Mention branches and keyring.
[releases.git] / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18 #include "qgroup.h"
19 #include "subpage.h"
20
21 static struct kmem_cache *btrfs_ordered_extent_cache;
22
23 static u64 entry_end(struct btrfs_ordered_extent *entry)
24 {
25         if (entry->file_offset + entry->num_bytes < entry->file_offset)
26                 return (u64)-1;
27         return entry->file_offset + entry->num_bytes;
28 }
29
30 /* returns NULL if the insertion worked, or it returns the node it did find
31  * in the tree
32  */
33 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
34                                    struct rb_node *node)
35 {
36         struct rb_node **p = &root->rb_node;
37         struct rb_node *parent = NULL;
38         struct btrfs_ordered_extent *entry;
39
40         while (*p) {
41                 parent = *p;
42                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
43
44                 if (file_offset < entry->file_offset)
45                         p = &(*p)->rb_left;
46                 else if (file_offset >= entry_end(entry))
47                         p = &(*p)->rb_right;
48                 else
49                         return parent;
50         }
51
52         rb_link_node(node, parent, p);
53         rb_insert_color(node, root);
54         return NULL;
55 }
56
57 /*
58  * look for a given offset in the tree, and if it can't be found return the
59  * first lesser offset
60  */
61 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
62                                      struct rb_node **prev_ret)
63 {
64         struct rb_node *n = root->rb_node;
65         struct rb_node *prev = NULL;
66         struct rb_node *test;
67         struct btrfs_ordered_extent *entry;
68         struct btrfs_ordered_extent *prev_entry = NULL;
69
70         while (n) {
71                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
72                 prev = n;
73                 prev_entry = entry;
74
75                 if (file_offset < entry->file_offset)
76                         n = n->rb_left;
77                 else if (file_offset >= entry_end(entry))
78                         n = n->rb_right;
79                 else
80                         return n;
81         }
82         if (!prev_ret)
83                 return NULL;
84
85         while (prev && file_offset >= entry_end(prev_entry)) {
86                 test = rb_next(prev);
87                 if (!test)
88                         break;
89                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
90                                       rb_node);
91                 if (file_offset < entry_end(prev_entry))
92                         break;
93
94                 prev = test;
95         }
96         if (prev)
97                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
98                                       rb_node);
99         while (prev && file_offset < entry_end(prev_entry)) {
100                 test = rb_prev(prev);
101                 if (!test)
102                         break;
103                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
104                                       rb_node);
105                 prev = test;
106         }
107         *prev_ret = prev;
108         return NULL;
109 }
110
111 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
112                           u64 len)
113 {
114         if (file_offset + len <= entry->file_offset ||
115             entry->file_offset + entry->num_bytes <= file_offset)
116                 return 0;
117         return 1;
118 }
119
120 /*
121  * look find the first ordered struct that has this offset, otherwise
122  * the first one less than this offset
123  */
124 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
125                                           u64 file_offset)
126 {
127         struct rb_root *root = &tree->tree;
128         struct rb_node *prev = NULL;
129         struct rb_node *ret;
130         struct btrfs_ordered_extent *entry;
131
132         if (tree->last) {
133                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
134                                  rb_node);
135                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
136                         return tree->last;
137         }
138         ret = __tree_search(root, file_offset, &prev);
139         if (!ret)
140                 ret = prev;
141         if (ret)
142                 tree->last = ret;
143         return ret;
144 }
145
146 /**
147  * Add an ordered extent to the per-inode tree.
148  *
149  * @inode:           Inode that this extent is for.
150  * @file_offset:     Logical offset in file where the extent starts.
151  * @num_bytes:       Logical length of extent in file.
152  * @ram_bytes:       Full length of unencoded data.
153  * @disk_bytenr:     Offset of extent on disk.
154  * @disk_num_bytes:  Size of extent on disk.
155  * @offset:          Offset into unencoded data where file data starts.
156  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
157  * @compress_type:   Compression algorithm used for data.
158  *
159  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
160  * tree is given a single reference on the ordered extent that was inserted.
161  *
162  * Return: 0 or -ENOMEM.
163  */
164 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
165                              u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
166                              u64 disk_num_bytes, u64 offset, unsigned flags,
167                              int compress_type)
168 {
169         struct btrfs_root *root = inode->root;
170         struct btrfs_fs_info *fs_info = root->fs_info;
171         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
172         struct rb_node *node;
173         struct btrfs_ordered_extent *entry;
174         int ret;
175         u64 qgroup_rsv = 0;
176
177         if (flags &
178             ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
179                 /* For nocow write, we can release the qgroup rsv right now */
180                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
181                 if (ret < 0)
182                         return ret;
183                 ret = 0;
184         } else {
185                 /*
186                  * The ordered extent has reserved qgroup space, release now
187                  * and pass the reserved number for qgroup_record to free.
