Mention branches and keyring.
[releases.git] / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "zoned.h"
27
28 #define BTRFS_ROOT_TRANS_TAG 0
29
30 /*
31  * Transaction states and transitions
32  *
33  * No running transaction (fs tree blocks are not modified)
34  * |
35  * | To next stage:
36  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
37  * V
38  * Transaction N [[TRANS_STATE_RUNNING]]
39  * |
40  * | New trans handles can be attached to transaction N by calling all
41  * | start_transaction() variants.
42  * |
43  * | To next stage:
44  * |  Call btrfs_commit_transaction() on any trans handle attached to
45  * |  transaction N
46  * V
47  * Transaction N [[TRANS_STATE_COMMIT_START]]
48  * |
49  * | Will wait for previous running transaction to completely finish if there
50  * | is one
51  * |
52  * | Then one of the following happes:
53  * | - Wait for all other trans handle holders to release.
54  * |   The btrfs_commit_transaction() caller will do the commit work.
55  * | - Wait for current transaction to be committed by others.
56  * |   Other btrfs_commit_transaction() caller will do the commit work.
57  * |
58  * | At this stage, only btrfs_join_transaction*() variants can attach
59  * | to this running transaction.
60  * | All other variants will wait for current one to finish and attach to
61  * | transaction N+1.
62  * |
63  * | To next stage:
64  * |  Caller is chosen to commit transaction N, and all other trans handle
65  * |  haven been released.
66  * V
67  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
68  * |
69  * | The heavy lifting transaction work is started.
70  * | From running delayed refs (modifying extent tree) to creating pending
71  * | snapshots, running qgroups.
72  * | In short, modify supporting trees to reflect modifications of subvolume
73  * | trees.
74  * |
75  * | At this stage, all start_transaction() calls will wait for this
76  * | transaction to finish and attach to transaction N+1.
77  * |
78  * | To next stage:
79  * |  Until all supporting trees are updated.
80  * V
81  * Transaction N [[TRANS_STATE_UNBLOCKED]]
82  * |                                                Transaction N+1
83  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
84  * | need to write them back to disk and update     |
85  * | super blocks.                                  |
86  * |                                                |
87  * | At this stage, new transaction is allowed to   |
88  * | start.                                         |
89  * | All new start_transaction() calls will be      |
90  * | attached to transid N+1.                       |
91  * |                                                |
92  * | To next stage:                                 |
93  * |  Until all tree blocks are super blocks are    |
94  * |  written to block devices                      |
95  * V                                                |
96  * Transaction N [[TRANS_STATE_COMPLETED]]          V
97  *   All tree blocks and super blocks are written.  Transaction N+1
98  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
99  *   data structures will be cleaned up.            | Life goes on
100  */
101 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
102         [TRANS_STATE_RUNNING]           = 0U,
103         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
104         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
105                                            __TRANS_ATTACH |
106                                            __TRANS_JOIN |
107                                            __TRANS_JOIN_NOSTART),
108         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
109                                            __TRANS_ATTACH |
110                                            __TRANS_JOIN |
111                                            __TRANS_JOIN_NOLOCK |
112                                            __TRANS_JOIN_NOSTART),
113         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
114                                            __TRANS_ATTACH |
115                                            __TRANS_JOIN |
116                                            __TRANS_JOIN_NOLOCK |
117                                            __TRANS_JOIN_NOSTART),
118         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
119                                            __TRANS_ATTACH |
120                                            __TRANS_JOIN |
121                                            __TRANS_JOIN_NOLOCK |
122                                            __TRANS_JOIN_NOSTART),
123 };
124
125 void btrfs_put_transaction(struct btrfs_transaction *transaction)
126 {
127         WARN_ON(refcount_read(&transaction->use_count) == 0);
128         if (refcount_dec_and_test(&transaction->use_count)) {
129                 BUG_ON(!list_empty(&transaction->list));
130                 WARN_ON(!RB_EMPTY_ROOT(
131                                 &transaction->delayed_refs.href_root.rb_root));
132                 WARN_ON(!RB_EMPTY_ROOT(
133                                 &transaction->delayed_refs.dirty_extent_root));
134                 if (transaction->delayed_refs.pending_csums)
135                         btrfs_err(transaction->fs_info,
136                                   "pending csums is %llu",
137                                   transaction->delayed_refs.pending_csums);
138                 /*
139                  * If any block groups are found in ->deleted_bgs then it's
140                  * because the transaction was aborted and a commit did not
141                  * happen (things failed before writing the new superblock
142                  * and calling btrfs_finish_extent_commit()), so we can not
143                  * discard the physical locations of the block groups.
144                  */
145                 while (!list_empty(&transaction->deleted_bgs)) {
146                         struct btrfs_block_group *cache;
147
148                         cache = list_first_entry(&transaction->deleted_bgs,
149                                                  struct btrfs_block_group,
150                                                  bg_list);
151                         list_del_init(&cache->bg_list);
152                         btrfs_unfreeze_block_group(cache);
153                         btrfs_put_block_group(cache);
154                 }
155                 WARN_ON(!list_empty(&transaction->dev_update_list));
156                 kfree(transaction);
157         }
158 }
159
160 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
161 {
162         struct btrfs_transaction *cur_trans = trans->transaction;
163         struct btrfs_fs_info *fs_info = trans->fs_info;
164         struct btrfs_root *root, *tmp;
165
166         /*
167          * At this point no one can be using this transaction to modify any tree
168          * and no one can start another transaction to modify any tree either.
169          */
170         ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
171
172         down_write(&fs_info->commit_root_sem);
173
174         if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
175                 fs_info->last_reloc_trans = trans->transid;
176
177         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
178                                  dirty_list) {
179                 list_del_init(&root->dirty_list);
180                 free_extent_buffer(root->commit_root);
181                 root->commit_root = btrfs_root_node(root);
182                 extent_io_tree_release(&root->dirty_log_pages);
183                 btrfs_qgroup_clean_swapped_blocks(root);
184         }
185
186         /* We can free old roots now. */
187         spin_lock(&cur_trans->dropped_roots_lock);
188         while (!list_empty(&cur_trans->dropped_roots)) {
189                 root = list_first_entry(&cur_trans->dropped_roots,
190                                         struct btrfs_root, root_list);
191                 list_del_init(&root->root_list);
192                 spin_unlock(&cur_trans->dropped_roots_lock);
193                 btrfs_free_log(trans, root);
194                 btrfs_drop_and_free_fs_root(fs_info, root);
195                 spin_lock(&cur_trans->dropped_roots_lock);
196         }
197         spin_unlock(&cur_trans->dropped_roots_lock);
198
199         up_write(&fs_info->commit_root_sem);
200 }
201
202 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
203                                          unsigned int type)
204 {
205         if (type & TRANS_EXTWRITERS)
206                 atomic_inc(&trans->num_extwriters);
207 }
208
209 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
210                                          unsigned int type)
211 {
212         if (type & TRANS_EXTWRITERS)
213                 atomic_dec(&trans->num_extwriters);
214 }
215
216 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
217                                           unsigned int type)
218 {
219         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
220 }
221
222 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
223 {
224         return atomic_read(&trans->num_extwriters);
225 }
226
227 /*
228  * To be called after doing the chunk btree updates right after allocating a new
229  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
230  * chunk after all chunk btree updates and after finishing the second phase of
231  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
232  * group had its chunk item insertion delayed to the second phase.
233  */
234 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
235 {
236         struct btrfs_fs_info *fs_info = trans->fs_info;
237
238         if (!trans->chunk_bytes_reserved)
239                 return;
240
241         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
242                                 trans->chunk_bytes_reserved, NULL);
243         trans->chunk_bytes_reserved = 0;
244 }
245
246 /*
247  * either allocate a new transaction or hop into the existing one
248  */
249 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
250                                      unsigned int type)
251 {
252         struct btrfs_transaction *cur_trans;
253
254         spin_lock(&fs_info->trans_lock);
255 loop:
256         /* The file system has been taken offline. No new transactions. */
257         if (BTRFS_FS_ERROR(fs_info)) {
258                 spin_unlock(&fs_info->trans_lock);
259                 return -EROFS;
260         }
261
262         cur_trans = fs_info->running_transaction;
263         if (cur_trans) {
264                 if (TRANS_ABORTED(cur_trans)) {
265                         spin_unlock(&fs_info->trans_lock);
266                         return cur_trans->aborted;
267                 }
268                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
269                         spin_unlock(&fs_info->trans_lock);
270                         return -EBUSY;
271                 }
272                 refcount_inc(&cur_trans->use_count);
273                 atomic_inc(&cur_trans->num_writers);
274                 extwriter_counter_inc(cur_trans, type);
275                 spin_unlock(&fs_info->trans_lock);
276                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
277                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
278                 return 0;
279         }
280         spin_unlock(&fs_info->trans_lock);
281
282         /*
283          * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
284          * current transaction, and commit it. If there is no transaction, just
285          * return ENOENT.
286          */
287         if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
288                 return -ENOENT;
289
290         /*
291          * JOIN_NOLOCK only happens during the transaction commit, so
292          * it is impossible that ->running_transaction is NULL
293          */
294         BUG_ON(type == TRANS_JOIN_NOLOCK);
295
296         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
297         if (!cur_trans)
298                 return -ENOMEM;
299
300         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
301         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
302
303         spin_lock(&fs_info->trans_lock);
304         if (fs_info->running_transaction) {
305                 /*
306                  * someone started a transaction after we unlocked.  Make sure
307                  * to redo the checks above
308                  */
309                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
310                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
311                 kfree(cur_trans);
312                 goto loop;
313         } else if (BTRFS_FS_ERROR(fs_info)) {
314                 spin_unlock(&fs_info->trans_lock);
315                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
316                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
317                 kfree(cur_trans);
318                 return -EROFS;
319         }
320
321         cur_trans->fs_info = fs_info;
322         atomic_set(&cur_trans->pending_ordered, 0);
323         init_waitqueue_head(&cur_trans->pending_wait);
324         atomic_set(&cur_trans->num_writers, 1);
325         extwriter_counter_init(cur_trans, type);
326         init_waitqueue_head(&cur_trans->writer_wait);
327         init_waitqueue_head(&cur_trans->commit_wait);
328         cur_trans->state = TRANS_STATE_RUNNING;
329         /*
330          * One for this trans handle, one so it will live on until we
331          * commit the transaction.
332          */
333         refcount_set(&cur_trans->use_count, 2);
334         cur_trans->flags = 0;
335         cur_trans->start_time = ktime_get_seconds();
336
337         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
338
339         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
340         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
341         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
342
343         /*
344          * although the tree mod log is per file system and not per transaction,
345          * the log must never go across transaction boundaries.
