Mention branches and keyring.
[releases.git] / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 #include "block-group.h"
23 #include "space-info.h"
24 #include "zoned.h"
25
26 #define BTRFS_ROOT_TRANS_TAG 0
27
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |                                                Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update     |
83  * | super blocks.                                  |
84  * |                                                |
85  * | At this stage, new transaction is allowed to   |
86  * | start.                                         |
87  * | All new start_transaction() calls will be      |
88  * | attached to transid N+1.                       |
89  * |                                                |
90  * | To next stage:                                 |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices                      |
93  * V                                                |
94  * Transaction N [[TRANS_STATE_COMPLETED]]          V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.            | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100         [TRANS_STATE_RUNNING]           = 0U,
101         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
102         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
103                                            __TRANS_ATTACH |
104                                            __TRANS_JOIN |
105                                            __TRANS_JOIN_NOSTART),
106         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
107                                            __TRANS_ATTACH |
108                                            __TRANS_JOIN |
109                                            __TRANS_JOIN_NOLOCK |
110                                            __TRANS_JOIN_NOSTART),
111         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
112                                            __TRANS_ATTACH |
113                                            __TRANS_JOIN |
114                                            __TRANS_JOIN_NOLOCK |
115                                            __TRANS_JOIN_NOSTART),
116         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
117                                            __TRANS_ATTACH |
118                                            __TRANS_JOIN |
119                                            __TRANS_JOIN_NOLOCK |
120                                            __TRANS_JOIN_NOSTART),
121 };
122
123 void btrfs_put_transaction(struct btrfs_transaction *transaction)
124 {
125         WARN_ON(refcount_read(&transaction->use_count) == 0);
126         if (refcount_dec_and_test(&transaction->use_count)) {
127                 BUG_ON(!list_empty(&transaction->list));
128                 WARN_ON(!RB_EMPTY_ROOT(
129                                 &transaction->delayed_refs.href_root.rb_root));
130                 WARN_ON(!RB_EMPTY_ROOT(
131                                 &transaction->delayed_refs.dirty_extent_root));
132                 if (transaction->delayed_refs.pending_csums)
133                         btrfs_err(transaction->fs_info,
134                                   "pending csums is %llu",
135                                   transaction->delayed_refs.pending_csums);
136                 /*
137                  * If any block groups are found in ->deleted_bgs then it's
138                  * because the transaction was aborted and a commit did not
139                  * happen (things failed before writing the new superblock
140                  * and calling btrfs_finish_extent_commit()), so we can not
141                  * discard the physical locations of the block groups.
142                  */
143                 while (!list_empty(&transaction->deleted_bgs)) {
144                         struct btrfs_block_group *cache;
145
146                         cache = list_first_entry(&transaction->deleted_bgs,
147                                                  struct btrfs_block_group,
148                                                  bg_list);
149                         list_del_init(&cache->bg_list);
150                         btrfs_unfreeze_block_group(cache);
151                         btrfs_put_block_group(cache);
152                 }
153                 WARN_ON(!list_empty(&transaction->dev_update_list));
154                 kfree(transaction);
155         }
156 }
157
158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
159 {
160         struct btrfs_transaction *cur_trans = trans->transaction;
161         struct btrfs_fs_info *fs_info = trans->fs_info;
162         struct btrfs_root *root, *tmp;
163         struct btrfs_caching_control *caching_ctl, *next;
164
165         down_write(&fs_info->commit_root_sem);
166         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
167                                  dirty_list) {
168                 list_del_init(&root->dirty_list);
169                 free_extent_buffer(root->commit_root);
170                 root->commit_root = btrfs_root_node(root);
171                 extent_io_tree_release(&root->dirty_log_pages);
172                 btrfs_qgroup_clean_swapped_blocks(root);
173         }
174
175         /* We can free old roots now. */
176         spin_lock(&cur_trans->dropped_roots_lock);
177         while (!list_empty(&cur_trans->dropped_roots)) {
178                 root = list_first_entry(&cur_trans->dropped_roots,
179                                         struct btrfs_root, root_list);
180                 list_del_init(&root->root_list);
181                 spin_unlock(&cur_trans->dropped_roots_lock);
182                 btrfs_free_log(trans, root);
183                 btrfs_drop_and_free_fs_root(fs_info, root);
184                 spin_lock(&cur_trans->dropped_roots_lock);
185         }
186         spin_unlock(&cur_trans->dropped_roots_lock);
187
188         /*
189          * We have to update the last_byte_to_unpin under the commit_root_sem,
190          * at the same time we swap out the commit roots.
191          *
192          * This is because we must have a real view of the last spot the caching
193          * kthreads were while caching.  Consider the following views of the
194          * extent tree for a block group
195          *
196          * commit root
197          * +----+----+----+----+----+----+----+
198          * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
199          * +----+----+----+----+----+----+----+
200          * 0    1    2    3    4    5    6    7
201          *
202          * new commit root
203          * +----+----+----+----+----+----+----+
204          * |    |    |    |\\\\|    |    |\\\\|
205          * +----+----+----+----+----+----+----+
206          * 0    1    2    3    4    5    6    7
207          *
208          * If the cache_ctl->progress was at 3, then we are only allowed to
209          * unpin [0,1) and [2,3], because the caching thread has already
210          * processed those extents.  We are not allowed to unpin [5,6), because
211          * the caching thread will re-start it's search from 3, and thus find
212          * the hole from [4,6) to add to the free space cache.
213          */
214         spin_lock(&fs_info->block_group_cache_lock);
215         list_for_each_entry_safe(caching_ctl, next,
216                                  &fs_info->caching_block_groups, list) {
217                 struct btrfs_block_group *cache = caching_ctl->block_group;
218
219                 if (btrfs_block_group_done(cache)) {
220                         cache->last_byte_to_unpin = (u64)-1;
221                         list_del_init(&caching_ctl->list);
222                         btrfs_put_caching_control(caching_ctl);
223                 } else {
224                         cache->last_byte_to_unpin = caching_ctl->progress;
225                 }
226         }
227         spin_unlock(&fs_info->block_group_cache_lock);
228         up_write(&fs_info->commit_root_sem);
229 }
230
231 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
232                                          unsigned int type)
233 {
234         if (type & TRANS_EXTWRITERS)
235                 atomic_inc(&trans->num_extwriters);
236 }
237
238 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
239                                          unsigned int type)
240 {
241         if (type & TRANS_EXTWRITERS)
242                 atomic_dec(&trans->num_extwriters);
243 }
244
245 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
246                                           unsigned int type)
247 {
248         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
249 }
250
251 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
252 {
253         return atomic_read(&trans->num_extwriters);
254 }
255
256 /*
257  * To be called after doing the chunk btree updates right after allocating a new
258  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
259  * chunk after all chunk btree updates and after finishing the second phase of
260  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
261  * group had its chunk item insertion delayed to the second phase.
262  */
263 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
264 {
265         struct btrfs_fs_info *fs_info = trans->fs_info;
266
267         if (!trans->chunk_bytes_reserved)
268                 return;
269
270         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
271                                 trans->chunk_bytes_reserved, NULL);
272         trans->chunk_bytes_reserved = 0;
273 }
274
275 /*
276  * either allocate a new transaction or hop into the existing one
277  */
278 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
279                                      unsigned int type)
280 {
281         struct btrfs_transaction *cur_trans;
282
283         spin_lock(&fs_info->trans_lock);
284 loop:
285         /* The file system has been taken offline. No new transactions. */
286         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
287                 spin_unlock(&fs_info->trans_lock);
288                 return -EROFS;
289         }
290
291         cur_trans = fs_info->running_transaction;
292         if (cur_trans) {
293                 if (TRANS_ABORTED(cur_trans)) {
294                         spin_unlock(&fs_info->trans_lock);
295                         return cur_trans->aborted;
296                 }
297                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
298                         spin_unlock(&fs_info->trans_lock);
299                         return -EBUSY;
300                 }
301                 refcount_inc(&cur_trans->use_count);
302                 atomic_inc(&cur_trans->num_writers);
303                 extwriter_counter_inc(cur_trans, type);
304                 spin_unlock(&fs_info->trans_lock);
305                 return 0;
306         }
307         spin_unlock(&fs_info->trans_lock);
308
309         /*
310          * If we are ATTACH, we just want to catch the current transaction,
311          * and commit it. If there is no transaction, just return ENOENT.
312          */
313         if (type == TRANS_ATTACH)
314                 return -ENOENT;
315
316         /*
317          * JOIN_NOLOCK only happens during the transaction commit, so
318          * it is impossible that ->running_transaction is NULL
319          */
320         BUG_ON(type == TRANS_JOIN_NOLOCK);
321
322         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
323         if (!cur_trans)
324                 return -ENOMEM;
325
326         spin_lock(&fs_info->trans_lock);
327         if (fs_info->running_transaction) {
328                 /*
329                  * someone started a transaction after we unlocked.  Make sure
330                  * to redo the checks above
331                  */
332                 kfree(cur_trans);
333                 goto loop;
334         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
335                 spin_unlock(&fs_info->trans_lock);
336                 kfree(cur_trans);
337                 return -EROFS;
338         }
339
340         cur_trans->fs_info = fs_info;
341         atomic_set(&cur_trans->pending_ordered, 0);
342         init_waitqueue_head(&cur_trans->pending_wait);
343         atomic_set(&cur_trans->num_writers, 1);
344         extwriter_counter_init(cur_trans, type);
345         init_waitqueue_head(&cur_trans->writer_wait);
346         init_waitqueue_head(&cur_trans->commit_wait);
347         cur_trans->state = TRANS_STATE_RUNNING;
348         /*
349          * One for this trans handle, one so it will live on until we
350          * commit the transaction.
351          */
352         refcount_set(&cur_trans->use_count, 2);
353         cur_trans->flags = 0;
354         cur_trans->start_time = ktime_get_seconds();
355
356         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
357
358         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
359         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
360         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
361
362         /*
363          * although the tree mod log is per file system and not per transaction,
364          * the log must never go across transaction boundaries.