188                  */
189                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
190                 if (ret < 0)
191                         return ret;
192         }
193         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
194         if (!entry)
195                 return -ENOMEM;
196
197         entry->file_offset = file_offset;
198         entry->num_bytes = num_bytes;
199         entry->ram_bytes = ram_bytes;
200         entry->disk_bytenr = disk_bytenr;
201         entry->disk_num_bytes = disk_num_bytes;
202         entry->offset = offset;
203         entry->bytes_left = num_bytes;
204         entry->inode = igrab(&inode->vfs_inode);
205         entry->compress_type = compress_type;
206         entry->truncated_len = (u64)-1;
207         entry->qgroup_rsv = qgroup_rsv;
208         entry->physical = (u64)-1;
209
210         ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
211         entry->flags = flags;
212
213         percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
214                                  fs_info->delalloc_batch);
215
216         /* one ref for the tree */
217         refcount_set(&entry->refs, 1);
218         init_waitqueue_head(&entry->wait);
219         INIT_LIST_HEAD(&entry->list);
220         INIT_LIST_HEAD(&entry->log_list);
221         INIT_LIST_HEAD(&entry->root_extent_list);
222         INIT_LIST_HEAD(&entry->work_list);
223         init_completion(&entry->completion);
224
225         trace_btrfs_ordered_extent_add(inode, entry);
226
227         spin_lock_irq(&tree->lock);
228         node = tree_insert(&tree->tree, file_offset,
229                            &entry->rb_node);
230         if (node)
231                 btrfs_panic(fs_info, -EEXIST,
232                                 "inconsistency in ordered tree at offset %llu",
233                                 file_offset);
234         spin_unlock_irq(&tree->lock);
235
236         spin_lock(&root->ordered_extent_lock);
237         list_add_tail(&entry->root_extent_list,
238                       &root->ordered_extents);
239         root->nr_ordered_extents++;
240         if (root->nr_ordered_extents == 1) {
241                 spin_lock(&fs_info->ordered_root_lock);
242                 BUG_ON(!list_empty(&root->ordered_root));
243                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
244                 spin_unlock(&fs_info->ordered_root_lock);
245         }
246         spin_unlock(&root->ordered_extent_lock);
247
248         /*
249          * We don't need the count_max_extents here, we can assume that all of
250          * that work has been done at higher layers, so this is truly the
251          * smallest the extent is going to get.
252          */
253         spin_lock(&inode->lock);
254         btrfs_mod_outstanding_extents(inode, 1);
255         spin_unlock(&inode->lock);
256
257         return 0;
258 }
259
260 /*
261  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
262  * when an ordered extent is finished.  If the list covers more than one
263  * ordered extent, it is split across multiples.
264  */
265 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
266                            struct btrfs_ordered_sum *sum)
267 {
268         struct btrfs_ordered_inode_tree *tree;
269
270         tree = &BTRFS_I(entry->inode)->ordered_tree;
271         spin_lock_irq(&tree->lock);
272         list_add_tail(&sum->list, &entry->list);
273         spin_unlock_irq(&tree->lock);
274 }
275
276 static void finish_ordered_fn(struct btrfs_work *work)
277 {
278         struct btrfs_ordered_extent *ordered_extent;
279
280         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
281         btrfs_finish_ordered_io(ordered_extent);
282 }
283
284 /*
285  * Mark all ordered extents io inside the specified range finished.
286  *
287  * @page:        The involved page for the operation.
288  *               For uncompressed buffered IO, the page status also needs to be
289  *               updated to indicate whether the pending ordered io is finished.
290  *               Can be NULL for direct IO and compressed write.
291  *               For these cases, callers are ensured they won't execute the
292  *               endio function twice.
293  *
294  * This function is called for endio, thus the range must have ordered
295  * extent(s) covering it.
