GNU Linux-libre 6.0.15-gnu
[releases.git] / block / blk-throttle.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include "blk.h"
14 #include "blk-cgroup-rwstat.h"
15 #include "blk-stat.h"
16 #include "blk-throttle.h"
17
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 #define MIN_THROTL_BPS (320 * 1024)
30 #define MIN_THROTL_IOPS (10)
31 #define DFL_LATENCY_TARGET (-1L)
32 #define DFL_IDLE_THRESHOLD (0)
33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34 #define LATENCY_FILTERED_SSD (0)
35 /*
36  * For HD, very small latency comes from sequential IO. Such IO is helpless to
37  * help determine if its IO is impacted by others, hence we ignore the IO
38  */
39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
40
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
43
44 #define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
45
46 /* We measure latency for request size from <= 4k to >= 1M */
47 #define LATENCY_BUCKET_SIZE 9
48
49 struct latency_bucket {
50         unsigned long total_latency; /* ns / 1024 */
51         int samples;
52 };
53
54 struct avg_latency_bucket {
55         unsigned long latency; /* ns / 1024 */
56         bool valid;
57 };
58
59 struct throtl_data
60 {
61         /* service tree for active throtl groups */
62         struct throtl_service_queue service_queue;
63
64         struct request_queue *queue;
65
66         /* Total Number of queued bios on READ and WRITE lists */
67         unsigned int nr_queued[2];
68
69         unsigned int throtl_slice;
70
71         /* Work for dispatching throttled bios */
72         struct work_struct dispatch_work;
73         unsigned int limit_index;
74         bool limit_valid[LIMIT_CNT];
75
76         unsigned long low_upgrade_time;
77         unsigned long low_downgrade_time;
78
79         unsigned int scale;
80
81         struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82         struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83         struct latency_bucket __percpu *latency_buckets[2];
84         unsigned long last_calculate_time;
85         unsigned long filtered_latency;
86
87         bool track_bio_latency;
88 };
89
90 static void throtl_pending_timer_fn(struct timer_list *t);
91
92 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
93 {
94         return pd_to_blkg(&tg->pd);
95 }
96
97 /**
98  * sq_to_tg - return the throl_grp the specified service queue belongs to
99  * @sq: the throtl_service_queue of interest
100  *
101  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
102  * embedded in throtl_data, %NULL is returned.
103  */
104 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105 {
106         if (sq && sq->parent_sq)
107                 return container_of(sq, struct throtl_grp, service_queue);
108         else
109                 return NULL;
110 }
111
112 /**
113  * sq_to_td - return throtl_data the specified service queue belongs to
114  * @sq: the throtl_service_queue of interest
115  *
116  * A service_queue can be embedded in either a throtl_grp or throtl_data.
117  * Determine the associated throtl_data accordingly and return it.
118  */
119 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120 {
121         struct throtl_grp *tg = sq_to_tg(sq);
122
123         if (tg)
124                 return tg->td;
125         else
126                 return container_of(sq, struct throtl_data, service_queue);
127 }
128
129 /*
130  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131  * make the IO dispatch more smooth.
132  * Scale up: linearly scale up according to lapsed time since upgrade. For
133  *           every throtl_slice, the limit scales up 1/2 .low limit till the
134  *           limit hits .max limit
135  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136  */
137 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138 {
139         /* arbitrary value to avoid too big scale */
140         if (td->scale < 4096 && time_after_eq(jiffies,
141             td->low_upgrade_time + td->scale * td->throtl_slice))
142                 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143
144         return low + (low >> 1) * td->scale;
145 }
146
147 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148 {
149         struct blkcg_gq *blkg = tg_to_blkg(tg);
150         struct throtl_data *td;
151         uint64_t ret;
152
153         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154                 return U64_MAX;
155
156         td = tg->td;
157         ret = tg->bps[rw][td->limit_index];
158         if (ret == 0 && td->limit_index == LIMIT_LOW) {
159                 /* intermediate node or iops isn't 0 */
160                 if (!list_empty(&blkg->blkcg->css.children) ||
161                     tg->iops[rw][td->limit_index])
162                         return U64_MAX;
163                 else
164                         return MIN_THROTL_BPS;
165         }
166
167         if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168             tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169                 uint64_t adjusted;
170
171                 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172                 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173         }
174         return ret;
175 }
176
177 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178 {
179         struct blkcg_gq *blkg = tg_to_blkg(tg);
180         struct throtl_data *td;
181         unsigned int ret;
182
183         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184                 return UINT_MAX;
185
186         td = tg->td;
187         ret = tg->iops[rw][td->limit_index];
188         if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189                 /* intermediate node or bps isn't 0 */
190                 if (!list_empty(&blkg->blkcg->css.children) ||
191                     tg->bps[rw][td->limit_index])
192                         return UINT_MAX;
193                 else
194                         return MIN_THROTL_IOPS;
195         }
196
197         if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198             tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199                 uint64_t adjusted;
200
201                 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202                 if (adjusted > UINT_MAX)
203                         adjusted = UINT_MAX;
204                 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205         }
206         return ret;
207 }
208
209 #define request_bucket_index(sectors) \
210         clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211
212 /**
213  * throtl_log - log debug message via blktrace
214  * @sq: the service_queue being reported
215  * @fmt: printf format string
216  * @args: printf args
217  *
218  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219  * throtl_grp; otherwise, just "throtl".
220  */
221 #define throtl_log(sq, fmt, args...)    do {                            \
222         struct throtl_grp *__tg = sq_to_tg((sq));                       \
223         struct throtl_data *__td = sq_to_td((sq));                      \
224                                                                         \
225         (void)__td;                                                     \
226         if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
227                 break;                                                  \
228         if ((__tg)) {                                                   \
229                 blk_add_cgroup_trace_msg(__td->queue,                   \
230                         &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
231         } else {                                                        \
232                 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
233         }                                                               \
234 } while (0)
235
236 static inline unsigned int throtl_bio_data_size(struct bio *bio)
237 {
238         /* assume it's one sector */
239         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240                 return 512;
241         return bio->bi_iter.bi_size;
242 }
243
244 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245 {
246         INIT_LIST_HEAD(&qn->node);
247         bio_list_init(&qn->bios);
248         qn->tg = tg;
249 }
250
251 /**
252  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253  * @bio: bio being added
254  * @qn: qnode to add bio to
255  * @queued: the service_queue->queued[] list @qn belongs to
256  *
257  * Add @bio to @qn and put @qn on @queued if it's not already on.
258  * @qn->tg's reference count is bumped when @qn is activated.  See the
259  * comment on top of throtl_qnode definition for details.
260  */
261 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262                                  struct list_head *queued)
263 {
264         bio_list_add(&qn->bios, bio);
265         if (list_empty(&qn->node)) {
266                 list_add_tail(&qn->node, queued);
267                 blkg_get(tg_to_blkg(qn->tg));
268         }
269 }
270
271 /**
272  * throtl_peek_queued - peek the first bio on a qnode list
273  * @queued: the qnode list to peek
274  */
275 static struct bio *throtl_peek_queued(struct list_head *queued)
276 {
277         struct throtl_qnode *qn;
278         struct bio *bio;
279
280         if (list_empty(queued))
281                 return NULL;
282
283         qn = list_first_entry(queued, struct throtl_qnode, node);
284         bio = bio_list_peek(&qn->bios);
285         WARN_ON_ONCE(!bio);
286         return bio;
287 }
288
289 /**
290  * throtl_pop_queued - pop the first bio form a qnode list
291  * @queued: the qnode list to pop a bio from
292  * @tg_to_put: optional out argument for throtl_grp to put
293  *
294  * Pop the first bio from the qnode list @queued.  After popping, the first
295  * qnode is removed from @queued if empty or moved to the end of @queued so
296  * that the popping order is round-robin.
297  *
298  * When the first qnode is removed, its associated throtl_grp should be put
299  * too.  If @tg_to_put is NULL, this function automatically puts it;
300  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301  * responsible for putting it.
