GNU Linux-libre 5.15.54-gnu
[releases.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51         int ddir, sectors, bucket;
52
53         ddir = rq_data_dir(rq);
54         sectors = blk_rq_stats_sectors(rq);
55
56         bucket = ddir + 2 * ilog2(sectors);
57
58         if (bucket < 0)
59                 return -1;
60         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63         return bucket;
64 }
65
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72         return !list_empty_careful(&hctx->dispatch) ||
73                 sbitmap_any_bit_set(&hctx->ctx_map) ||
74                         blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81                                      struct blk_mq_ctx *ctx)
82 {
83         const int bit = ctx->index_hw[hctx->type];
84
85         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86                 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90                                       struct blk_mq_ctx *ctx)
91 {
92         const int bit = ctx->index_hw[hctx->type];
93
94         sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98         struct block_device *part;
99         unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103                                   struct request *rq, void *priv,
104                                   bool reserved)
105 {
106         struct mq_inflight *mi = priv;
107
108         if ((!mi->part->bd_partno || rq->part == mi->part) &&
109             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110                 mi->inflight[rq_data_dir(rq)]++;
111
112         return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116                 struct block_device *part)
117 {
118         struct mq_inflight mi = { .part = part };
119
120         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122         return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126                 unsigned int inflight[2])
127 {
128         struct mq_inflight mi = { .part = part };
129
130         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131         inflight[0] = mi.inflight[0];
132         inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137         mutex_lock(&q->mq_freeze_lock);
138         if (++q->mq_freeze_depth == 1) {
139                 percpu_ref_kill(&q->q_usage_counter);
140                 mutex_unlock(&q->mq_freeze_lock);
141                 if (queue_is_mq(q))
142                         blk_mq_run_hw_queues(q, false);
143         } else {
144                 mutex_unlock(&q->mq_freeze_lock);
145         }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156                                      unsigned long timeout)
157 {
158         return wait_event_timeout(q->mq_freeze_wq,
159                                         percpu_ref_is_zero(&q->q_usage_counter),
160                                         timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170         /*
171          * In the !blk_mq case we are only calling this to kill the
172          * q_usage_counter, otherwise this increases the freeze depth
173          * and waits for it to return to zero.  For this reason there is
174          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175          * exported to drivers as the only user for unfreeze is blk_mq.
176          */
177         blk_freeze_queue_start(q);
178         blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183         /*
184          * ...just an alias to keep freeze and unfreeze actions balanced
185          * in the blk_mq_* namespace
186          */
187         blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
192 {
193         mutex_lock(&q->mq_freeze_lock);
194         if (force_atomic)
195                 q->q_usage_counter.data->force_atomic = true;
196         q->mq_freeze_depth--;
197         WARN_ON_ONCE(q->mq_freeze_depth < 0);
198         if (!q->mq_freeze_depth) {
199                 percpu_ref_resurrect(&q->q_usage_counter);
200                 wake_up_all(&q->mq_freeze_wq);
201         }
202         mutex_unlock(&q->mq_freeze_lock);
203 }
204
205 void blk_mq_unfreeze_queue(struct request_queue *q)
206 {
207         __blk_mq_unfreeze_queue(q, false);
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213  * mpt3sas driver such that this function can be removed.
214  */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220
221 /**
222  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223  * @q: request queue.
224  *
225  * Note: this function does not prevent that the struct request end_io()
226  * callback function is invoked. Once this function is returned, we make
227  * sure no dispatch can happen until the queue is unquiesced via
228  * blk_mq_unquiesce_queue().
229  */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232         struct blk_mq_hw_ctx *hctx;
233         unsigned int i;
234         bool rcu = false;
235
236         blk_mq_quiesce_queue_nowait(q);
237
238         queue_for_each_hw_ctx(q, hctx, i) {
239                 if (hctx->flags & BLK_MQ_F_BLOCKING)
240                         synchronize_srcu(hctx->srcu);
241                 else
242                         rcu = true;
243         }
244         if (rcu)
245                 synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259
260         /* dispatch requests which are inserted during quiescing */
261         blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267         struct blk_mq_hw_ctx *hctx;
268         unsigned int i;
269
270         queue_for_each_hw_ctx(q, hctx, i)
271                 if (blk_mq_hw_queue_mapped(hctx))
272                         blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274
275 /*
276  * Only need start/end time stamping if we have iostat or
277  * blk stats enabled, or using an IO scheduler.
278  */
279 static inline bool blk_mq_need_time_stamp(struct request *rq)
280 {
281         return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
282 }
283
284 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
285                 unsigned int tag, u64 alloc_time_ns)
286 {
287         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
288         struct request *rq = tags->static_rqs[tag];
289
290         if (data->q->elevator) {
291                 rq->tag = BLK_MQ_NO_TAG;
292                 rq->internal_tag = tag;
293         } else {
294                 rq->tag = tag;
295                 rq->internal_tag = BLK_MQ_NO_TAG;
296         }
297
298         /* csd/requeue_work/fifo_time is initialized before use */
299         rq->q = data->q;
300         rq->mq_ctx = data->ctx;
301         rq->mq_hctx = data->hctx;
302         rq->rq_flags = 0;
303         rq->cmd_flags = data->cmd_flags;
304         if (data->flags & BLK_MQ_REQ_PM)
305                 rq->rq_flags |= RQF_PM;
306         if (blk_queue_io_stat(data->q))
307                 rq->rq_flags |= RQF_IO_STAT;
308         INIT_LIST_HEAD(&rq->queuelist);
309         INIT_HLIST_NODE(&rq->hash);
310         RB_CLEAR_NODE(&rq->rb_node);
311         rq->rq_disk = NULL;
312         rq->part = NULL;
313 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
314         rq->alloc_time_ns = alloc_time_ns;
315 #endif
316         if (blk_mq_need_time_stamp(rq))
317                 rq->start_time_ns = ktime_get_ns();
318         else
319                 rq->start_time_ns = 0;
320         rq->io_start_time_ns = 0;
321         rq->stats_sectors = 0;
322         rq->nr_phys_segments = 0;
323 #if defined(CONFIG_BLK_DEV_INTEGRITY)
324         rq->nr_integrity_segments = 0;
325 #endif
326         blk_crypto_rq_set_defaults(rq);
327         /* tag was already set */
328         WRITE_ONCE(rq->deadline, 0);
329
330         rq->timeout = 0;
331
332         rq->end_io = NULL;
333         rq->end_io_data = NULL;
334
335         data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
336         refcount_set(&rq->ref, 1);
337
338         if (!op_is_flush(data->cmd_flags)) {
339                 struct elevator_queue *e = data->q->elevator;
340
341                 rq->elv.icq = NULL;
342                 if (e && e->type->ops.prepare_request) {
343                         if (e->type->icq_cache)
344                                 blk_mq_sched_assign_ioc(rq);
345
346                         e->type->ops.prepare_request(rq);
347                         rq->rq_flags |= RQF_ELVPRIV;
348                 }
349         }
350
351         data->hctx->queued++;
352         return rq;
353 }
354
355 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
356 {
357         struct request_queue *q = data->q;
358         struct elevator_queue *e = q->elevator;
359         u64 alloc_time_ns = 0;
360         unsigned int tag;
361
362         /* alloc_time includes depth and tag waits */
363         if (blk_queue_rq_alloc_time(q))
364                 alloc_time_ns = ktime_get_ns();
365
366         if (data->cmd_flags & REQ_NOWAIT)
367                 data->flags |= BLK_MQ_REQ_NOWAIT;
368
369         if (e) {
370                 /*
371                  * Flush/passthrough requests are special and go directly to the
372                  * dispatch list. Don't include reserved tags in the
373                  * limiting, as it isn't useful.
374                  */
375                 if (!op_is_flush(data->cmd_flags) &&
376                     !blk_op_is_passthrough(data->cmd_flags) &&
377                     e->type->ops.limit_depth &&
378                     !(data->flags & BLK_MQ_REQ_RESERVED))
379                         e->type->ops.limit_depth(data->cmd_flags, data);
380         }
381
382 retry:
383         data->ctx = blk_mq_get_ctx(q);
384         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
385         if (!e)
386                 blk_mq_tag_busy(data->hctx);
387
388         /*
389          * Waiting allocations only fail because of an inactive hctx.  In that
390          * case just retry the hctx assignment and tag allocation as CPU hotplug
391          * should have migrated us to an online CPU by now.
392          */
393         tag = blk_mq_get_tag(data);
394         if (tag == BLK_MQ_NO_TAG) {
395                 if (data->flags & BLK_MQ_REQ_NOWAIT)
396                         return NULL;
397
398                 /*
399                  * Give up the CPU and sleep for a random short time to ensure
400                  * that thread using a realtime scheduling class are migrated
401                  * off the CPU, and thus off the hctx that is going away.
402                  */
403                 msleep(3);
404                 goto retry;
405         }
406         return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
407 }
408
409 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
410                 blk_mq_req_flags_t flags)
411 {
412         struct blk_mq_alloc_data data = {
413                 .q              = q,
414                 .flags          = flags,
415                 .cmd_flags      = op,
416         };
417         struct request *rq;
418         int ret;
419
420         ret = blk_queue_enter(q, flags);
421         if (ret)
422                 return ERR_PTR(ret);
423
424         rq = __blk_mq_alloc_request(&data);
425         if (!rq)
426                 goto out_queue_exit;
427         rq->__data_len = 0;
428         rq->__sector = (sector_t) -1;
429         rq->bio = rq->biotail = NULL;
430         return rq;
431 out_queue_exit:
432         blk_queue_exit(q);
433         return ERR_PTR(-EWOULDBLOCK);
434 }
435 EXPORT_SYMBOL(blk_mq_alloc_request);
436
437 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
438         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
439 {
440         struct blk_mq_alloc_data data = {
441                 .q              = q,
442                 .flags          = flags,
443                 .cmd_flags      = op,
444         };
445         u64 alloc_time_ns = 0;
446         unsigned int cpu;
447         unsigned int tag;
448         int ret;
449
450         /* alloc_time includes depth and tag waits */
451         if (blk_queue_rq_alloc_time(q))
452                 alloc_time_ns = ktime_get_ns();
453
454         /*
455          * If the tag allocator sleeps we could get an allocation for a
456          * different hardware context.  No need to complicate the low level
457          * allocator for this for the rare use case of a command tied to
458          * a specific queue.
459          */
460         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
461                 return ERR_PTR(-EINVAL);
462
463         if (hctx_idx >= q->nr_hw_queues)
464                 return ERR_PTR(-EIO);
465
466         ret = blk_queue_enter(q, flags);
467         if (ret)
468                 return ERR_PTR(ret);
469
470         /*
471          * Check if the hardware context is actually mapped to anything.
472          * If not tell the caller that it should skip this queue.
473          */
474         ret = -EXDEV;
475         data.hctx = q->queue_hw_ctx[hctx_idx];
476         if (!blk_mq_hw_queue_mapped(data.hctx))
477                 goto out_queue_exit;
478         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
479         if (cpu >= nr_cpu_ids)
480                 goto out_queue_exit;
481         data.ctx = __blk_mq_get_ctx(q, cpu);
482
483         if (!q->elevator)
484                 blk_mq_tag_busy(data.hctx);
485
486         ret = -EWOULDBLOCK;
487         tag = blk_mq_get_tag(&data);
488         if (tag == BLK_MQ_NO_TAG)
489                 goto out_queue_exit;
490         return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
491
492 out_queue_exit:
493         blk_queue_exit(q);
494         return ERR_PTR(ret);
495 }
496 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
497
498 static void __blk_mq_free_request(struct request *rq)
499 {
500         struct request_queue *q = rq->q;
501         struct blk_mq_ctx *ctx = rq->mq_ctx;
502         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
503         const int sched_tag = rq->internal_tag;
504
505         blk_crypto_free_request(rq);
506         blk_pm_mark_last_busy(rq);
507         rq->mq_hctx = NULL;
508         if (rq->tag != BLK_MQ_NO_TAG)
509                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
510         if (sched_tag != BLK_MQ_NO_TAG)
511                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
512         blk_mq_sched_restart(hctx);
513         blk_queue_exit(q);
514 }
515
516 void blk_mq_free_request(struct request *rq)
517 {
518         struct request_queue *q = rq->q;
519         struct elevator_queue *e = q->elevator;
520         struct blk_mq_ctx *ctx = rq->mq_ctx;
521         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
522
523         if (rq->rq_flags & RQF_ELVPRIV) {
524                 if (e && e->type->ops.finish_request)
525                         e->type->ops.finish_request(rq);
526                 if (rq->elv.icq) {
527                         put_io_context(rq->elv.icq->ioc);
528                         rq->elv.icq = NULL;
529                 }
530         }
531
532         ctx->rq_completed[rq_is_sync(rq)]++;
533         if (rq->rq_flags & RQF_MQ_INFLIGHT)
534                 __blk_mq_dec_active_requests(hctx);
535
536         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
537                 laptop_io_completion(q->disk->bdi);
538
539         rq_qos_done(q, rq);
540
541         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
542         if (refcount_dec_and_test(&rq->ref))
543                 __blk_mq_free_request(rq);
544 }
545 EXPORT_SYMBOL_GPL(blk_mq_free_request);
546
547 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
548 {
549         u64 now = 0;
550
551         if (blk_mq_need_time_stamp(rq))
552                 now = ktime_get_ns();
553
554         if (rq->rq_flags & RQF_STATS) {
555                 blk_mq_poll_stats_start(rq->q);
556                 blk_stat_add(rq, now);
557         }
558
559         blk_mq_sched_completed_request(rq, now);
560
561         blk_account_io_done(rq, now);
562
563         if (rq->end_io) {
564                 rq_qos_done(rq->q, rq);
565                 rq->end_io(rq, error);
566         } else {
567                 blk_mq_free_request(rq);
568         }
569 }
570 EXPORT_SYMBOL(__blk_mq_end_request);
571
572 void blk_mq_end_request(struct request *rq, blk_status_t error)
573 {
574         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
575                 BUG();
576         __blk_mq_end_request(rq, error);
577 }
578 EXPORT_SYMBOL(blk_mq_end_request);
579
580 static void blk_complete_reqs(struct llist_head *list)
581 {
582         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
583         struct request *rq, *next;
584
585         llist_for_each_entry_safe(rq, next, entry, ipi_list)
586                 rq->q->mq_ops->complete(rq);
587 }
588
589 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
590 {
591         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
592 }
593
594 static int blk_softirq_cpu_dead(unsigned int cpu)
595 {
596         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
597         return 0;
598 }
599
600 static void __blk_mq_complete_request_remote(void *data)
601 {
602         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
603 }
604
605 static inline bool blk_mq_complete_need_ipi(struct request *rq)
606 {
607         int cpu = raw_smp_processor_id();
608
609         if (!IS_ENABLED(CONFIG_SMP) ||
610             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
611                 return false;
612         /*
613          * With force threaded interrupts enabled, raising softirq from an SMP
614          * function call will always result in waking the ksoftirqd thread.
