GNU Linux-libre 6.1.91-gnu
[releases.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54         int ddir, sectors, bucket;
55
56         ddir = rq_data_dir(rq);
57         sectors = blk_rq_stats_sectors(rq);
58
59         bucket = ddir + 2 * ilog2(sectors);
60
61         if (bucket < 0)
62                 return -1;
63         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66         return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT          16
70 #define BLK_QC_T_INTERNAL       (1U << 31)
71
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73                 blk_qc_t qc)
74 {
75         return xa_load(&q->hctx_table,
76                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80                 blk_qc_t qc)
81 {
82         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84         if (qc & BLK_QC_T_INTERNAL)
85                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86         return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92                 (rq->tag != -1 ?
93                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102         return !list_empty_careful(&hctx->dispatch) ||
103                 sbitmap_any_bit_set(&hctx->ctx_map) ||
104                         blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111                                      struct blk_mq_ctx *ctx)
112 {
113         const int bit = ctx->index_hw[hctx->type];
114
115         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116                 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120                                       struct blk_mq_ctx *ctx)
121 {
122         const int bit = ctx->index_hw[hctx->type];
123
124         sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128         struct block_device *part;
129         unsigned int inflight[2];
130 };
131
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264         if (blk_queue_has_srcu(q))
265                 synchronize_srcu(q->srcu);
266         else
267                 synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282         blk_mq_quiesce_queue_nowait(q);
283         blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296         unsigned long flags;
297         bool run_queue = false;
298
299         spin_lock_irqsave(&q->queue_lock, flags);
300         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301                 ;
302         } else if (!--q->quiesce_depth) {
303                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304                 run_queue = true;
305         }
306         spin_unlock_irqrestore(&q->queue_lock, flags);
307
308         /* dispatch requests which are inserted during quiescing */
309         if (run_queue)
310                 blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316         struct blk_mq_hw_ctx *hctx;
317         unsigned long i;
318
319         queue_for_each_hw_ctx(q, hctx, i)
320                 if (blk_mq_hw_queue_mapped(hctx))
321                         blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326         memset(rq, 0, sizeof(*rq));
327
328         INIT_LIST_HEAD(&rq->queuelist);
329         rq->q = q;
330         rq->__sector = (sector_t) -1;
331         INIT_HLIST_NODE(&rq->hash);
332         RB_CLEAR_NODE(&rq->rb_node);
333         rq->tag = BLK_MQ_NO_TAG;
334         rq->internal_tag = BLK_MQ_NO_TAG;
335         rq->start_time_ns = ktime_get_ns();
336         rq->part = NULL;
337         blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344         struct blk_mq_ctx *ctx = data->ctx;
345         struct blk_mq_hw_ctx *hctx = data->hctx;
346         struct request_queue *q = data->q;
347         struct request *rq = tags->static_rqs[tag];
348
349         rq->q = q;
350         rq->mq_ctx = ctx;
351         rq->mq_hctx = hctx;
352         rq->cmd_flags = data->cmd_flags;
353
354         if (data->flags & BLK_MQ_REQ_PM)
355                 data->rq_flags |= RQF_PM;
356         if (blk_queue_io_stat(q))
357                 data->rq_flags |= RQF_IO_STAT;
358         rq->rq_flags = data->rq_flags;
359
360         if (!(data->rq_flags & RQF_ELV)) {
361                 rq->tag = tag;
362                 rq->internal_tag = BLK_MQ_NO_TAG;
363         } else {
364                 rq->tag = BLK_MQ_NO_TAG;
365                 rq->internal_tag = tag;
366         }
367         rq->timeout = 0;
368
369         if (blk_mq_need_time_stamp(rq))
370                 rq->start_time_ns = ktime_get_ns();
371         else
372                 rq->start_time_ns = 0;
373         rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375         rq->alloc_time_ns = alloc_time_ns;
376 #endif
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_ELV) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (!op_is_flush(data->cmd_flags) &&
399                     e->type->ops.prepare_request) {
400                         e->type->ops.prepare_request(rq);
401                         rq->rq_flags |= RQF_ELVPRIV;
402                 }
403         }
404
405         return rq;
406 }
407
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410                 u64 alloc_time_ns)
411 {
412         unsigned int tag, tag_offset;
413         struct blk_mq_tags *tags;
414         struct request *rq;
415         unsigned long tag_mask;
416         int i, nr = 0;
417
418         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419         if (unlikely(!tag_mask))
420                 return NULL;
421
422         tags = blk_mq_tags_from_data(data);
423         for (i = 0; tag_mask; i++) {
424                 if (!(tag_mask & (1UL << i)))
425                         continue;
426                 tag = tag_offset + i;
427                 prefetch(tags->static_rqs[tag]);
428                 tag_mask &= ~(1UL << i);
429                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430                 rq_list_add(data->cached_rq, rq);
431                 nr++;
432         }
433         /* caller already holds a reference, add for remainder */
434         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435         data->nr_tags -= nr;
436
437         return rq_list_pop(data->cached_rq);
438 }
439
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442         struct request_queue *q = data->q;
443         u64 alloc_time_ns = 0;
444         struct request *rq;
445         unsigned int tag;
446
447         /* alloc_time includes depth and tag waits */
448         if (blk_queue_rq_alloc_time(q))
449                 alloc_time_ns = ktime_get_ns();
450
451         if (data->cmd_flags & REQ_NOWAIT)
452                 data->flags |= BLK_MQ_REQ_NOWAIT;
453
454         if (q->elevator) {
455                 struct elevator_queue *e = q->elevator;
456
457                 data->rq_flags |= RQF_ELV;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list. Don't include reserved tags in the
462                  * limiting, as it isn't useful.
463                  */
464                 if (!op_is_flush(data->cmd_flags) &&
465                     !blk_op_is_passthrough(data->cmd_flags) &&
466                     e->type->ops.limit_depth &&
467                     !(data->flags & BLK_MQ_REQ_RESERVED))
468                         e->type->ops.limit_depth(data->cmd_flags, data);
469         }
470
471 retry:
472         data->ctx = blk_mq_get_ctx(q);
473         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474         if (!(data->rq_flags & RQF_ELV))
475                 blk_mq_tag_busy(data->hctx);
476
477         if (data->flags & BLK_MQ_REQ_RESERVED)
478                 data->rq_flags |= RQF_RESV;
479
480         /*
481          * Try batched alloc if we want more than 1 tag.
482          */
483         if (data->nr_tags > 1) {
484                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
485                 if (rq)
486                         return rq;
487                 data->nr_tags = 1;
488         }
489
490         /*
491          * Waiting allocations only fail because of an inactive hctx.  In that
492          * case just retry the hctx assignment and tag allocation as CPU hotplug
493          * should have migrated us to an online CPU by now.
494          */
495         tag = blk_mq_get_tag(data);
496         if (tag == BLK_MQ_NO_TAG) {
497                 if (data->flags & BLK_MQ_REQ_NOWAIT)
498                         return NULL;
499                 /*
500                  * Give up the CPU and sleep for a random short time to
501                  * ensure that thread using a realtime scheduling class
502                  * are migrated off the CPU, and thus off the hctx that
503                  * is going away.
504                  */
505                 msleep(3);
506                 goto retry;
507         }
508
509         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
510                                         alloc_time_ns);
511 }
512
513 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
514                                             struct blk_plug *plug,
515                                             blk_opf_t opf,
516                                             blk_mq_req_flags_t flags)
517 {
518         struct blk_mq_alloc_data data = {
519                 .q              = q,
520                 .flags          = flags,
521                 .cmd_flags      = opf,
522                 .nr_tags        = plug->nr_ios,
523                 .cached_rq      = &plug->cached_rq,
524         };
525         struct request *rq;
526
527         if (blk_queue_enter(q, flags))
528                 return NULL;
529
530         plug->nr_ios = 1;
531
532         rq = __blk_mq_alloc_requests(&data);
533         if (unlikely(!rq))
534                 blk_queue_exit(q);
535         return rq;
536 }
537
538 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
539                                                    blk_opf_t opf,
540                                                    blk_mq_req_flags_t flags)
541 {
542         struct blk_plug *plug = current->plug;
543         struct request *rq;
544
545         if (!plug)
546                 return NULL;
547         if (rq_list_empty(plug->cached_rq)) {
548                 if (plug->nr_ios == 1)
549                         return NULL;
550                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
551                 if (rq)
552                         goto got_it;
553                 return NULL;
554         }
555         rq = rq_list_peek(&plug->cached_rq);
556         if (!rq || rq->q != q)
557                 return NULL;
558
559         if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
560                 return NULL;
561         if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
562                 return NULL;
563
564         plug->cached_rq = rq_list_next(rq);
565 got_it:
566         rq->cmd_flags = opf;
567         INIT_LIST_HEAD(&rq->queuelist);
568         return rq;
569 }
570
571 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
572                 blk_mq_req_flags_t flags)
573 {
574         struct request *rq;
575
576         rq = blk_mq_alloc_cached_request(q, opf, flags);
577         if (!rq) {
578                 struct blk_mq_alloc_data data = {
579                         .q              = q,
580                         .flags          = flags,
581                         .cmd_flags      = opf,
582                         .nr_tags        = 1,
583                 };
584                 int ret;
585
586                 ret = blk_queue_enter(q, flags);
587                 if (ret)
588                         return ERR_PTR(ret);
589
590                 rq = __blk_mq_alloc_requests(&data);
591                 if (!rq)
592                         goto out_queue_exit;
593         }
594         rq->__data_len = 0;
595         rq->__sector = (sector_t) -1;
596         rq->bio = rq->biotail = NULL;
597         return rq;
598 out_queue_exit:
599         blk_queue_exit(q);
600         return ERR_PTR(-EWOULDBLOCK);
601 }
602 EXPORT_SYMBOL(blk_mq_alloc_request);
603
604 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
605         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
606 {
607         struct blk_mq_alloc_data data = {
608                 .q              = q,
609                 .flags          = flags,
610                 .cmd_flags      = opf,
611                 .nr_tags        = 1,
612         };
613         u64 alloc_time_ns = 0;
614         struct request *rq;
615         unsigned int cpu;
616         unsigned int tag;
617         int ret;
618
619         /* alloc_time includes depth and tag waits */
620         if (blk_queue_rq_alloc_time(q))
621                 alloc_time_ns = ktime_get_ns();
622
623         /*
624          * If the tag allocator sleeps we could get an allocation for a
625          * different hardware context.  No need to complicate the low level
626          * allocator for this for the rare use case of a command tied to
627          * a specific queue.
628          */
629         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
630             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
631                 return ERR_PTR(-EINVAL);
632
633         if (hctx_idx >= q->nr_hw_queues)
634                 return ERR_PTR(-EIO);
635
636         ret = blk_queue_enter(q, flags);
637         if (ret)
638                 return ERR_PTR(ret);
639
640         /*
641          * Check if the hardware context is actually mapped to anything.
642          * If not tell the caller that it should skip this queue.
643          */
644         ret = -EXDEV;
645         data.hctx = xa_load(&q->hctx_table, hctx_idx);
646         if (!blk_mq_hw_queue_mapped(data.hctx))
647                 goto out_queue_exit;
648         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
649         if (cpu >= nr_cpu_ids)
650                 goto out_queue_exit;
651         data.ctx = __blk_mq_get_ctx(q, cpu);
652
653         if (!q->elevator)
654                 blk_mq_tag_busy(data.hctx);
655         else
656                 data.rq_flags |= RQF_ELV;
657
658         if (flags & BLK_MQ_REQ_RESERVED)
659                 data.rq_flags |= RQF_RESV;
660
661         ret = -EWOULDBLOCK;
662         tag = blk_mq_get_tag(&data);
663         if (tag == BLK_MQ_NO_TAG)
664                 goto out_queue_exit;
665         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
666                                         alloc_time_ns);
667         rq->__data_len = 0;
668         rq->__sector = (sector_t) -1;
669         rq->bio = rq->biotail = NULL;
670         return rq;
671
672 out_queue_exit:
673         blk_queue_exit(q);
674         return ERR_PTR(ret);
675 }
676 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
677
678 static void blk_mq_finish_request(struct request *rq)
679 {
680         struct request_queue *q = rq->q;
681
682         if ((rq->rq_flags & RQF_ELVPRIV) &&
683             q->elevator->type->ops.finish_request) {
684                 q->elevator->type->ops.finish_request(rq);
685                 /*
686                  * For postflush request that may need to be
687                  * completed twice, we should clear this flag
688                  * to avoid double finish_request() on the rq.
689                  */
690                 rq->rq_flags &= ~RQF_ELVPRIV;
691         }
692 }
693
694 static void __blk_mq_free_request(struct request *rq)
695 {
696         struct request_queue *q = rq->q;
697         struct blk_mq_ctx *ctx = rq->mq_ctx;
698         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
699         const int sched_tag = rq->internal_tag;
700
701         blk_crypto_free_request(rq);
702         blk_pm_mark_last_busy(rq);
703         rq->mq_hctx = NULL;
704
705         if (rq->rq_flags & RQF_MQ_INFLIGHT)
706                 __blk_mq_dec_active_requests(hctx);
707
708         if (rq->tag != BLK_MQ_NO_TAG)
709                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
710         if (sched_tag != BLK_MQ_NO_TAG)
711                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
712         blk_mq_sched_restart(hctx);
713         blk_queue_exit(q);
714 }
715
716 void blk_mq_free_request(struct request *rq)
717 {
718         struct request_queue *q = rq->q;
719
720         blk_mq_finish_request(rq);
721
722         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
723                 laptop_io_completion(q->disk->bdi);
724
725         rq_qos_done(q, rq);
726
727         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
728         if (req_ref_put_and_test(rq))
729                 __blk_mq_free_request(rq);
730 }
731 EXPORT_SYMBOL_GPL(blk_mq_free_request);
732
733 void blk_mq_free_plug_rqs(struct blk_plug *plug)
734 {
735         struct request *rq;
736
737         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
738                 blk_mq_free_request(rq);
739 }
740
741 void blk_dump_rq_flags(struct request *rq, char *msg)
742 {
743         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
744                 rq->q->disk ? rq->q->disk->disk_name : "?",
745                 (__force unsigned long long) rq->cmd_flags);
746
747         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
748                (unsigned long long)blk_rq_pos(rq),
749                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
750         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
751                rq->bio, rq->biotail, blk_rq_bytes(rq));
752 }
753 EXPORT_SYMBOL(blk_dump_rq_flags);
754
755 static void req_bio_endio(struct request *rq, struct bio *bio,
756                           unsigned int nbytes, blk_status_t error)
757 {
758         if (unlikely(error)) {
759                 bio->bi_status = error;
760         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
761                 /*
762                  * Partial zone append completions cannot be supported as the
763                  * BIO fragments may end up not being written sequentially.
764                  */
765                 if (bio->bi_iter.bi_size != nbytes)
766                         bio->bi_status = BLK_STS_IOERR;
767                 else
768                         bio->bi_iter.bi_sector = rq->__sector;
769         }
770
771         bio_advance(bio, nbytes);
772
773         if (unlikely(rq->rq_flags & RQF_QUIET))
774                 bio_set_flag(bio, BIO_QUIET);
775         /* don't actually finish bio if it's part of flush sequence */
776         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
777                 bio_endio(bio);
778 }
779
780 static void blk_account_io_completion(struct request *req, unsigned int bytes)
781 {
782         if (req->part && blk_do_io_stat(req)) {
783                 const int sgrp = op_stat_group(req_op(req));
784
785                 part_stat_lock();
786                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
787                 part_stat_unlock();
788         }
789 }
790
791 static void blk_print_req_error(struct request *req, blk_status_t status)
792 {
793         printk_ratelimited(KERN_ERR
794                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
795                 "phys_seg %u prio class %u\n",
796                 blk_status_to_str(status),
797                 req->q->disk ? req->q->disk->disk_name : "?",
798                 blk_rq_pos(req), (__force u32)req_op(req),
799                 blk_op_str(req_op(req)),
800                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
801                 req->nr_phys_segments,
802                 IOPRIO_PRIO_CLASS(req->ioprio));
803 }
804
805 /*
806  * Fully end IO on a request. Does not support partial completions, or
807  * errors.
808  */
809 static void blk_complete_request(struct request *req)
810 {
811         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
812         int total_bytes = blk_rq_bytes(req);
813         struct bio *bio = req->bio;
814
815         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
816
817         if (!bio)
818                 return;
819
820 #ifdef CONFIG_BLK_DEV_INTEGRITY
821         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
822                 req->q->integrity.profile->complete_fn(req, total_bytes);
823 #endif
824
825         /*
826          * Upper layers may call blk_crypto_evict_key() anytime after the last
827          * bio_endio().  Therefore, the keyslot must be released before that.
828          */
829         blk_crypto_rq_put_keyslot(req);
830
831         blk_account_io_completion(req, total_bytes);
832
833         do {
834                 struct bio *next = bio->bi_next;
835
836                 /* Completion has already been traced */
837                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
838
839                 if (req_op(req) == REQ_OP_ZONE_APPEND)
840                         bio->bi_iter.bi_sector = req->__sector;
841
842                 if (!is_flush)
843                         bio_endio(bio);
844                 bio = next;
845         } while (bio);
846
847         /*
848          * Reset counters so that the request stacking driver
849          * can find how many bytes remain in the request
850          * later.
851          */
852         if (!req->end_io) {
853                 req->bio = NULL;
854                 req->__data_len = 0;
855         }
856 }
857
858 /**
859  * blk_update_request - Complete multiple bytes without completing the request
860  * @req:      the request being processed
861  * @error:    block status code
862  * @nr_bytes: number of bytes to complete for @req
863  *
864  * Description:
865  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
866  *     the request structure even if @req doesn't have leftover.
