GNU Linux-libre 5.10.219-gnu1
[releases.git] / block / kyber-iosched.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4  * scalable techniques.
5  *
6  * Copyright (C) 2017 Facebook
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/elevator.h>
13 #include <linux/module.h>
14 #include <linux/sbitmap.h>
15
16 #include "blk.h"
17 #include "blk-mq.h"
18 #include "blk-mq-debugfs.h"
19 #include "blk-mq-sched.h"
20 #include "blk-mq-tag.h"
21
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/kyber.h>
24
25 /*
26  * Scheduling domains: the device is divided into multiple domains based on the
27  * request type.
28  */
29 enum {
30         KYBER_READ,
31         KYBER_WRITE,
32         KYBER_DISCARD,
33         KYBER_OTHER,
34         KYBER_NUM_DOMAINS,
35 };
36
37 static const char *kyber_domain_names[] = {
38         [KYBER_READ] = "READ",
39         [KYBER_WRITE] = "WRITE",
40         [KYBER_DISCARD] = "DISCARD",
41         [KYBER_OTHER] = "OTHER",
42 };
43
44 enum {
45         /*
46          * In order to prevent starvation of synchronous requests by a flood of
47          * asynchronous requests, we reserve 25% of requests for synchronous
48          * operations.
49          */
50         KYBER_ASYNC_PERCENT = 75,
51 };
52
53 /*
54  * Maximum device-wide depth for each scheduling domain.
55  *
56  * Even for fast devices with lots of tags like NVMe, you can saturate the
57  * device with only a fraction of the maximum possible queue depth. So, we cap
58  * these to a reasonable value.
59  */
60 static const unsigned int kyber_depth[] = {
61         [KYBER_READ] = 256,
62         [KYBER_WRITE] = 128,
63         [KYBER_DISCARD] = 64,
64         [KYBER_OTHER] = 16,
65 };
66
67 /*
68  * Default latency targets for each scheduling domain.
69  */
70 static const u64 kyber_latency_targets[] = {
71         [KYBER_READ] = 2ULL * NSEC_PER_MSEC,
72         [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
73         [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
74 };
75
76 /*
77  * Batch size (number of requests we'll dispatch in a row) for each scheduling
78  * domain.
79  */
80 static const unsigned int kyber_batch_size[] = {
81         [KYBER_READ] = 16,
82         [KYBER_WRITE] = 8,
83         [KYBER_DISCARD] = 1,
84         [KYBER_OTHER] = 1,
85 };
86
87 /*
88  * Requests latencies are recorded in a histogram with buckets defined relative
89  * to the target latency:
90  *
91  * <= 1/4 * target latency
92  * <= 1/2 * target latency
93  * <= 3/4 * target latency
94  * <= target latency
95  * <= 1 1/4 * target latency
96  * <= 1 1/2 * target latency
97  * <= 1 3/4 * target latency
98  * > 1 3/4 * target latency
99  */
100 enum {
101         /*
102          * The width of the latency histogram buckets is
103          * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
104          */
105         KYBER_LATENCY_SHIFT = 2,
106         /*
107          * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
108          * thus, "good".
109          */
110         KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
111         /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
112         KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
113 };
114
115 /*
116  * We measure both the total latency and the I/O latency (i.e., latency after
117  * submitting to the device).
118  */
119 enum {
120         KYBER_TOTAL_LATENCY,
121         KYBER_IO_LATENCY,
122 };
123
124 static const char *kyber_latency_type_names[] = {
125         [KYBER_TOTAL_LATENCY] = "total",
126         [KYBER_IO_LATENCY] = "I/O",
127 };
128
129 /*
130  * Per-cpu latency histograms: total latency and I/O latency for each scheduling
131  * domain except for KYBER_OTHER.
132  */
133 struct kyber_cpu_latency {
134         atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
135 };
136
137 /*
138  * There is a same mapping between ctx & hctx and kcq & khd,
139  * we use request->mq_ctx->index_hw to index the kcq in khd.
140  */
141 struct kyber_ctx_queue {
142         /*
143          * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
144          * Also protect the rqs on rq_list when merge.