615          * This is probably worse than completing the request on a different
616          * cache domain.
617          */
618         if (force_irqthreads())
619                 return false;
620
621         /* same CPU or cache domain?  Complete locally */
622         if (cpu == rq->mq_ctx->cpu ||
623             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
624              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
625                 return false;
626
627         /* don't try to IPI to an offline CPU */
628         return cpu_online(rq->mq_ctx->cpu);
629 }
630
631 static void blk_mq_complete_send_ipi(struct request *rq)
632 {
633         struct llist_head *list;
634         unsigned int cpu;
635
636         cpu = rq->mq_ctx->cpu;
637         list = &per_cpu(blk_cpu_done, cpu);
638         if (llist_add(&rq->ipi_list, list)) {
639                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
640                 smp_call_function_single_async(cpu, &rq->csd);
641         }
642 }
643
644 static void blk_mq_raise_softirq(struct request *rq)
645 {
646         struct llist_head *list;
647
648         preempt_disable();
649         list = this_cpu_ptr(&blk_cpu_done);
650         if (llist_add(&rq->ipi_list, list))
651                 raise_softirq(BLOCK_SOFTIRQ);
652         preempt_enable();
653 }
654
655 bool blk_mq_complete_request_remote(struct request *rq)
656 {
657         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
658
659         /*
660          * For a polled request, always complete locallly, it's pointless
661          * to redirect the completion.
662          */
663         if (rq->cmd_flags & REQ_HIPRI)
664                 return false;
665
666         if (blk_mq_complete_need_ipi(rq)) {
667                 blk_mq_complete_send_ipi(rq);
668                 return true;
669         }
670
671         if (rq->q->nr_hw_queues == 1) {
672                 blk_mq_raise_softirq(rq);
673                 return true;
674         }
675         return false;
676 }
677 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
678
679 /**
680  * blk_mq_complete_request - end I/O on a request
681  * @rq:         the request being processed
682  *
683  * Description:
684  *      Complete a request by scheduling the ->complete_rq operation.
685  **/
686 void blk_mq_complete_request(struct request *rq)
687 {
688         if (!blk_mq_complete_request_remote(rq))
689                 rq->q->mq_ops->complete(rq);
690 }
691 EXPORT_SYMBOL(blk_mq_complete_request);
692
693 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
694         __releases(hctx->srcu)
695 {
696         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
697                 rcu_read_unlock();
698         else
699                 srcu_read_unlock(hctx->srcu, srcu_idx);
700 }
701
702 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
703         __acquires(hctx->srcu)
704 {
705         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
706                 /* shut up gcc false positive */
707                 *srcu_idx = 0;
708                 rcu_read_lock();
709         } else
710                 *srcu_idx = srcu_read_lock(hctx->srcu);
711 }
712
713 /**
714  * blk_mq_start_request - Start processing a request
715  * @rq: Pointer to request to be started
716  *
717  * Function used by device drivers to notify the block layer that a request
718  * is going to be processed now, so blk layer can do proper initializations
719  * such as starting the timeout timer.
720  */
721 void blk_mq_start_request(struct request *rq)
722 {
723         struct request_queue *q = rq->q;
724
725         trace_block_rq_issue(rq);
726
727         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
728                 rq->io_start_time_ns = ktime_get_ns();
729                 rq->stats_sectors = blk_rq_sectors(rq);
730                 rq->rq_flags |= RQF_STATS;
731                 rq_qos_issue(q, rq);
732         }
733
734         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
735
736         blk_add_timer(rq);
737         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
738
739 #ifdef CONFIG_BLK_DEV_INTEGRITY
740         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
741                 q->integrity.profile->prepare_fn(rq);
742 #endif
743 }
744 EXPORT_SYMBOL(blk_mq_start_request);
745
746 static void __blk_mq_requeue_request(struct request *rq)
747 {
748         struct request_queue *q = rq->q;
749
750         blk_mq_put_driver_tag(rq);
751
752         trace_block_rq_requeue(rq);
753         rq_qos_requeue(q, rq);
754
755         if (blk_mq_request_started(rq)) {
756                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
757                 rq->rq_flags &= ~RQF_TIMED_OUT;
758         }
759 }
760
761 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
762 {
763         __blk_mq_requeue_request(rq);
764
765         /* this request will be re-inserted to io scheduler queue */
766         blk_mq_sched_requeue_request(rq);
767
768         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
769 }
770 EXPORT_SYMBOL(blk_mq_requeue_request);
771
772 static void blk_mq_requeue_work(struct work_struct *work)
773 {
774         struct request_queue *q =
775                 container_of(work, struct request_queue, requeue_work.work);
776         LIST_HEAD(rq_list);
777         struct request *rq, *next;
778
779         spin_lock_irq(&q->requeue_lock);
780         list_splice_init(&q->requeue_list, &rq_list);
781         spin_unlock_irq(&q->requeue_lock);
782
783         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
784                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
785                         continue;
786
787                 rq->rq_flags &= ~RQF_SOFTBARRIER;
788                 list_del_init(&rq->queuelist);
789                 /*
790                  * If RQF_DONTPREP, rq has contained some driver specific
791                  * data, so insert it to hctx dispatch list to avoid any
792                  * merge.
793                  */
794                 if (rq->rq_flags & RQF_DONTPREP)
795                         blk_mq_request_bypass_insert(rq, false, false);
796                 else
797                         blk_mq_sched_insert_request(rq, true, false, false);
798         }
799
800         while (!list_empty(&rq_list)) {
801                 rq = list_entry(rq_list.next, struct request, queuelist);
802                 list_del_init(&rq->queuelist);
803                 blk_mq_sched_insert_request(rq, false, false, false);
804         }
805
806         blk_mq_run_hw_queues(q, false);
807 }
808
809 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
810                                 bool kick_requeue_list)
811 {
812         struct request_queue *q = rq->q;
813         unsigned long flags;
814
815         /*
816          * We abuse this flag that is otherwise used by the I/O scheduler to
817          * request head insertion from the workqueue.
818          */
819         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
820
821         spin_lock_irqsave(&q->requeue_lock, flags);
822         if (at_head) {
823                 rq->rq_flags |= RQF_SOFTBARRIER;
824                 list_add(&rq->queuelist, &q->requeue_list);
825         } else {
826                 list_add_tail(&rq->queuelist, &q->requeue_list);
827         }
828         spin_unlock_irqrestore(&q->requeue_lock, flags);
829
830         if (kick_requeue_list)
831                 blk_mq_kick_requeue_list(q);
832 }
833
834 void blk_mq_kick_requeue_list(struct request_queue *q)
835 {
836         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
837 }
838 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
839
840 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
841                                     unsigned long msecs)
842 {
843         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
844                                     msecs_to_jiffies(msecs));
845 }
846 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
847
848 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
849 {
850         if (tag < tags->nr_tags) {
851                 prefetch(tags->rqs[tag]);
852                 return tags->rqs[tag];
853         }
854
855         return NULL;
856 }
857 EXPORT_SYMBOL(blk_mq_tag_to_rq);
858
859 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
860                                void *priv, bool reserved)
861 {
862         /*
863          * If we find a request that isn't idle and the queue matches,
864          * we know the queue is busy. Return false to stop the iteration.
865          */
866         if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
867                 bool *busy = priv;
868
869                 *busy = true;
870                 return false;
871         }
872
873         return true;
874 }
875
876 bool blk_mq_queue_inflight(struct request_queue *q)
877 {
878         bool busy = false;
879
880         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
881         return busy;
882 }
883 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
884
885 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
886 {
887         req->rq_flags |= RQF_TIMED_OUT;
888         if (req->q->mq_ops->timeout) {
889                 enum blk_eh_timer_return ret;
890
891                 ret = req->q->mq_ops->timeout(req, reserved);
892                 if (ret == BLK_EH_DONE)
893                         return;
894                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
895         }
896
897         blk_add_timer(req);
898 }
899
900 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
901 {
902         unsigned long deadline;
903
904         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
905                 return false;
906         if (rq->rq_flags & RQF_TIMED_OUT)
907                 return false;
908
909         deadline = READ_ONCE(rq->deadline);
910         if (time_after_eq(jiffies, deadline))
911                 return true;
912
913         if (*next == 0)
914                 *next = deadline;
915         else if (time_after(*next, deadline))
916                 *next = deadline;
917         return false;
918 }
919
920 void blk_mq_put_rq_ref(struct request *rq)
921 {
922         if (is_flush_rq(rq))
923                 rq->end_io(rq, 0);
924         else if (refcount_dec_and_test(&rq->ref))
925                 __blk_mq_free_request(rq);
926 }
927
928 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
929                 struct request *rq, void *priv, bool reserved)
930 {
931         unsigned long *next = priv;
932
933         /*
934          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
935          * be reallocated underneath the timeout handler's processing, then
936          * the expire check is reliable. If the request is not expired, then
937          * it was completed and reallocated as a new request after returning
938          * from blk_mq_check_expired().
939          */
940         if (blk_mq_req_expired(rq, next))
941                 blk_mq_rq_timed_out(rq, reserved);
942         return true;
943 }
944
945 static void blk_mq_timeout_work(struct work_struct *work)
946 {
947         struct request_queue *q =
948                 container_of(work, struct request_queue, timeout_work);
949         unsigned long next = 0;
950         struct blk_mq_hw_ctx *hctx;
951         int i;
952
953         /* A deadlock might occur if a request is stuck requiring a
954          * timeout at the same time a queue freeze is waiting
955          * completion, since the timeout code would not be able to
956          * acquire the queue reference here.
957          *
958          * That's why we don't use blk_queue_enter here; instead, we use
959          * percpu_ref_tryget directly, because we need to be able to
960          * obtain a reference even in the short window between the queue
961          * starting to freeze, by dropping the first reference in
962          * blk_freeze_queue_start, and the moment the last request is
963          * consumed, marked by the instant q_usage_counter reaches
964          * zero.
965          */
966         if (!percpu_ref_tryget(&q->q_usage_counter))
967                 return;
968
969         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
970
971         if (next != 0) {
972                 mod_timer(&q->timeout, next);
973         } else {
974                 /*
975                  * Request timeouts are handled as a forward rolling timer. If
976                  * we end up here it means that no requests are pending and
977                  * also that no request has been pending for a while. Mark
978                  * each hctx as idle.
979                  */
980                 queue_for_each_hw_ctx(q, hctx, i) {
981                         /* the hctx may be unmapped, so check it here */
982                         if (blk_mq_hw_queue_mapped(hctx))
983                                 blk_mq_tag_idle(hctx);
984                 }
985         }
986         blk_queue_exit(q);
987 }
988
989 struct flush_busy_ctx_data {
990         struct blk_mq_hw_ctx *hctx;
991         struct list_head *list;
992 };
993
994 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
995 {
996         struct flush_busy_ctx_data *flush_data = data;
997         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
998         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
999         enum hctx_type type = hctx->type;
1000
1001         spin_lock(&ctx->lock);
1002         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1003         sbitmap_clear_bit(sb, bitnr);
1004         spin_unlock(&ctx->lock);
1005         return true;
1006 }
1007
1008 /*
1009  * Process software queues that have been marked busy, splicing them
1010  * to the for-dispatch
1011  */
1012 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1013 {
1014         struct flush_busy_ctx_data data = {
1015                 .hctx = hctx,
1016                 .list = list,
1017         };
1018
1019         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1020 }
1021 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1022
1023 struct dispatch_rq_data {
1024         struct blk_mq_hw_ctx *hctx;
1025         struct request *rq;
1026 };
1027
1028 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1029                 void *data)
1030 {
1031         struct dispatch_rq_data *dispatch_data = data;
1032         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1033         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1034         enum hctx_type type = hctx->type;
1035
1036         spin_lock(&ctx->lock);
1037         if (!list_empty(&ctx->rq_lists[type])) {
1038                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1039                 list_del_init(&dispatch_data->rq->queuelist);
1040                 if (list_empty(&ctx->rq_lists[type]))
1041                         sbitmap_clear_bit(sb, bitnr);
1042         }
1043         spin_unlock(&ctx->lock);
1044
1045         return !dispatch_data->rq;
1046 }
1047
1048 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1049                                         struct blk_mq_ctx *start)
1050 {
1051         unsigned off = start ? start->index_hw[hctx->type] : 0;
1052         struct dispatch_rq_data data = {
1053                 .hctx = hctx,
1054                 .rq   = NULL,
1055         };
1056
1057         __sbitmap_for_each_set(&hctx->ctx_map, off,
1058                                dispatch_rq_from_ctx, &data);
1059
1060         return data.rq;
1061 }
1062
1063 static inline unsigned int queued_to_index(unsigned int queued)
1064 {
1065         if (!queued)
1066                 return 0;
1067
1068         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1069 }
1070
1071 static bool __blk_mq_get_driver_tag(struct request *rq)
1072 {
1073         struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1074         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1075         int tag;
1076
1077         blk_mq_tag_busy(rq->mq_hctx);
1078
1079         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1080                 bt = rq->mq_hctx->tags->breserved_tags;
1081                 tag_offset = 0;
1082         } else {
1083                 if (!hctx_may_queue(rq->mq_hctx, bt))
1084                         return false;
1085         }
1086
1087         tag = __sbitmap_queue_get(bt);
1088         if (tag == BLK_MQ_NO_TAG)
1089                 return false;
1090
1091         rq->tag = tag + tag_offset;
1092         return true;
1093 }
1094
1095 bool blk_mq_get_driver_tag(struct request *rq)
1096 {
1097         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1098
1099         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1100                 return false;
1101
1102         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1103                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1104                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1105                 __blk_mq_inc_active_requests(hctx);
1106         }
1107         hctx->tags->rqs[rq->tag] = rq;
1108         return true;
1109 }
1110
1111 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1112                                 int flags, void *key)
1113 {
1114         struct blk_mq_hw_ctx *hctx;
1115
1116         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1117
1118         spin_lock(&hctx->dispatch_wait_lock);
1119         if (!list_empty(&wait->entry)) {
1120                 struct sbitmap_queue *sbq;
1121
1122                 list_del_init(&wait->entry);
1123                 sbq = hctx->tags->bitmap_tags;
1124                 atomic_dec(&sbq->ws_active);
1125         }
1126         spin_unlock(&hctx->dispatch_wait_lock);
1127
1128         blk_mq_run_hw_queue(hctx, true);
1129         return 1;
1130 }
1131
1132 /*
1133  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1134  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1135  * restart. For both cases, take care to check the condition again after
1136  * marking us as waiting.