867  *     If @req has leftover, sets it up for the next range of segments.
868  *
869  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
870  *     %false return from this function.
871  *
872  * Note:
873  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
874  *      except in the consistency check at the end of this function.
875  *
876  * Return:
877  *     %false - this request doesn't have any more data
878  *     %true  - this request has more data
879  **/
880 bool blk_update_request(struct request *req, blk_status_t error,
881                 unsigned int nr_bytes)
882 {
883         int total_bytes;
884
885         trace_block_rq_complete(req, error, nr_bytes);
886
887         if (!req->bio)
888                 return false;
889
890 #ifdef CONFIG_BLK_DEV_INTEGRITY
891         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
892             error == BLK_STS_OK)
893                 req->q->integrity.profile->complete_fn(req, nr_bytes);
894 #endif
895
896         /*
897          * Upper layers may call blk_crypto_evict_key() anytime after the last
898          * bio_endio().  Therefore, the keyslot must be released before that.
899          */
900         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
901                 __blk_crypto_rq_put_keyslot(req);
902
903         if (unlikely(error && !blk_rq_is_passthrough(req) &&
904                      !(req->rq_flags & RQF_QUIET)) &&
905                      !test_bit(GD_DEAD, &req->q->disk->state)) {
906                 blk_print_req_error(req, error);
907                 trace_block_rq_error(req, error, nr_bytes);
908         }
909
910         blk_account_io_completion(req, nr_bytes);
911
912         total_bytes = 0;
913         while (req->bio) {
914                 struct bio *bio = req->bio;
915                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
916
917                 if (bio_bytes == bio->bi_iter.bi_size)
918                         req->bio = bio->bi_next;
919
920                 /* Completion has already been traced */
921                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
922                 req_bio_endio(req, bio, bio_bytes, error);
923
924                 total_bytes += bio_bytes;
925                 nr_bytes -= bio_bytes;
926
927                 if (!nr_bytes)
928                         break;
929         }
930
931         /*
932          * completely done
933          */
934         if (!req->bio) {
935                 /*
936                  * Reset counters so that the request stacking driver
937                  * can find how many bytes remain in the request
938                  * later.
939                  */
940                 req->__data_len = 0;
941                 return false;
942         }
943
944         req->__data_len -= total_bytes;
945
946         /* update sector only for requests with clear definition of sector */
947         if (!blk_rq_is_passthrough(req))
948                 req->__sector += total_bytes >> 9;
949
950         /* mixed attributes always follow the first bio */
951         if (req->rq_flags & RQF_MIXED_MERGE) {
952                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
953                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
954         }
955
956         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
957                 /*
958                  * If total number of sectors is less than the first segment
959                  * size, something has gone terribly wrong.
960                  */
961                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
962                         blk_dump_rq_flags(req, "request botched");
963                         req->__data_len = blk_rq_cur_bytes(req);
964                 }
965
966                 /* recalculate the number of segments */
967                 req->nr_phys_segments = blk_recalc_rq_segments(req);
968         }
969
970         return true;
971 }
972 EXPORT_SYMBOL_GPL(blk_update_request);
973
974 static void __blk_account_io_done(struct request *req, u64 now)
975 {
976         const int sgrp = op_stat_group(req_op(req));
977
978         part_stat_lock();
979         update_io_ticks(req->part, jiffies, true);
980         part_stat_inc(req->part, ios[sgrp]);
981         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
982         part_stat_unlock();
983 }
984
985 static inline void blk_account_io_done(struct request *req, u64 now)
986 {
987         /*
988          * Account IO completion.  flush_rq isn't accounted as a
989          * normal IO on queueing nor completion.  Accounting the
990          * containing request is enough.
991          */
992         if (blk_do_io_stat(req) && req->part &&
993             !(req->rq_flags & RQF_FLUSH_SEQ))
994                 __blk_account_io_done(req, now);
995 }
996
997 static void __blk_account_io_start(struct request *rq)
998 {
999         /*
1000          * All non-passthrough requests are created from a bio with one
1001          * exception: when a flush command that is part of a flush sequence
1002          * generated by the state machine in blk-flush.c is cloned onto the
1003          * lower device by dm-multipath we can get here without a bio.
1004          */
1005         if (rq->bio)
1006                 rq->part = rq->bio->bi_bdev;
1007         else
1008                 rq->part = rq->q->disk->part0;
1009
1010         part_stat_lock();
1011         update_io_ticks(rq->part, jiffies, false);
1012         part_stat_unlock();
1013 }
1014
1015 static inline void blk_account_io_start(struct request *req)
1016 {
1017         if (blk_do_io_stat(req))
1018                 __blk_account_io_start(req);
1019 }
1020
1021 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1022 {
1023         if (rq->rq_flags & RQF_STATS) {
1024                 blk_mq_poll_stats_start(rq->q);
1025                 blk_stat_add(rq, now);
1026         }
1027
1028         blk_mq_sched_completed_request(rq, now);
1029         blk_account_io_done(rq, now);
1030 }
1031
1032 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1033 {
1034         if (blk_mq_need_time_stamp(rq))
1035                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1036
1037         blk_mq_finish_request(rq);
1038
1039         if (rq->end_io) {
1040                 rq_qos_done(rq->q, rq);
1041                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1042                         blk_mq_free_request(rq);
1043         } else {
1044                 blk_mq_free_request(rq);
1045         }
1046 }
1047 EXPORT_SYMBOL(__blk_mq_end_request);
1048
1049 void blk_mq_end_request(struct request *rq, blk_status_t error)
1050 {
1051         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1052                 BUG();
1053         __blk_mq_end_request(rq, error);
1054 }
1055 EXPORT_SYMBOL(blk_mq_end_request);
1056
1057 #define TAG_COMP_BATCH          32
1058
1059 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1060                                           int *tag_array, int nr_tags)
1061 {
1062         struct request_queue *q = hctx->queue;
1063
1064         /*
1065          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1066          * update hctx->nr_active in batch
1067          */
1068         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1069                 __blk_mq_sub_active_requests(hctx, nr_tags);
1070
1071         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1072         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1073 }
1074
1075 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1076 {
1077         int tags[TAG_COMP_BATCH], nr_tags = 0;
1078         struct blk_mq_hw_ctx *cur_hctx = NULL;
1079         struct request *rq;
1080         u64 now = 0;
1081
1082         if (iob->need_ts)
1083                 now = ktime_get_ns();
1084
1085         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1086                 prefetch(rq->bio);
1087                 prefetch(rq->rq_next);
1088
1089                 blk_complete_request(rq);
1090                 if (iob->need_ts)
1091                         __blk_mq_end_request_acct(rq, now);
1092
1093                 blk_mq_finish_request(rq);
1094
1095                 rq_qos_done(rq->q, rq);
1096
1097                 /*
1098                  * If end_io handler returns NONE, then it still has
1099                  * ownership of the request.
1100                  */
1101                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102                         continue;
1103
1104                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105                 if (!req_ref_put_and_test(rq))
1106                         continue;
1107
1108                 blk_crypto_free_request(rq);
1109                 blk_pm_mark_last_busy(rq);
1110
1111                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112                         if (cur_hctx)
1113                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114                         nr_tags = 0;
1115                         cur_hctx = rq->mq_hctx;
1116                 }
1117                 tags[nr_tags++] = rq->tag;
1118         }
1119
1120         if (nr_tags)
1121                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122 }
1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124
1125 static void blk_complete_reqs(struct llist_head *list)
1126 {
1127         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128         struct request *rq, *next;
1129
1130         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131                 rq->q->mq_ops->complete(rq);
1132 }
1133
1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135 {
1136         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137 }
1138
1139 static int blk_softirq_cpu_dead(unsigned int cpu)
1140 {
1141         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142         return 0;
1143 }
1144
1145 static void __blk_mq_complete_request_remote(void *data)
1146 {
1147         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148 }
1149
1150 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151 {
1152         int cpu = raw_smp_processor_id();
1153
1154         if (!IS_ENABLED(CONFIG_SMP) ||
1155             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156                 return false;
1157         /*
1158          * With force threaded interrupts enabled, raising softirq from an SMP
1159          * function call will always result in waking the ksoftirqd thread.
1160          * This is probably worse than completing the request on a different
1161          * cache domain.
1162          */
1163         if (force_irqthreads())
1164                 return false;
1165
1166         /* same CPU or cache domain?  Complete locally */
1167         if (cpu == rq->mq_ctx->cpu ||
1168             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1170                 return false;
1171
1172         /* don't try to IPI to an offline CPU */
1173         return cpu_online(rq->mq_ctx->cpu);
1174 }
1175
1176 static void blk_mq_complete_send_ipi(struct request *rq)
1177 {
1178         struct llist_head *list;
1179         unsigned int cpu;
1180
1181         cpu = rq->mq_ctx->cpu;
1182         list = &per_cpu(blk_cpu_done, cpu);
1183         if (llist_add(&rq->ipi_list, list)) {
1184                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1185                 smp_call_function_single_async(cpu, &rq->csd);
1186         }
1187 }
1188
1189 static void blk_mq_raise_softirq(struct request *rq)
1190 {
1191         struct llist_head *list;
1192
1193         preempt_disable();
1194         list = this_cpu_ptr(&blk_cpu_done);
1195         if (llist_add(&rq->ipi_list, list))
1196                 raise_softirq(BLOCK_SOFTIRQ);
1197         preempt_enable();
1198 }
1199
1200 bool blk_mq_complete_request_remote(struct request *rq)
1201 {
1202         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1203
1204         /*
1205          * For request which hctx has only one ctx mapping,
1206          * or a polled request, always complete locally,
1207          * it's pointless to redirect the completion.
1208          */
1209         if (rq->mq_hctx->nr_ctx == 1 ||
1210                 rq->cmd_flags & REQ_POLLED)
1211                 return false;
1212
1213         if (blk_mq_complete_need_ipi(rq)) {
1214                 blk_mq_complete_send_ipi(rq);
1215                 return true;
1216         }
1217
1218         if (rq->q->nr_hw_queues == 1) {
1219                 blk_mq_raise_softirq(rq);
1220                 return true;
1221         }
1222         return false;
1223 }
1224 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1225
1226 /**
1227  * blk_mq_complete_request - end I/O on a request
1228  * @rq:         the request being processed
1229  *
1230  * Description:
1231  *      Complete a request by scheduling the ->complete_rq operation.
1232  **/
1233 void blk_mq_complete_request(struct request *rq)
1234 {
1235         if (!blk_mq_complete_request_remote(rq))
1236                 rq->q->mq_ops->complete(rq);
1237 }
1238 EXPORT_SYMBOL(blk_mq_complete_request);
1239
1240 /**
1241  * blk_mq_start_request - Start processing a request
1242  * @rq: Pointer to request to be started
1243  *
1244  * Function used by device drivers to notify the block layer that a request
1245  * is going to be processed now, so blk layer can do proper initializations
1246  * such as starting the timeout timer.
1247  */
1248 void blk_mq_start_request(struct request *rq)
1249 {
1250         struct request_queue *q = rq->q;
1251
1252         trace_block_rq_issue(rq);
1253
1254         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1255                 rq->io_start_time_ns = ktime_get_ns();
1256                 rq->stats_sectors = blk_rq_sectors(rq);
1257                 rq->rq_flags |= RQF_STATS;
1258                 rq_qos_issue(q, rq);
1259         }
1260
1261         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1262
1263         blk_add_timer(rq);
1264         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1265
1266 #ifdef CONFIG_BLK_DEV_INTEGRITY
1267         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1268                 q->integrity.profile->prepare_fn(rq);
1269 #endif
1270         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1271                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1272 }
1273 EXPORT_SYMBOL(blk_mq_start_request);
1274
1275 /*
1276  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1277  * queues. This is important for md arrays to benefit from merging
1278  * requests.
1279  */
1280 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1281 {
1282         if (plug->multiple_queues)
1283                 return BLK_MAX_REQUEST_COUNT * 2;
1284         return BLK_MAX_REQUEST_COUNT;
1285 }
1286
1287 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1288 {
1289         struct request *last = rq_list_peek(&plug->mq_list);
1290
1291         if (!plug->rq_count) {
1292                 trace_block_plug(rq->q);
1293         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1294                    (!blk_queue_nomerges(rq->q) &&
1295                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1296                 blk_mq_flush_plug_list(plug, false);
1297                 last = NULL;
1298                 trace_block_plug(rq->q);
1299         }
1300
1301         if (!plug->multiple_queues && last && last->q != rq->q)
1302                 plug->multiple_queues = true;
1303         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1304                 plug->has_elevator = true;
1305         rq->rq_next = NULL;
1306         rq_list_add(&plug->mq_list, rq);
1307         plug->rq_count++;
1308 }
1309
1310 /**
1311  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1312  * @rq:         request to insert
1313  * @at_head:    insert request at head or tail of queue
1314  *
1315  * Description:
1316  *    Insert a fully prepared request at the back of the I/O scheduler queue
1317  *    for execution.  Don't wait for completion.
1318  *
1319  * Note:
1320  *    This function will invoke @done directly if the queue is dead.
1321  */
1322 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1323 {
1324         WARN_ON(irqs_disabled());
1325         WARN_ON(!blk_rq_is_passthrough(rq));
1326
1327         blk_account_io_start(rq);
1328
1329         /*
1330          * As plugging can be enabled for passthrough requests on a zoned
1331          * device, directly accessing the plug instead of using blk_mq_plug()
1332          * should not have any consequences.
1333          */
1334         if (current->plug && !at_head)
1335                 blk_add_rq_to_plug(current->plug, rq);
1336         else
1337                 blk_mq_sched_insert_request(rq, at_head, true, false);
1338 }
1339 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1340
1341 struct blk_rq_wait {
1342         struct completion done;
1343         blk_status_t ret;
1344 };
1345
1346 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1347 {
1348         struct blk_rq_wait *wait = rq->end_io_data;
1349
1350         wait->ret = ret;
1351         complete(&wait->done);
1352         return RQ_END_IO_NONE;
1353 }
1354
1355 bool blk_rq_is_poll(struct request *rq)
1356 {
1357         if (!rq->mq_hctx)
1358                 return false;
1359         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1360                 return false;
1361         return true;
1362 }
1363 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1364
1365 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1366 {
1367         do {
1368                 blk_mq_poll(rq->q, blk_rq_to_qc(rq), NULL, 0);
1369                 cond_resched();
1370         } while (!completion_done(wait));
1371 }
1372
1373 /**
1374  * blk_execute_rq - insert a request into queue for execution
1375  * @rq:         request to insert
1376  * @at_head:    insert request at head or tail of queue
1377  *
1378  * Description:
1379  *    Insert a fully prepared request at the back of the I/O scheduler queue
1380  *    for execution and wait for completion.
1381  * Return: The blk_status_t result provided to blk_mq_end_request().
1382  */
1383 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1384 {
1385         struct blk_rq_wait wait = {
1386                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1387         };
1388
1389         WARN_ON(irqs_disabled());
1390         WARN_ON(!blk_rq_is_passthrough(rq));
1391
1392         rq->end_io_data = &wait;
1393         rq->end_io = blk_end_sync_rq;
1394
1395         blk_account_io_start(rq);
1396         blk_mq_sched_insert_request(rq, at_head, true, false);
1397
1398         if (blk_rq_is_poll(rq)) {
1399                 blk_rq_poll_completion(rq, &wait.done);
1400         } else {
1401                 /*
1402                  * Prevent hang_check timer from firing at us during very long
1403                  * I/O
1404                  */
1405                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1406
1407                 if (hang_check)
1408                         while (!wait_for_completion_io_timeout(&wait.done,
1409                                         hang_check * (HZ/2)))
1410                                 ;
1411                 else
1412                         wait_for_completion_io(&wait.done);
1413         }
1414
1415         return wait.ret;
1416 }
1417 EXPORT_SYMBOL(blk_execute_rq);
1418
1419 static void __blk_mq_requeue_request(struct request *rq)
1420 {
1421         struct request_queue *q = rq->q;
1422
1423         blk_mq_put_driver_tag(rq);
1424
1425         trace_block_rq_requeue(rq);
1426         rq_qos_requeue(q, rq);
1427
1428         if (blk_mq_request_started(rq)) {
1429                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1430                 rq->rq_flags &= ~RQF_TIMED_OUT;
1431         }
1432 }
1433
1434 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1435 {
1436         __blk_mq_requeue_request(rq);
1437
1438         /* this request will be re-inserted to io scheduler queue */
1439         blk_mq_sched_requeue_request(rq);
1440
1441         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1442 }
1443 EXPORT_SYMBOL(blk_mq_requeue_request);
1444
1445 static void blk_mq_requeue_work(struct work_struct *work)
1446 {
1447         struct request_queue *q =
1448                 container_of(work, struct request_queue, requeue_work.work);
1449         LIST_HEAD(rq_list);
1450         struct request *rq, *next;
1451
1452         spin_lock_irq(&q->requeue_lock);
1453         list_splice_init(&q->requeue_list, &rq_list);
1454         spin_unlock_irq(&q->requeue_lock);
1455
1456         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1457                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1458                         continue;
1459
1460                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1461                 list_del_init(&rq->queuelist);
1462                 /*
1463                  * If RQF_DONTPREP, rq has contained some driver specific
1464                  * data, so insert it to hctx dispatch list to avoid any
1465                  * merge.