346          */
347         smp_mb();
348         if (!list_empty(&fs_info->tree_mod_seq_list))
349                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
350         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
351                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
352         atomic64_set(&fs_info->tree_mod_seq, 0);
353
354         spin_lock_init(&cur_trans->delayed_refs.lock);
355
356         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
357         INIT_LIST_HEAD(&cur_trans->dev_update_list);
358         INIT_LIST_HEAD(&cur_trans->switch_commits);
359         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
360         INIT_LIST_HEAD(&cur_trans->io_bgs);
361         INIT_LIST_HEAD(&cur_trans->dropped_roots);
362         mutex_init(&cur_trans->cache_write_mutex);
363         spin_lock_init(&cur_trans->dirty_bgs_lock);
364         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
365         spin_lock_init(&cur_trans->dropped_roots_lock);
366         INIT_LIST_HEAD(&cur_trans->releasing_ebs);
367         spin_lock_init(&cur_trans->releasing_ebs_lock);
368         list_add_tail(&cur_trans->list, &fs_info->trans_list);
369         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
370                         IO_TREE_TRANS_DIRTY_PAGES, NULL);
371         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
372                         IO_TREE_FS_PINNED_EXTENTS, NULL);
373         fs_info->generation++;
374         cur_trans->transid = fs_info->generation;
375         fs_info->running_transaction = cur_trans;
376         cur_trans->aborted = 0;
377         spin_unlock(&fs_info->trans_lock);
378
379         return 0;
380 }
381
382 /*
383  * This does all the record keeping required to make sure that a shareable root
384  * is properly recorded in a given transaction.  This is required to make sure
385  * the old root from before we joined the transaction is deleted when the
386  * transaction commits.
387  */
388 static int record_root_in_trans(struct btrfs_trans_handle *trans,
389                                struct btrfs_root *root,
390                                int force)
391 {
392         struct btrfs_fs_info *fs_info = root->fs_info;
393         int ret = 0;
394
395         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
396             root->last_trans < trans->transid) || force) {
397                 WARN_ON(!force && root->commit_root != root->node);
398
399                 /*
400                  * see below for IN_TRANS_SETUP usage rules
401                  * we have the reloc mutex held now, so there
402                  * is only one writer in this function
403                  */
404                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
405
406                 /* make sure readers find IN_TRANS_SETUP before
407                  * they find our root->last_trans update
408                  */
409                 smp_wmb();
410
411                 spin_lock(&fs_info->fs_roots_radix_lock);
412                 if (root->last_trans == trans->transid && !force) {
413                         spin_unlock(&fs_info->fs_roots_radix_lock);
414                         return 0;
415                 }
416                 radix_tree_tag_set(&fs_info->fs_roots_radix,
417                                    (unsigned long)root->root_key.objectid,
418                                    BTRFS_ROOT_TRANS_TAG);
419                 spin_unlock(&fs_info->fs_roots_radix_lock);
420                 root->last_trans = trans->transid;
421
422                 /* this is pretty tricky.  We don't want to
423                  * take the relocation lock in btrfs_record_root_in_trans
424                  * unless we're really doing the first setup for this root in
425                  * this transaction.
426                  *
427                  * Normally we'd use root->last_trans as a flag to decide
428                  * if we want to take the expensive mutex.
429                  *
430                  * But, we have to set root->last_trans before we
431                  * init the relocation root, otherwise, we trip over warnings
432                  * in ctree.c.  The solution used here is to flag ourselves
433                  * with root IN_TRANS_SETUP.  When this is 1, we're still
434                  * fixing up the reloc trees and everyone must wait.
435                  *
436                  * When this is zero, they can trust root->last_trans and fly
437                  * through btrfs_record_root_in_trans without having to take the
438                  * lock.  smp_wmb() makes sure that all the writes above are
439                  * done before we pop in the zero below
440                  */
441                 ret = btrfs_init_reloc_root(trans, root);
442                 smp_mb__before_atomic();
443                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
444         }
445         return ret;
446 }
447
448
449 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
450                             struct btrfs_root *root)
451 {
452         struct btrfs_fs_info *fs_info = root->fs_info;
453         struct btrfs_transaction *cur_trans = trans->transaction;
454
455         /* Add ourselves to the transaction dropped list */
456         spin_lock(&cur_trans->dropped_roots_lock);
457         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
458         spin_unlock(&cur_trans->dropped_roots_lock);
459
460         /* Make sure we don't try to update the root at commit time */
461         spin_lock(&fs_info->fs_roots_radix_lock);
462         radix_tree_tag_clear(&fs_info->fs_roots_radix,
463                              (unsigned long)root->root_key.objectid,
464                              BTRFS_ROOT_TRANS_TAG);
465         spin_unlock(&fs_info->fs_roots_radix_lock);
466 }
467
468 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
469                                struct btrfs_root *root)
470 {
471         struct btrfs_fs_info *fs_info = root->fs_info;
472         int ret;
473
474         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
475                 return 0;
476
477         /*
478          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
479          * and barriers
480          */
481         smp_rmb();
482         if (root->last_trans == trans->transid &&
483             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
484                 return 0;
485
486         mutex_lock(&fs_info->reloc_mutex);
487         ret = record_root_in_trans(trans, root, 0);
488         mutex_unlock(&fs_info->reloc_mutex);
489
490         return ret;
491 }
492
493 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
494 {
495         return (trans->state >= TRANS_STATE_COMMIT_START &&
496                 trans->state < TRANS_STATE_UNBLOCKED &&
497                 !TRANS_ABORTED(trans));
498 }
499
500 /* wait for commit against the current transaction to become unblocked
501  * when this is done, it is safe to start a new transaction, but the current
502  * transaction might not be fully on disk.
503  */
504 static void wait_current_trans(struct btrfs_fs_info *fs_info)
505 {
506         struct btrfs_transaction *cur_trans;
507
508         spin_lock(&fs_info->trans_lock);
509         cur_trans = fs_info->running_transaction;
510         if (cur_trans && is_transaction_blocked(cur_trans)) {
511                 refcount_inc(&cur_trans->use_count);
512                 spin_unlock(&fs_info->trans_lock);
513
514                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
515                 wait_event(fs_info->transaction_wait,
516                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
517                            TRANS_ABORTED(cur_trans));
518                 btrfs_put_transaction(cur_trans);
519         } else {
520                 spin_unlock(&fs_info->trans_lock);
521         }
522 }
523
524 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
525 {
526         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
527                 return 0;
528
529         if (type == TRANS_START)
530                 return 1;
531
532         return 0;
533 }
534
535 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
536 {
537         struct btrfs_fs_info *fs_info = root->fs_info;
538
539         if (!fs_info->reloc_ctl ||
540             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
541             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
542             root->reloc_root)
543                 return false;
544
545         return true;
546 }
547
548 static struct btrfs_trans_handle *
549 start_transaction(struct btrfs_root *root, unsigned int num_items,
550                   unsigned int type, enum btrfs_reserve_flush_enum flush,
551                   bool enforce_qgroups)
552 {
553         struct btrfs_fs_info *fs_info = root->fs_info;
554         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
555         struct btrfs_trans_handle *h;
556         struct btrfs_transaction *cur_trans;
557         u64 num_bytes = 0;
558         u64 qgroup_reserved = 0;
559         bool reloc_reserved = false;
560         bool do_chunk_alloc = false;
561         int ret;
562
563         if (BTRFS_FS_ERROR(fs_info))
564                 return ERR_PTR(-EROFS);
565
566         if (current->journal_info) {
567                 WARN_ON(type & TRANS_EXTWRITERS);
568                 h = current->journal_info;
569                 refcount_inc(&h->use_count);
570                 WARN_ON(refcount_read(&h->use_count) > 2);
571                 h->orig_rsv = h->block_rsv;
572                 h->block_rsv = NULL;
573                 goto got_it;
574         }
575
576         /*
577          * Do the reservation before we join the transaction so we can do all
578          * the appropriate flushing if need be.
579          */
580         if (num_items && root != fs_info->chunk_root) {
581                 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
582                 u64 delayed_refs_bytes = 0;
583
584                 qgroup_reserved = num_items * fs_info->nodesize;
585                 /*
586                  * Use prealloc for now, as there might be a currently running
587                  * transaction that could free this reserved space prematurely
588                  * by committing.
589                  */
590                 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
591                                                          enforce_qgroups, false);
592                 if (ret)
593                         return ERR_PTR(ret);
594
595                 /*
596                  * We want to reserve all the bytes we may need all at once, so
597                  * we only do 1 enospc flushing cycle per transaction start.  We
598                  * accomplish this by simply assuming we'll do 2 x num_items
599                  * worth of delayed refs updates in this trans handle, and
600                  * refill that amount for whatever is missing in the reserve.
601                  */
602                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
603                 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
604                     btrfs_block_rsv_full(delayed_refs_rsv) == 0) {
605                         delayed_refs_bytes = num_bytes;
606                         num_bytes <<= 1;
607                 }
608
609                 /*
610                  * Do the reservation for the relocation root creation
611                  */
612                 if (need_reserve_reloc_root(root)) {
613                         num_bytes += fs_info->nodesize;
614                         reloc_reserved = true;
615                 }
616
617                 ret = btrfs_reserve_metadata_bytes(fs_info, rsv, num_bytes, flush);
618                 if (ret)
619                         goto reserve_fail;
620                 if (delayed_refs_bytes) {
621                         btrfs_migrate_to_delayed_refs_rsv(fs_info, delayed_refs_bytes);
622                         num_bytes -= delayed_refs_bytes;
623                 }
624                 btrfs_block_rsv_add_bytes(rsv, num_bytes, true);
625
626                 if (rsv->space_info->force_alloc)
627                         do_chunk_alloc = true;
628         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
629                    !btrfs_block_rsv_full(delayed_refs_rsv)) {
630                 /*
631                  * Some people call with btrfs_start_transaction(root, 0)
632                  * because they can be throttled, but have some other mechanism
633                  * for reserving space.  We still want these guys to refill the
634                  * delayed block_rsv so just add 1 items worth of reservation
635                  * here.
636                  */
637                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
638                 if (ret)
639                         goto reserve_fail;
640         }
641 again:
642         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
643         if (!h) {
644                 ret = -ENOMEM;
645                 goto alloc_fail;
646         }
647
648         /*
649          * If we are JOIN_NOLOCK we're already committing a transaction and
650          * waiting on this guy, so we don't need to do the sb_start_intwrite
651          * because we're already holding a ref.  We need this because we could
652          * have raced in and did an fsync() on a file which can kick a commit
653          * and then we deadlock with somebody doing a freeze.