365          */
366         smp_mb();
367         if (!list_empty(&fs_info->tree_mod_seq_list))
368                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
369         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
370                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
371         atomic64_set(&fs_info->tree_mod_seq, 0);
372
373         spin_lock_init(&cur_trans->delayed_refs.lock);
374
375         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
376         INIT_LIST_HEAD(&cur_trans->dev_update_list);
377         INIT_LIST_HEAD(&cur_trans->switch_commits);
378         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
379         INIT_LIST_HEAD(&cur_trans->io_bgs);
380         INIT_LIST_HEAD(&cur_trans->dropped_roots);
381         mutex_init(&cur_trans->cache_write_mutex);
382         spin_lock_init(&cur_trans->dirty_bgs_lock);
383         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
384         spin_lock_init(&cur_trans->dropped_roots_lock);
385         INIT_LIST_HEAD(&cur_trans->releasing_ebs);
386         spin_lock_init(&cur_trans->releasing_ebs_lock);
387         list_add_tail(&cur_trans->list, &fs_info->trans_list);
388         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
389                         IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
390         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
391                         IO_TREE_FS_PINNED_EXTENTS, NULL);
392         fs_info->generation++;
393         cur_trans->transid = fs_info->generation;
394         fs_info->running_transaction = cur_trans;
395         cur_trans->aborted = 0;
396         spin_unlock(&fs_info->trans_lock);
397
398         return 0;
399 }
400
401 /*
402  * This does all the record keeping required to make sure that a shareable root
403  * is properly recorded in a given transaction.  This is required to make sure
404  * the old root from before we joined the transaction is deleted when the
405  * transaction commits.
406  */
407 static int record_root_in_trans(struct btrfs_trans_handle *trans,
408                                struct btrfs_root *root,
409                                int force)
410 {
411         struct btrfs_fs_info *fs_info = root->fs_info;
412         int ret = 0;
413
414         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
415             root->last_trans < trans->transid) || force) {
416                 WARN_ON(root == fs_info->extent_root);
417                 WARN_ON(!force && root->commit_root != root->node);
418
419                 /*
420                  * see below for IN_TRANS_SETUP usage rules
421                  * we have the reloc mutex held now, so there
422                  * is only one writer in this function
423                  */
424                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
425
426                 /* make sure readers find IN_TRANS_SETUP before
427                  * they find our root->last_trans update
428                  */
429                 smp_wmb();
430
431                 spin_lock(&fs_info->fs_roots_radix_lock);
432                 if (root->last_trans == trans->transid && !force) {
433                         spin_unlock(&fs_info->fs_roots_radix_lock);
434                         return 0;
435                 }
436                 radix_tree_tag_set(&fs_info->fs_roots_radix,
437                                    (unsigned long)root->root_key.objectid,
438                                    BTRFS_ROOT_TRANS_TAG);
439                 spin_unlock(&fs_info->fs_roots_radix_lock);
440                 root->last_trans = trans->transid;
441
442                 /* this is pretty tricky.  We don't want to
443                  * take the relocation lock in btrfs_record_root_in_trans
444                  * unless we're really doing the first setup for this root in
445                  * this transaction.
446                  *
447                  * Normally we'd use root->last_trans as a flag to decide
448                  * if we want to take the expensive mutex.
449                  *
450                  * But, we have to set root->last_trans before we
451                  * init the relocation root, otherwise, we trip over warnings
452                  * in ctree.c.  The solution used here is to flag ourselves
453                  * with root IN_TRANS_SETUP.  When this is 1, we're still
454                  * fixing up the reloc trees and everyone must wait.
455                  *
456                  * When this is zero, they can trust root->last_trans and fly
457                  * through btrfs_record_root_in_trans without having to take the
458                  * lock.  smp_wmb() makes sure that all the writes above are
459                  * done before we pop in the zero below
460                  */
461                 ret = btrfs_init_reloc_root(trans, root);
462                 smp_mb__before_atomic();
463                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
464         }
465         return ret;
466 }
467
468
469 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
470                             struct btrfs_root *root)
471 {
472         struct btrfs_fs_info *fs_info = root->fs_info;
473         struct btrfs_transaction *cur_trans = trans->transaction;
474
475         /* Add ourselves to the transaction dropped list */
476         spin_lock(&cur_trans->dropped_roots_lock);
477         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
478         spin_unlock(&cur_trans->dropped_roots_lock);
479
480         /* Make sure we don't try to update the root at commit time */
481         spin_lock(&fs_info->fs_roots_radix_lock);
482         radix_tree_tag_clear(&fs_info->fs_roots_radix,
483                              (unsigned long)root->root_key.objectid,
484                              BTRFS_ROOT_TRANS_TAG);
485         spin_unlock(&fs_info->fs_roots_radix_lock);
486 }
487
488 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
489                                struct btrfs_root *root)
490 {
491         struct btrfs_fs_info *fs_info = root->fs_info;
492         int ret;
493
494         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
495                 return 0;
496
497         /*
498          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
499          * and barriers
500          */
501         smp_rmb();
502         if (root->last_trans == trans->transid &&
503             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
504                 return 0;
505
506         mutex_lock(&fs_info->reloc_mutex);
507         ret = record_root_in_trans(trans, root, 0);
508         mutex_unlock(&fs_info->reloc_mutex);
509
510         return ret;
511 }
512
513 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
514 {
515         return (trans->state >= TRANS_STATE_COMMIT_START &&
516                 trans->state < TRANS_STATE_UNBLOCKED &&
517                 !TRANS_ABORTED(trans));
518 }
519
520 /* wait for commit against the current transaction to become unblocked
521  * when this is done, it is safe to start a new transaction, but the current
522  * transaction might not be fully on disk.
523  */
524 static void wait_current_trans(struct btrfs_fs_info *fs_info)
525 {
526         struct btrfs_transaction *cur_trans;
527
528         spin_lock(&fs_info->trans_lock);
529         cur_trans = fs_info->running_transaction;
530         if (cur_trans && is_transaction_blocked(cur_trans)) {
531                 refcount_inc(&cur_trans->use_count);
532                 spin_unlock(&fs_info->trans_lock);
533
534                 wait_event(fs_info->transaction_wait,
535                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
536                            TRANS_ABORTED(cur_trans));
537                 btrfs_put_transaction(cur_trans);
538         } else {
539                 spin_unlock(&fs_info->trans_lock);
540         }
541 }
542
543 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
544 {
545         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
546                 return 0;
547
548         if (type == TRANS_START)
549                 return 1;
550
551         return 0;
552 }
553
554 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
555 {
556         struct btrfs_fs_info *fs_info = root->fs_info;
557
558         if (!fs_info->reloc_ctl ||
559             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
560             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
561             root->reloc_root)
562                 return false;
563
564         return true;
565 }
566
567 static struct btrfs_trans_handle *
568 start_transaction(struct btrfs_root *root, unsigned int num_items,
569                   unsigned int type, enum btrfs_reserve_flush_enum flush,
570                   bool enforce_qgroups)
571 {
572         struct btrfs_fs_info *fs_info = root->fs_info;
573         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
574         struct btrfs_trans_handle *h;
575         struct btrfs_transaction *cur_trans;
576         u64 num_bytes = 0;
577         u64 qgroup_reserved = 0;
578         bool reloc_reserved = false;
579         bool do_chunk_alloc = false;
580         int ret;
581
582         /* Send isn't supposed to start transactions. */
583         ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
584
585         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
586                 return ERR_PTR(-EROFS);
587
588         if (current->journal_info) {
589                 WARN_ON(type & TRANS_EXTWRITERS);
590                 h = current->journal_info;
591                 refcount_inc(&h->use_count);
592                 WARN_ON(refcount_read(&h->use_count) > 2);
593                 h->orig_rsv = h->block_rsv;
594                 h->block_rsv = NULL;
595                 goto got_it;
596         }
597
598         /*
599          * Do the reservation before we join the transaction so we can do all
600          * the appropriate flushing if need be.
601          */
602         if (num_items && root != fs_info->chunk_root) {
603                 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
604                 u64 delayed_refs_bytes = 0;
605
606                 qgroup_reserved = num_items * fs_info->nodesize;
607                 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
608                                 enforce_qgroups);
609                 if (ret)
610                         return ERR_PTR(ret);
611
612                 /*
613                  * We want to reserve all the bytes we may need all at once, so
614                  * we only do 1 enospc flushing cycle per transaction start.  We
615                  * accomplish this by simply assuming we'll do 2 x num_items
616                  * worth of delayed refs updates in this trans handle, and
617                  * refill that amount for whatever is missing in the reserve.
618                  */
619                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
620                 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
621                     delayed_refs_rsv->full == 0) {
622                         delayed_refs_bytes = num_bytes;
623                         num_bytes <<= 1;
624                 }
625
626                 /*
627                  * Do the reservation for the relocation root creation
628                  */
629                 if (need_reserve_reloc_root(root)) {
630                         num_bytes += fs_info->nodesize;
631                         reloc_reserved = true;
632                 }
633
634                 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
635                 if (ret)
636                         goto reserve_fail;
637                 if (delayed_refs_bytes) {
638                         btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
639                                                           delayed_refs_bytes);
640                         num_bytes -= delayed_refs_bytes;
641                 }
642
643                 if (rsv->space_info->force_alloc)
644                         do_chunk_alloc = true;
645         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
646                    !delayed_refs_rsv->full) {
647                 /*
648                  * Some people call with btrfs_start_transaction(root, 0)
649                  * because they can be throttled, but have some other mechanism
650                  * for reserving space.  We still want these guys to refill the
651                  * delayed block_rsv so just add 1 items worth of reservation
652                  * here.