1466                  */
1467                 if (rq->rq_flags & RQF_DONTPREP)
1468                         blk_mq_request_bypass_insert(rq, false, false);
1469                 else
1470                         blk_mq_sched_insert_request(rq, true, false, false);
1471         }
1472
1473         while (!list_empty(&rq_list)) {
1474                 rq = list_entry(rq_list.next, struct request, queuelist);
1475                 list_del_init(&rq->queuelist);
1476                 blk_mq_sched_insert_request(rq, false, false, false);
1477         }
1478
1479         blk_mq_run_hw_queues(q, false);
1480 }
1481
1482 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1483                                 bool kick_requeue_list)
1484 {
1485         struct request_queue *q = rq->q;
1486         unsigned long flags;
1487
1488         /*
1489          * We abuse this flag that is otherwise used by the I/O scheduler to
1490          * request head insertion from the workqueue.
1491          */
1492         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1493
1494         spin_lock_irqsave(&q->requeue_lock, flags);
1495         if (at_head) {
1496                 rq->rq_flags |= RQF_SOFTBARRIER;
1497                 list_add(&rq->queuelist, &q->requeue_list);
1498         } else {
1499                 list_add_tail(&rq->queuelist, &q->requeue_list);
1500         }
1501         spin_unlock_irqrestore(&q->requeue_lock, flags);
1502
1503         if (kick_requeue_list)
1504                 blk_mq_kick_requeue_list(q);
1505 }
1506
1507 void blk_mq_kick_requeue_list(struct request_queue *q)
1508 {
1509         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1510 }
1511 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1512
1513 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1514                                     unsigned long msecs)
1515 {
1516         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1517                                     msecs_to_jiffies(msecs));
1518 }
1519 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1520
1521 static bool blk_is_flush_data_rq(struct request *rq)
1522 {
1523         return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1524 }
1525
1526 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1527 {
1528         /*
1529          * If we find a request that isn't idle we know the queue is busy
1530          * as it's checked in the iter.
1531          * Return false to stop the iteration.
1532          *
1533          * In case of queue quiesce, if one flush data request is completed,
1534          * don't count it as inflight given the flush sequence is suspended,
1535          * and the original flush data request is invisible to driver, just
1536          * like other pending requests because of quiesce
1537          */
1538         if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1539                                 blk_is_flush_data_rq(rq) &&
1540                                 blk_mq_request_completed(rq))) {
1541                 bool *busy = priv;
1542
1543                 *busy = true;
1544                 return false;
1545         }
1546
1547         return true;
1548 }
1549
1550 bool blk_mq_queue_inflight(struct request_queue *q)
1551 {
1552         bool busy = false;
1553
1554         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1555         return busy;
1556 }
1557 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1558
1559 static void blk_mq_rq_timed_out(struct request *req)
1560 {
1561         req->rq_flags |= RQF_TIMED_OUT;
1562         if (req->q->mq_ops->timeout) {
1563                 enum blk_eh_timer_return ret;
1564
1565                 ret = req->q->mq_ops->timeout(req);
1566                 if (ret == BLK_EH_DONE)
1567                         return;
1568                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1569         }
1570
1571         blk_add_timer(req);
1572 }
1573
1574 struct blk_expired_data {
1575         bool has_timedout_rq;
1576         unsigned long next;
1577         unsigned long timeout_start;
1578 };
1579
1580 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1581 {
1582         unsigned long deadline;
1583
1584         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1585                 return false;
1586         if (rq->rq_flags & RQF_TIMED_OUT)
1587                 return false;
1588
1589         deadline = READ_ONCE(rq->deadline);
1590         if (time_after_eq(expired->timeout_start, deadline))
1591                 return true;
1592
1593         if (expired->next == 0)
1594                 expired->next = deadline;
1595         else if (time_after(expired->next, deadline))
1596                 expired->next = deadline;
1597         return false;
1598 }
1599
1600 void blk_mq_put_rq_ref(struct request *rq)
1601 {
1602         if (is_flush_rq(rq)) {
1603                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1604                         blk_mq_free_request(rq);
1605         } else if (req_ref_put_and_test(rq)) {
1606                 __blk_mq_free_request(rq);
1607         }
1608 }
1609
1610 static bool blk_mq_check_expired(struct request *rq, void *priv)
1611 {
1612         struct blk_expired_data *expired = priv;
1613
1614         /*
1615          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1616          * be reallocated underneath the timeout handler's processing, then
1617          * the expire check is reliable. If the request is not expired, then
1618          * it was completed and reallocated as a new request after returning
1619          * from blk_mq_check_expired().
1620          */
1621         if (blk_mq_req_expired(rq, expired)) {
1622                 expired->has_timedout_rq = true;
1623                 return false;
1624         }
1625         return true;
1626 }
1627
1628 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1629 {
1630         struct blk_expired_data *expired = priv;
1631
1632         if (blk_mq_req_expired(rq, expired))
1633                 blk_mq_rq_timed_out(rq);
1634         return true;
1635 }
1636
1637 static void blk_mq_timeout_work(struct work_struct *work)
1638 {
1639         struct request_queue *q =
1640                 container_of(work, struct request_queue, timeout_work);
1641         struct blk_expired_data expired = {
1642                 .timeout_start = jiffies,
1643         };
1644         struct blk_mq_hw_ctx *hctx;
1645         unsigned long i;
1646
1647         /* A deadlock might occur if a request is stuck requiring a
1648          * timeout at the same time a queue freeze is waiting
1649          * completion, since the timeout code would not be able to
1650          * acquire the queue reference here.
1651          *
1652          * That's why we don't use blk_queue_enter here; instead, we use
1653          * percpu_ref_tryget directly, because we need to be able to
1654          * obtain a reference even in the short window between the queue
1655          * starting to freeze, by dropping the first reference in
1656          * blk_freeze_queue_start, and the moment the last request is
1657          * consumed, marked by the instant q_usage_counter reaches
1658          * zero.
1659          */
1660         if (!percpu_ref_tryget(&q->q_usage_counter))
1661                 return;
1662
1663         /* check if there is any timed-out request */
1664         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1665         if (expired.has_timedout_rq) {
1666                 /*
1667                  * Before walking tags, we must ensure any submit started
1668                  * before the current time has finished. Since the submit
1669                  * uses srcu or rcu, wait for a synchronization point to
1670                  * ensure all running submits have finished
1671                  */
1672                 blk_mq_wait_quiesce_done(q);
1673
1674                 expired.next = 0;
1675                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1676         }
1677
1678         if (expired.next != 0) {
1679                 mod_timer(&q->timeout, expired.next);
1680         } else {
1681                 /*
1682                  * Request timeouts are handled as a forward rolling timer. If
1683                  * we end up here it means that no requests are pending and
1684                  * also that no request has been pending for a while. Mark
1685                  * each hctx as idle.
1686                  */
1687                 queue_for_each_hw_ctx(q, hctx, i) {
1688                         /* the hctx may be unmapped, so check it here */
1689                         if (blk_mq_hw_queue_mapped(hctx))
1690                                 blk_mq_tag_idle(hctx);
1691                 }
1692         }
1693         blk_queue_exit(q);
1694 }
1695
1696 struct flush_busy_ctx_data {
1697         struct blk_mq_hw_ctx *hctx;
1698         struct list_head *list;
1699 };
1700
1701 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1702 {
1703         struct flush_busy_ctx_data *flush_data = data;
1704         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1705         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1706         enum hctx_type type = hctx->type;
1707
1708         spin_lock(&ctx->lock);
1709         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1710         sbitmap_clear_bit(sb, bitnr);
1711         spin_unlock(&ctx->lock);
1712         return true;
1713 }
1714
1715 /*
1716  * Process software queues that have been marked busy, splicing them
1717  * to the for-dispatch
1718  */
1719 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1720 {
1721         struct flush_busy_ctx_data data = {
1722                 .hctx = hctx,
1723                 .list = list,
1724         };
1725
1726         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1727 }
1728 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1729
1730 struct dispatch_rq_data {
1731         struct blk_mq_hw_ctx *hctx;
1732         struct request *rq;
1733 };
1734
1735 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1736                 void *data)
1737 {
1738         struct dispatch_rq_data *dispatch_data = data;
1739         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1740         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1741         enum hctx_type type = hctx->type;
1742
1743         spin_lock(&ctx->lock);
1744         if (!list_empty(&ctx->rq_lists[type])) {
1745                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1746                 list_del_init(&dispatch_data->rq->queuelist);
1747                 if (list_empty(&ctx->rq_lists[type]))
1748                         sbitmap_clear_bit(sb, bitnr);
1749         }
1750         spin_unlock(&ctx->lock);
1751
1752         return !dispatch_data->rq;
1753 }
1754
1755 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1756                                         struct blk_mq_ctx *start)
1757 {
1758         unsigned off = start ? start->index_hw[hctx->type] : 0;
1759         struct dispatch_rq_data data = {
1760                 .hctx = hctx,
1761                 .rq   = NULL,
1762         };
1763
1764         __sbitmap_for_each_set(&hctx->ctx_map, off,
1765                                dispatch_rq_from_ctx, &data);
1766
1767         return data.rq;
1768 }
1769
1770 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1771 {
1772         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1773         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1774         int tag;
1775
1776         blk_mq_tag_busy(rq->mq_hctx);
1777
1778         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1779                 bt = &rq->mq_hctx->tags->breserved_tags;
1780                 tag_offset = 0;
1781         } else {
1782                 if (!hctx_may_queue(rq->mq_hctx, bt))
1783                         return false;
1784         }
1785
1786         tag = __sbitmap_queue_get(bt);
1787         if (tag == BLK_MQ_NO_TAG)
1788                 return false;
1789
1790         rq->tag = tag + tag_offset;
1791         return true;
1792 }
1793
1794 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1795 {
1796         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1797                 return false;
1798
1799         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1800                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1801                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1802                 __blk_mq_inc_active_requests(hctx);
1803         }
1804         hctx->tags->rqs[rq->tag] = rq;
1805         return true;
1806 }
1807
1808 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1809                                 int flags, void *key)
1810 {
1811         struct blk_mq_hw_ctx *hctx;
1812
1813         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1814
1815         spin_lock(&hctx->dispatch_wait_lock);
1816         if (!list_empty(&wait->entry)) {
1817                 struct sbitmap_queue *sbq;
1818
1819                 list_del_init(&wait->entry);
1820                 sbq = &hctx->tags->bitmap_tags;
1821                 atomic_dec(&sbq->ws_active);
1822         }
1823         spin_unlock(&hctx->dispatch_wait_lock);
1824
1825         blk_mq_run_hw_queue(hctx, true);
1826         return 1;
1827 }
1828
1829 /*
1830  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1831  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1832  * restart. For both cases, take care to check the condition again after
1833  * marking us as waiting.
1834  */
1835 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1836                                  struct request *rq)
1837 {
1838         struct sbitmap_queue *sbq;
1839         struct wait_queue_head *wq;
1840         wait_queue_entry_t *wait;
1841         bool ret;
1842
1843         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1844             !(blk_mq_is_shared_tags(hctx->flags))) {
1845                 blk_mq_sched_mark_restart_hctx(hctx);
1846
1847                 /*
1848                  * It's possible that a tag was freed in the window between the
1849                  * allocation failure and adding the hardware queue to the wait
1850                  * queue.
1851                  *
1852                  * Don't clear RESTART here, someone else could have set it.
1853                  * At most this will cost an extra queue run.
1854                  */
1855                 return blk_mq_get_driver_tag(rq);
1856         }
1857
1858         wait = &hctx->dispatch_wait;
1859         if (!list_empty_careful(&wait->entry))
1860                 return false;
1861
1862         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1863                 sbq = &hctx->tags->breserved_tags;
1864         else
1865                 sbq = &hctx->tags->bitmap_tags;
1866         wq = &bt_wait_ptr(sbq, hctx)->wait;
1867
1868         spin_lock_irq(&wq->lock);
1869         spin_lock(&hctx->dispatch_wait_lock);
1870         if (!list_empty(&wait->entry)) {
1871                 spin_unlock(&hctx->dispatch_wait_lock);
1872                 spin_unlock_irq(&wq->lock);
1873                 return false;
1874         }
1875
1876         atomic_inc(&sbq->ws_active);
1877         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1878         __add_wait_queue(wq, wait);
1879
1880         /*
1881          * Add one explicit barrier since blk_mq_get_driver_tag() may
1882          * not imply barrier in case of failure.
1883          *
1884          * Order adding us to wait queue and allocating driver tag.
1885          *
1886          * The pair is the one implied in sbitmap_queue_wake_up() which
1887          * orders clearing sbitmap tag bits and waitqueue_active() in
1888          * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1889          *
1890          * Otherwise, re-order of adding wait queue and getting driver tag
1891          * may cause __sbitmap_queue_wake_up() to wake up nothing because
1892          * the waitqueue_active() may not observe us in wait queue.
1893          */
1894         smp_mb();
1895
1896         /*
1897          * It's possible that a tag was freed in the window between the
1898          * allocation failure and adding the hardware queue to the wait
1899          * queue.
1900          */
1901         ret = blk_mq_get_driver_tag(rq);
1902         if (!ret) {
1903                 spin_unlock(&hctx->dispatch_wait_lock);
1904                 spin_unlock_irq(&wq->lock);
1905                 return false;
1906         }
1907
1908         /*
1909          * We got a tag, remove ourselves from the wait queue to ensure
1910          * someone else gets the wakeup.
1911          */
1912         list_del_init(&wait->entry);
1913         atomic_dec(&sbq->ws_active);
1914         spin_unlock(&hctx->dispatch_wait_lock);
1915         spin_unlock_irq(&wq->lock);
1916
1917         return true;
1918 }
1919
1920 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1921 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1922 /*
1923  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1924  * - EWMA is one simple way to compute running average value
1925  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1926  * - take 4 as factor for avoiding to get too small(0) result, and this
1927  *   factor doesn't matter because EWMA decreases exponentially
1928  */
1929 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1930 {
1931         unsigned int ewma;
1932
1933         ewma = hctx->dispatch_busy;
1934
1935         if (!ewma && !busy)
1936                 return;
1937
1938         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1939         if (busy)
1940                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1941         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1942
1943         hctx->dispatch_busy = ewma;
1944 }
1945
1946 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1947
1948 static void blk_mq_handle_dev_resource(struct request *rq,
1949                                        struct list_head *list)
1950 {
1951         struct request *next =
1952                 list_first_entry_or_null(list, struct request, queuelist);
1953
1954         /*
1955          * If an I/O scheduler has been configured and we got a driver tag for
1956          * the next request already, free it.
1957          */
1958         if (next)
1959                 blk_mq_put_driver_tag(next);
1960
1961         list_add(&rq->queuelist, list);
1962         __blk_mq_requeue_request(rq);
1963 }
1964
1965 static void blk_mq_handle_zone_resource(struct request *rq,
1966                                         struct list_head *zone_list)
1967 {
1968         /*
1969          * If we end up here it is because we cannot dispatch a request to a
1970          * specific zone due to LLD level zone-write locking or other zone
1971          * related resource not being available. In this case, set the request
1972          * aside in zone_list for retrying it later.
1973          */
1974         list_add(&rq->queuelist, zone_list);
1975         __blk_mq_requeue_request(rq);
1976 }
1977
1978 enum prep_dispatch {
1979         PREP_DISPATCH_OK,
1980         PREP_DISPATCH_NO_TAG,
1981         PREP_DISPATCH_NO_BUDGET,
1982 };
1983
1984 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1985                                                   bool need_budget)
1986 {
1987         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1988         int budget_token = -1;
1989
1990         if (need_budget) {
1991                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1992                 if (budget_token < 0) {
1993                         blk_mq_put_driver_tag(rq);
1994                         return PREP_DISPATCH_NO_BUDGET;
1995                 }
1996                 blk_mq_set_rq_budget_token(rq, budget_token);
1997         }
1998
1999         if (!blk_mq_get_driver_tag(rq)) {
2000                 /*
2001                  * The initial allocation attempt failed, so we need to
2002                  * rerun the hardware queue when a tag is freed. The
2003                  * waitqueue takes care of that. If the queue is run
2004                  * before we add this entry back on the dispatch list,
2005                  * we'll re-run it below.
2006                  */
2007                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
2008                         /*
2009                          * All budgets not got from this function will be put
2010                          * together during handling partial dispatch
2011                          */
2012                         if (need_budget)
2013                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2014                         return PREP_DISPATCH_NO_TAG;
2015                 }
2016         }
2017
2018         return PREP_DISPATCH_OK;
2019 }
2020
2021 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2022 static void blk_mq_release_budgets(struct request_queue *q,
2023                 struct list_head *list)
2024 {
2025         struct request *rq;
2026
2027         list_for_each_entry(rq, list, queuelist) {
2028                 int budget_token = blk_mq_get_rq_budget_token(rq);
2029
2030                 if (budget_token >= 0)
2031                         blk_mq_put_dispatch_budget(q, budget_token);
2032         }
2033 }
2034
2035 /*
2036  * Returns true if we did some work AND can potentially do more.
2037  */
2038 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2039                              unsigned int nr_budgets)
2040 {
2041         enum prep_dispatch prep;
2042         struct request_queue *q = hctx->queue;
2043         struct request *rq, *nxt;
2044         int errors, queued;
2045         blk_status_t ret = BLK_STS_OK;
2046         LIST_HEAD(zone_list);
2047         bool needs_resource = false;
2048
2049         if (list_empty(list))
2050                 return false;
2051
2052         /*
2053          * Now process all the entries, sending them to the driver.