145          */
146         spinlock_t lock;
147         struct list_head rq_list[KYBER_NUM_DOMAINS];
148 } ____cacheline_aligned_in_smp;
149
150 struct kyber_queue_data {
151         struct request_queue *q;
152
153         /*
154          * Each scheduling domain has a limited number of in-flight requests
155          * device-wide, limited by these tokens.
156          */
157         struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
158
159         /*
160          * Async request percentage, converted to per-word depth for
161          * sbitmap_get_shallow().
162          */
163         unsigned int async_depth;
164
165         struct kyber_cpu_latency __percpu *cpu_latency;
166
167         /* Timer for stats aggregation and adjusting domain tokens. */
168         struct timer_list timer;
169
170         unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
171
172         unsigned long latency_timeout[KYBER_OTHER];
173
174         int domain_p99[KYBER_OTHER];
175
176         /* Target latencies in nanoseconds. */
177         u64 latency_targets[KYBER_OTHER];
178 };
179
180 struct kyber_hctx_data {
181         spinlock_t lock;
182         struct list_head rqs[KYBER_NUM_DOMAINS];
183         unsigned int cur_domain;
184         unsigned int batching;
185         struct kyber_ctx_queue *kcqs;
186         struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
187         struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
188         struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
189         atomic_t wait_index[KYBER_NUM_DOMAINS];
190 };
191
192 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
193                              void *key);
194
195 static unsigned int kyber_sched_domain(unsigned int op)
196 {
197         switch (op & REQ_OP_MASK) {
198         case REQ_OP_READ:
199                 return KYBER_READ;
200         case REQ_OP_WRITE:
201                 return KYBER_WRITE;
202         case REQ_OP_DISCARD:
203                 return KYBER_DISCARD;
204         default:
205                 return KYBER_OTHER;
206         }
207 }
208
209 static void flush_latency_buckets(struct kyber_queue_data *kqd,
210                                   struct kyber_cpu_latency *cpu_latency,
211                                   unsigned int sched_domain, unsigned int type)
212 {
213         unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
214         atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
215         unsigned int bucket;
216
217         for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
218                 buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
219 }
220
221 /*
222  * Calculate the histogram bucket with the given percentile rank, or -1 if there
223  * aren't enough samples yet.
224  */
225 static int calculate_percentile(struct kyber_queue_data *kqd,
226                                 unsigned int sched_domain, unsigned int type,
227                                 unsigned int percentile)
228 {
229         unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
230         unsigned int bucket, samples = 0, percentile_samples;
231
232         for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
233                 samples += buckets[bucket];
234
235         if (!samples)
236                 return -1;
237
238         /*
239          * We do the calculation once we have 500 samples or one second passes
240          * since the first sample was recorded, whichever comes first.
241          */
242         if (!kqd->latency_timeout[sched_domain])
243                 kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
244         if (samples < 500 &&
245             time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
246                 return -1;
247         }
248         kqd->latency_timeout[sched_domain] = 0;
249
250         percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
251         for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
252                 if (buckets[bucket] >= percentile_samples)
253                         break;
254                 percentile_samples -= buckets[bucket];
255         }
256         memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
257
258         trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
259                             kyber_latency_type_names[type], percentile,
260                             bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
261
262         return bucket;
263 }
264
265 static void kyber_resize_domain(struct kyber_queue_data *kqd,
266                                 unsigned int sched_domain, unsigned int depth)
267 {
268         depth = clamp(depth, 1U, kyber_depth[sched_domain]);
269         if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
270                 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
271                 trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
272                                    depth);
273         }
274 }
275
276 static void kyber_timer_fn(struct timer_list *t)
277 {
278         struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
279         unsigned int sched_domain;
280         int cpu;
281         bool bad = false;
282
283         /* Sum all of the per-cpu latency histograms. */
284         for_each_online_cpu(cpu) {
285                 struct kyber_cpu_latency *cpu_latency;
286
287                 cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
288                 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
289                         flush_latency_buckets(kqd, cpu_latency, sched_domain,
290                                               KYBER_TOTAL_LATENCY);
291                         flush_latency_buckets(kqd, cpu_latency, sched_domain,
292                                               KYBER_IO_LATENCY);
293                 }
294         }
295
296         /*
297          * Check if any domains have a high I/O latency, which might indicate
298          * congestion in the device. Note that we use the p90; we don't want to
299          * be too sensitive to outliers here.