654          *
655          * If we are ATTACH, it means we just want to catch the current
656          * transaction and commit it, so we needn't do sb_start_intwrite(). 
657          */
658         if (type & __TRANS_FREEZABLE)
659                 sb_start_intwrite(fs_info->sb);
660
661         if (may_wait_transaction(fs_info, type))
662                 wait_current_trans(fs_info);
663
664         do {
665                 ret = join_transaction(fs_info, type);
666                 if (ret == -EBUSY) {
667                         wait_current_trans(fs_info);
668                         if (unlikely(type == TRANS_ATTACH ||
669                                      type == TRANS_JOIN_NOSTART))
670                                 ret = -ENOENT;
671                 }
672         } while (ret == -EBUSY);
673
674         if (ret < 0)
675                 goto join_fail;
676
677         cur_trans = fs_info->running_transaction;
678
679         h->transid = cur_trans->transid;
680         h->transaction = cur_trans;
681         refcount_set(&h->use_count, 1);
682         h->fs_info = root->fs_info;
683
684         h->type = type;
685         INIT_LIST_HEAD(&h->new_bgs);
686
687         smp_mb();
688         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
689             may_wait_transaction(fs_info, type)) {
690                 current->journal_info = h;
691                 btrfs_commit_transaction(h);
692                 goto again;
693         }
694
695         if (num_bytes) {
696                 trace_btrfs_space_reservation(fs_info, "transaction",
697                                               h->transid, num_bytes, 1);
698                 h->block_rsv = &fs_info->trans_block_rsv;
699                 h->bytes_reserved = num_bytes;
700                 h->reloc_reserved = reloc_reserved;
701         }
702
703         /*
704          * Now that we have found a transaction to be a part of, convert the
705          * qgroup reservation from prealloc to pertrans. A different transaction
706          * can't race in and free our pertrans out from under us.
707          */
708         if (qgroup_reserved)
709                 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
710
711 got_it:
712         if (!current->journal_info)
713                 current->journal_info = h;
714
715         /*
716          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
717          * ALLOC_FORCE the first run through, and then we won't allocate for
718          * anybody else who races in later.  We don't care about the return
719          * value here.
720          */
721         if (do_chunk_alloc && num_bytes) {
722                 u64 flags = h->block_rsv->space_info->flags;
723
724                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
725                                   CHUNK_ALLOC_NO_FORCE);
726         }
727
728         /*
729          * btrfs_record_root_in_trans() needs to alloc new extents, and may
730          * call btrfs_join_transaction() while we're also starting a
731          * transaction.
732          *
733          * Thus it need to be called after current->journal_info initialized,
734          * or we can deadlock.
735          */
736         ret = btrfs_record_root_in_trans(h, root);
737         if (ret) {
738                 /*
739                  * The transaction handle is fully initialized and linked with
740                  * other structures so it needs to be ended in case of errors,
741                  * not just freed.
742                  */
743                 btrfs_end_transaction(h);
744                 return ERR_PTR(ret);
745         }
746
747         return h;
748
749 join_fail:
750         if (type & __TRANS_FREEZABLE)
751                 sb_end_intwrite(fs_info->sb);
752         kmem_cache_free(btrfs_trans_handle_cachep, h);
753 alloc_fail:
754         if (num_bytes)
755                 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
756                                         num_bytes, NULL);
757 reserve_fail:
758         btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
759         return ERR_PTR(ret);
760 }
761
762 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
763                                                    unsigned int num_items)
764 {
765         return start_transaction(root, num_items, TRANS_START,
766                                  BTRFS_RESERVE_FLUSH_ALL, true);
767 }
768
769 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
770                                         struct btrfs_root *root,
771                                         unsigned int num_items)
772 {
773         return start_transaction(root, num_items, TRANS_START,
774                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
775 }
776
777 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
778 {
779         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
780                                  true);
781 }
782
783 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
784 {
785         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
786                                  BTRFS_RESERVE_NO_FLUSH, true);
787 }
788
789 /*
790  * Similar to regular join but it never starts a transaction when none is
791  * running or after waiting for the current one to finish.
792  */
793 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
794 {
795         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
796                                  BTRFS_RESERVE_NO_FLUSH, true);
797 }
798
799 /*
800  * btrfs_attach_transaction() - catch the running transaction
801  *
802  * It is used when we want to commit the current the transaction, but
803  * don't want to start a new one.
804  *
805  * Note: If this function return -ENOENT, it just means there is no
806  * running transaction. But it is possible that the inactive transaction
807  * is still in the memory, not fully on disk. If you hope there is no
808  * inactive transaction in the fs when -ENOENT is returned, you should
809  * invoke
810  *     btrfs_attach_transaction_barrier()
811  */
812 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
813 {
814         return start_transaction(root, 0, TRANS_ATTACH,
815                                  BTRFS_RESERVE_NO_FLUSH, true);
816 }
817
818 /*
819  * btrfs_attach_transaction_barrier() - catch the running transaction
820  *
821  * It is similar to the above function, the difference is this one
822  * will wait for all the inactive transactions until they fully
823  * complete.
824  */
825 struct btrfs_trans_handle *
826 btrfs_attach_transaction_barrier(struct btrfs_root *root)
827 {
828         struct btrfs_trans_handle *trans;
829
830         trans = start_transaction(root, 0, TRANS_ATTACH,
831                                   BTRFS_RESERVE_NO_FLUSH, true);
832         if (trans == ERR_PTR(-ENOENT)) {
833                 int ret;
834
835                 ret = btrfs_wait_for_commit(root->fs_info, 0);
836                 if (ret)
837                         return ERR_PTR(ret);
838         }
839
840         return trans;
841 }
842
843 /* Wait for a transaction commit to reach at least the given state. */
844 static noinline void wait_for_commit(struct btrfs_transaction *commit,
845                                      const enum btrfs_trans_state min_state)
846 {
847         struct btrfs_fs_info *fs_info = commit->fs_info;
848         u64 transid = commit->transid;
849         bool put = false;
850
851         /*
852          * At the moment this function is called with min_state either being
853          * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
854          */
855         if (min_state == TRANS_STATE_COMPLETED)
856                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
857         else
858                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
859
860         while (1) {
861                 wait_event(commit->commit_wait, commit->state >= min_state);
862                 if (put)
863                         btrfs_put_transaction(commit);
864
865                 if (min_state < TRANS_STATE_COMPLETED)
866                         break;
867
868                 /*
869                  * A transaction isn't really completed until all of the
870                  * previous transactions are completed, but with fsync we can
871                  * end up with SUPER_COMMITTED transactions before a COMPLETED
872                  * transaction. Wait for those.
873                  */
874
875                 spin_lock(&fs_info->trans_lock);
876                 commit = list_first_entry_or_null(&fs_info->trans_list,
877                                                   struct btrfs_transaction,
878                                                   list);
879                 if (!commit || commit->transid > transid) {
880                         spin_unlock(&fs_info->trans_lock);
881                         break;
882                 }
883                 refcount_inc(&commit->use_count);
884                 put = true;
885                 spin_unlock(&fs_info->trans_lock);
886         }
887 }
888
889 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
890 {
891         struct btrfs_transaction *cur_trans = NULL, *t;
892         int ret = 0;
893
894         if (transid) {
895                 if (transid <= fs_info->last_trans_committed)
896                         goto out;
897
898                 /* find specified transaction */
899                 spin_lock(&fs_info->trans_lock);
900                 list_for_each_entry(t, &fs_info->trans_list, list) {
901                         if (t->transid == transid) {
902                                 cur_trans = t;
903                                 refcount_inc(&cur_trans->use_count);
904                                 ret = 0;
905                                 break;
906                         }
907                         if (t->transid > transid) {
908                                 ret = 0;
909                                 break;
910                         }
911                 }
912                 spin_unlock(&fs_info->trans_lock);
913
914                 /*
915                  * The specified transaction doesn't exist, or we
916                  * raced with btrfs_commit_transaction
917                  */
918                 if (!cur_trans) {
919                         if (transid > fs_info->last_trans_committed)
920                                 ret = -EINVAL;
921                         goto out;
922                 }
923         } else {
924                 /* find newest transaction that is committing | committed */
925                 spin_lock(&fs_info->trans_lock);
926                 list_for_each_entry_reverse(t, &fs_info->trans_list,
927                                             list) {
928                         if (t->state >= TRANS_STATE_COMMIT_START) {
929                                 if (t->state == TRANS_STATE_COMPLETED)
930                                         break;
931                                 cur_trans = t;
932                                 refcount_inc(&cur_trans->use_count);
933                                 break;
934                         }
935                 }
936                 spin_unlock(&fs_info->trans_lock);
937                 if (!cur_trans)
938                         goto out;  /* nothing committing|committed */
939         }
940
941         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
942         ret = cur_trans->aborted;
943         btrfs_put_transaction(cur_trans);
944 out:
945         return ret;
946 }
947
948 void btrfs_throttle(struct btrfs_fs_info *fs_info)
949 {
950         wait_current_trans(fs_info);
951 }
952
953 static bool should_end_transaction(struct btrfs_trans_handle *trans)
954 {
955         struct btrfs_fs_info *fs_info = trans->fs_info;
956
957         if (btrfs_check_space_for_delayed_refs(fs_info))
958                 return true;
959
960         return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
961 }
962
963 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
964 {
965         struct btrfs_transaction *cur_trans = trans->transaction;
966
967         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
968             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
969                 return true;
970
971         return should_end_transaction(trans);
972 }
973
974 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
975
976 {
977         struct btrfs_fs_info *fs_info = trans->fs_info;
978
979         if (!trans->block_rsv) {
980                 ASSERT(!trans->bytes_reserved);
981                 return;
982         }
983
984         if (!trans->bytes_reserved)
985                 return;
986
987         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
988         trace_btrfs_space_reservation(fs_info, "transaction",
989                                       trans->transid, trans->bytes_reserved, 0);
990         btrfs_block_rsv_release(fs_info, trans->block_rsv,
991                                 trans->bytes_reserved, NULL);
992         trans->bytes_reserved = 0;
993 }
994
995 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
996                                    int throttle)
997 {
998         struct btrfs_fs_info *info = trans->fs_info;
999         struct btrfs_transaction *cur_trans = trans->transaction;
1000         int err = 0;
1001
1002         if (refcount_read(&trans->use_count) > 1) {
1003                 refcount_dec(&trans->use_count);
1004                 trans->block_rsv = trans->orig_rsv;
1005                 return 0;
1006         }
1007
1008         btrfs_trans_release_metadata(trans);
1009         trans->block_rsv = NULL;
1010
1011         btrfs_create_pending_block_groups(trans);
1012
1013         btrfs_trans_release_chunk_metadata(trans);
1014
1015         if (trans->type & __TRANS_FREEZABLE)
1016                 sb_end_intwrite(info->sb);
1017
1018         WARN_ON(cur_trans != info->running_transaction);
1019         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1020         atomic_dec(&cur_trans->num_writers);
1021         extwriter_counter_dec(cur_trans, trans->type);
1022
1023         cond_wake_up(&cur_trans->writer_wait);
1024
1025         btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1026         btrfs_lockdep_release(info, btrfs_trans_num_writers);
1027
1028         btrfs_put_transaction(cur_trans);
1029
1030         if (current->journal_info == trans)
1031                 current->journal_info = NULL;
1032
1033         if (throttle)
1034                 btrfs_run_delayed_iputs(info);
1035
1036         if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1037                 wake_up_process(info->transaction_kthread);
1038                 if (TRANS_ABORTED(trans))
1039                         err = trans->aborted;
1040                 else
1041                         err = -EROFS;
1042         }
1043
1044         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1045         return err;
1046 }
1047
1048 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1049 {
1050         return __btrfs_end_transaction(trans, 0);
1051 }
1052
1053 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1054 {
1055         return __btrfs_end_transaction(trans, 1);
1056 }
1057
1058 /*
1059  * when btree blocks are allocated, they have some corresponding bits set for
1060  * them in one of two extent_io trees.  This is used to make sure all of
1061  * those extents are sent to disk but does not wait on them
1062  */
1063 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1064                                struct extent_io_tree *dirty_pages, int mark)
1065 {
1066         int err = 0;
1067         int werr = 0;
1068         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1069         struct extent_state *cached_state = NULL;
1070         u64 start = 0;
1071         u64 end;
1072
1073         atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1074         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1075                                       mark, &cached_state)) {
1076                 bool wait_writeback = false;
1077
1078                 err = convert_extent_bit(dirty_pages, start, end,
1079                                          EXTENT_NEED_WAIT,
1080                                          mark, &cached_state);
1081                 /*
1082                  * convert_extent_bit can return -ENOMEM, which is most of the
1083                  * time a temporary error. So when it happens, ignore the error
1084                  * and wait for writeback of this range to finish - because we
1085                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1086                  * to __btrfs_wait_marked_extents() would not know that
1087                  * writeback for this range started and therefore wouldn't
1088                  * wait for it to finish - we don't want to commit a
1089                  * superblock that points to btree nodes/leafs for which
1090                  * writeback hasn't finished yet (and without errors).