2054          */
2055         errors = queued = 0;
2056         do {
2057                 struct blk_mq_queue_data bd;
2058
2059                 rq = list_first_entry(list, struct request, queuelist);
2060
2061                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2062                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2063                 if (prep != PREP_DISPATCH_OK)
2064                         break;
2065
2066                 list_del_init(&rq->queuelist);
2067
2068                 bd.rq = rq;
2069
2070                 /*
2071                  * Flag last if we have no more requests, or if we have more
2072                  * but can't assign a driver tag to it.
2073                  */
2074                 if (list_empty(list))
2075                         bd.last = true;
2076                 else {
2077                         nxt = list_first_entry(list, struct request, queuelist);
2078                         bd.last = !blk_mq_get_driver_tag(nxt);
2079                 }
2080
2081                 /*
2082                  * once the request is queued to lld, no need to cover the
2083                  * budget any more
2084                  */
2085                 if (nr_budgets)
2086                         nr_budgets--;
2087                 ret = q->mq_ops->queue_rq(hctx, &bd);
2088                 switch (ret) {
2089                 case BLK_STS_OK:
2090                         queued++;
2091                         break;
2092                 case BLK_STS_RESOURCE:
2093                         needs_resource = true;
2094                         fallthrough;
2095                 case BLK_STS_DEV_RESOURCE:
2096                         blk_mq_handle_dev_resource(rq, list);
2097                         goto out;
2098                 case BLK_STS_ZONE_RESOURCE:
2099                         /*
2100                          * Move the request to zone_list and keep going through
2101                          * the dispatch list to find more requests the drive can
2102                          * accept.
2103                          */
2104                         blk_mq_handle_zone_resource(rq, &zone_list);
2105                         needs_resource = true;
2106                         break;
2107                 default:
2108                         errors++;
2109                         blk_mq_end_request(rq, ret);
2110                 }
2111         } while (!list_empty(list));
2112 out:
2113         if (!list_empty(&zone_list))
2114                 list_splice_tail_init(&zone_list, list);
2115
2116         /* If we didn't flush the entire list, we could have told the driver
2117          * there was more coming, but that turned out to be a lie.
2118          */
2119         if ((!list_empty(list) || errors || needs_resource ||
2120              ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
2121                 q->mq_ops->commit_rqs(hctx);
2122         /*
2123          * Any items that need requeuing? Stuff them into hctx->dispatch,
2124          * that is where we will continue on next queue run.
2125          */
2126         if (!list_empty(list)) {
2127                 bool needs_restart;
2128                 /* For non-shared tags, the RESTART check will suffice */
2129                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2130                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2131                         blk_mq_is_shared_tags(hctx->flags));
2132
2133                 if (nr_budgets)
2134                         blk_mq_release_budgets(q, list);
2135
2136                 spin_lock(&hctx->lock);
2137                 list_splice_tail_init(list, &hctx->dispatch);
2138                 spin_unlock(&hctx->lock);
2139
2140                 /*
2141                  * Order adding requests to hctx->dispatch and checking
2142                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2143                  * in blk_mq_sched_restart(). Avoid restart code path to
2144                  * miss the new added requests to hctx->dispatch, meantime
2145                  * SCHED_RESTART is observed here.
2146                  */
2147                 smp_mb();
2148
2149                 /*
2150                  * If SCHED_RESTART was set by the caller of this function and
2151                  * it is no longer set that means that it was cleared by another
2152                  * thread and hence that a queue rerun is needed.
2153                  *
2154                  * If 'no_tag' is set, that means that we failed getting
2155                  * a driver tag with an I/O scheduler attached. If our dispatch
2156                  * waitqueue is no longer active, ensure that we run the queue
2157                  * AFTER adding our entries back to the list.
2158                  *
2159                  * If no I/O scheduler has been configured it is possible that
2160                  * the hardware queue got stopped and restarted before requests
2161                  * were pushed back onto the dispatch list. Rerun the queue to
2162                  * avoid starvation. Notes:
2163                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2164                  *   been stopped before rerunning a queue.
2165                  * - Some but not all block drivers stop a queue before
2166                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2167                  *   and dm-rq.
2168                  *
2169                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2170                  * bit is set, run queue after a delay to avoid IO stalls
2171                  * that could otherwise occur if the queue is idle.  We'll do
2172                  * similar if we couldn't get budget or couldn't lock a zone
2173                  * and SCHED_RESTART is set.
2174                  */
2175                 needs_restart = blk_mq_sched_needs_restart(hctx);
2176                 if (prep == PREP_DISPATCH_NO_BUDGET)
2177                         needs_resource = true;
2178                 if (!needs_restart ||
2179                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2180                         blk_mq_run_hw_queue(hctx, true);
2181                 else if (needs_resource)
2182                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2183
2184                 blk_mq_update_dispatch_busy(hctx, true);
2185                 return false;
2186         } else
2187                 blk_mq_update_dispatch_busy(hctx, false);
2188
2189         return (queued + errors) != 0;
2190 }
2191
2192 /**
2193  * __blk_mq_run_hw_queue - Run a hardware queue.
2194  * @hctx: Pointer to the hardware queue to run.
2195  *
2196  * Send pending requests to the hardware.
2197  */
2198 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2199 {
2200         /*
2201          * We can't run the queue inline with ints disabled. Ensure that
2202          * we catch bad users of this early.
2203          */
2204         WARN_ON_ONCE(in_interrupt());
2205
2206         blk_mq_run_dispatch_ops(hctx->queue,
2207                         blk_mq_sched_dispatch_requests(hctx));
2208 }
2209
2210 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2211 {
2212         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2213
2214         if (cpu >= nr_cpu_ids)
2215                 cpu = cpumask_first(hctx->cpumask);
2216         return cpu;
2217 }
2218
2219 /*
2220  * It'd be great if the workqueue API had a way to pass
2221  * in a mask and had some smarts for more clever placement.
2222  * For now we just round-robin here, switching for every
2223  * BLK_MQ_CPU_WORK_BATCH queued items.
2224  */
2225 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2226 {
2227         bool tried = false;
2228         int next_cpu = hctx->next_cpu;
2229
2230         if (hctx->queue->nr_hw_queues == 1)
2231                 return WORK_CPU_UNBOUND;
2232
2233         if (--hctx->next_cpu_batch <= 0) {
2234 select_cpu:
2235                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2236                                 cpu_online_mask);
2237                 if (next_cpu >= nr_cpu_ids)
2238                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2239                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2240         }
2241
2242         /*
2243          * Do unbound schedule if we can't find a online CPU for this hctx,
2244          * and it should only happen in the path of handling CPU DEAD.
2245          */
2246         if (!cpu_online(next_cpu)) {
2247                 if (!tried) {
2248                         tried = true;
2249                         goto select_cpu;
2250                 }
2251
2252                 /*
2253                  * Make sure to re-select CPU next time once after CPUs
2254                  * in hctx->cpumask become online again.
2255                  */
2256                 hctx->next_cpu = next_cpu;
2257                 hctx->next_cpu_batch = 1;
2258                 return WORK_CPU_UNBOUND;
2259         }
2260
2261         hctx->next_cpu = next_cpu;
2262         return next_cpu;
2263 }
2264
2265 /**
2266  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2267  * @hctx: Pointer to the hardware queue to run.
2268  * @async: If we want to run the queue asynchronously.
2269  * @msecs: Milliseconds of delay to wait before running the queue.
2270  *
2271  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2272  * with a delay of @msecs.
2273  */
2274 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2275                                         unsigned long msecs)
2276 {
2277         if (unlikely(blk_mq_hctx_stopped(hctx)))
2278                 return;
2279
2280         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2281                 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2282                         __blk_mq_run_hw_queue(hctx);
2283                         return;
2284                 }
2285         }
2286
2287         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2288                                     msecs_to_jiffies(msecs));
2289 }
2290
2291 /**
2292  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2293  * @hctx: Pointer to the hardware queue to run.
2294  * @msecs: Milliseconds of delay to wait before running the queue.
2295  *
2296  * Run a hardware queue asynchronously with a delay of @msecs.
2297  */
2298 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2299 {
2300         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2301 }
2302 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2303
2304 /**
2305  * blk_mq_run_hw_queue - Start to run a hardware queue.
2306  * @hctx: Pointer to the hardware queue to run.
2307  * @async: If we want to run the queue asynchronously.
2308  *
2309  * Check if the request queue is not in a quiesced state and if there are
2310  * pending requests to be sent. If this is true, run the queue to send requests
2311  * to hardware.
2312  */
2313 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2314 {
2315         bool need_run;
2316
2317         /*
2318          * When queue is quiesced, we may be switching io scheduler, or
2319          * updating nr_hw_queues, or other things, and we can't run queue
2320          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2321          *
2322          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2323          * quiesced.
2324          */
2325         __blk_mq_run_dispatch_ops(hctx->queue, false,
2326                 need_run = !blk_queue_quiesced(hctx->queue) &&
2327                 blk_mq_hctx_has_pending(hctx));
2328
2329         if (need_run)
2330                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2331 }
2332 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2333
2334 /*
2335  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2336  * scheduler.
2337  */
2338 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2339 {
2340         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2341         /*
2342          * If the IO scheduler does not respect hardware queues when
2343          * dispatching, we just don't bother with multiple HW queues and
2344          * dispatch from hctx for the current CPU since running multiple queues
2345          * just causes lock contention inside the scheduler and pointless cache
2346          * bouncing.
2347          */
2348         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2349
2350         if (!blk_mq_hctx_stopped(hctx))
2351                 return hctx;
2352         return NULL;
2353 }
2354
2355 /**
2356  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2357  * @q: Pointer to the request queue to run.
2358  * @async: If we want to run the queue asynchronously.
2359  */
2360 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2361 {
2362         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2363         unsigned long i;
2364
2365         sq_hctx = NULL;
2366         if (blk_queue_sq_sched(q))
2367                 sq_hctx = blk_mq_get_sq_hctx(q);
2368         queue_for_each_hw_ctx(q, hctx, i) {
2369                 if (blk_mq_hctx_stopped(hctx))
2370                         continue;
2371                 /*
2372                  * Dispatch from this hctx either if there's no hctx preferred
2373                  * by IO scheduler or if it has requests that bypass the
2374                  * scheduler.
2375                  */
2376                 if (!sq_hctx || sq_hctx == hctx ||
2377                     !list_empty_careful(&hctx->dispatch))
2378                         blk_mq_run_hw_queue(hctx, async);
2379         }
2380 }
2381 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2382
2383 /**
2384  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2385  * @q: Pointer to the request queue to run.
2386  * @msecs: Milliseconds of delay to wait before running the queues.
2387  */
2388 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2389 {
2390         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2391         unsigned long i;
2392
2393         sq_hctx = NULL;
2394         if (blk_queue_sq_sched(q))
2395                 sq_hctx = blk_mq_get_sq_hctx(q);
2396         queue_for_each_hw_ctx(q, hctx, i) {
2397                 if (blk_mq_hctx_stopped(hctx))
2398                         continue;
2399                 /*
2400                  * If there is already a run_work pending, leave the
2401                  * pending delay untouched. Otherwise, a hctx can stall
2402                  * if another hctx is re-delaying the other's work
2403                  * before the work executes.
2404                  */
2405                 if (delayed_work_pending(&hctx->run_work))
2406                         continue;
2407                 /*
2408                  * Dispatch from this hctx either if there's no hctx preferred
2409                  * by IO scheduler or if it has requests that bypass the
2410                  * scheduler.
2411                  */
2412                 if (!sq_hctx || sq_hctx == hctx ||
2413                     !list_empty_careful(&hctx->dispatch))
2414                         blk_mq_delay_run_hw_queue(hctx, msecs);
2415         }
2416 }
2417 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2418
2419 /*
2420  * This function is often used for pausing .queue_rq() by driver when
2421  * there isn't enough resource or some conditions aren't satisfied, and
2422  * BLK_STS_RESOURCE is usually returned.
2423  *
2424  * We do not guarantee that dispatch can be drained or blocked
2425  * after blk_mq_stop_hw_queue() returns. Please use
2426  * blk_mq_quiesce_queue() for that requirement.
2427  */
2428 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2429 {
2430         cancel_delayed_work(&hctx->run_work);
2431
2432         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2433 }
2434 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2435
2436 /*
2437  * This function is often used for pausing .queue_rq() by driver when
2438  * there isn't enough resource or some conditions aren't satisfied, and
2439  * BLK_STS_RESOURCE is usually returned.
2440  *
2441  * We do not guarantee that dispatch can be drained or blocked
2442  * after blk_mq_stop_hw_queues() returns. Please use
2443  * blk_mq_quiesce_queue() for that requirement.
2444  */
2445 void blk_mq_stop_hw_queues(struct request_queue *q)
2446 {
2447         struct blk_mq_hw_ctx *hctx;
2448         unsigned long i;
2449
2450         queue_for_each_hw_ctx(q, hctx, i)
2451                 blk_mq_stop_hw_queue(hctx);
2452 }
2453 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2454
2455 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2456 {
2457         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2458
2459         blk_mq_run_hw_queue(hctx, false);
2460 }
2461 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2462
2463 void blk_mq_start_hw_queues(struct request_queue *q)
2464 {
2465         struct blk_mq_hw_ctx *hctx;
2466         unsigned long i;
2467
2468         queue_for_each_hw_ctx(q, hctx, i)
2469                 blk_mq_start_hw_queue(hctx);
2470 }
2471 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2472
2473 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2474 {
2475         if (!blk_mq_hctx_stopped(hctx))
2476                 return;
2477
2478         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2479         blk_mq_run_hw_queue(hctx, async);
2480 }
2481 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2482
2483 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2484 {
2485         struct blk_mq_hw_ctx *hctx;
2486         unsigned long i;
2487
2488         queue_for_each_hw_ctx(q, hctx, i)
2489                 blk_mq_start_stopped_hw_queue(hctx, async);
2490 }
2491 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2492
2493 static void blk_mq_run_work_fn(struct work_struct *work)
2494 {
2495         struct blk_mq_hw_ctx *hctx;
2496
2497         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2498
2499         /*
2500          * If we are stopped, don't run the queue.
2501          */
2502         if (blk_mq_hctx_stopped(hctx))
2503                 return;
2504
2505         __blk_mq_run_hw_queue(hctx);
2506 }
2507
2508 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2509                                             struct request *rq,
2510                                             bool at_head)
2511 {
2512         struct blk_mq_ctx *ctx = rq->mq_ctx;
2513         enum hctx_type type = hctx->type;
2514
2515         lockdep_assert_held(&ctx->lock);
2516
2517         trace_block_rq_insert(rq);
2518
2519         if (at_head)
2520                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2521         else
2522                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2523 }
2524
2525 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2526                              bool at_head)
2527 {
2528         struct blk_mq_ctx *ctx = rq->mq_ctx;
2529
2530         lockdep_assert_held(&ctx->lock);
2531
2532         __blk_mq_insert_req_list(hctx, rq, at_head);
2533         blk_mq_hctx_mark_pending(hctx, ctx);
2534 }
2535
2536 /**
2537  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2538  * @rq: Pointer to request to be inserted.
2539  * @at_head: true if the request should be inserted at the head of the list.
2540  * @run_queue: If we should run the hardware queue after inserting the request.
2541  *
2542  * Should only be used carefully, when the caller knows we want to
2543  * bypass a potential IO scheduler on the target device.
2544  */
2545 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2546                                   bool run_queue)
2547 {
2548         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2549
2550         spin_lock(&hctx->lock);
2551         if (at_head)
2552                 list_add(&rq->queuelist, &hctx->dispatch);
2553         else
2554                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2555         spin_unlock(&hctx->lock);
2556
2557         if (run_queue)
2558                 blk_mq_run_hw_queue(hctx, false);
2559 }
2560
2561 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2562                             struct list_head *list)
2563
2564 {
2565         struct request *rq;
2566         enum hctx_type type = hctx->type;
2567
2568         /*
2569          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2570          * offline now
2571          */
2572         list_for_each_entry(rq, list, queuelist) {
2573                 BUG_ON(rq->mq_ctx != ctx);
2574                 trace_block_rq_insert(rq);
2575         }
2576
2577         spin_lock(&ctx->lock);
2578         list_splice_tail_init(list, &ctx->rq_lists[type]);
2579         blk_mq_hctx_mark_pending(hctx, ctx);
2580         spin_unlock(&ctx->lock);
2581 }
2582
2583 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2584                               bool from_schedule)
2585 {
2586         if (hctx->queue->mq_ops->commit_rqs) {
2587                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2588                 hctx->queue->mq_ops->commit_rqs(hctx);
2589         }
2590         *queued = 0;
2591 }
2592
2593 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2594                 unsigned int nr_segs)
2595 {
2596         int err;
2597
2598         if (bio->bi_opf & REQ_RAHEAD)
2599                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2600
2601         rq->__sector = bio->bi_iter.bi_sector;
2602         blk_rq_bio_prep(rq, bio, nr_segs);
2603
2604         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2605         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2606         WARN_ON_ONCE(err);
2607
2608         blk_account_io_start(rq);
2609 }
2610
2611 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2612                                             struct request *rq, bool last)
2613 {
2614         struct request_queue *q = rq->q;
2615         struct blk_mq_queue_data bd = {
2616                 .rq = rq,
2617                 .last = last,
2618         };
2619         blk_status_t ret;
2620
2621         /*
2622          * For OK queue, we are done. For error, caller may kill it.
2623          * Any other error (busy), just add it to our list as we
2624          * previously would have done.