653                  */
654                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
655                 if (ret)
656                         goto reserve_fail;
657         }
658 again:
659         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
660         if (!h) {
661                 ret = -ENOMEM;
662                 goto alloc_fail;
663         }
664
665         /*
666          * If we are JOIN_NOLOCK we're already committing a transaction and
667          * waiting on this guy, so we don't need to do the sb_start_intwrite
668          * because we're already holding a ref.  We need this because we could
669          * have raced in and did an fsync() on a file which can kick a commit
670          * and then we deadlock with somebody doing a freeze.
671          *
672          * If we are ATTACH, it means we just want to catch the current
673          * transaction and commit it, so we needn't do sb_start_intwrite(). 
674          */
675         if (type & __TRANS_FREEZABLE)
676                 sb_start_intwrite(fs_info->sb);
677
678         if (may_wait_transaction(fs_info, type))
679                 wait_current_trans(fs_info);
680
681         do {
682                 ret = join_transaction(fs_info, type);
683                 if (ret == -EBUSY) {
684                         wait_current_trans(fs_info);
685                         if (unlikely(type == TRANS_ATTACH ||
686                                      type == TRANS_JOIN_NOSTART))
687                                 ret = -ENOENT;
688                 }
689         } while (ret == -EBUSY);
690
691         if (ret < 0)
692                 goto join_fail;
693
694         cur_trans = fs_info->running_transaction;
695
696         h->transid = cur_trans->transid;
697         h->transaction = cur_trans;
698         h->root = root;
699         refcount_set(&h->use_count, 1);
700         h->fs_info = root->fs_info;
701
702         h->type = type;
703         INIT_LIST_HEAD(&h->new_bgs);
704
705         smp_mb();
706         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
707             may_wait_transaction(fs_info, type)) {
708                 current->journal_info = h;
709                 btrfs_commit_transaction(h);
710                 goto again;
711         }
712
713         if (num_bytes) {
714                 trace_btrfs_space_reservation(fs_info, "transaction",
715                                               h->transid, num_bytes, 1);
716                 h->block_rsv = &fs_info->trans_block_rsv;
717                 h->bytes_reserved = num_bytes;
718                 h->reloc_reserved = reloc_reserved;
719         }
720
721 got_it:
722         if (!current->journal_info)
723                 current->journal_info = h;
724
725         /*
726          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
727          * ALLOC_FORCE the first run through, and then we won't allocate for
728          * anybody else who races in later.  We don't care about the return
729          * value here.
730          */
731         if (do_chunk_alloc && num_bytes) {
732                 u64 flags = h->block_rsv->space_info->flags;
733
734                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
735                                   CHUNK_ALLOC_NO_FORCE);
736         }
737
738         /*
739          * btrfs_record_root_in_trans() needs to alloc new extents, and may
740          * call btrfs_join_transaction() while we're also starting a
741          * transaction.
742          *
743          * Thus it need to be called after current->journal_info initialized,
744          * or we can deadlock.
745          */
746         ret = btrfs_record_root_in_trans(h, root);
747         if (ret) {
748                 /*
749                  * The transaction handle is fully initialized and linked with
750                  * other structures so it needs to be ended in case of errors,
751                  * not just freed.
752                  */
753                 btrfs_end_transaction(h);
754                 return ERR_PTR(ret);
755         }
756
757         return h;
758
759 join_fail:
760         if (type & __TRANS_FREEZABLE)
761                 sb_end_intwrite(fs_info->sb);
762         kmem_cache_free(btrfs_trans_handle_cachep, h);
763 alloc_fail:
764         if (num_bytes)
765                 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
766                                         num_bytes, NULL);
767 reserve_fail:
768         btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
769         return ERR_PTR(ret);
770 }
771
772 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
773                                                    unsigned int num_items)
774 {
775         return start_transaction(root, num_items, TRANS_START,
776                                  BTRFS_RESERVE_FLUSH_ALL, true);
777 }
778
779 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
780                                         struct btrfs_root *root,
781                                         unsigned int num_items)
782 {
783         return start_transaction(root, num_items, TRANS_START,
784                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
785 }
786
787 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
788 {
789         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
790                                  true);
791 }
792
793 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
794 {
795         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
796                                  BTRFS_RESERVE_NO_FLUSH, true);
797 }
798
799 /*
800  * Similar to regular join but it never starts a transaction when none is
801  * running or after waiting for the current one to finish.
802  */
803 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
804 {
805         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
806                                  BTRFS_RESERVE_NO_FLUSH, true);
807 }
808
809 /*
810  * btrfs_attach_transaction() - catch the running transaction
811  *
812  * It is used when we want to commit the current the transaction, but
813  * don't want to start a new one.
814  *
815  * Note: If this function return -ENOENT, it just means there is no
816  * running transaction. But it is possible that the inactive transaction
817  * is still in the memory, not fully on disk. If you hope there is no
818  * inactive transaction in the fs when -ENOENT is returned, you should
819  * invoke
820  *     btrfs_attach_transaction_barrier()
821  */
822 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
823 {
824         return start_transaction(root, 0, TRANS_ATTACH,
825                                  BTRFS_RESERVE_NO_FLUSH, true);
826 }
827
828 /*
829  * btrfs_attach_transaction_barrier() - catch the running transaction
830  *
831  * It is similar to the above function, the difference is this one
832  * will wait for all the inactive transactions until they fully
833  * complete.
834  */
835 struct btrfs_trans_handle *
836 btrfs_attach_transaction_barrier(struct btrfs_root *root)
837 {
838         struct btrfs_trans_handle *trans;
839
840         trans = start_transaction(root, 0, TRANS_ATTACH,
841                                   BTRFS_RESERVE_NO_FLUSH, true);
842         if (trans == ERR_PTR(-ENOENT))
843                 btrfs_wait_for_commit(root->fs_info, 0);
844
845         return trans;
846 }
847
848 /* Wait for a transaction commit to reach at least the given state. */
849 static noinline void wait_for_commit(struct btrfs_transaction *commit,
850                                      const enum btrfs_trans_state min_state)
851 {
852         wait_event(commit->commit_wait, commit->state >= min_state);
853 }
854
855 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
856 {
857         struct btrfs_transaction *cur_trans = NULL, *t;
858         int ret = 0;
859
860         if (transid) {
861                 if (transid <= fs_info->last_trans_committed)
862                         goto out;
863
864                 /* find specified transaction */
865                 spin_lock(&fs_info->trans_lock);
866                 list_for_each_entry(t, &fs_info->trans_list, list) {
867                         if (t->transid == transid) {
868                                 cur_trans = t;
869                                 refcount_inc(&cur_trans->use_count);
870                                 ret = 0;
871                                 break;
872                         }
873                         if (t->transid > transid) {
874                                 ret = 0;
875                                 break;
876                         }
877                 }
878                 spin_unlock(&fs_info->trans_lock);
879
880                 /*
881                  * The specified transaction doesn't exist, or we
882                  * raced with btrfs_commit_transaction
883                  */
884                 if (!cur_trans) {
885                         if (transid > fs_info->last_trans_committed)
886                                 ret = -EINVAL;
887                         goto out;
888                 }
889         } else {
890                 /* find newest transaction that is committing | committed */
891                 spin_lock(&fs_info->trans_lock);
892                 list_for_each_entry_reverse(t, &fs_info->trans_list,
893                                             list) {
894                         if (t->state >= TRANS_STATE_COMMIT_START) {
895                                 if (t->state == TRANS_STATE_COMPLETED)
896                                         break;
897                                 cur_trans = t;
898                                 refcount_inc(&cur_trans->use_count);
899                                 break;
900                         }
901                 }
902                 spin_unlock(&fs_info->trans_lock);
903                 if (!cur_trans)
904                         goto out;  /* nothing committing|committed */
905         }
906
907         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
908         btrfs_put_transaction(cur_trans);
909 out:
910         return ret;
911 }
912
913 void btrfs_throttle(struct btrfs_fs_info *fs_info)
914 {
915         wait_current_trans(fs_info);
916 }
917
918 static bool should_end_transaction(struct btrfs_trans_handle *trans)
919 {
920         struct btrfs_fs_info *fs_info = trans->fs_info;
921
922         if (btrfs_check_space_for_delayed_refs(fs_info))
923                 return true;
924
925         return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
926 }
927
928 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
929 {
930         struct btrfs_transaction *cur_trans = trans->transaction;
931
932         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
933             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
934                 return true;
935
936         return should_end_transaction(trans);
937 }
938
939 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
940
941 {
942         struct btrfs_fs_info *fs_info = trans->fs_info;
943
944         if (!trans->block_rsv) {
945                 ASSERT(!trans->bytes_reserved);
946                 return;
947         }
948
949         if (!trans->bytes_reserved)
950                 return;
951
952         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
953         trace_btrfs_space_reservation(fs_info, "transaction",
954                                       trans->transid, trans->bytes_reserved, 0);
955         btrfs_block_rsv_release(fs_info, trans->block_rsv,
956                                 trans->bytes_reserved, NULL);
957         trans->bytes_reserved = 0;
958 }
959
960 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
961                                    int throttle)
962 {
963         struct btrfs_fs_info *info = trans->fs_info;
964         struct btrfs_transaction *cur_trans = trans->transaction;
965         int err = 0;
966
967         if (refcount_read(&trans->use_count) > 1) {
968                 refcount_dec(&trans->use_count);
969                 trans->block_rsv = trans->orig_rsv;
970                 return 0;
971         }
972
973         btrfs_trans_release_metadata(trans);
974         trans->block_rsv = NULL;
975
976         btrfs_create_pending_block_groups(trans);
977
978         btrfs_trans_release_chunk_metadata(trans);
979
980         if (trans->type & __TRANS_FREEZABLE)
981                 sb_end_intwrite(info->sb);
982
983         WARN_ON(cur_trans != info->running_transaction);
984         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
985         atomic_dec(&cur_trans->num_writers);
986         extwriter_counter_dec(cur_trans, trans->type);
987
988         cond_wake_up(&cur_trans->writer_wait);
989         btrfs_put_transaction(cur_trans);
990
991         if (current->journal_info == trans)
992                 current->journal_info = NULL;
993
994         if (throttle)
995                 btrfs_run_delayed_iputs(info);
996
997         if (TRANS_ABORTED(trans) ||
998             test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
999                 wake_up_process(info->transaction_kthread);
1000                 if (TRANS_ABORTED(trans))
1001                         err = trans->aborted;
1002                 else
1003                         err = -EROFS;
1004         }
1005
1006         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1007         return err;
1008 }
1009
1010 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1011 {
1012         return __btrfs_end_transaction(trans, 0);
1013 }
1014
1015 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1016 {
1017         return __btrfs_end_transaction(trans, 1);
1018 }
1019
1020 /*
1021  * when btree blocks are allocated, they have some corresponding bits set for
1022  * them in one of two extent_io trees.  This is used to make sure all of
1023  * those extents are sent to disk but does not wait on them
1024  */
1025 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1026                                struct extent_io_tree *dirty_pages, int mark)
1027 {
1028         int err = 0;
1029         int werr = 0;
1030         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1031         struct extent_state *cached_state = NULL;
1032         u64 start = 0;
1033         u64 end;
1034
1035         atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1036         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1037                                       mark, &cached_state)) {
1038                 bool wait_writeback = false;
1039
1040                 err = convert_extent_bit(dirty_pages, start, end,
1041                                          EXTENT_NEED_WAIT,
1042                                          mark, &cached_state);
1043                 /*
1044                  * convert_extent_bit can return -ENOMEM, which is most of the
1045                  * time a temporary error. So when it happens, ignore the error
1046                  * and wait for writeback of this range to finish - because we
1047                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1048                  * to __btrfs_wait_marked_extents() would not know that
1049                  * writeback for this range started and therefore wouldn't
1050                  * wait for it to finish - we don't want to commit a
1051                  * superblock that points to btree nodes/leafs for which
1052                  * writeback hasn't finished yet (and without errors).