296  */
297 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
298                                     struct page *page, u64 file_offset,
299                                     u64 num_bytes, bool uptodate)
300 {
301         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
302         struct btrfs_fs_info *fs_info = inode->root->fs_info;
303         struct btrfs_workqueue *wq;
304         struct rb_node *node;
305         struct btrfs_ordered_extent *entry = NULL;
306         unsigned long flags;
307         u64 cur = file_offset;
308
309         if (btrfs_is_free_space_inode(inode))
310                 wq = fs_info->endio_freespace_worker;
311         else
312                 wq = fs_info->endio_write_workers;
313
314         if (page)
315                 ASSERT(page->mapping && page_offset(page) <= file_offset &&
316                        file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
317
318         spin_lock_irqsave(&tree->lock, flags);
319         while (cur < file_offset + num_bytes) {
320                 u64 entry_end;
321                 u64 end;
322                 u32 len;
323
324                 node = tree_search(tree, cur);
325                 /* No ordered extents at all */
326                 if (!node)
327                         break;
328
329                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
330                 entry_end = entry->file_offset + entry->num_bytes;
331                 /*
332                  * |<-- OE --->|  |
333                  *                cur
334                  * Go to next OE.
335                  */
336                 if (cur >= entry_end) {
337                         node = rb_next(node);
338                         /* No more ordered extents, exit */
339                         if (!node)
340                                 break;
341                         entry = rb_entry(node, struct btrfs_ordered_extent,
342                                          rb_node);
343
344                         /* Go to next ordered extent and continue */
345                         cur = entry->file_offset;
346                         continue;
347                 }
348                 /*
349                  * |    |<--- OE --->|
350                  * cur
351                  * Go to the start of OE.
352                  */
353                 if (cur < entry->file_offset) {
354                         cur = entry->file_offset;
355                         continue;
356                 }
357
358                 /*
359                  * Now we are definitely inside one ordered extent.
360                  *
361                  * |<--- OE --->|
362                  *      |
363                  *      cur
364                  */
365                 end = min(entry->file_offset + entry->num_bytes,
366                           file_offset + num_bytes) - 1;
367                 ASSERT(end + 1 - cur < U32_MAX);
368                 len = end + 1 - cur;
369
370                 if (page) {
371                         /*
372                          * Ordered (Private2) bit indicates whether we still
373                          * have pending io unfinished for the ordered extent.
374                          *
375                          * If there's no such bit, we need to skip to next range.
376                          */
377                         if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
378                                 cur += len;
379                                 continue;
380                         }
381                         btrfs_page_clear_ordered(fs_info, page, cur, len);
382                 }
383
384                 /* Now we're fine to update the accounting */
385                 if (unlikely(len > entry->bytes_left)) {
386                         WARN_ON(1);
387                         btrfs_crit(fs_info,
388 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
389                                    inode->root->root_key.objectid,
390                                    btrfs_ino(inode),
391                                    entry->file_offset,
392                                    entry->num_bytes,
393                                    len, entry->bytes_left);
394                         entry->bytes_left = 0;
395                 } else {
396                         entry->bytes_left -= len;
397                 }
398
399                 if (!uptodate)
400                         set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
401
402                 /*
403                  * All the IO of the ordered extent is finished, we need to queue
404                  * the finish_func to be executed.
405                  */
406                 if (entry->bytes_left == 0) {
407                         set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
408                         cond_wake_up(&entry->wait);
409                         refcount_inc(&entry->refs);
410                         trace_btrfs_ordered_extent_mark_finished(inode, entry);
411                         spin_unlock_irqrestore(&tree->lock, flags);
412                         btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL);
413                         btrfs_queue_work(wq, &entry->work);
414                         spin_lock_irqsave(&tree->lock, flags);
415                 }
416                 cur += len;
417         }
418         spin_unlock_irqrestore(&tree->lock, flags);
419 }
420
421 /*
422  * Finish IO for one ordered extent across a given range.  The range can only
423  * contain one ordered extent.
424  *
425  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
426  *               search and use the ordered extent directly.
427  *               Will be also used to store the finished ordered extent.
428  * @file_offset: File offset for the finished IO
429  * @io_size:     Length of the finish IO range
430  *
431  * Return true if the ordered extent is finished in the range, and update
432  * @cached.
433  * Return false otherwise.
434  *
435  * NOTE: The range can NOT cross multiple ordered extents.
436  * Thus caller should ensure the range doesn't cross ordered extents.