2625          */
2626         ret = q->mq_ops->queue_rq(hctx, &bd);
2627         switch (ret) {
2628         case BLK_STS_OK:
2629                 blk_mq_update_dispatch_busy(hctx, false);
2630                 break;
2631         case BLK_STS_RESOURCE:
2632         case BLK_STS_DEV_RESOURCE:
2633                 blk_mq_update_dispatch_busy(hctx, true);
2634                 __blk_mq_requeue_request(rq);
2635                 break;
2636         default:
2637                 blk_mq_update_dispatch_busy(hctx, false);
2638                 break;
2639         }
2640
2641         return ret;
2642 }
2643
2644 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2645                                                 struct request *rq,
2646                                                 bool bypass_insert, bool last)
2647 {
2648         struct request_queue *q = rq->q;
2649         bool run_queue = true;
2650         int budget_token;
2651
2652         /*
2653          * RCU or SRCU read lock is needed before checking quiesced flag.
2654          *
2655          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2656          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2657          * and avoid driver to try to dispatch again.
2658          */
2659         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2660                 run_queue = false;
2661                 bypass_insert = false;
2662                 goto insert;
2663         }
2664
2665         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2666                 goto insert;
2667
2668         budget_token = blk_mq_get_dispatch_budget(q);
2669         if (budget_token < 0)
2670                 goto insert;
2671
2672         blk_mq_set_rq_budget_token(rq, budget_token);
2673
2674         if (!blk_mq_get_driver_tag(rq)) {
2675                 blk_mq_put_dispatch_budget(q, budget_token);
2676                 goto insert;
2677         }
2678
2679         return __blk_mq_issue_directly(hctx, rq, last);
2680 insert:
2681         if (bypass_insert)
2682                 return BLK_STS_RESOURCE;
2683
2684         blk_mq_sched_insert_request(rq, false, run_queue, false);
2685
2686         return BLK_STS_OK;
2687 }
2688
2689 /**
2690  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2691  * @hctx: Pointer of the associated hardware queue.
2692  * @rq: Pointer to request to be sent.
2693  *
2694  * If the device has enough resources to accept a new request now, send the
2695  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2696  * we can try send it another time in the future. Requests inserted at this
2697  * queue have higher priority.
2698  */
2699 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2700                 struct request *rq)
2701 {
2702         blk_status_t ret =
2703                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2704
2705         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2706                 blk_mq_request_bypass_insert(rq, false, true);
2707         else if (ret != BLK_STS_OK)
2708                 blk_mq_end_request(rq, ret);
2709 }
2710
2711 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2712 {
2713         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2714 }
2715
2716 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2717 {
2718         struct blk_mq_hw_ctx *hctx = NULL;
2719         struct request *rq;
2720         int queued = 0;
2721         int errors = 0;
2722
2723         while ((rq = rq_list_pop(&plug->mq_list))) {
2724                 bool last = rq_list_empty(plug->mq_list);
2725                 blk_status_t ret;
2726
2727                 if (hctx != rq->mq_hctx) {
2728                         if (hctx)
2729                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2730                         hctx = rq->mq_hctx;
2731                 }
2732
2733                 ret = blk_mq_request_issue_directly(rq, last);
2734                 switch (ret) {
2735                 case BLK_STS_OK:
2736                         queued++;
2737                         break;
2738                 case BLK_STS_RESOURCE:
2739                 case BLK_STS_DEV_RESOURCE:
2740                         blk_mq_request_bypass_insert(rq, false, true);
2741                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2742                         return;
2743                 default:
2744                         blk_mq_end_request(rq, ret);
2745                         errors++;
2746                         break;
2747                 }
2748         }
2749
2750         /*
2751          * If we didn't flush the entire list, we could have told the driver
2752          * there was more coming, but that turned out to be a lie.
2753          */
2754         if (errors)
2755                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2756 }
2757
2758 static void __blk_mq_flush_plug_list(struct request_queue *q,
2759                                      struct blk_plug *plug)
2760 {
2761         if (blk_queue_quiesced(q))
2762                 return;
2763         q->mq_ops->queue_rqs(&plug->mq_list);
2764 }
2765
2766 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2767 {
2768         struct blk_mq_hw_ctx *this_hctx = NULL;
2769         struct blk_mq_ctx *this_ctx = NULL;
2770         struct request *requeue_list = NULL;
2771         struct request **requeue_lastp = &requeue_list;
2772         unsigned int depth = 0;
2773         LIST_HEAD(list);
2774
2775         do {
2776                 struct request *rq = rq_list_pop(&plug->mq_list);
2777
2778                 if (!this_hctx) {
2779                         this_hctx = rq->mq_hctx;
2780                         this_ctx = rq->mq_ctx;
2781                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2782                         rq_list_add_tail(&requeue_lastp, rq);
2783                         continue;
2784                 }
2785                 list_add(&rq->queuelist, &list);
2786                 depth++;
2787         } while (!rq_list_empty(plug->mq_list));
2788
2789         plug->mq_list = requeue_list;
2790         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2791         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2792 }
2793
2794 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2795 {
2796         struct request *rq;
2797
2798         /*
2799          * We may have been called recursively midway through handling
2800          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2801          * To avoid mq_list changing under our feet, clear rq_count early and
2802          * bail out specifically if rq_count is 0 rather than checking
2803          * whether the mq_list is empty.
2804          */
2805         if (plug->rq_count == 0)
2806                 return;
2807         plug->rq_count = 0;
2808
2809         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2810                 struct request_queue *q;
2811
2812                 rq = rq_list_peek(&plug->mq_list);
2813                 q = rq->q;
2814
2815                 /*
2816                  * Peek first request and see if we have a ->queue_rqs() hook.
2817                  * If we do, we can dispatch the whole plug list in one go. We
2818                  * already know at this point that all requests belong to the
2819                  * same queue, caller must ensure that's the case.
2820                  *
2821                  * Since we pass off the full list to the driver at this point,
2822                  * we do not increment the active request count for the queue.
2823                  * Bypass shared tags for now because of that.
2824                  */
2825                 if (q->mq_ops->queue_rqs &&
2826                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2827                         blk_mq_run_dispatch_ops(q,
2828                                 __blk_mq_flush_plug_list(q, plug));
2829                         if (rq_list_empty(plug->mq_list))
2830                                 return;
2831                 }
2832
2833                 blk_mq_run_dispatch_ops(q,
2834                                 blk_mq_plug_issue_direct(plug, false));
2835                 if (rq_list_empty(plug->mq_list))
2836                         return;
2837         }
2838
2839         do {
2840                 blk_mq_dispatch_plug_list(plug, from_schedule);
2841         } while (!rq_list_empty(plug->mq_list));
2842 }
2843
2844 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2845                 struct list_head *list)
2846 {
2847         int queued = 0;
2848         int errors = 0;
2849
2850         while (!list_empty(list)) {
2851                 blk_status_t ret;
2852                 struct request *rq = list_first_entry(list, struct request,
2853                                 queuelist);
2854
2855                 list_del_init(&rq->queuelist);
2856                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2857                 if (ret != BLK_STS_OK) {
2858                         errors++;
2859                         if (ret == BLK_STS_RESOURCE ||
2860                                         ret == BLK_STS_DEV_RESOURCE) {
2861                                 blk_mq_request_bypass_insert(rq, false,
2862                                                         list_empty(list));
2863                                 break;
2864                         }
2865                         blk_mq_end_request(rq, ret);
2866                 } else
2867                         queued++;
2868         }
2869
2870         /*
2871          * If we didn't flush the entire list, we could have told
2872          * the driver there was more coming, but that turned out to
2873          * be a lie.
2874          */
2875         if ((!list_empty(list) || errors) &&
2876              hctx->queue->mq_ops->commit_rqs && queued)
2877                 hctx->queue->mq_ops->commit_rqs(hctx);
2878 }
2879
2880 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2881                                      struct bio *bio, unsigned int nr_segs)
2882 {
2883         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2884                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2885                         return true;
2886                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2887                         return true;
2888         }
2889         return false;
2890 }
2891
2892 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2893                                                struct blk_plug *plug,
2894                                                struct bio *bio,
2895                                                unsigned int nsegs)
2896 {
2897         struct blk_mq_alloc_data data = {
2898                 .q              = q,
2899                 .nr_tags        = 1,
2900                 .cmd_flags      = bio->bi_opf,
2901         };
2902         struct request *rq;
2903
2904         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2905                 return NULL;
2906
2907         rq_qos_throttle(q, bio);
2908
2909         if (plug) {
2910                 data.nr_tags = plug->nr_ios;
2911                 plug->nr_ios = 1;
2912                 data.cached_rq = &plug->cached_rq;
2913         }
2914
2915         rq = __blk_mq_alloc_requests(&data);
2916         if (rq)
2917                 return rq;
2918         rq_qos_cleanup(q, bio);
2919         if (bio->bi_opf & REQ_NOWAIT)
2920                 bio_wouldblock_error(bio);
2921         return NULL;
2922 }
2923
2924 /* return true if this @rq can be used for @bio */
2925 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2926                 struct bio *bio)
2927 {
2928         enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2929         enum hctx_type hctx_type = rq->mq_hctx->type;
2930
2931         WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2932
2933         if (type != hctx_type &&
2934             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2935                 return false;
2936         if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2937                 return false;
2938
2939         /*
2940          * If any qos ->throttle() end up blocking, we will have flushed the
2941          * plug and hence killed the cached_rq list as well. Pop this entry
2942          * before we throttle.
2943          */
2944         plug->cached_rq = rq_list_next(rq);
2945         rq_qos_throttle(rq->q, bio);
2946
2947         rq->cmd_flags = bio->bi_opf;
2948         INIT_LIST_HEAD(&rq->queuelist);
2949         return true;
2950 }
2951
2952 static void bio_set_ioprio(struct bio *bio)
2953 {
2954         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2955         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2956                 bio->bi_ioprio = get_current_ioprio();
2957         blkcg_set_ioprio(bio);
2958 }
2959
2960 /**
2961  * blk_mq_submit_bio - Create and send a request to block device.
2962  * @bio: Bio pointer.
2963  *
2964  * Builds up a request structure from @q and @bio and send to the device. The
2965  * request may not be queued directly to hardware if:
2966  * * This request can be merged with another one
2967  * * We want to place request at plug queue for possible future merging
2968  * * There is an IO scheduler active at this queue
2969  *
2970  * It will not queue the request if there is an error with the bio, or at the
2971  * request creation.
2972  */
2973 void blk_mq_submit_bio(struct bio *bio)
2974 {
2975         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2976         struct blk_plug *plug = blk_mq_plug(bio);
2977         const int is_sync = op_is_sync(bio->bi_opf);
2978         struct request *rq = NULL;
2979         unsigned int nr_segs = 1;
2980         blk_status_t ret;
2981
2982         bio = blk_queue_bounce(bio, q);
2983         bio_set_ioprio(bio);
2984
2985         if (plug) {
2986                 rq = rq_list_peek(&plug->cached_rq);
2987                 if (rq && rq->q != q)
2988                         rq = NULL;
2989         }
2990         if (rq) {
2991                 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2992                         bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2993                         if (!bio)
2994                                 return;
2995                 }
2996                 if (!bio_integrity_prep(bio))
2997                         return;
2998                 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2999                         return;
3000                 if (blk_mq_can_use_cached_rq(rq, plug, bio))
3001                         goto done;
3002                 percpu_ref_get(&q->q_usage_counter);
3003         } else {
3004                 if (unlikely(bio_queue_enter(bio)))
3005                         return;
3006                 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3007                         bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3008                         if (!bio)
3009                                 goto fail;
3010                 }
3011                 if (!bio_integrity_prep(bio))
3012                         goto fail;
3013         }
3014
3015         rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3016         if (unlikely(!rq)) {
3017 fail:
3018                 blk_queue_exit(q);
3019                 return;
3020         }
3021
3022 done:
3023         trace_block_getrq(bio);
3024
3025         rq_qos_track(q, rq, bio);
3026
3027         blk_mq_bio_to_request(rq, bio, nr_segs);
3028
3029         ret = blk_crypto_rq_get_keyslot(rq);
3030         if (ret != BLK_STS_OK) {
3031                 bio->bi_status = ret;
3032                 bio_endio(bio);
3033                 blk_mq_free_request(rq);
3034                 return;
3035         }
3036
3037         if (op_is_flush(bio->bi_opf)) {
3038                 blk_insert_flush(rq);
3039                 return;
3040         }
3041
3042         if (plug)
3043                 blk_add_rq_to_plug(plug, rq);
3044         else if ((rq->rq_flags & RQF_ELV) ||
3045                  (rq->mq_hctx->dispatch_busy &&
3046                   (q->nr_hw_queues == 1 || !is_sync)))
3047                 blk_mq_sched_insert_request(rq, false, true, true);
3048         else
3049                 blk_mq_run_dispatch_ops(rq->q,
3050                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
3051 }
3052
3053 #ifdef CONFIG_BLK_MQ_STACKING
3054 /**
3055  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3056  * @rq: the request being queued
3057  */
3058 blk_status_t blk_insert_cloned_request(struct request *rq)
3059 {
3060         struct request_queue *q = rq->q;
3061         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3062         blk_status_t ret;
3063
3064         if (blk_rq_sectors(rq) > max_sectors) {
3065                 /*
3066                  * SCSI device does not have a good way to return if
3067                  * Write Same/Zero is actually supported. If a device rejects
3068                  * a non-read/write command (discard, write same,etc.) the
3069                  * low-level device driver will set the relevant queue limit to
3070                  * 0 to prevent blk-lib from issuing more of the offending
3071                  * operations. Commands queued prior to the queue limit being
3072                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3073                  * errors being propagated to upper layers.
3074                  */
3075                 if (max_sectors == 0)
3076                         return BLK_STS_NOTSUPP;
3077
3078                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3079                         __func__, blk_rq_sectors(rq), max_sectors);
3080                 return BLK_STS_IOERR;
3081         }
3082
3083         /*
3084          * The queue settings related to segment counting may differ from the
3085          * original queue.
3086          */
3087         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3088         if (rq->nr_phys_segments > queue_max_segments(q)) {
3089                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
3090                         __func__, rq->nr_phys_segments, queue_max_segments(q));
3091                 return BLK_STS_IOERR;
3092         }
3093
3094         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3095                 return BLK_STS_IOERR;
3096
3097         if (blk_crypto_insert_cloned_request(rq))
3098                 return BLK_STS_IOERR;
3099
3100         blk_account_io_start(rq);
3101
3102         /*
3103          * Since we have a scheduler attached on the top device,
3104          * bypass a potential scheduler on the bottom device for
3105          * insert.
3106          */
3107         blk_mq_run_dispatch_ops(q,
3108                         ret = blk_mq_request_issue_directly(rq, true));
3109         if (ret)
3110                 blk_account_io_done(rq, ktime_get_ns());
3111         return ret;
3112 }
3113 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3114
3115 /**
3116  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3117  * @rq: the clone request to be cleaned up
3118  *
3119  * Description:
3120  *     Free all bios in @rq for a cloned request.
3121  */
3122 void blk_rq_unprep_clone(struct request *rq)
3123 {
3124         struct bio *bio;
3125
3126         while ((bio = rq->bio) != NULL) {
3127                 rq->bio = bio->bi_next;
3128
3129                 bio_put(bio);
3130         }
3131 }
3132 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3133
3134 /**
3135  * blk_rq_prep_clone - Helper function to setup clone request
3136  * @rq: the request to be setup
3137  * @rq_src: original request to be cloned
3138  * @bs: bio_set that bios for clone are allocated from
3139  * @gfp_mask: memory allocation mask for bio
3140  * @bio_ctr: setup function to be called for each clone bio.
3141  *           Returns %0 for success, non %0 for failure.
3142  * @data: private data to be passed to @bio_ctr
3143  *
3144  * Description:
3145  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3146  *     Also, pages which the original bios are pointing to are not copied
3147  *     and the cloned bios just point same pages.
3148  *     So cloned bios must be completed before original bios, which means
3149  *     the caller must complete @rq before @rq_src.
3150  */
3151 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3152                       struct bio_set *bs, gfp_t gfp_mask,
3153                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3154                       void *data)
3155 {
3156         struct bio *bio, *bio_src;
3157
3158         if (!bs)
3159                 bs = &fs_bio_set;
3160
3161         __rq_for_each_bio(bio_src, rq_src) {
3162                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3163                                       bs);
3164                 if (!bio)
3165                         goto free_and_out;
3166
3167                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3168                         goto free_and_out;
3169
3170                 if (rq->bio) {
3171                         rq->biotail->bi_next = bio;
3172                         rq->biotail = bio;
3173                 } else {
3174                         rq->bio = rq->biotail = bio;
3175                 }
3176                 bio = NULL;
3177         }
3178
3179         /* Copy attributes of the original request to the clone request. */
3180         rq->__sector = blk_rq_pos(rq_src);
3181         rq->__data_len = blk_rq_bytes(rq_src);
3182         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3183                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3184                 rq->special_vec = rq_src->special_vec;
3185         }
3186         rq->nr_phys_segments = rq_src->nr_phys_segments;
3187         rq->ioprio = rq_src->ioprio;
3188
3189         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3190                 goto free_and_out;
3191
3192         return 0;
3193
3194 free_and_out:
3195         if (bio)
3196                 bio_put(bio);
3197         blk_rq_unprep_clone(rq);
3198
3199         return -ENOMEM;
3200 }
3201 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3202 #endif /* CONFIG_BLK_MQ_STACKING */
3203
3204 /*
3205  * Steal bios from a request and add them to a bio list.