300          */
301         for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
302                 int p90;
303
304                 p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
305                                            90);
306                 if (p90 >= KYBER_GOOD_BUCKETS)
307                         bad = true;
308         }
309
310         /*
311          * Adjust the scheduling domain depths. If we determined that there was
312          * congestion, we throttle all domains with good latencies. Either way,
313          * we ease up on throttling domains with bad latencies.
314          */
315         for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
316                 unsigned int orig_depth, depth;
317                 int p99;
318
319                 p99 = calculate_percentile(kqd, sched_domain,
320                                            KYBER_TOTAL_LATENCY, 99);
321                 /*
322                  * This is kind of subtle: different domains will not
323                  * necessarily have enough samples to calculate the latency
324                  * percentiles during the same window, so we have to remember
325                  * the p99 for the next time we observe congestion; once we do,
326                  * we don't want to throttle again until we get more data, so we
327                  * reset it to -1.
328                  */
329                 if (bad) {
330                         if (p99 < 0)
331                                 p99 = kqd->domain_p99[sched_domain];
332                         kqd->domain_p99[sched_domain] = -1;
333                 } else if (p99 >= 0) {
334                         kqd->domain_p99[sched_domain] = p99;
335                 }
336                 if (p99 < 0)
337                         continue;
338
339                 /*
340                  * If this domain has bad latency, throttle less. Otherwise,
341                  * throttle more iff we determined that there is congestion.
342                  *
343                  * The new depth is scaled linearly with the p99 latency vs the
344                  * latency target. E.g., if the p99 is 3/4 of the target, then
345                  * we throttle down to 3/4 of the current depth, and if the p99
346                  * is 2x the target, then we double the depth.
347                  */
348                 if (bad || p99 >= KYBER_GOOD_BUCKETS) {
349                         orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
350                         depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
351                         kyber_resize_domain(kqd, sched_domain, depth);
352                 }
353         }
354 }
355
356 static unsigned int kyber_sched_tags_shift(struct request_queue *q)
357 {
358         /*
359          * All of the hardware queues have the same depth, so we can just grab
360          * the shift of the first one.
361          */
362         return q->queue_hw_ctx[0]->sched_tags->bitmap_tags->sb.shift;
363 }
364
365 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
366 {
367         struct kyber_queue_data *kqd;
368         unsigned int shift;
369         int ret = -ENOMEM;
370         int i;
371
372         kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
373         if (!kqd)
374                 goto err;
375
376         kqd->q = q;
377
378         kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
379                                             GFP_KERNEL | __GFP_ZERO);
380         if (!kqd->cpu_latency)
381                 goto err_kqd;
382
383         timer_setup(&kqd->timer, kyber_timer_fn, 0);
384
385         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
386                 WARN_ON(!kyber_depth[i]);
387                 WARN_ON(!kyber_batch_size[i]);
388                 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
389                                               kyber_depth[i], -1, false,
390                                               GFP_KERNEL, q->node);
391                 if (ret) {
392                         while (--i >= 0)
393                                 sbitmap_queue_free(&kqd->domain_tokens[i]);
394                         goto err_buckets;
395                 }
396         }
397
398         for (i = 0; i < KYBER_OTHER; i++) {
399                 kqd->domain_p99[i] = -1;
400                 kqd->latency_targets[i] = kyber_latency_targets[i];
401         }
402
403         shift = kyber_sched_tags_shift(q);
404         kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
405
406         return kqd;
407
408 err_buckets:
409         free_percpu(kqd->cpu_latency);
410 err_kqd:
411         kfree(kqd);
412 err:
413         return ERR_PTR(ret);
414 }
415
416 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
417 {
418         struct kyber_queue_data *kqd;
419         struct elevator_queue *eq;
420
421         eq = elevator_alloc(q, e);
422         if (!eq)
423                 return -ENOMEM;
424
425         kqd = kyber_queue_data_alloc(q);
426         if (IS_ERR(kqd)) {
427                 kobject_put(&eq->kobj);
428                 return PTR_ERR(kqd);
429         }
430
431         blk_stat_enable_accounting(q);
432
433         eq->elevator_data = kqd;
434         q->elevator = eq;
435
436         return 0;
437 }
438
439 static void kyber_exit_sched(struct elevator_queue *e)
440 {
441         struct kyber_queue_data *kqd = e->elevator_data;
442         int i;
443
444         del_timer_sync(&kqd->timer);
445
446         for (i = 0; i < KYBER_NUM_DOMAINS; i++)
447                 sbitmap_queue_free(&kqd->domain_tokens[i]);
448         free_percpu(kqd->cpu_latency);
449         kfree(kqd);
450 }
451
452 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
453 {
454         unsigned int i;
455
456         spin_lock_init(&kcq->lock);
457         for (i = 0; i < KYBER_NUM_DOMAINS; i++)
458                 INIT_LIST_HEAD(&kcq->rq_list[i]);
459 }
460
461 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
462 {
463         struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
464         struct kyber_hctx_data *khd;
465         int i;
466
467         khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
468         if (!khd)
469                 return -ENOMEM;
470
471         khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
472                                        sizeof(struct kyber_ctx_queue),
473                                        GFP_KERNEL, hctx->numa_node);
474         if (!khd->kcqs)
475                 goto err_khd;
476
477         for (i = 0; i < hctx->nr_ctx; i++)
478                 kyber_ctx_queue_init(&khd->kcqs[i]);
479
480         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
481                 if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
482                                       ilog2(8), GFP_KERNEL, hctx->numa_node)) {
483                         while (--i >= 0)
484                                 sbitmap_free(&khd->kcq_map[i]);
485                         goto err_kcqs;
486                 }
487         }
488
489         spin_lock_init(&khd->lock);
490
491         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
492                 INIT_LIST_HEAD(&khd->rqs[i]);
493                 khd->domain_wait[i].sbq = NULL;
494                 init_waitqueue_func_entry(&khd->domain_wait[i].wait,
495                                           kyber_domain_wake);
496                 khd->domain_wait[i].wait.private = hctx;
497                 INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
498                 atomic_set(&khd->wait_index[i], 0);
499         }
500
501         khd->cur_domain = 0;
502         khd->batching = 0;
503
504         hctx->sched_data = khd;
505         sbitmap_queue_min_shallow_depth(hctx->sched_tags->bitmap_tags,
506                                         kqd->async_depth);
507
508         return 0;
509
510 err_kcqs:
511         kfree(khd->kcqs);
512 err_khd:
513         kfree(khd);
514         return -ENOMEM;
515 }
516
517 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
518 {
519         struct kyber_hctx_data *khd = hctx->sched_data;
520         int i;
521
522         for (i = 0; i < KYBER_NUM_DOMAINS; i++)
523                 sbitmap_free(&khd->kcq_map[i]);
524         kfree(khd->kcqs);
525         kfree(hctx->sched_data);
526 }
527
528 static int rq_get_domain_token(struct request *rq)
529 {
530         return (long)rq->elv.priv[0];
531 }
532
533 static void rq_set_domain_token(struct request *rq, int token)
534 {
535         rq->elv.priv[0] = (void *)(long)token;
536 }
537
538 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
539                                   struct request *rq)
540 {
541         unsigned int sched_domain;
542         int nr;
543
544         nr = rq_get_domain_token(rq);
545         if (nr != -1) {
546                 sched_domain = kyber_sched_domain(rq->cmd_flags);
547                 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
548                                     rq->mq_ctx->cpu);
549         }
550 }
551
552 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
553 {
554         /*
555          * We use the scheduler tags as per-hardware queue queueing tokens.