437  */
438 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
439                                     struct btrfs_ordered_extent **cached,
440                                     u64 file_offset, u64 io_size)
441 {
442         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
443         struct rb_node *node;
444         struct btrfs_ordered_extent *entry = NULL;
445         unsigned long flags;
446         bool finished = false;
447
448         spin_lock_irqsave(&tree->lock, flags);
449         if (cached && *cached) {
450                 entry = *cached;
451                 goto have_entry;
452         }
453
454         node = tree_search(tree, file_offset);
455         if (!node)
456                 goto out;
457
458         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
459 have_entry:
460         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
461                 goto out;
462
463         if (io_size > entry->bytes_left)
464                 btrfs_crit(inode->root->fs_info,
465                            "bad ordered accounting left %llu size %llu",
466                        entry->bytes_left, io_size);
467
468         entry->bytes_left -= io_size;
469
470         if (entry->bytes_left == 0) {
471                 /*
472                  * Ensure only one caller can set the flag and finished_ret
473                  * accordingly
474                  */
475                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
476                 /* test_and_set_bit implies a barrier */
477                 cond_wake_up_nomb(&entry->wait);
478         }
479 out:
480         if (finished && cached && entry) {
481                 *cached = entry;
482                 refcount_inc(&entry->refs);
483                 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
484         }
485         spin_unlock_irqrestore(&tree->lock, flags);
486         return finished;
487 }
488
489 /*
490  * used to drop a reference on an ordered extent.  This will free
491  * the extent if the last reference is dropped
492  */
493 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
494 {
495         struct list_head *cur;
496         struct btrfs_ordered_sum *sum;
497
498         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
499
500         if (refcount_dec_and_test(&entry->refs)) {
501                 ASSERT(list_empty(&entry->root_extent_list));
502                 ASSERT(list_empty(&entry->log_list));
503                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
504                 if (entry->inode)
505                         btrfs_add_delayed_iput(entry->inode);
506                 while (!list_empty(&entry->list)) {
507                         cur = entry->list.next;
508                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
509                         list_del(&sum->list);
510                         kvfree(sum);
511                 }
512                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
513         }
514 }
515
516 /*
517  * remove an ordered extent from the tree.  No references are dropped
518  * and waiters are woken up.
519  */
520 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
521                                  struct btrfs_ordered_extent *entry)
522 {
523         struct btrfs_ordered_inode_tree *tree;
524         struct btrfs_root *root = btrfs_inode->root;
525         struct btrfs_fs_info *fs_info = root->fs_info;
526         struct rb_node *node;
527         bool pending;
528         bool freespace_inode;
529
530         /*
531          * If this is a free space inode the thread has not acquired the ordered
532          * extents lockdep map.
533          */
534         freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
535
536         btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
537         /* This is paired with btrfs_add_ordered_extent. */
538         spin_lock(&btrfs_inode->lock);
539         btrfs_mod_outstanding_extents(btrfs_inode, -1);
540         spin_unlock(&btrfs_inode->lock);
541         if (root != fs_info->tree_root) {
542                 u64 release;
543
544                 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
545                         release = entry->disk_num_bytes;
546                 else
547                         release = entry->num_bytes;
548                 btrfs_delalloc_release_metadata(btrfs_inode, release,
549                                                 test_bit(BTRFS_ORDERED_IOERR,
550                                                          &entry->flags));
551         }
552
553         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
554                                  fs_info->delalloc_batch);
555
556         tree = &btrfs_inode->ordered_tree;
557         spin_lock_irq(&tree->lock);
558         node = &entry->rb_node;
559         rb_erase(node, &tree->tree);
560         RB_CLEAR_NODE(node);
561         if (tree->last == node)
562                 tree->last = NULL;
563         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
564         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
565         spin_unlock_irq(&tree->lock);
566
567         /*
568          * The current running transaction is waiting on us, we need to let it
569          * know that we're complete and wake it up.
570          */
571         if (pending) {
572                 struct btrfs_transaction *trans;
573
574                 /*
575                  * The checks for trans are just a formality, it should be set,
576                  * but if it isn't we don't want to deref/assert under the spin
577                  * lock, so be nice and check if trans is set, but ASSERT() so
578                  * if it isn't set a developer will notice.