3206  * The request must not have been partially completed before.
3207  */
3208 void blk_steal_bios(struct bio_list *list, struct request *rq)
3209 {
3210         if (rq->bio) {
3211                 if (list->tail)
3212                         list->tail->bi_next = rq->bio;
3213                 else
3214                         list->head = rq->bio;
3215                 list->tail = rq->biotail;
3216
3217                 rq->bio = NULL;
3218                 rq->biotail = NULL;
3219         }
3220
3221         rq->__data_len = 0;
3222 }
3223 EXPORT_SYMBOL_GPL(blk_steal_bios);
3224
3225 static size_t order_to_size(unsigned int order)
3226 {
3227         return (size_t)PAGE_SIZE << order;
3228 }
3229
3230 /* called before freeing request pool in @tags */
3231 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3232                                     struct blk_mq_tags *tags)
3233 {
3234         struct page *page;
3235         unsigned long flags;
3236
3237         /*
3238          * There is no need to clear mapping if driver tags is not initialized
3239          * or the mapping belongs to the driver tags.
3240          */
3241         if (!drv_tags || drv_tags == tags)
3242                 return;
3243
3244         list_for_each_entry(page, &tags->page_list, lru) {
3245                 unsigned long start = (unsigned long)page_address(page);
3246                 unsigned long end = start + order_to_size(page->private);
3247                 int i;
3248
3249                 for (i = 0; i < drv_tags->nr_tags; i++) {
3250                         struct request *rq = drv_tags->rqs[i];
3251                         unsigned long rq_addr = (unsigned long)rq;
3252
3253                         if (rq_addr >= start && rq_addr < end) {
3254                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3255                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3256                         }
3257                 }
3258         }
3259
3260         /*
3261          * Wait until all pending iteration is done.
3262          *
3263          * Request reference is cleared and it is guaranteed to be observed
3264          * after the ->lock is released.
3265          */
3266         spin_lock_irqsave(&drv_tags->lock, flags);
3267         spin_unlock_irqrestore(&drv_tags->lock, flags);
3268 }
3269
3270 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3271                      unsigned int hctx_idx)
3272 {
3273         struct blk_mq_tags *drv_tags;
3274         struct page *page;
3275
3276         if (list_empty(&tags->page_list))
3277                 return;
3278
3279         if (blk_mq_is_shared_tags(set->flags))
3280                 drv_tags = set->shared_tags;
3281         else
3282                 drv_tags = set->tags[hctx_idx];
3283
3284         if (tags->static_rqs && set->ops->exit_request) {
3285                 int i;
3286
3287                 for (i = 0; i < tags->nr_tags; i++) {
3288                         struct request *rq = tags->static_rqs[i];
3289
3290                         if (!rq)
3291                                 continue;
3292                         set->ops->exit_request(set, rq, hctx_idx);
3293                         tags->static_rqs[i] = NULL;
3294                 }
3295         }
3296
3297         blk_mq_clear_rq_mapping(drv_tags, tags);
3298
3299         while (!list_empty(&tags->page_list)) {
3300                 page = list_first_entry(&tags->page_list, struct page, lru);
3301                 list_del_init(&page->lru);
3302                 /*
3303                  * Remove kmemleak object previously allocated in
3304                  * blk_mq_alloc_rqs().
3305                  */
3306                 kmemleak_free(page_address(page));
3307                 __free_pages(page, page->private);
3308         }
3309 }
3310
3311 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3312 {
3313         kfree(tags->rqs);
3314         tags->rqs = NULL;
3315         kfree(tags->static_rqs);
3316         tags->static_rqs = NULL;
3317
3318         blk_mq_free_tags(tags);
3319 }
3320
3321 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3322                 unsigned int hctx_idx)
3323 {
3324         int i;
3325
3326         for (i = 0; i < set->nr_maps; i++) {
3327                 unsigned int start = set->map[i].queue_offset;
3328                 unsigned int end = start + set->map[i].nr_queues;
3329
3330                 if (hctx_idx >= start && hctx_idx < end)
3331                         break;
3332         }
3333
3334         if (i >= set->nr_maps)
3335                 i = HCTX_TYPE_DEFAULT;
3336
3337         return i;
3338 }
3339
3340 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3341                 unsigned int hctx_idx)
3342 {
3343         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3344
3345         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3346 }
3347
3348 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3349                                                unsigned int hctx_idx,
3350                                                unsigned int nr_tags,
3351                                                unsigned int reserved_tags)
3352 {
3353         int node = blk_mq_get_hctx_node(set, hctx_idx);
3354         struct blk_mq_tags *tags;
3355
3356         if (node == NUMA_NO_NODE)
3357                 node = set->numa_node;
3358
3359         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3360                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3361         if (!tags)
3362                 return NULL;
3363
3364         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3365                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3366                                  node);
3367         if (!tags->rqs) {
3368                 blk_mq_free_tags(tags);
3369                 return NULL;
3370         }
3371
3372         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3373                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3374                                         node);
3375         if (!tags->static_rqs) {
3376                 kfree(tags->rqs);
3377                 blk_mq_free_tags(tags);
3378                 return NULL;
3379         }
3380
3381         return tags;
3382 }
3383
3384 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3385                                unsigned int hctx_idx, int node)
3386 {
3387         int ret;
3388
3389         if (set->ops->init_request) {
3390                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3391                 if (ret)
3392                         return ret;
3393         }
3394
3395         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3396         return 0;
3397 }
3398
3399 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3400                             struct blk_mq_tags *tags,
3401                             unsigned int hctx_idx, unsigned int depth)
3402 {
3403         unsigned int i, j, entries_per_page, max_order = 4;
3404         int node = blk_mq_get_hctx_node(set, hctx_idx);
3405         size_t rq_size, left;
3406
3407         if (node == NUMA_NO_NODE)
3408                 node = set->numa_node;
3409
3410         INIT_LIST_HEAD(&tags->page_list);
3411
3412         /*
3413          * rq_size is the size of the request plus driver payload, rounded
3414          * to the cacheline size
3415          */
3416         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3417                                 cache_line_size());
3418         left = rq_size * depth;
3419
3420         for (i = 0; i < depth; ) {
3421                 int this_order = max_order;
3422                 struct page *page;
3423                 int to_do;
3424                 void *p;
3425
3426                 while (this_order && left < order_to_size(this_order - 1))
3427                         this_order--;
3428
3429                 do {
3430                         page = alloc_pages_node(node,
3431                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3432                                 this_order);
3433                         if (page)
3434                                 break;
3435                         if (!this_order--)
3436                                 break;
3437                         if (order_to_size(this_order) < rq_size)
3438                                 break;
3439                 } while (1);
3440
3441                 if (!page)
3442                         goto fail;
3443
3444                 page->private = this_order;
3445                 list_add_tail(&page->lru, &tags->page_list);
3446
3447                 p = page_address(page);
3448                 /*
3449                  * Allow kmemleak to scan these pages as they contain pointers
3450                  * to additional allocations like via ops->init_request().
3451                  */
3452                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3453                 entries_per_page = order_to_size(this_order) / rq_size;
3454                 to_do = min(entries_per_page, depth - i);
3455                 left -= to_do * rq_size;
3456                 for (j = 0; j < to_do; j++) {
3457                         struct request *rq = p;
3458
3459                         tags->static_rqs[i] = rq;
3460                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3461                                 tags->static_rqs[i] = NULL;
3462                                 goto fail;
3463                         }
3464
3465                         p += rq_size;
3466                         i++;
3467                 }
3468         }
3469         return 0;
3470
3471 fail:
3472         blk_mq_free_rqs(set, tags, hctx_idx);
3473         return -ENOMEM;
3474 }
3475
3476 struct rq_iter_data {
3477         struct blk_mq_hw_ctx *hctx;
3478         bool has_rq;
3479 };
3480
3481 static bool blk_mq_has_request(struct request *rq, void *data)
3482 {
3483         struct rq_iter_data *iter_data = data;
3484
3485         if (rq->mq_hctx != iter_data->hctx)
3486                 return true;
3487         iter_data->has_rq = true;
3488         return false;
3489 }
3490
3491 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3492 {
3493         struct blk_mq_tags *tags = hctx->sched_tags ?
3494                         hctx->sched_tags : hctx->tags;
3495         struct rq_iter_data data = {
3496                 .hctx   = hctx,
3497         };
3498
3499         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3500         return data.has_rq;
3501 }
3502
3503 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3504                 struct blk_mq_hw_ctx *hctx)
3505 {
3506         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3507                 return false;
3508         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3509                 return false;
3510         return true;
3511 }
3512
3513 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3514 {
3515         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3516                         struct blk_mq_hw_ctx, cpuhp_online);
3517
3518         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3519             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3520                 return 0;
3521
3522         /*
3523          * Prevent new request from being allocated on the current hctx.
3524          *
3525          * The smp_mb__after_atomic() Pairs with the implied barrier in
3526          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3527          * seen once we return from the tag allocator.
3528          */
3529         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3530         smp_mb__after_atomic();
3531
3532         /*
3533          * Try to grab a reference to the queue and wait for any outstanding
3534          * requests.  If we could not grab a reference the queue has been
3535          * frozen and there are no requests.
3536          */
3537         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3538                 while (blk_mq_hctx_has_requests(hctx))
3539                         msleep(5);
3540                 percpu_ref_put(&hctx->queue->q_usage_counter);
3541         }
3542
3543         return 0;
3544 }
3545
3546 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3547 {
3548         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3549                         struct blk_mq_hw_ctx, cpuhp_online);
3550
3551         if (cpumask_test_cpu(cpu, hctx->cpumask))
3552                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3553         return 0;
3554 }
3555
3556 /*
3557  * 'cpu' is going away. splice any existing rq_list entries from this
3558  * software queue to the hw queue dispatch list, and ensure that it
3559  * gets run.
3560  */
3561 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3562 {
3563         struct blk_mq_hw_ctx *hctx;
3564         struct blk_mq_ctx *ctx;
3565         LIST_HEAD(tmp);
3566         enum hctx_type type;
3567
3568         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3569         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3570                 return 0;
3571
3572         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3573         type = hctx->type;
3574
3575         spin_lock(&ctx->lock);
3576         if (!list_empty(&ctx->rq_lists[type])) {
3577                 list_splice_init(&ctx->rq_lists[type], &tmp);
3578                 blk_mq_hctx_clear_pending(hctx, ctx);
3579         }
3580         spin_unlock(&ctx->lock);
3581
3582         if (list_empty(&tmp))
3583                 return 0;
3584
3585         spin_lock(&hctx->lock);
3586         list_splice_tail_init(&tmp, &hctx->dispatch);
3587         spin_unlock(&hctx->lock);
3588
3589         blk_mq_run_hw_queue(hctx, true);
3590         return 0;
3591 }
3592
3593 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3594 {
3595         if (!(hctx->flags & BLK_MQ_F_STACKING))
3596                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3597                                                     &hctx->cpuhp_online);
3598         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3599                                             &hctx->cpuhp_dead);
3600 }
3601
3602 /*
3603  * Before freeing hw queue, clearing the flush request reference in
3604  * tags->rqs[] for avoiding potential UAF.
3605  */
3606 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3607                 unsigned int queue_depth, struct request *flush_rq)
3608 {
3609         int i;
3610         unsigned long flags;
3611
3612         /* The hw queue may not be mapped yet */
3613         if (!tags)
3614                 return;
3615
3616         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3617
3618         for (i = 0; i < queue_depth; i++)
3619                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3620
3621         /*
3622          * Wait until all pending iteration is done.
3623          *
3624          * Request reference is cleared and it is guaranteed to be observed
3625          * after the ->lock is released.
3626          */
3627         spin_lock_irqsave(&tags->lock, flags);
3628         spin_unlock_irqrestore(&tags->lock, flags);
3629 }
3630
3631 /* hctx->ctxs will be freed in queue's release handler */
3632 static void blk_mq_exit_hctx(struct request_queue *q,
3633                 struct blk_mq_tag_set *set,
3634                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3635 {
3636         struct request *flush_rq = hctx->fq->flush_rq;
3637
3638         if (blk_mq_hw_queue_mapped(hctx))
3639                 blk_mq_tag_idle(hctx);
3640
3641         if (blk_queue_init_done(q))
3642                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3643                                 set->queue_depth, flush_rq);
3644         if (set->ops->exit_request)
3645                 set->ops->exit_request(set, flush_rq, hctx_idx);
3646
3647         if (set->ops->exit_hctx)
3648                 set->ops->exit_hctx(hctx, hctx_idx);
3649
3650         blk_mq_remove_cpuhp(hctx);
3651
3652         xa_erase(&q->hctx_table, hctx_idx);
3653
3654         spin_lock(&q->unused_hctx_lock);
3655         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3656         spin_unlock(&q->unused_hctx_lock);
3657 }
3658
3659 static void blk_mq_exit_hw_queues(struct request_queue *q,
3660                 struct blk_mq_tag_set *set, int nr_queue)
3661 {
3662         struct blk_mq_hw_ctx *hctx;
3663         unsigned long i;
3664
3665         queue_for_each_hw_ctx(q, hctx, i) {
3666                 if (i == nr_queue)
3667                         break;
3668                 blk_mq_exit_hctx(q, set, hctx, i);
3669         }
3670 }
3671
3672 static int blk_mq_init_hctx(struct request_queue *q,
3673                 struct blk_mq_tag_set *set,
3674                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3675 {
3676         hctx->queue_num = hctx_idx;
3677
3678         if (!(hctx->flags & BLK_MQ_F_STACKING))
3679                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3680                                 &hctx->cpuhp_online);
3681         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3682
3683         hctx->tags = set->tags[hctx_idx];
3684
3685         if (set->ops->init_hctx &&
3686             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3687                 goto unregister_cpu_notifier;
3688
3689         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3690                                 hctx->numa_node))
3691                 goto exit_hctx;
3692
3693         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3694                 goto exit_flush_rq;
3695
3696         return 0;
3697
3698  exit_flush_rq:
3699         if (set->ops->exit_request)
3700                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3701  exit_hctx:
3702         if (set->ops->exit_hctx)
3703                 set->ops->exit_hctx(hctx, hctx_idx);
3704  unregister_cpu_notifier:
3705         blk_mq_remove_cpuhp(hctx);
3706         return -1;
3707 }
3708
3709 static struct blk_mq_hw_ctx *
3710 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3711                 int node)
3712 {
3713         struct blk_mq_hw_ctx *hctx;
3714         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3715
3716         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3717         if (!hctx)
3718                 goto fail_alloc_hctx;
3719
3720         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3721                 goto free_hctx;
3722
3723         atomic_set(&hctx->nr_active, 0);
3724         if (node == NUMA_NO_NODE)
3725                 node = set->numa_node;
3726         hctx->numa_node = node;
3727
3728         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3729         spin_lock_init(&hctx->lock);
3730         INIT_LIST_HEAD(&hctx->dispatch);
3731         hctx->queue = q;
3732         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3733
3734         INIT_LIST_HEAD(&hctx->hctx_list);
3735
3736         /*
3737          * Allocate space for all possible cpus to avoid allocation at
3738          * runtime
3739          */
3740         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3741                         gfp, node);
3742         if (!hctx->ctxs)
3743                 goto free_cpumask;
3744
3745         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3746                                 gfp, node, false, false))
3747                 goto free_ctxs;
3748         hctx->nr_ctx = 0;
3749
3750         spin_lock_init(&hctx->dispatch_wait_lock);
3751         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3752         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3753
3754         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3755         if (!hctx->fq)
3756                 goto free_bitmap;
3757
3758         blk_mq_hctx_kobj_init(hctx);
3759
3760         return hctx;
3761
3762  free_bitmap:
3763         sbitmap_free(&hctx->ctx_map);
3764  free_ctxs:
3765         kfree(hctx->ctxs);
3766  free_cpumask:
3767         free_cpumask_var(hctx->cpumask);
3768  free_hctx:
3769         kfree(hctx);
3770  fail_alloc_hctx:
3771         return NULL;
3772 }
3773
3774 static void blk_mq_init_cpu_queues(struct request_queue *q,
3775                                    unsigned int nr_hw_queues)
3776 {
3777         struct blk_mq_tag_set *set = q->tag_set;
3778         unsigned int i, j;
3779
3780         for_each_possible_cpu(i) {
3781                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3782                 struct blk_mq_hw_ctx *hctx;
3783                 int k;
3784
3785                 __ctx->cpu = i;
3786                 spin_lock_init(&__ctx->lock);
3787                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3788                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3789
3790                 __ctx->queue = q;
3791
3792                 /*
3793                  * Set local node, IFF we have more than one hw queue. If
3794                  * not, we remain on the home node of the device
3795                  */
3796                 for (j = 0; j < set->nr_maps; j++) {
3797                         hctx = blk_mq_map_queue_type(q, j, i);
3798                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3799                                 hctx->numa_node = cpu_to_node(i);
3800                 }
3801         }
3802 }
3803
3804 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3805                                              unsigned int hctx_idx,
3806                                              unsigned int depth)
3807 {
3808         struct blk_mq_tags *tags;
3809         int ret;
3810
3811         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3812         if (!tags)
3813                 return NULL;
3814
3815         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3816         if (ret) {
3817                 blk_mq_free_rq_map(tags);
3818                 return NULL;
3819         }
3820
3821         return tags;
3822 }
3823
3824 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3825                                        int hctx_idx)
3826 {
3827         if (blk_mq_is_shared_tags(set->flags)) {
3828                 set->tags[hctx_idx] = set->shared_tags;
3829
3830                 return true;
3831         }
3832
3833         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3834                                                        set->queue_depth);
3835
3836         return set->tags[hctx_idx];
3837 }
3838
3839 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3840                              struct blk_mq_tags *tags,
3841                              unsigned int hctx_idx)
3842 {
3843         if (tags) {
3844                 blk_mq_free_rqs(set, tags, hctx_idx);
3845                 blk_mq_free_rq_map(tags);
3846         }
3847 }
3848
3849 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3850                                       unsigned int hctx_idx)
3851 {
3852         if (!blk_mq_is_shared_tags(set->flags))
3853                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3854
3855         set->tags[hctx_idx] = NULL;
3856 }
3857
3858 static void blk_mq_map_swqueue(struct request_queue *q)
3859 {
3860         unsigned int j, hctx_idx;
3861         unsigned long i;
3862         struct blk_mq_hw_ctx *hctx;
3863         struct blk_mq_ctx *ctx;
3864         struct blk_mq_tag_set *set = q->tag_set;
3865
3866         queue_for_each_hw_ctx(q, hctx, i) {
3867                 cpumask_clear(hctx->cpumask);
3868                 hctx->nr_ctx = 0;
3869                 hctx->dispatch_from = NULL;
3870         }
3871
3872         /*
3873          * Map software to hardware queues.