1091                  * We cleanup any entries left in the io tree when committing
1092                  * the transaction (through extent_io_tree_release()).
1093                  */
1094                 if (err == -ENOMEM) {
1095                         err = 0;
1096                         wait_writeback = true;
1097                 }
1098                 if (!err)
1099                         err = filemap_fdatawrite_range(mapping, start, end);
1100                 if (err)
1101                         werr = err;
1102                 else if (wait_writeback)
1103                         werr = filemap_fdatawait_range(mapping, start, end);
1104                 free_extent_state(cached_state);
1105                 cached_state = NULL;
1106                 cond_resched();
1107                 start = end + 1;
1108         }
1109         atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1110         return werr;
1111 }
1112
1113 /*
1114  * when btree blocks are allocated, they have some corresponding bits set for
1115  * them in one of two extent_io trees.  This is used to make sure all of
1116  * those extents are on disk for transaction or log commit.  We wait
1117  * on all the pages and clear them from the dirty pages state tree
1118  */
1119 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1120                                        struct extent_io_tree *dirty_pages)
1121 {
1122         int err = 0;
1123         int werr = 0;
1124         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1125         struct extent_state *cached_state = NULL;
1126         u64 start = 0;
1127         u64 end;
1128
1129         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1130                                       EXTENT_NEED_WAIT, &cached_state)) {
1131                 /*
1132                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1133                  * When committing the transaction, we'll remove any entries
1134                  * left in the io tree. For a log commit, we don't remove them
1135                  * after committing the log because the tree can be accessed
1136                  * concurrently - we do it only at transaction commit time when
1137                  * it's safe to do it (through extent_io_tree_release()).
1138                  */
1139                 err = clear_extent_bit(dirty_pages, start, end,
1140                                        EXTENT_NEED_WAIT, &cached_state);
1141                 if (err == -ENOMEM)
1142                         err = 0;
1143                 if (!err)
1144                         err = filemap_fdatawait_range(mapping, start, end);
1145                 if (err)
1146                         werr = err;
1147                 free_extent_state(cached_state);
1148                 cached_state = NULL;
1149                 cond_resched();
1150                 start = end + 1;
1151         }
1152         if (err)
1153                 werr = err;
1154         return werr;
1155 }
1156
1157 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1158                        struct extent_io_tree *dirty_pages)
1159 {
1160         bool errors = false;
1161         int err;
1162
1163         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1164         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1165                 errors = true;
1166
1167         if (errors && !err)
1168                 err = -EIO;
1169         return err;
1170 }
1171
1172 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1173 {
1174         struct btrfs_fs_info *fs_info = log_root->fs_info;
1175         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1176         bool errors = false;
1177         int err;
1178
1179         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1180
1181         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1182         if ((mark & EXTENT_DIRTY) &&
1183             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1184                 errors = true;
1185
1186         if ((mark & EXTENT_NEW) &&
1187             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1188                 errors = true;
1189
1190         if (errors && !err)
1191                 err = -EIO;
1192         return err;
1193 }
1194
1195 /*
1196  * When btree blocks are allocated the corresponding extents are marked dirty.
1197  * This function ensures such extents are persisted on disk for transaction or
1198  * log commit.
1199  *
1200  * @trans: transaction whose dirty pages we'd like to write
1201  */
1202 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1203 {
1204         int ret;
1205         int ret2;
1206         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1207         struct btrfs_fs_info *fs_info = trans->fs_info;
1208         struct blk_plug plug;
1209
1210         blk_start_plug(&plug);
1211         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1212         blk_finish_plug(&plug);
1213         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1214
1215         extent_io_tree_release(&trans->transaction->dirty_pages);
1216
1217         if (ret)
1218                 return ret;
1219         else if (ret2)
1220                 return ret2;
1221         else
1222                 return 0;
1223 }
1224
1225 /*
1226  * this is used to update the root pointer in the tree of tree roots.
1227  *
1228  * But, in the case of the extent allocation tree, updating the root
1229  * pointer may allocate blocks which may change the root of the extent
1230  * allocation tree.
1231  *
1232  * So, this loops and repeats and makes sure the cowonly root didn't
1233  * change while the root pointer was being updated in the metadata.
1234  */
1235 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1236                                struct btrfs_root *root)
1237 {
1238         int ret;
1239         u64 old_root_bytenr;
1240         u64 old_root_used;
1241         struct btrfs_fs_info *fs_info = root->fs_info;
1242         struct btrfs_root *tree_root = fs_info->tree_root;
1243
1244         old_root_used = btrfs_root_used(&root->root_item);
1245
1246         while (1) {
1247                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1248                 if (old_root_bytenr == root->node->start &&
1249                     old_root_used == btrfs_root_used(&root->root_item))
1250                         break;
1251
1252                 btrfs_set_root_node(&root->root_item, root->node);
1253                 ret = btrfs_update_root(trans, tree_root,
1254                                         &root->root_key,
1255                                         &root->root_item);
1256                 if (ret)
1257                         return ret;
1258
1259                 old_root_used = btrfs_root_used(&root->root_item);
1260         }
1261
1262         return 0;
1263 }
1264
1265 /*
1266  * update all the cowonly tree roots on disk
1267  *
1268  * The error handling in this function may not be obvious. Any of the
1269  * failures will cause the file system to go offline. We still need
1270  * to clean up the delayed refs.
1271  */
1272 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1273 {
1274         struct btrfs_fs_info *fs_info = trans->fs_info;
1275         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1276         struct list_head *io_bgs = &trans->transaction->io_bgs;
1277         struct list_head *next;
1278         struct extent_buffer *eb;
1279         int ret;
1280
1281         /*
1282          * At this point no one can be using this transaction to modify any tree
1283          * and no one can start another transaction to modify any tree either.
1284          */
1285         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1286
1287         eb = btrfs_lock_root_node(fs_info->tree_root);
1288         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1289                               0, &eb, BTRFS_NESTING_COW);
1290         btrfs_tree_unlock(eb);
1291         free_extent_buffer(eb);
1292
1293         if (ret)
1294                 return ret;
1295
1296         ret = btrfs_run_dev_stats(trans);
1297         if (ret)
1298                 return ret;
1299         ret = btrfs_run_dev_replace(trans);
1300         if (ret)
1301                 return ret;
1302         ret = btrfs_run_qgroups(trans);
1303         if (ret)
1304                 return ret;
1305
1306         ret = btrfs_setup_space_cache(trans);
1307         if (ret)
1308                 return ret;
1309
1310 again:
1311         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1312                 struct btrfs_root *root;
1313                 next = fs_info->dirty_cowonly_roots.next;
1314                 list_del_init(next);
1315                 root = list_entry(next, struct btrfs_root, dirty_list);
1316                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1317
1318                 list_add_tail(&root->dirty_list,
1319                               &trans->transaction->switch_commits);
1320                 ret = update_cowonly_root(trans, root);
1321                 if (ret)
1322                         return ret;
1323         }
1324
1325         /* Now flush any delayed refs generated by updating all of the roots */
1326         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1327         if (ret)
1328                 return ret;
1329
1330         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1331                 ret = btrfs_write_dirty_block_groups(trans);
1332                 if (ret)
1333                         return ret;
1334
1335                 /*
1336                  * We're writing the dirty block groups, which could generate
1337                  * delayed refs, which could generate more dirty block groups,
1338                  * so we want to keep this flushing in this loop to make sure
1339                  * everything gets run.
1340                  */
1341                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1342                 if (ret)
1343                         return ret;
1344         }
1345
1346         if (!list_empty(&fs_info->dirty_cowonly_roots))
1347                 goto again;
1348
1349         /* Update dev-replace pointer once everything is committed */
1350         fs_info->dev_replace.committed_cursor_left =
1351                 fs_info->dev_replace.cursor_left_last_write_of_item;
1352
1353         return 0;
1354 }
1355
1356 /*
1357  * If we had a pending drop we need to see if there are any others left in our
1358  * dead roots list, and if not clear our bit and wake any waiters.
