GNU Linux-libre 5.10.217-gnu1
[releases.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct hd_struct *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if ((!mi->part->partno || rq->part == mi->part) &&
109             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110                 mi->inflight[rq_data_dir(rq)]++;
111
112         return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
116 {
117         struct mq_inflight mi = { .part = part };
118
119         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120
121         return mi.inflight[0] + mi.inflight[1];
122 }
123
124 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
125                          unsigned int inflight[2])
126 {
127         struct mq_inflight mi = { .part = part };
128
129         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
130         inflight[0] = mi.inflight[0];
131         inflight[1] = mi.inflight[1];
132 }
133
134 void blk_freeze_queue_start(struct request_queue *q)
135 {
136         mutex_lock(&q->mq_freeze_lock);
137         if (++q->mq_freeze_depth == 1) {
138                 percpu_ref_kill(&q->q_usage_counter);
139                 mutex_unlock(&q->mq_freeze_lock);
140                 if (queue_is_mq(q))
141                         blk_mq_run_hw_queues(q, false);
142         } else {
143                 mutex_unlock(&q->mq_freeze_lock);
144         }
145 }
146 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
147
148 void blk_mq_freeze_queue_wait(struct request_queue *q)
149 {
150         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
151 }
152 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
153
154 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
155                                      unsigned long timeout)
156 {
157         return wait_event_timeout(q->mq_freeze_wq,
158                                         percpu_ref_is_zero(&q->q_usage_counter),
159                                         timeout);
160 }
161 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
162
163 /*
164  * Guarantee no request is in use, so we can change any data structure of
165  * the queue afterward.
166  */
167 void blk_freeze_queue(struct request_queue *q)
168 {
169         /*
170          * In the !blk_mq case we are only calling this to kill the
171          * q_usage_counter, otherwise this increases the freeze depth
172          * and waits for it to return to zero.  For this reason there is
173          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
174          * exported to drivers as the only user for unfreeze is blk_mq.
175          */
176         blk_freeze_queue_start(q);
177         blk_mq_freeze_queue_wait(q);
178 }
179
180 void blk_mq_freeze_queue(struct request_queue *q)
181 {
182         /*
183          * ...just an alias to keep freeze and unfreeze actions balanced
184          * in the blk_mq_* namespace
185          */
186         blk_freeze_queue(q);
187 }
188 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
189
190 void blk_mq_unfreeze_queue(struct request_queue *q)
191 {
192         mutex_lock(&q->mq_freeze_lock);
193         q->mq_freeze_depth--;
194         WARN_ON_ONCE(q->mq_freeze_depth < 0);
195         if (!q->mq_freeze_depth) {
196                 percpu_ref_resurrect(&q->q_usage_counter);
197                 wake_up_all(&q->mq_freeze_wq);
198         }
199         mutex_unlock(&q->mq_freeze_lock);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
202
203 /*
204  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
205  * mpt3sas driver such that this function can be removed.
206  */
207 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
208 {
209         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210 }
211 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
212
213 /**
214  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
215  * @q: request queue.
216  *
217  * Note: this function does not prevent that the struct request end_io()
218  * callback function is invoked. Once this function is returned, we make
219  * sure no dispatch can happen until the queue is unquiesced via
220  * blk_mq_unquiesce_queue().
221  */
222 void blk_mq_quiesce_queue(struct request_queue *q)
223 {
224         struct blk_mq_hw_ctx *hctx;
225         unsigned int i;
226         bool rcu = false;
227
228         blk_mq_quiesce_queue_nowait(q);
229
230         queue_for_each_hw_ctx(q, hctx, i) {
231                 if (hctx->flags & BLK_MQ_F_BLOCKING)
232                         synchronize_srcu(hctx->srcu);
233                 else
234                         rcu = true;
235         }
236         if (rcu)
237                 synchronize_rcu();
238 }
239 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
240
241 /*
242  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
243  * @q: request queue.
244  *
245  * This function recovers queue into the state before quiescing
246  * which is done by blk_mq_quiesce_queue.
247  */
248 void blk_mq_unquiesce_queue(struct request_queue *q)
249 {
250         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
251
252         /* dispatch requests which are inserted during quiescing */
253         blk_mq_run_hw_queues(q, true);
254 }
255 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
256
257 void blk_mq_wake_waiters(struct request_queue *q)
258 {
259         struct blk_mq_hw_ctx *hctx;
260         unsigned int i;
261
262         queue_for_each_hw_ctx(q, hctx, i)
263                 if (blk_mq_hw_queue_mapped(hctx))
264                         blk_mq_tag_wakeup_all(hctx->tags, true);
265 }
266
267 /*
268  * Only need start/end time stamping if we have iostat or
269  * blk stats enabled, or using an IO scheduler.
270  */
271 static inline bool blk_mq_need_time_stamp(struct request *rq)
272 {
273         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
274 }
275
276 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
277                 unsigned int tag, u64 alloc_time_ns)
278 {
279         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
280         struct request *rq = tags->static_rqs[tag];
281
282         if (data->q->elevator) {
283                 rq->tag = BLK_MQ_NO_TAG;
284                 rq->internal_tag = tag;
285         } else {
286                 rq->tag = tag;
287                 rq->internal_tag = BLK_MQ_NO_TAG;
288         }
289
290         /* csd/requeue_work/fifo_time is initialized before use */
291         rq->q = data->q;
292         rq->mq_ctx = data->ctx;
293         rq->mq_hctx = data->hctx;
294         rq->rq_flags = 0;
295         rq->cmd_flags = data->cmd_flags;
296         if (data->flags & BLK_MQ_REQ_PM)
297                 rq->rq_flags |= RQF_PM;
298         if (blk_queue_io_stat(data->q))
299                 rq->rq_flags |= RQF_IO_STAT;
300         INIT_LIST_HEAD(&rq->queuelist);
301         INIT_HLIST_NODE(&rq->hash);
302         RB_CLEAR_NODE(&rq->rb_node);
303         rq->rq_disk = NULL;
304         rq->part = NULL;
305 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
306         rq->alloc_time_ns = alloc_time_ns;
307 #endif
308         if (blk_mq_need_time_stamp(rq))
309                 rq->start_time_ns = ktime_get_ns();
310         else
311                 rq->start_time_ns = 0;
312         rq->io_start_time_ns = 0;
313         rq->stats_sectors = 0;
314         rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316         rq->nr_integrity_segments = 0;
317 #endif
318         blk_crypto_rq_set_defaults(rq);
319         /* tag was already set */
320         WRITE_ONCE(rq->deadline, 0);
321
322         rq->timeout = 0;
323
324         rq->end_io = NULL;
325         rq->end_io_data = NULL;
326
327         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
328         refcount_set(&rq->ref, 1);
329
330         if (!op_is_flush(data->cmd_flags)) {
331                 struct elevator_queue *e = data->q->elevator;
332
333                 rq->elv.icq = NULL;
334                 if (e && e->type->ops.prepare_request) {
335                         if (e->type->icq_cache)
336                                 blk_mq_sched_assign_ioc(rq);
337
338                         e->type->ops.prepare_request(rq);
339                         rq->rq_flags |= RQF_ELVPRIV;
340                 }
341         }
342
343         data->hctx->queued++;
344         return rq;
345 }
346
347 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
348 {
349         struct request_queue *q = data->q;
350         struct elevator_queue *e = q->elevator;
351         u64 alloc_time_ns = 0;
352         unsigned int tag;
353
354         /* alloc_time includes depth and tag waits */
355         if (blk_queue_rq_alloc_time(q))
356                 alloc_time_ns = ktime_get_ns();
357
358         if (data->cmd_flags & REQ_NOWAIT)
359                 data->flags |= BLK_MQ_REQ_NOWAIT;
360
361         if (e) {
362                 /*
363                  * Flush requests are special and go directly to the
364                  * dispatch list. Don't include reserved tags in the
365                  * limiting, as it isn't useful.
366                  */
367                 if (!op_is_flush(data->cmd_flags) &&
368                     e->type->ops.limit_depth &&
369                     !(data->flags & BLK_MQ_REQ_RESERVED))
370                         e->type->ops.limit_depth(data->cmd_flags, data);
371         }
372
373 retry:
374         data->ctx = blk_mq_get_ctx(q);
375         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
376         if (!e)
377                 blk_mq_tag_busy(data->hctx);
378
379         /*
380          * Waiting allocations only fail because of an inactive hctx.  In that
381          * case just retry the hctx assignment and tag allocation as CPU hotplug
382          * should have migrated us to an online CPU by now.
383          */
384         tag = blk_mq_get_tag(data);
385         if (tag == BLK_MQ_NO_TAG) {
386                 if (data->flags & BLK_MQ_REQ_NOWAIT)
387                         return NULL;
388
389                 /*
390                  * Give up the CPU and sleep for a random short time to ensure
391                  * that thread using a realtime scheduling class are migrated
392                  * off the CPU, and thus off the hctx that is going away.
393                  */
394                 msleep(3);
395                 goto retry;
396         }
397         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
398 }
399
400 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
401                 blk_mq_req_flags_t flags)
402 {
403         struct blk_mq_alloc_data data = {
404                 .q              = q,
405                 .flags          = flags,
406                 .cmd_flags      = op,
407         };
408         struct request *rq;
409         int ret;
410
411         ret = blk_queue_enter(q, flags);
412         if (ret)
413                 return ERR_PTR(ret);
414
415         rq = __blk_mq_alloc_request(&data);
416         if (!rq)
417                 goto out_queue_exit;
418         rq->__data_len = 0;
419         rq->__sector = (sector_t) -1;
420         rq->bio = rq->biotail = NULL;
421         return rq;
422 out_queue_exit:
423         blk_queue_exit(q);
424         return ERR_PTR(-EWOULDBLOCK);
425 }
426 EXPORT_SYMBOL(blk_mq_alloc_request);
427
428 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
429         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
430 {
431         struct blk_mq_alloc_data data = {
432                 .q              = q,
433                 .flags          = flags,
434                 .cmd_flags      = op,
435         };
436         u64 alloc_time_ns = 0;
437         unsigned int cpu;
438         unsigned int tag;
439         int ret;
440
441         /* alloc_time includes depth and tag waits */
442         if (blk_queue_rq_alloc_time(q))
443                 alloc_time_ns = ktime_get_ns();
444
445         /*
446          * If the tag allocator sleeps we could get an allocation for a
447          * different hardware context.  No need to complicate the low level
448          * allocator for this for the rare use case of a command tied to
449          * a specific queue.
450          */
451         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
452             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
453                 return ERR_PTR(-EINVAL);
454
455         if (hctx_idx >= q->nr_hw_queues)
456                 return ERR_PTR(-EIO);
457
458         ret = blk_queue_enter(q, flags);
459         if (ret)
460                 return ERR_PTR(ret);
461
462         /*
463          * Check if the hardware context is actually mapped to anything.
464          * If not tell the caller that it should skip this queue.
465          */
466         ret = -EXDEV;
467         data.hctx = q->queue_hw_ctx[hctx_idx];
468         if (!blk_mq_hw_queue_mapped(data.hctx))
469                 goto out_queue_exit;
470         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
471         if (cpu >= nr_cpu_ids)
472                 goto out_queue_exit;
473         data.ctx = __blk_mq_get_ctx(q, cpu);
474
475         if (!q->elevator)
476                 blk_mq_tag_busy(data.hctx);
477
478         ret = -EWOULDBLOCK;
479         tag = blk_mq_get_tag(&data);
480         if (tag == BLK_MQ_NO_TAG)
481                 goto out_queue_exit;
482         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
483
484 out_queue_exit:
485         blk_queue_exit(q);
486         return ERR_PTR(ret);
487 }
488 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
489
490 static void __blk_mq_free_request(struct request *rq)
491 {
492         struct request_queue *q = rq->q;
493         struct blk_mq_ctx *ctx = rq->mq_ctx;
494         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
495         const int sched_tag = rq->internal_tag;
496
497         blk_crypto_free_request(rq);
498         blk_pm_mark_last_busy(rq);
499         rq->mq_hctx = NULL;
500         if (rq->tag != BLK_MQ_NO_TAG)
501                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
502         if (sched_tag != BLK_MQ_NO_TAG)
503                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
504         blk_mq_sched_restart(hctx);
505         blk_queue_exit(q);
506 }
507
508 void blk_mq_free_request(struct request *rq)
509 {
510         struct request_queue *q = rq->q;
511         struct elevator_queue *e = q->elevator;
512         struct blk_mq_ctx *ctx = rq->mq_ctx;
513         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
514
515         if (rq->rq_flags & RQF_ELVPRIV) {
516                 if (e && e->type->ops.finish_request)
517                         e->type->ops.finish_request(rq);
518                 if (rq->elv.icq) {
519                         put_io_context(rq->elv.icq->ioc);
520                         rq->elv.icq = NULL;
521                 }
522         }
523
524         ctx->rq_completed[rq_is_sync(rq)]++;
525         if (rq->rq_flags & RQF_MQ_INFLIGHT)
526                 __blk_mq_dec_active_requests(hctx);
527
528         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
529                 laptop_io_completion(q->backing_dev_info);
530
531         rq_qos_done(q, rq);
532
533         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
534         if (refcount_dec_and_test(&rq->ref))
535                 __blk_mq_free_request(rq);
536 }
537 EXPORT_SYMBOL_GPL(blk_mq_free_request);
538
539 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
540 {
541         u64 now = 0;
542
543         if (blk_mq_need_time_stamp(rq))
544                 now = ktime_get_ns();
545
546         if (rq->rq_flags & RQF_STATS) {
547                 blk_mq_poll_stats_start(rq->q);
548                 blk_stat_add(rq, now);
549         }
550
551         blk_mq_sched_completed_request(rq, now);
552
553         blk_account_io_done(rq, now);
554
555         if (rq->end_io) {
556                 rq_qos_done(rq->q, rq);
557                 rq->end_io(rq, error);
558         } else {
559                 blk_mq_free_request(rq);
560         }
561 }
562 EXPORT_SYMBOL(__blk_mq_end_request);
563
564 void blk_mq_end_request(struct request *rq, blk_status_t error)
565 {
566         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
567                 BUG();
568         __blk_mq_end_request(rq, error);
569 }
570 EXPORT_SYMBOL(blk_mq_end_request);
571
572 /*
573  * Softirq action handler - move entries to local list and loop over them
574  * while passing them to the queue registered handler.