3874          *
3875          * If the cpu isn't present, the cpu is mapped to first hctx.
3876          */
3877         for_each_possible_cpu(i) {
3878
3879                 ctx = per_cpu_ptr(q->queue_ctx, i);
3880                 for (j = 0; j < set->nr_maps; j++) {
3881                         if (!set->map[j].nr_queues) {
3882                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3883                                                 HCTX_TYPE_DEFAULT, i);
3884                                 continue;
3885                         }
3886                         hctx_idx = set->map[j].mq_map[i];
3887                         /* unmapped hw queue can be remapped after CPU topo changed */
3888                         if (!set->tags[hctx_idx] &&
3889                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3890                                 /*
3891                                  * If tags initialization fail for some hctx,
3892                                  * that hctx won't be brought online.  In this
3893                                  * case, remap the current ctx to hctx[0] which
3894                                  * is guaranteed to always have tags allocated
3895                                  */
3896                                 set->map[j].mq_map[i] = 0;
3897                         }
3898
3899                         hctx = blk_mq_map_queue_type(q, j, i);
3900                         ctx->hctxs[j] = hctx;
3901                         /*
3902                          * If the CPU is already set in the mask, then we've
3903                          * mapped this one already. This can happen if
3904                          * devices share queues across queue maps.
3905                          */
3906                         if (cpumask_test_cpu(i, hctx->cpumask))
3907                                 continue;
3908
3909                         cpumask_set_cpu(i, hctx->cpumask);
3910                         hctx->type = j;
3911                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3912                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3913
3914                         /*
3915                          * If the nr_ctx type overflows, we have exceeded the
3916                          * amount of sw queues we can support.
3917                          */
3918                         BUG_ON(!hctx->nr_ctx);
3919                 }
3920
3921                 for (; j < HCTX_MAX_TYPES; j++)
3922                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3923                                         HCTX_TYPE_DEFAULT, i);
3924         }
3925
3926         queue_for_each_hw_ctx(q, hctx, i) {
3927                 /*
3928                  * If no software queues are mapped to this hardware queue,
3929                  * disable it and free the request entries.
3930                  */
3931                 if (!hctx->nr_ctx) {
3932                         /* Never unmap queue 0.  We need it as a
3933                          * fallback in case of a new remap fails
3934                          * allocation
3935                          */
3936                         if (i)
3937                                 __blk_mq_free_map_and_rqs(set, i);
3938
3939                         hctx->tags = NULL;
3940                         continue;
3941                 }
3942
3943                 hctx->tags = set->tags[i];
3944                 WARN_ON(!hctx->tags);
3945
3946                 /*
3947                  * Set the map size to the number of mapped software queues.
3948                  * This is more accurate and more efficient than looping
3949                  * over all possibly mapped software queues.
3950                  */
3951                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3952
3953                 /*
3954                  * Initialize batch roundrobin counts
3955                  */
3956                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3957                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3958         }
3959 }
3960
3961 /*
3962  * Caller needs to ensure that we're either frozen/quiesced, or that
3963  * the queue isn't live yet.
3964  */
3965 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3966 {
3967         struct blk_mq_hw_ctx *hctx;
3968         unsigned long i;
3969
3970         queue_for_each_hw_ctx(q, hctx, i) {
3971                 if (shared) {
3972                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3973                 } else {
3974                         blk_mq_tag_idle(hctx);
3975                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3976                 }
3977         }
3978 }
3979
3980 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3981                                          bool shared)
3982 {
3983         struct request_queue *q;
3984
3985         lockdep_assert_held(&set->tag_list_lock);
3986
3987         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3988                 blk_mq_freeze_queue(q);
3989                 queue_set_hctx_shared(q, shared);
3990                 blk_mq_unfreeze_queue(q);
3991         }
3992 }
3993
3994 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3995 {
3996         struct blk_mq_tag_set *set = q->tag_set;
3997
3998         mutex_lock(&set->tag_list_lock);
3999         list_del(&q->tag_set_list);
4000         if (list_is_singular(&set->tag_list)) {
4001                 /* just transitioned to unshared */
4002                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4003                 /* update existing queue */
4004                 blk_mq_update_tag_set_shared(set, false);
4005         }
4006         mutex_unlock(&set->tag_list_lock);
4007         INIT_LIST_HEAD(&q->tag_set_list);
4008 }
4009
4010 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4011                                      struct request_queue *q)
4012 {
4013         mutex_lock(&set->tag_list_lock);
4014
4015         /*
4016          * Check to see if we're transitioning to shared (from 1 to 2 queues).
4017          */
4018         if (!list_empty(&set->tag_list) &&
4019             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4020                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4021                 /* update existing queue */
4022                 blk_mq_update_tag_set_shared(set, true);
4023         }
4024         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4025                 queue_set_hctx_shared(q, true);
4026         list_add_tail(&q->tag_set_list, &set->tag_list);
4027
4028         mutex_unlock(&set->tag_list_lock);
4029 }
4030
4031 /* All allocations will be freed in release handler of q->mq_kobj */
4032 static int blk_mq_alloc_ctxs(struct request_queue *q)
4033 {
4034         struct blk_mq_ctxs *ctxs;
4035         int cpu;
4036
4037         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4038         if (!ctxs)
4039                 return -ENOMEM;
4040
4041         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4042         if (!ctxs->queue_ctx)
4043                 goto fail;
4044
4045         for_each_possible_cpu(cpu) {
4046                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4047                 ctx->ctxs = ctxs;
4048         }
4049
4050         q->mq_kobj = &ctxs->kobj;
4051         q->queue_ctx = ctxs->queue_ctx;
4052
4053         return 0;
4054  fail:
4055         kfree(ctxs);
4056         return -ENOMEM;
4057 }
4058
4059 /*
4060  * It is the actual release handler for mq, but we do it from
4061  * request queue's release handler for avoiding use-after-free
4062  * and headache because q->mq_kobj shouldn't have been introduced,
4063  * but we can't group ctx/kctx kobj without it.
4064  */
4065 void blk_mq_release(struct request_queue *q)
4066 {
4067         struct blk_mq_hw_ctx *hctx, *next;
4068         unsigned long i;
4069
4070         queue_for_each_hw_ctx(q, hctx, i)
4071                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4072
4073         /* all hctx are in .unused_hctx_list now */
4074         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4075                 list_del_init(&hctx->hctx_list);
4076                 kobject_put(&hctx->kobj);
4077         }
4078
4079         xa_destroy(&q->hctx_table);
4080
4081         /*
4082          * release .mq_kobj and sw queue's kobject now because
4083          * both share lifetime with request queue.
4084          */
4085         blk_mq_sysfs_deinit(q);
4086 }
4087
4088 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4089                 void *queuedata)
4090 {
4091         struct request_queue *q;
4092         int ret;
4093
4094         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
4095         if (!q)
4096                 return ERR_PTR(-ENOMEM);
4097         q->queuedata = queuedata;
4098         ret = blk_mq_init_allocated_queue(set, q);
4099         if (ret) {
4100                 blk_put_queue(q);
4101                 return ERR_PTR(ret);
4102         }
4103         return q;
4104 }
4105
4106 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4107 {
4108         return blk_mq_init_queue_data(set, NULL);
4109 }
4110 EXPORT_SYMBOL(blk_mq_init_queue);
4111
4112 /**
4113  * blk_mq_destroy_queue - shutdown a request queue
4114  * @q: request queue to shutdown
4115  *
4116  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
4117  * the initial reference.  All future requests will failed with -ENODEV.
4118  *
4119  * Context: can sleep
4120  */
4121 void blk_mq_destroy_queue(struct request_queue *q)
4122 {
4123         WARN_ON_ONCE(!queue_is_mq(q));
4124         WARN_ON_ONCE(blk_queue_registered(q));
4125
4126         might_sleep();
4127
4128         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4129         blk_queue_start_drain(q);
4130         blk_freeze_queue(q);
4131
4132         blk_sync_queue(q);
4133         blk_mq_cancel_work_sync(q);
4134         blk_mq_exit_queue(q);
4135
4136         /* @q is and will stay empty, shutdown and put */
4137         blk_put_queue(q);
4138 }
4139 EXPORT_SYMBOL(blk_mq_destroy_queue);
4140
4141 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4142                 struct lock_class_key *lkclass)
4143 {
4144         struct request_queue *q;
4145         struct gendisk *disk;
4146
4147         q = blk_mq_init_queue_data(set, queuedata);
4148         if (IS_ERR(q))
4149                 return ERR_CAST(q);
4150
4151         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4152         if (!disk) {
4153                 blk_mq_destroy_queue(q);
4154                 return ERR_PTR(-ENOMEM);
4155         }
4156         set_bit(GD_OWNS_QUEUE, &disk->state);
4157         return disk;
4158 }
4159 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4160
4161 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4162                 struct lock_class_key *lkclass)
4163 {
4164         struct gendisk *disk;
4165
4166         if (!blk_get_queue(q))
4167                 return NULL;
4168         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4169         if (!disk)
4170                 blk_put_queue(q);
4171         return disk;
4172 }
4173 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4174
4175 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4176                 struct blk_mq_tag_set *set, struct request_queue *q,
4177                 int hctx_idx, int node)
4178 {
4179         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4180
4181         /* reuse dead hctx first */
4182         spin_lock(&q->unused_hctx_lock);
4183         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4184                 if (tmp->numa_node == node) {
4185                         hctx = tmp;
4186                         break;
4187                 }
4188         }
4189         if (hctx)
4190                 list_del_init(&hctx->hctx_list);
4191         spin_unlock(&q->unused_hctx_lock);
4192
4193         if (!hctx)
4194                 hctx = blk_mq_alloc_hctx(q, set, node);
4195         if (!hctx)
4196                 goto fail;
4197
4198         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4199                 goto free_hctx;
4200
4201         return hctx;
4202
4203  free_hctx:
4204         kobject_put(&hctx->kobj);
4205  fail:
4206         return NULL;
4207 }
4208
4209 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4210                                                 struct request_queue *q)
4211 {
4212         struct blk_mq_hw_ctx *hctx;
4213         unsigned long i, j;
4214
4215         /* protect against switching io scheduler  */
4216         mutex_lock(&q->sysfs_lock);
4217         for (i = 0; i < set->nr_hw_queues; i++) {
4218                 int old_node;
4219                 int node = blk_mq_get_hctx_node(set, i);
4220                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4221
4222                 if (old_hctx) {
4223                         old_node = old_hctx->numa_node;
4224                         blk_mq_exit_hctx(q, set, old_hctx, i);
4225                 }
4226
4227                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4228                         if (!old_hctx)
4229                                 break;
4230                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4231                                         node, old_node);
4232                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4233                         WARN_ON_ONCE(!hctx);
4234                 }
4235         }
4236         /*
4237          * Increasing nr_hw_queues fails. Free the newly allocated
4238          * hctxs and keep the previous q->nr_hw_queues.
4239          */
4240         if (i != set->nr_hw_queues) {
4241                 j = q->nr_hw_queues;
4242         } else {
4243                 j = i;
4244                 q->nr_hw_queues = set->nr_hw_queues;
4245         }
4246
4247         xa_for_each_start(&q->hctx_table, j, hctx, j)
4248                 blk_mq_exit_hctx(q, set, hctx, j);
4249         mutex_unlock(&q->sysfs_lock);
4250 }
4251
4252 static void blk_mq_update_poll_flag(struct request_queue *q)
4253 {
4254         struct blk_mq_tag_set *set = q->tag_set;
4255
4256         if (set->nr_maps > HCTX_TYPE_POLL &&
4257             set->map[HCTX_TYPE_POLL].nr_queues)
4258                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4259         else
4260                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4261 }
4262
4263 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4264                 struct request_queue *q)
4265 {
4266         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4267                         !!(set->flags & BLK_MQ_F_BLOCKING));
4268
4269         /* mark the queue as mq asap */
4270         q->mq_ops = set->ops;
4271
4272         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4273                                              blk_mq_poll_stats_bkt,
4274                                              BLK_MQ_POLL_STATS_BKTS, q);
4275         if (!q->poll_cb)
4276                 goto err_exit;
4277
4278         if (blk_mq_alloc_ctxs(q))
4279                 goto err_poll;
4280
4281         /* init q->mq_kobj and sw queues' kobjects */
4282         blk_mq_sysfs_init(q);
4283
4284         INIT_LIST_HEAD(&q->unused_hctx_list);
4285         spin_lock_init(&q->unused_hctx_lock);
4286
4287         xa_init(&q->hctx_table);
4288
4289         blk_mq_realloc_hw_ctxs(set, q);
4290         if (!q->nr_hw_queues)
4291                 goto err_hctxs;
4292
4293         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4294         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4295
4296         q->tag_set = set;
4297
4298         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4299         blk_mq_update_poll_flag(q);
4300
4301         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4302         INIT_LIST_HEAD(&q->requeue_list);
4303         spin_lock_init(&q->requeue_lock);
4304
4305         q->nr_requests = set->queue_depth;
4306
4307         /*
4308          * Default to classic polling
4309          */
4310         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4311
4312         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4313         blk_mq_add_queue_tag_set(set, q);
4314         blk_mq_map_swqueue(q);
4315         return 0;
4316
4317 err_hctxs:
4318         blk_mq_release(q);
4319 err_poll:
4320         blk_stat_free_callback(q->poll_cb);
4321         q->poll_cb = NULL;
4322 err_exit:
4323         q->mq_ops = NULL;
4324         return -ENOMEM;
4325 }
4326 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4327
4328 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4329 void blk_mq_exit_queue(struct request_queue *q)
4330 {
4331         struct blk_mq_tag_set *set = q->tag_set;
4332
4333         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4334         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4335         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4336         blk_mq_del_queue_tag_set(q);
4337 }
4338
4339 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4340 {
4341         int i;
4342
4343         if (blk_mq_is_shared_tags(set->flags)) {
4344                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4345                                                 BLK_MQ_NO_HCTX_IDX,
4346                                                 set->queue_depth);
4347                 if (!set->shared_tags)
4348                         return -ENOMEM;
4349         }
4350
4351         for (i = 0; i < set->nr_hw_queues; i++) {
4352                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4353                         goto out_unwind;
4354                 cond_resched();
4355         }
4356
4357         return 0;
4358
4359 out_unwind:
4360         while (--i >= 0)
4361                 __blk_mq_free_map_and_rqs(set, i);
4362
4363         if (blk_mq_is_shared_tags(set->flags)) {
4364                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4365                                         BLK_MQ_NO_HCTX_IDX);
4366         }
4367
4368         return -ENOMEM;
4369 }
4370
4371 /*
4372  * Allocate the request maps associated with this tag_set. Note that this
4373  * may reduce the depth asked for, if memory is tight. set->queue_depth
4374  * will be updated to reflect the allocated depth.
4375  */
4376 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4377 {
4378         unsigned int depth;
4379         int err;
4380
4381         depth = set->queue_depth;
4382         do {
4383                 err = __blk_mq_alloc_rq_maps(set);
4384                 if (!err)
4385                         break;
4386
4387                 set->queue_depth >>= 1;
4388                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4389                         err = -ENOMEM;
4390                         break;
4391                 }
4392         } while (set->queue_depth);
4393
4394         if (!set->queue_depth || err) {
4395                 pr_err("blk-mq: failed to allocate request map\n");
4396                 return -ENOMEM;
4397         }
4398
4399         if (depth != set->queue_depth)
4400                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4401                                                 depth, set->queue_depth);
4402
4403         return 0;
4404 }
4405
4406 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4407 {
4408         /*
4409          * blk_mq_map_queues() and multiple .map_queues() implementations
4410          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4411          * number of hardware queues.
4412          */
4413         if (set->nr_maps == 1)
4414                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4415
4416         if (set->ops->map_queues && !is_kdump_kernel()) {
4417                 int i;
4418
4419                 /*
4420                  * transport .map_queues is usually done in the following
4421                  * way:
4422                  *
4423                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4424                  *      mask = get_cpu_mask(queue)
4425                  *      for_each_cpu(cpu, mask)
4426                  *              set->map[x].mq_map[cpu] = queue;
4427                  * }
4428                  *
4429                  * When we need to remap, the table has to be cleared for
4430                  * killing stale mapping since one CPU may not be mapped
4431                  * to any hw queue.