1359  */
1360 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1361 {
1362         /*
1363          * We put the drop in progress roots at the front of the list, so if the
1364          * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1365          * up.
1366          */
1367         spin_lock(&fs_info->trans_lock);
1368         if (!list_empty(&fs_info->dead_roots)) {
1369                 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1370                                                            struct btrfs_root,
1371                                                            root_list);
1372                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1373                         spin_unlock(&fs_info->trans_lock);
1374                         return;
1375                 }
1376         }
1377         spin_unlock(&fs_info->trans_lock);
1378
1379         btrfs_wake_unfinished_drop(fs_info);
1380 }
1381
1382 /*
1383  * dead roots are old snapshots that need to be deleted.  This allocates
1384  * a dirty root struct and adds it into the list of dead roots that need to
1385  * be deleted
1386  */
1387 void btrfs_add_dead_root(struct btrfs_root *root)
1388 {
1389         struct btrfs_fs_info *fs_info = root->fs_info;
1390
1391         spin_lock(&fs_info->trans_lock);
1392         if (list_empty(&root->root_list)) {
1393                 btrfs_grab_root(root);
1394
1395                 /* We want to process the partially complete drops first. */
1396                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1397                         list_add(&root->root_list, &fs_info->dead_roots);
1398                 else
1399                         list_add_tail(&root->root_list, &fs_info->dead_roots);
1400         }
1401         spin_unlock(&fs_info->trans_lock);
1402 }
1403
1404 /*
1405  * Update each subvolume root and its relocation root, if it exists, in the tree
1406  * of tree roots. Also free log roots if they exist.
1407  */
1408 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1409 {
1410         struct btrfs_fs_info *fs_info = trans->fs_info;
1411         struct btrfs_root *gang[8];
1412         int i;
1413         int ret;
1414
1415         /*
1416          * At this point no one can be using this transaction to modify any tree
1417          * and no one can start another transaction to modify any tree either.
1418          */
1419         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1420
1421         spin_lock(&fs_info->fs_roots_radix_lock);
1422         while (1) {
1423                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1424                                                  (void **)gang, 0,
1425                                                  ARRAY_SIZE(gang),
1426                                                  BTRFS_ROOT_TRANS_TAG);
1427                 if (ret == 0)
1428                         break;
1429                 for (i = 0; i < ret; i++) {
1430                         struct btrfs_root *root = gang[i];
1431                         int ret2;
1432
1433                         /*
1434                          * At this point we can neither have tasks logging inodes
1435                          * from a root nor trying to commit a log tree.
1436                          */
1437                         ASSERT(atomic_read(&root->log_writers) == 0);
1438                         ASSERT(atomic_read(&root->log_commit[0]) == 0);
1439                         ASSERT(atomic_read(&root->log_commit[1]) == 0);
1440
1441                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1442                                         (unsigned long)root->root_key.objectid,
1443                                         BTRFS_ROOT_TRANS_TAG);
1444                         spin_unlock(&fs_info->fs_roots_radix_lock);
1445
1446                         btrfs_free_log(trans, root);
1447                         ret2 = btrfs_update_reloc_root(trans, root);
1448                         if (ret2)
1449                                 return ret2;
1450
1451                         /* see comments in should_cow_block() */
1452                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1453                         smp_mb__after_atomic();
1454
1455                         if (root->commit_root != root->node) {
1456                                 list_add_tail(&root->dirty_list,
1457                                         &trans->transaction->switch_commits);
1458                                 btrfs_set_root_node(&root->root_item,
1459                                                     root->node);
1460                         }
1461
1462                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1463                                                 &root->root_key,
1464                                                 &root->root_item);
1465                         if (ret2)
1466                                 return ret2;
1467                         spin_lock(&fs_info->fs_roots_radix_lock);
1468                         btrfs_qgroup_free_meta_all_pertrans(root);
1469                 }
1470         }
1471         spin_unlock(&fs_info->fs_roots_radix_lock);
1472         return 0;
1473 }
1474
1475 /*
1476  * defrag a given btree.
1477  * Every leaf in the btree is read and defragged.
1478  */
1479 int btrfs_defrag_root(struct btrfs_root *root)
1480 {
1481         struct btrfs_fs_info *info = root->fs_info;
1482         struct btrfs_trans_handle *trans;
1483         int ret;
1484
1485         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1486                 return 0;
1487
1488         while (1) {
1489                 trans = btrfs_start_transaction(root, 0);
1490                 if (IS_ERR(trans)) {
1491                         ret = PTR_ERR(trans);
1492                         break;
1493                 }
1494
1495                 ret = btrfs_defrag_leaves(trans, root);
1496
1497                 btrfs_end_transaction(trans);
1498                 btrfs_btree_balance_dirty(info);
1499                 cond_resched();
1500
1501                 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1502                         break;
1503
1504                 if (btrfs_defrag_cancelled(info)) {
1505                         btrfs_debug(info, "defrag_root cancelled");
1506                         ret = -EAGAIN;
1507                         break;
1508                 }
1509         }
1510         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1511         return ret;
1512 }
1513
1514 /*
1515  * Do all special snapshot related qgroup dirty hack.
1516  *
1517  * Will do all needed qgroup inherit and dirty hack like switch commit
1518  * roots inside one transaction and write all btree into disk, to make
1519  * qgroup works.
1520  */
1521 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1522                                    struct btrfs_root *src,
1523                                    struct btrfs_root *parent,
1524                                    struct btrfs_qgroup_inherit *inherit,
1525                                    u64 dst_objectid)
1526 {
1527         struct btrfs_fs_info *fs_info = src->fs_info;
1528         int ret;
1529
1530         /*
1531          * Save some performance in the case that qgroups are not
1532          * enabled. If this check races with the ioctl, rescan will
1533          * kick in anyway.
1534          */
1535         if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1536                 return 0;
1537
1538         /*
1539          * Ensure dirty @src will be committed.  Or, after coming
1540          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1541          * recorded root will never be updated again, causing an outdated root
1542          * item.
1543          */
1544         ret = record_root_in_trans(trans, src, 1);
1545         if (ret)
1546                 return ret;
1547
1548         /*
1549          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1550          * src root, so we must run the delayed refs here.
1551          *
1552          * However this isn't particularly fool proof, because there's no
1553          * synchronization keeping us from changing the tree after this point
1554          * before we do the qgroup_inherit, or even from making changes while
1555          * we're doing the qgroup_inherit.  But that's a problem for the future,
1556          * for now flush the delayed refs to narrow the race window where the
1557          * qgroup counters could end up wrong.
1558          */
1559         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1560         if (ret) {
1561                 btrfs_abort_transaction(trans, ret);
1562                 return ret;
1563         }
1564
1565         ret = commit_fs_roots(trans);
1566         if (ret)
1567                 goto out;
1568         ret = btrfs_qgroup_account_extents(trans);
1569         if (ret < 0)
1570                 goto out;
1571
1572         /* Now qgroup are all updated, we can inherit it to new qgroups */
1573         ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1574                                    inherit);
1575         if (ret < 0)
1576                 goto out;
1577
1578         /*
1579          * Now we do a simplified commit transaction, which will:
1580          * 1) commit all subvolume and extent tree
1581          *    To ensure all subvolume and extent tree have a valid
1582          *    commit_root to accounting later insert_dir_item()
1583          * 2) write all btree blocks onto disk
1584          *    This is to make sure later btree modification will be cowed
1585          *    Or commit_root can be populated and cause wrong qgroup numbers
1586          * In this simplified commit, we don't really care about other trees
1587          * like chunk and root tree, as they won't affect qgroup.
1588          * And we don't write super to avoid half committed status.
1589          */
1590         ret = commit_cowonly_roots(trans);
1591         if (ret)
1592                 goto out;
1593         switch_commit_roots(trans);
1594         ret = btrfs_write_and_wait_transaction(trans);
1595         if (ret)
1596                 btrfs_handle_fs_error(fs_info, ret,
1597                         "Error while writing out transaction for qgroup");
1598
1599 out:
1600         /*
1601          * Force parent root to be updated, as we recorded it before so its
1602          * last_trans == cur_transid.
1603          * Or it won't be committed again onto disk after later
1604          * insert_dir_item()
1605          */
1606         if (!ret)
1607                 ret = record_root_in_trans(trans, parent, 1);
1608         return ret;
1609 }
1610
1611 /*
1612  * new snapshots need to be created at a very specific time in the
1613  * transaction commit.  This does the actual creation.
1614  *
1615  * Note:
1616  * If the error which may affect the commitment of the current transaction
1617  * happens, we should return the error number. If the error which just affect
1618  * the creation of the pending snapshots, just return 0.
1619  */
1620 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1621                                    struct btrfs_pending_snapshot *pending)
1622 {
1623
1624         struct btrfs_fs_info *fs_info = trans->fs_info;
1625         struct btrfs_key key;
1626         struct btrfs_root_item *new_root_item;
1627         struct btrfs_root *tree_root = fs_info->tree_root;
1628         struct btrfs_root *root = pending->root;
1629         struct btrfs_root *parent_root;
1630         struct btrfs_block_rsv *rsv;
1631         struct inode *parent_inode = pending->dir;
1632         struct btrfs_path *path;
1633         struct btrfs_dir_item *dir_item;
1634         struct extent_buffer *tmp;
1635         struct extent_buffer *old;
1636         struct timespec64 cur_time;
1637         int ret = 0;
1638         u64 to_reserve = 0;
1639         u64 index = 0;
1640         u64 objectid;
1641         u64 root_flags;
1642         unsigned int nofs_flags;
1643         struct fscrypt_name fname;
1644
1645         ASSERT(pending->path);
1646         path = pending->path;
1647
1648         ASSERT(pending->root_item);
1649         new_root_item = pending->root_item;
1650
1651         /*
1652          * We're inside a transaction and must make sure that any potential
1653          * allocations with GFP_KERNEL in fscrypt won't recurse back to
1654          * filesystem.
1655          */
1656         nofs_flags = memalloc_nofs_save();
1657         pending->error = fscrypt_setup_filename(parent_inode,
1658                                                 &pending->dentry->d_name, 0,
1659                                                 &fname);
1660         memalloc_nofs_restore(nofs_flags);
1661         if (pending->error)
1662                 goto free_pending;
1663
1664         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1665         if (pending->error)
1666                 goto free_fname;
1667
1668         /*
1669          * Make qgroup to skip current new snapshot's qgroupid, as it is
1670          * accounted by later btrfs_qgroup_inherit().