1053                  * We cleanup any entries left in the io tree when committing
1054                  * the transaction (through extent_io_tree_release()).
1055                  */
1056                 if (err == -ENOMEM) {
1057                         err = 0;
1058                         wait_writeback = true;
1059                 }
1060                 if (!err)
1061                         err = filemap_fdatawrite_range(mapping, start, end);
1062                 if (err)
1063                         werr = err;
1064                 else if (wait_writeback)
1065                         werr = filemap_fdatawait_range(mapping, start, end);
1066                 free_extent_state(cached_state);
1067                 cached_state = NULL;
1068                 cond_resched();
1069                 start = end + 1;
1070         }
1071         atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1072         return werr;
1073 }
1074
1075 /*
1076  * when btree blocks are allocated, they have some corresponding bits set for
1077  * them in one of two extent_io trees.  This is used to make sure all of
1078  * those extents are on disk for transaction or log commit.  We wait
1079  * on all the pages and clear them from the dirty pages state tree
1080  */
1081 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1082                                        struct extent_io_tree *dirty_pages)
1083 {
1084         int err = 0;
1085         int werr = 0;
1086         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1087         struct extent_state *cached_state = NULL;
1088         u64 start = 0;
1089         u64 end;
1090
1091         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1092                                       EXTENT_NEED_WAIT, &cached_state)) {
1093                 /*
1094                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1095                  * When committing the transaction, we'll remove any entries
1096                  * left in the io tree. For a log commit, we don't remove them
1097                  * after committing the log because the tree can be accessed
1098                  * concurrently - we do it only at transaction commit time when
1099                  * it's safe to do it (through extent_io_tree_release()).
1100                  */
1101                 err = clear_extent_bit(dirty_pages, start, end,
1102                                        EXTENT_NEED_WAIT, 0, 0, &cached_state);
1103                 if (err == -ENOMEM)
1104                         err = 0;
1105                 if (!err)
1106                         err = filemap_fdatawait_range(mapping, start, end);
1107                 if (err)
1108                         werr = err;
1109                 free_extent_state(cached_state);
1110                 cached_state = NULL;
1111                 cond_resched();
1112                 start = end + 1;
1113         }
1114         if (err)
1115                 werr = err;
1116         return werr;
1117 }
1118
1119 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1120                        struct extent_io_tree *dirty_pages)
1121 {
1122         bool errors = false;
1123         int err;
1124
1125         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1126         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1127                 errors = true;
1128
1129         if (errors && !err)
1130                 err = -EIO;
1131         return err;
1132 }
1133
1134 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1135 {
1136         struct btrfs_fs_info *fs_info = log_root->fs_info;
1137         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1138         bool errors = false;
1139         int err;
1140
1141         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1142
1143         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1144         if ((mark & EXTENT_DIRTY) &&
1145             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1146                 errors = true;
1147
1148         if ((mark & EXTENT_NEW) &&
1149             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1150                 errors = true;
1151
1152         if (errors && !err)
1153                 err = -EIO;
1154         return err;
1155 }
1156
1157 /*
1158  * When btree blocks are allocated the corresponding extents are marked dirty.
1159  * This function ensures such extents are persisted on disk for transaction or
1160  * log commit.
1161  *
1162  * @trans: transaction whose dirty pages we'd like to write
1163  */
1164 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1165 {
1166         int ret;
1167         int ret2;
1168         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1169         struct btrfs_fs_info *fs_info = trans->fs_info;
1170         struct blk_plug plug;
1171
1172         blk_start_plug(&plug);
1173         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1174         blk_finish_plug(&plug);
1175         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1176
1177         extent_io_tree_release(&trans->transaction->dirty_pages);
1178
1179         if (ret)
1180                 return ret;
1181         else if (ret2)
1182                 return ret2;
1183         else
1184                 return 0;
1185 }
1186
1187 /*
1188  * this is used to update the root pointer in the tree of tree roots.
1189  *
1190  * But, in the case of the extent allocation tree, updating the root
1191  * pointer may allocate blocks which may change the root of the extent
1192  * allocation tree.
1193  *
1194  * So, this loops and repeats and makes sure the cowonly root didn't
1195  * change while the root pointer was being updated in the metadata.
1196  */
1197 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1198                                struct btrfs_root *root)
1199 {
1200         int ret;
1201         u64 old_root_bytenr;
1202         u64 old_root_used;
1203         struct btrfs_fs_info *fs_info = root->fs_info;
1204         struct btrfs_root *tree_root = fs_info->tree_root;
1205
1206         old_root_used = btrfs_root_used(&root->root_item);
1207
1208         while (1) {
1209                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1210                 if (old_root_bytenr == root->node->start &&
1211                     old_root_used == btrfs_root_used(&root->root_item))
1212                         break;
1213
1214                 btrfs_set_root_node(&root->root_item, root->node);
1215                 ret = btrfs_update_root(trans, tree_root,
1216                                         &root->root_key,
1217                                         &root->root_item);
1218                 if (ret)
1219                         return ret;
1220
1221                 old_root_used = btrfs_root_used(&root->root_item);
1222         }
1223
1224         return 0;
1225 }
1226
1227 /*
1228  * update all the cowonly tree roots on disk
1229  *
1230  * The error handling in this function may not be obvious. Any of the
1231  * failures will cause the file system to go offline. We still need
1232  * to clean up the delayed refs.
1233  */
1234 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1235 {
1236         struct btrfs_fs_info *fs_info = trans->fs_info;
1237         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1238         struct list_head *io_bgs = &trans->transaction->io_bgs;
1239         struct list_head *next;
1240         struct extent_buffer *eb;
1241         int ret;
1242
1243         eb = btrfs_lock_root_node(fs_info->tree_root);
1244         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1245                               0, &eb, BTRFS_NESTING_COW);
1246         btrfs_tree_unlock(eb);
1247         free_extent_buffer(eb);
1248
1249         if (ret)
1250                 return ret;
1251
1252         ret = btrfs_run_dev_stats(trans);
1253         if (ret)
1254                 return ret;
1255         ret = btrfs_run_dev_replace(trans);
1256         if (ret)
1257                 return ret;
1258         ret = btrfs_run_qgroups(trans);
1259         if (ret)
1260                 return ret;
1261
1262         ret = btrfs_setup_space_cache(trans);
1263         if (ret)
1264                 return ret;
1265
1266 again:
1267         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1268                 struct btrfs_root *root;
1269                 next = fs_info->dirty_cowonly_roots.next;
1270                 list_del_init(next);
1271                 root = list_entry(next, struct btrfs_root, dirty_list);
1272                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1273
1274                 if (root != fs_info->extent_root)
1275                         list_add_tail(&root->dirty_list,
1276                                       &trans->transaction->switch_commits);
1277                 ret = update_cowonly_root(trans, root);
1278                 if (ret)
1279                         return ret;
1280         }
1281
1282         /* Now flush any delayed refs generated by updating all of the roots */
1283         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1284         if (ret)
1285                 return ret;
1286
1287         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1288                 ret = btrfs_write_dirty_block_groups(trans);
1289                 if (ret)
1290                         return ret;
1291
1292                 /*
1293                  * We're writing the dirty block groups, which could generate
1294                  * delayed refs, which could generate more dirty block groups,
1295                  * so we want to keep this flushing in this loop to make sure
1296                  * everything gets run.