302  */
303 static struct bio *throtl_pop_queued(struct list_head *queued,
304                                      struct throtl_grp **tg_to_put)
305 {
306         struct throtl_qnode *qn;
307         struct bio *bio;
308
309         if (list_empty(queued))
310                 return NULL;
311
312         qn = list_first_entry(queued, struct throtl_qnode, node);
313         bio = bio_list_pop(&qn->bios);
314         WARN_ON_ONCE(!bio);
315
316         if (bio_list_empty(&qn->bios)) {
317                 list_del_init(&qn->node);
318                 if (tg_to_put)
319                         *tg_to_put = qn->tg;
320                 else
321                         blkg_put(tg_to_blkg(qn->tg));
322         } else {
323                 list_move_tail(&qn->node, queued);
324         }
325
326         return bio;
327 }
328
329 /* init a service_queue, assumes the caller zeroed it */
330 static void throtl_service_queue_init(struct throtl_service_queue *sq)
331 {
332         INIT_LIST_HEAD(&sq->queued[0]);
333         INIT_LIST_HEAD(&sq->queued[1]);
334         sq->pending_tree = RB_ROOT_CACHED;
335         timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
336 }
337
338 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
339                                                 struct request_queue *q,
340                                                 struct blkcg *blkcg)
341 {
342         struct throtl_grp *tg;
343         int rw;
344
345         tg = kzalloc_node(sizeof(*tg), gfp, q->node);
346         if (!tg)
347                 return NULL;
348
349         if (blkg_rwstat_init(&tg->stat_bytes, gfp))
350                 goto err_free_tg;
351
352         if (blkg_rwstat_init(&tg->stat_ios, gfp))
353                 goto err_exit_stat_bytes;
354
355         throtl_service_queue_init(&tg->service_queue);
356
357         for (rw = READ; rw <= WRITE; rw++) {
358                 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
359                 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
360         }
361
362         RB_CLEAR_NODE(&tg->rb_node);
363         tg->bps[READ][LIMIT_MAX] = U64_MAX;
364         tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
365         tg->iops[READ][LIMIT_MAX] = UINT_MAX;
366         tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
367         tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
368         tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
369         tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
370         tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
371         /* LIMIT_LOW will have default value 0 */
372
373         tg->latency_target = DFL_LATENCY_TARGET;
374         tg->latency_target_conf = DFL_LATENCY_TARGET;
375         tg->idletime_threshold = DFL_IDLE_THRESHOLD;
376         tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
377
378         return &tg->pd;
379
380 err_exit_stat_bytes:
381         blkg_rwstat_exit(&tg->stat_bytes);
382 err_free_tg:
383         kfree(tg);
384         return NULL;
385 }
386
387 static void throtl_pd_init(struct blkg_policy_data *pd)
388 {
389         struct throtl_grp *tg = pd_to_tg(pd);
390         struct blkcg_gq *blkg = tg_to_blkg(tg);
391         struct throtl_data *td = blkg->q->td;
392         struct throtl_service_queue *sq = &tg->service_queue;
393
394         /*
395          * If on the default hierarchy, we switch to properly hierarchical
396          * behavior where limits on a given throtl_grp are applied to the
397          * whole subtree rather than just the group itself.  e.g. If 16M
398          * read_bps limit is set on the root group, the whole system can't
399          * exceed 16M for the device.
400          *
401          * If not on the default hierarchy, the broken flat hierarchy
402          * behavior is retained where all throtl_grps are treated as if
403          * they're all separate root groups right below throtl_data.
404          * Limits of a group don't interact with limits of other groups
405          * regardless of the position of the group in the hierarchy.
406          */
407         sq->parent_sq = &td->service_queue;
408         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
409                 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
410         tg->td = td;
411 }
412
413 /*
414  * Set has_rules[] if @tg or any of its parents have limits configured.
415  * This doesn't require walking up to the top of the hierarchy as the
416  * parent's has_rules[] is guaranteed to be correct.
417  */
418 static void tg_update_has_rules(struct throtl_grp *tg)
419 {
420         struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
421         struct throtl_data *td = tg->td;
422         int rw;
423         int has_iops_limit = 0;
424
425         for (rw = READ; rw <= WRITE; rw++) {
426                 unsigned int iops_limit = tg_iops_limit(tg, rw);
427
428                 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
429                         (td->limit_valid[td->limit_index] &&
430                          (tg_bps_limit(tg, rw) != U64_MAX ||
431                           iops_limit != UINT_MAX));
432
433                 if (iops_limit != UINT_MAX)
434                         has_iops_limit = 1;
435         }
436
437         if (has_iops_limit)
438                 tg->flags |= THROTL_TG_HAS_IOPS_LIMIT;
439         else
440                 tg->flags &= ~THROTL_TG_HAS_IOPS_LIMIT;
441 }
442
443 static void throtl_pd_online(struct blkg_policy_data *pd)
444 {
445         struct throtl_grp *tg = pd_to_tg(pd);
446         /*
447          * We don't want new groups to escape the limits of its ancestors.
448          * Update has_rules[] after a new group is brought online.
449          */
450         tg_update_has_rules(tg);
451 }
452
453 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
454 static void blk_throtl_update_limit_valid(struct throtl_data *td)
455 {
456         struct cgroup_subsys_state *pos_css;
457         struct blkcg_gq *blkg;
458         bool low_valid = false;
459
460         rcu_read_lock();
461         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
462                 struct throtl_grp *tg = blkg_to_tg(blkg);
463
464                 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
465                     tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
466                         low_valid = true;
467                         break;
468                 }
469         }
470         rcu_read_unlock();
471
472         td->limit_valid[LIMIT_LOW] = low_valid;
473 }
474 #else
475 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
476 {
477 }
478 #endif
479
480 static void throtl_upgrade_state(struct throtl_data *td);
481 static void throtl_pd_offline(struct blkg_policy_data *pd)
482 {
483         struct throtl_grp *tg = pd_to_tg(pd);
484
485         tg->bps[READ][LIMIT_LOW] = 0;
486         tg->bps[WRITE][LIMIT_LOW] = 0;
487         tg->iops[READ][LIMIT_LOW] = 0;
488         tg->iops[WRITE][LIMIT_LOW] = 0;
489
490         blk_throtl_update_limit_valid(tg->td);
491
492         if (!tg->td->limit_valid[tg->td->limit_index])
493                 throtl_upgrade_state(tg->td);
494 }
495
496 static void throtl_pd_free(struct blkg_policy_data *pd)
497 {
498         struct throtl_grp *tg = pd_to_tg(pd);
499
500         del_timer_sync(&tg->service_queue.pending_timer);
501         blkg_rwstat_exit(&tg->stat_bytes);
502         blkg_rwstat_exit(&tg->stat_ios);
503         kfree(tg);
504 }
505
506 static struct throtl_grp *
507 throtl_rb_first(struct throtl_service_queue *parent_sq)
508 {
509         struct rb_node *n;
510
511         n = rb_first_cached(&parent_sq->pending_tree);
512         WARN_ON_ONCE(!n);
513         if (!n)
514                 return NULL;
515         return rb_entry_tg(n);
516 }
517
518 static void throtl_rb_erase(struct rb_node *n,
519                             struct throtl_service_queue *parent_sq)
520 {
521         rb_erase_cached(n, &parent_sq->pending_tree);
522         RB_CLEAR_NODE(n);
523         --parent_sq->nr_pending;
524 }
525
526 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
527 {
528         struct throtl_grp *tg;
529
530         tg = throtl_rb_first(parent_sq);
531         if (!tg)
532                 return;
533
534         parent_sq->first_pending_disptime = tg->disptime;
535 }
536
537 static void tg_service_queue_add(struct throtl_grp *tg)
538 {
539         struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
540         struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
541         struct rb_node *parent = NULL;
542         struct throtl_grp *__tg;
543         unsigned long key = tg->disptime;
544         bool leftmost = true;
545
546         while (*node != NULL) {
547                 parent = *node;
548                 __tg = rb_entry_tg(parent);
549
550                 if (time_before(key, __tg->disptime))
551                         node = &parent->rb_left;
552                 else {
553                         node = &parent->rb_right;
554                         leftmost = false;
555                 }
556         }
557
558         rb_link_node(&tg->rb_node, parent, node);
559         rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
560                                leftmost);
561 }
562
563 static void throtl_enqueue_tg(struct throtl_grp *tg)
564 {
565         if (!(tg->flags & THROTL_TG_PENDING)) {
566                 tg_service_queue_add(tg);
567                 tg->flags |= THROTL_TG_PENDING;
568                 tg->service_queue.parent_sq->nr_pending++;
569         }
570 }
571
572 static void throtl_dequeue_tg(struct throtl_grp *tg)
573 {
574         if (tg->flags & THROTL_TG_PENDING) {
575                 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
576                 tg->flags &= ~THROTL_TG_PENDING;
577         }
578 }
579
580 /* Call with queue lock held */
581 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
582                                           unsigned long expires)
583 {
584         unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
585
586         /*
587          * Since we are adjusting the throttle limit dynamically, the sleep
588          * time calculated according to previous limit might be invalid. It's
589          * possible the cgroup sleep time is very long and no other cgroups
590          * have IO running so notify the limit changes. Make sure the cgroup
591          * doesn't sleep too long to avoid the missed notification.
592          */
593         if (time_after(expires, max_expire))
594                 expires = max_expire;
595         mod_timer(&sq->pending_timer, expires);
596         throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
597                    expires - jiffies, jiffies);
598 }
599
600 /**
601  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
602  * @sq: the service_queue to schedule dispatch for
603  * @force: force scheduling
604  *
605  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
606  * dispatch time of the first pending child.  Returns %true if either timer
607  * is armed or there's no pending child left.  %false if the current
608  * dispatch window is still open and the caller should continue
609  * dispatching.
610  *
611  * If @force is %true, the dispatch timer is always scheduled and this
612  * function is guaranteed to return %true.  This is to be used when the
613  * caller can't dispatch itself and needs to invoke pending_timer
614  * unconditionally.  Note that forced scheduling is likely to induce short
615  * delay before dispatch starts even if @sq->first_pending_disptime is not
616  * in the future and thus shouldn't be used in hot paths.
617  */
618 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
619                                           bool force)
620 {
621         /* any pending children left? */
622         if (!sq->nr_pending)
623                 return true;
624
625         update_min_dispatch_time(sq);
626
627         /* is the next dispatch time in the future? */
628         if (force || time_after(sq->first_pending_disptime, jiffies)) {
629                 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
630                 return true;
631         }
632
633         /* tell the caller to continue dispatching */
634         return false;
635 }
636
637 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
638                 bool rw, unsigned long start)
639 {
640         tg->bytes_disp[rw] = 0;
641         tg->io_disp[rw] = 0;
642
643         /*
644          * Previous slice has expired. We must have trimmed it after last
645          * bio dispatch. That means since start of last slice, we never used
646          * that bandwidth. Do try to make use of that bandwidth while giving
647          * credit.