1671          */
1672         btrfs_set_skip_qgroup(trans, objectid);
1673
1674         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1675
1676         if (to_reserve > 0) {
1677                 pending->error = btrfs_block_rsv_add(fs_info,
1678                                                      &pending->block_rsv,
1679                                                      to_reserve,
1680                                                      BTRFS_RESERVE_NO_FLUSH);
1681                 if (pending->error)
1682                         goto clear_skip_qgroup;
1683         }
1684
1685         key.objectid = objectid;
1686         key.offset = (u64)-1;
1687         key.type = BTRFS_ROOT_ITEM_KEY;
1688
1689         rsv = trans->block_rsv;
1690         trans->block_rsv = &pending->block_rsv;
1691         trans->bytes_reserved = trans->block_rsv->reserved;
1692         trace_btrfs_space_reservation(fs_info, "transaction",
1693                                       trans->transid,
1694                                       trans->bytes_reserved, 1);
1695         parent_root = BTRFS_I(parent_inode)->root;
1696         ret = record_root_in_trans(trans, parent_root, 0);
1697         if (ret)
1698                 goto fail;
1699         cur_time = current_time(parent_inode);
1700
1701         /*
1702          * insert the directory item
1703          */
1704         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1705         BUG_ON(ret); /* -ENOMEM */
1706
1707         /* check if there is a file/dir which has the same name. */
1708         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1709                                          btrfs_ino(BTRFS_I(parent_inode)),
1710                                          &fname.disk_name, 0);
1711         if (dir_item != NULL && !IS_ERR(dir_item)) {
1712                 pending->error = -EEXIST;
1713                 goto dir_item_existed;
1714         } else if (IS_ERR(dir_item)) {
1715                 ret = PTR_ERR(dir_item);
1716                 btrfs_abort_transaction(trans, ret);
1717                 goto fail;
1718         }
1719         btrfs_release_path(path);
1720
1721         /*
1722          * pull in the delayed directory update
1723          * and the delayed inode item
1724          * otherwise we corrupt the FS during
1725          * snapshot
1726          */
1727         ret = btrfs_run_delayed_items(trans);
1728         if (ret) {      /* Transaction aborted */
1729                 btrfs_abort_transaction(trans, ret);
1730                 goto fail;
1731         }
1732
1733         ret = record_root_in_trans(trans, root, 0);
1734         if (ret) {
1735                 btrfs_abort_transaction(trans, ret);
1736                 goto fail;
1737         }
1738         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1739         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1740         btrfs_check_and_init_root_item(new_root_item);
1741
1742         root_flags = btrfs_root_flags(new_root_item);
1743         if (pending->readonly)
1744                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1745         else
1746                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1747         btrfs_set_root_flags(new_root_item, root_flags);
1748
1749         btrfs_set_root_generation_v2(new_root_item,
1750                         trans->transid);
1751         generate_random_guid(new_root_item->uuid);
1752         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1753                         BTRFS_UUID_SIZE);
1754         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1755                 memset(new_root_item->received_uuid, 0,
1756                        sizeof(new_root_item->received_uuid));
1757                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1758                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1759                 btrfs_set_root_stransid(new_root_item, 0);
1760                 btrfs_set_root_rtransid(new_root_item, 0);
1761         }
1762         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1763         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1764         btrfs_set_root_otransid(new_root_item, trans->transid);
1765
1766         old = btrfs_lock_root_node(root);
1767         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1768                               BTRFS_NESTING_COW);
1769         if (ret) {
1770                 btrfs_tree_unlock(old);
1771                 free_extent_buffer(old);
1772                 btrfs_abort_transaction(trans, ret);
1773                 goto fail;
1774         }
1775
1776         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1777         /* clean up in any case */
1778         btrfs_tree_unlock(old);
1779         free_extent_buffer(old);
1780         if (ret) {
1781                 btrfs_abort_transaction(trans, ret);
1782                 goto fail;
1783         }
1784         /* see comments in should_cow_block() */
1785         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1786         smp_wmb();
1787
1788         btrfs_set_root_node(new_root_item, tmp);
1789         /* record when the snapshot was created in key.offset */
1790         key.offset = trans->transid;
1791         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1792         btrfs_tree_unlock(tmp);
1793         free_extent_buffer(tmp);
1794         if (ret) {
1795                 btrfs_abort_transaction(trans, ret);
1796                 goto fail;
1797         }
1798
1799         /*
1800          * insert root back/forward references
1801          */
1802         ret = btrfs_add_root_ref(trans, objectid,
1803                                  parent_root->root_key.objectid,
1804                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1805                                  &fname.disk_name);
1806         if (ret) {
1807                 btrfs_abort_transaction(trans, ret);
1808                 goto fail;
1809         }
1810
1811         key.offset = (u64)-1;
1812         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1813         if (IS_ERR(pending->snap)) {
1814                 ret = PTR_ERR(pending->snap);
1815                 pending->snap = NULL;
1816                 btrfs_abort_transaction(trans, ret);
1817                 goto fail;
1818         }
1819
1820         ret = btrfs_reloc_post_snapshot(trans, pending);
1821         if (ret) {
1822                 btrfs_abort_transaction(trans, ret);
1823                 goto fail;
1824         }
1825
1826         /*
1827          * Do special qgroup accounting for snapshot, as we do some qgroup
1828          * snapshot hack to do fast snapshot.
1829          * To co-operate with that hack, we do hack again.
1830          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1831          */
1832         ret = qgroup_account_snapshot(trans, root, parent_root,
1833                                       pending->inherit, objectid);
1834         if (ret < 0)
1835                 goto fail;
1836
1837         ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1838                                     BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1839                                     index);
1840         /* We have check then name at the beginning, so it is impossible. */
1841         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1842         if (ret) {
1843                 btrfs_abort_transaction(trans, ret);
1844                 goto fail;
1845         }
1846
1847         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1848                                                   fname.disk_name.len * 2);
1849         parent_inode->i_mtime = current_time(parent_inode);
1850         parent_inode->i_ctime = parent_inode->i_mtime;
1851         ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1852         if (ret) {
1853                 btrfs_abort_transaction(trans, ret);
1854                 goto fail;
1855         }
1856         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1857                                   BTRFS_UUID_KEY_SUBVOL,
1858                                   objectid);
1859         if (ret) {
1860                 btrfs_abort_transaction(trans, ret);
1861                 goto fail;
1862         }
1863         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1864                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1865                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1866                                           objectid);
1867                 if (ret && ret != -EEXIST) {
1868                         btrfs_abort_transaction(trans, ret);
1869                         goto fail;
1870                 }
1871         }
1872
1873 fail:
1874         pending->error = ret;
1875 dir_item_existed:
1876         trans->block_rsv = rsv;
1877         trans->bytes_reserved = 0;
1878 clear_skip_qgroup:
1879         btrfs_clear_skip_qgroup(trans);
1880 free_fname:
1881         fscrypt_free_filename(&fname);
1882 free_pending:
1883         kfree(new_root_item);
1884         pending->root_item = NULL;
1885         btrfs_free_path(path);
1886         pending->path = NULL;
1887
1888         return ret;
1889 }
1890
1891 /*
1892  * create all the snapshots we've scheduled for creation
1893  */
1894 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1895 {
1896         struct btrfs_pending_snapshot *pending, *next;
1897         struct list_head *head = &trans->transaction->pending_snapshots;
1898         int ret = 0;
1899
1900         list_for_each_entry_safe(pending, next, head, list) {
1901                 list_del(&pending->list);
1902                 ret = create_pending_snapshot(trans, pending);
1903                 if (ret)
1904                         break;
1905         }
1906         return ret;
1907 }
1908
1909 static void update_super_roots(struct btrfs_fs_info *fs_info)
1910 {
1911         struct btrfs_root_item *root_item;
1912         struct btrfs_super_block *super;
1913
1914         super = fs_info->super_copy;
1915
1916         root_item = &fs_info->chunk_root->root_item;
1917         super->chunk_root = root_item->bytenr;
1918         super->chunk_root_generation = root_item->generation;
1919         super->chunk_root_level = root_item->level;
1920
1921         root_item = &fs_info->tree_root->root_item;
1922         super->root = root_item->bytenr;
1923         super->generation = root_item->generation;
1924         super->root_level = root_item->level;
1925         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1926                 super->cache_generation = root_item->generation;
1927         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1928                 super->cache_generation = 0;
1929         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1930                 super->uuid_tree_generation = root_item->generation;
1931 }
1932
1933 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1934 {
1935         struct btrfs_transaction *trans;
1936         int ret = 0;
1937
1938         spin_lock(&info->trans_lock);
1939         trans = info->running_transaction;
1940         if (trans)
1941                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1942         spin_unlock(&info->trans_lock);
1943         return ret;
1944 }
1945
1946 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1947 {
1948         struct btrfs_transaction *trans;
1949         int ret = 0;
1950
1951         spin_lock(&info->trans_lock);
1952         trans = info->running_transaction;
1953         if (trans)
1954                 ret = is_transaction_blocked(trans);
1955         spin_unlock(&info->trans_lock);
1956         return ret;
1957 }
1958
1959 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1960 {
1961         struct btrfs_fs_info *fs_info = trans->fs_info;
1962         struct btrfs_transaction *cur_trans;
1963
1964         /* Kick the transaction kthread. */
1965         set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1966         wake_up_process(fs_info->transaction_kthread);
1967
1968         /* take transaction reference */
1969         cur_trans = trans->transaction;
1970         refcount_inc(&cur_trans->use_count);
1971
1972         btrfs_end_transaction(trans);
1973
1974         /*
1975          * Wait for the current transaction commit to start and block
1976          * subsequent transaction joins
1977          */
1978         btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
1979         wait_event(fs_info->transaction_blocked_wait,
1980                    cur_trans->state >= TRANS_STATE_COMMIT_START ||
1981                    TRANS_ABORTED(cur_trans));
1982         btrfs_put_transaction(cur_trans);
1983 }
1984
1985 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1986 {
1987         struct btrfs_fs_info *fs_info = trans->fs_info;
1988         struct btrfs_transaction *cur_trans = trans->transaction;
1989
1990         WARN_ON(refcount_read(&trans->use_count) > 1);
1991
1992         btrfs_abort_transaction(trans, err);
1993
1994         spin_lock(&fs_info->trans_lock);
1995
1996         /*
1997          * If the transaction is removed from the list, it means this
1998          * transaction has been committed successfully, so it is impossible
1999          * to call the cleanup function.
2000          */
2001         BUG_ON(list_empty(&cur_trans->list));
2002
2003         if (cur_trans == fs_info->running_transaction) {
2004                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2005                 spin_unlock(&fs_info->trans_lock);
2006
2007                 /*
2008                  * The thread has already released the lockdep map as reader
2009                  * already in btrfs_commit_transaction().