575  */
576 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
577 {
578         struct list_head *cpu_list, local_list;
579
580         local_irq_disable();
581         cpu_list = this_cpu_ptr(&blk_cpu_done);
582         list_replace_init(cpu_list, &local_list);
583         local_irq_enable();
584
585         while (!list_empty(&local_list)) {
586                 struct request *rq;
587
588                 rq = list_entry(local_list.next, struct request, ipi_list);
589                 list_del_init(&rq->ipi_list);
590                 rq->q->mq_ops->complete(rq);
591         }
592 }
593
594 static void blk_mq_trigger_softirq(struct request *rq)
595 {
596         struct list_head *list;
597         unsigned long flags;
598
599         local_irq_save(flags);
600         list = this_cpu_ptr(&blk_cpu_done);
601         list_add_tail(&rq->ipi_list, list);
602
603         /*
604          * If the list only contains our just added request, signal a raise of
605          * the softirq.  If there are already entries there, someone already
606          * raised the irq but it hasn't run yet.
607          */
608         if (list->next == &rq->ipi_list)
609                 raise_softirq_irqoff(BLOCK_SOFTIRQ);
610         local_irq_restore(flags);
611 }
612
613 static int blk_softirq_cpu_dead(unsigned int cpu)
614 {
615         /*
616          * If a CPU goes away, splice its entries to the current CPU
617          * and trigger a run of the softirq
618          */
619         local_irq_disable();
620         list_splice_init(&per_cpu(blk_cpu_done, cpu),
621                          this_cpu_ptr(&blk_cpu_done));
622         raise_softirq_irqoff(BLOCK_SOFTIRQ);
623         local_irq_enable();
624
625         return 0;
626 }
627
628
629 static void __blk_mq_complete_request_remote(void *data)
630 {
631         struct request *rq = data;
632
633         /*
634          * For most of single queue controllers, there is only one irq vector
635          * for handling I/O completion, and the only irq's affinity is set
636          * to all possible CPUs.  On most of ARCHs, this affinity means the irq
637          * is handled on one specific CPU.
638          *
639          * So complete I/O requests in softirq context in case of single queue
640          * devices to avoid degrading I/O performance due to irqsoff latency.
641          */
642         if (rq->q->nr_hw_queues == 1)
643                 blk_mq_trigger_softirq(rq);
644         else
645                 rq->q->mq_ops->complete(rq);
646 }
647
648 static inline bool blk_mq_complete_need_ipi(struct request *rq)
649 {
650         int cpu = raw_smp_processor_id();
651
652         if (!IS_ENABLED(CONFIG_SMP) ||
653             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
654                 return false;
655
656         /* same CPU or cache domain?  Complete locally */
657         if (cpu == rq->mq_ctx->cpu ||
658             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
659              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
660                 return false;
661
662         /* don't try to IPI to an offline CPU */
663         return cpu_online(rq->mq_ctx->cpu);
664 }
665
666 bool blk_mq_complete_request_remote(struct request *rq)
667 {
668         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
669
670         /*
671          * For a polled request, always complete locallly, it's pointless
672          * to redirect the completion.
673          */
674         if (rq->cmd_flags & REQ_HIPRI)
675                 return false;
676
677         if (blk_mq_complete_need_ipi(rq)) {
678                 rq->csd.func = __blk_mq_complete_request_remote;
679                 rq->csd.info = rq;
680                 rq->csd.flags = 0;
681                 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
682         } else {
683                 if (rq->q->nr_hw_queues > 1)
684                         return false;
685                 blk_mq_trigger_softirq(rq);
686         }
687
688         return true;
689 }
690 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
691
692 /**
693  * blk_mq_complete_request - end I/O on a request
694  * @rq:         the request being processed
695  *
696  * Description:
697  *      Complete a request by scheduling the ->complete_rq operation.
698  **/
699 void blk_mq_complete_request(struct request *rq)
700 {
701         if (!blk_mq_complete_request_remote(rq))
702                 rq->q->mq_ops->complete(rq);
703 }
704 EXPORT_SYMBOL(blk_mq_complete_request);
705
706 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
707         __releases(hctx->srcu)
708 {
709         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
710                 rcu_read_unlock();
711         else
712                 srcu_read_unlock(hctx->srcu, srcu_idx);
713 }
714
715 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
716         __acquires(hctx->srcu)
717 {
718         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
719                 /* shut up gcc false positive */
720                 *srcu_idx = 0;
721                 rcu_read_lock();
722         } else
723                 *srcu_idx = srcu_read_lock(hctx->srcu);
724 }
725
726 /**
727  * blk_mq_start_request - Start processing a request
728  * @rq: Pointer to request to be started
729  *
730  * Function used by device drivers to notify the block layer that a request
731  * is going to be processed now, so blk layer can do proper initializations
732  * such as starting the timeout timer.
733  */
734 void blk_mq_start_request(struct request *rq)
735 {
736         struct request_queue *q = rq->q;
737
738         trace_block_rq_issue(rq);
739
740         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
741                 rq->io_start_time_ns = ktime_get_ns();
742                 rq->stats_sectors = blk_rq_sectors(rq);
743                 rq->rq_flags |= RQF_STATS;
744                 rq_qos_issue(q, rq);
745         }
746
747         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
748
749         blk_add_timer(rq);
750         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
751
752 #ifdef CONFIG_BLK_DEV_INTEGRITY
753         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
754                 q->integrity.profile->prepare_fn(rq);
755 #endif
756 }
757 EXPORT_SYMBOL(blk_mq_start_request);
758
759 static void __blk_mq_requeue_request(struct request *rq)
760 {
761         struct request_queue *q = rq->q;
762
763         blk_mq_put_driver_tag(rq);
764
765         trace_block_rq_requeue(rq);
766         rq_qos_requeue(q, rq);
767
768         if (blk_mq_request_started(rq)) {
769                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
770                 rq->rq_flags &= ~RQF_TIMED_OUT;
771         }
772 }
773
774 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
775 {
776         __blk_mq_requeue_request(rq);
777
778         /* this request will be re-inserted to io scheduler queue */
779         blk_mq_sched_requeue_request(rq);
780
781         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
782 }
783 EXPORT_SYMBOL(blk_mq_requeue_request);
784
785 static void blk_mq_requeue_work(struct work_struct *work)
786 {
787         struct request_queue *q =
788                 container_of(work, struct request_queue, requeue_work.work);
789         LIST_HEAD(rq_list);
790         struct request *rq, *next;
791
792         spin_lock_irq(&q->requeue_lock);
793         list_splice_init(&q->requeue_list, &rq_list);
794         spin_unlock_irq(&q->requeue_lock);
795
796         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
797                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
798                         continue;
799
800                 rq->rq_flags &= ~RQF_SOFTBARRIER;
801                 list_del_init(&rq->queuelist);
802                 /*
803                  * If RQF_DONTPREP, rq has contained some driver specific
804                  * data, so insert it to hctx dispatch list to avoid any
805                  * merge.
806                  */
807                 if (rq->rq_flags & RQF_DONTPREP)
808                         blk_mq_request_bypass_insert(rq, false, false);
809                 else
810                         blk_mq_sched_insert_request(rq, true, false, false);
811         }
812
813         while (!list_empty(&rq_list)) {
814                 rq = list_entry(rq_list.next, struct request, queuelist);
815                 list_del_init(&rq->queuelist);
816                 blk_mq_sched_insert_request(rq, false, false, false);
817         }
818
819         blk_mq_run_hw_queues(q, false);
820 }
821
822 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
823                                 bool kick_requeue_list)
824 {
825         struct request_queue *q = rq->q;
826         unsigned long flags;
827
828         /*
829          * We abuse this flag that is otherwise used by the I/O scheduler to
830          * request head insertion from the workqueue.
831          */
832         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
833
834         spin_lock_irqsave(&q->requeue_lock, flags);
835         if (at_head) {
836                 rq->rq_flags |= RQF_SOFTBARRIER;
837                 list_add(&rq->queuelist, &q->requeue_list);
838         } else {
839                 list_add_tail(&rq->queuelist, &q->requeue_list);
840         }
841         spin_unlock_irqrestore(&q->requeue_lock, flags);
842
843         if (kick_requeue_list)
844                 blk_mq_kick_requeue_list(q);
845 }
846
847 void blk_mq_kick_requeue_list(struct request_queue *q)
848 {
849         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
850 }
851 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
852
853 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
854                                     unsigned long msecs)
855 {
856         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
857                                     msecs_to_jiffies(msecs));
858 }
859 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
860
861 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
862 {
863         if (tag < tags->nr_tags) {
864                 prefetch(tags->rqs[tag]);
865                 return tags->rqs[tag];
866         }
867
868         return NULL;
869 }
870 EXPORT_SYMBOL(blk_mq_tag_to_rq);
871
872 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
873                                void *priv, bool reserved)
874 {
875         /*
876          * If we find a request that isn't idle and the queue matches,
877          * we know the queue is busy. Return false to stop the iteration.
878          */
879         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
880                 bool *busy = priv;
881
882                 *busy = true;
883                 return false;
884         }
885
886         return true;
887 }
888
889 bool blk_mq_queue_inflight(struct request_queue *q)
890 {
891         bool busy = false;
892
893         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
894         return busy;
895 }
896 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
897
898 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
899 {
900         req->rq_flags |= RQF_TIMED_OUT;
901         if (req->q->mq_ops->timeout) {
902                 enum blk_eh_timer_return ret;
903
904                 ret = req->q->mq_ops->timeout(req, reserved);
905                 if (ret == BLK_EH_DONE)
906                         return;
907                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
908         }
909
910         blk_add_timer(req);
911 }
912
913 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
914 {
915         unsigned long deadline;
916
917         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
918                 return false;
919         if (rq->rq_flags & RQF_TIMED_OUT)
920                 return false;
921
922         deadline = READ_ONCE(rq->deadline);
923         if (time_after_eq(jiffies, deadline))
924                 return true;
925
926         if (*next == 0)
927                 *next = deadline;
928         else if (time_after(*next, deadline))
929                 *next = deadline;
930         return false;
931 }
932
933 void blk_mq_put_rq_ref(struct request *rq)
934 {
935         if (is_flush_rq(rq))
936                 rq->end_io(rq, 0);
937         else if (refcount_dec_and_test(&rq->ref))
938                 __blk_mq_free_request(rq);
939 }
940
941 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
942                 struct request *rq, void *priv, bool reserved)
943 {
944         unsigned long *next = priv;
945
946         /*
947          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
948          * be reallocated underneath the timeout handler's processing, then
949          * the expire check is reliable. If the request is not expired, then
950          * it was completed and reallocated as a new request after returning
951          * from blk_mq_check_expired().
952          */
953         if (blk_mq_req_expired(rq, next))
954                 blk_mq_rq_timed_out(rq, reserved);
955         return true;
956 }
957
958 static void blk_mq_timeout_work(struct work_struct *work)
959 {
960         struct request_queue *q =
961                 container_of(work, struct request_queue, timeout_work);
962         unsigned long next = 0;
963         struct blk_mq_hw_ctx *hctx;
964         int i;
965
966         /* A deadlock might occur if a request is stuck requiring a
967          * timeout at the same time a queue freeze is waiting
968          * completion, since the timeout code would not be able to
969          * acquire the queue reference here.
970          *
971          * That's why we don't use blk_queue_enter here; instead, we use
972          * percpu_ref_tryget directly, because we need to be able to
973          * obtain a reference even in the short window between the queue
974          * starting to freeze, by dropping the first reference in
975          * blk_freeze_queue_start, and the moment the last request is
976          * consumed, marked by the instant q_usage_counter reaches
977          * zero.
978          */
979         if (!percpu_ref_tryget(&q->q_usage_counter))
980                 return;
981
982         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
983
984         if (next != 0) {
985                 mod_timer(&q->timeout, next);
986         } else {
987                 /*
988                  * Request timeouts are handled as a forward rolling timer. If
989                  * we end up here it means that no requests are pending and
990                  * also that no request has been pending for a while. Mark
991                  * each hctx as idle.
992                  */
993                 queue_for_each_hw_ctx(q, hctx, i) {
994                         /* the hctx may be unmapped, so check it here */
995                         if (blk_mq_hw_queue_mapped(hctx))
996                                 blk_mq_tag_idle(hctx);
997                 }
998         }
999         blk_queue_exit(q);
1000 }
1001
1002 struct flush_busy_ctx_data {
1003         struct blk_mq_hw_ctx *hctx;
1004         struct list_head *list;
1005 };
1006
1007 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1008 {
1009         struct flush_busy_ctx_data *flush_data = data;
1010         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1011         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1012         enum hctx_type type = hctx->type;
1013
1014         spin_lock(&ctx->lock);
1015         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1016         sbitmap_clear_bit(sb, bitnr);
1017         spin_unlock(&ctx->lock);
1018         return true;
1019 }
1020
1021 /*
1022  * Process software queues that have been marked busy, splicing them
1023  * to the for-dispatch
1024  */
1025 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1026 {
1027         struct flush_busy_ctx_data data = {
1028                 .hctx = hctx,
1029                 .list = list,
1030         };
1031
1032         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1033 }
1034 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1035
1036 struct dispatch_rq_data {
1037         struct blk_mq_hw_ctx *hctx;
1038         struct request *rq;
1039 };
1040
1041 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1042                 void *data)
1043 {
1044         struct dispatch_rq_data *dispatch_data = data;
1045         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1046         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1047         enum hctx_type type = hctx->type;
1048
1049         spin_lock(&ctx->lock);
1050         if (!list_empty(&ctx->rq_lists[type])) {
1051                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1052                 list_del_init(&dispatch_data->rq->queuelist);
1053                 if (list_empty(&ctx->rq_lists[type]))
1054                         sbitmap_clear_bit(sb, bitnr);
1055         }
1056         spin_unlock(&ctx->lock);
1057
1058         return !dispatch_data->rq;
1059 }
1060
1061 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1062                                         struct blk_mq_ctx *start)
1063 {
1064         unsigned off = start ? start->index_hw[hctx->type] : 0;
1065         struct dispatch_rq_data data = {
1066                 .hctx = hctx,
1067                 .rq   = NULL,
1068         };
1069
1070         __sbitmap_for_each_set(&hctx->ctx_map, off,
1071                                dispatch_rq_from_ctx, &data);
1072
1073         return data.rq;
1074 }
1075
1076 static inline unsigned int queued_to_index(unsigned int queued)
1077 {
1078         if (!queued)
1079                 return 0;
1080
1081         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1082 }
1083
1084 static bool __blk_mq_get_driver_tag(struct request *rq)
1085 {
1086         struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1087         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1088         int tag;
1089
1090         blk_mq_tag_busy(rq->mq_hctx);
1091
1092         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1093                 bt = rq->mq_hctx->tags->breserved_tags;
1094                 tag_offset = 0;
1095         } else {
1096                 if (!hctx_may_queue(rq->mq_hctx, bt))
1097                         return false;
1098         }
1099
1100         tag = __sbitmap_queue_get(bt);
1101         if (tag == BLK_MQ_NO_TAG)
1102                 return false;
1103
1104         rq->tag = tag + tag_offset;
1105         return true;
1106 }
1107
1108 static bool blk_mq_get_driver_tag(struct request *rq)
1109 {
1110         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1111
1112         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1113                 return false;
1114
1115         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1116                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1117                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1118                 __blk_mq_inc_active_requests(hctx);
1119         }
1120         hctx->tags->rqs[rq->tag] = rq;
1121         return true;
1122 }
1123
1124 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1125                                 int flags, void *key)
1126 {
1127         struct blk_mq_hw_ctx *hctx;
1128
1129         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1130
1131         spin_lock(&hctx->dispatch_wait_lock);
1132         if (!list_empty(&wait->entry)) {
1133                 struct sbitmap_queue *sbq;
1134
1135                 list_del_init(&wait->entry);
1136                 sbq = hctx->tags->bitmap_tags;
1137                 atomic_dec(&sbq->ws_active);
1138         }
1139         spin_unlock(&hctx->dispatch_wait_lock);
1140
1141         blk_mq_run_hw_queue(hctx, true);
1142         return 1;
1143 }
1144
1145 /*
1146  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1147  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1148  * restart. For both cases, take care to check the condition again after
1149  * marking us as waiting.