556          * Async requests can be limited at this stage.
557          */
558         if (!op_is_sync(op)) {
559                 struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
560
561                 data->shallow_depth = kqd->async_depth;
562         }
563 }
564
565 static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
566                 unsigned int nr_segs)
567 {
568         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
569         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
570         struct kyber_hctx_data *khd = hctx->sched_data;
571         struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
572         unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
573         struct list_head *rq_list = &kcq->rq_list[sched_domain];
574         bool merged;
575
576         spin_lock(&kcq->lock);
577         merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
578         spin_unlock(&kcq->lock);
579
580         return merged;
581 }
582
583 static void kyber_prepare_request(struct request *rq)
584 {
585         rq_set_domain_token(rq, -1);
586 }
587
588 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
589                                   struct list_head *rq_list, bool at_head)
590 {
591         struct kyber_hctx_data *khd = hctx->sched_data;
592         struct request *rq, *next;
593
594         list_for_each_entry_safe(rq, next, rq_list, queuelist) {
595                 unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
596                 struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
597                 struct list_head *head = &kcq->rq_list[sched_domain];
598
599                 spin_lock(&kcq->lock);
600                 if (at_head)
601                         list_move(&rq->queuelist, head);
602                 else
603                         list_move_tail(&rq->queuelist, head);
604                 sbitmap_set_bit(&khd->kcq_map[sched_domain],
605                                 rq->mq_ctx->index_hw[hctx->type]);
606                 blk_mq_sched_request_inserted(rq);
607                 spin_unlock(&kcq->lock);
608         }
609 }
610
611 static void kyber_finish_request(struct request *rq)
612 {
613         struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
614
615         rq_clear_domain_token(kqd, rq);
616 }
617
618 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
619                                unsigned int sched_domain, unsigned int type,
620                                u64 target, u64 latency)
621 {
622         unsigned int bucket;
623         u64 divisor;
624
625         if (latency > 0) {
626                 divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
627                 bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
628                                KYBER_LATENCY_BUCKETS - 1);
629         } else {
630                 bucket = 0;
631         }
632
633         atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
634 }
635
636 static void kyber_completed_request(struct request *rq, u64 now)
637 {
638         struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
639         struct kyber_cpu_latency *cpu_latency;
640         unsigned int sched_domain;
641         u64 target;
642
643         sched_domain = kyber_sched_domain(rq->cmd_flags);
644         if (sched_domain == KYBER_OTHER)
645                 return;
646
647         cpu_latency = get_cpu_ptr(kqd->cpu_latency);
648         target = kqd->latency_targets[sched_domain];
649         add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
650                            target, now - rq->start_time_ns);
651         add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
652                            now - rq->io_start_time_ns);
653         put_cpu_ptr(kqd->cpu_latency);
654
655         timer_reduce(&kqd->timer, jiffies + HZ / 10);
656 }
657
658 struct flush_kcq_data {
659         struct kyber_hctx_data *khd;
660         unsigned int sched_domain;
661         struct list_head *list;
662 };
663
664 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
665 {
666         struct flush_kcq_data *flush_data = data;
667         struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
668
669         spin_lock(&kcq->lock);
670         list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
671                               flush_data->list);
672         sbitmap_clear_bit(sb, bitnr);
673         spin_unlock(&kcq->lock);
674
675         return true;
676 }
677
678 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
679                                   unsigned int sched_domain,
680                                   struct list_head *list)
681 {
682         struct flush_kcq_data data = {
683                 .khd = khd,
684                 .sched_domain = sched_domain,
685                 .list = list,
686         };
687
688         sbitmap_for_each_set(&khd->kcq_map[sched_domain],
689                              flush_busy_kcq, &data);
690 }
691
692 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
693                              void *key)
694 {
695         struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
696         struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
697
698         sbitmap_del_wait_queue(wait);
699         blk_mq_run_hw_queue(hctx, true);
700         return 1;
701 }
702
703 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
704                                   struct kyber_hctx_data *khd,
705                                   struct blk_mq_hw_ctx *hctx)
706 {
707         unsigned int sched_domain = khd->cur_domain;
708         struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
709         struct sbq_wait *wait = &khd->domain_wait[sched_domain];
710         struct sbq_wait_state *ws;
711         int nr;
712
713         nr = __sbitmap_queue_get(domain_tokens);
714
715         /*
716          * If we failed to get a domain token, make sure the hardware queue is
717          * run when one becomes available. Note that this is serialized on
718          * khd->lock, but we still need to be careful about the waker.