1297                  */
1298                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1299                 if (ret)
1300                         return ret;
1301         }
1302
1303         if (!list_empty(&fs_info->dirty_cowonly_roots))
1304                 goto again;
1305
1306         list_add_tail(&fs_info->extent_root->dirty_list,
1307                       &trans->transaction->switch_commits);
1308
1309         /* Update dev-replace pointer once everything is committed */
1310         fs_info->dev_replace.committed_cursor_left =
1311                 fs_info->dev_replace.cursor_left_last_write_of_item;
1312
1313         return 0;
1314 }
1315
1316 /*
1317  * dead roots are old snapshots that need to be deleted.  This allocates
1318  * a dirty root struct and adds it into the list of dead roots that need to
1319  * be deleted
1320  */
1321 void btrfs_add_dead_root(struct btrfs_root *root)
1322 {
1323         struct btrfs_fs_info *fs_info = root->fs_info;
1324
1325         spin_lock(&fs_info->trans_lock);
1326         if (list_empty(&root->root_list)) {
1327                 btrfs_grab_root(root);
1328                 list_add_tail(&root->root_list, &fs_info->dead_roots);
1329         }
1330         spin_unlock(&fs_info->trans_lock);
1331 }
1332
1333 /*
1334  * update all the cowonly tree roots on disk
1335  */
1336 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1337 {
1338         struct btrfs_fs_info *fs_info = trans->fs_info;
1339         struct btrfs_root *gang[8];
1340         int i;
1341         int ret;
1342
1343         spin_lock(&fs_info->fs_roots_radix_lock);
1344         while (1) {
1345                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1346                                                  (void **)gang, 0,
1347                                                  ARRAY_SIZE(gang),
1348                                                  BTRFS_ROOT_TRANS_TAG);
1349                 if (ret == 0)
1350                         break;
1351                 for (i = 0; i < ret; i++) {
1352                         struct btrfs_root *root = gang[i];
1353                         int ret2;
1354
1355                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1356                                         (unsigned long)root->root_key.objectid,
1357                                         BTRFS_ROOT_TRANS_TAG);
1358                         spin_unlock(&fs_info->fs_roots_radix_lock);
1359
1360                         btrfs_free_log(trans, root);
1361                         ret2 = btrfs_update_reloc_root(trans, root);
1362                         if (ret2)
1363                                 return ret2;
1364
1365                         /* see comments in should_cow_block() */
1366                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1367                         smp_mb__after_atomic();
1368
1369                         if (root->commit_root != root->node) {
1370                                 list_add_tail(&root->dirty_list,
1371                                         &trans->transaction->switch_commits);
1372                                 btrfs_set_root_node(&root->root_item,
1373                                                     root->node);
1374                         }
1375
1376                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1377                                                 &root->root_key,
1378                                                 &root->root_item);
1379                         if (ret2)
1380                                 return ret2;
1381                         spin_lock(&fs_info->fs_roots_radix_lock);
1382                         btrfs_qgroup_free_meta_all_pertrans(root);
1383                 }
1384         }
1385         spin_unlock(&fs_info->fs_roots_radix_lock);
1386         return 0;
1387 }
1388
1389 /*
1390  * defrag a given btree.
1391  * Every leaf in the btree is read and defragged.
1392  */
1393 int btrfs_defrag_root(struct btrfs_root *root)
1394 {
1395         struct btrfs_fs_info *info = root->fs_info;
1396         struct btrfs_trans_handle *trans;
1397         int ret;
1398
1399         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1400                 return 0;
1401
1402         while (1) {
1403                 trans = btrfs_start_transaction(root, 0);
1404                 if (IS_ERR(trans)) {
1405                         ret = PTR_ERR(trans);
1406                         break;
1407                 }
1408
1409                 ret = btrfs_defrag_leaves(trans, root);
1410
1411                 btrfs_end_transaction(trans);
1412                 btrfs_btree_balance_dirty(info);
1413                 cond_resched();
1414
1415                 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1416                         break;
1417
1418                 if (btrfs_defrag_cancelled(info)) {
1419                         btrfs_debug(info, "defrag_root cancelled");
1420                         ret = -EAGAIN;
1421                         break;
1422                 }
1423         }
1424         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1425         return ret;
1426 }
1427
1428 /*
1429  * Do all special snapshot related qgroup dirty hack.
1430  *
1431  * Will do all needed qgroup inherit and dirty hack like switch commit
1432  * roots inside one transaction and write all btree into disk, to make
1433  * qgroup works.
1434  */
1435 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1436                                    struct btrfs_root *src,
1437                                    struct btrfs_root *parent,
1438                                    struct btrfs_qgroup_inherit *inherit,
1439                                    u64 dst_objectid)
1440 {
1441         struct btrfs_fs_info *fs_info = src->fs_info;
1442         int ret;
1443
1444         /*
1445          * Save some performance in the case that qgroups are not
1446          * enabled. If this check races with the ioctl, rescan will
1447          * kick in anyway.
1448          */
1449         if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1450                 return 0;
1451
1452         /*
1453          * Ensure dirty @src will be committed.  Or, after coming
1454          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1455          * recorded root will never be updated again, causing an outdated root
1456          * item.
1457          */
1458         ret = record_root_in_trans(trans, src, 1);
1459         if (ret)
1460                 return ret;
1461
1462         /*
1463          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1464          * src root, so we must run the delayed refs here.
1465          *
1466          * However this isn't particularly fool proof, because there's no
1467          * synchronization keeping us from changing the tree after this point
1468          * before we do the qgroup_inherit, or even from making changes while
1469          * we're doing the qgroup_inherit.  But that's a problem for the future,
1470          * for now flush the delayed refs to narrow the race window where the
1471          * qgroup counters could end up wrong.
1472          */
1473         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1474         if (ret) {
1475                 btrfs_abort_transaction(trans, ret);
1476                 return ret;
1477         }
1478
1479         /*
1480          * We are going to commit transaction, see btrfs_commit_transaction()
1481          * comment for reason locking tree_log_mutex
1482          */
1483         mutex_lock(&fs_info->tree_log_mutex);
1484
1485         ret = commit_fs_roots(trans);
1486         if (ret)
1487                 goto out;
1488         ret = btrfs_qgroup_account_extents(trans);
1489         if (ret < 0)
1490                 goto out;
1491
1492         /* Now qgroup are all updated, we can inherit it to new qgroups */
1493         ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1494                                    inherit);
1495         if (ret < 0)
1496                 goto out;
1497
1498         /*
1499          * Now we do a simplified commit transaction, which will:
1500          * 1) commit all subvolume and extent tree
1501          *    To ensure all subvolume and extent tree have a valid
1502          *    commit_root to accounting later insert_dir_item()
1503          * 2) write all btree blocks onto disk
1504          *    This is to make sure later btree modification will be cowed
1505          *    Or commit_root can be populated and cause wrong qgroup numbers
1506          * In this simplified commit, we don't really care about other trees
1507          * like chunk and root tree, as they won't affect qgroup.
1508          * And we don't write super to avoid half committed status.
1509          */
1510         ret = commit_cowonly_roots(trans);
1511         if (ret)
1512                 goto out;
1513         switch_commit_roots(trans);
1514         ret = btrfs_write_and_wait_transaction(trans);
1515         if (ret)
1516                 btrfs_handle_fs_error(fs_info, ret,
1517                         "Error while writing out transaction for qgroup");
1518
1519 out:
1520         mutex_unlock(&fs_info->tree_log_mutex);
1521
1522         /*
1523          * Force parent root to be updated, as we recorded it before so its
1524          * last_trans == cur_transid.
1525          * Or it won't be committed again onto disk after later
1526          * insert_dir_item()
1527          */
1528         if (!ret)
1529                 ret = record_root_in_trans(trans, parent, 1);
1530         return ret;
1531 }
1532
1533 /*
1534  * new snapshots need to be created at a very specific time in the
1535  * transaction commit.  This does the actual creation.
1536  *
1537  * Note:
1538  * If the error which may affect the commitment of the current transaction
1539  * happens, we should return the error number. If the error which just affect
1540  * the creation of the pending snapshots, just return 0.
1541  */
1542 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1543                                    struct btrfs_pending_snapshot *pending)
1544 {
1545
1546         struct btrfs_fs_info *fs_info = trans->fs_info;
1547         struct btrfs_key key;
1548         struct btrfs_root_item *new_root_item;
1549         struct btrfs_root *tree_root = fs_info->tree_root;
1550         struct btrfs_root *root = pending->root;
1551         struct btrfs_root *parent_root;
1552         struct btrfs_block_rsv *rsv;
1553         struct inode *parent_inode;
1554         struct btrfs_path *path;
1555         struct btrfs_dir_item *dir_item;
1556         struct dentry *dentry;
1557         struct extent_buffer *tmp;
1558         struct extent_buffer *old;
1559         struct timespec64 cur_time;
1560         int ret = 0;
1561         u64 to_reserve = 0;
1562         u64 index = 0;
1563         u64 objectid;
1564         u64 root_flags;
1565
1566         ASSERT(pending->path);
1567         path = pending->path;
1568
1569         ASSERT(pending->root_item);
1570         new_root_item = pending->root_item;
1571
1572         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1573         if (pending->error)
1574                 goto no_free_objectid;
1575
1576         /*
1577          * Make qgroup to skip current new snapshot's qgroupid, as it is
1578          * accounted by later btrfs_qgroup_inherit().