1150  */
1151 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1152                                  struct request *rq)
1153 {
1154         struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1155         struct wait_queue_head *wq;
1156         wait_queue_entry_t *wait;
1157         bool ret;
1158
1159         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1160                 blk_mq_sched_mark_restart_hctx(hctx);
1161
1162                 /*
1163                  * It's possible that a tag was freed in the window between the
1164                  * allocation failure and adding the hardware queue to the wait
1165                  * queue.
1166                  *
1167                  * Don't clear RESTART here, someone else could have set it.
1168                  * At most this will cost an extra queue run.
1169                  */
1170                 return blk_mq_get_driver_tag(rq);
1171         }
1172
1173         wait = &hctx->dispatch_wait;
1174         if (!list_empty_careful(&wait->entry))
1175                 return false;
1176
1177         wq = &bt_wait_ptr(sbq, hctx)->wait;
1178
1179         spin_lock_irq(&wq->lock);
1180         spin_lock(&hctx->dispatch_wait_lock);
1181         if (!list_empty(&wait->entry)) {
1182                 spin_unlock(&hctx->dispatch_wait_lock);
1183                 spin_unlock_irq(&wq->lock);
1184                 return false;
1185         }
1186
1187         atomic_inc(&sbq->ws_active);
1188         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1189         __add_wait_queue(wq, wait);
1190
1191         /*
1192          * Add one explicit barrier since blk_mq_get_driver_tag() may
1193          * not imply barrier in case of failure.
1194          *
1195          * Order adding us to wait queue and allocating driver tag.
1196          *
1197          * The pair is the one implied in sbitmap_queue_wake_up() which
1198          * orders clearing sbitmap tag bits and waitqueue_active() in
1199          * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1200          *
1201          * Otherwise, re-order of adding wait queue and getting driver tag
1202          * may cause __sbitmap_queue_wake_up() to wake up nothing because
1203          * the waitqueue_active() may not observe us in wait queue.
1204          */
1205         smp_mb();
1206
1207         /*
1208          * It's possible that a tag was freed in the window between the
1209          * allocation failure and adding the hardware queue to the wait
1210          * queue.
1211          */
1212         ret = blk_mq_get_driver_tag(rq);
1213         if (!ret) {
1214                 spin_unlock(&hctx->dispatch_wait_lock);
1215                 spin_unlock_irq(&wq->lock);
1216                 return false;
1217         }
1218
1219         /*
1220          * We got a tag, remove ourselves from the wait queue to ensure
1221          * someone else gets the wakeup.
1222          */
1223         list_del_init(&wait->entry);
1224         atomic_dec(&sbq->ws_active);
1225         spin_unlock(&hctx->dispatch_wait_lock);
1226         spin_unlock_irq(&wq->lock);
1227
1228         return true;
1229 }
1230
1231 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1232 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1233 /*
1234  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1235  * - EWMA is one simple way to compute running average value
1236  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1237  * - take 4 as factor for avoiding to get too small(0) result, and this
1238  *   factor doesn't matter because EWMA decreases exponentially
1239  */
1240 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1241 {
1242         unsigned int ewma;
1243
1244         ewma = hctx->dispatch_busy;
1245
1246         if (!ewma && !busy)
1247                 return;
1248
1249         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1250         if (busy)
1251                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1252         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1253
1254         hctx->dispatch_busy = ewma;
1255 }
1256
1257 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1258
1259 static void blk_mq_handle_dev_resource(struct request *rq,
1260                                        struct list_head *list)
1261 {
1262         struct request *next =
1263                 list_first_entry_or_null(list, struct request, queuelist);
1264
1265         /*
1266          * If an I/O scheduler has been configured and we got a driver tag for
1267          * the next request already, free it.
1268          */
1269         if (next)
1270                 blk_mq_put_driver_tag(next);
1271
1272         list_add(&rq->queuelist, list);
1273         __blk_mq_requeue_request(rq);
1274 }
1275
1276 static void blk_mq_handle_zone_resource(struct request *rq,
1277                                         struct list_head *zone_list)
1278 {
1279         /*
1280          * If we end up here it is because we cannot dispatch a request to a
1281          * specific zone due to LLD level zone-write locking or other zone
1282          * related resource not being available. In this case, set the request
1283          * aside in zone_list for retrying it later.
1284          */
1285         list_add(&rq->queuelist, zone_list);
1286         __blk_mq_requeue_request(rq);
1287 }
1288
1289 enum prep_dispatch {
1290         PREP_DISPATCH_OK,
1291         PREP_DISPATCH_NO_TAG,
1292         PREP_DISPATCH_NO_BUDGET,
1293 };
1294
1295 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1296                                                   bool need_budget)
1297 {
1298         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1299
1300         if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1301                 blk_mq_put_driver_tag(rq);
1302                 return PREP_DISPATCH_NO_BUDGET;
1303         }
1304
1305         if (!blk_mq_get_driver_tag(rq)) {
1306                 /*
1307                  * The initial allocation attempt failed, so we need to
1308                  * rerun the hardware queue when a tag is freed. The
1309                  * waitqueue takes care of that. If the queue is run
1310                  * before we add this entry back on the dispatch list,
1311                  * we'll re-run it below.
1312                  */
1313                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1314                         /*
1315                          * All budgets not got from this function will be put
1316                          * together during handling partial dispatch
1317                          */
1318                         if (need_budget)
1319                                 blk_mq_put_dispatch_budget(rq->q);
1320                         return PREP_DISPATCH_NO_TAG;
1321                 }
1322         }
1323
1324         return PREP_DISPATCH_OK;
1325 }
1326
1327 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1328 static void blk_mq_release_budgets(struct request_queue *q,
1329                 unsigned int nr_budgets)
1330 {
1331         int i;
1332
1333         for (i = 0; i < nr_budgets; i++)
1334                 blk_mq_put_dispatch_budget(q);
1335 }
1336
1337 /*
1338  * Returns true if we did some work AND can potentially do more.
1339  */
1340 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1341                              unsigned int nr_budgets)
1342 {
1343         enum prep_dispatch prep;
1344         struct request_queue *q = hctx->queue;
1345         struct request *rq, *nxt;
1346         int errors, queued;
1347         blk_status_t ret = BLK_STS_OK;
1348         LIST_HEAD(zone_list);
1349         bool needs_resource = false;
1350
1351         if (list_empty(list))
1352                 return false;
1353
1354         /*
1355          * Now process all the entries, sending them to the driver.
1356          */
1357         errors = queued = 0;
1358         do {
1359                 struct blk_mq_queue_data bd;
1360
1361                 rq = list_first_entry(list, struct request, queuelist);
1362
1363                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1364                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1365                 if (prep != PREP_DISPATCH_OK)
1366                         break;
1367
1368                 list_del_init(&rq->queuelist);
1369
1370                 bd.rq = rq;
1371
1372                 /*
1373                  * Flag last if we have no more requests, or if we have more
1374                  * but can't assign a driver tag to it.
1375                  */
1376                 if (list_empty(list))
1377                         bd.last = true;
1378                 else {
1379                         nxt = list_first_entry(list, struct request, queuelist);
1380                         bd.last = !blk_mq_get_driver_tag(nxt);
1381                 }
1382
1383                 /*
1384                  * once the request is queued to lld, no need to cover the
1385                  * budget any more
1386                  */
1387                 if (nr_budgets)
1388                         nr_budgets--;
1389                 ret = q->mq_ops->queue_rq(hctx, &bd);
1390                 switch (ret) {
1391                 case BLK_STS_OK:
1392                         queued++;
1393                         break;
1394                 case BLK_STS_RESOURCE:
1395                         needs_resource = true;
1396                         fallthrough;
1397                 case BLK_STS_DEV_RESOURCE:
1398                         blk_mq_handle_dev_resource(rq, list);
1399                         goto out;
1400                 case BLK_STS_ZONE_RESOURCE:
1401                         /*
1402                          * Move the request to zone_list and keep going through
1403                          * the dispatch list to find more requests the drive can
1404                          * accept.
1405                          */
1406                         blk_mq_handle_zone_resource(rq, &zone_list);
1407                         needs_resource = true;
1408                         break;
1409                 default:
1410                         errors++;
1411                         blk_mq_end_request(rq, BLK_STS_IOERR);
1412                 }
1413         } while (!list_empty(list));
1414 out:
1415         if (!list_empty(&zone_list))
1416                 list_splice_tail_init(&zone_list, list);
1417
1418         hctx->dispatched[queued_to_index(queued)]++;
1419
1420         /* If we didn't flush the entire list, we could have told the driver
1421          * there was more coming, but that turned out to be a lie.
1422          */
1423         if ((!list_empty(list) || errors || needs_resource ||
1424              ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
1425                 q->mq_ops->commit_rqs(hctx);
1426         /*
1427          * Any items that need requeuing? Stuff them into hctx->dispatch,
1428          * that is where we will continue on next queue run.
1429          */
1430         if (!list_empty(list)) {
1431                 bool needs_restart;
1432                 /* For non-shared tags, the RESTART check will suffice */
1433                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1434                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1435
1436                 blk_mq_release_budgets(q, nr_budgets);
1437
1438                 spin_lock(&hctx->lock);
1439                 list_splice_tail_init(list, &hctx->dispatch);
1440                 spin_unlock(&hctx->lock);
1441
1442                 /*
1443                  * Order adding requests to hctx->dispatch and checking
1444                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1445                  * in blk_mq_sched_restart(). Avoid restart code path to
1446                  * miss the new added requests to hctx->dispatch, meantime
1447                  * SCHED_RESTART is observed here.
1448                  */
1449                 smp_mb();
1450
1451                 /*
1452                  * If SCHED_RESTART was set by the caller of this function and
1453                  * it is no longer set that means that it was cleared by another
1454                  * thread and hence that a queue rerun is needed.
1455                  *
1456                  * If 'no_tag' is set, that means that we failed getting
1457                  * a driver tag with an I/O scheduler attached. If our dispatch
1458                  * waitqueue is no longer active, ensure that we run the queue
1459                  * AFTER adding our entries back to the list.
1460                  *
1461                  * If no I/O scheduler has been configured it is possible that
1462                  * the hardware queue got stopped and restarted before requests
1463                  * were pushed back onto the dispatch list. Rerun the queue to
1464                  * avoid starvation. Notes:
1465                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1466                  *   been stopped before rerunning a queue.
1467                  * - Some but not all block drivers stop a queue before
1468                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1469                  *   and dm-rq.
1470                  *
1471                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1472                  * bit is set, run queue after a delay to avoid IO stalls
1473                  * that could otherwise occur if the queue is idle.  We'll do
1474                  * similar if we couldn't get budget or couldn't lock a zone
1475                  * and SCHED_RESTART is set.
1476                  */
1477                 needs_restart = blk_mq_sched_needs_restart(hctx);
1478                 if (prep == PREP_DISPATCH_NO_BUDGET)
1479                         needs_resource = true;
1480                 if (!needs_restart ||
1481                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1482                         blk_mq_run_hw_queue(hctx, true);
1483                 else if (needs_restart && needs_resource)
1484                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1485
1486                 blk_mq_update_dispatch_busy(hctx, true);
1487                 return false;
1488         } else
1489                 blk_mq_update_dispatch_busy(hctx, false);
1490
1491         return (queued + errors) != 0;
1492 }
1493
1494 /**
1495  * __blk_mq_run_hw_queue - Run a hardware queue.
1496  * @hctx: Pointer to the hardware queue to run.
1497  *
1498  * Send pending requests to the hardware.
1499  */
1500 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1501 {
1502         int srcu_idx;
1503
1504         /*
1505          * We should be running this queue from one of the CPUs that
1506          * are mapped to it.
1507          *
1508          * There are at least two related races now between setting
1509          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1510          * __blk_mq_run_hw_queue():
1511          *
1512          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1513          *   but later it becomes online, then this warning is harmless
1514          *   at all
1515          *
1516          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1517          *   but later it becomes offline, then the warning can't be
1518          *   triggered, and we depend on blk-mq timeout handler to
1519          *   handle dispatched requests to this hctx
1520          */
1521         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1522                 cpu_online(hctx->next_cpu)) {
1523                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1524                         raw_smp_processor_id(),
1525                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1526                 dump_stack();
1527         }
1528
1529         /*
1530          * We can't run the queue inline with ints disabled. Ensure that
1531          * we catch bad users of this early.
1532          */
1533         WARN_ON_ONCE(in_interrupt());
1534
1535         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1536
1537         hctx_lock(hctx, &srcu_idx);
1538         blk_mq_sched_dispatch_requests(hctx);
1539         hctx_unlock(hctx, srcu_idx);
1540 }
1541
1542 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1543 {
1544         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1545
1546         if (cpu >= nr_cpu_ids)
1547                 cpu = cpumask_first(hctx->cpumask);
1548         return cpu;
1549 }
1550
1551 /*
1552  * It'd be great if the workqueue API had a way to pass
1553  * in a mask and had some smarts for more clever placement.