1137  */
1138 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1139                                  struct request *rq)
1140 {
1141         struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1142         struct wait_queue_head *wq;
1143         wait_queue_entry_t *wait;
1144         bool ret;
1145
1146         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1147                 blk_mq_sched_mark_restart_hctx(hctx);
1148
1149                 /*
1150                  * It's possible that a tag was freed in the window between the
1151                  * allocation failure and adding the hardware queue to the wait
1152                  * queue.
1153                  *
1154                  * Don't clear RESTART here, someone else could have set it.
1155                  * At most this will cost an extra queue run.
1156                  */
1157                 return blk_mq_get_driver_tag(rq);
1158         }
1159
1160         wait = &hctx->dispatch_wait;
1161         if (!list_empty_careful(&wait->entry))
1162                 return false;
1163
1164         wq = &bt_wait_ptr(sbq, hctx)->wait;
1165
1166         spin_lock_irq(&wq->lock);
1167         spin_lock(&hctx->dispatch_wait_lock);
1168         if (!list_empty(&wait->entry)) {
1169                 spin_unlock(&hctx->dispatch_wait_lock);
1170                 spin_unlock_irq(&wq->lock);
1171                 return false;
1172         }
1173
1174         atomic_inc(&sbq->ws_active);
1175         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1176         __add_wait_queue(wq, wait);
1177
1178         /*
1179          * It's possible that a tag was freed in the window between the
1180          * allocation failure and adding the hardware queue to the wait
1181          * queue.
1182          */
1183         ret = blk_mq_get_driver_tag(rq);
1184         if (!ret) {
1185                 spin_unlock(&hctx->dispatch_wait_lock);
1186                 spin_unlock_irq(&wq->lock);
1187                 return false;
1188         }
1189
1190         /*
1191          * We got a tag, remove ourselves from the wait queue to ensure
1192          * someone else gets the wakeup.
1193          */
1194         list_del_init(&wait->entry);
1195         atomic_dec(&sbq->ws_active);
1196         spin_unlock(&hctx->dispatch_wait_lock);
1197         spin_unlock_irq(&wq->lock);
1198
1199         return true;
1200 }
1201
1202 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1203 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1204 /*
1205  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1206  * - EWMA is one simple way to compute running average value
1207  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1208  * - take 4 as factor for avoiding to get too small(0) result, and this
1209  *   factor doesn't matter because EWMA decreases exponentially
1210  */
1211 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1212 {
1213         unsigned int ewma;
1214
1215         ewma = hctx->dispatch_busy;
1216
1217         if (!ewma && !busy)
1218                 return;
1219
1220         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1221         if (busy)
1222                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1223         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1224
1225         hctx->dispatch_busy = ewma;
1226 }
1227
1228 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1229
1230 static void blk_mq_handle_dev_resource(struct request *rq,
1231                                        struct list_head *list)
1232 {
1233         struct request *next =
1234                 list_first_entry_or_null(list, struct request, queuelist);
1235
1236         /*
1237          * If an I/O scheduler has been configured and we got a driver tag for
1238          * the next request already, free it.
1239          */
1240         if (next)
1241                 blk_mq_put_driver_tag(next);
1242
1243         list_add(&rq->queuelist, list);
1244         __blk_mq_requeue_request(rq);
1245 }
1246
1247 static void blk_mq_handle_zone_resource(struct request *rq,
1248                                         struct list_head *zone_list)
1249 {
1250         /*
1251          * If we end up here it is because we cannot dispatch a request to a
1252          * specific zone due to LLD level zone-write locking or other zone
1253          * related resource not being available. In this case, set the request
1254          * aside in zone_list for retrying it later.
1255          */
1256         list_add(&rq->queuelist, zone_list);
1257         __blk_mq_requeue_request(rq);
1258 }
1259
1260 enum prep_dispatch {
1261         PREP_DISPATCH_OK,
1262         PREP_DISPATCH_NO_TAG,
1263         PREP_DISPATCH_NO_BUDGET,
1264 };
1265
1266 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1267                                                   bool need_budget)
1268 {
1269         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1270         int budget_token = -1;
1271
1272         if (need_budget) {
1273                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1274                 if (budget_token < 0) {
1275                         blk_mq_put_driver_tag(rq);
1276                         return PREP_DISPATCH_NO_BUDGET;
1277                 }
1278                 blk_mq_set_rq_budget_token(rq, budget_token);
1279         }
1280
1281         if (!blk_mq_get_driver_tag(rq)) {
1282                 /*
1283                  * The initial allocation attempt failed, so we need to
1284                  * rerun the hardware queue when a tag is freed. The
1285                  * waitqueue takes care of that. If the queue is run
1286                  * before we add this entry back on the dispatch list,
1287                  * we'll re-run it below.
1288                  */
1289                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1290                         /*
1291                          * All budgets not got from this function will be put
1292                          * together during handling partial dispatch
1293                          */
1294                         if (need_budget)
1295                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1296                         return PREP_DISPATCH_NO_TAG;
1297                 }
1298         }
1299
1300         return PREP_DISPATCH_OK;
1301 }
1302
1303 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1304 static void blk_mq_release_budgets(struct request_queue *q,
1305                 struct list_head *list)
1306 {
1307         struct request *rq;
1308
1309         list_for_each_entry(rq, list, queuelist) {
1310                 int budget_token = blk_mq_get_rq_budget_token(rq);
1311
1312                 if (budget_token >= 0)
1313                         blk_mq_put_dispatch_budget(q, budget_token);
1314         }
1315 }
1316
1317 /*
1318  * Returns true if we did some work AND can potentially do more.
1319  */
1320 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1321                              unsigned int nr_budgets)
1322 {
1323         enum prep_dispatch prep;
1324         struct request_queue *q = hctx->queue;
1325         struct request *rq, *nxt;
1326         int errors, queued;
1327         blk_status_t ret = BLK_STS_OK;
1328         LIST_HEAD(zone_list);
1329         bool needs_resource = false;
1330
1331         if (list_empty(list))
1332                 return false;
1333
1334         /*
1335          * Now process all the entries, sending them to the driver.
1336          */
1337         errors = queued = 0;
1338         do {
1339                 struct blk_mq_queue_data bd;
1340
1341                 rq = list_first_entry(list, struct request, queuelist);
1342
1343                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1344                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1345                 if (prep != PREP_DISPATCH_OK)
1346                         break;
1347
1348                 list_del_init(&rq->queuelist);
1349
1350                 bd.rq = rq;
1351
1352                 /*
1353                  * Flag last if we have no more requests, or if we have more
1354                  * but can't assign a driver tag to it.
1355                  */
1356                 if (list_empty(list))
1357                         bd.last = true;
1358                 else {
1359                         nxt = list_first_entry(list, struct request, queuelist);
1360                         bd.last = !blk_mq_get_driver_tag(nxt);
1361                 }
1362
1363                 /*
1364                  * once the request is queued to lld, no need to cover the
1365                  * budget any more
1366                  */
1367                 if (nr_budgets)
1368                         nr_budgets--;
1369                 ret = q->mq_ops->queue_rq(hctx, &bd);
1370                 switch (ret) {
1371                 case BLK_STS_OK:
1372                         queued++;
1373                         break;
1374                 case BLK_STS_RESOURCE:
1375                         needs_resource = true;
1376                         fallthrough;
1377                 case BLK_STS_DEV_RESOURCE:
1378                         blk_mq_handle_dev_resource(rq, list);
1379                         goto out;
1380                 case BLK_STS_ZONE_RESOURCE:
1381                         /*
1382                          * Move the request to zone_list and keep going through
1383                          * the dispatch list to find more requests the drive can
1384                          * accept.
1385                          */
1386                         blk_mq_handle_zone_resource(rq, &zone_list);
1387                         needs_resource = true;
1388                         break;
1389                 default:
1390                         errors++;
1391                         blk_mq_end_request(rq, ret);
1392                 }
1393         } while (!list_empty(list));
1394 out:
1395         if (!list_empty(&zone_list))
1396                 list_splice_tail_init(&zone_list, list);
1397
1398         hctx->dispatched[queued_to_index(queued)]++;
1399
1400         /* If we didn't flush the entire list, we could have told the driver
1401          * there was more coming, but that turned out to be a lie.
1402          */
1403         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1404                 q->mq_ops->commit_rqs(hctx);
1405         /*
1406          * Any items that need requeuing? Stuff them into hctx->dispatch,
1407          * that is where we will continue on next queue run.
1408          */
1409         if (!list_empty(list)) {
1410                 bool needs_restart;
1411                 /* For non-shared tags, the RESTART check will suffice */
1412                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1413                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1414
1415                 if (nr_budgets)
1416                         blk_mq_release_budgets(q, list);
1417
1418                 spin_lock(&hctx->lock);
1419                 list_splice_tail_init(list, &hctx->dispatch);
1420                 spin_unlock(&hctx->lock);
1421
1422                 /*
1423                  * Order adding requests to hctx->dispatch and checking
1424                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1425                  * in blk_mq_sched_restart(). Avoid restart code path to
1426                  * miss the new added requests to hctx->dispatch, meantime
1427                  * SCHED_RESTART is observed here.
1428                  */
1429                 smp_mb();
1430
1431                 /*
1432                  * If SCHED_RESTART was set by the caller of this function and
1433                  * it is no longer set that means that it was cleared by another
1434                  * thread and hence that a queue rerun is needed.
1435                  *
1436                  * If 'no_tag' is set, that means that we failed getting
1437                  * a driver tag with an I/O scheduler attached. If our dispatch
1438                  * waitqueue is no longer active, ensure that we run the queue
1439                  * AFTER adding our entries back to the list.
1440                  *
1441                  * If no I/O scheduler has been configured it is possible that
1442                  * the hardware queue got stopped and restarted before requests
1443                  * were pushed back onto the dispatch list. Rerun the queue to
1444                  * avoid starvation. Notes:
1445                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1446                  *   been stopped before rerunning a queue.
1447                  * - Some but not all block drivers stop a queue before
1448                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1449                  *   and dm-rq.
1450                  *
1451                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1452                  * bit is set, run queue after a delay to avoid IO stalls
1453                  * that could otherwise occur if the queue is idle.  We'll do
1454                  * similar if we couldn't get budget or couldn't lock a zone
1455                  * and SCHED_RESTART is set.
1456                  */
1457                 needs_restart = blk_mq_sched_needs_restart(hctx);
1458                 if (prep == PREP_DISPATCH_NO_BUDGET)
1459                         needs_resource = true;
1460                 if (!needs_restart ||
1461                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1462                         blk_mq_run_hw_queue(hctx, true);
1463                 else if (needs_restart && needs_resource)
1464                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1465
1466                 blk_mq_update_dispatch_busy(hctx, true);
1467                 return false;
1468         } else
1469                 blk_mq_update_dispatch_busy(hctx, false);
1470
1471         return (queued + errors) != 0;
1472 }
1473
1474 /**
1475  * __blk_mq_run_hw_queue - Run a hardware queue.
1476  * @hctx: Pointer to the hardware queue to run.
1477  *
1478  * Send pending requests to the hardware.
1479  */
1480 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1481 {
1482         int srcu_idx;
1483
1484         /*
1485          * We can't run the queue inline with ints disabled. Ensure that
1486          * we catch bad users of this early.
1487          */
1488         WARN_ON_ONCE(in_interrupt());
1489
1490         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1491
1492         hctx_lock(hctx, &srcu_idx);
1493         blk_mq_sched_dispatch_requests(hctx);
1494         hctx_unlock(hctx, srcu_idx);
1495 }
1496
1497 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1498 {
1499         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1500
1501         if (cpu >= nr_cpu_ids)
1502                 cpu = cpumask_first(hctx->cpumask);
1503         return cpu;
1504 }
1505
1506 /*
1507  * It'd be great if the workqueue API had a way to pass
1508  * in a mask and had some smarts for more clever placement.
1509  * For now we just round-robin here, switching for every
1510  * BLK_MQ_CPU_WORK_BATCH queued items.
1511  */
1512 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1513 {
1514         bool tried = false;
1515         int next_cpu = hctx->next_cpu;
1516
1517         if (hctx->queue->nr_hw_queues == 1)
1518                 return WORK_CPU_UNBOUND;
1519
1520         if (--hctx->next_cpu_batch <= 0) {
1521 select_cpu:
1522                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1523                                 cpu_online_mask);
1524                 if (next_cpu >= nr_cpu_ids)
1525                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1526                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1527         }
1528
1529         /*
1530          * Do unbound schedule if we can't find a online CPU for this hctx,
1531          * and it should only happen in the path of handling CPU DEAD.
1532          */
1533         if (!cpu_online(next_cpu)) {
1534                 if (!tried) {
1535                         tried = true;
1536                         goto select_cpu;
1537                 }
1538
1539                 /*
1540                  * Make sure to re-select CPU next time once after CPUs
1541                  * in hctx->cpumask become online again.
1542                  */
1543                 hctx->next_cpu = next_cpu;
1544                 hctx->next_cpu_batch = 1;
1545                 return WORK_CPU_UNBOUND;
1546         }
1547
1548         hctx->next_cpu = next_cpu;
1549         return next_cpu;
1550 }
1551
1552 /**
1553  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1554  * @hctx: Pointer to the hardware queue to run.
1555  * @async: If we want to run the queue asynchronously.
1556  * @msecs: Milliseconds of delay to wait before running the queue.
1557  *
1558  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1559  * with a delay of @msecs.
1560  */
1561 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1562                                         unsigned long msecs)
1563 {
1564         if (unlikely(blk_mq_hctx_stopped(hctx)))
1565                 return;
1566
1567         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1568                 int cpu = get_cpu();
1569                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1570                         __blk_mq_run_hw_queue(hctx);
1571                         put_cpu();
1572                         return;
1573                 }
1574
1575                 put_cpu();
1576         }
1577
1578         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1579                                     msecs_to_jiffies(msecs));
1580 }
1581
1582 /**
1583  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1584  * @hctx: Pointer to the hardware queue to run.