648          */
649         if (time_after_eq(start, tg->slice_start[rw]))
650                 tg->slice_start[rw] = start;
651
652         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
653         throtl_log(&tg->service_queue,
654                    "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
655                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
656                    tg->slice_end[rw], jiffies);
657 }
658
659 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
660 {
661         tg->bytes_disp[rw] = 0;
662         tg->io_disp[rw] = 0;
663         tg->slice_start[rw] = jiffies;
664         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
665
666         throtl_log(&tg->service_queue,
667                    "[%c] new slice start=%lu end=%lu jiffies=%lu",
668                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
669                    tg->slice_end[rw], jiffies);
670 }
671
672 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
673                                         unsigned long jiffy_end)
674 {
675         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
676 }
677
678 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
679                                        unsigned long jiffy_end)
680 {
681         throtl_set_slice_end(tg, rw, jiffy_end);
682         throtl_log(&tg->service_queue,
683                    "[%c] extend slice start=%lu end=%lu jiffies=%lu",
684                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
685                    tg->slice_end[rw], jiffies);
686 }
687
688 /* Determine if previously allocated or extended slice is complete or not */
689 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
690 {
691         if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
692                 return false;
693
694         return true;
695 }
696
697 /* Trim the used slices and adjust slice start accordingly */
698 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
699 {
700         unsigned long nr_slices, time_elapsed, io_trim;
701         u64 bytes_trim, tmp;
702
703         BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
704
705         /*
706          * If bps are unlimited (-1), then time slice don't get
707          * renewed. Don't try to trim the slice if slice is used. A new
708          * slice will start when appropriate.
709          */
710         if (throtl_slice_used(tg, rw))
711                 return;
712
713         /*
714          * A bio has been dispatched. Also adjust slice_end. It might happen
715          * that initially cgroup limit was very low resulting in high
716          * slice_end, but later limit was bumped up and bio was dispatched
717          * sooner, then we need to reduce slice_end. A high bogus slice_end
718          * is bad because it does not allow new slice to start.
719          */
720
721         throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
722
723         time_elapsed = jiffies - tg->slice_start[rw];
724
725         nr_slices = time_elapsed / tg->td->throtl_slice;
726
727         if (!nr_slices)
728                 return;
729         tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
730         do_div(tmp, HZ);
731         bytes_trim = tmp;
732
733         io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
734                 HZ;
735
736         if (!bytes_trim && !io_trim)
737                 return;
738
739         if (tg->bytes_disp[rw] >= bytes_trim)
740                 tg->bytes_disp[rw] -= bytes_trim;
741         else
742                 tg->bytes_disp[rw] = 0;
743
744         if (tg->io_disp[rw] >= io_trim)
745                 tg->io_disp[rw] -= io_trim;
746         else
747                 tg->io_disp[rw] = 0;
748
749         tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
750
751         throtl_log(&tg->service_queue,
752                    "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
753                    rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
754                    tg->slice_start[rw], tg->slice_end[rw], jiffies);
755 }
756
757 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
758                                   u32 iops_limit, unsigned long *wait)
759 {
760         bool rw = bio_data_dir(bio);
761         unsigned int io_allowed;
762         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
763         u64 tmp;
764
765         if (iops_limit == UINT_MAX) {
766                 if (wait)
767                         *wait = 0;
768                 return true;
769         }
770
771         jiffy_elapsed = jiffies - tg->slice_start[rw];
772
773         /* Round up to the next throttle slice, wait time must be nonzero */
774         jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
775
776         /*
777          * jiffy_elapsed_rnd should not be a big value as minimum iops can be
778          * 1 then at max jiffy elapsed should be equivalent of 1 second as we
779          * will allow dispatch after 1 second and after that slice should
780          * have been trimmed.
781          */
782
783         tmp = (u64)iops_limit * jiffy_elapsed_rnd;
784         do_div(tmp, HZ);
785
786         if (tmp > UINT_MAX)
787                 io_allowed = UINT_MAX;
788         else
789                 io_allowed = tmp;
790
791         if (tg->io_disp[rw] + 1 <= io_allowed) {
792                 if (wait)
793                         *wait = 0;
794                 return true;
795         }
796
797         /* Calc approx time to dispatch */
798         jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
799
800         if (wait)
801                 *wait = jiffy_wait;
802         return false;
803 }
804
805 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
806                                  u64 bps_limit, unsigned long *wait)
807 {
808         bool rw = bio_data_dir(bio);
809         u64 bytes_allowed, extra_bytes;
810         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
811         unsigned int bio_size = throtl_bio_data_size(bio);
812
813         /* no need to throttle if this bio's bytes have been accounted */
814         if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
815                 if (wait)
816                         *wait = 0;
817                 return true;
818         }
819
820         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
821
822         /* Slice has just started. Consider one slice interval */
823         if (!jiffy_elapsed)
824                 jiffy_elapsed_rnd = tg->td->throtl_slice;
825
826         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
827         bytes_allowed = mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed_rnd,
828                                             (u64)HZ);
829
830         if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
831                 if (wait)
832                         *wait = 0;
833                 return true;
834         }
835
836         /* Calc approx time to dispatch */
837         extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
838         jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
839
840         if (!jiffy_wait)
841                 jiffy_wait = 1;
842
843         /*
844          * This wait time is without taking into consideration the rounding
845          * up we did. Add that time also.
846          */
847         jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
848         if (wait)
849                 *wait = jiffy_wait;
850         return false;
851 }
852
853 /*
854  * Returns whether one can dispatch a bio or not. Also returns approx number
855  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
856  */
857 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
858                             unsigned long *wait)
859 {
860         bool rw = bio_data_dir(bio);
861         unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
862         u64 bps_limit = tg_bps_limit(tg, rw);
863         u32 iops_limit = tg_iops_limit(tg, rw);
864
865         /*
866          * Currently whole state machine of group depends on first bio
867          * queued in the group bio list. So one should not be calling
868          * this function with a different bio if there are other bios
869          * queued.
870          */
871         BUG_ON(tg->service_queue.nr_queued[rw] &&
872                bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
873
874         /* If tg->bps = -1, then BW is unlimited */
875         if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
876             tg->flags & THROTL_TG_CANCELING) {
877                 if (wait)
878                         *wait = 0;
879                 return true;
880         }
881
882         /*
883          * If previous slice expired, start a new one otherwise renew/extend
884          * existing slice to make sure it is at least throtl_slice interval
885          * long since now. New slice is started only for empty throttle group.
886          * If there is queued bio, that means there should be an active
887          * slice and it should be extended instead.
888          */
889         if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
890                 throtl_start_new_slice(tg, rw);
891         else {
892                 if (time_before(tg->slice_end[rw],
893                     jiffies + tg->td->throtl_slice))
894                         throtl_extend_slice(tg, rw,
895                                 jiffies + tg->td->throtl_slice);
896         }
897
898         if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
899             tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
900                 if (wait)
901                         *wait = 0;
902                 return true;
903         }
904
905         max_wait = max(bps_wait, iops_wait);
906
907         if (wait)
908                 *wait = max_wait;
909
910         if (time_before(tg->slice_end[rw], jiffies + max_wait))
911                 throtl_extend_slice(tg, rw, jiffies + max_wait);
912
913         return false;
914 }
915
916 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
917 {
918         bool rw = bio_data_dir(bio);
919         unsigned int bio_size = throtl_bio_data_size(bio);
920
921         /* Charge the bio to the group */
922         if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
923                 tg->bytes_disp[rw] += bio_size;
924                 tg->last_bytes_disp[rw] += bio_size;
925         }
926
927         tg->io_disp[rw]++;
928         tg->last_io_disp[rw]++;
929 }
930
931 /**
932  * throtl_add_bio_tg - add a bio to the specified throtl_grp
933  * @bio: bio to add
934  * @qn: qnode to use
935  * @tg: the target throtl_grp
936  *
937  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
938  * tg->qnode_on_self[] is used.
939  */
940 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
941                               struct throtl_grp *tg)
942 {
943         struct throtl_service_queue *sq = &tg->service_queue;
944         bool rw = bio_data_dir(bio);
945
946         if (!qn)
947                 qn = &tg->qnode_on_self[rw];
948
949         /*
950          * If @tg doesn't currently have any bios queued in the same
951          * direction, queueing @bio can change when @tg should be
952          * dispatched.  Mark that @tg was empty.  This is automatically
953          * cleared on the next tg_update_disptime().