1554  * For now we just round-robin here, switching for every
1555  * BLK_MQ_CPU_WORK_BATCH queued items.
1556  */
1557 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1558 {
1559         bool tried = false;
1560         int next_cpu = hctx->next_cpu;
1561
1562         if (hctx->queue->nr_hw_queues == 1)
1563                 return WORK_CPU_UNBOUND;
1564
1565         if (--hctx->next_cpu_batch <= 0) {
1566 select_cpu:
1567                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1568                                 cpu_online_mask);
1569                 if (next_cpu >= nr_cpu_ids)
1570                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1571                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1572         }
1573
1574         /*
1575          * Do unbound schedule if we can't find a online CPU for this hctx,
1576          * and it should only happen in the path of handling CPU DEAD.
1577          */
1578         if (!cpu_online(next_cpu)) {
1579                 if (!tried) {
1580                         tried = true;
1581                         goto select_cpu;
1582                 }
1583
1584                 /*
1585                  * Make sure to re-select CPU next time once after CPUs
1586                  * in hctx->cpumask become online again.
1587                  */
1588                 hctx->next_cpu = next_cpu;
1589                 hctx->next_cpu_batch = 1;
1590                 return WORK_CPU_UNBOUND;
1591         }
1592
1593         hctx->next_cpu = next_cpu;
1594         return next_cpu;
1595 }
1596
1597 /**
1598  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1599  * @hctx: Pointer to the hardware queue to run.
1600  * @async: If we want to run the queue asynchronously.
1601  * @msecs: Microseconds of delay to wait before running the queue.
1602  *
1603  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1604  * with a delay of @msecs.
1605  */
1606 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1607                                         unsigned long msecs)
1608 {
1609         if (unlikely(blk_mq_hctx_stopped(hctx)))
1610                 return;
1611
1612         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1613                 int cpu = get_cpu();
1614                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1615                         __blk_mq_run_hw_queue(hctx);
1616                         put_cpu();
1617                         return;
1618                 }
1619
1620                 put_cpu();
1621         }
1622
1623         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1624                                     msecs_to_jiffies(msecs));
1625 }
1626
1627 /**
1628  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1629  * @hctx: Pointer to the hardware queue to run.
1630  * @msecs: Microseconds of delay to wait before running the queue.
1631  *
1632  * Run a hardware queue asynchronously with a delay of @msecs.
1633  */
1634 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1635 {
1636         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1637 }
1638 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1639
1640 /**
1641  * blk_mq_run_hw_queue - Start to run a hardware queue.
1642  * @hctx: Pointer to the hardware queue to run.
1643  * @async: If we want to run the queue asynchronously.
1644  *
1645  * Check if the request queue is not in a quiesced state and if there are
1646  * pending requests to be sent. If this is true, run the queue to send requests
1647  * to hardware.
1648  */
1649 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1650 {
1651         int srcu_idx;
1652         bool need_run;
1653
1654         /*
1655          * When queue is quiesced, we may be switching io scheduler, or
1656          * updating nr_hw_queues, or other things, and we can't run queue
1657          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1658          *
1659          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1660          * quiesced.
1661          */
1662         hctx_lock(hctx, &srcu_idx);
1663         need_run = !blk_queue_quiesced(hctx->queue) &&
1664                 blk_mq_hctx_has_pending(hctx);
1665         hctx_unlock(hctx, srcu_idx);
1666
1667         if (need_run)
1668                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1669 }
1670 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1671
1672 /**
1673  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1674  * @q: Pointer to the request queue to run.
1675  * @async: If we want to run the queue asynchronously.
1676  */
1677 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1678 {
1679         struct blk_mq_hw_ctx *hctx;
1680         int i;
1681
1682         queue_for_each_hw_ctx(q, hctx, i) {
1683                 if (blk_mq_hctx_stopped(hctx))
1684                         continue;
1685
1686                 blk_mq_run_hw_queue(hctx, async);
1687         }
1688 }
1689 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1690
1691 /**
1692  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1693  * @q: Pointer to the request queue to run.
1694  * @msecs: Microseconds of delay to wait before running the queues.
1695  */
1696 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1697 {
1698         struct blk_mq_hw_ctx *hctx;
1699         int i;
1700
1701         queue_for_each_hw_ctx(q, hctx, i) {
1702                 if (blk_mq_hctx_stopped(hctx))
1703                         continue;
1704
1705                 blk_mq_delay_run_hw_queue(hctx, msecs);
1706         }
1707 }
1708 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1709
1710 /**
1711  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1712  * @q: request queue.
1713  *
1714  * The caller is responsible for serializing this function against
1715  * blk_mq_{start,stop}_hw_queue().
1716  */
1717 bool blk_mq_queue_stopped(struct request_queue *q)
1718 {
1719         struct blk_mq_hw_ctx *hctx;
1720         int i;
1721
1722         queue_for_each_hw_ctx(q, hctx, i)
1723                 if (blk_mq_hctx_stopped(hctx))
1724                         return true;
1725
1726         return false;
1727 }
1728 EXPORT_SYMBOL(blk_mq_queue_stopped);
1729
1730 /*
1731  * This function is often used for pausing .queue_rq() by driver when
1732  * there isn't enough resource or some conditions aren't satisfied, and
1733  * BLK_STS_RESOURCE is usually returned.
1734  *
1735  * We do not guarantee that dispatch can be drained or blocked
1736  * after blk_mq_stop_hw_queue() returns. Please use
1737  * blk_mq_quiesce_queue() for that requirement.
1738  */
1739 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1740 {
1741         cancel_delayed_work(&hctx->run_work);
1742
1743         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1744 }
1745 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1746
1747 /*
1748  * This function is often used for pausing .queue_rq() by driver when
1749  * there isn't enough resource or some conditions aren't satisfied, and
1750  * BLK_STS_RESOURCE is usually returned.
1751  *
1752  * We do not guarantee that dispatch can be drained or blocked
1753  * after blk_mq_stop_hw_queues() returns. Please use
1754  * blk_mq_quiesce_queue() for that requirement.
1755  */
1756 void blk_mq_stop_hw_queues(struct request_queue *q)
1757 {
1758         struct blk_mq_hw_ctx *hctx;
1759         int i;
1760
1761         queue_for_each_hw_ctx(q, hctx, i)
1762                 blk_mq_stop_hw_queue(hctx);
1763 }
1764 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1765
1766 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1767 {
1768         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1769
1770         blk_mq_run_hw_queue(hctx, false);
1771 }
1772 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1773
1774 void blk_mq_start_hw_queues(struct request_queue *q)
1775 {
1776         struct blk_mq_hw_ctx *hctx;
1777         int i;
1778
1779         queue_for_each_hw_ctx(q, hctx, i)
1780                 blk_mq_start_hw_queue(hctx);
1781 }
1782 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1783
1784 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1785 {
1786         if (!blk_mq_hctx_stopped(hctx))
1787                 return;
1788
1789         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1790         blk_mq_run_hw_queue(hctx, async);
1791 }
1792 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1793
1794 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1795 {
1796         struct blk_mq_hw_ctx *hctx;
1797         int i;
1798
1799         queue_for_each_hw_ctx(q, hctx, i)
1800                 blk_mq_start_stopped_hw_queue(hctx, async);
1801 }
1802 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1803
1804 static void blk_mq_run_work_fn(struct work_struct *work)
1805 {
1806         struct blk_mq_hw_ctx *hctx;
1807
1808         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1809
1810         /*
1811          * If we are stopped, don't run the queue.
1812          */
1813         if (blk_mq_hctx_stopped(hctx))
1814                 return;
1815
1816         __blk_mq_run_hw_queue(hctx);
1817 }
1818
1819 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1820                                             struct request *rq,
1821                                             bool at_head)
1822 {
1823         struct blk_mq_ctx *ctx = rq->mq_ctx;
1824         enum hctx_type type = hctx->type;
1825
1826         lockdep_assert_held(&ctx->lock);
1827
1828         trace_block_rq_insert(rq);
1829
1830         if (at_head)
1831                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1832         else
1833                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1834 }
1835
1836 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1837                              bool at_head)
1838 {
1839         struct blk_mq_ctx *ctx = rq->mq_ctx;
1840
1841         lockdep_assert_held(&ctx->lock);
1842
1843         __blk_mq_insert_req_list(hctx, rq, at_head);
1844         blk_mq_hctx_mark_pending(hctx, ctx);
1845 }
1846
1847 /**
1848  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1849  * @rq: Pointer to request to be inserted.
1850  * @at_head: true if the request should be inserted at the head of the list.
1851  * @run_queue: If we should run the hardware queue after inserting the request.
1852  *
1853  * Should only be used carefully, when the caller knows we want to
1854  * bypass a potential IO scheduler on the target device.
1855  */
1856 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1857                                   bool run_queue)
1858 {
1859         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1860
1861         spin_lock(&hctx->lock);
1862         if (at_head)
1863                 list_add(&rq->queuelist, &hctx->dispatch);
1864         else
1865                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1866         spin_unlock(&hctx->lock);
1867
1868         if (run_queue)
1869                 blk_mq_run_hw_queue(hctx, false);
1870 }
1871
1872 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1873                             struct list_head *list)
1874
1875 {
1876         struct request *rq;
1877         enum hctx_type type = hctx->type;
1878
1879         /*
1880          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1881          * offline now
1882          */
1883         list_for_each_entry(rq, list, queuelist) {
1884                 BUG_ON(rq->mq_ctx != ctx);
1885                 trace_block_rq_insert(rq);
1886         }
1887
1888         spin_lock(&ctx->lock);
1889         list_splice_tail_init(list, &ctx->rq_lists[type]);
1890         blk_mq_hctx_mark_pending(hctx, ctx);
1891         spin_unlock(&ctx->lock);
1892 }
1893
1894 static int plug_rq_cmp(void *priv, const struct list_head *a,
1895                        const struct list_head *b)
1896 {
1897         struct request *rqa = container_of(a, struct request, queuelist);
1898         struct request *rqb = container_of(b, struct request, queuelist);
1899
1900         if (rqa->mq_ctx != rqb->mq_ctx)
1901                 return rqa->mq_ctx > rqb->mq_ctx;
1902         if (rqa->mq_hctx != rqb->mq_hctx)
1903                 return rqa->mq_hctx > rqb->mq_hctx;
1904
1905         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1906 }
1907
1908 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1909 {
1910         LIST_HEAD(list);
1911
1912         if (list_empty(&plug->mq_list))
1913                 return;
1914         list_splice_init(&plug->mq_list, &list);
1915
1916         if (plug->rq_count > 2 && plug->multiple_queues)
1917                 list_sort(NULL, &list, plug_rq_cmp);
1918
1919         plug->rq_count = 0;
1920
1921         do {
1922                 struct list_head rq_list;
1923                 struct request *rq, *head_rq = list_entry_rq(list.next);
1924                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1925                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1926                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1927                 unsigned int depth = 1;
1928
1929                 list_for_each_continue(pos, &list) {
1930                         rq = list_entry_rq(pos);
1931                         BUG_ON(!rq->q);
1932                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1933                                 break;
1934                         depth++;
1935                 }
1936
1937                 list_cut_before(&rq_list, &list, pos);
1938                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1939                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1940                                                 from_schedule);
1941         } while(!list_empty(&list));
1942 }
1943
1944 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1945                 unsigned int nr_segs)
1946 {
1947         int err;
1948
1949         if (bio->bi_opf & REQ_RAHEAD)
1950                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1951
1952         rq->__sector = bio->bi_iter.bi_sector;
1953         rq->write_hint = bio->bi_write_hint;
1954         blk_rq_bio_prep(rq, bio, nr_segs);
1955
1956         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1957         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1958         WARN_ON_ONCE(err);
1959
1960         blk_account_io_start(rq);
1961 }
1962
1963 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1964                                             struct request *rq,
1965                                             blk_qc_t *cookie, bool last)
1966 {
1967         struct request_queue *q = rq->q;
1968         struct blk_mq_queue_data bd = {
1969                 .rq = rq,
1970                 .last = last,
1971         };
1972         blk_qc_t new_cookie;
1973         blk_status_t ret;
1974
1975         new_cookie = request_to_qc_t(hctx, rq);
1976
1977         /*
1978          * For OK queue, we are done. For error, caller may kill it.
1979          * Any other error (busy), just add it to our list as we
1980          * previously would have done.
1981          */
1982         ret = q->mq_ops->queue_rq(hctx, &bd);
1983         switch (ret) {
1984         case BLK_STS_OK:
1985                 blk_mq_update_dispatch_busy(hctx, false);
1986                 *cookie = new_cookie;
1987                 break;
1988         case BLK_STS_RESOURCE:
1989         case BLK_STS_DEV_RESOURCE:
1990                 blk_mq_update_dispatch_busy(hctx, true);
1991                 __blk_mq_requeue_request(rq);
1992                 break;
1993         default:
1994                 blk_mq_update_dispatch_busy(hctx, false);
1995                 *cookie = BLK_QC_T_NONE;
1996                 break;
1997         }
1998
1999         return ret;
2000 }
2001
2002 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2003                                                 struct request *rq,
2004                                                 blk_qc_t *cookie,
2005                                                 bool bypass_insert, bool last)
2006 {
2007         struct request_queue *q = rq->q;
2008         bool run_queue = true;
2009
2010         /*
2011          * RCU or SRCU read lock is needed before checking quiesced flag.
2012          *
2013          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2014          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2015          * and avoid driver to try to dispatch again.
2016          */
2017         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2018                 run_queue = false;
2019                 bypass_insert = false;
2020                 goto insert;
2021         }
2022
2023         if (q->elevator && !bypass_insert)
2024                 goto insert;
2025
2026         if (!blk_mq_get_dispatch_budget(q))
2027                 goto insert;
2028
2029         if (!blk_mq_get_driver_tag(rq)) {
2030                 blk_mq_put_dispatch_budget(q);
2031                 goto insert;
2032         }
2033
2034         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2035 insert:
2036         if (bypass_insert)
2037                 return BLK_STS_RESOURCE;
2038
2039         blk_mq_sched_insert_request(rq, false, run_queue, false);
2040
2041         return BLK_STS_OK;
2042 }
2043
2044 /**
2045  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2046  * @hctx: Pointer of the associated hardware queue.
2047  * @rq: Pointer to request to be sent.
2048  * @cookie: Request queue cookie.
2049  *
2050  * If the device has enough resources to accept a new request now, send the
2051  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2052  * we can try send it another time in the future. Requests inserted at this
2053  * queue have higher priority.