1585  * @msecs: Milliseconds of delay to wait before running the queue.
1586  *
1587  * Run a hardware queue asynchronously with a delay of @msecs.
1588  */
1589 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1590 {
1591         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1592 }
1593 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1594
1595 /**
1596  * blk_mq_run_hw_queue - Start to run a hardware queue.
1597  * @hctx: Pointer to the hardware queue to run.
1598  * @async: If we want to run the queue asynchronously.
1599  *
1600  * Check if the request queue is not in a quiesced state and if there are
1601  * pending requests to be sent. If this is true, run the queue to send requests
1602  * to hardware.
1603  */
1604 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1605 {
1606         int srcu_idx;
1607         bool need_run;
1608
1609         /*
1610          * When queue is quiesced, we may be switching io scheduler, or
1611          * updating nr_hw_queues, or other things, and we can't run queue
1612          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1613          *
1614          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1615          * quiesced.
1616          */
1617         hctx_lock(hctx, &srcu_idx);
1618         need_run = !blk_queue_quiesced(hctx->queue) &&
1619                 blk_mq_hctx_has_pending(hctx);
1620         hctx_unlock(hctx, srcu_idx);
1621
1622         if (need_run)
1623                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1624 }
1625 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1626
1627 /*
1628  * Is the request queue handled by an IO scheduler that does not respect
1629  * hardware queues when dispatching?
1630  */
1631 static bool blk_mq_has_sqsched(struct request_queue *q)
1632 {
1633         struct elevator_queue *e = q->elevator;
1634
1635         if (e && e->type->ops.dispatch_request &&
1636             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1637                 return true;
1638         return false;
1639 }
1640
1641 /*
1642  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1643  * scheduler.
1644  */
1645 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1646 {
1647         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
1648         /*
1649          * If the IO scheduler does not respect hardware queues when
1650          * dispatching, we just don't bother with multiple HW queues and
1651          * dispatch from hctx for the current CPU since running multiple queues
1652          * just causes lock contention inside the scheduler and pointless cache
1653          * bouncing.
1654          */
1655         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, 0, ctx);
1656
1657         if (!blk_mq_hctx_stopped(hctx))
1658                 return hctx;
1659         return NULL;
1660 }
1661
1662 /**
1663  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1664  * @q: Pointer to the request queue to run.
1665  * @async: If we want to run the queue asynchronously.
1666  */
1667 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1668 {
1669         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1670         int i;
1671
1672         sq_hctx = NULL;
1673         if (blk_mq_has_sqsched(q))
1674                 sq_hctx = blk_mq_get_sq_hctx(q);
1675         queue_for_each_hw_ctx(q, hctx, i) {
1676                 if (blk_mq_hctx_stopped(hctx))
1677                         continue;
1678                 /*
1679                  * Dispatch from this hctx either if there's no hctx preferred
1680                  * by IO scheduler or if it has requests that bypass the
1681                  * scheduler.
1682                  */
1683                 if (!sq_hctx || sq_hctx == hctx ||
1684                     !list_empty_careful(&hctx->dispatch))
1685                         blk_mq_run_hw_queue(hctx, async);
1686         }
1687 }
1688 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1689
1690 /**
1691  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1692  * @q: Pointer to the request queue to run.
1693  * @msecs: Milliseconds of delay to wait before running the queues.
1694  */
1695 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1696 {
1697         struct blk_mq_hw_ctx *hctx, *sq_hctx;
1698         int i;
1699
1700         sq_hctx = NULL;
1701         if (blk_mq_has_sqsched(q))
1702                 sq_hctx = blk_mq_get_sq_hctx(q);
1703         queue_for_each_hw_ctx(q, hctx, i) {
1704                 if (blk_mq_hctx_stopped(hctx))
1705                         continue;
1706                 /*
1707                  * Dispatch from this hctx either if there's no hctx preferred
1708                  * by IO scheduler or if it has requests that bypass the
1709                  * scheduler.
1710                  */
1711                 if (!sq_hctx || sq_hctx == hctx ||
1712                     !list_empty_careful(&hctx->dispatch))
1713                         blk_mq_delay_run_hw_queue(hctx, msecs);
1714         }
1715 }
1716 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1717
1718 /**
1719  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1720  * @q: request queue.
1721  *
1722  * The caller is responsible for serializing this function against
1723  * blk_mq_{start,stop}_hw_queue().
1724  */
1725 bool blk_mq_queue_stopped(struct request_queue *q)
1726 {
1727         struct blk_mq_hw_ctx *hctx;
1728         int i;
1729
1730         queue_for_each_hw_ctx(q, hctx, i)
1731                 if (blk_mq_hctx_stopped(hctx))
1732                         return true;
1733
1734         return false;
1735 }
1736 EXPORT_SYMBOL(blk_mq_queue_stopped);
1737
1738 /*
1739  * This function is often used for pausing .queue_rq() by driver when
1740  * there isn't enough resource or some conditions aren't satisfied, and
1741  * BLK_STS_RESOURCE is usually returned.
1742  *
1743  * We do not guarantee that dispatch can be drained or blocked
1744  * after blk_mq_stop_hw_queue() returns. Please use
1745  * blk_mq_quiesce_queue() for that requirement.
1746  */
1747 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1748 {
1749         cancel_delayed_work(&hctx->run_work);
1750
1751         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1752 }
1753 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1754
1755 /*
1756  * This function is often used for pausing .queue_rq() by driver when
1757  * there isn't enough resource or some conditions aren't satisfied, and
1758  * BLK_STS_RESOURCE is usually returned.
1759  *
1760  * We do not guarantee that dispatch can be drained or blocked
1761  * after blk_mq_stop_hw_queues() returns. Please use
1762  * blk_mq_quiesce_queue() for that requirement.
1763  */
1764 void blk_mq_stop_hw_queues(struct request_queue *q)
1765 {
1766         struct blk_mq_hw_ctx *hctx;
1767         int i;
1768
1769         queue_for_each_hw_ctx(q, hctx, i)
1770                 blk_mq_stop_hw_queue(hctx);
1771 }
1772 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1773
1774 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1775 {
1776         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1777
1778         blk_mq_run_hw_queue(hctx, false);
1779 }
1780 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1781
1782 void blk_mq_start_hw_queues(struct request_queue *q)
1783 {
1784         struct blk_mq_hw_ctx *hctx;
1785         int i;
1786
1787         queue_for_each_hw_ctx(q, hctx, i)
1788                 blk_mq_start_hw_queue(hctx);
1789 }
1790 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1791
1792 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1793 {
1794         if (!blk_mq_hctx_stopped(hctx))
1795                 return;
1796
1797         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1798         blk_mq_run_hw_queue(hctx, async);
1799 }
1800 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1801
1802 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1803 {
1804         struct blk_mq_hw_ctx *hctx;
1805         int i;
1806
1807         queue_for_each_hw_ctx(q, hctx, i)
1808                 blk_mq_start_stopped_hw_queue(hctx, async);
1809 }
1810 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1811
1812 static void blk_mq_run_work_fn(struct work_struct *work)
1813 {
1814         struct blk_mq_hw_ctx *hctx;
1815
1816         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1817
1818         /*
1819          * If we are stopped, don't run the queue.
1820          */
1821         if (blk_mq_hctx_stopped(hctx))
1822                 return;
1823
1824         __blk_mq_run_hw_queue(hctx);
1825 }
1826
1827 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1828                                             struct request *rq,
1829                                             bool at_head)
1830 {
1831         struct blk_mq_ctx *ctx = rq->mq_ctx;
1832         enum hctx_type type = hctx->type;
1833
1834         lockdep_assert_held(&ctx->lock);
1835
1836         trace_block_rq_insert(rq);
1837
1838         if (at_head)
1839                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1840         else
1841                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1842 }
1843
1844 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1845                              bool at_head)
1846 {
1847         struct blk_mq_ctx *ctx = rq->mq_ctx;
1848
1849         lockdep_assert_held(&ctx->lock);
1850
1851         __blk_mq_insert_req_list(hctx, rq, at_head);
1852         blk_mq_hctx_mark_pending(hctx, ctx);
1853 }
1854
1855 /**
1856  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1857  * @rq: Pointer to request to be inserted.
1858  * @at_head: true if the request should be inserted at the head of the list.
1859  * @run_queue: If we should run the hardware queue after inserting the request.
1860  *
1861  * Should only be used carefully, when the caller knows we want to
1862  * bypass a potential IO scheduler on the target device.
1863  */
1864 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1865                                   bool run_queue)
1866 {
1867         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1868
1869         spin_lock(&hctx->lock);
1870         if (at_head)
1871                 list_add(&rq->queuelist, &hctx->dispatch);
1872         else
1873                 list_add_tail(&rq->queuelist, &hctx->dispatch);
1874         spin_unlock(&hctx->lock);
1875
1876         if (run_queue)
1877                 blk_mq_run_hw_queue(hctx, false);
1878 }
1879
1880 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1881                             struct list_head *list)
1882
1883 {
1884         struct request *rq;
1885         enum hctx_type type = hctx->type;
1886
1887         /*
1888          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1889          * offline now
1890          */
1891         list_for_each_entry(rq, list, queuelist) {
1892                 BUG_ON(rq->mq_ctx != ctx);
1893                 trace_block_rq_insert(rq);
1894         }
1895
1896         spin_lock(&ctx->lock);
1897         list_splice_tail_init(list, &ctx->rq_lists[type]);
1898         blk_mq_hctx_mark_pending(hctx, ctx);
1899         spin_unlock(&ctx->lock);
1900 }
1901
1902 static int plug_rq_cmp(void *priv, const struct list_head *a,
1903                        const struct list_head *b)
1904 {
1905         struct request *rqa = container_of(a, struct request, queuelist);
1906         struct request *rqb = container_of(b, struct request, queuelist);
1907
1908         if (rqa->mq_ctx != rqb->mq_ctx)
1909                 return rqa->mq_ctx > rqb->mq_ctx;
1910         if (rqa->mq_hctx != rqb->mq_hctx)
1911                 return rqa->mq_hctx > rqb->mq_hctx;
1912
1913         return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1914 }
1915
1916 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1917 {
1918         LIST_HEAD(list);
1919
1920         if (list_empty(&plug->mq_list))
1921                 return;
1922         list_splice_init(&plug->mq_list, &list);
1923
1924         if (plug->rq_count > 2 && plug->multiple_queues)
1925                 list_sort(NULL, &list, plug_rq_cmp);
1926
1927         plug->rq_count = 0;
1928
1929         do {
1930                 struct list_head rq_list;
1931                 struct request *rq, *head_rq = list_entry_rq(list.next);
1932                 struct list_head *pos = &head_rq->queuelist; /* skip first */
1933                 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1934                 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1935                 unsigned int depth = 1;
1936
1937                 list_for_each_continue(pos, &list) {
1938                         rq = list_entry_rq(pos);
1939                         BUG_ON(!rq->q);
1940                         if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1941                                 break;
1942                         depth++;
1943                 }
1944
1945                 list_cut_before(&rq_list, &list, pos);
1946                 trace_block_unplug(head_rq->q, depth, !from_schedule);
1947                 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1948                                                 from_schedule);
1949         } while(!list_empty(&list));
1950 }
1951
1952 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1953                 unsigned int nr_segs)
1954 {
1955         int err;
1956
1957         if (bio->bi_opf & REQ_RAHEAD)
1958                 rq->cmd_flags |= REQ_FAILFAST_MASK;
1959
1960         rq->__sector = bio->bi_iter.bi_sector;
1961         rq->write_hint = bio->bi_write_hint;
1962         blk_rq_bio_prep(rq, bio, nr_segs);
1963
1964         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1965         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1966         WARN_ON_ONCE(err);
1967
1968         blk_account_io_start(rq);
1969 }
1970
1971 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1972                                             struct request *rq,
1973                                             blk_qc_t *cookie, bool last)
1974 {
1975         struct request_queue *q = rq->q;
1976         struct blk_mq_queue_data bd = {
1977                 .rq = rq,
1978                 .last = last,
1979         };
1980         blk_qc_t new_cookie;
1981         blk_status_t ret;
1982
1983         new_cookie = request_to_qc_t(hctx, rq);
1984
1985         /*
1986          * For OK queue, we are done. For error, caller may kill it.
1987          * Any other error (busy), just add it to our list as we
1988          * previously would have done.
1989          */
1990         ret = q->mq_ops->queue_rq(hctx, &bd);
1991         switch (ret) {
1992         case BLK_STS_OK:
1993                 blk_mq_update_dispatch_busy(hctx, false);
1994                 *cookie = new_cookie;
1995                 break;
1996         case BLK_STS_RESOURCE:
1997         case BLK_STS_DEV_RESOURCE:
1998                 blk_mq_update_dispatch_busy(hctx, true);
1999                 __blk_mq_requeue_request(rq);
2000                 break;
2001         default:
2002                 blk_mq_update_dispatch_busy(hctx, false);
2003                 *cookie = BLK_QC_T_NONE;
2004                 break;
2005         }
2006
2007         return ret;
2008 }
2009
2010 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2011                                                 struct request *rq,
2012                                                 blk_qc_t *cookie,
2013                                                 bool bypass_insert, bool last)
2014 {
2015         struct request_queue *q = rq->q;
2016         bool run_queue = true;
2017         int budget_token;
2018
2019         /*
2020          * RCU or SRCU read lock is needed before checking quiesced flag.
2021          *
2022          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2023          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2024          * and avoid driver to try to dispatch again.
2025          */
2026         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2027                 run_queue = false;
2028                 bypass_insert = false;
2029                 goto insert;
2030         }
2031
2032         if (q->elevator && !bypass_insert)
2033                 goto insert;
2034
2035         budget_token = blk_mq_get_dispatch_budget(q);
2036         if (budget_token < 0)
2037                 goto insert;
2038
2039         blk_mq_set_rq_budget_token(rq, budget_token);
2040
2041         if (!blk_mq_get_driver_tag(rq)) {
2042                 blk_mq_put_dispatch_budget(q, budget_token);
2043                 goto insert;
2044         }
2045
2046         return __blk_mq_issue_directly(hctx, rq, cookie, last);
2047 insert:
2048         if (bypass_insert)
2049                 return BLK_STS_RESOURCE;
2050
2051         blk_mq_sched_insert_request(rq, false, run_queue, false);
2052
2053         return BLK_STS_OK;
2054 }
2055
2056 /**
2057  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2058  * @hctx: Pointer of the associated hardware queue.
2059  * @rq: Pointer to request to be sent.