719          */
720         if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
721                 ws = sbq_wait_ptr(domain_tokens,
722                                   &khd->wait_index[sched_domain]);
723                 khd->domain_ws[sched_domain] = ws;
724                 sbitmap_add_wait_queue(domain_tokens, ws, wait);
725
726                 /*
727                  * Try again in case a token was freed before we got on the wait
728                  * queue.
729                  */
730                 nr = __sbitmap_queue_get(domain_tokens);
731         }
732
733         /*
734          * If we got a token while we were on the wait queue, remove ourselves
735          * from the wait queue to ensure that all wake ups make forward
736          * progress. It's possible that the waker already deleted the entry
737          * between the !list_empty_careful() check and us grabbing the lock, but
738          * list_del_init() is okay with that.
739          */
740         if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
741                 ws = khd->domain_ws[sched_domain];
742                 spin_lock_irq(&ws->wait.lock);
743                 sbitmap_del_wait_queue(wait);
744                 spin_unlock_irq(&ws->wait.lock);
745         }
746
747         return nr;
748 }
749
750 static struct request *
751 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
752                           struct kyber_hctx_data *khd,
753                           struct blk_mq_hw_ctx *hctx)
754 {
755         struct list_head *rqs;
756         struct request *rq;
757         int nr;
758
759         rqs = &khd->rqs[khd->cur_domain];
760
761         /*
762          * If we already have a flushed request, then we just need to get a
763          * token for it. Otherwise, if there are pending requests in the kcqs,
764          * flush the kcqs, but only if we can get a token. If not, we should
765          * leave the requests in the kcqs so that they can be merged. Note that
766          * khd->lock serializes the flushes, so if we observed any bit set in
767          * the kcq_map, we will always get a request.
768          */
769         rq = list_first_entry_or_null(rqs, struct request, queuelist);
770         if (rq) {
771                 nr = kyber_get_domain_token(kqd, khd, hctx);
772                 if (nr >= 0) {
773                         khd->batching++;
774                         rq_set_domain_token(rq, nr);
775                         list_del_init(&rq->queuelist);
776                         return rq;
777                 } else {
778                         trace_kyber_throttled(kqd->q,
779                                               kyber_domain_names[khd->cur_domain]);
780                 }
781         } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
782                 nr = kyber_get_domain_token(kqd, khd, hctx);
783                 if (nr >= 0) {
784                         kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
785                         rq = list_first_entry(rqs, struct request, queuelist);
786                         khd->batching++;
787                         rq_set_domain_token(rq, nr);
788                         list_del_init(&rq->queuelist);
789                         return rq;
790                 } else {
791                         trace_kyber_throttled(kqd->q,
792                                               kyber_domain_names[khd->cur_domain]);
793                 }
794         }
795
796         /* There were either no pending requests or no tokens. */
797         return NULL;
798 }
799
800 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
801 {
802         struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
803         struct kyber_hctx_data *khd = hctx->sched_data;
804         struct request *rq;
805         int i;
806
807         spin_lock(&khd->lock);
808
809         /*
810          * First, if we are still entitled to batch, try to dispatch a request
811          * from the batch.
812          */
813         if (khd->batching < kyber_batch_size[khd->cur_domain]) {
814                 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
815                 if (rq)
816                         goto out;
817         }
818
819         /*
820          * Either,
821          * 1. We were no longer entitled to a batch.
822          * 2. The domain we were batching didn't have any requests.
823          * 3. The domain we were batching was out of tokens.
824          *
825          * Start another batch. Note that this wraps back around to the original
826          * domain if no other domains have requests or tokens.