1579          */
1580         btrfs_set_skip_qgroup(trans, objectid);
1581
1582         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1583
1584         if (to_reserve > 0) {
1585                 pending->error = btrfs_block_rsv_add(root,
1586                                                      &pending->block_rsv,
1587                                                      to_reserve,
1588                                                      BTRFS_RESERVE_NO_FLUSH);
1589                 if (pending->error)
1590                         goto clear_skip_qgroup;
1591         }
1592
1593         key.objectid = objectid;
1594         key.offset = (u64)-1;
1595         key.type = BTRFS_ROOT_ITEM_KEY;
1596
1597         rsv = trans->block_rsv;
1598         trans->block_rsv = &pending->block_rsv;
1599         trans->bytes_reserved = trans->block_rsv->reserved;
1600         trace_btrfs_space_reservation(fs_info, "transaction",
1601                                       trans->transid,
1602                                       trans->bytes_reserved, 1);
1603         dentry = pending->dentry;
1604         parent_inode = pending->dir;
1605         parent_root = BTRFS_I(parent_inode)->root;
1606         ret = record_root_in_trans(trans, parent_root, 0);
1607         if (ret)
1608                 goto fail;
1609         cur_time = current_time(parent_inode);
1610
1611         /*
1612          * insert the directory item
1613          */
1614         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1615         BUG_ON(ret); /* -ENOMEM */
1616
1617         /* check if there is a file/dir which has the same name. */
1618         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1619                                          btrfs_ino(BTRFS_I(parent_inode)),
1620                                          dentry->d_name.name,
1621                                          dentry->d_name.len, 0);
1622         if (dir_item != NULL && !IS_ERR(dir_item)) {
1623                 pending->error = -EEXIST;
1624                 goto dir_item_existed;
1625         } else if (IS_ERR(dir_item)) {
1626                 ret = PTR_ERR(dir_item);
1627                 btrfs_abort_transaction(trans, ret);
1628                 goto fail;
1629         }
1630         btrfs_release_path(path);
1631
1632         /*
1633          * pull in the delayed directory update
1634          * and the delayed inode item
1635          * otherwise we corrupt the FS during
1636          * snapshot
1637          */
1638         ret = btrfs_run_delayed_items(trans);
1639         if (ret) {      /* Transaction aborted */
1640                 btrfs_abort_transaction(trans, ret);
1641                 goto fail;
1642         }
1643
1644         ret = record_root_in_trans(trans, root, 0);
1645         if (ret) {
1646                 btrfs_abort_transaction(trans, ret);
1647                 goto fail;
1648         }
1649         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1650         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1651         btrfs_check_and_init_root_item(new_root_item);
1652
1653         root_flags = btrfs_root_flags(new_root_item);
1654         if (pending->readonly)
1655                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1656         else
1657                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1658         btrfs_set_root_flags(new_root_item, root_flags);
1659
1660         btrfs_set_root_generation_v2(new_root_item,
1661                         trans->transid);
1662         generate_random_guid(new_root_item->uuid);
1663         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1664                         BTRFS_UUID_SIZE);
1665         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1666                 memset(new_root_item->received_uuid, 0,
1667                        sizeof(new_root_item->received_uuid));
1668                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1669                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1670                 btrfs_set_root_stransid(new_root_item, 0);
1671                 btrfs_set_root_rtransid(new_root_item, 0);
1672         }
1673         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1674         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1675         btrfs_set_root_otransid(new_root_item, trans->transid);
1676
1677         old = btrfs_lock_root_node(root);
1678         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1679                               BTRFS_NESTING_COW);
1680         if (ret) {
1681                 btrfs_tree_unlock(old);
1682                 free_extent_buffer(old);
1683                 btrfs_abort_transaction(trans, ret);
1684                 goto fail;
1685         }
1686
1687         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1688         /* clean up in any case */
1689         btrfs_tree_unlock(old);
1690         free_extent_buffer(old);
1691         if (ret) {
1692                 btrfs_abort_transaction(trans, ret);
1693                 goto fail;
1694         }
1695         /* see comments in should_cow_block() */
1696         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1697         smp_wmb();
1698
1699         btrfs_set_root_node(new_root_item, tmp);
1700         /* record when the snapshot was created in key.offset */
1701         key.offset = trans->transid;
1702         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1703         btrfs_tree_unlock(tmp);
1704         free_extent_buffer(tmp);
1705         if (ret) {
1706                 btrfs_abort_transaction(trans, ret);
1707                 goto fail;
1708         }
1709
1710         /*
1711          * insert root back/forward references
1712          */
1713         ret = btrfs_add_root_ref(trans, objectid,
1714                                  parent_root->root_key.objectid,
1715                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1716                                  dentry->d_name.name, dentry->d_name.len);
1717         if (ret) {
1718                 btrfs_abort_transaction(trans, ret);
1719                 goto fail;
1720         }
1721
1722         key.offset = (u64)-1;
1723         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1724         if (IS_ERR(pending->snap)) {
1725                 ret = PTR_ERR(pending->snap);
1726                 pending->snap = NULL;
1727                 btrfs_abort_transaction(trans, ret);
1728                 goto fail;
1729         }
1730
1731         ret = btrfs_reloc_post_snapshot(trans, pending);
1732         if (ret) {
1733                 btrfs_abort_transaction(trans, ret);
1734                 goto fail;
1735         }
1736
1737         /*
1738          * Do special qgroup accounting for snapshot, as we do some qgroup
1739          * snapshot hack to do fast snapshot.
1740          * To co-operate with that hack, we do hack again.
1741          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1742          */
1743         ret = qgroup_account_snapshot(trans, root, parent_root,
1744                                       pending->inherit, objectid);
1745         if (ret < 0)
1746                 goto fail;
1747
1748         ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1749                                     dentry->d_name.len, BTRFS_I(parent_inode),
1750                                     &key, BTRFS_FT_DIR, index);
1751         /* We have check then name at the beginning, so it is impossible. */
1752         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1753         if (ret) {
1754                 btrfs_abort_transaction(trans, ret);
1755                 goto fail;
1756         }
1757
1758         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1759                                          dentry->d_name.len * 2);
1760         parent_inode->i_mtime = parent_inode->i_ctime =
1761                 current_time(parent_inode);
1762         ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1763         if (ret) {
1764                 btrfs_abort_transaction(trans, ret);
1765                 goto fail;
1766         }
1767         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1768                                   BTRFS_UUID_KEY_SUBVOL,
1769                                   objectid);
1770         if (ret) {
1771                 btrfs_abort_transaction(trans, ret);
1772                 goto fail;
1773         }
1774         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1775                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1776                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1777                                           objectid);
1778                 if (ret && ret != -EEXIST) {
1779                         btrfs_abort_transaction(trans, ret);
1780                         goto fail;
1781                 }
1782         }
1783
1784 fail:
1785         pending->error = ret;
1786 dir_item_existed:
1787         trans->block_rsv = rsv;
1788         trans->bytes_reserved = 0;
1789 clear_skip_qgroup:
1790         btrfs_clear_skip_qgroup(trans);
1791 no_free_objectid:
1792         kfree(new_root_item);
1793         pending->root_item = NULL;
1794         btrfs_free_path(path);
1795         pending->path = NULL;
1796
1797         return ret;
1798 }
1799
1800 /*
1801  * create all the snapshots we've scheduled for creation
1802  */
1803 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1804 {
1805         struct btrfs_pending_snapshot *pending, *next;
1806         struct list_head *head = &trans->transaction->pending_snapshots;
1807         int ret = 0;
1808
1809         list_for_each_entry_safe(pending, next, head, list) {
1810                 list_del(&pending->list);
1811                 ret = create_pending_snapshot(trans, pending);
1812                 if (ret)
1813                         break;
1814         }
1815         return ret;
1816 }
1817
1818 static void update_super_roots(struct btrfs_fs_info *fs_info)
1819 {
1820         struct btrfs_root_item *root_item;
1821         struct btrfs_super_block *super;
1822
1823         super = fs_info->super_copy;
1824
1825         root_item = &fs_info->chunk_root->root_item;
1826         super->chunk_root = root_item->bytenr;
1827         super->chunk_root_generation = root_item->generation;
1828         super->chunk_root_level = root_item->level;
1829
1830         root_item = &fs_info->tree_root->root_item;
1831         super->root = root_item->bytenr;
1832         super->generation = root_item->generation;
1833         super->root_level = root_item->level;
1834         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1835                 super->cache_generation = root_item->generation;
1836         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1837                 super->cache_generation = 0;
1838         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1839                 super->uuid_tree_generation = root_item->generation;
1840 }
1841
1842 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1843 {
1844         struct btrfs_transaction *trans;
1845         int ret = 0;
1846
1847         spin_lock(&info->trans_lock);
1848         trans = info->running_transaction;
1849         if (trans)
1850                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1851         spin_unlock(&info->trans_lock);
1852         return ret;
1853 }
1854
1855 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1856 {
1857         struct btrfs_transaction *trans;
1858         int ret = 0;
1859
1860         spin_lock(&info->trans_lock);
1861         trans = info->running_transaction;
1862         if (trans)
1863                 ret = is_transaction_blocked(trans);
1864         spin_unlock(&info->trans_lock);
1865         return ret;
1866 }
1867
1868 /*
1869  * wait for the current transaction commit to start and block subsequent
1870  * transaction joins
1871  */
1872 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1873                                             struct btrfs_transaction *trans)
1874 {
1875         wait_event(fs_info->transaction_blocked_wait,
1876                    trans->state >= TRANS_STATE_COMMIT_START ||
1877                    TRANS_ABORTED(trans));
1878 }
1879
1880 /*
1881  * wait for the current transaction to start and then become unblocked.
1882  * caller holds ref.
1883  */
1884 static void wait_current_trans_commit_start_and_unblock(
1885                                         struct btrfs_fs_info *fs_info,
1886                                         struct btrfs_transaction *trans)
1887 {
1888         wait_event(fs_info->transaction_wait,
1889                    trans->state >= TRANS_STATE_UNBLOCKED ||
1890                    TRANS_ABORTED(trans));
1891 }
1892
1893 /*
1894  * commit transactions asynchronously. once btrfs_commit_transaction_async
1895  * returns, any subsequent transaction will not be allowed to join.
1896  */
1897 struct btrfs_async_commit {
1898         struct btrfs_trans_handle *newtrans;
1899         struct work_struct work;
1900 };
1901
1902 static void do_async_commit(struct work_struct *work)
1903 {
1904         struct btrfs_async_commit *ac =
1905                 container_of(work, struct btrfs_async_commit, work);
1906
1907         /*
1908          * We've got freeze protection passed with the transaction.
1909          * Tell lockdep about it.
1910          */
1911         if (ac->newtrans->type & __TRANS_FREEZABLE)
1912                 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1913
1914         current->journal_info = ac->newtrans;
1915
1916         btrfs_commit_transaction(ac->newtrans);
1917         kfree(ac);
1918 }
1919
1920 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1921                                    int wait_for_unblock)
1922 {
1923         struct btrfs_fs_info *fs_info = trans->fs_info;
1924         struct btrfs_async_commit *ac;
1925         struct btrfs_transaction *cur_trans;
1926
1927         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1928         if (!ac)
1929                 return -ENOMEM;
1930
1931         INIT_WORK(&ac->work, do_async_commit);
1932         ac->newtrans = btrfs_join_transaction(trans->root);
1933         if (IS_ERR(ac->newtrans)) {
1934                 int err = PTR_ERR(ac->newtrans);
1935                 kfree(ac);
1936                 return err;
1937         }
1938
1939         /* take transaction reference */
1940         cur_trans = trans->transaction;
1941         refcount_inc(&cur_trans->use_count);
1942
1943         btrfs_end_transaction(trans);
1944
1945         /*
1946          * Tell lockdep we've released the freeze rwsem, since the
1947          * async commit thread will be the one to unlock it.