2060  * @cookie: Request queue cookie.
2061  *
2062  * If the device has enough resources to accept a new request now, send the
2063  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2064  * we can try send it another time in the future. Requests inserted at this
2065  * queue have higher priority.
2066  */
2067 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2068                 struct request *rq, blk_qc_t *cookie)
2069 {
2070         blk_status_t ret;
2071         int srcu_idx;
2072
2073         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2074
2075         hctx_lock(hctx, &srcu_idx);
2076
2077         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2078         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2079                 blk_mq_request_bypass_insert(rq, false, true);
2080         else if (ret != BLK_STS_OK)
2081                 blk_mq_end_request(rq, ret);
2082
2083         hctx_unlock(hctx, srcu_idx);
2084 }
2085
2086 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2087 {
2088         blk_status_t ret;
2089         int srcu_idx;
2090         blk_qc_t unused_cookie;
2091         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2092
2093         hctx_lock(hctx, &srcu_idx);
2094         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2095         hctx_unlock(hctx, srcu_idx);
2096
2097         return ret;
2098 }
2099
2100 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2101                 struct list_head *list)
2102 {
2103         int queued = 0;
2104         int errors = 0;
2105
2106         while (!list_empty(list)) {
2107                 blk_status_t ret;
2108                 struct request *rq = list_first_entry(list, struct request,
2109                                 queuelist);
2110
2111                 list_del_init(&rq->queuelist);
2112                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2113                 if (ret != BLK_STS_OK) {
2114                         if (ret == BLK_STS_RESOURCE ||
2115                                         ret == BLK_STS_DEV_RESOURCE) {
2116                                 blk_mq_request_bypass_insert(rq, false,
2117                                                         list_empty(list));
2118                                 break;
2119                         }
2120                         blk_mq_end_request(rq, ret);
2121                         errors++;
2122                 } else
2123                         queued++;
2124         }
2125
2126         /*
2127          * If we didn't flush the entire list, we could have told
2128          * the driver there was more coming, but that turned out to
2129          * be a lie.
2130          */
2131         if ((!list_empty(list) || errors) &&
2132              hctx->queue->mq_ops->commit_rqs && queued)
2133                 hctx->queue->mq_ops->commit_rqs(hctx);
2134 }
2135
2136 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2137 {
2138         list_add_tail(&rq->queuelist, &plug->mq_list);
2139         plug->rq_count++;
2140         if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2141                 struct request *tmp;
2142
2143                 tmp = list_first_entry(&plug->mq_list, struct request,
2144                                                 queuelist);
2145                 if (tmp->q != rq->q)
2146                         plug->multiple_queues = true;
2147         }
2148 }
2149
2150 /*
2151  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2152  * queues. This is important for md arrays to benefit from merging
2153  * requests.
2154  */
2155 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2156 {
2157         if (plug->multiple_queues)
2158                 return BLK_MAX_REQUEST_COUNT * 2;
2159         return BLK_MAX_REQUEST_COUNT;
2160 }
2161
2162 /**
2163  * blk_mq_submit_bio - Create and send a request to block device.
2164  * @bio: Bio pointer.
2165  *
2166  * Builds up a request structure from @q and @bio and send to the device. The
2167  * request may not be queued directly to hardware if:
2168  * * This request can be merged with another one
2169  * * We want to place request at plug queue for possible future merging
2170  * * There is an IO scheduler active at this queue
2171  *
2172  * It will not queue the request if there is an error with the bio, or at the
2173  * request creation.
2174  *
2175  * Returns: Request queue cookie.
2176  */
2177 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2178 {
2179         struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2180         const int is_sync = op_is_sync(bio->bi_opf);
2181         const int is_flush_fua = op_is_flush(bio->bi_opf);
2182         struct blk_mq_alloc_data data = {
2183                 .q              = q,
2184         };
2185         struct request *rq;
2186         struct blk_plug *plug;
2187         struct request *same_queue_rq = NULL;
2188         unsigned int nr_segs;
2189         blk_qc_t cookie;
2190         blk_status_t ret;
2191         bool hipri;
2192
2193         blk_queue_bounce(q, &bio);
2194         __blk_queue_split(&bio, &nr_segs);
2195
2196         if (!bio_integrity_prep(bio))
2197                 goto queue_exit;
2198
2199         if (!is_flush_fua && !blk_queue_nomerges(q) &&
2200             blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2201                 goto queue_exit;
2202
2203         if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2204                 goto queue_exit;
2205
2206         rq_qos_throttle(q, bio);
2207
2208         hipri = bio->bi_opf & REQ_HIPRI;
2209
2210         data.cmd_flags = bio->bi_opf;
2211         rq = __blk_mq_alloc_request(&data);
2212         if (unlikely(!rq)) {
2213                 rq_qos_cleanup(q, bio);
2214                 if (bio->bi_opf & REQ_NOWAIT)
2215                         bio_wouldblock_error(bio);
2216                 goto queue_exit;
2217         }
2218
2219         trace_block_getrq(bio);
2220
2221         rq_qos_track(q, rq, bio);
2222
2223         cookie = request_to_qc_t(data.hctx, rq);
2224
2225         blk_mq_bio_to_request(rq, bio, nr_segs);
2226
2227         ret = blk_crypto_init_request(rq);
2228         if (ret != BLK_STS_OK) {
2229                 bio->bi_status = ret;
2230                 bio_endio(bio);
2231                 blk_mq_free_request(rq);
2232                 return BLK_QC_T_NONE;
2233         }
2234
2235         plug = blk_mq_plug(q, bio);
2236         if (unlikely(is_flush_fua)) {
2237                 /* Bypass scheduler for flush requests */
2238                 blk_insert_flush(rq);
2239                 blk_mq_run_hw_queue(data.hctx, true);
2240         } else if (plug && (q->nr_hw_queues == 1 ||
2241                    blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2242                    q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2243                 /*
2244                  * Use plugging if we have a ->commit_rqs() hook as well, as
2245                  * we know the driver uses bd->last in a smart fashion.
2246                  *
2247                  * Use normal plugging if this disk is slow HDD, as sequential
2248                  * IO may benefit a lot from plug merging.
2249                  */
2250                 unsigned int request_count = plug->rq_count;
2251                 struct request *last = NULL;
2252
2253                 if (!request_count)
2254                         trace_block_plug(q);
2255                 else
2256                         last = list_entry_rq(plug->mq_list.prev);
2257
2258                 if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2259                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2260                         blk_flush_plug_list(plug, false);
2261                         trace_block_plug(q);
2262                 }
2263
2264                 blk_add_rq_to_plug(plug, rq);
2265         } else if (q->elevator) {
2266                 /* Insert the request at the IO scheduler queue */
2267                 blk_mq_sched_insert_request(rq, false, true, true);
2268         } else if (plug && !blk_queue_nomerges(q)) {
2269                 /*
2270                  * We do limited plugging. If the bio can be merged, do that.
2271                  * Otherwise the existing request in the plug list will be
2272                  * issued. So the plug list will have one request at most
2273                  * The plug list might get flushed before this. If that happens,
2274                  * the plug list is empty, and same_queue_rq is invalid.
2275                  */
2276                 if (list_empty(&plug->mq_list))
2277                         same_queue_rq = NULL;
2278                 if (same_queue_rq) {
2279                         list_del_init(&same_queue_rq->queuelist);
2280                         plug->rq_count--;
2281                 }
2282                 blk_add_rq_to_plug(plug, rq);
2283                 trace_block_plug(q);
2284
2285                 if (same_queue_rq) {
2286                         data.hctx = same_queue_rq->mq_hctx;
2287                         trace_block_unplug(q, 1, true);
2288                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2289                                         &cookie);
2290                 }
2291         } else if ((q->nr_hw_queues > 1 && is_sync) ||
2292                         !data.hctx->dispatch_busy) {
2293                 /*
2294                  * There is no scheduler and we can try to send directly
2295                  * to the hardware.
2296                  */
2297                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2298         } else {
2299                 /* Default case. */
2300                 blk_mq_sched_insert_request(rq, false, true, true);
2301         }
2302
2303         if (!hipri)
2304                 return BLK_QC_T_NONE;
2305         return cookie;
2306 queue_exit:
2307         blk_queue_exit(q);
2308         return BLK_QC_T_NONE;
2309 }
2310
2311 static size_t order_to_size(unsigned int order)
2312 {
2313         return (size_t)PAGE_SIZE << order;
2314 }
2315
2316 /* called before freeing request pool in @tags */
2317 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2318                 struct blk_mq_tags *tags, unsigned int hctx_idx)
2319 {
2320         struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2321         struct page *page;
2322         unsigned long flags;
2323
2324         list_for_each_entry(page, &tags->page_list, lru) {
2325                 unsigned long start = (unsigned long)page_address(page);
2326                 unsigned long end = start + order_to_size(page->private);
2327                 int i;
2328
2329                 for (i = 0; i < set->queue_depth; i++) {
2330                         struct request *rq = drv_tags->rqs[i];
2331                         unsigned long rq_addr = (unsigned long)rq;
2332
2333                         if (rq_addr >= start && rq_addr < end) {
2334                                 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2335                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2336                         }
2337                 }
2338         }
2339
2340         /*
2341          * Wait until all pending iteration is done.
2342          *
2343          * Request reference is cleared and it is guaranteed to be observed
2344          * after the ->lock is released.
2345          */
2346         spin_lock_irqsave(&drv_tags->lock, flags);
2347         spin_unlock_irqrestore(&drv_tags->lock, flags);
2348 }
2349
2350 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2351                      unsigned int hctx_idx)
2352 {
2353         struct page *page;
2354
2355         if (tags->rqs && set->ops->exit_request) {
2356                 int i;
2357
2358                 for (i = 0; i < tags->nr_tags; i++) {
2359                         struct request *rq = tags->static_rqs[i];
2360
2361                         if (!rq)
2362                                 continue;
2363                         set->ops->exit_request(set, rq, hctx_idx);
2364                         tags->static_rqs[i] = NULL;
2365                 }
2366         }
2367
2368         blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2369
2370         while (!list_empty(&tags->page_list)) {
2371                 page = list_first_entry(&tags->page_list, struct page, lru);
2372                 list_del_init(&page->lru);
2373                 /*
2374                  * Remove kmemleak object previously allocated in
2375                  * blk_mq_alloc_rqs().
2376                  */
2377                 kmemleak_free(page_address(page));
2378                 __free_pages(page, page->private);
2379         }
2380 }
2381
2382 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2383 {
2384         kfree(tags->rqs);
2385         tags->rqs = NULL;
2386         kfree(tags->static_rqs);
2387         tags->static_rqs = NULL;
2388
2389         blk_mq_free_tags(tags, flags);
2390 }
2391
2392 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2393                                         unsigned int hctx_idx,
2394                                         unsigned int nr_tags,
2395                                         unsigned int reserved_tags,
2396                                         unsigned int flags)
2397 {
2398         struct blk_mq_tags *tags;
2399         int node;
2400
2401         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2402         if (node == NUMA_NO_NODE)
2403                 node = set->numa_node;
2404
2405         tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2406         if (!tags)
2407                 return NULL;
2408
2409         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2410                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2411                                  node);
2412         if (!tags->rqs) {
2413                 blk_mq_free_tags(tags, flags);
2414                 return NULL;
2415         }
2416
2417         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2418                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2419                                         node);
2420         if (!tags->static_rqs) {
2421                 kfree(tags->rqs);
2422                 blk_mq_free_tags(tags, flags);
2423                 return NULL;
2424         }
2425
2426         return tags;
2427 }
2428
2429 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2430                                unsigned int hctx_idx, int node)
2431 {
2432         int ret;
2433
2434         if (set->ops->init_request) {
2435                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2436                 if (ret)
2437                         return ret;
2438         }
2439
2440         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2441         return 0;
2442 }
2443
2444 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2445                      unsigned int hctx_idx, unsigned int depth)
2446 {
2447         unsigned int i, j, entries_per_page, max_order = 4;
2448         size_t rq_size, left;
2449         int node;
2450
2451         node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2452         if (node == NUMA_NO_NODE)
2453                 node = set->numa_node;
2454
2455         INIT_LIST_HEAD(&tags->page_list);
2456
2457         /*
2458          * rq_size is the size of the request plus driver payload, rounded
2459          * to the cacheline size
2460          */
2461         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2462                                 cache_line_size());
2463         left = rq_size * depth;
2464
2465         for (i = 0; i < depth; ) {
2466                 int this_order = max_order;
2467                 struct page *page;
2468                 int to_do;
2469                 void *p;
2470
2471                 while (this_order && left < order_to_size(this_order - 1))
2472                         this_order--;
2473
2474                 do {
2475                         page = alloc_pages_node(node,
2476                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2477                                 this_order);
2478                         if (page)
2479                                 break;
2480                         if (!this_order--)
2481                                 break;
2482                         if (order_to_size(this_order) < rq_size)
2483                                 break;
2484                 } while (1);
2485
2486                 if (!page)
2487                         goto fail;
2488
2489                 page->private = this_order;
2490                 list_add_tail(&page->lru, &tags->page_list);
2491
2492                 p = page_address(page);
2493                 /*
2494                  * Allow kmemleak to scan these pages as they contain pointers
2495                  * to additional allocations like via ops->init_request().
2496                  */
2497                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2498                 entries_per_page = order_to_size(this_order) / rq_size;
2499                 to_do = min(entries_per_page, depth - i);
2500                 left -= to_do * rq_size;
2501                 for (j = 0; j < to_do; j++) {
2502                         struct request *rq = p;
2503
2504                         tags->static_rqs[i] = rq;
2505                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2506                                 tags->static_rqs[i] = NULL;
2507                                 goto fail;
2508                         }
2509
2510                         p += rq_size;
2511                         i++;
2512                 }
2513         }
2514         return 0;
2515
2516 fail:
2517         blk_mq_free_rqs(set, tags, hctx_idx);
2518         return -ENOMEM;
2519 }
2520
2521 struct rq_iter_data {
2522         struct blk_mq_hw_ctx *hctx;
2523         bool has_rq;
2524 };
2525
2526 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2527 {
2528         struct rq_iter_data *iter_data = data;
2529
2530         if (rq->mq_hctx != iter_data->hctx)
2531                 return true;
2532         iter_data->has_rq = true;
2533         return false;
2534 }
2535
2536 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2537 {
2538         struct blk_mq_tags *tags = hctx->sched_tags ?