954          */
955         if (!sq->nr_queued[rw])
956                 tg->flags |= THROTL_TG_WAS_EMPTY;
957
958         throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
959
960         sq->nr_queued[rw]++;
961         throtl_enqueue_tg(tg);
962 }
963
964 static void tg_update_disptime(struct throtl_grp *tg)
965 {
966         struct throtl_service_queue *sq = &tg->service_queue;
967         unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
968         struct bio *bio;
969
970         bio = throtl_peek_queued(&sq->queued[READ]);
971         if (bio)
972                 tg_may_dispatch(tg, bio, &read_wait);
973
974         bio = throtl_peek_queued(&sq->queued[WRITE]);
975         if (bio)
976                 tg_may_dispatch(tg, bio, &write_wait);
977
978         min_wait = min(read_wait, write_wait);
979         disptime = jiffies + min_wait;
980
981         /* Update dispatch time */
982         throtl_dequeue_tg(tg);
983         tg->disptime = disptime;
984         throtl_enqueue_tg(tg);
985
986         /* see throtl_add_bio_tg() */
987         tg->flags &= ~THROTL_TG_WAS_EMPTY;
988 }
989
990 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
991                                         struct throtl_grp *parent_tg, bool rw)
992 {
993         if (throtl_slice_used(parent_tg, rw)) {
994                 throtl_start_new_slice_with_credit(parent_tg, rw,
995                                 child_tg->slice_start[rw]);
996         }
997
998 }
999
1000 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1001 {
1002         struct throtl_service_queue *sq = &tg->service_queue;
1003         struct throtl_service_queue *parent_sq = sq->parent_sq;
1004         struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1005         struct throtl_grp *tg_to_put = NULL;
1006         struct bio *bio;
1007
1008         /*
1009          * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1010          * from @tg may put its reference and @parent_sq might end up
1011          * getting released prematurely.  Remember the tg to put and put it
1012          * after @bio is transferred to @parent_sq.
1013          */
1014         bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1015         sq->nr_queued[rw]--;
1016
1017         throtl_charge_bio(tg, bio);
1018         bio_set_flag(bio, BIO_BPS_THROTTLED);
1019
1020         /*
1021          * If our parent is another tg, we just need to transfer @bio to
1022          * the parent using throtl_add_bio_tg().  If our parent is
1023          * @td->service_queue, @bio is ready to be issued.  Put it on its
1024          * bio_lists[] and decrease total number queued.  The caller is
1025          * responsible for issuing these bios.
1026          */
1027         if (parent_tg) {
1028                 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1029                 start_parent_slice_with_credit(tg, parent_tg, rw);
1030         } else {
1031                 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1032                                      &parent_sq->queued[rw]);
1033                 BUG_ON(tg->td->nr_queued[rw] <= 0);
1034                 tg->td->nr_queued[rw]--;
1035         }
1036
1037         throtl_trim_slice(tg, rw);
1038
1039         if (tg_to_put)
1040                 blkg_put(tg_to_blkg(tg_to_put));
1041 }
1042
1043 static int throtl_dispatch_tg(struct throtl_grp *tg)
1044 {
1045         struct throtl_service_queue *sq = &tg->service_queue;
1046         unsigned int nr_reads = 0, nr_writes = 0;
1047         unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1048         unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1049         struct bio *bio;
1050
1051         /* Try to dispatch 75% READS and 25% WRITES */
1052
1053         while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1054                tg_may_dispatch(tg, bio, NULL)) {
1055
1056                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1057                 nr_reads++;
1058
1059                 if (nr_reads >= max_nr_reads)
1060                         break;
1061         }
1062
1063         while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1064                tg_may_dispatch(tg, bio, NULL)) {
1065
1066                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1067                 nr_writes++;
1068
1069                 if (nr_writes >= max_nr_writes)
1070                         break;
1071         }
1072
1073         return nr_reads + nr_writes;
1074 }
1075
1076 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1077 {
1078         unsigned int nr_disp = 0;
1079
1080         while (1) {
1081                 struct throtl_grp *tg;
1082                 struct throtl_service_queue *sq;
1083
1084                 if (!parent_sq->nr_pending)
1085                         break;
1086
1087                 tg = throtl_rb_first(parent_sq);
1088                 if (!tg)
1089                         break;
1090
1091                 if (time_before(jiffies, tg->disptime))
1092                         break;
1093
1094                 throtl_dequeue_tg(tg);
1095
1096                 nr_disp += throtl_dispatch_tg(tg);
1097
1098                 sq = &tg->service_queue;
1099                 if (sq->nr_queued[0] || sq->nr_queued[1])
1100                         tg_update_disptime(tg);
1101
1102                 if (nr_disp >= THROTL_QUANTUM)
1103                         break;
1104         }
1105
1106         return nr_disp;
1107 }
1108
1109 static bool throtl_can_upgrade(struct throtl_data *td,
1110         struct throtl_grp *this_tg);
1111 /**
1112  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1113  * @t: the pending_timer member of the throtl_service_queue being serviced
1114  *
1115  * This timer is armed when a child throtl_grp with active bio's become
1116  * pending and queued on the service_queue's pending_tree and expires when
1117  * the first child throtl_grp should be dispatched.  This function
1118  * dispatches bio's from the children throtl_grps to the parent
1119  * service_queue.
1120  *
1121  * If the parent's parent is another throtl_grp, dispatching is propagated
1122  * by either arming its pending_timer or repeating dispatch directly.  If
1123  * the top-level service_tree is reached, throtl_data->dispatch_work is
1124  * kicked so that the ready bio's are issued.
1125  */
1126 static void throtl_pending_timer_fn(struct timer_list *t)
1127 {
1128         struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1129         struct throtl_grp *tg = sq_to_tg(sq);
1130         struct throtl_data *td = sq_to_td(sq);
1131         struct throtl_service_queue *parent_sq;
1132         struct request_queue *q;
1133         bool dispatched;
1134         int ret;
1135
1136         /* throtl_data may be gone, so figure out request queue by blkg */
1137         if (tg)
1138                 q = tg->pd.blkg->q;
1139         else
1140                 q = td->queue;
1141
1142         spin_lock_irq(&q->queue_lock);
1143
1144         if (!q->root_blkg)
1145                 goto out_unlock;
1146
1147         if (throtl_can_upgrade(td, NULL))
1148                 throtl_upgrade_state(td);
1149
1150 again:
1151         parent_sq = sq->parent_sq;
1152         dispatched = false;
1153
1154         while (true) {
1155                 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1156                            sq->nr_queued[READ] + sq->nr_queued[WRITE],
1157                            sq->nr_queued[READ], sq->nr_queued[WRITE]);
1158
1159                 ret = throtl_select_dispatch(sq);
1160                 if (ret) {
1161                         throtl_log(sq, "bios disp=%u", ret);
1162                         dispatched = true;
1163                 }
1164
1165                 if (throtl_schedule_next_dispatch(sq, false))
1166                         break;
1167
1168                 /* this dispatch windows is still open, relax and repeat */
1169                 spin_unlock_irq(&q->queue_lock);
1170                 cpu_relax();
1171                 spin_lock_irq(&q->queue_lock);
1172         }
1173
1174         if (!dispatched)
1175                 goto out_unlock;
1176
1177         if (parent_sq) {
1178                 /* @parent_sq is another throl_grp, propagate dispatch */
1179                 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1180                         tg_update_disptime(tg);
1181                         if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1182                                 /* window is already open, repeat dispatching */
1183                                 sq = parent_sq;
1184                                 tg = sq_to_tg(sq);
1185                                 goto again;
1186                         }
1187                 }
1188         } else {
1189                 /* reached the top-level, queue issuing */
1190                 queue_work(kthrotld_workqueue, &td->dispatch_work);
1191         }
1192 out_unlock:
1193         spin_unlock_irq(&q->queue_lock);
1194 }
1195
1196 /**
1197  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1198  * @work: work item being executed
1199  *
1200  * This function is queued for execution when bios reach the bio_lists[]
1201  * of throtl_data->service_queue.  Those bios are ready and issued by this
1202  * function.
1203  */
1204 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1205 {
1206         struct throtl_data *td = container_of(work, struct throtl_data,
1207                                               dispatch_work);
1208         struct throtl_service_queue *td_sq = &td->service_queue;
1209         struct request_queue *q = td->queue;
1210         struct bio_list bio_list_on_stack;
1211         struct bio *bio;
1212         struct blk_plug plug;
1213         int rw;
1214
1215         bio_list_init(&bio_list_on_stack);
1216
1217         spin_lock_irq(&q->queue_lock);
1218         for (rw = READ; rw <= WRITE; rw++)
1219                 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1220                         bio_list_add(&bio_list_on_stack, bio);
1221         spin_unlock_irq(&q->queue_lock);
1222
1223         if (!bio_list_empty(&bio_list_on_stack)) {
1224                 blk_start_plug(&plug);
1225                 while ((bio = bio_list_pop(&bio_list_on_stack)))
1226                         submit_bio_noacct_nocheck(bio);
1227                 blk_finish_plug(&plug);
1228         }
1229 }
1230
1231 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1232                               int off)
1233 {
1234         struct throtl_grp *tg = pd_to_tg(pd);
1235         u64 v = *(u64 *)((void *)tg + off);
1236
1237         if (v == U64_MAX)
1238                 return 0;
1239         return __blkg_prfill_u64(sf, pd, v);
1240 }
1241
1242 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1243                                int off)
1244 {
1245         struct throtl_grp *tg = pd_to_tg(pd);
1246         unsigned int v = *(unsigned int *)((void *)tg + off);
1247
1248         if (v == UINT_MAX)
1249                 return 0;
1250         return __blkg_prfill_u64(sf, pd, v);
1251 }
1252
1253 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1254 {
1255         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1256                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1257         return 0;
1258 }
1259
1260 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1261 {
1262         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1263                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1264         return 0;
1265 }
1266
1267 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1268 {
1269         struct throtl_service_queue *sq = &tg->service_queue;
1270         struct cgroup_subsys_state *pos_css;
1271         struct blkcg_gq *blkg;
1272
1273         throtl_log(&tg->service_queue,
1274                    "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1275                    tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1276                    tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1277
1278         /*
1279          * Update has_rules[] flags for the updated tg's subtree.  A tg is
1280          * considered to have rules if either the tg itself or any of its
1281          * ancestors has rules.  This identifies groups without any
1282          * restrictions in the whole hierarchy and allows them to bypass
1283          * blk-throttle.