2010                  */
2011                 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2012                 wait_event(cur_trans->writer_wait,
2013                            atomic_read(&cur_trans->num_writers) == 1);
2014
2015                 spin_lock(&fs_info->trans_lock);
2016         }
2017
2018         /*
2019          * Now that we know no one else is still using the transaction we can
2020          * remove the transaction from the list of transactions. This avoids
2021          * the transaction kthread from cleaning up the transaction while some
2022          * other task is still using it, which could result in a use-after-free
2023          * on things like log trees, as it forces the transaction kthread to
2024          * wait for this transaction to be cleaned up by us.
2025          */
2026         list_del_init(&cur_trans->list);
2027
2028         spin_unlock(&fs_info->trans_lock);
2029
2030         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2031
2032         spin_lock(&fs_info->trans_lock);
2033         if (cur_trans == fs_info->running_transaction)
2034                 fs_info->running_transaction = NULL;
2035         spin_unlock(&fs_info->trans_lock);
2036
2037         if (trans->type & __TRANS_FREEZABLE)
2038                 sb_end_intwrite(fs_info->sb);
2039         btrfs_put_transaction(cur_trans);
2040         btrfs_put_transaction(cur_trans);
2041
2042         trace_btrfs_transaction_commit(fs_info);
2043
2044         if (current->journal_info == trans)
2045                 current->journal_info = NULL;
2046
2047         /*
2048          * If relocation is running, we can't cancel scrub because that will
2049          * result in a deadlock. Before relocating a block group, relocation
2050          * pauses scrub, then starts and commits a transaction before unpausing
2051          * scrub. If the transaction commit is being done by the relocation
2052          * task or triggered by another task and the relocation task is waiting
2053          * for the commit, and we end up here due to an error in the commit
2054          * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2055          * asking for scrub to stop while having it asked to be paused higher
2056          * above in relocation code.
2057          */
2058         if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2059                 btrfs_scrub_cancel(fs_info);
2060
2061         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2062 }
2063
2064 /*
2065  * Release reserved delayed ref space of all pending block groups of the
2066  * transaction and remove them from the list
2067  */
2068 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2069 {
2070        struct btrfs_fs_info *fs_info = trans->fs_info;
2071        struct btrfs_block_group *block_group, *tmp;
2072
2073        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2074                btrfs_delayed_refs_rsv_release(fs_info, 1);
2075                list_del_init(&block_group->bg_list);
2076        }
2077 }
2078
2079 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2080 {
2081         /*
2082          * We use try_to_writeback_inodes_sb() here because if we used
2083          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2084          * Currently are holding the fs freeze lock, if we do an async flush
2085          * we'll do btrfs_join_transaction() and deadlock because we need to
2086          * wait for the fs freeze lock.  Using the direct flushing we benefit
2087          * from already being in a transaction and our join_transaction doesn't
2088          * have to re-take the fs freeze lock.
2089          *
2090          * Note that try_to_writeback_inodes_sb() will only trigger writeback
2091          * if it can read lock sb->s_umount. It will always be able to lock it,
2092          * except when the filesystem is being unmounted or being frozen, but in
2093          * those cases sync_filesystem() is called, which results in calling
2094          * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2095          * Note that we don't call writeback_inodes_sb() directly, because it
2096          * will emit a warning if sb->s_umount is not locked.
2097          */
2098         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2099                 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2100         return 0;
2101 }
2102
2103 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2104 {
2105         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2106                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2107 }
2108
2109 /*
2110  * Add a pending snapshot associated with the given transaction handle to the
2111  * respective handle. This must be called after the transaction commit started
2112  * and while holding fs_info->trans_lock.
2113  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2114  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2115  * returns an error.
2116  */
2117 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2118 {
2119         struct btrfs_transaction *cur_trans = trans->transaction;
2120
2121         if (!trans->pending_snapshot)
2122                 return;
2123
2124         lockdep_assert_held(&trans->fs_info->trans_lock);
2125         ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2126
2127         list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2128 }
2129
2130 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2131 {
2132         fs_info->commit_stats.commit_count++;
2133         fs_info->commit_stats.last_commit_dur = interval;
2134         fs_info->commit_stats.max_commit_dur =
2135                         max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2136         fs_info->commit_stats.total_commit_dur += interval;
2137 }
2138
2139 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2140 {
2141         struct btrfs_fs_info *fs_info = trans->fs_info;
2142         struct btrfs_transaction *cur_trans = trans->transaction;
2143         struct btrfs_transaction *prev_trans = NULL;
2144         int ret;
2145         ktime_t start_time;
2146         ktime_t interval;
2147
2148         ASSERT(refcount_read(&trans->use_count) == 1);
2149         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2150
2151         /* Stop the commit early if ->aborted is set */
2152         if (TRANS_ABORTED(cur_trans)) {
2153                 ret = cur_trans->aborted;
2154                 goto lockdep_trans_commit_start_release;
2155         }
2156
2157         btrfs_trans_release_metadata(trans);
2158         trans->block_rsv = NULL;
2159
2160         /*
2161          * We only want one transaction commit doing the flushing so we do not
2162          * waste a bunch of time on lock contention on the extent root node.
2163          */
2164         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2165                               &cur_trans->delayed_refs.flags)) {
2166                 /*
2167                  * Make a pass through all the delayed refs we have so far.
2168                  * Any running threads may add more while we are here.
2169                  */
2170                 ret = btrfs_run_delayed_refs(trans, 0);
2171                 if (ret)
2172                         goto lockdep_trans_commit_start_release;
2173         }
2174
2175         btrfs_create_pending_block_groups(trans);
2176
2177         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2178                 int run_it = 0;
2179
2180                 /* this mutex is also taken before trying to set
2181                  * block groups readonly.  We need to make sure
2182                  * that nobody has set a block group readonly
2183                  * after a extents from that block group have been
2184                  * allocated for cache files.  btrfs_set_block_group_ro
2185                  * will wait for the transaction to commit if it
2186                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2187                  *
2188                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2189                  * only one process starts all the block group IO.  It wouldn't
2190                  * hurt to have more than one go through, but there's no
2191                  * real advantage to it either.
2192                  */
2193                 mutex_lock(&fs_info->ro_block_group_mutex);
2194                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2195                                       &cur_trans->flags))
2196                         run_it = 1;
2197                 mutex_unlock(&fs_info->ro_block_group_mutex);
2198
2199                 if (run_it) {
2200                         ret = btrfs_start_dirty_block_groups(trans);
2201                         if (ret)
2202                                 goto lockdep_trans_commit_start_release;
2203                 }
2204         }
2205
2206         spin_lock(&fs_info->trans_lock);
2207         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2208                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2209
2210                 add_pending_snapshot(trans);
2211
2212                 spin_unlock(&fs_info->trans_lock);
2213                 refcount_inc(&cur_trans->use_count);
2214
2215                 if (trans->in_fsync)
2216                         want_state = TRANS_STATE_SUPER_COMMITTED;
2217
2218                 btrfs_trans_state_lockdep_release(fs_info,
2219                                                   BTRFS_LOCKDEP_TRANS_COMMIT_START);
2220                 ret = btrfs_end_transaction(trans);
2221                 wait_for_commit(cur_trans, want_state);
2222
2223                 if (TRANS_ABORTED(cur_trans))
2224                         ret = cur_trans->aborted;
2225
2226                 btrfs_put_transaction(cur_trans);
2227
2228                 return ret;
2229         }
2230
2231         cur_trans->state = TRANS_STATE_COMMIT_START;
2232         wake_up(&fs_info->transaction_blocked_wait);
2233         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2234
2235         if (cur_trans->list.prev != &fs_info->trans_list) {
2236                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2237
2238                 if (trans->in_fsync)
2239                         want_state = TRANS_STATE_SUPER_COMMITTED;
2240
2241                 prev_trans = list_entry(cur_trans->list.prev,
2242                                         struct btrfs_transaction, list);
2243                 if (prev_trans->state < want_state) {
2244                         refcount_inc(&prev_trans->use_count);
2245                         spin_unlock(&fs_info->trans_lock);
2246
2247                         wait_for_commit(prev_trans, want_state);
2248
2249                         ret = READ_ONCE(prev_trans->aborted);
2250
2251                         btrfs_put_transaction(prev_trans);
2252                         if (ret)
2253                                 goto lockdep_release;
2254                 } else {
2255                         spin_unlock(&fs_info->trans_lock);
2256                 }
2257         } else {
2258                 spin_unlock(&fs_info->trans_lock);
2259                 /*
2260                  * The previous transaction was aborted and was already removed
2261                  * from the list of transactions at fs_info->trans_list. So we
2262                  * abort to prevent writing a new superblock that reflects a
2263                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2264                  */
2265                 if (BTRFS_FS_ERROR(fs_info)) {
2266                         ret = -EROFS;
2267                         goto lockdep_release;
2268                 }
2269         }
2270
2271         /*
2272          * Get the time spent on the work done by the commit thread and not
2273          * the time spent waiting on a previous commit
2274          */
2275         start_time = ktime_get_ns();
2276
2277         extwriter_counter_dec(cur_trans, trans->type);
2278
2279         ret = btrfs_start_delalloc_flush(fs_info);
2280         if (ret)
2281                 goto lockdep_release;
2282
2283         ret = btrfs_run_delayed_items(trans);
2284         if (ret)
2285                 goto lockdep_release;
2286
2287         /*
2288          * The thread has started/joined the transaction thus it holds the
2289          * lockdep map as a reader. It has to release it before acquiring the
2290          * lockdep map as a writer.
2291          */
2292         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2293         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2294         wait_event(cur_trans->writer_wait,
2295                    extwriter_counter_read(cur_trans) == 0);
2296
2297         /* some pending stuffs might be added after the previous flush. */
2298         ret = btrfs_run_delayed_items(trans);
2299         if (ret) {
2300                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2301                 goto cleanup_transaction;
2302         }
2303
2304         btrfs_wait_delalloc_flush(fs_info);
2305
2306         /*
2307          * Wait for all ordered extents started by a fast fsync that joined this
2308          * transaction. Otherwise if this transaction commits before the ordered
2309          * extents complete we lose logged data after a power failure.
2310          */
2311         btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2312         wait_event(cur_trans->pending_wait,
2313                    atomic_read(&cur_trans->pending_ordered) == 0);
2314
2315         btrfs_scrub_pause(fs_info);
2316         /*
2317          * Ok now we need to make sure to block out any other joins while we
2318          * commit the transaction.  We could have started a join before setting
2319          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2320          */
2321         spin_lock(&fs_info->trans_lock);
2322         add_pending_snapshot(trans);
2323         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2324         spin_unlock(&fs_info->trans_lock);
2325
2326         /*
2327          * The thread has started/joined the transaction thus it holds the
2328          * lockdep map as a reader. It has to release it before acquiring the
2329          * lockdep map as a writer.