2539                         hctx->sched_tags : hctx->tags;
2540         struct rq_iter_data data = {
2541                 .hctx   = hctx,
2542         };
2543
2544         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2545         return data.has_rq;
2546 }
2547
2548 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2549                 struct blk_mq_hw_ctx *hctx)
2550 {
2551         if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2552                 return false;
2553         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2554                 return false;
2555         return true;
2556 }
2557
2558 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2559 {
2560         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2561                         struct blk_mq_hw_ctx, cpuhp_online);
2562
2563         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2564             !blk_mq_last_cpu_in_hctx(cpu, hctx))
2565                 return 0;
2566
2567         /*
2568          * Prevent new request from being allocated on the current hctx.
2569          *
2570          * The smp_mb__after_atomic() Pairs with the implied barrier in
2571          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2572          * seen once we return from the tag allocator.
2573          */
2574         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2575         smp_mb__after_atomic();
2576
2577         /*
2578          * Try to grab a reference to the queue and wait for any outstanding
2579          * requests.  If we could not grab a reference the queue has been
2580          * frozen and there are no requests.
2581          */
2582         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2583                 while (blk_mq_hctx_has_requests(hctx))
2584                         msleep(5);
2585                 percpu_ref_put(&hctx->queue->q_usage_counter);
2586         }
2587
2588         return 0;
2589 }
2590
2591 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2592 {
2593         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2594                         struct blk_mq_hw_ctx, cpuhp_online);
2595
2596         if (cpumask_test_cpu(cpu, hctx->cpumask))
2597                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2598         return 0;
2599 }
2600
2601 /*
2602  * 'cpu' is going away. splice any existing rq_list entries from this
2603  * software queue to the hw queue dispatch list, and ensure that it
2604  * gets run.
2605  */
2606 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2607 {
2608         struct blk_mq_hw_ctx *hctx;
2609         struct blk_mq_ctx *ctx;
2610         LIST_HEAD(tmp);
2611         enum hctx_type type;
2612
2613         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2614         if (!cpumask_test_cpu(cpu, hctx->cpumask))
2615                 return 0;
2616
2617         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2618         type = hctx->type;
2619
2620         spin_lock(&ctx->lock);
2621         if (!list_empty(&ctx->rq_lists[type])) {
2622                 list_splice_init(&ctx->rq_lists[type], &tmp);
2623                 blk_mq_hctx_clear_pending(hctx, ctx);
2624         }
2625         spin_unlock(&ctx->lock);
2626
2627         if (list_empty(&tmp))
2628                 return 0;
2629
2630         spin_lock(&hctx->lock);
2631         list_splice_tail_init(&tmp, &hctx->dispatch);
2632         spin_unlock(&hctx->lock);
2633
2634         blk_mq_run_hw_queue(hctx, true);
2635         return 0;
2636 }
2637
2638 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2639 {
2640         if (!(hctx->flags & BLK_MQ_F_STACKING))
2641                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2642                                                     &hctx->cpuhp_online);
2643         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2644                                             &hctx->cpuhp_dead);
2645 }
2646
2647 /*
2648  * Before freeing hw queue, clearing the flush request reference in
2649  * tags->rqs[] for avoiding potential UAF.
2650  */
2651 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2652                 unsigned int queue_depth, struct request *flush_rq)
2653 {
2654         int i;
2655         unsigned long flags;
2656
2657         /* The hw queue may not be mapped yet */
2658         if (!tags)
2659                 return;
2660
2661         WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2662
2663         for (i = 0; i < queue_depth; i++)
2664                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2665
2666         /*
2667          * Wait until all pending iteration is done.
2668          *
2669          * Request reference is cleared and it is guaranteed to be observed
2670          * after the ->lock is released.
2671          */
2672         spin_lock_irqsave(&tags->lock, flags);
2673         spin_unlock_irqrestore(&tags->lock, flags);
2674 }
2675
2676 /* hctx->ctxs will be freed in queue's release handler */
2677 static void blk_mq_exit_hctx(struct request_queue *q,
2678                 struct blk_mq_tag_set *set,
2679                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2680 {
2681         struct request *flush_rq = hctx->fq->flush_rq;
2682
2683         if (blk_mq_hw_queue_mapped(hctx))
2684                 blk_mq_tag_idle(hctx);
2685
2686         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2687                         set->queue_depth, flush_rq);
2688         if (set->ops->exit_request)
2689                 set->ops->exit_request(set, flush_rq, hctx_idx);
2690
2691         if (set->ops->exit_hctx)
2692                 set->ops->exit_hctx(hctx, hctx_idx);
2693
2694         blk_mq_remove_cpuhp(hctx);
2695
2696         spin_lock(&q->unused_hctx_lock);
2697         list_add(&hctx->hctx_list, &q->unused_hctx_list);
2698         spin_unlock(&q->unused_hctx_lock);
2699 }
2700
2701 static void blk_mq_exit_hw_queues(struct request_queue *q,
2702                 struct blk_mq_tag_set *set, int nr_queue)
2703 {
2704         struct blk_mq_hw_ctx *hctx;
2705         unsigned int i;
2706
2707         queue_for_each_hw_ctx(q, hctx, i) {
2708                 if (i == nr_queue)
2709                         break;
2710                 blk_mq_debugfs_unregister_hctx(hctx);
2711                 blk_mq_exit_hctx(q, set, hctx, i);
2712         }
2713 }
2714
2715 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2716 {
2717         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2718
2719         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2720                            __alignof__(struct blk_mq_hw_ctx)) !=
2721                      sizeof(struct blk_mq_hw_ctx));
2722
2723         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2724                 hw_ctx_size += sizeof(struct srcu_struct);
2725
2726         return hw_ctx_size;
2727 }
2728
2729 static int blk_mq_init_hctx(struct request_queue *q,
2730                 struct blk_mq_tag_set *set,
2731                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2732 {
2733         hctx->queue_num = hctx_idx;
2734
2735         if (!(hctx->flags & BLK_MQ_F_STACKING))
2736                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2737                                 &hctx->cpuhp_online);
2738         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2739
2740         hctx->tags = set->tags[hctx_idx];
2741
2742         if (set->ops->init_hctx &&
2743             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2744                 goto unregister_cpu_notifier;
2745
2746         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2747                                 hctx->numa_node))
2748                 goto exit_hctx;
2749         return 0;
2750
2751  exit_hctx:
2752         if (set->ops->exit_hctx)
2753                 set->ops->exit_hctx(hctx, hctx_idx);
2754  unregister_cpu_notifier:
2755         blk_mq_remove_cpuhp(hctx);
2756         return -1;
2757 }
2758
2759 static struct blk_mq_hw_ctx *
2760 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2761                 int node)
2762 {
2763         struct blk_mq_hw_ctx *hctx;
2764         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2765
2766         hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2767         if (!hctx)
2768                 goto fail_alloc_hctx;
2769
2770         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2771                 goto free_hctx;
2772
2773         atomic_set(&hctx->nr_active, 0);
2774         if (node == NUMA_NO_NODE)
2775                 node = set->numa_node;
2776         hctx->numa_node = node;
2777
2778         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2779         spin_lock_init(&hctx->lock);
2780         INIT_LIST_HEAD(&hctx->dispatch);
2781         hctx->queue = q;
2782         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2783
2784         INIT_LIST_HEAD(&hctx->hctx_list);
2785
2786         /*
2787          * Allocate space for all possible cpus to avoid allocation at
2788          * runtime
2789          */
2790         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2791                         gfp, node);
2792         if (!hctx->ctxs)
2793                 goto free_cpumask;
2794
2795         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2796                                 gfp, node, false, false))
2797                 goto free_ctxs;
2798         hctx->nr_ctx = 0;
2799
2800         spin_lock_init(&hctx->dispatch_wait_lock);
2801         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2802         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2803
2804         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2805         if (!hctx->fq)
2806                 goto free_bitmap;
2807
2808         if (hctx->flags & BLK_MQ_F_BLOCKING)
2809                 init_srcu_struct(hctx->srcu);
2810         blk_mq_hctx_kobj_init(hctx);
2811
2812         return hctx;
2813
2814  free_bitmap:
2815         sbitmap_free(&hctx->ctx_map);
2816  free_ctxs:
2817         kfree(hctx->ctxs);
2818  free_cpumask:
2819         free_cpumask_var(hctx->cpumask);
2820  free_hctx:
2821         kfree(hctx);
2822  fail_alloc_hctx:
2823         return NULL;
2824 }
2825
2826 static void blk_mq_init_cpu_queues(struct request_queue *q,
2827                                    unsigned int nr_hw_queues)
2828 {
2829         struct blk_mq_tag_set *set = q->tag_set;
2830         unsigned int i, j;
2831
2832         for_each_possible_cpu(i) {
2833                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2834                 struct blk_mq_hw_ctx *hctx;
2835                 int k;
2836
2837                 __ctx->cpu = i;
2838                 spin_lock_init(&__ctx->lock);
2839                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2840                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2841
2842                 __ctx->queue = q;
2843
2844                 /*
2845                  * Set local node, IFF we have more than one hw queue. If
2846                  * not, we remain on the home node of the device
2847                  */
2848                 for (j = 0; j < set->nr_maps; j++) {
2849                         hctx = blk_mq_map_queue_type(q, j, i);
2850                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2851                                 hctx->numa_node = cpu_to_node(i);
2852                 }
2853         }
2854 }
2855
2856 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2857                                         int hctx_idx)
2858 {
2859         unsigned int flags = set->flags;
2860         int ret = 0;
2861
2862         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2863                                         set->queue_depth, set->reserved_tags, flags);
2864         if (!set->tags[hctx_idx])
2865                 return false;
2866
2867         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2868                                 set->queue_depth);
2869         if (!ret)
2870                 return true;
2871
2872         blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2873         set->tags[hctx_idx] = NULL;
2874         return false;
2875 }
2876
2877 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2878                                          unsigned int hctx_idx)
2879 {
2880         unsigned int flags = set->flags;
2881
2882         if (set->tags && set->tags[hctx_idx]) {
2883                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2884                 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2885                 set->tags[hctx_idx] = NULL;
2886         }
2887 }
2888
2889 static void blk_mq_map_swqueue(struct request_queue *q)
2890 {
2891         unsigned int i, j, hctx_idx;
2892         struct blk_mq_hw_ctx *hctx;
2893         struct blk_mq_ctx *ctx;
2894         struct blk_mq_tag_set *set = q->tag_set;
2895
2896         queue_for_each_hw_ctx(q, hctx, i) {
2897                 cpumask_clear(hctx->cpumask);
2898                 hctx->nr_ctx = 0;
2899                 hctx->dispatch_from = NULL;
2900         }
2901
2902         /*
2903          * Map software to hardware queues.
2904          *
2905          * If the cpu isn't present, the cpu is mapped to first hctx.
2906          */
2907         for_each_possible_cpu(i) {
2908
2909                 ctx = per_cpu_ptr(q->queue_ctx, i);
2910                 for (j = 0; j < set->nr_maps; j++) {
2911                         if (!set->map[j].nr_queues) {
2912                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2913                                                 HCTX_TYPE_DEFAULT, i);
2914                                 continue;
2915                         }
2916                         hctx_idx = set->map[j].mq_map[i];
2917                         /* unmapped hw queue can be remapped after CPU topo changed */
2918                         if (!set->tags[hctx_idx] &&
2919                             !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2920                                 /*
2921                                  * If tags initialization fail for some hctx,
2922                                  * that hctx won't be brought online.  In this
2923                                  * case, remap the current ctx to hctx[0] which
2924                                  * is guaranteed to always have tags allocated
2925                                  */
2926                                 set->map[j].mq_map[i] = 0;
2927                         }
2928
2929                         hctx = blk_mq_map_queue_type(q, j, i);
2930                         ctx->hctxs[j] = hctx;
2931                         /*
2932                          * If the CPU is already set in the mask, then we've
2933                          * mapped this one already. This can happen if
2934                          * devices share queues across queue maps.
2935                          */
2936                         if (cpumask_test_cpu(i, hctx->cpumask))
2937                                 continue;
2938
2939                         cpumask_set_cpu(i, hctx->cpumask);
2940                         hctx->type = j;
2941                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
2942                         hctx->ctxs[hctx->nr_ctx++] = ctx;
2943
2944                         /*
2945                          * If the nr_ctx type overflows, we have exceeded the
2946                          * amount of sw queues we can support.
2947                          */
2948                         BUG_ON(!hctx->nr_ctx);
2949                 }
2950
2951                 for (; j < HCTX_MAX_TYPES; j++)
2952                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
2953                                         HCTX_TYPE_DEFAULT, i);
2954         }
2955
2956         queue_for_each_hw_ctx(q, hctx, i) {
2957                 /*
2958                  * If no software queues are mapped to this hardware queue,
2959                  * disable it and free the request entries.
2960                  */
2961                 if (!hctx->nr_ctx) {
2962                         /* Never unmap queue 0.  We need it as a
2963                          * fallback in case of a new remap fails
2964                          * allocation
2965                          */
2966                         if (i && set->tags[i])
2967                                 blk_mq_free_map_and_requests(set, i);
2968
2969                         hctx->tags = NULL;
2970                         continue;
2971                 }
2972
2973                 hctx->tags = set->tags[i];
2974                 WARN_ON(!hctx->tags);
2975
2976                 /*
2977                  * Set the map size to the number of mapped software queues.
2978                  * This is more accurate and more efficient than looping
2979                  * over all possibly mapped software queues.
2980                  */
2981                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2982
2983                 /*
2984                  * Initialize batch roundrobin counts
2985                  */
2986                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2987                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2988         }
2989 }
2990
2991 /*
2992  * Caller needs to ensure that we're either frozen/quiesced, or that
2993  * the queue isn't live yet.