1284          */
1285         blkg_for_each_descendant_pre(blkg, pos_css,
1286                         global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1287                 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1288                 struct throtl_grp *parent_tg;
1289
1290                 tg_update_has_rules(this_tg);
1291                 /* ignore root/second level */
1292                 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1293                     !blkg->parent->parent)
1294                         continue;
1295                 parent_tg = blkg_to_tg(blkg->parent);
1296                 /*
1297                  * make sure all children has lower idle time threshold and
1298                  * higher latency target
1299                  */
1300                 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1301                                 parent_tg->idletime_threshold);
1302                 this_tg->latency_target = max(this_tg->latency_target,
1303                                 parent_tg->latency_target);
1304         }
1305
1306         /*
1307          * We're already holding queue_lock and know @tg is valid.  Let's
1308          * apply the new config directly.
1309          *
1310          * Restart the slices for both READ and WRITES. It might happen
1311          * that a group's limit are dropped suddenly and we don't want to
1312          * account recently dispatched IO with new low rate.
1313          */
1314         throtl_start_new_slice(tg, READ);
1315         throtl_start_new_slice(tg, WRITE);
1316
1317         if (tg->flags & THROTL_TG_PENDING) {
1318                 tg_update_disptime(tg);
1319                 throtl_schedule_next_dispatch(sq->parent_sq, true);
1320         }
1321 }
1322
1323 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1324                            char *buf, size_t nbytes, loff_t off, bool is_u64)
1325 {
1326         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1327         struct blkg_conf_ctx ctx;
1328         struct throtl_grp *tg;
1329         int ret;
1330         u64 v;
1331
1332         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1333         if (ret)
1334                 return ret;
1335
1336         ret = -EINVAL;
1337         if (sscanf(ctx.body, "%llu", &v) != 1)
1338                 goto out_finish;
1339         if (!v)
1340                 v = U64_MAX;
1341
1342         tg = blkg_to_tg(ctx.blkg);
1343
1344         if (is_u64)
1345                 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1346         else
1347                 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1348
1349         tg_conf_updated(tg, false);
1350         ret = 0;
1351 out_finish:
1352         blkg_conf_finish(&ctx);
1353         return ret ?: nbytes;
1354 }
1355
1356 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1357                                char *buf, size_t nbytes, loff_t off)
1358 {
1359         return tg_set_conf(of, buf, nbytes, off, true);
1360 }
1361
1362 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1363                                 char *buf, size_t nbytes, loff_t off)
1364 {
1365         return tg_set_conf(of, buf, nbytes, off, false);
1366 }
1367
1368 static int tg_print_rwstat(struct seq_file *sf, void *v)
1369 {
1370         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1371                           blkg_prfill_rwstat, &blkcg_policy_throtl,
1372                           seq_cft(sf)->private, true);
1373         return 0;
1374 }
1375
1376 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1377                                       struct blkg_policy_data *pd, int off)
1378 {
1379         struct blkg_rwstat_sample sum;
1380
1381         blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1382                                   &sum);
1383         return __blkg_prfill_rwstat(sf, pd, &sum);
1384 }
1385
1386 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1387 {
1388         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1389                           tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1390                           seq_cft(sf)->private, true);
1391         return 0;
1392 }
1393
1394 static struct cftype throtl_legacy_files[] = {
1395         {
1396                 .name = "throttle.read_bps_device",
1397                 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1398                 .seq_show = tg_print_conf_u64,
1399                 .write = tg_set_conf_u64,
1400         },
1401         {
1402                 .name = "throttle.write_bps_device",
1403                 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1404                 .seq_show = tg_print_conf_u64,
1405                 .write = tg_set_conf_u64,
1406         },
1407         {
1408                 .name = "throttle.read_iops_device",
1409                 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1410                 .seq_show = tg_print_conf_uint,
1411                 .write = tg_set_conf_uint,
1412         },
1413         {
1414                 .name = "throttle.write_iops_device",
1415                 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1416                 .seq_show = tg_print_conf_uint,
1417                 .write = tg_set_conf_uint,
1418         },
1419         {
1420                 .name = "throttle.io_service_bytes",
1421                 .private = offsetof(struct throtl_grp, stat_bytes),
1422                 .seq_show = tg_print_rwstat,
1423         },
1424         {
1425                 .name = "throttle.io_service_bytes_recursive",
1426                 .private = offsetof(struct throtl_grp, stat_bytes),
1427                 .seq_show = tg_print_rwstat_recursive,
1428         },
1429         {
1430                 .name = "throttle.io_serviced",
1431                 .private = offsetof(struct throtl_grp, stat_ios),
1432                 .seq_show = tg_print_rwstat,
1433         },
1434         {
1435                 .name = "throttle.io_serviced_recursive",
1436                 .private = offsetof(struct throtl_grp, stat_ios),
1437                 .seq_show = tg_print_rwstat_recursive,
1438         },
1439         { }     /* terminate */
1440 };
1441
1442 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1443                          int off)
1444 {
1445         struct throtl_grp *tg = pd_to_tg(pd);
1446         const char *dname = blkg_dev_name(pd->blkg);
1447         char bufs[4][21] = { "max", "max", "max", "max" };
1448         u64 bps_dft;
1449         unsigned int iops_dft;
1450         char idle_time[26] = "";
1451         char latency_time[26] = "";
1452
1453         if (!dname)
1454                 return 0;
1455
1456         if (off == LIMIT_LOW) {
1457                 bps_dft = 0;
1458                 iops_dft = 0;
1459         } else {
1460                 bps_dft = U64_MAX;
1461                 iops_dft = UINT_MAX;
1462         }
1463
1464         if (tg->bps_conf[READ][off] == bps_dft &&
1465             tg->bps_conf[WRITE][off] == bps_dft &&
1466             tg->iops_conf[READ][off] == iops_dft &&
1467             tg->iops_conf[WRITE][off] == iops_dft &&
1468             (off != LIMIT_LOW ||
1469              (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1470               tg->latency_target_conf == DFL_LATENCY_TARGET)))
1471                 return 0;
1472
1473         if (tg->bps_conf[READ][off] != U64_MAX)
1474                 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1475                         tg->bps_conf[READ][off]);
1476         if (tg->bps_conf[WRITE][off] != U64_MAX)
1477                 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1478                         tg->bps_conf[WRITE][off]);
1479         if (tg->iops_conf[READ][off] != UINT_MAX)
1480                 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1481                         tg->iops_conf[READ][off]);
1482         if (tg->iops_conf[WRITE][off] != UINT_MAX)
1483                 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1484                         tg->iops_conf[WRITE][off]);
1485         if (off == LIMIT_LOW) {
1486                 if (tg->idletime_threshold_conf == ULONG_MAX)
1487                         strcpy(idle_time, " idle=max");
1488                 else
1489                         snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1490                                 tg->idletime_threshold_conf);
1491
1492                 if (tg->latency_target_conf == ULONG_MAX)
1493                         strcpy(latency_time, " latency=max");
1494                 else
1495                         snprintf(latency_time, sizeof(latency_time),
1496                                 " latency=%lu", tg->latency_target_conf);
1497         }
1498
1499         seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1500                    dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1501                    latency_time);
1502         return 0;
1503 }
1504
1505 static int tg_print_limit(struct seq_file *sf, void *v)
1506 {
1507         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1508                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1509         return 0;
1510 }
1511
1512 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1513                           char *buf, size_t nbytes, loff_t off)
1514 {
1515         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1516         struct blkg_conf_ctx ctx;
1517         struct throtl_grp *tg;
1518         u64 v[4];
1519         unsigned long idle_time;
1520         unsigned long latency_time;
1521         int ret;
1522         int index = of_cft(of)->private;
1523
1524         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1525         if (ret)
1526                 return ret;
1527
1528         tg = blkg_to_tg(ctx.blkg);
1529
1530         v[0] = tg->bps_conf[READ][index];
1531         v[1] = tg->bps_conf[WRITE][index];
1532         v[2] = tg->iops_conf[READ][index];
1533         v[3] = tg->iops_conf[WRITE][index];
1534
1535         idle_time = tg->idletime_threshold_conf;
1536         latency_time = tg->latency_target_conf;
1537         while (true) {
1538                 char tok[27];   /* wiops=18446744073709551616 */
1539                 char *p;
1540                 u64 val = U64_MAX;
1541                 int len;
1542
1543                 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1544                         break;
1545                 if (tok[0] == '\0')