2330          */
2331         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2332         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2333         wait_event(cur_trans->writer_wait,
2334                    atomic_read(&cur_trans->num_writers) == 1);
2335
2336         /*
2337          * Make lockdep happy by acquiring the state locks after
2338          * btrfs_trans_num_writers is released. If we acquired the state locks
2339          * before releasing the btrfs_trans_num_writers lock then lockdep would
2340          * complain because we did not follow the reverse order unlocking rule.
2341          */
2342         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2343         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2344         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2345
2346         /*
2347          * We've started the commit, clear the flag in case we were triggered to
2348          * do an async commit but somebody else started before the transaction
2349          * kthread could do the work.
2350          */
2351         clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2352
2353         if (TRANS_ABORTED(cur_trans)) {
2354                 ret = cur_trans->aborted;
2355                 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2356                 goto scrub_continue;
2357         }
2358         /*
2359          * the reloc mutex makes sure that we stop
2360          * the balancing code from coming in and moving
2361          * extents around in the middle of the commit
2362          */
2363         mutex_lock(&fs_info->reloc_mutex);
2364
2365         /*
2366          * We needn't worry about the delayed items because we will
2367          * deal with them in create_pending_snapshot(), which is the
2368          * core function of the snapshot creation.
2369          */
2370         ret = create_pending_snapshots(trans);
2371         if (ret)
2372                 goto unlock_reloc;
2373
2374         /*
2375          * We insert the dir indexes of the snapshots and update the inode
2376          * of the snapshots' parents after the snapshot creation, so there
2377          * are some delayed items which are not dealt with. Now deal with
2378          * them.
2379          *
2380          * We needn't worry that this operation will corrupt the snapshots,
2381          * because all the tree which are snapshoted will be forced to COW
2382          * the nodes and leaves.
2383          */
2384         ret = btrfs_run_delayed_items(trans);
2385         if (ret)
2386                 goto unlock_reloc;
2387
2388         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2389         if (ret)
2390                 goto unlock_reloc;
2391
2392         /*
2393          * make sure none of the code above managed to slip in a
2394          * delayed item
2395          */
2396         btrfs_assert_delayed_root_empty(fs_info);
2397
2398         WARN_ON(cur_trans != trans->transaction);
2399
2400         ret = commit_fs_roots(trans);
2401         if (ret)
2402                 goto unlock_reloc;
2403
2404         /*
2405          * Since the transaction is done, we can apply the pending changes
2406          * before the next transaction.
2407          */
2408         btrfs_apply_pending_changes(fs_info);
2409
2410         /* commit_fs_roots gets rid of all the tree log roots, it is now
2411          * safe to free the root of tree log roots
2412          */
2413         btrfs_free_log_root_tree(trans, fs_info);
2414
2415         /*
2416          * Since fs roots are all committed, we can get a quite accurate
2417          * new_roots. So let's do quota accounting.
2418          */
2419         ret = btrfs_qgroup_account_extents(trans);
2420         if (ret < 0)
2421                 goto unlock_reloc;
2422
2423         ret = commit_cowonly_roots(trans);
2424         if (ret)
2425                 goto unlock_reloc;
2426
2427         /*
2428          * The tasks which save the space cache and inode cache may also
2429          * update ->aborted, check it.
2430          */
2431         if (TRANS_ABORTED(cur_trans)) {
2432                 ret = cur_trans->aborted;
2433                 goto unlock_reloc;
2434         }
2435
2436         cur_trans = fs_info->running_transaction;
2437
2438         btrfs_set_root_node(&fs_info->tree_root->root_item,
2439                             fs_info->tree_root->node);
2440         list_add_tail(&fs_info->tree_root->dirty_list,
2441                       &cur_trans->switch_commits);
2442
2443         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2444                             fs_info->chunk_root->node);
2445         list_add_tail(&fs_info->chunk_root->dirty_list,
2446                       &cur_trans->switch_commits);
2447
2448         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2449                 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2450                                     fs_info->block_group_root->node);
2451                 list_add_tail(&fs_info->block_group_root->dirty_list,
2452                               &cur_trans->switch_commits);
2453         }
2454
2455         switch_commit_roots(trans);
2456
2457         ASSERT(list_empty(&cur_trans->dirty_bgs));
2458         ASSERT(list_empty(&cur_trans->io_bgs));
2459         update_super_roots(fs_info);
2460
2461         btrfs_set_super_log_root(fs_info->super_copy, 0);
2462         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2463         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2464                sizeof(*fs_info->super_copy));
2465
2466         btrfs_commit_device_sizes(cur_trans);
2467
2468         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2469         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2470
2471         btrfs_trans_release_chunk_metadata(trans);
2472
2473         /*
2474          * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2475          * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2476          * make sure that before we commit our superblock, no other task can
2477          * start a new transaction and commit a log tree before we commit our
2478          * superblock. Anyone trying to commit a log tree locks this mutex before
2479          * writing its superblock.
2480          */
2481         mutex_lock(&fs_info->tree_log_mutex);
2482
2483         spin_lock(&fs_info->trans_lock);
2484         cur_trans->state = TRANS_STATE_UNBLOCKED;
2485         fs_info->running_transaction = NULL;
2486         spin_unlock(&fs_info->trans_lock);
2487         mutex_unlock(&fs_info->reloc_mutex);
2488
2489         wake_up(&fs_info->transaction_wait);
2490         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2491
2492         ret = btrfs_write_and_wait_transaction(trans);
2493         if (ret) {
2494                 btrfs_handle_fs_error(fs_info, ret,
2495                                       "Error while writing out transaction");
2496                 mutex_unlock(&fs_info->tree_log_mutex);
2497                 goto scrub_continue;
2498         }
2499
2500         /*
2501          * At this point, we should have written all the tree blocks allocated
2502          * in this transaction. So it's now safe to free the redirtyied extent
2503          * buffers.
2504          */
2505         btrfs_free_redirty_list(cur_trans);
2506
2507         ret = write_all_supers(fs_info, 0);
2508         /*
2509          * the super is written, we can safely allow the tree-loggers
2510          * to go about their business
2511          */
2512         mutex_unlock(&fs_info->tree_log_mutex);
2513         if (ret)
2514                 goto scrub_continue;
2515
2516         /*
2517          * We needn't acquire the lock here because there is no other task
2518          * which can change it.
2519          */
2520         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2521         wake_up(&cur_trans->commit_wait);
2522         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2523
2524         btrfs_finish_extent_commit(trans);
2525
2526         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2527                 btrfs_clear_space_info_full(fs_info);
2528
2529         fs_info->last_trans_committed = cur_trans->transid;
2530         /*
2531          * We needn't acquire the lock here because there is no other task
2532          * which can change it.
2533          */
2534         cur_trans->state = TRANS_STATE_COMPLETED;
2535         wake_up(&cur_trans->commit_wait);
2536         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2537
2538         spin_lock(&fs_info->trans_lock);
2539         list_del_init(&cur_trans->list);
2540         spin_unlock(&fs_info->trans_lock);
2541
2542         btrfs_put_transaction(cur_trans);
2543         btrfs_put_transaction(cur_trans);
2544
2545         if (trans->type & __TRANS_FREEZABLE)
2546                 sb_end_intwrite(fs_info->sb);
2547
2548         trace_btrfs_transaction_commit(fs_info);
2549
2550         interval = ktime_get_ns() - start_time;
2551
2552         btrfs_scrub_continue(fs_info);
2553
2554         if (current->journal_info == trans)
2555                 current->journal_info = NULL;
2556
2557         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2558
2559         update_commit_stats(fs_info, interval);
2560
2561         return ret;
2562
2563 unlock_reloc:
2564         mutex_unlock(&fs_info->reloc_mutex);
2565         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2566 scrub_continue:
2567         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2568         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2569         btrfs_scrub_continue(fs_info);
2570 cleanup_transaction:
2571         btrfs_trans_release_metadata(trans);
2572         btrfs_cleanup_pending_block_groups(trans);
2573         btrfs_trans_release_chunk_metadata(trans);
2574         trans->block_rsv = NULL;
2575         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2576         if (current->journal_info == trans)
2577                 current->journal_info = NULL;
2578         cleanup_transaction(trans, ret);
2579
2580         return ret;
2581
2582 lockdep_release:
2583         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2584         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2585         goto cleanup_transaction;
2586
2587 lockdep_trans_commit_start_release:
2588         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2589         btrfs_end_transaction(trans);
2590         return ret;
2591 }
2592
2593 /*
2594  * return < 0 if error
2595  * 0 if there are no more dead_roots at the time of call
2596  * 1 there are more to be processed, call me again
2597  *
2598  * The return value indicates there are certainly more snapshots to delete, but
2599  * if there comes a new one during processing, it may return 0. We don't mind,
2600  * because btrfs_commit_super will poke cleaner thread and it will process it a
2601  * few seconds later.
2602  */
2603 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2604 {
2605         struct btrfs_root *root;
2606         int ret;
2607
2608         spin_lock(&fs_info->trans_lock);
2609         if (list_empty(&fs_info->dead_roots)) {
2610                 spin_unlock(&fs_info->trans_lock);
2611                 return 0;
2612         }
2613         root = list_first_entry(&fs_info->dead_roots,
2614                         struct btrfs_root, root_list);
2615         list_del_init(&root->root_list);
2616         spin_unlock(&fs_info->trans_lock);
2617
2618         btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2619
2620         btrfs_kill_all_delayed_nodes(root);
2621
2622         if (btrfs_header_backref_rev(root->node) <
2623                         BTRFS_MIXED_BACKREF_REV)
2624                 ret = btrfs_drop_snapshot(root, 0, 0);
2625         else
2626                 ret = btrfs_drop_snapshot(root, 1, 0);
2627
2628         btrfs_put_root(root);
2629         return (ret < 0) ? 0 : 1;
2630 }
2631
2632 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2633 {
2634         unsigned long prev;
2635         unsigned long bit;
2636
2637         prev = xchg(&fs_info->pending_changes, 0);
2638         if (!prev)
2639                 return;
2640
2641         bit = 1 << BTRFS_PENDING_COMMIT;
2642         if (prev & bit)
2643                 btrfs_debug(fs_info, "pending commit done");
2644         prev &= ~bit;
2645
2646         if (prev)
2647                 btrfs_warn(fs_info,
2648                         "unknown pending changes left 0x%lx, ignoring", prev);
2649 }