2994  */
2995 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2996 {
2997         struct blk_mq_hw_ctx *hctx;
2998         int i;
2999
3000         queue_for_each_hw_ctx(q, hctx, i) {
3001                 if (shared) {
3002                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3003                 } else {
3004                         blk_mq_tag_idle(hctx);
3005                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3006                 }
3007         }
3008 }
3009
3010 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3011                                          bool shared)
3012 {
3013         struct request_queue *q;
3014
3015         lockdep_assert_held(&set->tag_list_lock);
3016
3017         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3018                 blk_mq_freeze_queue(q);
3019                 queue_set_hctx_shared(q, shared);
3020                 blk_mq_unfreeze_queue(q);
3021         }
3022 }
3023
3024 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3025 {
3026         struct blk_mq_tag_set *set = q->tag_set;
3027
3028         mutex_lock(&set->tag_list_lock);
3029         list_del(&q->tag_set_list);
3030         if (list_is_singular(&set->tag_list)) {
3031                 /* just transitioned to unshared */
3032                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3033                 /* update existing queue */
3034                 blk_mq_update_tag_set_shared(set, false);
3035         }
3036         mutex_unlock(&set->tag_list_lock);
3037         INIT_LIST_HEAD(&q->tag_set_list);
3038 }
3039
3040 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3041                                      struct request_queue *q)
3042 {
3043         mutex_lock(&set->tag_list_lock);
3044
3045         /*
3046          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3047          */
3048         if (!list_empty(&set->tag_list) &&
3049             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3050                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3051                 /* update existing queue */
3052                 blk_mq_update_tag_set_shared(set, true);
3053         }
3054         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3055                 queue_set_hctx_shared(q, true);
3056         list_add_tail(&q->tag_set_list, &set->tag_list);
3057
3058         mutex_unlock(&set->tag_list_lock);
3059 }
3060
3061 /* All allocations will be freed in release handler of q->mq_kobj */
3062 static int blk_mq_alloc_ctxs(struct request_queue *q)
3063 {
3064         struct blk_mq_ctxs *ctxs;
3065         int cpu;
3066
3067         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3068         if (!ctxs)
3069                 return -ENOMEM;
3070
3071         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3072         if (!ctxs->queue_ctx)
3073                 goto fail;
3074
3075         for_each_possible_cpu(cpu) {
3076                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3077                 ctx->ctxs = ctxs;
3078         }
3079
3080         q->mq_kobj = &ctxs->kobj;
3081         q->queue_ctx = ctxs->queue_ctx;
3082
3083         return 0;
3084  fail:
3085         kfree(ctxs);
3086         return -ENOMEM;
3087 }
3088
3089 /*
3090  * It is the actual release handler for mq, but we do it from
3091  * request queue's release handler for avoiding use-after-free
3092  * and headache because q->mq_kobj shouldn't have been introduced,
3093  * but we can't group ctx/kctx kobj without it.
3094  */
3095 void blk_mq_release(struct request_queue *q)
3096 {
3097         struct blk_mq_hw_ctx *hctx, *next;
3098         int i;
3099
3100         queue_for_each_hw_ctx(q, hctx, i)
3101                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3102
3103         /* all hctx are in .unused_hctx_list now */
3104         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3105                 list_del_init(&hctx->hctx_list);
3106                 kobject_put(&hctx->kobj);
3107         }
3108
3109         kfree(q->queue_hw_ctx);
3110
3111         /*
3112          * release .mq_kobj and sw queue's kobject now because
3113          * both share lifetime with request queue.
3114          */
3115         blk_mq_sysfs_deinit(q);
3116 }
3117
3118 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3119                 void *queuedata)
3120 {
3121         struct request_queue *q;
3122         int ret;
3123
3124         q = blk_alloc_queue(set->numa_node);
3125         if (!q)
3126                 return ERR_PTR(-ENOMEM);
3127         q->queuedata = queuedata;
3128         ret = blk_mq_init_allocated_queue(set, q);
3129         if (ret) {
3130                 blk_cleanup_queue(q);
3131                 return ERR_PTR(ret);
3132         }
3133         return q;
3134 }
3135
3136 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3137 {
3138         return blk_mq_init_queue_data(set, NULL);
3139 }
3140 EXPORT_SYMBOL(blk_mq_init_queue);
3141
3142 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3143                 struct lock_class_key *lkclass)
3144 {
3145         struct request_queue *q;
3146         struct gendisk *disk;
3147
3148         q = blk_mq_init_queue_data(set, queuedata);
3149         if (IS_ERR(q))
3150                 return ERR_CAST(q);
3151
3152         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3153         if (!disk) {
3154                 blk_cleanup_queue(q);
3155                 return ERR_PTR(-ENOMEM);
3156         }
3157         return disk;
3158 }
3159 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3160
3161 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3162                 struct blk_mq_tag_set *set, struct request_queue *q,
3163                 int hctx_idx, int node)
3164 {
3165         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3166
3167         /* reuse dead hctx first */
3168         spin_lock(&q->unused_hctx_lock);
3169         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3170                 if (tmp->numa_node == node) {
3171                         hctx = tmp;
3172                         break;
3173                 }
3174         }
3175         if (hctx)
3176                 list_del_init(&hctx->hctx_list);
3177         spin_unlock(&q->unused_hctx_lock);
3178
3179         if (!hctx)
3180                 hctx = blk_mq_alloc_hctx(q, set, node);
3181         if (!hctx)
3182                 goto fail;
3183
3184         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3185                 goto free_hctx;
3186
3187         return hctx;
3188
3189  free_hctx:
3190         kobject_put(&hctx->kobj);
3191  fail:
3192         return NULL;
3193 }
3194
3195 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3196                                                 struct request_queue *q)
3197 {
3198         int i, j, end;
3199         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3200
3201         if (q->nr_hw_queues < set->nr_hw_queues) {
3202                 struct blk_mq_hw_ctx **new_hctxs;
3203
3204                 new_hctxs = kcalloc_node(set->nr_hw_queues,
3205                                        sizeof(*new_hctxs), GFP_KERNEL,
3206                                        set->numa_node);
3207                 if (!new_hctxs)
3208                         return;
3209                 if (hctxs)
3210                         memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3211                                sizeof(*hctxs));
3212                 q->queue_hw_ctx = new_hctxs;
3213                 kfree(hctxs);
3214                 hctxs = new_hctxs;
3215         }
3216
3217         /* protect against switching io scheduler  */
3218         mutex_lock(&q->sysfs_lock);
3219         for (i = 0; i < set->nr_hw_queues; i++) {
3220                 int node;
3221                 struct blk_mq_hw_ctx *hctx;
3222
3223                 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3224                 /*
3225                  * If the hw queue has been mapped to another numa node,
3226                  * we need to realloc the hctx. If allocation fails, fallback
3227                  * to use the previous one.
3228                  */
3229                 if (hctxs[i] && (hctxs[i]->numa_node == node))
3230                         continue;
3231
3232                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3233                 if (hctx) {
3234                         if (hctxs[i])
3235                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
3236                         hctxs[i] = hctx;
3237                 } else {
3238                         if (hctxs[i])
3239                                 pr_warn("Allocate new hctx on node %d fails,\
3240                                                 fallback to previous one on node %d\n",
3241                                                 node, hctxs[i]->numa_node);
3242                         else
3243                                 break;
3244                 }
3245         }
3246         /*
3247          * Increasing nr_hw_queues fails. Free the newly allocated
3248          * hctxs and keep the previous q->nr_hw_queues.
3249          */
3250         if (i != set->nr_hw_queues) {
3251                 j = q->nr_hw_queues;
3252                 end = i;
3253         } else {
3254                 j = i;
3255                 end = q->nr_hw_queues;
3256                 q->nr_hw_queues = set->nr_hw_queues;
3257         }
3258
3259         for (; j < end; j++) {
3260                 struct blk_mq_hw_ctx *hctx = hctxs[j];
3261
3262                 if (hctx) {
3263                         if (hctx->tags)
3264                                 blk_mq_free_map_and_requests(set, j);
3265                         blk_mq_exit_hctx(q, set, hctx, j);
3266                         hctxs[j] = NULL;
3267                 }
3268         }
3269         mutex_unlock(&q->sysfs_lock);
3270 }
3271
3272 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3273                 struct request_queue *q)
3274 {
3275         /* mark the queue as mq asap */
3276         q->mq_ops = set->ops;
3277
3278         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3279                                              blk_mq_poll_stats_bkt,
3280                                              BLK_MQ_POLL_STATS_BKTS, q);
3281         if (!q->poll_cb)
3282                 goto err_exit;
3283
3284         if (blk_mq_alloc_ctxs(q))
3285                 goto err_poll;
3286
3287         /* init q->mq_kobj and sw queues' kobjects */
3288         blk_mq_sysfs_init(q);
3289
3290         INIT_LIST_HEAD(&q->unused_hctx_list);
3291         spin_lock_init(&q->unused_hctx_lock);
3292
3293         blk_mq_realloc_hw_ctxs(set, q);
3294         if (!q->nr_hw_queues)
3295                 goto err_hctxs;
3296
3297         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3298         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3299
3300         q->tag_set = set;
3301
3302         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3303         if (set->nr_maps > HCTX_TYPE_POLL &&
3304             set->map[HCTX_TYPE_POLL].nr_queues)
3305                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3306
3307         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3308         INIT_LIST_HEAD(&q->requeue_list);
3309         spin_lock_init(&q->requeue_lock);
3310
3311         q->nr_requests = set->queue_depth;
3312
3313         /*
3314          * Default to classic polling
3315          */
3316         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3317
3318         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3319         blk_mq_add_queue_tag_set(set, q);
3320         blk_mq_map_swqueue(q);
3321         return 0;
3322
3323 err_hctxs:
3324         kfree(q->queue_hw_ctx);
3325         q->nr_hw_queues = 0;
3326         blk_mq_sysfs_deinit(q);
3327 err_poll:
3328         blk_stat_free_callback(q->poll_cb);
3329         q->poll_cb = NULL;
3330 err_exit:
3331         q->mq_ops = NULL;
3332         return -ENOMEM;
3333 }
3334 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3335
3336 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3337 void blk_mq_exit_queue(struct request_queue *q)
3338 {
3339         struct blk_mq_tag_set *set = q->tag_set;
3340
3341         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3342         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3343         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3344         blk_mq_del_queue_tag_set(q);
3345 }
3346
3347 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3348 {
3349         int i;
3350
3351         for (i = 0; i < set->nr_hw_queues; i++) {
3352                 if (!__blk_mq_alloc_map_and_request(set, i))
3353                         goto out_unwind;
3354                 cond_resched();
3355         }
3356
3357         return 0;
3358
3359 out_unwind:
3360         while (--i >= 0)
3361                 blk_mq_free_map_and_requests(set, i);
3362
3363         return -ENOMEM;
3364 }
3365
3366 /*
3367  * Allocate the request maps associated with this tag_set. Note that this
3368  * may reduce the depth asked for, if memory is tight. set->queue_depth
3369  * will be updated to reflect the allocated depth.
3370  */
3371 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3372 {
3373         unsigned int depth;
3374         int err;
3375
3376         depth = set->queue_depth;
3377         do {
3378                 err = __blk_mq_alloc_rq_maps(set);
3379                 if (!err)
3380                         break;
3381
3382                 set->queue_depth >>= 1;
3383                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3384                         err = -ENOMEM;
3385                         break;
3386                 }
3387         } while (set->queue_depth);
3388
3389         if (!set->queue_depth || err) {
3390                 pr_err("blk-mq: failed to allocate request map\n");
3391                 return -ENOMEM;
3392         }
3393
3394         if (depth != set->queue_depth)
3395                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3396                                                 depth, set->queue_depth);
3397
3398         return 0;
3399 }
3400
3401 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3402 {
3403         /*
3404          * blk_mq_map_queues() and multiple .map_queues() implementations
3405          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3406          * number of hardware queues.
3407          */
3408         if (set->nr_maps == 1)
3409                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3410
3411         if (set->ops->map_queues && !is_kdump_kernel()) {
3412                 int i;
3413
3414                 /*
3415                  * transport .map_queues is usually done in the following
3416                  * way:
3417                  *
3418                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3419                  *      mask = get_cpu_mask(queue)
3420                  *      for_each_cpu(cpu, mask)
3421                  *              set->map[x].mq_map[cpu] = queue;
3422                  * }
3423                  *
3424                  * When we need to remap, the table has to be cleared for
3425                  * killing stale mapping since one CPU may not be mapped
3426                  * to any hw queue.
3427                  */
3428                 for (i = 0; i < set->nr_maps; i++)
3429                         blk_mq_clear_mq_map(&set->map[i]);
3430
3431                 return set->ops->map_queues(set);
3432         } else {
3433                 BUG_ON(set->nr_maps > 1);
3434                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3435         }
3436 }
3437
3438 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3439                                   int cur_nr_hw_queues, int new_nr_hw_queues)
3440 {
3441         struct blk_mq_tags **new_tags;
3442
3443         if (cur_nr_hw_queues >= new_nr_hw_queues)
3444                 return 0;
3445
3446         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3447                                 GFP_KERNEL, set->numa_node);
3448         if (!new_tags)
3449                 return -ENOMEM;
3450
3451         if (set->tags)
3452                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3453                        sizeof(*set->tags));
3454         kfree(set->tags);
3455         set->tags = new_tags;
3456         set->nr_hw_queues = new_nr_hw_queues;
3457
3458         return 0;
3459 }
3460
3461 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3462                                 int new_nr_hw_queues)
3463 {
3464         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3465 }
3466
3467 /*
3468  * Alloc a tag set to be associated with one or more request queues.
3469  * May fail with EINVAL for various error conditions. May adjust the
3470  * requested depth down, if it's too large. In that case, the set
3471  * value will be stored in set->queue_depth.
3472  */
3473 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3474 {
3475         int i, ret;
3476
3477         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3478
3479         if (!set->nr_hw_queues)
3480                 return -EINVAL;
3481         if (!set->queue_depth)
3482                 return -EINVAL;
3483         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3484                 return -EINVAL;
3485
3486         if (!set->ops->queue_rq)
3487                 return -EINVAL;
3488
3489         if (!set->ops->get_budget ^ !set->ops->put_budget)
3490                 return -EINVAL;
3491
3492         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3493                 pr_info("blk-mq: reduced tag depth to %u\n",
3494                         BLK_MQ_MAX_DEPTH);
3495                 set->queue_depth = BLK_MQ_MAX_DEPTH;
3496         }
3497
3498         if (!set->nr_maps)
3499                 set->nr_maps = 1;
3500         else if (set->nr_maps > HCTX_MAX_TYPES)
3501                 return -EINVAL;
3502
3503         /*
3504          * If a crashdump is active, then we are potentially in a very
3505          * memory constrained environment. Limit us to 1 queue and
3506          * 64 tags to prevent using too much memory.