4432                  */
4433                 for (i = 0; i < set->nr_maps; i++)
4434                         blk_mq_clear_mq_map(&set->map[i]);
4435
4436                 set->ops->map_queues(set);
4437         } else {
4438                 BUG_ON(set->nr_maps > 1);
4439                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4440         }
4441 }
4442
4443 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4444                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4445 {
4446         struct blk_mq_tags **new_tags;
4447
4448         if (cur_nr_hw_queues >= new_nr_hw_queues)
4449                 return 0;
4450
4451         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4452                                 GFP_KERNEL, set->numa_node);
4453         if (!new_tags)
4454                 return -ENOMEM;
4455
4456         if (set->tags)
4457                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4458                        sizeof(*set->tags));
4459         kfree(set->tags);
4460         set->tags = new_tags;
4461         set->nr_hw_queues = new_nr_hw_queues;
4462
4463         return 0;
4464 }
4465
4466 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4467                                 int new_nr_hw_queues)
4468 {
4469         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4470 }
4471
4472 /*
4473  * Alloc a tag set to be associated with one or more request queues.
4474  * May fail with EINVAL for various error conditions. May adjust the
4475  * requested depth down, if it's too large. In that case, the set
4476  * value will be stored in set->queue_depth.
4477  */
4478 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4479 {
4480         int i, ret;
4481
4482         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4483
4484         if (!set->nr_hw_queues)
4485                 return -EINVAL;
4486         if (!set->queue_depth)
4487                 return -EINVAL;
4488         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4489                 return -EINVAL;
4490
4491         if (!set->ops->queue_rq)
4492                 return -EINVAL;
4493
4494         if (!set->ops->get_budget ^ !set->ops->put_budget)
4495                 return -EINVAL;
4496
4497         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4498                 pr_info("blk-mq: reduced tag depth to %u\n",
4499                         BLK_MQ_MAX_DEPTH);
4500                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4501         }
4502
4503         if (!set->nr_maps)
4504                 set->nr_maps = 1;
4505         else if (set->nr_maps > HCTX_MAX_TYPES)
4506                 return -EINVAL;
4507
4508         /*
4509          * If a crashdump is active, then we are potentially in a very
4510          * memory constrained environment. Limit us to 1 queue and
4511          * 64 tags to prevent using too much memory.
4512          */
4513         if (is_kdump_kernel()) {
4514                 set->nr_hw_queues = 1;
4515                 set->nr_maps = 1;
4516                 set->queue_depth = min(64U, set->queue_depth);
4517         }
4518         /*
4519          * There is no use for more h/w queues than cpus if we just have
4520          * a single map
4521          */
4522         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4523                 set->nr_hw_queues = nr_cpu_ids;
4524
4525         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4526                 return -ENOMEM;
4527
4528         ret = -ENOMEM;
4529         for (i = 0; i < set->nr_maps; i++) {
4530                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4531                                                   sizeof(set->map[i].mq_map[0]),
4532                                                   GFP_KERNEL, set->numa_node);
4533                 if (!set->map[i].mq_map)
4534                         goto out_free_mq_map;
4535                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4536         }
4537
4538         blk_mq_update_queue_map(set);
4539
4540         ret = blk_mq_alloc_set_map_and_rqs(set);
4541         if (ret)
4542                 goto out_free_mq_map;
4543
4544         mutex_init(&set->tag_list_lock);
4545         INIT_LIST_HEAD(&set->tag_list);
4546
4547         return 0;
4548
4549 out_free_mq_map:
4550         for (i = 0; i < set->nr_maps; i++) {
4551                 kfree(set->map[i].mq_map);
4552                 set->map[i].mq_map = NULL;
4553         }
4554         kfree(set->tags);
4555         set->tags = NULL;
4556         return ret;
4557 }
4558 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4559
4560 /* allocate and initialize a tagset for a simple single-queue device */
4561 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4562                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4563                 unsigned int set_flags)
4564 {
4565         memset(set, 0, sizeof(*set));
4566         set->ops = ops;
4567         set->nr_hw_queues = 1;
4568         set->nr_maps = 1;
4569         set->queue_depth = queue_depth;
4570         set->numa_node = NUMA_NO_NODE;
4571         set->flags = set_flags;
4572         return blk_mq_alloc_tag_set(set);
4573 }
4574 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4575
4576 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4577 {
4578         int i, j;
4579
4580         for (i = 0; i < set->nr_hw_queues; i++)
4581                 __blk_mq_free_map_and_rqs(set, i);
4582
4583         if (blk_mq_is_shared_tags(set->flags)) {
4584                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4585                                         BLK_MQ_NO_HCTX_IDX);
4586         }
4587
4588         for (j = 0; j < set->nr_maps; j++) {
4589                 kfree(set->map[j].mq_map);
4590                 set->map[j].mq_map = NULL;
4591         }
4592
4593         kfree(set->tags);
4594         set->tags = NULL;
4595 }
4596 EXPORT_SYMBOL(blk_mq_free_tag_set);
4597
4598 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4599 {
4600         struct blk_mq_tag_set *set = q->tag_set;
4601         struct blk_mq_hw_ctx *hctx;
4602         int ret;
4603         unsigned long i;
4604
4605         if (!set)
4606                 return -EINVAL;
4607
4608         if (q->nr_requests == nr)
4609                 return 0;
4610
4611         blk_mq_freeze_queue(q);
4612         blk_mq_quiesce_queue(q);
4613
4614         ret = 0;
4615         queue_for_each_hw_ctx(q, hctx, i) {
4616                 if (!hctx->tags)
4617                         continue;
4618                 /*
4619                  * If we're using an MQ scheduler, just update the scheduler
4620                  * queue depth. This is similar to what the old code would do.
4621                  */
4622                 if (hctx->sched_tags) {
4623                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4624                                                       nr, true);
4625                 } else {
4626                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4627                                                       false);
4628                 }
4629                 if (ret)
4630                         break;
4631                 if (q->elevator && q->elevator->type->ops.depth_updated)
4632                         q->elevator->type->ops.depth_updated(hctx);
4633         }
4634         if (!ret) {
4635                 q->nr_requests = nr;
4636                 if (blk_mq_is_shared_tags(set->flags)) {
4637                         if (q->elevator)
4638                                 blk_mq_tag_update_sched_shared_tags(q);
4639                         else
4640                                 blk_mq_tag_resize_shared_tags(set, nr);
4641                 }
4642         }
4643
4644         blk_mq_unquiesce_queue(q);
4645         blk_mq_unfreeze_queue(q);
4646
4647         return ret;
4648 }
4649
4650 /*
4651  * request_queue and elevator_type pair.
4652  * It is just used by __blk_mq_update_nr_hw_queues to cache
4653  * the elevator_type associated with a request_queue.
4654  */
4655 struct blk_mq_qe_pair {
4656         struct list_head node;
4657         struct request_queue *q;
4658         struct elevator_type *type;
4659 };
4660
4661 /*
4662  * Cache the elevator_type in qe pair list and switch the
4663  * io scheduler to 'none'
4664  */
4665 static bool blk_mq_elv_switch_none(struct list_head *head,
4666                 struct request_queue *q)
4667 {
4668         struct blk_mq_qe_pair *qe;
4669
4670         if (!q->elevator)
4671                 return true;
4672
4673         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4674         if (!qe)
4675                 return false;
4676
4677         /* q->elevator needs protection from ->sysfs_lock */
4678         mutex_lock(&q->sysfs_lock);
4679
4680         INIT_LIST_HEAD(&qe->node);
4681         qe->q = q;
4682         qe->type = q->elevator->type;
4683         list_add(&qe->node, head);
4684
4685         /*
4686          * After elevator_switch, the previous elevator_queue will be
4687          * released by elevator_release. The reference of the io scheduler
4688          * module get by elevator_get will also be put. So we need to get
4689          * a reference of the io scheduler module here to prevent it to be
4690          * removed.
4691          */
4692         __module_get(qe->type->elevator_owner);
4693         elevator_switch(q, NULL);
4694         mutex_unlock(&q->sysfs_lock);
4695
4696         return true;
4697 }
4698
4699 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4700                                                 struct request_queue *q)
4701 {
4702         struct blk_mq_qe_pair *qe;
4703
4704         list_for_each_entry(qe, head, node)
4705                 if (qe->q == q)
4706                         return qe;
4707
4708         return NULL;
4709 }
4710
4711 static void blk_mq_elv_switch_back(struct list_head *head,
4712                                   struct request_queue *q)
4713 {
4714         struct blk_mq_qe_pair *qe;
4715         struct elevator_type *t;
4716
4717         qe = blk_lookup_qe_pair(head, q);
4718         if (!qe)
4719                 return;
4720         t = qe->type;
4721         list_del(&qe->node);
4722         kfree(qe);
4723
4724         mutex_lock(&q->sysfs_lock);
4725         elevator_switch(q, t);
4726         mutex_unlock(&q->sysfs_lock);
4727 }
4728
4729 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4730                                                         int nr_hw_queues)
4731 {
4732         struct request_queue *q;
4733         LIST_HEAD(head);
4734         int prev_nr_hw_queues;
4735
4736         lockdep_assert_held(&set->tag_list_lock);
4737
4738         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4739                 nr_hw_queues = nr_cpu_ids;
4740         if (nr_hw_queues < 1)
4741                 return;
4742         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4743                 return;
4744
4745         list_for_each_entry(q, &set->tag_list, tag_set_list)
4746                 blk_mq_freeze_queue(q);
4747         /*
4748          * Switch IO scheduler to 'none', cleaning up the data associated
4749          * with the previous scheduler. We will switch back once we are done
4750          * updating the new sw to hw queue mappings.
4751          */
4752         list_for_each_entry(q, &set->tag_list, tag_set_list)
4753                 if (!blk_mq_elv_switch_none(&head, q))
4754                         goto switch_back;
4755
4756         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4757                 blk_mq_debugfs_unregister_hctxs(q);
4758                 blk_mq_sysfs_unregister_hctxs(q);
4759         }
4760
4761         prev_nr_hw_queues = set->nr_hw_queues;
4762         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4763             0)
4764                 goto reregister;
4765
4766         set->nr_hw_queues = nr_hw_queues;
4767 fallback:
4768         blk_mq_update_queue_map(set);
4769         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4770                 blk_mq_realloc_hw_ctxs(set, q);
4771                 blk_mq_update_poll_flag(q);
4772                 if (q->nr_hw_queues != set->nr_hw_queues) {
4773                         int i = prev_nr_hw_queues;
4774
4775                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4776                                         nr_hw_queues, prev_nr_hw_queues);
4777                         for (; i < set->nr_hw_queues; i++)
4778                                 __blk_mq_free_map_and_rqs(set, i);
4779
4780                         set->nr_hw_queues = prev_nr_hw_queues;
4781                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4782                         goto fallback;
4783                 }
4784                 blk_mq_map_swqueue(q);
4785         }
4786
4787 reregister:
4788         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4789                 blk_mq_sysfs_register_hctxs(q);
4790                 blk_mq_debugfs_register_hctxs(q);
4791         }
4792
4793 switch_back:
4794         list_for_each_entry(q, &set->tag_list, tag_set_list)
4795                 blk_mq_elv_switch_back(&head, q);
4796
4797         list_for_each_entry(q, &set->tag_list, tag_set_list)
4798                 blk_mq_unfreeze_queue(q);
4799 }
4800
4801 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4802 {
4803         mutex_lock(&set->tag_list_lock);
4804         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4805         mutex_unlock(&set->tag_list_lock);
4806 }
4807 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4808
4809 /* Enable polling stats and return whether they were already enabled. */
4810 static bool blk_poll_stats_enable(struct request_queue *q)
4811 {
4812         if (q->poll_stat)
4813                 return true;
4814
4815         return blk_stats_alloc_enable(q);
4816 }
4817
4818 static void blk_mq_poll_stats_start(struct request_queue *q)
4819 {
4820         /*
4821          * We don't arm the callback if polling stats are not enabled or the
4822          * callback is already active.
4823          */
4824         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4825                 return;
4826
4827         blk_stat_activate_msecs(q->poll_cb, 100);
4828 }
4829
4830 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4831 {
4832         struct request_queue *q = cb->data;
4833         int bucket;
4834
4835         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4836                 if (cb->stat[bucket].nr_samples)
4837                         q->poll_stat[bucket] = cb->stat[bucket];
4838         }
4839 }
4840
4841 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4842                                        struct request *rq)
4843 {
4844         unsigned long ret = 0;
4845         int bucket;
4846
4847         /*
4848          * If stats collection isn't on, don't sleep but turn it on for
4849          * future users
4850          */
4851         if (!blk_poll_stats_enable(q))
4852                 return 0;
4853
4854         /*
4855          * As an optimistic guess, use half of the mean service time
4856          * for this type of request. We can (and should) make this smarter.
4857          * For instance, if the completion latencies are tight, we can
4858          * get closer than just half the mean. This is especially
4859          * important on devices where the completion latencies are longer
4860          * than ~10 usec. We do use the stats for the relevant IO size
4861          * if available which does lead to better estimates.
4862          */
4863         bucket = blk_mq_poll_stats_bkt(rq);
4864         if (bucket < 0)
4865                 return ret;
4866
4867         if (q->poll_stat[bucket].nr_samples)
4868                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4869
4870         return ret;
4871 }
4872
4873 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4874 {
4875         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4876         struct request *rq = blk_qc_to_rq(hctx, qc);
4877         struct hrtimer_sleeper hs;
4878         enum hrtimer_mode mode;
4879         unsigned int nsecs;
4880         ktime_t kt;
4881
4882         /*
4883          * If a request has completed on queue that uses an I/O scheduler, we
4884          * won't get back a request from blk_qc_to_rq.
4885          */
4886         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4887                 return false;
4888
4889         /*
4890          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4891          *
4892          *  0:  use half of prev avg
4893          * >0:  use this specific value
4894          */
4895         if (q->poll_nsec > 0)
4896                 nsecs = q->poll_nsec;
4897         else
4898                 nsecs = blk_mq_poll_nsecs(q, rq);
4899
4900         if (!nsecs)
4901                 return false;
4902
4903         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4904
4905         /*
4906          * This will be replaced with the stats tracking code, using
4907          * 'avg_completion_time / 2' as the pre-sleep target.
4908          */
4909         kt = nsecs;
4910
4911         mode = HRTIMER_MODE_REL;
4912         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4913         hrtimer_set_expires(&hs.timer, kt);
4914
4915         do {
4916                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4917                         break;
4918                 set_current_state(TASK_UNINTERRUPTIBLE);
4919                 hrtimer_sleeper_start_expires(&hs, mode);
4920                 if (hs.task)
4921                         io_schedule();
4922                 hrtimer_cancel(&hs.timer);
4923                 mode = HRTIMER_MODE_ABS;
4924         } while (hs.task && !signal_pending(current));
4925
4926         __set_current_state(TASK_RUNNING);
4927         destroy_hrtimer_on_stack(&hs.timer);
4928
4929         /*
4930          * If we sleep, have the caller restart the poll loop to reset the
4931          * state.  Like for the other success return cases, the caller is
4932          * responsible for checking if the IO completed.  If the IO isn't
4933          * complete, we'll get called again and will go straight to the busy
4934          * poll loop.
4935          */
4936         return true;
4937 }
4938
4939 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4940                                struct io_comp_batch *iob, unsigned int flags)
4941 {
4942         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4943         long state = get_current_state();
4944         int ret;
4945
4946         do {
4947                 ret = q->mq_ops->poll(hctx, iob);
4948                 if (ret > 0) {
4949                         __set_current_state(TASK_RUNNING);
4950                         return ret;
4951                 }
4952
4953                 if (signal_pending_state(state, current))
4954                         __set_current_state(TASK_RUNNING);
4955                 if (task_is_running(current))
4956                         return 1;
4957
4958                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4959                         break;
4960                 cpu_relax();
4961         } while (!need_resched());
4962
4963         __set_current_state(TASK_RUNNING);
4964         return 0;
4965 }
4966
4967 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4968                 unsigned int flags)
4969 {
4970         if (!(flags & BLK_POLL_NOSLEEP) &&
4971             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4972                 if (blk_mq_poll_hybrid(q, cookie))
4973                         return 1;
4974         }
4975         return blk_mq_poll_classic(q, cookie, iob, flags);
4976 }
4977
4978 unsigned int blk_mq_rq_cpu(struct request *rq)
4979 {
4980         return rq->mq_ctx->cpu;
4981 }
4982 EXPORT_SYMBOL(blk_mq_rq_cpu);
4983
4984 void blk_mq_cancel_work_sync(struct request_queue *q)
4985 {
4986         if (queue_is_mq(q)) {
4987                 struct blk_mq_hw_ctx *hctx;
4988                 unsigned long i;
4989
4990                 cancel_delayed_work_sync(&q->requeue_work);
4991
4992                 queue_for_each_hw_ctx(q, hctx, i)
4993                         cancel_delayed_work_sync(&hctx->run_work);
4994         }
4995 }
4996
4997 static int __init blk_mq_init(void)
4998 {
4999         int i;
5000
5001         for_each_possible_cpu(i)
5002                 init_llist_head(&per_cpu(blk_cpu_done, i));
5003         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5004
5005         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5006                                   "block/softirq:dead", NULL,
5007                                   blk_softirq_cpu_dead);
5008         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5009                                 blk_mq_hctx_notify_dead);
5010         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5011                                 blk_mq_hctx_notify_online,
5012                                 blk_mq_hctx_notify_offline);
5013         return 0;
5014 }
5015 subsys_initcall(blk_mq_init);