          */
1688         ckpt_ver = cur_cp_version(ckpt);
1689         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1690
1691         /* write cached NAT/SIT entries to NAT/SIT area */
1692         err = f2fs_flush_nat_entries(sbi, cpc);
1693         if (err) {
1694                 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1695                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1696                 goto stop;
1697         }
1698
1699         f2fs_flush_sit_entries(sbi, cpc);
1700
1701         /* save inmem log status */
1702         f2fs_save_inmem_curseg(sbi);
1703
1704         err = do_checkpoint(sbi, cpc);
1705         if (err) {
1706                 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1707                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1708                 f2fs_release_discard_addrs(sbi);
1709         } else {
1710                 f2fs_clear_prefree_segments(sbi, cpc);
1711         }
1712
1713         f2fs_restore_inmem_curseg(sbi);
1714 stop:
1715         unblock_operations(sbi);
1716         stat_inc_cp_count(sbi->stat_info);
1717
1718         if (cpc->reason & CP_RECOVERY)
1719                 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1720
1721         /* update CP_TIME to trigger checkpoint periodically */
1722         f2fs_update_time(sbi, CP_TIME);
1723         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1724 out:
1725         if (cpc->reason != CP_RESIZE)
1726                 f2fs_up_write(&sbi->cp_global_sem);
1727         return err;
1728 }
1729
1730 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1731 {
1732         int i;
1733
1734         for (i = 0; i < MAX_INO_ENTRY; i++) {
1735                 struct inode_management *im = &sbi->im[i];
1736
1737                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1738                 spin_lock_init(&im->ino_lock);
1739                 INIT_LIST_HEAD(&im->ino_list);
1740                 im->ino_num = 0;
1741         }
1742
1743         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1744                         NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1745                                 F2FS_ORPHANS_PER_BLOCK;
1746 }
1747
1748 int __init f2fs_create_checkpoint_caches(void)
1749 {
1750         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1751                         sizeof(struct ino_entry));
1752         if (!ino_entry_slab)
1753                 return -ENOMEM;
1754         f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1755                         sizeof(struct inode_entry));
1756         if (!f2fs_inode_entry_slab) {
1757                 kmem_cache_destroy(ino_entry_slab);
1758                 return -ENOMEM;
1759         }
1760         return 0;
1761 }
1762
1763 void f2fs_destroy_checkpoint_caches(void)
1764 {
1765         kmem_cache_destroy(ino_entry_slab);
1766         kmem_cache_destroy(f2fs_inode_entry_slab);
1767 }
1768
1769 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1770 {
1771         struct cp_control cpc = { .reason = CP_SYNC, };
1772         int err;
1773
1774         f2fs_down_write(&sbi->gc_lock);
1775         err = f2fs_write_checkpoint(sbi, &cpc);
1776         f2fs_up_write(&sbi->gc_lock);
1777
1778         return err;
1779 }
1780
1781 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1782 {
1783         struct ckpt_req_control *cprc = &sbi->cprc_info;
1784         struct ckpt_req *req, *next;
1785         struct llist_node *dispatch_list;
1786         u64 sum_diff = 0, diff, count = 0;
1787         int ret;
1788
1789         dispatch_list = llist_del_all(&cprc->issue_list);
1790         if (!dispatch_list)
1791                 return;
1792         dispatch_list = llist_reverse_order(dispatch_list);
1793
1794         ret = __write_checkpoint_sync(sbi);
1795         atomic_inc(&cprc->issued_ckpt);
1796
1797         llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1798                 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1799                 req->ret = ret;
1800                 complete(&req->wait);
1801
1802                 sum_diff += diff;
1803                 count++;
1804         }
1805         atomic_sub(count, &cprc->queued_ckpt);
1806         atomic_add(count, &cprc->total_ckpt);
1807
1808         spin_lock(&cprc->stat_lock);
1809         cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1810         if (cprc->peak_time < cprc->cur_time)
1811                 cprc->peak_time = cprc->cur_time;
1812         spin_unlock(&cprc->stat_lock);
1813 }
1814
1815 static int issue_checkpoint_thread(void *data)
1816 {
1817         struct f2fs_sb_info *sbi = data;