827          */
828         khd->batching = 0;
829         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
830                 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
831                         khd->cur_domain = 0;
832                 else
833                         khd->cur_domain++;
834
835                 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
836                 if (rq)
837                         goto out;
838         }
839
840         rq = NULL;
841 out:
842         spin_unlock(&khd->lock);
843         return rq;
844 }
845
846 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
847 {
848         struct kyber_hctx_data *khd = hctx->sched_data;
849         int i;
850
851         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
852                 if (!list_empty_careful(&khd->rqs[i]) ||
853                     sbitmap_any_bit_set(&khd->kcq_map[i]))
854                         return true;
855         }
856
857         return false;
858 }
859
860 #define KYBER_LAT_SHOW_STORE(domain, name)                              \
861 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,        \
862                                        char *page)                      \
863 {                                                                       \
864         struct kyber_queue_data *kqd = e->elevator_data;                \
865                                                                         \
866         return sprintf(page, "%llu\n", kqd->latency_targets[domain]);   \
867 }                                                                       \
868                                                                         \
869 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,       \
870                                         const char *page, size_t count) \
871 {                                                                       \
872         struct kyber_queue_data *kqd = e->elevator_data;                \
873         unsigned long long nsec;                                        \
874         int ret;                                                        \
875                                                                         \
876         ret = kstrtoull(page, 10, &nsec);                               \
877         if (ret)                                                        \
878                 return ret;                                             \
879                                                                         \
880         kqd->latency_targets[domain] = nsec;                            \
881                                                                         \
882         return count;                                                   \
883 }
884 KYBER_LAT_SHOW_STORE(KYBER_READ, read);
885 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
886 #undef KYBER_LAT_SHOW_STORE
887
888 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
889 static struct elv_fs_entry kyber_sched_attrs[] = {
890         KYBER_LAT_ATTR(read),
891         KYBER_LAT_ATTR(write),
892         __ATTR_NULL
893 };
894 #undef KYBER_LAT_ATTR
895
896 #ifdef CONFIG_BLK_DEBUG_FS
897 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)                        \
898 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)   \
899 {                                                                       \
900         struct request_queue *q = data;                                 \
901         struct kyber_queue_data *kqd = q->elevator->elevator_data;      \
902                                                                         \
903         sbitmap_queue_show(&kqd->domain_tokens[domain], m);             \
904         return 0;                                                       \
905 }                                                                       \
906                                                                         \
907 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)  \
908         __acquires(&khd->lock)                                          \
909 {                                                                       \
910         struct blk_mq_hw_ctx *hctx = m->private;                        \
911         struct kyber_hctx_data *khd = hctx->sched_data;                 \
912                                                                         \
913         spin_lock(&khd->lock);                                          \
914         return seq_list_start(&khd->rqs[domain], *pos);                 \
915 }                                                                       \
916                                                                         \
917 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,       \
918                                      loff_t *pos)                       \
919 {                                                                       \
920         struct blk_mq_hw_ctx *hctx = m->private;                        \
921         struct kyber_hctx_data *khd = hctx->sched_data;                 \
922                                                                         \
923         return seq_list_next(v, &khd->rqs[domain], pos);                \
924 }                                                                       \
925                                                                         \
926 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)        \