2054  */
2055 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2056                 struct request *rq, blk_qc_t *cookie)
2057 {
2058         blk_status_t ret;
2059         int srcu_idx;
2060
2061         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2062
2063         hctx_lock(hctx, &srcu_idx);
2064
2065         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2066         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2067                 blk_mq_request_bypass_insert(rq, false, true);
2068         else if (ret != BLK_STS_OK)
2069                 blk_mq_end_request(rq, ret);
2070
2071         hctx_unlock(hctx, srcu_idx);
2072 }
2073
2074 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2075 {
2076         blk_status_t ret;
2077         int srcu_idx;
2078         blk_qc_t unused_cookie;
2079         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2080
2081         hctx_lock(hctx, &srcu_idx);
2082         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2083         hctx_unlock(hctx, srcu_idx);
2084
2085         return ret;
2086 }
2087
2088 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2089                 struct list_head *list)
2090 {
2091         int queued = 0;
2092         int errors = 0;
2093
2094         while (!list_empty(list)) {
2095                 blk_status_t ret;
2096                 struct request *rq = list_first_entry(list, struct request,
2097                                 queuelist);
2098
2099                 list_del_init(&rq->queuelist);
2100                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2101                 if (ret != BLK_STS_OK) {
2102                         errors++;
2103                         if (ret == BLK_STS_RESOURCE ||
2104                                         ret == BLK_STS_DEV_RESOURCE) {
2105                                 blk_mq_request_bypass_insert(rq, false,
2106                                                         list_empty(list));
2107                                 break;
2108                         }
2109                         blk_mq_end_request(rq, ret);
2110                 } else
2111                         queued++;
2112         }
2113
2114         /*
2115          * If we didn't flush the entire list, we could have told
2116          * the driver there was more coming, but that turned out to
2117          * be a lie.
2118          */
2119         if ((!list_empty(list) || errors) &&
2120              hctx->queue->mq_ops->commit_rqs && queued)
2121                 hctx->queue->mq_ops->commit_rqs(hctx);
2122 }
2123
2124 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2125 {
2126         list_add_tail(&rq->queuelist, &plug->mq_list);
2127         plug->rq_count++;
2128         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2129                 struct request *tmp;
2130
2131                 tmp = list_first_entry(&plug->mq_list, struct request,
2132                                                 queuelist);
2133                 if (tmp->q != rq->q)
2134                         plug->multiple_queues = true;
2135         }
2136 }
2137
2138 /*
2139  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2140  * queues. This is important for md arrays to benefit from merging
2141  * requests.
2142  */
2143 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2144 {
2145         if (plug->multiple_queues)
2146                 return BLK_MAX_REQUEST_COUNT * 2;
2147         return BLK_MAX_REQUEST_COUNT;
2148 }
2149
2150 /**
2151  * blk_mq_submit_bio - Create and send a request to block device.
2152  * @bio: Bio pointer.
2153  *
2154  * Builds up a request structure from @q and @bio and send to the device. The
2155  * request may not be queued directly to hardware if:
2156  * * This request can be merged with another one
2157  * * We want to place request at plug queue for possible future merging
2158  * * There is an IO scheduler active at this queue
2159  *
2160  * It will not queue the request if there is an error with the bio, or at the
2161  * request creation.
2162  *
2163  * Returns: Request queue cookie.
2164  */
2165 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2166 {
2167         struct request_queue *q = bio->bi_disk->queue;
2168         const int is_sync = op_is_sync(bio->bi_opf);
2169         const int is_flush_fua = op_is_flush(bio->bi_opf);
2170         struct blk_mq_alloc_data data = {
2171                 .q              = q,
2172         };
2173         struct request *rq;
2174         struct blk_plug *plug;
2175         struct request *same_queue_rq = NULL;
2176         unsigned int nr_segs;
2177         blk_qc_t cookie;
2178         blk_status_t ret;
2179
2180         blk_queue_bounce(q, &bio);
2181         __blk_queue_split(&bio, &nr_segs);
2182
2183         if (!bio_integrity_prep(bio))
2184                 goto queue_exit;
2185
2186         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2187             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2188                 goto queue_exit;
2189
2190         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2191                 goto queue_exit;
2192
2193         rq_qos_throttle(q, bio);
2194
2195         data.cmd_flags = bio->bi_opf;
2196         rq = __blk_mq_alloc_request(&data);
2197         if (unlikely(!rq)) {
2198                 rq_qos_cleanup(q, bio);
2199                 if (bio->bi_opf & REQ_NOWAIT)
2200                         bio_wouldblock_error(bio);
2201                 goto queue_exit;
2202         }
2203
2204         trace_block_getrq(q, bio, bio->bi_opf);
2205
2206         rq_qos_track(q, rq, bio);
2207
2208         cookie = request_to_qc_t(data.hctx, rq);
2209
2210         blk_mq_bio_to_request(rq, bio, nr_segs);
2211
2212         ret = blk_crypto_rq_get_keyslot(rq);
2213         if (ret != BLK_STS_OK) {
2214                 bio->bi_status = ret;
2215                 bio_endio(bio);
2216                 blk_mq_free_request(rq);
2217                 return BLK_QC_T_NONE;
2218         }
2219
2220         plug = blk_mq_plug(q, bio);
2221         if (unlikely(is_flush_fua)) {
2222                 /* Bypass scheduler for flush requests */
2223                 blk_insert_flush(rq);
2224                 blk_mq_run_hw_queue(data.hctx, true);
2225         } else if (plug && (q->nr_hw_queues == 1 ||
2226                    blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2227                    q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2228                 /*
2229                  * Use plugging if we have a ->commit_rqs() hook as well, as
2230                  * we know the driver uses bd->last in a smart fashion.
2231                  *
2232                  * Use normal plugging if this disk is slow HDD, as sequential
2233                  * IO may benefit a lot from plug merging.
2234                  */
2235                 unsigned int request_count = plug->rq_count;
2236                 struct request *last = NULL;
2237
2238                 if (!request_count)
2239                         trace_block_plug(q);
2240                 else
2241                         last = list_entry_rq(plug->mq_list.prev);
2242
2243                 if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2244                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2245                         blk_flush_plug_list(plug, false);
2246                         trace_block_plug(q);
2247                 }
2248
2249                 blk_add_rq_to_plug(plug, rq);
2250         } else if (q->elevator) {
2251                 /* Insert the request at the IO scheduler queue */
2252                 blk_mq_sched_insert_request(rq, false, true, true);
2253         } else if (plug && !blk_queue_nomerges(q)) {
2254                 /*
2255                  * We do limited plugging. If the bio can be merged, do that.
2256                  * Otherwise the existing request in the plug list will be
2257                  * issued. So the plug list will have one request at most
2258                  * The plug list might get flushed before this. If that happens,
2259                  * the plug list is empty, and same_queue_rq is invalid.
2260                  */
2261                 if (list_empty(&plug->mq_list))
2262                         same_queue_rq = NULL;
2263                 if (same_queue_rq) {
2264                         list_del_init(&same_queue_rq->queuelist);
2265                         plug->rq_count--;
2266                 }
2267                 blk_add_rq_to_plug(plug, rq);
2268                 trace_block_plug(q);
2269
2270                 if (same_queue_rq) {
2271                         data.hctx = same_queue_rq->mq_hctx;
2272                         trace_block_unplug(q, 1, true);
2273                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2274                                         &cookie);
2275                 }
2276         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2277                         !data.hctx->dispatch_busy) {
2278                 /*
2279                  * There is no scheduler and we can try to send directly
2280                  * to the hardware.
2281                  */
2282                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2283         } else {
2284                 /* Default case. */
2285                 blk_mq_sched_insert_request(rq, false, true, true);
2286         }
2287
2288         return cookie;
2289 queue_exit:
2290         blk_queue_exit(q);
2291         return BLK_QC_T_NONE;
2292 }
2293
2294 static size_t order_to_size(unsigned int order)
2295 {
2296         return (size_t)PAGE_SIZE << order;
2297 }
2298
2299 /* called before freeing request pool in @tags */
2300 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2301                 struct blk_mq_tags *tags, unsigned int hctx_idx)
2302 {
2303         struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2304         struct page *page;
2305         unsigned long flags;
2306
2307         list_for_each_entry(page, &tags->page_list, lru) {
2308                 unsigned long start = (unsigned long)page_address(page);
2309                 unsigned long end = start + order_to_size(page->private);
2310                 int i;
2311
2312                 for (i = 0; i < set->queue_depth; i++) {
2313                         struct request *rq = drv_tags->rqs[i];
2314                         unsigned long rq_addr = (unsigned long)rq;
2315
2316                         if (rq_addr >= start && rq_addr < end) {
2317                                 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2318                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2319                         }
2320                 }
2321         }
2322
2323         /*
2324          * Wait until all pending iteration is done.
2325          *
2326          * Request reference is cleared and it is guaranteed to be observed
2327          * after the ->lock is released.
2328          */
2329         spin_lock_irqsave(&drv_tags->lock, flags);
2330         spin_unlock_irqrestore(&drv_tags->lock, flags);
2331 }
2332
2333 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2334                      unsigned int hctx_idx)
2335 {
2336         struct page *page;
2337
2338         if (tags->rqs && set->ops->exit_request) {
2339                 int i;
2340
2341                 for (i = 0; i < tags->nr_tags; i++) {
2342                         struct request *rq = tags->static_rqs[i];
2343
2344                         if (!rq)
2345                                 continue;
2346                         set->ops->exit_request(set, rq, hctx_idx);
2347                         tags->static_rqs[i] = NULL;
2348                 }
2349         }
2350
2351         blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2352
2353         while (!list_empty(&tags->page_list)) {
2354                 page = list_first_entry(&tags->page_list, struct page, lru);
2355                 list_del_init(&page->lru);
2356                 /*
2357                  * Remove kmemleak object previously allocated in
2358                  * blk_mq_alloc_rqs().
2359                  */
2360                 kmemleak_free(page_address(page));
2361                 __free_pages(page, page->private);
2362         }
2363 }
2364
2365 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2366 {
2367         kfree(tags->rqs);
2368         tags->rqs = NULL;
2369         kfree(tags->static_rqs);
2370         tags->static_rqs = NULL;
2371
2372         blk_mq_free_tags(tags, flags);
2373 }
2374
2375 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2376                                         unsigned int hctx_idx,
2377                                         unsigned int nr_tags,
2378                                         unsigned int reserved_tags,
2379                                         unsigned int flags)
2380 {
2381         struct blk_mq_tags *tags;
2382         int node;
2383
2384         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2385         if (node == NUMA_NO_NODE)
2386                 node = set->numa_node;
2387
2388         tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2389         if (!tags)
2390                 return NULL;
2391
2392         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2393                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2394                                  node);
2395         if (!tags->rqs) {
2396                 blk_mq_free_tags(tags, flags);
2397                 return NULL;
2398         }
2399
2400         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2401                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2402                                         node);
2403         if (!tags->static_rqs) {
2404                 kfree(tags->rqs);
2405                 blk_mq_free_tags(tags, flags);
2406                 return NULL;
2407         }
2408
2409         return tags;
2410 }
2411
2412 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2413                                unsigned int hctx_idx, int node)
2414 {
2415         int ret;
2416
2417         if (set->ops->init_request) {
2418                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2419                 if (ret)
2420                         return ret;
2421         }
2422
2423         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2424         return 0;
2425 }
2426
2427 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2428                      unsigned int hctx_idx, unsigned int depth)
2429 {
2430         unsigned int i, j, entries_per_page, max_order = 4;
2431         size_t rq_size, left;
2432         int node;
2433
2434         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2435         if (node == NUMA_NO_NODE)
2436                 node = set->numa_node;
2437
2438         INIT_LIST_HEAD(&tags->page_list);
2439
2440         /*
2441          * rq_size is the size of the request plus driver payload, rounded
2442          * to the cacheline size
2443          */
2444         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2445                                 cache_line_size());
2446         left = rq_size * depth;
2447
2448         for (i = 0; i < depth; ) {
2449                 int this_order = max_order;
2450                 struct page *page;
2451                 int to_do;
2452                 void *p;
2453
2454                 while (this_order && left < order_to_size(this_order - 1))
2455                         this_order--;
2456
2457                 do {
2458                         page = alloc_pages_node(node,
2459                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2460                                 this_order);
2461                         if (page)
2462                                 break;
2463                         if (!this_order--)
2464                                 break;
2465                         if (order_to_size(this_order) < rq_size)
2466                                 break;
2467                 } while (1);
2468
2469                 if (!page)
2470                         goto fail;
2471
2472                 page->private = this_order;
2473                 list_add_tail(&page->lru, &tags->page_list);
2474
2475                 p = page_address(page);
2476                 /*
2477                  * Allow kmemleak to scan these pages as they contain pointers
2478                  * to additional allocations like via ops->init_request().
2479                  */
2480                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2481                 entries_per_page = order_to_size(this_order) / rq_size;
2482                 to_do = min(entries_per_page, depth - i);
2483                 left -= to_do * rq_size;
2484                 for (j = 0; j < to_do; j++) {
2485                         struct request *rq = p;
2486
2487                         tags->static_rqs[i] = rq;
2488                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2489                                 tags->static_rqs[i] = NULL;
2490                                 goto fail;
2491                         }
2492
2493                         p += rq_size;
2494                         i++;
2495                 }
2496         }
2497         return 0;
2498
2499 fail:
2500         blk_mq_free_rqs(set, tags, hctx_idx);
2501         return -ENOMEM;
2502 }
2503
2504 struct rq_iter_data {
2505         struct blk_mq_hw_ctx *hctx;
2506         bool has_rq;
2507 };
2508
2509 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2510 {
2511         struct rq_iter_data *iter_data = data;
2512
2513         if (rq->mq_hctx != iter_data->hctx)
2514                 return true;
2515         iter_data->has_rq = true;
2516         return false;
2517 }
2518
2519 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2520 {
2521         struct blk_mq_tags *tags = hctx->sched_tags ?
2522                         hctx->sched_tags : hctx->tags;
2523         struct rq_iter_data data = {
2524                 .hctx   = hctx,
2525         };
2526
2527         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2528         return data.has_rq;
2529 }
2530
2531 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2532                 struct blk_mq_hw_ctx *hctx)
2533 {
2534         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2535                 return false;
2536         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2537                 return false;
2538         return true;
2539 }
2540
2541 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2542 {
2543         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2544                         struct blk_mq_hw_ctx, cpuhp_online);
2545
2546         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2547             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2548                 return 0;
2549
2550         /*
2551          * Prevent new request from being allocated on the current hctx.