1546                         break;
1547                 ctx.body += len;
1548
1549                 ret = -EINVAL;
1550                 p = tok;
1551                 strsep(&p, "=");
1552                 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1553                         goto out_finish;
1554
1555                 ret = -ERANGE;
1556                 if (!val)
1557                         goto out_finish;
1558
1559                 ret = -EINVAL;
1560                 if (!strcmp(tok, "rbps") && val > 1)
1561                         v[0] = val;
1562                 else if (!strcmp(tok, "wbps") && val > 1)
1563                         v[1] = val;
1564                 else if (!strcmp(tok, "riops") && val > 1)
1565                         v[2] = min_t(u64, val, UINT_MAX);
1566                 else if (!strcmp(tok, "wiops") && val > 1)
1567                         v[3] = min_t(u64, val, UINT_MAX);
1568                 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1569                         idle_time = val;
1570                 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1571                         latency_time = val;
1572                 else
1573                         goto out_finish;
1574         }
1575
1576         tg->bps_conf[READ][index] = v[0];
1577         tg->bps_conf[WRITE][index] = v[1];
1578         tg->iops_conf[READ][index] = v[2];
1579         tg->iops_conf[WRITE][index] = v[3];
1580
1581         if (index == LIMIT_MAX) {
1582                 tg->bps[READ][index] = v[0];
1583                 tg->bps[WRITE][index] = v[1];
1584                 tg->iops[READ][index] = v[2];
1585                 tg->iops[WRITE][index] = v[3];
1586         }
1587         tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1588                 tg->bps_conf[READ][LIMIT_MAX]);
1589         tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1590                 tg->bps_conf[WRITE][LIMIT_MAX]);
1591         tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1592                 tg->iops_conf[READ][LIMIT_MAX]);
1593         tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1594                 tg->iops_conf[WRITE][LIMIT_MAX]);
1595         tg->idletime_threshold_conf = idle_time;
1596         tg->latency_target_conf = latency_time;
1597
1598         /* force user to configure all settings for low limit  */
1599         if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1600               tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1601             tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1602             tg->latency_target_conf == DFL_LATENCY_TARGET) {
1603                 tg->bps[READ][LIMIT_LOW] = 0;
1604                 tg->bps[WRITE][LIMIT_LOW] = 0;
1605                 tg->iops[READ][LIMIT_LOW] = 0;
1606                 tg->iops[WRITE][LIMIT_LOW] = 0;
1607                 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1608                 tg->latency_target = DFL_LATENCY_TARGET;
1609         } else if (index == LIMIT_LOW) {
1610                 tg->idletime_threshold = tg->idletime_threshold_conf;
1611                 tg->latency_target = tg->latency_target_conf;
1612         }
1613
1614         blk_throtl_update_limit_valid(tg->td);
1615         if (tg->td->limit_valid[LIMIT_LOW]) {
1616                 if (index == LIMIT_LOW)
1617                         tg->td->limit_index = LIMIT_LOW;
1618         } else
1619                 tg->td->limit_index = LIMIT_MAX;
1620         tg_conf_updated(tg, index == LIMIT_LOW &&
1621                 tg->td->limit_valid[LIMIT_LOW]);
1622         ret = 0;
1623 out_finish:
1624         blkg_conf_finish(&ctx);
1625         return ret ?: nbytes;
1626 }
1627
1628 static struct cftype throtl_files[] = {
1629 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1630         {
1631                 .name = "low",
1632                 .flags = CFTYPE_NOT_ON_ROOT,
1633                 .seq_show = tg_print_limit,
1634                 .write = tg_set_limit,
1635                 .private = LIMIT_LOW,
1636         },
1637 #endif
1638         {
1639                 .name = "max",
1640                 .flags = CFTYPE_NOT_ON_ROOT,
1641                 .seq_show = tg_print_limit,
1642                 .write = tg_set_limit,
1643                 .private = LIMIT_MAX,
1644         },
1645         { }     /* terminate */
1646 };
1647
1648 static void throtl_shutdown_wq(struct request_queue *q)
1649 {
1650         struct throtl_data *td = q->td;
1651
1652         cancel_work_sync(&td->dispatch_work);
1653 }
1654
1655 struct blkcg_policy blkcg_policy_throtl = {
1656         .dfl_cftypes            = throtl_files,
1657         .legacy_cftypes         = throtl_legacy_files,
1658
1659         .pd_alloc_fn            = throtl_pd_alloc,
1660         .pd_init_fn             = throtl_pd_init,
1661         .pd_online_fn           = throtl_pd_online,
1662         .pd_offline_fn          = throtl_pd_offline,
1663         .pd_free_fn             = throtl_pd_free,
1664 };
1665
1666 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1667 {
1668         unsigned long rtime = jiffies, wtime = jiffies;
1669
1670         if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1671                 rtime = tg->last_low_overflow_time[READ];
1672         if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1673                 wtime = tg->last_low_overflow_time[WRITE];
1674         return min(rtime, wtime);
1675 }
1676
1677 /* tg should not be an intermediate node */
1678 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1679 {
1680         struct throtl_service_queue *parent_sq;
1681         struct throtl_grp *parent = tg;
1682         unsigned long ret = __tg_last_low_overflow_time(tg);
1683
1684         while (true) {
1685                 parent_sq = parent->service_queue.parent_sq;
1686                 parent = sq_to_tg(parent_sq);
1687                 if (!parent)
1688                         break;
1689
1690                 /*
1691                  * The parent doesn't have low limit, it always reaches low
1692                  * limit. Its overflow time is useless for children
1693                  */
1694                 if (!parent->bps[READ][LIMIT_LOW] &&
1695                     !parent->iops[READ][LIMIT_LOW] &&
1696                     !parent->bps[WRITE][LIMIT_LOW] &&
1697                     !parent->iops[WRITE][LIMIT_LOW])
1698                         continue;
1699                 if (time_after(__tg_last_low_overflow_time(parent), ret))
1700                         ret = __tg_last_low_overflow_time(parent);
1701         }
1702         return ret;
1703 }
1704
1705 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1706 {
1707         /*
1708          * cgroup is idle if:
1709          * - single idle is too long, longer than a fixed value (in case user
1710          *   configure a too big threshold) or 4 times of idletime threshold
1711          * - average think time is more than threshold
1712          * - IO latency is largely below threshold
1713          */
1714         unsigned long time;
1715         bool ret;
1716
1717         time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1718         ret = tg->latency_target == DFL_LATENCY_TARGET ||
1719               tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1720               (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1721               tg->avg_idletime > tg->idletime_threshold ||
1722               (tg->latency_target && tg->bio_cnt &&
1723                 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1724         throtl_log(&tg->service_queue,
1725                 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1726                 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1727                 tg->bio_cnt, ret, tg->td->scale);
1728         return ret;
1729 }
1730
1731 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1732 {
1733         struct throtl_service_queue *sq = &tg->service_queue;
1734         bool read_limit, write_limit;
1735
1736         /*
1737          * if cgroup reaches low limit (if low limit is 0, the cgroup always
1738          * reaches), it's ok to upgrade to next limit
1739          */
1740         read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1741         write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1742         if (!read_limit && !write_limit)
1743                 return true;
1744         if (read_limit && sq->nr_queued[READ] &&
1745             (!write_limit || sq->nr_queued[WRITE]))
1746                 return true;
1747         if (write_limit && sq->nr_queued[WRITE] &&
1748             (!read_limit || sq->nr_queued[READ]))
1749                 return true;
1750
1751         if (time_after_eq(jiffies,
1752                 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1753             throtl_tg_is_idle(tg))
1754                 return true;
1755         return false;
1756 }
1757
1758 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1759 {
1760         while (true) {
1761                 if (throtl_tg_can_upgrade(tg))
1762                         return true;
1763                 tg = sq_to_tg(tg->service_queue.parent_sq);
1764                 if (!tg || !tg_to_blkg(tg)->parent)
1765                         return false;
1766         }
1767         return false;
1768 }
1769
1770 void blk_throtl_cancel_bios(struct request_queue *q)
1771 {
1772         struct cgroup_subsys_state *pos_css;
1773         struct blkcg_gq *blkg;
1774
1775         spin_lock_irq(&q->queue_lock);
1776         /*
1777          * queue_lock is held, rcu lock is not needed here technically.
1778          * However, rcu lock is still held to emphasize that following
1779          * path need RCU protection and to prevent warning from lockdep.
1780          */
1781         rcu_read_lock();
1782         blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1783                 struct throtl_grp *tg = blkg_to_tg(blkg);
1784                 struct throtl_service_queue *sq = &tg->service_queue;
1785
1786                 /*
1787                  * Set the flag to make sure throtl_pending_timer_fn() won't
1788                  * stop until all throttled bios are dispatched.
1789                  */
1790                 blkg_to_tg(blkg)->flags |= THROTL_TG_CANCELING;
1791                 /*
1792                  * Update disptime after setting the above flag to make sure
1793                  * throtl_select_dispatch() won't exit without dispatching.