1948          */
1949         if (ac->newtrans->type & __TRANS_FREEZABLE)
1950                 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1951
1952         schedule_work(&ac->work);
1953
1954         /* wait for transaction to start and unblock */
1955         if (wait_for_unblock)
1956                 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1957         else
1958                 wait_current_trans_commit_start(fs_info, cur_trans);
1959
1960         if (current->journal_info == trans)
1961                 current->journal_info = NULL;
1962
1963         btrfs_put_transaction(cur_trans);
1964         return 0;
1965 }
1966
1967
1968 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1969 {
1970         struct btrfs_fs_info *fs_info = trans->fs_info;
1971         struct btrfs_transaction *cur_trans = trans->transaction;
1972
1973         WARN_ON(refcount_read(&trans->use_count) > 1);
1974
1975         btrfs_abort_transaction(trans, err);
1976
1977         spin_lock(&fs_info->trans_lock);
1978
1979         /*
1980          * If the transaction is removed from the list, it means this
1981          * transaction has been committed successfully, so it is impossible
1982          * to call the cleanup function.
1983          */
1984         BUG_ON(list_empty(&cur_trans->list));
1985
1986         if (cur_trans == fs_info->running_transaction) {
1987                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1988                 spin_unlock(&fs_info->trans_lock);
1989                 wait_event(cur_trans->writer_wait,
1990                            atomic_read(&cur_trans->num_writers) == 1);
1991
1992                 spin_lock(&fs_info->trans_lock);
1993         }
1994
1995         /*
1996          * Now that we know no one else is still using the transaction we can
1997          * remove the transaction from the list of transactions. This avoids
1998          * the transaction kthread from cleaning up the transaction while some
1999          * other task is still using it, which could result in a use-after-free
2000          * on things like log trees, as it forces the transaction kthread to
2001          * wait for this transaction to be cleaned up by us.
2002          */
2003         list_del_init(&cur_trans->list);
2004
2005         spin_unlock(&fs_info->trans_lock);
2006
2007         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2008
2009         spin_lock(&fs_info->trans_lock);
2010         if (cur_trans == fs_info->running_transaction)
2011                 fs_info->running_transaction = NULL;
2012         spin_unlock(&fs_info->trans_lock);
2013
2014         if (trans->type & __TRANS_FREEZABLE)
2015                 sb_end_intwrite(fs_info->sb);
2016         btrfs_put_transaction(cur_trans);
2017         btrfs_put_transaction(cur_trans);
2018
2019         trace_btrfs_transaction_commit(trans->root);
2020
2021         if (current->journal_info == trans)
2022                 current->journal_info = NULL;
2023         btrfs_scrub_cancel(fs_info);
2024
2025         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2026 }
2027
2028 /*
2029  * Release reserved delayed ref space of all pending block groups of the
2030  * transaction and remove them from the list
2031  */
2032 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2033 {
2034        struct btrfs_fs_info *fs_info = trans->fs_info;
2035        struct btrfs_block_group *block_group, *tmp;
2036
2037        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2038                btrfs_delayed_refs_rsv_release(fs_info, 1);
2039                list_del_init(&block_group->bg_list);
2040        }
2041 }
2042
2043 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2044 {
2045         /*
2046          * We use writeback_inodes_sb here because if we used
2047          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2048          * Currently are holding the fs freeze lock, if we do an async flush
2049          * we'll do btrfs_join_transaction() and deadlock because we need to
2050          * wait for the fs freeze lock.  Using the direct flushing we benefit
2051          * from already being in a transaction and our join_transaction doesn't
2052          * have to re-take the fs freeze lock.
2053          */
2054         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2055                 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2056         return 0;
2057 }
2058
2059 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2060 {
2061         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2062                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2063 }
2064
2065 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2066 {
2067         struct btrfs_fs_info *fs_info = trans->fs_info;
2068         struct btrfs_transaction *cur_trans = trans->transaction;
2069         struct btrfs_transaction *prev_trans = NULL;
2070         int ret;
2071
2072         ASSERT(refcount_read(&trans->use_count) == 1);
2073
2074         /* Stop the commit early if ->aborted is set */
2075         if (TRANS_ABORTED(cur_trans)) {
2076                 ret = cur_trans->aborted;
2077                 btrfs_end_transaction(trans);
2078                 return ret;
2079         }
2080
2081         btrfs_trans_release_metadata(trans);
2082         trans->block_rsv = NULL;
2083
2084         /*
2085          * We only want one transaction commit doing the flushing so we do not
2086          * waste a bunch of time on lock contention on the extent root node.
2087          */
2088         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2089                               &cur_trans->delayed_refs.flags)) {
2090                 /*
2091                  * Make a pass through all the delayed refs we have so far.
2092                  * Any running threads may add more while we are here.
2093                  */
2094                 ret = btrfs_run_delayed_refs(trans, 0);
2095                 if (ret) {
2096                         btrfs_end_transaction(trans);
2097                         return ret;
2098                 }
2099         }
2100
2101         btrfs_create_pending_block_groups(trans);
2102
2103         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2104                 int run_it = 0;
2105
2106                 /* this mutex is also taken before trying to set
2107                  * block groups readonly.  We need to make sure
2108                  * that nobody has set a block group readonly
2109                  * after a extents from that block group have been
2110                  * allocated for cache files.  btrfs_set_block_group_ro
2111                  * will wait for the transaction to commit if it
2112                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2113                  *
2114                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2115                  * only one process starts all the block group IO.  It wouldn't
2116                  * hurt to have more than one go through, but there's no
2117                  * real advantage to it either.
2118                  */
2119                 mutex_lock(&fs_info->ro_block_group_mutex);
2120                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2121                                       &cur_trans->flags))
2122                         run_it = 1;
2123                 mutex_unlock(&fs_info->ro_block_group_mutex);
2124
2125                 if (run_it) {
2126                         ret = btrfs_start_dirty_block_groups(trans);
2127                         if (ret) {
2128                                 btrfs_end_transaction(trans);
2129                                 return ret;
2130                         }
2131                 }
2132         }
2133
2134         spin_lock(&fs_info->trans_lock);
2135         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2136                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2137
2138                 spin_unlock(&fs_info->trans_lock);
2139                 refcount_inc(&cur_trans->use_count);
2140
2141                 if (trans->in_fsync)
2142                         want_state = TRANS_STATE_SUPER_COMMITTED;
2143                 ret = btrfs_end_transaction(trans);
2144                 wait_for_commit(cur_trans, want_state);
2145
2146                 if (TRANS_ABORTED(cur_trans))
2147                         ret = cur_trans->aborted;
2148
2149                 btrfs_put_transaction(cur_trans);
2150
2151                 return ret;
2152         }
2153
2154         cur_trans->state = TRANS_STATE_COMMIT_START;
2155         wake_up(&fs_info->transaction_blocked_wait);
2156
2157         if (cur_trans->list.prev != &fs_info->trans_list) {
2158                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2159
2160                 if (trans->in_fsync)
2161                         want_state = TRANS_STATE_SUPER_COMMITTED;
2162
2163                 prev_trans = list_entry(cur_trans->list.prev,
2164                                         struct btrfs_transaction, list);
2165                 if (prev_trans->state < want_state) {
2166                         refcount_inc(&prev_trans->use_count);
2167                         spin_unlock(&fs_info->trans_lock);
2168
2169                         wait_for_commit(prev_trans, want_state);
2170
2171                         ret = READ_ONCE(prev_trans->aborted);
2172
2173                         btrfs_put_transaction(prev_trans);
2174                         if (ret)
2175                                 goto cleanup_transaction;
2176                 } else {
2177                         spin_unlock(&fs_info->trans_lock);
2178                 }
2179         } else {
2180                 spin_unlock(&fs_info->trans_lock);
2181                 /*
2182                  * The previous transaction was aborted and was already removed
2183                  * from the list of transactions at fs_info->trans_list. So we
2184                  * abort to prevent writing a new superblock that reflects a
2185                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2186                  */
2187                 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2188                         ret = -EROFS;
2189                         goto cleanup_transaction;
2190                 }
2191         }
2192
2193         extwriter_counter_dec(cur_trans, trans->type);
2194
2195         ret = btrfs_start_delalloc_flush(fs_info);
2196         if (ret)
2197                 goto cleanup_transaction;
2198
2199         ret = btrfs_run_delayed_items(trans);
2200         if (ret)
2201                 goto cleanup_transaction;
2202
2203         wait_event(cur_trans->writer_wait,
2204                    extwriter_counter_read(cur_trans) == 0);
2205
2206         /* some pending stuffs might be added after the previous flush. */
2207         ret = btrfs_run_delayed_items(trans);
2208         if (ret)
2209                 goto cleanup_transaction;
2210
2211         btrfs_wait_delalloc_flush(fs_info);
2212
2213         /*
2214          * Wait for all ordered extents started by a fast fsync that joined this
2215          * transaction. Otherwise if this transaction commits before the ordered
2216          * extents complete we lose logged data after a power failure.