2552          *
2553          * The smp_mb__after_atomic() Pairs with the implied barrier in
2554          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2555          * seen once we return from the tag allocator.
2556          */
2557         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2558         smp_mb__after_atomic();
2559
2560         /*
2561          * Try to grab a reference to the queue and wait for any outstanding
2562          * requests.  If we could not grab a reference the queue has been
2563          * frozen and there are no requests.
2564          */
2565         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2566                 while (blk_mq_hctx_has_requests(hctx))
2567                         msleep(5);
2568                 percpu_ref_put(&hctx->queue->q_usage_counter);
2569         }
2570
2571         return 0;
2572 }
2573
2574 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2575 {
2576         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2577                         struct blk_mq_hw_ctx, cpuhp_online);
2578
2579         if (cpumask_test_cpu(cpu, hctx->cpumask))
2580                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2581         return 0;
2582 }
2583
2584 /*
2585  * 'cpu' is going away. splice any existing rq_list entries from this
2586  * software queue to the hw queue dispatch list, and ensure that it
2587  * gets run.
2588  */
2589 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2590 {
2591         struct blk_mq_hw_ctx *hctx;
2592         struct blk_mq_ctx *ctx;
2593         LIST_HEAD(tmp);
2594         enum hctx_type type;
2595
2596         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2597         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2598                 return 0;
2599
2600         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2601         type = hctx->type;
2602
2603         spin_lock(&ctx->lock);
2604         if (!list_empty(&ctx->rq_lists[type])) {
2605                 list_splice_init(&ctx->rq_lists[type], &tmp);
2606                 blk_mq_hctx_clear_pending(hctx, ctx);
2607         }
2608         spin_unlock(&ctx->lock);
2609
2610         if (list_empty(&tmp))
2611                 return 0;
2612
2613         spin_lock(&hctx->lock);
2614         list_splice_tail_init(&tmp, &hctx->dispatch);
2615         spin_unlock(&hctx->lock);
2616
2617         blk_mq_run_hw_queue(hctx, true);
2618         return 0;
2619 }
2620
2621 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2622 {
2623         if (!(hctx->flags & BLK_MQ_F_STACKING))
2624                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2625                                                     &hctx->cpuhp_online);
2626         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2627                                             &hctx->cpuhp_dead);
2628 }
2629
2630 /*
2631  * Before freeing hw queue, clearing the flush request reference in
2632  * tags->rqs[] for avoiding potential UAF.
2633  */
2634 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2635                 unsigned int queue_depth, struct request *flush_rq)
2636 {
2637         int i;
2638         unsigned long flags;
2639
2640         /* The hw queue may not be mapped yet */
2641         if (!tags)
2642                 return;
2643
2644         WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2645
2646         for (i = 0; i < queue_depth; i++)
2647                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2648
2649         /*
2650          * Wait until all pending iteration is done.
2651          *
2652          * Request reference is cleared and it is guaranteed to be observed
2653          * after the ->lock is released.
2654          */
2655         spin_lock_irqsave(&tags->lock, flags);
2656         spin_unlock_irqrestore(&tags->lock, flags);
2657 }
2658
2659 /* hctx->ctxs will be freed in queue's release handler */
2660 static void blk_mq_exit_hctx(struct request_queue *q,
2661                 struct blk_mq_tag_set *set,
2662                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2663 {
2664         struct request *flush_rq = hctx->fq->flush_rq;
2665
2666         if (blk_mq_hw_queue_mapped(hctx))
2667                 blk_mq_tag_idle(hctx);
2668
2669         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2670                         set->queue_depth, flush_rq);
2671         if (set->ops->exit_request)
2672                 set->ops->exit_request(set, flush_rq, hctx_idx);
2673
2674         if (set->ops->exit_hctx)
2675                 set->ops->exit_hctx(hctx, hctx_idx);
2676
2677         blk_mq_remove_cpuhp(hctx);
2678
2679         spin_lock(&q->unused_hctx_lock);
2680         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2681         spin_unlock(&q->unused_hctx_lock);
2682 }
2683
2684 static void blk_mq_exit_hw_queues(struct request_queue *q,
2685                 struct blk_mq_tag_set *set, int nr_queue)
2686 {
2687         struct blk_mq_hw_ctx *hctx;
2688         unsigned int i;
2689
2690         queue_for_each_hw_ctx(q, hctx, i) {
2691                 if (i == nr_queue)
2692                         break;
2693                 blk_mq_debugfs_unregister_hctx(hctx);
2694                 blk_mq_exit_hctx(q, set, hctx, i);
2695         }
2696 }
2697
2698 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2699 {
2700         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2701
2702         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2703                            __alignof__(struct blk_mq_hw_ctx)) !=
2704                      sizeof(struct blk_mq_hw_ctx));
2705
2706         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2707                 hw_ctx_size += sizeof(struct srcu_struct);
2708
2709         return hw_ctx_size;
2710 }
2711
2712 static int blk_mq_init_hctx(struct request_queue *q,
2713                 struct blk_mq_tag_set *set,
2714                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2715 {
2716         hctx->queue_num = hctx_idx;
2717
2718         if (!(hctx->flags & BLK_MQ_F_STACKING))
2719                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2720                                 &hctx->cpuhp_online);
2721         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2722
2723         hctx->tags = set->tags[hctx_idx];
2724
2725         if (set->ops->init_hctx &&
2726             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2727                 goto unregister_cpu_notifier;
2728
2729         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2730                                 hctx->numa_node))
2731                 goto exit_hctx;
2732         return 0;
2733
2734  exit_hctx:
2735         if (set->ops->exit_hctx)
2736                 set->ops->exit_hctx(hctx, hctx_idx);
2737  unregister_cpu_notifier:
2738         blk_mq_remove_cpuhp(hctx);
2739         return -1;
2740 }
2741
2742 static struct blk_mq_hw_ctx *
2743 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2744                 int node)
2745 {
2746         struct blk_mq_hw_ctx *hctx;
2747         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2748
2749         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2750         if (!hctx)
2751                 goto fail_alloc_hctx;
2752
2753         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2754                 goto free_hctx;
2755
2756         atomic_set(&hctx->nr_active, 0);
2757         atomic_set(&hctx->elevator_queued, 0);
2758         if (node == NUMA_NO_NODE)
2759                 node = set->numa_node;
2760         hctx->numa_node = node;
2761
2762         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2763         spin_lock_init(&hctx->lock);
2764         INIT_LIST_HEAD(&hctx->dispatch);
2765         hctx->queue = q;
2766         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2767
2768         INIT_LIST_HEAD(&hctx->hctx_list);
2769
2770         /*
2771          * Allocate space for all possible cpus to avoid allocation at
2772          * runtime
2773          */
2774         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2775                         gfp, node);
2776         if (!hctx->ctxs)
2777                 goto free_cpumask;
2778
2779         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2780                                 gfp, node))
2781                 goto free_ctxs;
2782         hctx->nr_ctx = 0;
2783
2784         spin_lock_init(&hctx->dispatch_wait_lock);
2785         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2786         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2787
2788         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2789         if (!hctx->fq)
2790                 goto free_bitmap;
2791
2792         if (hctx->flags & BLK_MQ_F_BLOCKING)
2793                 init_srcu_struct(hctx->srcu);
2794         blk_mq_hctx_kobj_init(hctx);
2795
2796         return hctx;
2797
2798  free_bitmap:
2799         sbitmap_free(&hctx->ctx_map);
2800  free_ctxs:
2801         kfree(hctx->ctxs);
2802  free_cpumask:
2803         free_cpumask_var(hctx->cpumask);
2804  free_hctx:
2805         kfree(hctx);
2806  fail_alloc_hctx:
2807         return NULL;
2808 }
2809
2810 static void blk_mq_init_cpu_queues(struct request_queue *q,
2811                                    unsigned int nr_hw_queues)
2812 {
2813         struct blk_mq_tag_set *set = q->tag_set;
2814         unsigned int i, j;
2815
2816         for_each_possible_cpu(i) {
2817                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2818                 struct blk_mq_hw_ctx *hctx;
2819                 int k;
2820
2821                 __ctx->cpu = i;
2822                 spin_lock_init(&__ctx->lock);
2823                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2824                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2825
2826                 __ctx->queue = q;
2827
2828                 /*
2829                  * Set local node, IFF we have more than one hw queue. If
2830                  * not, we remain on the home node of the device
2831                  */
2832                 for (j = 0; j < set->nr_maps; j++) {
2833                         hctx = blk_mq_map_queue_type(q, j, i);
2834                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2835                                 hctx->numa_node = cpu_to_node(i);
2836                 }
2837         }
2838 }
2839
2840 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2841                                         int hctx_idx)
2842 {
2843         unsigned int flags = set->flags;
2844         int ret = 0;
2845
2846         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2847                                         set->queue_depth, set->reserved_tags, flags);
2848         if (!set->tags[hctx_idx])
2849                 return false;
2850
2851         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2852                                 set->queue_depth);
2853         if (!ret)
2854                 return true;
2855
2856         blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2857         set->tags[hctx_idx] = NULL;
2858         return false;
2859 }
2860
2861 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2862                                          unsigned int hctx_idx)
2863 {
2864         unsigned int flags = set->flags;
2865
2866         if (set->tags && set->tags[hctx_idx]) {
2867                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2868                 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2869                 set->tags[hctx_idx] = NULL;
2870         }
2871 }
2872
2873 static void blk_mq_map_swqueue(struct request_queue *q)
2874 {
2875         unsigned int i, j, hctx_idx;
2876         struct blk_mq_hw_ctx *hctx;
2877         struct blk_mq_ctx *ctx;
2878         struct blk_mq_tag_set *set = q->tag_set;
2879
2880         queue_for_each_hw_ctx(q, hctx, i) {
2881                 cpumask_clear(hctx->cpumask);
2882                 hctx->nr_ctx = 0;
2883                 hctx->dispatch_from = NULL;
2884         }
2885
2886         /*
2887          * Map software to hardware queues.
2888          *
2889          * If the cpu isn't present, the cpu is mapped to first hctx.
2890          */
2891         for_each_possible_cpu(i) {
2892
2893                 ctx = per_cpu_ptr(q->queue_ctx, i);
2894                 for (j = 0; j < set->nr_maps; j++) {
2895                         if (!set->map[j].nr_queues) {
2896                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2897                                                 HCTX_TYPE_DEFAULT, i);
2898                                 continue;
2899                         }
2900                         hctx_idx = set->map[j].mq_map[i];
2901                         /* unmapped hw queue can be remapped after CPU topo changed */
2902                         if (!set->tags[hctx_idx] &&
2903                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2904                                 /*
2905                                  * If tags initialization fail for some hctx,
2906                                  * that hctx won't be brought online.  In this
2907                                  * case, remap the current ctx to hctx[0] which
2908                                  * is guaranteed to always have tags allocated
2909                                  */
2910                                 set->map[j].mq_map[i] = 0;
2911                         }
2912
2913                         hctx = blk_mq_map_queue_type(q, j, i);
2914                         ctx->hctxs[j] = hctx;
2915                         /*
2916                          * If the CPU is already set in the mask, then we've
2917                          * mapped this one already. This can happen if
2918                          * devices share queues across queue maps.
2919                          */
2920                         if (cpumask_test_cpu(i, hctx->cpumask))
2921                                 continue;
2922
2923                         cpumask_set_cpu(i, hctx->cpumask);
2924                         hctx->type = j;
2925                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2926                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2927
2928                         /*
2929                          * If the nr_ctx type overflows, we have exceeded the
2930                          * amount of sw queues we can support.
2931                          */
2932                         BUG_ON(!hctx->nr_ctx);
2933                 }
2934
2935                 for (; j < HCTX_MAX_TYPES; j++)
2936                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2937                                         HCTX_TYPE_DEFAULT, i);
2938         }
2939
2940         queue_for_each_hw_ctx(q, hctx, i) {
2941                 /*
2942                  * If no software queues are mapped to this hardware queue,
2943                  * disable it and free the request entries.
2944                  */
2945                 if (!hctx->nr_ctx) {
2946                         /* Never unmap queue 0.  We need it as a
2947                          * fallback in case of a new remap fails
2948                          * allocation
2949                          */
2950                         if (i && set->tags[i])
2951                                 blk_mq_free_map_and_requests(set, i);
2952
2953                         hctx->tags = NULL;
2954                         continue;
2955                 }
2956
2957                 hctx->tags = set->tags[i];
2958                 WARN_ON(!hctx->tags);
2959
2960                 /*
2961                  * Set the map size to the number of mapped software queues.
2962                  * This is more accurate and more efficient than looping
2963                  * over all possibly mapped software queues.
2964                  */
2965                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2966
2967                 /*
2968                  * Initialize batch roundrobin counts
2969                  */
2970                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2971                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2972         }
2973 }
2974
2975 /*
2976  * Caller needs to ensure that we're either frozen/quiesced, or that
2977  * the queue isn't live yet.
2978  */
2979 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2980 {
2981         struct blk_mq_hw_ctx *hctx;
2982         int i;
2983
2984         queue_for_each_hw_ctx(q, hctx, i) {
2985                 if (shared)
2986                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2987                 else
2988                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2989         }
2990 }
2991
2992 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2993                                          bool shared)
2994 {
2995         struct request_queue *q;
2996
2997         lockdep_assert_held(&set->tag_list_lock);
2998
2999         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3000                 blk_mq_freeze_queue(q);
3001                 queue_set_hctx_shared(q, shared);
3002                 blk_mq_unfreeze_queue(q);
3003         }
3004 }
3005
3006 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3007 {
3008         struct blk_mq_tag_set *set = q->tag_set;
3009
3010         mutex_lock(&set->tag_list_lock);
3011         list_del(&q->tag_set_list);
3012         if (list_is_singular(&set->tag_list)) {
3013                 /* just transitioned to unshared */
3014                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3015                 /* update existing queue */
3016                 blk_mq_update_tag_set_shared(set, false);
3017         }
3018         mutex_unlock(&set->tag_list_lock);
3019         INIT_LIST_HEAD(&q->tag_set_list);
3020 }
3021
3022 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3023                                      struct request_queue *q)
3024 {
3025         mutex_lock(&set->tag_list_lock);
3026
3027         /*
3028          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3029          */
3030         if (!list_empty(&set->tag_list) &&
3031             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3032                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3033                 /* update existing queue */
3034                 blk_mq_update_tag_set_shared(set, true);
3035         }
3036         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3037                 queue_set_hctx_shared(q, true);
3038         list_add_tail(&q->tag_set_list, &set->tag_list);
3039
3040         mutex_unlock(&set->tag_list_lock);
3041 }
3042
3043 /* All allocations will be freed in release handler of q->mq_kobj */
3044 static int blk_mq_alloc_ctxs(struct request_queue *q)
3045 {
3046         struct blk_mq_ctxs *ctxs;
3047         int cpu;
3048
3049         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3050         if (!ctxs)
3051                 return -ENOMEM;
3052
3053         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3054         if (!ctxs->queue_ctx)
3055                 goto fail;
3056
3057         for_each_possible_cpu(cpu) {
3058                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3059                 ctx->ctxs = ctxs;
3060         }
3061
3062         q->mq_kobj = &ctxs->kobj;
3063         q->queue_ctx = ctxs->queue_ctx;
3064
3065         return 0;
3066  fail:
3067         kfree(ctxs);
3068         return -ENOMEM;
3069 }
3070
3071 /*
3072  * It is the actual release handler for mq, but we do it from
3073  * request queue's release handler for avoiding use-after-free
3074  * and headache because q->mq_kobj shouldn't have been introduced,
3075  * but we can't group ctx/kctx kobj without it.