1794                  */
1795                 tg_update_disptime(tg);
1796
1797                 throtl_schedule_pending_timer(sq, jiffies + 1);
1798         }
1799         rcu_read_unlock();
1800         spin_unlock_irq(&q->queue_lock);
1801 }
1802
1803 static bool throtl_can_upgrade(struct throtl_data *td,
1804         struct throtl_grp *this_tg)
1805 {
1806         struct cgroup_subsys_state *pos_css;
1807         struct blkcg_gq *blkg;
1808
1809         if (td->limit_index != LIMIT_LOW)
1810                 return false;
1811
1812         if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1813                 return false;
1814
1815         rcu_read_lock();
1816         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1817                 struct throtl_grp *tg = blkg_to_tg(blkg);
1818
1819                 if (tg == this_tg)
1820                         continue;
1821                 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1822                         continue;
1823                 if (!throtl_hierarchy_can_upgrade(tg)) {
1824                         rcu_read_unlock();
1825                         return false;
1826                 }
1827         }
1828         rcu_read_unlock();
1829         return true;
1830 }
1831
1832 static void throtl_upgrade_check(struct throtl_grp *tg)
1833 {
1834         unsigned long now = jiffies;
1835
1836         if (tg->td->limit_index != LIMIT_LOW)
1837                 return;
1838
1839         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1840                 return;
1841
1842         tg->last_check_time = now;
1843
1844         if (!time_after_eq(now,
1845              __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1846                 return;
1847
1848         if (throtl_can_upgrade(tg->td, NULL))
1849                 throtl_upgrade_state(tg->td);
1850 }
1851
1852 static void throtl_upgrade_state(struct throtl_data *td)
1853 {
1854         struct cgroup_subsys_state *pos_css;
1855         struct blkcg_gq *blkg;
1856
1857         throtl_log(&td->service_queue, "upgrade to max");
1858         td->limit_index = LIMIT_MAX;
1859         td->low_upgrade_time = jiffies;
1860         td->scale = 0;
1861         rcu_read_lock();
1862         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1863                 struct throtl_grp *tg = blkg_to_tg(blkg);
1864                 struct throtl_service_queue *sq = &tg->service_queue;
1865
1866                 tg->disptime = jiffies - 1;
1867                 throtl_select_dispatch(sq);
1868                 throtl_schedule_next_dispatch(sq, true);
1869         }
1870         rcu_read_unlock();
1871         throtl_select_dispatch(&td->service_queue);
1872         throtl_schedule_next_dispatch(&td->service_queue, true);
1873         queue_work(kthrotld_workqueue, &td->dispatch_work);
1874 }
1875
1876 static void throtl_downgrade_state(struct throtl_data *td)
1877 {
1878         td->scale /= 2;
1879
1880         throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1881         if (td->scale) {
1882                 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1883                 return;
1884         }
1885
1886         td->limit_index = LIMIT_LOW;
1887         td->low_downgrade_time = jiffies;
1888 }
1889
1890 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1891 {
1892         struct throtl_data *td = tg->td;
1893         unsigned long now = jiffies;
1894
1895         /*
1896          * If cgroup is below low limit, consider downgrade and throttle other
1897          * cgroups
1898          */
1899         if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1900             time_after_eq(now, tg_last_low_overflow_time(tg) +
1901                                         td->throtl_slice) &&
1902             (!throtl_tg_is_idle(tg) ||
1903              !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1904                 return true;
1905         return false;
1906 }
1907
1908 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1909 {
1910         while (true) {
1911                 if (!throtl_tg_can_downgrade(tg))
1912                         return false;
1913                 tg = sq_to_tg(tg->service_queue.parent_sq);
1914                 if (!tg || !tg_to_blkg(tg)->parent)
1915                         break;
1916         }
1917         return true;
1918 }
1919
1920 static void throtl_downgrade_check(struct throtl_grp *tg)
1921 {
1922         uint64_t bps;
1923         unsigned int iops;
1924         unsigned long elapsed_time;
1925         unsigned long now = jiffies;
1926
1927         if (tg->td->limit_index != LIMIT_MAX ||
1928             !tg->td->limit_valid[LIMIT_LOW])
1929                 return;
1930         if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1931                 return;
1932         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1933                 return;
1934
1935         elapsed_time = now - tg->last_check_time;
1936         tg->last_check_time = now;
1937
1938         if (time_before(now, tg_last_low_overflow_time(tg) +
1939                         tg->td->throtl_slice))
1940                 return;
1941
1942         if (tg->bps[READ][LIMIT_LOW]) {
1943                 bps = tg->last_bytes_disp[READ] * HZ;
1944                 do_div(bps, elapsed_time);
1945                 if (bps >= tg->bps[READ][LIMIT_LOW])
1946                         tg->last_low_overflow_time[READ] = now;
1947         }
1948
1949         if (tg->bps[WRITE][LIMIT_LOW]) {
1950                 bps = tg->last_bytes_disp[WRITE] * HZ;
1951                 do_div(bps, elapsed_time);
1952                 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1953                         tg->last_low_overflow_time[WRITE] = now;
1954         }
1955
1956         if (tg->iops[READ][LIMIT_LOW]) {
1957                 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1958                 if (iops >= tg->iops[READ][LIMIT_LOW])
1959                         tg->last_low_overflow_time[READ] = now;
1960         }
1961
1962         if (tg->iops[WRITE][LIMIT_LOW]) {
1963                 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1964                 if (iops >= tg->iops[WRITE][LIMIT_LOW])
1965                         tg->last_low_overflow_time[WRITE] = now;
1966         }
1967
1968         /*
1969          * If cgroup is below low limit, consider downgrade and throttle other
1970          * cgroups
1971          */
1972         if (throtl_hierarchy_can_downgrade(tg))
1973                 throtl_downgrade_state(tg->td);
1974
1975         tg->last_bytes_disp[READ] = 0;
1976         tg->last_bytes_disp[WRITE] = 0;
1977         tg->last_io_disp[READ] = 0;
1978         tg->last_io_disp[WRITE] = 0;
1979 }
1980
1981 static void blk_throtl_update_idletime(struct throtl_grp *tg)
1982 {
1983         unsigned long now;
1984         unsigned long last_finish_time = tg->last_finish_time;
1985
1986         if (last_finish_time == 0)
1987                 return;
1988
1989         now = ktime_get_ns() >> 10;
1990         if (now <= last_finish_time ||
1991             last_finish_time == tg->checked_last_finish_time)
1992                 return;
1993
1994         tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
1995         tg->checked_last_finish_time = last_finish_time;
1996 }
1997
1998 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1999 static void throtl_update_latency_buckets(struct throtl_data *td)
2000 {
2001         struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2002         int i, cpu, rw;
2003         unsigned long last_latency[2] = { 0 };
2004         unsigned long latency[2];
2005
2006         if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2007                 return;
2008         if (time_before(jiffies, td->last_calculate_time + HZ))
2009                 return;
2010         td->last_calculate_time = jiffies;
2011
2012         memset(avg_latency, 0, sizeof(avg_latency));
2013         for (rw = READ; rw <= WRITE; rw++) {
2014                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2015                         struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2016
2017                         for_each_possible_cpu(cpu) {
2018                                 struct latency_bucket *bucket;
2019
2020                                 /* this isn't race free, but ok in practice */
2021                                 bucket = per_cpu_ptr(td->latency_buckets[rw],
2022                                         cpu);
2023                                 tmp->total_latency += bucket[i].total_latency;
2024                                 tmp->samples += bucket[i].samples;
2025                                 bucket[i].total_latency = 0;
2026                                 bucket[i].samples = 0;
2027                         }
2028
2029                         if (tmp->samples >= 32) {
2030                                 int samples = tmp->samples;
2031
2032                                 latency[rw] = tmp->total_latency;
2033
2034                                 tmp->total_latency = 0;
2035                                 tmp->samples = 0;
2036                                 latency[rw] /= samples;
2037                                 if (latency[rw] == 0)
2038                                         continue;
2039                                 avg_latency[rw][i].latency = latency[rw];
2040                         }
2041                 }
2042         }
2043
2044         for (rw = READ; rw <= WRITE; rw++) {
2045                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2046                         if (!avg_latency[rw][i].latency) {
2047                                 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2048                                         td->avg_buckets[rw][i].latency =
2049                                                 last_latency[rw];
2050                                 continue;
2051                         }
2052
2053                         if (!td->avg_buckets[rw][i].valid)
2054                                 latency[rw] = avg_latency[rw][i].latency;
2055                         else
2056                                 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2057                                         avg_latency[rw][i].latency) >> 3;
2058
2059                         td->avg_buckets[rw][i].latency = max(latency[rw],
2060                                 last_latency[rw]);
2061                         td->avg_buckets[rw][i].valid = true;
2062                         last_latency[rw] = td->avg_buckets[rw][i].latency;
2063                 }
2064         }
2065
2066         for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2067                 throtl_log(&td->service_queue,
2068                         "Latency bucket %d: read latency=%ld, read valid=%d, "
2069                         "write latency=%ld, write valid=%d", i,
2070                         td->avg_buckets[READ][i].latency,
2071                         td->avg_buckets[READ][i].valid,
2072                         td->avg_buckets[WRITE][i].latency,
2073                         td->avg_buckets[WRITE][i].valid);
2074 }
2075 #else
2076 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2077 {
2078 }
2079 #endif
2080
2081 bool __blk_throtl_bio(struct bio *bio)
2082 {
2083         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2084         struct blkcg_gq *blkg = bio->bi_blkg;
2085         struct throtl_qnode *qn = NULL;
2086         struct throtl_grp *tg = blkg_to_tg(blkg);
2087         struct throtl_service_queue *sq;
2088         bool rw = bio_data_dir(bio);
2089         bool throttled = false;
2090         struct throtl_data *td = tg->td;
2091
2092         rcu_read_lock();
2093
2094         if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2095                 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2096                                 bio->bi_iter.bi_size);
2097                 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2098         }
2099
2100         spin_lock_irq(&q->queue_lock);
2101
2102         throtl_update_latency_buckets(td);
2103
2104         blk_throtl_update_idletime(tg);
2105
2106         sq = &tg->service_queue;
2107
2108 again:
2109         while (true) {
2110                 if (tg->last_low_overflow_time[rw] == 0)
2111                         tg->last_low_overflow_time[rw] = jiffies;
2112                 throtl_downgrade_check(tg);
2113                 throtl_upgrade_check(tg);
2114                 /* throtl is FIFO - if bios are already queued, should queue */
2115                 if (sq->nr_queued[rw])
2116                         break;
2117
2118                 /* if above limits, break to queue */
2119                 if (!tg_may_dispatch(tg, bio, NULL)) {
2120                         tg->last_low_overflow_time[rw] = jiffies;
2121                         if (throtl_can_upgrade(td, tg)) {
2122                                 throtl_upgrade_state(td);
2123                                 goto again;
2124                         }
2125                         break;
2126                 }
2127
2128                 /* within limits, let's charge and dispatch directly */
2129                 throtl_charge_bio(tg, bio);
2130
2131                 /*
2132                  * We need to trim slice even when bios are not being queued
2133                  * otherwise it might happen that a bio is not queued for
2134                  * a long time and slice keeps on extending and trim is not
2135                  * called for a long time. Now if limits are reduced suddenly
2136                  * we take into account all the IO dispatched so far at new
2137                  * low rate and * newly queued IO gets a really long dispatch
2138                  * time.