2217          */
2218         wait_event(cur_trans->pending_wait,
2219                    atomic_read(&cur_trans->pending_ordered) == 0);
2220
2221         btrfs_scrub_pause(fs_info);
2222         /*
2223          * Ok now we need to make sure to block out any other joins while we
2224          * commit the transaction.  We could have started a join before setting
2225          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2226          */
2227         spin_lock(&fs_info->trans_lock);
2228         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2229         spin_unlock(&fs_info->trans_lock);
2230         wait_event(cur_trans->writer_wait,
2231                    atomic_read(&cur_trans->num_writers) == 1);
2232
2233         if (TRANS_ABORTED(cur_trans)) {
2234                 ret = cur_trans->aborted;
2235                 goto scrub_continue;
2236         }
2237         /*
2238          * the reloc mutex makes sure that we stop
2239          * the balancing code from coming in and moving
2240          * extents around in the middle of the commit
2241          */
2242         mutex_lock(&fs_info->reloc_mutex);
2243
2244         /*
2245          * We needn't worry about the delayed items because we will
2246          * deal with them in create_pending_snapshot(), which is the
2247          * core function of the snapshot creation.
2248          */
2249         ret = create_pending_snapshots(trans);
2250         if (ret)
2251                 goto unlock_reloc;
2252
2253         /*
2254          * We insert the dir indexes of the snapshots and update the inode
2255          * of the snapshots' parents after the snapshot creation, so there
2256          * are some delayed items which are not dealt with. Now deal with
2257          * them.
2258          *
2259          * We needn't worry that this operation will corrupt the snapshots,
2260          * because all the tree which are snapshoted will be forced to COW
2261          * the nodes and leaves.
2262          */
2263         ret = btrfs_run_delayed_items(trans);
2264         if (ret)
2265                 goto unlock_reloc;
2266
2267         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2268         if (ret)
2269                 goto unlock_reloc;
2270
2271         /*
2272          * make sure none of the code above managed to slip in a
2273          * delayed item
2274          */
2275         btrfs_assert_delayed_root_empty(fs_info);
2276
2277         WARN_ON(cur_trans != trans->transaction);
2278
2279         /* btrfs_commit_tree_roots is responsible for getting the
2280          * various roots consistent with each other.  Every pointer
2281          * in the tree of tree roots has to point to the most up to date
2282          * root for every subvolume and other tree.  So, we have to keep
2283          * the tree logging code from jumping in and changing any
2284          * of the trees.
2285          *
2286          * At this point in the commit, there can't be any tree-log
2287          * writers, but a little lower down we drop the trans mutex
2288          * and let new people in.  By holding the tree_log_mutex
2289          * from now until after the super is written, we avoid races
2290          * with the tree-log code.
2291          */
2292         mutex_lock(&fs_info->tree_log_mutex);
2293
2294         ret = commit_fs_roots(trans);
2295         if (ret)
2296                 goto unlock_tree_log;
2297
2298         /*
2299          * Since the transaction is done, we can apply the pending changes
2300          * before the next transaction.
2301          */
2302         btrfs_apply_pending_changes(fs_info);
2303
2304         /* commit_fs_roots gets rid of all the tree log roots, it is now
2305          * safe to free the root of tree log roots
2306          */
2307         btrfs_free_log_root_tree(trans, fs_info);
2308
2309         /*
2310          * Since fs roots are all committed, we can get a quite accurate
2311          * new_roots. So let's do quota accounting.
2312          */
2313         ret = btrfs_qgroup_account_extents(trans);
2314         if (ret < 0)
2315                 goto unlock_tree_log;
2316
2317         ret = commit_cowonly_roots(trans);
2318         if (ret)
2319                 goto unlock_tree_log;
2320
2321         /*
2322          * The tasks which save the space cache and inode cache may also
2323          * update ->aborted, check it.
2324          */
2325         if (TRANS_ABORTED(cur_trans)) {
2326                 ret = cur_trans->aborted;
2327                 goto unlock_tree_log;
2328         }
2329
2330         cur_trans = fs_info->running_transaction;
2331
2332         btrfs_set_root_node(&fs_info->tree_root->root_item,
2333                             fs_info->tree_root->node);
2334         list_add_tail(&fs_info->tree_root->dirty_list,
2335                       &cur_trans->switch_commits);
2336
2337         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2338                             fs_info->chunk_root->node);
2339         list_add_tail(&fs_info->chunk_root->dirty_list,
2340                       &cur_trans->switch_commits);
2341
2342         switch_commit_roots(trans);
2343
2344         ASSERT(list_empty(&cur_trans->dirty_bgs));
2345         ASSERT(list_empty(&cur_trans->io_bgs));
2346         update_super_roots(fs_info);
2347
2348         btrfs_set_super_log_root(fs_info->super_copy, 0);
2349         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2350         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2351                sizeof(*fs_info->super_copy));
2352
2353         btrfs_commit_device_sizes(cur_trans);
2354
2355         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2356         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2357
2358         btrfs_trans_release_chunk_metadata(trans);
2359
2360         spin_lock(&fs_info->trans_lock);
2361         cur_trans->state = TRANS_STATE_UNBLOCKED;
2362         fs_info->running_transaction = NULL;
2363         spin_unlock(&fs_info->trans_lock);
2364         mutex_unlock(&fs_info->reloc_mutex);
2365
2366         wake_up(&fs_info->transaction_wait);
2367
2368         ret = btrfs_write_and_wait_transaction(trans);
2369         if (ret) {
2370                 btrfs_handle_fs_error(fs_info, ret,
2371                                       "Error while writing out transaction");
2372                 /*
2373                  * reloc_mutex has been unlocked, tree_log_mutex is still held
2374                  * but we can't jump to unlock_tree_log causing double unlock
2375                  */
2376                 mutex_unlock(&fs_info->tree_log_mutex);
2377                 goto scrub_continue;
2378         }
2379
2380         /*
2381          * At this point, we should have written all the tree blocks allocated
2382          * in this transaction. So it's now safe to free the redirtyied extent
2383          * buffers.
2384          */
2385         btrfs_free_redirty_list(cur_trans);
2386
2387         ret = write_all_supers(fs_info, 0);
2388         /*
2389          * the super is written, we can safely allow the tree-loggers
2390          * to go about their business
2391          */
2392         mutex_unlock(&fs_info->tree_log_mutex);
2393         if (ret)
2394                 goto scrub_continue;
2395
2396         /*
2397          * We needn't acquire the lock here because there is no other task
2398          * which can change it.
2399          */
2400         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2401         wake_up(&cur_trans->commit_wait);
2402
2403         btrfs_finish_extent_commit(trans);
2404
2405         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2406                 btrfs_clear_space_info_full(fs_info);
2407
2408         fs_info->last_trans_committed = cur_trans->transid;
2409         /*
2410          * We needn't acquire the lock here because there is no other task
2411          * which can change it.
2412          */
2413         cur_trans->state = TRANS_STATE_COMPLETED;
2414         wake_up(&cur_trans->commit_wait);
2415
2416         spin_lock(&fs_info->trans_lock);
2417         list_del_init(&cur_trans->list);
2418         spin_unlock(&fs_info->trans_lock);
2419
2420         btrfs_put_transaction(cur_trans);
2421         btrfs_put_transaction(cur_trans);
2422
2423         if (trans->type & __TRANS_FREEZABLE)
2424                 sb_end_intwrite(fs_info->sb);
2425
2426         trace_btrfs_transaction_commit(trans->root);
2427
2428         btrfs_scrub_continue(fs_info);
2429
2430         if (current->journal_info == trans)
2431                 current->journal_info = NULL;
2432
2433         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2434
2435         return ret;
2436
2437 unlock_tree_log:
2438         mutex_unlock(&fs_info->tree_log_mutex);
2439 unlock_reloc:
2440         mutex_unlock(&fs_info->reloc_mutex);
2441 scrub_continue:
2442         btrfs_scrub_continue(fs_info);
2443 cleanup_transaction:
2444         btrfs_trans_release_metadata(trans);
2445         btrfs_cleanup_pending_block_groups(trans);
2446         btrfs_trans_release_chunk_metadata(trans);
2447         trans->block_rsv = NULL;
2448         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2449         if (current->journal_info == trans)
2450                 current->journal_info = NULL;
2451         cleanup_transaction(trans, ret);
2452
2453         return ret;
2454 }
2455
2456 /*
2457  * return < 0 if error
2458  * 0 if there are no more dead_roots at the time of call
2459  * 1 there are more to be processed, call me again
2460  *
2461  * The return value indicates there are certainly more snapshots to delete, but
2462  * if there comes a new one during processing, it may return 0. We don't mind,
2463  * because btrfs_commit_super will poke cleaner thread and it will process it a
2464  * few seconds later.
2465  */
2466 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2467 {
2468         int ret;
2469         struct btrfs_fs_info *fs_info = root->fs_info;
2470
2471         spin_lock(&fs_info->trans_lock);
2472         if (list_empty(&fs_info->dead_roots)) {
2473                 spin_unlock(&fs_info->trans_lock);
2474                 return 0;
2475         }
2476         root = list_first_entry(&fs_info->dead_roots,
2477                         struct btrfs_root, root_list);
2478         list_del_init(&root->root_list);
2479         spin_unlock(&fs_info->trans_lock);
2480
2481         btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2482
2483         btrfs_kill_all_delayed_nodes(root);
2484
2485         if (btrfs_header_backref_rev(root->node) <
2486                         BTRFS_MIXED_BACKREF_REV)
2487                 ret = btrfs_drop_snapshot(root, 0, 0);
2488         else
2489                 ret = btrfs_drop_snapshot(root, 1, 0);
2490
2491         btrfs_put_root(root);
2492         return (ret < 0) ? 0 : 1;
2493 }
2494
2495 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2496 {
2497         unsigned long prev;
2498         unsigned long bit;
2499
2500         prev = xchg(&fs_info->pending_changes, 0);
2501         if (!prev)
2502                 return;
2503
2504         bit = 1 << BTRFS_PENDING_COMMIT;
2505         if (prev & bit)
2506                 btrfs_debug(fs_info, "pending commit done");
2507         prev &= ~bit;
2508
2509         if (prev)
2510                 btrfs_warn(fs_info,
2511                         "unknown pending changes left 0x%lx, ignoring", prev);
2512 }