3076  */
3077 void blk_mq_release(struct request_queue *q)
3078 {
3079         struct blk_mq_hw_ctx *hctx, *next;
3080         int i;
3081
3082         queue_for_each_hw_ctx(q, hctx, i)
3083                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3084
3085         /* all hctx are in .unused_hctx_list now */
3086         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3087                 list_del_init(&hctx->hctx_list);
3088                 kobject_put(&hctx->kobj);
3089         }
3090
3091         kfree(q->queue_hw_ctx);
3092
3093         /*
3094          * release .mq_kobj and sw queue's kobject now because
3095          * both share lifetime with request queue.
3096          */
3097         blk_mq_sysfs_deinit(q);
3098 }
3099
3100 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3101                 void *queuedata)
3102 {
3103         struct request_queue *uninit_q, *q;
3104
3105         uninit_q = blk_alloc_queue(set->numa_node);
3106         if (!uninit_q)
3107                 return ERR_PTR(-ENOMEM);
3108         uninit_q->queuedata = queuedata;
3109
3110         /*
3111          * Initialize the queue without an elevator. device_add_disk() will do
3112          * the initialization.
3113          */
3114         q = blk_mq_init_allocated_queue(set, uninit_q, false);
3115         if (IS_ERR(q))
3116                 blk_cleanup_queue(uninit_q);
3117
3118         return q;
3119 }
3120 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3121
3122 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3123 {
3124         return blk_mq_init_queue_data(set, NULL);
3125 }
3126 EXPORT_SYMBOL(blk_mq_init_queue);
3127
3128 /*
3129  * Helper for setting up a queue with mq ops, given queue depth, and
3130  * the passed in mq ops flags.
3131  */
3132 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3133                                            const struct blk_mq_ops *ops,
3134                                            unsigned int queue_depth,
3135                                            unsigned int set_flags)
3136 {
3137         struct request_queue *q;
3138         int ret;
3139
3140         memset(set, 0, sizeof(*set));
3141         set->ops = ops;
3142         set->nr_hw_queues = 1;
3143         set->nr_maps = 1;
3144         set->queue_depth = queue_depth;
3145         set->numa_node = NUMA_NO_NODE;
3146         set->flags = set_flags;
3147
3148         ret = blk_mq_alloc_tag_set(set);
3149         if (ret)
3150                 return ERR_PTR(ret);
3151
3152         q = blk_mq_init_queue(set);
3153         if (IS_ERR(q)) {
3154                 blk_mq_free_tag_set(set);
3155                 return q;
3156         }
3157
3158         return q;
3159 }
3160 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3161
3162 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3163                 struct blk_mq_tag_set *set, struct request_queue *q,
3164                 int hctx_idx, int node)
3165 {
3166         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3167
3168         /* reuse dead hctx first */
3169         spin_lock(&q->unused_hctx_lock);
3170         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3171                 if (tmp->numa_node == node) {
3172                         hctx = tmp;
3173                         break;
3174                 }
3175         }
3176         if (hctx)
3177                 list_del_init(&hctx->hctx_list);
3178         spin_unlock(&q->unused_hctx_lock);
3179
3180         if (!hctx)
3181                 hctx = blk_mq_alloc_hctx(q, set, node);
3182         if (!hctx)
3183                 goto fail;
3184
3185         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3186                 goto free_hctx;
3187
3188         return hctx;
3189
3190  free_hctx:
3191         kobject_put(&hctx->kobj);
3192  fail:
3193         return NULL;
3194 }
3195
3196 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3197                                                 struct request_queue *q)
3198 {
3199         int i, j, end;
3200         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3201
3202         if (q->nr_hw_queues < set->nr_hw_queues) {
3203                 struct blk_mq_hw_ctx **new_hctxs;
3204
3205                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3206                                        sizeof(*new_hctxs), GFP_KERNEL,
3207                                        set->numa_node);
3208                 if (!new_hctxs)
3209                         return;
3210                 if (hctxs)
3211                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3212                                sizeof(*hctxs));
3213                 q->queue_hw_ctx = new_hctxs;
3214                 kfree(hctxs);
3215                 hctxs = new_hctxs;
3216         }
3217
3218         /* protect against switching io scheduler  */
3219         mutex_lock(&q->sysfs_lock);
3220         for (i = 0; i < set->nr_hw_queues; i++) {
3221                 int node;
3222                 struct blk_mq_hw_ctx *hctx;
3223
3224                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3225                 /*
3226                  * If the hw queue has been mapped to another numa node,
3227                  * we need to realloc the hctx. If allocation fails, fallback
3228                  * to use the previous one.
3229                  */
3230                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3231                         continue;
3232
3233                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3234                 if (hctx) {
3235                         if (hctxs[i])
3236                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3237                         hctxs[i] = hctx;
3238                 } else {
3239                         if (hctxs[i])
3240                                 pr_warn("Allocate new hctx on node %d fails,\
3241                                                 fallback to previous one on node %d\n",
3242                                                 node, hctxs[i]->numa_node);
3243                         else
3244                                 break;
3245                 }
3246         }
3247         /*
3248          * Increasing nr_hw_queues fails. Free the newly allocated
3249          * hctxs and keep the previous q->nr_hw_queues.
3250          */
3251         if (i != set->nr_hw_queues) {
3252                 j = q->nr_hw_queues;
3253                 end = i;
3254         } else {
3255                 j = i;
3256                 end = q->nr_hw_queues;
3257                 q->nr_hw_queues = set->nr_hw_queues;
3258         }
3259
3260         for (; j < end; j++) {
3261                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3262
3263                 if (hctx) {
3264                         if (hctx->tags)
3265                                 blk_mq_free_map_and_requests(set, j);
3266                         blk_mq_exit_hctx(q, set, hctx, j);
3267                         hctxs[j] = NULL;
3268                 }
3269         }
3270         mutex_unlock(&q->sysfs_lock);
3271 }
3272
3273 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3274                                                   struct request_queue *q,
3275                                                   bool elevator_init)
3276 {
3277         /* mark the queue as mq asap */
3278         q->mq_ops = set->ops;
3279
3280         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3281                                              blk_mq_poll_stats_bkt,
3282                                              BLK_MQ_POLL_STATS_BKTS, q);
3283         if (!q->poll_cb)
3284                 goto err_exit;
3285
3286         if (blk_mq_alloc_ctxs(q))
3287                 goto err_poll;
3288
3289         /* init q->mq_kobj and sw queues' kobjects */
3290         blk_mq_sysfs_init(q);
3291
3292         INIT_LIST_HEAD(&q->unused_hctx_list);
3293         spin_lock_init(&q->unused_hctx_lock);
3294
3295         blk_mq_realloc_hw_ctxs(set, q);
3296         if (!q->nr_hw_queues)
3297                 goto err_hctxs;
3298
3299         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3300         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3301
3302         q->tag_set = set;
3303
3304         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3305         if (set->nr_maps > HCTX_TYPE_POLL &&
3306             set->map[HCTX_TYPE_POLL].nr_queues)
3307                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3308
3309         q->sg_reserved_size = INT_MAX;
3310
3311         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3312         INIT_LIST_HEAD(&q->requeue_list);
3313         spin_lock_init(&q->requeue_lock);
3314
3315         q->nr_requests = set->queue_depth;
3316
3317         /*
3318          * Default to classic polling
3319          */
3320         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3321
3322         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3323         blk_mq_add_queue_tag_set(set, q);
3324         blk_mq_map_swqueue(q);
3325
3326         if (elevator_init)
3327                 elevator_init_mq(q);
3328
3329         return q;
3330
3331 err_hctxs:
3332         kfree(q->queue_hw_ctx);
3333         q->nr_hw_queues = 0;
3334         blk_mq_sysfs_deinit(q);
3335 err_poll:
3336         blk_stat_free_callback(q->poll_cb);
3337         q->poll_cb = NULL;
3338 err_exit:
3339         q->mq_ops = NULL;
3340         return ERR_PTR(-ENOMEM);
3341 }
3342 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3343
3344 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3345 void blk_mq_exit_queue(struct request_queue *q)
3346 {
3347         struct blk_mq_tag_set *set = q->tag_set;
3348
3349         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3350         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3351         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3352         blk_mq_del_queue_tag_set(q);
3353 }
3354
3355 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3356 {
3357         int i;
3358
3359         for (i = 0; i < set->nr_hw_queues; i++) {
3360                 if (!__blk_mq_alloc_map_and_request(set, i))
3361                         goto out_unwind;
3362                 cond_resched();
3363         }
3364
3365         return 0;
3366
3367 out_unwind:
3368         while (--i >= 0)
3369                 blk_mq_free_map_and_requests(set, i);
3370
3371         return -ENOMEM;
3372 }
3373
3374 /*
3375  * Allocate the request maps associated with this tag_set. Note that this
3376  * may reduce the depth asked for, if memory is tight. set->queue_depth
3377  * will be updated to reflect the allocated depth.
3378  */
3379 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3380 {
3381         unsigned int depth;
3382         int err;
3383
3384         depth = set->queue_depth;
3385         do {
3386                 err = __blk_mq_alloc_rq_maps(set);
3387                 if (!err)
3388                         break;
3389
3390                 set->queue_depth >>= 1;
3391                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3392                         err = -ENOMEM;
3393                         break;
3394                 }
3395         } while (set->queue_depth);
3396
3397         if (!set->queue_depth || err) {
3398                 pr_err("blk-mq: failed to allocate request map\n");
3399                 return -ENOMEM;
3400         }
3401
3402         if (depth != set->queue_depth)
3403                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3404                                                 depth, set->queue_depth);
3405
3406         return 0;
3407 }
3408
3409 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3410 {
3411         /*
3412          * blk_mq_map_queues() and multiple .map_queues() implementations
3413          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3414          * number of hardware queues.
3415          */
3416         if (set->nr_maps == 1)
3417                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3418
3419         if (set->ops->map_queues && !is_kdump_kernel()) {
3420                 int i;
3421
3422                 /*
3423                  * transport .map_queues is usually done in the following
3424                  * way:
3425                  *
3426                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3427                  *      mask = get_cpu_mask(queue)
3428                  *      for_each_cpu(cpu, mask)
3429                  *              set->map[x].mq_map[cpu] = queue;
3430                  * }
3431                  *
3432                  * When we need to remap, the table has to be cleared for
3433                  * killing stale mapping since one CPU may not be mapped
3434                  * to any hw queue.
3435                  */
3436                 for (i = 0; i < set->nr_maps; i++)
3437                         blk_mq_clear_mq_map(&set->map[i]);
3438
3439                 return set->ops->map_queues(set);
3440         } else {
3441                 BUG_ON(set->nr_maps > 1);
3442                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3443         }
3444 }
3445
3446 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3447                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3448 {
3449         struct blk_mq_tags **new_tags;
3450
3451         if (cur_nr_hw_queues >= new_nr_hw_queues)
3452                 return 0;
3453
3454         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3455                                 GFP_KERNEL, set->numa_node);
3456         if (!new_tags)
3457                 return -ENOMEM;
3458
3459         if (set->tags)
3460                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3461                        sizeof(*set->tags));
3462         kfree(set->tags);
3463         set->tags = new_tags;
3464         set->nr_hw_queues = new_nr_hw_queues;
3465
3466         return 0;
3467 }
3468
3469 /*
3470  * Alloc a tag set to be associated with one or more request queues.
3471  * May fail with EINVAL for various error conditions. May adjust the
3472  * requested depth down, if it's too large. In that case, the set
3473  * value will be stored in set->queue_depth.
3474  */
3475 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3476 {
3477         int i, ret;
3478
3479         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3480
3481         if (!set->nr_hw_queues)
3482                 return -EINVAL;
3483         if (!set->queue_depth)
3484                 return -EINVAL;
3485         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3486                 return -EINVAL;
3487
3488         if (!set->ops->queue_rq)
3489                 return -EINVAL;
3490
3491         if (!set->ops->get_budget ^ !set->ops->put_budget)
3492                 return -EINVAL;
3493
3494         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3495                 pr_info("blk-mq: reduced tag depth to %u\n",
3496                         BLK_MQ_MAX_DEPTH);
3497                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3498         }
3499
3500         if (!set->nr_maps)
3501                 set->nr_maps = 1;
3502         else if (set->nr_maps > HCTX_MAX_TYPES)
3503                 return -EINVAL;
3504
3505         /*
3506          * If a crashdump is active, then we are potentially in a very
3507          * memory constrained environment. Limit us to 1 queue and
3508          * 64 tags to prevent using too much memory.