1818         struct ckpt_req_control *cprc = &sbi->cprc_info;
1819         wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1820 repeat:
1821         if (kthread_should_stop())
1822                 return 0;
1823
1824         if (!llist_empty(&cprc->issue_list))
1825                 __checkpoint_and_complete_reqs(sbi);
1826
1827         wait_event_interruptible(*q,
1828                 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1829         goto repeat;
1830 }
1831
1832 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1833                 struct ckpt_req *wait_req)
1834 {
1835         struct ckpt_req_control *cprc = &sbi->cprc_info;
1836
1837         if (!llist_empty(&cprc->issue_list)) {
1838                 __checkpoint_and_complete_reqs(sbi);
1839         } else {
1840                 /* already dispatched by issue_checkpoint_thread */
1841                 if (wait_req)
1842                         wait_for_completion(&wait_req->wait);
1843         }
1844 }
1845
1846 static void init_ckpt_req(struct ckpt_req *req)
1847 {
1848         memset(req, 0, sizeof(struct ckpt_req));
1849
1850         init_completion(&req->wait);
1851         req->queue_time = ktime_get();
1852 }
1853
1854 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1855 {
1856         struct ckpt_req_control *cprc = &sbi->cprc_info;
1857         struct ckpt_req req;
1858         struct cp_control cpc;
1859
1860         cpc.reason = __get_cp_reason(sbi);
1861         if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1862                 int ret;
1863
1864                 f2fs_down_write(&sbi->gc_lock);
1865                 ret = f2fs_write_checkpoint(sbi, &cpc);
1866                 f2fs_up_write(&sbi->gc_lock);
1867
1868                 return ret;
1869         }
1870
1871         if (!cprc->f2fs_issue_ckpt)
1872                 return __write_checkpoint_sync(sbi);
1873
1874         init_ckpt_req(&req);
1875
1876         llist_add(&req.llnode, &cprc->issue_list);
1877         atomic_inc(&cprc->queued_ckpt);
1878
1879         /*
1880          * update issue_list before we wake up issue_checkpoint thread,
1881          * this smp_mb() pairs with another barrier in ___wait_event(),
1882          * see more details in comments of waitqueue_active().
1883          */
1884         smp_mb();
1885
1886         if (waitqueue_active(&cprc->ckpt_wait_queue))
1887                 wake_up(&cprc->ckpt_wait_queue);
1888
1889         if (cprc->f2fs_issue_ckpt)
1890                 wait_for_completion(&req.wait);
1891         else
1892                 flush_remained_ckpt_reqs(sbi, &req);
1893
1894         return req.ret;
1895 }
1896
1897 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1898 {
1899         dev_t dev = sbi->sb->s_bdev->bd_dev;
1900         struct ckpt_req_control *cprc = &sbi->cprc_info;
1901
1902         if (cprc->f2fs_issue_ckpt)
1903                 return 0;
1904
1905         cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1906                         "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1907         if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1908                 cprc->f2fs_issue_ckpt = NULL;
1909                 return -ENOMEM;
1910         }
1911
1912         set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1913
1914         return 0;
1915 }
1916
1917 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1918 {
1919         struct ckpt_req_control *cprc = &sbi->cprc_info;
1920         struct task_struct *ckpt_task;
1921
1922         if (!cprc->f2fs_issue_ckpt)
1923                 return;
1924
1925         ckpt_task = cprc->f2fs_issue_ckpt;
1926         cprc->f2fs_issue_ckpt = NULL;
1927         kthread_stop(ckpt_task);
1928
1929         f2fs_flush_ckpt_thread(sbi);
1930 }
1931
1932 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
1933 {
1934         struct ckpt_req_control *cprc = &sbi->cprc_info;
1935
1936         flush_remained_ckpt_reqs(sbi, NULL);
1937
1938         /* Let's wait for the previous dispatched checkpoint. */
1939         while (atomic_read(&cprc->queued_ckpt))
1940                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1941 }
1942
1943 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1944 {
1945         struct ckpt_req_control *cprc = &sbi->cprc_info;
1946
1947         atomic_set(&cprc->issued_ckpt, 0);
1948         atomic_set(&cprc->total_ckpt, 0);
1949         atomic_set(&cprc->queued_ckpt, 0);
1950         cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1951         init_waitqueue_head(&cprc->ckpt_wait_queue);
1952         init_llist_head(&cprc->issue_list);
1953         spin_lock_init(&cprc->stat_lock);
1954 }