579                  */
580                 spin_lock(&fs_info->trans_lock);
581                 trans = fs_info->running_transaction;
582                 if (trans)
583                         refcount_inc(&trans->use_count);
584                 spin_unlock(&fs_info->trans_lock);
585
586                 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
587                 if (trans) {
588                         if (atomic_dec_and_test(&trans->pending_ordered))
589                                 wake_up(&trans->pending_wait);
590                         btrfs_put_transaction(trans);
591                 }
592         }
593
594         btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
595
596         spin_lock(&root->ordered_extent_lock);
597         list_del_init(&entry->root_extent_list);
598         root->nr_ordered_extents--;
599
600         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
601
602         if (!root->nr_ordered_extents) {
603                 spin_lock(&fs_info->ordered_root_lock);
604                 BUG_ON(list_empty(&root->ordered_root));
605                 list_del_init(&root->ordered_root);
606                 spin_unlock(&fs_info->ordered_root_lock);
607         }
608         spin_unlock(&root->ordered_extent_lock);
609         wake_up(&entry->wait);
610         if (!freespace_inode)
611                 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
612 }
613
614 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
615 {
616         struct btrfs_ordered_extent *ordered;
617
618         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
619         btrfs_start_ordered_extent(ordered, 1);
620         complete(&ordered->completion);
621 }
622
623 /*
624  * wait for all the ordered extents in a root.  This is done when balancing
625  * space between drives.
626  */
627 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
628                                const u64 range_start, const u64 range_len)
629 {
630         struct btrfs_fs_info *fs_info = root->fs_info;
631         LIST_HEAD(splice);
632         LIST_HEAD(skipped);
633         LIST_HEAD(works);
634         struct btrfs_ordered_extent *ordered, *next;
635         u64 count = 0;
636         const u64 range_end = range_start + range_len;
637
638         mutex_lock(&root->ordered_extent_mutex);
639         spin_lock(&root->ordered_extent_lock);
640         list_splice_init(&root->ordered_extents, &splice);
641         while (!list_empty(&splice) && nr) {
642                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
643                                            root_extent_list);
644
645                 if (range_end <= ordered->disk_bytenr ||
646                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
647                         list_move_tail(&ordered->root_extent_list, &skipped);
648                         cond_resched_lock(&root->ordered_extent_lock);
649                         continue;
650                 }
651
652                 list_move_tail(&ordered->root_extent_list,
653                                &root->ordered_extents);
654                 refcount_inc(&ordered->refs);
655                 spin_unlock(&root->ordered_extent_lock);
656
657                 btrfs_init_work(&ordered->flush_work,
658                                 btrfs_run_ordered_extent_work, NULL, NULL);
659                 list_add_tail(&ordered->work_list, &works);
660                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
661
662                 cond_resched();
663                 spin_lock(&root->ordered_extent_lock);
664                 if (nr != U64_MAX)
665                         nr--;
666                 count++;
667         }
668         list_splice_tail(&skipped, &root->ordered_extents);
669         list_splice_tail(&splice, &root->ordered_extents);
670         spin_unlock(&root->ordered_extent_lock);
671
672         list_for_each_entry_safe(ordered, next, &works, work_list) {
673                 list_del_init(&ordered->work_list);
674                 wait_for_completion(&ordered->completion);
675                 btrfs_put_ordered_extent(ordered);
676                 cond_resched();
677         }
678         mutex_unlock(&root->ordered_extent_mutex);
679
680         return count;
681 }
682
683 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
684                              const u64 range_start, const u64 range_len)
685 {
686         struct btrfs_root *root;
687         struct list_head splice;
688         u64 done;
689
690         INIT_LIST_HEAD(&splice);
691
692         mutex_lock(&fs_info->ordered_operations_mutex);
693         spin_lock(&fs_info->ordered_root_lock);
694         list_splice_init(&fs_info->ordered_roots, &splice);
695         while (!list_empty(&splice) && nr) {
696                 root = list_first_entry(&splice, struct btrfs_root,
697                                         ordered_root);
698                 root = btrfs_grab_root(root);
699                 BUG_ON(!root);
700                 list_move_tail(&root->ordered_root,
701                                &fs_info->ordered_roots);
702                 spin_unlock(&fs_info->ordered_root_lock);
703
704                 done = btrfs_wait_ordered_extents(root, nr,
705                                                   range_start, range_len);
706                 btrfs_put_root(root);
707
708                 spin_lock(&fs_info->ordered_root_lock);
709                 if (nr != U64_MAX) {
710                         nr -= done;
711                 }
712         }
713         list_splice_tail(&splice, &fs_info->ordered_roots);
714         spin_unlock(&fs_info->ordered_root_lock);
715         mutex_unlock(&fs_info->ordered_operations_mutex);
716 }
717
718 /*
719  * Used to start IO or wait for a given ordered extent to finish.