3509          */
3510         if (is_kdump_kernel()) {
3511                 set->nr_hw_queues = 1;
3512                 set->nr_maps = 1;
3513                 set->queue_depth = min(64U, set->queue_depth);
3514         }
3515         /*
3516          * There is no use for more h/w queues than cpus if we just have
3517          * a single map
3518          */
3519         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3520                 set->nr_hw_queues = nr_cpu_ids;
3521
3522         if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3523                 return -ENOMEM;
3524
3525         ret = -ENOMEM;
3526         for (i = 0; i < set->nr_maps; i++) {
3527                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3528                                                   sizeof(set->map[i].mq_map[0]),
3529                                                   GFP_KERNEL, set->numa_node);
3530                 if (!set->map[i].mq_map)
3531                         goto out_free_mq_map;
3532                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3533         }
3534
3535         ret = blk_mq_update_queue_map(set);
3536         if (ret)
3537                 goto out_free_mq_map;
3538
3539         ret = blk_mq_alloc_map_and_requests(set);
3540         if (ret)
3541                 goto out_free_mq_map;
3542
3543         if (blk_mq_is_sbitmap_shared(set->flags)) {
3544                 atomic_set(&set->active_queues_shared_sbitmap, 0);
3545
3546                 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3547                         ret = -ENOMEM;
3548                         goto out_free_mq_rq_maps;
3549                 }
3550         }
3551
3552         mutex_init(&set->tag_list_lock);
3553         INIT_LIST_HEAD(&set->tag_list);
3554
3555         return 0;
3556
3557 out_free_mq_rq_maps:
3558         for (i = 0; i < set->nr_hw_queues; i++)
3559                 blk_mq_free_map_and_requests(set, i);
3560 out_free_mq_map:
3561         for (i = 0; i < set->nr_maps; i++) {
3562                 kfree(set->map[i].mq_map);
3563                 set->map[i].mq_map = NULL;
3564         }
3565         kfree(set->tags);
3566         set->tags = NULL;
3567         return ret;
3568 }
3569 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3570
3571 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3572 {
3573         int i, j;
3574
3575         for (i = 0; i < set->nr_hw_queues; i++)
3576                 blk_mq_free_map_and_requests(set, i);
3577
3578         if (blk_mq_is_sbitmap_shared(set->flags))
3579                 blk_mq_exit_shared_sbitmap(set);
3580
3581         for (j = 0; j < set->nr_maps; j++) {
3582                 kfree(set->map[j].mq_map);
3583                 set->map[j].mq_map = NULL;
3584         }
3585
3586         kfree(set->tags);
3587         set->tags = NULL;
3588 }
3589 EXPORT_SYMBOL(blk_mq_free_tag_set);
3590
3591 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3592 {
3593         struct blk_mq_tag_set *set = q->tag_set;
3594         struct blk_mq_hw_ctx *hctx;
3595         int i, ret;
3596
3597         if (!set)
3598                 return -EINVAL;
3599
3600         if (q->nr_requests == nr)
3601                 return 0;
3602
3603         blk_mq_freeze_queue(q);
3604         blk_mq_quiesce_queue(q);
3605
3606         ret = 0;
3607         queue_for_each_hw_ctx(q, hctx, i) {
3608                 if (!hctx->tags)
3609                         continue;
3610                 /*
3611                  * If we're using an MQ scheduler, just update the scheduler
3612                  * queue depth. This is similar to what the old code would do.
3613                  */
3614                 if (!hctx->sched_tags) {
3615                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3616                                                         false);
3617                         if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3618                                 blk_mq_tag_resize_shared_sbitmap(set, nr);
3619                 } else {
3620                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3621                                                         nr, true);
3622                 }
3623                 if (ret)
3624                         break;
3625                 if (q->elevator && q->elevator->type->ops.depth_updated)
3626                         q->elevator->type->ops.depth_updated(hctx);
3627         }
3628
3629         if (!ret)
3630                 q->nr_requests = nr;
3631
3632         blk_mq_unquiesce_queue(q);
3633         blk_mq_unfreeze_queue(q);
3634
3635         return ret;
3636 }
3637
3638 /*
3639  * request_queue and elevator_type pair.
3640  * It is just used by __blk_mq_update_nr_hw_queues to cache
3641  * the elevator_type associated with a request_queue.
3642  */
3643 struct blk_mq_qe_pair {
3644         struct list_head node;
3645         struct request_queue *q;
3646         struct elevator_type *type;
3647 };
3648
3649 /*
3650  * Cache the elevator_type in qe pair list and switch the
3651  * io scheduler to 'none'
3652  */
3653 static bool blk_mq_elv_switch_none(struct list_head *head,
3654                 struct request_queue *q)
3655 {
3656         struct blk_mq_qe_pair *qe;
3657
3658         if (!q->elevator)
3659                 return true;
3660
3661         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3662         if (!qe)
3663                 return false;
3664
3665         INIT_LIST_HEAD(&qe->node);
3666         qe->q = q;
3667         qe->type = q->elevator->type;
3668         list_add(&qe->node, head);
3669
3670         mutex_lock(&q->sysfs_lock);
3671         /*
3672          * After elevator_switch_mq, the previous elevator_queue will be
3673          * released by elevator_release. The reference of the io scheduler
3674          * module get by elevator_get will also be put. So we need to get
3675          * a reference of the io scheduler module here to prevent it to be
3676          * removed.
3677          */
3678         __module_get(qe->type->elevator_owner);
3679         elevator_switch_mq(q, NULL);
3680         mutex_unlock(&q->sysfs_lock);
3681
3682         return true;
3683 }
3684
3685 static void blk_mq_elv_switch_back(struct list_head *head,
3686                 struct request_queue *q)
3687 {
3688         struct blk_mq_qe_pair *qe;
3689         struct elevator_type *t = NULL;
3690
3691         list_for_each_entry(qe, head, node)
3692                 if (qe->q == q) {
3693                         t = qe->type;
3694                         break;
3695                 }
3696
3697         if (!t)
3698                 return;
3699
3700         list_del(&qe->node);
3701         kfree(qe);
3702
3703         mutex_lock(&q->sysfs_lock);
3704         elevator_switch_mq(q, t);
3705         mutex_unlock(&q->sysfs_lock);
3706 }
3707
3708 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3709                                                         int nr_hw_queues)
3710 {
3711         struct request_queue *q;
3712         LIST_HEAD(head);
3713         int prev_nr_hw_queues;
3714
3715         lockdep_assert_held(&set->tag_list_lock);
3716
3717         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3718                 nr_hw_queues = nr_cpu_ids;
3719         if (nr_hw_queues < 1)
3720                 return;
3721         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3722                 return;
3723
3724         list_for_each_entry(q, &set->tag_list, tag_set_list)
3725                 blk_mq_freeze_queue(q);
3726         /*
3727          * Switch IO scheduler to 'none', cleaning up the data associated
3728          * with the previous scheduler. We will switch back once we are done
3729          * updating the new sw to hw queue mappings.
3730          */
3731         list_for_each_entry(q, &set->tag_list, tag_set_list)
3732                 if (!blk_mq_elv_switch_none(&head, q))
3733                         goto switch_back;
3734
3735         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3736                 blk_mq_debugfs_unregister_hctxs(q);
3737                 blk_mq_sysfs_unregister(q);
3738         }
3739
3740         prev_nr_hw_queues = set->nr_hw_queues;
3741         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3742             0)
3743                 goto reregister;
3744
3745         set->nr_hw_queues = nr_hw_queues;
3746 fallback:
3747         blk_mq_update_queue_map(set);
3748         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3749                 blk_mq_realloc_hw_ctxs(set, q);
3750                 if (q->nr_hw_queues != set->nr_hw_queues) {
3751                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3752                                         nr_hw_queues, prev_nr_hw_queues);
3753                         set->nr_hw_queues = prev_nr_hw_queues;
3754                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3755                         goto fallback;
3756                 }
3757                 blk_mq_map_swqueue(q);
3758         }
3759
3760 reregister:
3761         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3762                 blk_mq_sysfs_register(q);
3763                 blk_mq_debugfs_register_hctxs(q);
3764         }
3765
3766 switch_back:
3767         list_for_each_entry(q, &set->tag_list, tag_set_list)
3768                 blk_mq_elv_switch_back(&head, q);
3769
3770         list_for_each_entry(q, &set->tag_list, tag_set_list)
3771                 blk_mq_unfreeze_queue(q);
3772 }
3773
3774 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3775 {
3776         mutex_lock(&set->tag_list_lock);
3777         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3778         mutex_unlock(&set->tag_list_lock);
3779 }
3780 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3781
3782 /* Enable polling stats and return whether they were already enabled. */
3783 static bool blk_poll_stats_enable(struct request_queue *q)
3784 {
3785         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3786             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3787                 return true;
3788         blk_stat_add_callback(q, q->poll_cb);
3789         return false;
3790 }
3791
3792 static void blk_mq_poll_stats_start(struct request_queue *q)
3793 {
3794         /*
3795          * We don't arm the callback if polling stats are not enabled or the
3796          * callback is already active.
3797          */
3798         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3799             blk_stat_is_active(q->poll_cb))
3800                 return;
3801
3802         blk_stat_activate_msecs(q->poll_cb, 100);
3803 }
3804
3805 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3806 {
3807         struct request_queue *q = cb->data;
3808         int bucket;
3809
3810         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3811                 if (cb->stat[bucket].nr_samples)
3812                         q->poll_stat[bucket] = cb->stat[bucket];
3813         }
3814 }
3815
3816 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3817                                        struct request *rq)
3818 {
3819         unsigned long ret = 0;
3820         int bucket;
3821
3822         /*
3823          * If stats collection isn't on, don't sleep but turn it on for
3824          * future users
3825          */
3826         if (!blk_poll_stats_enable(q))
3827                 return 0;
3828
3829         /*
3830          * As an optimistic guess, use half of the mean service time
3831          * for this type of request. We can (and should) make this smarter.
3832          * For instance, if the completion latencies are tight, we can
3833          * get closer than just half the mean. This is especially
3834          * important on devices where the completion latencies are longer
3835          * than ~10 usec. We do use the stats for the relevant IO size
3836          * if available which does lead to better estimates.
3837          */
3838         bucket = blk_mq_poll_stats_bkt(rq);
3839         if (bucket < 0)
3840                 return ret;
3841
3842         if (q->poll_stat[bucket].nr_samples)
3843                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3844
3845         return ret;
3846 }
3847
3848 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3849                                      struct request *rq)
3850 {
3851         struct hrtimer_sleeper hs;
3852         enum hrtimer_mode mode;
3853         unsigned int nsecs;
3854         ktime_t kt;
3855
3856         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3857                 return false;
3858
3859         /*
3860          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3861          *
3862          *  0:  use half of prev avg
3863          * >0:  use this specific value
3864          */
3865         if (q->poll_nsec > 0)
3866                 nsecs = q->poll_nsec;
3867         else
3868                 nsecs = blk_mq_poll_nsecs(q, rq);
3869
3870         if (!nsecs)
3871                 return false;
3872
3873         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3874
3875         /*
3876          * This will be replaced with the stats tracking code, using
3877          * 'avg_completion_time / 2' as the pre-sleep target.
3878          */
3879         kt = nsecs;
3880
3881         mode = HRTIMER_MODE_REL;
3882         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3883         hrtimer_set_expires(&hs.timer, kt);
3884
3885         do {
3886                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3887                         break;
3888                 set_current_state(TASK_UNINTERRUPTIBLE);
3889                 hrtimer_sleeper_start_expires(&hs, mode);
3890                 if (hs.task)
3891                         io_schedule();
3892                 hrtimer_cancel(&hs.timer);
3893                 mode = HRTIMER_MODE_ABS;
3894         } while (hs.task && !signal_pending(current));
3895
3896         __set_current_state(TASK_RUNNING);
3897         destroy_hrtimer_on_stack(&hs.timer);
3898         return true;
3899 }
3900
3901 static bool blk_mq_poll_hybrid(struct request_queue *q,
3902                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3903 {
3904         struct request *rq;
3905
3906         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3907                 return false;
3908
3909         if (!blk_qc_t_is_internal(cookie))
3910                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3911         else {
3912                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3913                 /*
3914                  * With scheduling, if the request has completed, we'll
3915                  * get a NULL return here, as we clear the sched tag when
3916                  * that happens. The request still remains valid, like always,
3917                  * so we should be safe with just the NULL check.
3918                  */
3919                 if (!rq)
3920                         return false;
3921         }
3922
3923         return blk_mq_poll_hybrid_sleep(q, rq);
3924 }
3925
3926 /**
3927  * blk_poll - poll for IO completions
3928  * @q:  the queue
3929  * @cookie: cookie passed back at IO submission time
3930  * @spin: whether to spin for completions
3931  *
3932  * Description:
3933  *    Poll for completions on the passed in queue. Returns number of
3934  *    completed entries found. If @spin is true, then blk_poll will continue
3935  *    looping until at least one completion is found, unless the task is
3936  *    otherwise marked running (or we need to reschedule).
3937  */
3938 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3939 {
3940         struct blk_mq_hw_ctx *hctx;
3941         long state;
3942
3943         if (!blk_qc_t_valid(cookie) ||
3944             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3945                 return 0;
3946
3947         if (current->plug)
3948                 blk_flush_plug_list(current->plug, false);
3949
3950         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3951
3952         /*
3953          * If we sleep, have the caller restart the poll loop to reset
3954          * the state. Like for the other success return cases, the
3955          * caller is responsible for checking if the IO completed. If
3956          * the IO isn't complete, we'll get called again and will go
3957          * straight to the busy poll loop.
3958          */
3959         if (blk_mq_poll_hybrid(q, hctx, cookie))
3960                 return 1;
3961
3962         hctx->poll_considered++;
3963
3964         state = current->state;
3965         do {
3966                 int ret;
3967
3968                 hctx->poll_invoked++;
3969
3970                 ret = q->mq_ops->poll(hctx);
3971                 if (ret > 0) {
3972                         hctx->poll_success++;
3973                         __set_current_state(TASK_RUNNING);
3974                         return ret;
3975                 }
3976
3977                 if (signal_pending_state(state, current))
3978                         __set_current_state(TASK_RUNNING);
3979
3980                 if (current->state == TASK_RUNNING)
3981                         return 1;
3982                 if (ret < 0 || !spin)
3983                         break;
3984                 cpu_relax();
3985         } while (!need_resched());
3986
3987         __set_current_state(TASK_RUNNING);
3988         return 0;
3989 }
3990 EXPORT_SYMBOL_GPL(blk_poll);
3991
3992 unsigned int blk_mq_rq_cpu(struct request *rq)
3993 {
3994         return rq->mq_ctx->cpu;
3995 }
3996 EXPORT_SYMBOL(blk_mq_rq_cpu);
3997
3998 static int __init blk_mq_init(void)
3999 {
4000         int i;
4001
4002         for_each_possible_cpu(i)
4003                 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
4004         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4005
4006         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4007                                   "block/softirq:dead", NULL,
4008                                   blk_softirq_cpu_dead);
4009         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4010                                 blk_mq_hctx_notify_dead);
4011         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4012                                 blk_mq_hctx_notify_online,
4013                                 blk_mq_hctx_notify_offline);
4014         return 0;
4015 }
4016 subsys_initcall(blk_mq_init);