927         __releases(&khd->lock)                                          \
928 {                                                                       \
929         struct blk_mq_hw_ctx *hctx = m->private;                        \
930         struct kyber_hctx_data *khd = hctx->sched_data;                 \
931                                                                         \
932         spin_unlock(&khd->lock);                                        \
933 }                                                                       \
934                                                                         \
935 static const struct seq_operations kyber_##name##_rqs_seq_ops = {       \
936         .start  = kyber_##name##_rqs_start,                             \
937         .next   = kyber_##name##_rqs_next,                              \
938         .stop   = kyber_##name##_rqs_stop,                              \
939         .show   = blk_mq_debugfs_rq_show,                               \
940 };                                                                      \
941                                                                         \
942 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)  \
943 {                                                                       \
944         struct blk_mq_hw_ctx *hctx = data;                              \
945         struct kyber_hctx_data *khd = hctx->sched_data;                 \
946         wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;      \
947                                                                         \
948         seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));       \
949         return 0;                                                       \
950 }
951 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
952 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
953 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
954 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
955 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
956
957 static int kyber_async_depth_show(void *data, struct seq_file *m)
958 {
959         struct request_queue *q = data;
960         struct kyber_queue_data *kqd = q->elevator->elevator_data;
961
962         seq_printf(m, "%u\n", kqd->async_depth);
963         return 0;
964 }
965
966 static int kyber_cur_domain_show(void *data, struct seq_file *m)
967 {
968         struct blk_mq_hw_ctx *hctx = data;
969         struct kyber_hctx_data *khd = hctx->sched_data;
970
971         seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
972         return 0;
973 }
974
975 static int kyber_batching_show(void *data, struct seq_file *m)
976 {
977         struct blk_mq_hw_ctx *hctx = data;
978         struct kyber_hctx_data *khd = hctx->sched_data;
979
980         seq_printf(m, "%u\n", khd->batching);
981         return 0;
982 }
983
984 #define KYBER_QUEUE_DOMAIN_ATTRS(name)  \
985         {#name "_tokens", 0400, kyber_##name##_tokens_show}
986 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
987         KYBER_QUEUE_DOMAIN_ATTRS(read),
988         KYBER_QUEUE_DOMAIN_ATTRS(write),
989         KYBER_QUEUE_DOMAIN_ATTRS(discard),
990         KYBER_QUEUE_DOMAIN_ATTRS(other),
991         {"async_depth", 0400, kyber_async_depth_show},
992         {},
993 };
994 #undef KYBER_QUEUE_DOMAIN_ATTRS
995
996 #define KYBER_HCTX_DOMAIN_ATTRS(name)                                   \
997         {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},   \
998         {#name "_waiting", 0400, kyber_##name##_waiting_show}
999 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
1000         KYBER_HCTX_DOMAIN_ATTRS(read),
1001         KYBER_HCTX_DOMAIN_ATTRS(write),
1002         KYBER_HCTX_DOMAIN_ATTRS(discard),
1003         KYBER_HCTX_DOMAIN_ATTRS(other),
1004         {"cur_domain", 0400, kyber_cur_domain_show},
1005         {"batching", 0400, kyber_batching_show},
1006         {},
1007 };
1008 #undef KYBER_HCTX_DOMAIN_ATTRS
1009 #endif
1010
1011 static struct elevator_type kyber_sched = {
1012         .ops = {
1013                 .init_sched = kyber_init_sched,
1014                 .exit_sched = kyber_exit_sched,
1015                 .init_hctx = kyber_init_hctx,
1016                 .exit_hctx = kyber_exit_hctx,
1017                 .limit_depth = kyber_limit_depth,
1018                 .bio_merge = kyber_bio_merge,
1019                 .prepare_request = kyber_prepare_request,
1020                 .insert_requests = kyber_insert_requests,
1021                 .finish_request = kyber_finish_request,
1022                 .requeue_request = kyber_finish_request,
1023                 .completed_request = kyber_completed_request,
1024                 .dispatch_request = kyber_dispatch_request,
1025                 .has_work = kyber_has_work,
1026         },
1027 #ifdef CONFIG_BLK_DEBUG_FS
1028         .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1029         .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1030 #endif
1031         .elevator_attrs = kyber_sched_attrs,
1032         .elevator_name = "kyber",
1033         .elevator_owner = THIS_MODULE,
1034 };
1035
1036 static int __init kyber_init(void)
1037 {
1038         return elv_register(&kyber_sched);
1039 }
1040
1041 static void __exit kyber_exit(void)
1042 {
1043         elv_unregister(&kyber_sched);
1044 }
1045
1046 module_init(kyber_init);
1047 module_exit(kyber_exit);
1048
1049 MODULE_AUTHOR("Omar Sandoval");
1050 MODULE_LICENSE("GPL");
1051 MODULE_DESCRIPTION("Kyber I/O scheduler");