720  *
721  * If wait is one, this effectively waits on page writeback for all the pages
722  * in the extent, and it waits on the io completion code to insert
723  * metadata into the btree corresponding to the extent
724  */
725 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
726 {
727         u64 start = entry->file_offset;
728         u64 end = start + entry->num_bytes - 1;
729         struct btrfs_inode *inode = BTRFS_I(entry->inode);
730         bool freespace_inode;
731
732         trace_btrfs_ordered_extent_start(inode, entry);
733
734         /*
735          * If this is a free space inode do not take the ordered extents lockdep
736          * map.
737          */
738         freespace_inode = btrfs_is_free_space_inode(inode);
739
740         /*
741          * pages in the range can be dirty, clean or writeback.  We
742          * start IO on any dirty ones so the wait doesn't stall waiting
743          * for the flusher thread to find them
744          */
745         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
746                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
747         if (wait) {
748                 if (!freespace_inode)
749                         btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
750                 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
751                                                  &entry->flags));
752         }
753 }
754
755 /*
756  * Used to wait on ordered extents across a large range of bytes.
757  */
758 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
759 {
760         int ret = 0;
761         int ret_wb = 0;
762         u64 end;
763         u64 orig_end;
764         struct btrfs_ordered_extent *ordered;
765
766         if (start + len < start) {
767                 orig_end = INT_LIMIT(loff_t);
768         } else {
769                 orig_end = start + len - 1;
770                 if (orig_end > INT_LIMIT(loff_t))
771                         orig_end = INT_LIMIT(loff_t);
772         }
773
774         /* start IO across the range first to instantiate any delalloc
775          * extents
776          */
777         ret = btrfs_fdatawrite_range(inode, start, orig_end);
778         if (ret)
779                 return ret;
780
781         /*
782          * If we have a writeback error don't return immediately. Wait first
783          * for any ordered extents that haven't completed yet. This is to make
784          * sure no one can dirty the same page ranges and call writepages()
785          * before the ordered extents complete - to avoid failures (-EEXIST)
786          * when adding the new ordered extents to the ordered tree.
787          */
788         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
789
790         end = orig_end;
791         while (1) {
792                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
793                 if (!ordered)
794                         break;
795                 if (ordered->file_offset > orig_end) {
796                         btrfs_put_ordered_extent(ordered);
797                         break;
798                 }
799                 if (ordered->file_offset + ordered->num_bytes <= start) {
800                         btrfs_put_ordered_extent(ordered);
801                         break;
802                 }
803                 btrfs_start_ordered_extent(ordered, 1);
804                 end = ordered->file_offset;
805                 /*
806                  * If the ordered extent had an error save the error but don't
807                  * exit without waiting first for all other ordered extents in
808                  * the range to complete.
809                  */
810                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
811                         ret = -EIO;
812                 btrfs_put_ordered_extent(ordered);
813                 if (end == 0 || end == start)
814                         break;
815                 end--;
816         }
817         return ret_wb ? ret_wb : ret;
818 }
819
820 /*
821  * find an ordered extent corresponding to file_offset.  return NULL if
822  * nothing is found, otherwise take a reference on the extent and return it
823  */
824 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
825                                                          u64 file_offset)
826 {
827         struct btrfs_ordered_inode_tree *tree;
828         struct rb_node *node;
829         struct btrfs_ordered_extent *entry = NULL;
830         unsigned long flags;
831
832         tree = &inode->ordered_tree;
833         spin_lock_irqsave(&tree->lock, flags);
834         node = tree_search(tree, file_offset);
835         if (!node)
836                 goto out;
837
838         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
839         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
840                 entry = NULL;
841         if (entry) {
842                 refcount_inc(&entry->refs);
843                 trace_btrfs_ordered_extent_lookup(inode, entry);
844         }
845 out:
846         spin_unlock_irqrestore(&tree->lock, flags);
847         return entry;
848 }
849
850 /* Since the DIO code tries to lock a wide area we need to look for any ordered
851  * extents that exist in the range, rather than just the start of the range.
852  */
853 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
854                 struct btrfs_inode *inode, u64 file_offset, u64 len)
855 {
856         struct btrfs_ordered_inode_tree *tree;
857         struct rb_node *node;
858         struct btrfs_ordered_extent *entry = NULL;
859
860         tree = &inode->ordered_tree;
861         spin_lock_irq(&tree->lock);
862         node = tree_search(tree, file_offset);
863         if (!node) {
864                 node = tree_search(tree, file_offset + len);
865                 if (!node)
866                         goto out;
867         }
868
869         while (1) {
870                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
871                 if (range_overlaps(entry, file_offset, len))
872                         break;
873
874                 if (entry->file_offset >= file_offset + len) {
875                         entry = NULL;
876                         break;
877                 }
878                 entry = NULL;
879                 node = rb_next(node);
880                 if (!node)
881                         break;
882         }
883 out:
884         if (entry) {
885                 refcount_inc(&entry->refs);
886                 trace_btrfs_ordered_extent_lookup_range(inode, entry);
887         }
888         spin_unlock_irq(&tree->lock);
889         return entry;
890 }
891
892 /*
893  * Adds all ordered extents to the given list. The list ends up sorted by the
894  * file_offset of the ordered extents.