2139                  *
2140                  * So keep on trimming slice even if bio is not queued.
2141                  */
2142                 throtl_trim_slice(tg, rw);
2143
2144                 /*
2145                  * @bio passed through this layer without being throttled.
2146                  * Climb up the ladder.  If we're already at the top, it
2147                  * can be executed directly.
2148                  */
2149                 qn = &tg->qnode_on_parent[rw];
2150                 sq = sq->parent_sq;
2151                 tg = sq_to_tg(sq);
2152                 if (!tg) {
2153                         bio_set_flag(bio, BIO_BPS_THROTTLED);
2154                         goto out_unlock;
2155                 }
2156         }
2157
2158         /* out-of-limit, queue to @tg */
2159         throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2160                    rw == READ ? 'R' : 'W',
2161                    tg->bytes_disp[rw], bio->bi_iter.bi_size,
2162                    tg_bps_limit(tg, rw),
2163                    tg->io_disp[rw], tg_iops_limit(tg, rw),
2164                    sq->nr_queued[READ], sq->nr_queued[WRITE]);
2165
2166         tg->last_low_overflow_time[rw] = jiffies;
2167
2168         td->nr_queued[rw]++;
2169         throtl_add_bio_tg(bio, qn, tg);
2170         throttled = true;
2171
2172         /*
2173          * Update @tg's dispatch time and force schedule dispatch if @tg
2174          * was empty before @bio.  The forced scheduling isn't likely to
2175          * cause undue delay as @bio is likely to be dispatched directly if
2176          * its @tg's disptime is not in the future.
2177          */
2178         if (tg->flags & THROTL_TG_WAS_EMPTY) {
2179                 tg_update_disptime(tg);
2180                 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2181         }
2182
2183 out_unlock:
2184 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2185         if (throttled || !td->track_bio_latency)
2186                 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2187 #endif
2188         spin_unlock_irq(&q->queue_lock);
2189
2190         rcu_read_unlock();
2191         return throttled;
2192 }
2193
2194 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2195 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2196                                  enum req_op op, unsigned long time)
2197 {
2198         const bool rw = op_is_write(op);
2199         struct latency_bucket *latency;
2200         int index;
2201
2202         if (!td || td->limit_index != LIMIT_LOW ||
2203             !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2204             !blk_queue_nonrot(td->queue))
2205                 return;
2206
2207         index = request_bucket_index(size);
2208
2209         latency = get_cpu_ptr(td->latency_buckets[rw]);
2210         latency[index].total_latency += time;
2211         latency[index].samples++;
2212         put_cpu_ptr(td->latency_buckets[rw]);
2213 }
2214
2215 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2216 {
2217         struct request_queue *q = rq->q;
2218         struct throtl_data *td = q->td;
2219
2220         throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2221                              time_ns >> 10);
2222 }
2223
2224 void blk_throtl_bio_endio(struct bio *bio)
2225 {
2226         struct blkcg_gq *blkg;
2227         struct throtl_grp *tg;
2228         u64 finish_time_ns;
2229         unsigned long finish_time;
2230         unsigned long start_time;
2231         unsigned long lat;
2232         int rw = bio_data_dir(bio);
2233
2234         blkg = bio->bi_blkg;
2235         if (!blkg)
2236                 return;
2237         tg = blkg_to_tg(blkg);
2238         if (!tg->td->limit_valid[LIMIT_LOW])
2239                 return;
2240
2241         finish_time_ns = ktime_get_ns();
2242         tg->last_finish_time = finish_time_ns >> 10;
2243
2244         start_time = bio_issue_time(&bio->bi_issue) >> 10;
2245         finish_time = __bio_issue_time(finish_time_ns) >> 10;
2246         if (!start_time || finish_time <= start_time)
2247                 return;
2248
2249         lat = finish_time - start_time;
2250         /* this is only for bio based driver */
2251         if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2252                 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2253                                      bio_op(bio), lat);
2254
2255         if (tg->latency_target && lat >= tg->td->filtered_latency) {
2256                 int bucket;
2257                 unsigned int threshold;
2258
2259                 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2260                 threshold = tg->td->avg_buckets[rw][bucket].latency +
2261                         tg->latency_target;
2262                 if (lat > threshold)
2263                         tg->bad_bio_cnt++;
2264                 /*
2265                  * Not race free, could get wrong count, which means cgroups
2266                  * will be throttled
2267                  */
2268                 tg->bio_cnt++;
2269         }
2270
2271         if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2272                 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2273                 tg->bio_cnt /= 2;
2274                 tg->bad_bio_cnt /= 2;
2275         }
2276 }
2277 #endif
2278
2279 int blk_throtl_init(struct request_queue *q)
2280 {
2281         struct throtl_data *td;
2282         int ret;
2283
2284         td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2285         if (!td)
2286                 return -ENOMEM;
2287         td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2288                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2289         if (!td->latency_buckets[READ]) {
2290                 kfree(td);
2291                 return -ENOMEM;
2292         }
2293         td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2294                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2295         if (!td->latency_buckets[WRITE]) {
2296                 free_percpu(td->latency_buckets[READ]);
2297                 kfree(td);
2298                 return -ENOMEM;
2299         }
2300
2301         INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2302         throtl_service_queue_init(&td->service_queue);
2303
2304         q->td = td;
2305         td->queue = q;
2306
2307         td->limit_valid[LIMIT_MAX] = true;
2308         td->limit_index = LIMIT_MAX;
2309         td->low_upgrade_time = jiffies;
2310         td->low_downgrade_time = jiffies;
2311
2312         /* activate policy */
2313         ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2314         if (ret) {
2315                 free_percpu(td->latency_buckets[READ]);
2316                 free_percpu(td->latency_buckets[WRITE]);
2317                 kfree(td);
2318         }
2319         return ret;
2320 }
2321
2322 void blk_throtl_exit(struct request_queue *q)
2323 {
2324         BUG_ON(!q->td);
2325         del_timer_sync(&q->td->service_queue.pending_timer);
2326         throtl_shutdown_wq(q);
2327         blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2328         free_percpu(q->td->latency_buckets[READ]);
2329         free_percpu(q->td->latency_buckets[WRITE]);
2330         kfree(q->td);
2331 }
2332
2333 void blk_throtl_register_queue(struct request_queue *q)
2334 {
2335         struct throtl_data *td;
2336         int i;
2337
2338         td = q->td;
2339         BUG_ON(!td);
2340
2341         if (blk_queue_nonrot(q)) {
2342                 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2343                 td->filtered_latency = LATENCY_FILTERED_SSD;
2344         } else {
2345                 td->throtl_slice = DFL_THROTL_SLICE_HD;
2346                 td->filtered_latency = LATENCY_FILTERED_HD;
2347                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2348                         td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2349                         td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2350                 }
2351         }
2352 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2353         /* if no low limit, use previous default */
2354         td->throtl_slice = DFL_THROTL_SLICE_HD;
2355 #endif
2356
2357         td->track_bio_latency = !queue_is_mq(q);
2358         if (!td->track_bio_latency)
2359                 blk_stat_enable_accounting(q);
2360 }
2361
2362 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2363 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2364 {
2365         if (!q->td)
2366                 return -EINVAL;
2367         return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2368 }
2369
2370 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2371         const char *page, size_t count)
2372 {
2373         unsigned long v;
2374         unsigned long t;
2375
2376         if (!q->td)
2377                 return -EINVAL;
2378         if (kstrtoul(page, 10, &v))
2379                 return -EINVAL;
2380         t = msecs_to_jiffies(v);
2381         if (t == 0 || t > MAX_THROTL_SLICE)
2382                 return -EINVAL;
2383         q->td->throtl_slice = t;
2384         return count;
2385 }
2386 #endif
2387
2388 static int __init throtl_init(void)
2389 {
2390         kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2391         if (!kthrotld_workqueue)
2392                 panic("Failed to create kthrotld\n");
2393
2394         return blkcg_policy_register(&blkcg_policy_throtl);
2395 }
2396
2397 module_init(throtl_init);