895  */
896 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
897                                            struct list_head *list)
898 {
899         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
900         struct rb_node *n;
901
902         ASSERT(inode_is_locked(&inode->vfs_inode));
903
904         spin_lock_irq(&tree->lock);
905         for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
906                 struct btrfs_ordered_extent *ordered;
907
908                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
909
910                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
911                         continue;
912
913                 ASSERT(list_empty(&ordered->log_list));
914                 list_add_tail(&ordered->log_list, list);
915                 refcount_inc(&ordered->refs);
916                 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
917         }
918         spin_unlock_irq(&tree->lock);
919 }
920
921 /*
922  * lookup and return any extent before 'file_offset'.  NULL is returned
923  * if none is found
924  */
925 struct btrfs_ordered_extent *
926 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
927 {
928         struct btrfs_ordered_inode_tree *tree;
929         struct rb_node *node;
930         struct btrfs_ordered_extent *entry = NULL;
931
932         tree = &inode->ordered_tree;
933         spin_lock_irq(&tree->lock);
934         node = tree_search(tree, file_offset);
935         if (!node)
936                 goto out;
937
938         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
939         refcount_inc(&entry->refs);
940         trace_btrfs_ordered_extent_lookup_first(inode, entry);
941 out:
942         spin_unlock_irq(&tree->lock);
943         return entry;
944 }
945
946 /*
947  * Lookup the first ordered extent that overlaps the range
948  * [@file_offset, @file_offset + @len).
949  *
950  * The difference between this and btrfs_lookup_first_ordered_extent() is
951  * that this one won't return any ordered extent that does not overlap the range.
952  * And the difference against btrfs_lookup_ordered_extent() is, this function
953  * ensures the first ordered extent gets returned.
954  */
955 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
956                         struct btrfs_inode *inode, u64 file_offset, u64 len)
957 {
958         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
959         struct rb_node *node;
960         struct rb_node *cur;
961         struct rb_node *prev;
962         struct rb_node *next;
963         struct btrfs_ordered_extent *entry = NULL;
964
965         spin_lock_irq(&tree->lock);
966         node = tree->tree.rb_node;
967         /*
968          * Here we don't want to use tree_search() which will use tree->last
969          * and screw up the search order.
970          * And __tree_search() can't return the adjacent ordered extents
971          * either, thus here we do our own search.
972          */
973         while (node) {
974                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
975
976                 if (file_offset < entry->file_offset) {
977                         node = node->rb_left;
978                 } else if (file_offset >= entry_end(entry)) {
979                         node = node->rb_right;
980                 } else {
981                         /*
982                          * Direct hit, got an ordered extent that starts at
983                          * @file_offset
984                          */
985                         goto out;
986                 }
987         }
988         if (!entry) {
989                 /* Empty tree */
990                 goto out;
991         }
992
993         cur = &entry->rb_node;
994         /* We got an entry around @file_offset, check adjacent entries */
995         if (entry->file_offset < file_offset) {
996                 prev = cur;
997                 next = rb_next(cur);
998         } else {
999                 prev = rb_prev(cur);
1000                 next = cur;
1001         }
1002         if (prev) {
1003                 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1004                 if (range_overlaps(entry, file_offset, len))
1005                         goto out;
1006         }
1007         if (next) {
1008                 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1009                 if (range_overlaps(entry, file_offset, len))
1010                         goto out;
1011         }
1012         /* No ordered extent in the range */
1013         entry = NULL;
1014 out:
1015         if (entry) {
1016                 refcount_inc(&entry->refs);
1017                 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1018         }
1019
1020         spin_unlock_irq(&tree->lock);
1021         return entry;
1022 }
1023
1024 /*
1025  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
1026  * ordered extents in it are run to completion.
1027  *
1028  * @inode:        Inode whose ordered tree is to be searched
1029  * @start:        Beginning of range to flush
1030  * @end:          Last byte of range to lock
1031  * @cached_state: If passed, will return the extent state responsible for the
1032  * locked range. It's the caller's responsibility to free the cached state.
1033  *
1034  * This function always returns with the given range locked, ensuring after it's
1035  * called no order extent can be pending.
1036  */
1037 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1038                                         u64 end,
1039                                         struct extent_state **cached_state)
1040 {
1041         struct btrfs_ordered_extent *ordered;
1042         struct extent_state *cache = NULL;
1043         struct extent_state **cachedp = &cache;
1044
1045         if (cached_state)
1046                 cachedp = cached_state;
1047
1048         while (1) {
1049                 lock_extent(&inode->io_tree, start, end, cachedp);
1050                 ordered = btrfs_lookup_ordered_range(inode, start,
1051                                                      end - start + 1);
1052                 if (!ordered) {
1053                         /*
1054                          * If no external cached_state has been passed then
1055                          * decrement the extra ref taken for cachedp since we
1056                          * aren't exposing it outside of this function
1057                          */
1058                         if (!cached_state)
1059                                 refcount_dec(&cache->refs);
1060                         break;
1061                 }
1062                 unlock_extent(&inode->io_tree, start, end, cachedp);
1063                 btrfs_start_ordered_extent(ordered, 1);
1064                 btrfs_put_ordered_extent(ordered);
1065         }
1066 }
1067
1068 /*
1069  * Lock the passed range and ensure all pending ordered extents in it are run
1070  * to completion in nowait mode.
1071  *
1072  * Return true if btrfs_lock_ordered_range does not return any extents,
1073  * otherwise false.
1074  */
1075 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end)
1076 {
1077         struct btrfs_ordered_extent *ordered;
1078
1079         if (!try_lock_extent(&inode->io_tree, start, end))
1080                 return false;
1081
1082         ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1083         if (!ordered)
1084                 return true;
1085
1086         btrfs_put_ordered_extent(ordered);
1087         unlock_extent(&inode->io_tree, start, end, NULL);
1088
1089         return false;
1090 }
1091
1092
1093 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1094                                 u64 len)
1095 {
1096         struct inode *inode = ordered->inode;
1097         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1098         u64 file_offset = ordered->file_offset + pos;
1099         u64 disk_bytenr = ordered->disk_bytenr + pos;
1100         unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS;
1101
1102         /*
1103          * The splitting extent is already counted and will be added again in
1104          * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting.
1105          */
1106         percpu_counter_add_batch(&fs_info->ordered_bytes, -len,
1107                                  fs_info->delalloc_batch);
1108         WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED));
1109         return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len,
1110                                         disk_bytenr, len, 0, flags,
1111                                         ordered->compress_type);
1112 }
1113
1114 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1115                                 u64 post)
1116 {
1117         struct inode *inode = ordered->inode;
1118         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1119         struct rb_node *node;
1120         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1121         int ret = 0;
1122
1123         trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered);
1124
1125         spin_lock_irq(&tree->lock);
1126         /* Remove from tree once */
1127         node = &ordered->rb_node;
1128         rb_erase(node, &tree->tree);
1129         RB_CLEAR_NODE(node);
1130         if (tree->last == node)
1131                 tree->last = NULL;
1132
1133         ordered->file_offset += pre;
1134         ordered->disk_bytenr += pre;
1135         ordered->num_bytes -= (pre + post);
1136         ordered->disk_num_bytes -= (pre + post);
1137         ordered->bytes_left -= (pre + post);
1138
1139         /* Re-insert the node */
1140         node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1141         if (node)
1142                 btrfs_panic(fs_info, -EEXIST,
1143                         "zoned: inconsistency in ordered tree at offset %llu",
1144                             ordered->file_offset);
1145
1146         spin_unlock_irq(&tree->lock);
1147
1148         if (pre)
1149                 ret = clone_ordered_extent(ordered, 0, pre);
1150         if (ret == 0 && post)
1151                 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1152                                            post);
1153
1154         return ret;
1155 }
1156
1157 int __init ordered_data_init(void)
1158 {
1159         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1160                                      sizeof(struct btrfs_ordered_extent), 0,
1161                                      SLAB_MEM_SPREAD,
1162                                      NULL);
1163         if (!btrfs_ordered_extent_cache)
1164                 return -ENOMEM;
1165
1166         return 0;
1167 }
1168
1169 void __cold ordered_data_exit(void)
1170 {
1171         kmem_cache_destroy(btrfs_ordered_extent_cache);
1172 }