3507          */
3508         if (is_kdump_kernel()) {
3509                 set->nr_hw_queues = 1;
3510                 set->nr_maps = 1;
3511                 set->queue_depth = min(64U, set->queue_depth);
3512         }
3513         /*
3514          * There is no use for more h/w queues than cpus if we just have
3515          * a single map
3516          */
3517         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3518                 set->nr_hw_queues = nr_cpu_ids;
3519
3520         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3521                 return -ENOMEM;
3522
3523         ret = -ENOMEM;
3524         for (i = 0; i < set->nr_maps; i++) {
3525                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3526                                                   sizeof(set->map[i].mq_map[0]),
3527                                                   GFP_KERNEL, set->numa_node);
3528                 if (!set->map[i].mq_map)
3529                         goto out_free_mq_map;
3530                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3531         }
3532
3533         ret = blk_mq_update_queue_map(set);
3534         if (ret)
3535                 goto out_free_mq_map;
3536
3537         ret = blk_mq_alloc_map_and_requests(set);
3538         if (ret)
3539                 goto out_free_mq_map;
3540
3541         if (blk_mq_is_sbitmap_shared(set->flags)) {
3542                 atomic_set(&set->active_queues_shared_sbitmap, 0);
3543
3544                 if (blk_mq_init_shared_sbitmap(set)) {
3545                         ret = -ENOMEM;
3546                         goto out_free_mq_rq_maps;
3547                 }
3548         }
3549
3550         mutex_init(&set->tag_list_lock);
3551         INIT_LIST_HEAD(&set->tag_list);
3552
3553         return 0;
3554
3555 out_free_mq_rq_maps:
3556         for (i = 0; i < set->nr_hw_queues; i++)
3557                 blk_mq_free_map_and_requests(set, i);
3558 out_free_mq_map:
3559         for (i = 0; i < set->nr_maps; i++) {
3560                 kfree(set->map[i].mq_map);
3561                 set->map[i].mq_map = NULL;
3562         }
3563         kfree(set->tags);
3564         set->tags = NULL;
3565         return ret;
3566 }
3567 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3568
3569 /* allocate and initialize a tagset for a simple single-queue device */
3570 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3571                 const struct blk_mq_ops *ops, unsigned int queue_depth,
3572                 unsigned int set_flags)
3573 {
3574         memset(set, 0, sizeof(*set));
3575         set->ops = ops;
3576         set->nr_hw_queues = 1;
3577         set->nr_maps = 1;
3578         set->queue_depth = queue_depth;
3579         set->numa_node = NUMA_NO_NODE;
3580         set->flags = set_flags;
3581         return blk_mq_alloc_tag_set(set);
3582 }
3583 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3584
3585 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3586 {
3587         int i, j;
3588
3589         for (i = 0; i < set->nr_hw_queues; i++)
3590                 blk_mq_free_map_and_requests(set, i);
3591
3592         if (blk_mq_is_sbitmap_shared(set->flags))
3593                 blk_mq_exit_shared_sbitmap(set);
3594
3595         for (j = 0; j < set->nr_maps; j++) {
3596                 kfree(set->map[j].mq_map);
3597                 set->map[j].mq_map = NULL;
3598         }
3599
3600         kfree(set->tags);
3601         set->tags = NULL;
3602 }
3603 EXPORT_SYMBOL(blk_mq_free_tag_set);
3604
3605 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3606 {
3607         struct blk_mq_tag_set *set = q->tag_set;
3608         struct blk_mq_hw_ctx *hctx;
3609         int i, ret;
3610
3611         if (!set)
3612                 return -EINVAL;
3613
3614         if (q->nr_requests == nr)
3615                 return 0;
3616
3617         blk_mq_freeze_queue(q);
3618         blk_mq_quiesce_queue(q);
3619
3620         ret = 0;
3621         queue_for_each_hw_ctx(q, hctx, i) {
3622                 if (!hctx->tags)
3623                         continue;
3624                 /*
3625                  * If we're using an MQ scheduler, just update the scheduler
3626                  * queue depth. This is similar to what the old code would do.
3627                  */
3628                 if (!hctx->sched_tags) {
3629                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3630                                                         false);
3631                         if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3632                                 blk_mq_tag_resize_shared_sbitmap(set, nr);
3633                 } else {
3634                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3635                                                         nr, true);
3636                         if (blk_mq_is_sbitmap_shared(set->flags)) {
3637                                 hctx->sched_tags->bitmap_tags =
3638                                         &q->sched_bitmap_tags;
3639                                 hctx->sched_tags->breserved_tags =
3640                                         &q->sched_breserved_tags;
3641                         }
3642                 }
3643                 if (ret)
3644                         break;
3645                 if (q->elevator && q->elevator->type->ops.depth_updated)
3646                         q->elevator->type->ops.depth_updated(hctx);
3647         }
3648         if (!ret) {
3649                 q->nr_requests = nr;
3650                 if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3651                         sbitmap_queue_resize(&q->sched_bitmap_tags,
3652                                              nr - set->reserved_tags);
3653         }
3654
3655         blk_mq_unquiesce_queue(q);
3656         blk_mq_unfreeze_queue(q);
3657
3658         return ret;
3659 }
3660
3661 /*
3662  * request_queue and elevator_type pair.
3663  * It is just used by __blk_mq_update_nr_hw_queues to cache
3664  * the elevator_type associated with a request_queue.
3665  */
3666 struct blk_mq_qe_pair {
3667         struct list_head node;
3668         struct request_queue *q;
3669         struct elevator_type *type;
3670 };
3671
3672 /*
3673  * Cache the elevator_type in qe pair list and switch the
3674  * io scheduler to 'none'
3675  */
3676 static bool blk_mq_elv_switch_none(struct list_head *head,
3677                 struct request_queue *q)
3678 {
3679         struct blk_mq_qe_pair *qe;
3680
3681         if (!q->elevator)
3682                 return true;
3683
3684         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3685         if (!qe)
3686                 return false;
3687
3688         INIT_LIST_HEAD(&qe->node);
3689         qe->q = q;
3690         qe->type = q->elevator->type;
3691         list_add(&qe->node, head);
3692
3693         mutex_lock(&q->sysfs_lock);
3694         /*
3695          * After elevator_switch_mq, the previous elevator_queue will be
3696          * released by elevator_release. The reference of the io scheduler
3697          * module get by elevator_get will also be put. So we need to get
3698          * a reference of the io scheduler module here to prevent it to be
3699          * removed.
3700          */
3701         __module_get(qe->type->elevator_owner);
3702         elevator_switch_mq(q, NULL);
3703         mutex_unlock(&q->sysfs_lock);
3704
3705         return true;
3706 }
3707
3708 static void blk_mq_elv_switch_back(struct list_head *head,
3709                 struct request_queue *q)
3710 {
3711         struct blk_mq_qe_pair *qe;
3712         struct elevator_type *t = NULL;
3713
3714         list_for_each_entry(qe, head, node)
3715                 if (qe->q == q) {
3716                         t = qe->type;
3717                         break;
3718                 }
3719
3720         if (!t)
3721                 return;
3722
3723         list_del(&qe->node);
3724         kfree(qe);
3725
3726         mutex_lock(&q->sysfs_lock);
3727         elevator_switch_mq(q, t);
3728         mutex_unlock(&q->sysfs_lock);
3729 }
3730
3731 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3732                                                         int nr_hw_queues)
3733 {
3734         struct request_queue *q;
3735         LIST_HEAD(head);
3736         int prev_nr_hw_queues;
3737
3738         lockdep_assert_held(&set->tag_list_lock);
3739
3740         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3741                 nr_hw_queues = nr_cpu_ids;
3742         if (nr_hw_queues < 1)
3743                 return;
3744         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3745                 return;
3746
3747         list_for_each_entry(q, &set->tag_list, tag_set_list)
3748                 blk_mq_freeze_queue(q);
3749         /*
3750          * Switch IO scheduler to 'none', cleaning up the data associated
3751          * with the previous scheduler. We will switch back once we are done
3752          * updating the new sw to hw queue mappings.
3753          */
3754         list_for_each_entry(q, &set->tag_list, tag_set_list)
3755                 if (!blk_mq_elv_switch_none(&head, q))
3756                         goto switch_back;
3757
3758         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3759                 blk_mq_debugfs_unregister_hctxs(q);
3760                 blk_mq_sysfs_unregister(q);
3761         }
3762
3763         prev_nr_hw_queues = set->nr_hw_queues;
3764         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3765             0)
3766                 goto reregister;
3767
3768         set->nr_hw_queues = nr_hw_queues;
3769 fallback:
3770         blk_mq_update_queue_map(set);
3771         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3772                 blk_mq_realloc_hw_ctxs(set, q);
3773                 if (q->nr_hw_queues != set->nr_hw_queues) {
3774                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3775                                         nr_hw_queues, prev_nr_hw_queues);
3776                         set->nr_hw_queues = prev_nr_hw_queues;
3777                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3778                         goto fallback;
3779                 }
3780                 blk_mq_map_swqueue(q);
3781         }
3782
3783 reregister:
3784         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3785                 blk_mq_sysfs_register(q);
3786                 blk_mq_debugfs_register_hctxs(q);
3787         }
3788
3789 switch_back:
3790         list_for_each_entry(q, &set->tag_list, tag_set_list)
3791                 blk_mq_elv_switch_back(&head, q);
3792
3793         list_for_each_entry(q, &set->tag_list, tag_set_list)
3794                 blk_mq_unfreeze_queue(q);
3795 }
3796
3797 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3798 {
3799         mutex_lock(&set->tag_list_lock);
3800         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3801         mutex_unlock(&set->tag_list_lock);
3802 }
3803 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3804
3805 /* Enable polling stats and return whether they were already enabled. */
3806 static bool blk_poll_stats_enable(struct request_queue *q)
3807 {
3808         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3809             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3810                 return true;
3811         blk_stat_add_callback(q, q->poll_cb);
3812         return false;
3813 }
3814
3815 static void blk_mq_poll_stats_start(struct request_queue *q)
3816 {
3817         /*
3818          * We don't arm the callback if polling stats are not enabled or the
3819          * callback is already active.
3820          */
3821         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3822             blk_stat_is_active(q->poll_cb))
3823                 return;
3824
3825         blk_stat_activate_msecs(q->poll_cb, 100);
3826 }
3827
3828 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3829 {
3830         struct request_queue *q = cb->data;
3831         int bucket;
3832
3833         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3834                 if (cb->stat[bucket].nr_samples)
3835                         q->poll_stat[bucket] = cb->stat[bucket];
3836         }
3837 }
3838
3839 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3840                                        struct request *rq)
3841 {
3842         unsigned long ret = 0;
3843         int bucket;
3844
3845         /*
3846          * If stats collection isn't on, don't sleep but turn it on for
3847          * future users
3848          */
3849         if (!blk_poll_stats_enable(q))
3850                 return 0;
3851
3852         /*
3853          * As an optimistic guess, use half of the mean service time
3854          * for this type of request. We can (and should) make this smarter.
3855          * For instance, if the completion latencies are tight, we can
3856          * get closer than just half the mean. This is especially
3857          * important on devices where the completion latencies are longer
3858          * than ~10 usec. We do use the stats for the relevant IO size
3859          * if available which does lead to better estimates.
3860          */
3861         bucket = blk_mq_poll_stats_bkt(rq);
3862         if (bucket < 0)
3863                 return ret;
3864
3865         if (q->poll_stat[bucket].nr_samples)
3866                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3867
3868         return ret;
3869 }
3870
3871 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3872                                      struct request *rq)
3873 {
3874         struct hrtimer_sleeper hs;
3875         enum hrtimer_mode mode;
3876         unsigned int nsecs;
3877         ktime_t kt;
3878
3879         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3880                 return false;
3881
3882         /*
3883          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3884          *
3885          *  0:  use half of prev avg
3886          * >0:  use this specific value
3887          */
3888         if (q->poll_nsec > 0)
3889                 nsecs = q->poll_nsec;
3890         else
3891                 nsecs = blk_mq_poll_nsecs(q, rq);
3892
3893         if (!nsecs)
3894                 return false;
3895
3896         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3897
3898         /*
3899          * This will be replaced with the stats tracking code, using
3900          * 'avg_completion_time / 2' as the pre-sleep target.
3901          */
3902         kt = nsecs;
3903
3904         mode = HRTIMER_MODE_REL;
3905         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3906         hrtimer_set_expires(&hs.timer, kt);
3907
3908         do {
3909                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3910                         break;
3911                 set_current_state(TASK_UNINTERRUPTIBLE);
3912                 hrtimer_sleeper_start_expires(&hs, mode);
3913                 if (hs.task)
3914                         io_schedule();
3915                 hrtimer_cancel(&hs.timer);
3916                 mode = HRTIMER_MODE_ABS;
3917         } while (hs.task && !signal_pending(current));
3918
3919         __set_current_state(TASK_RUNNING);
3920         destroy_hrtimer_on_stack(&hs.timer);
3921         return true;
3922 }
3923
3924 static bool blk_mq_poll_hybrid(struct request_queue *q,
3925                                struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3926 {
3927         struct request *rq;
3928
3929         if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3930                 return false;
3931
3932         if (!blk_qc_t_is_internal(cookie))
3933                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3934         else {
3935                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3936                 /*
3937                  * With scheduling, if the request has completed, we'll
3938                  * get a NULL return here, as we clear the sched tag when
3939                  * that happens. The request still remains valid, like always,
3940                  * so we should be safe with just the NULL check.
3941                  */
3942                 if (!rq)
3943                         return false;
3944         }
3945
3946         return blk_mq_poll_hybrid_sleep(q, rq);
3947 }
3948
3949 /**
3950  * blk_poll - poll for IO completions
3951  * @q:  the queue
3952  * @cookie: cookie passed back at IO submission time
3953  * @spin: whether to spin for completions
3954  *
3955  * Description:
3956  *    Poll for completions on the passed in queue. Returns number of
3957  *    completed entries found. If @spin is true, then blk_poll will continue
3958  *    looping until at least one completion is found, unless the task is
3959  *    otherwise marked running (or we need to reschedule).
3960  */
3961 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3962 {
3963         struct blk_mq_hw_ctx *hctx;
3964         unsigned int state;
3965
3966         if (!blk_qc_t_valid(cookie) ||
3967             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3968                 return 0;
3969
3970         if (current->plug)
3971                 blk_flush_plug_list(current->plug, false);
3972
3973         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3974
3975         /*
3976          * If we sleep, have the caller restart the poll loop to reset
3977          * the state. Like for the other success return cases, the
3978          * caller is responsible for checking if the IO completed. If
3979          * the IO isn't complete, we'll get called again and will go
3980          * straight to the busy poll loop. If specified not to spin,
3981          * we also should not sleep.
3982          */
3983         if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3984                 return 1;
3985
3986         hctx->poll_considered++;
3987
3988         state = get_current_state();
3989         do {
3990                 int ret;
3991
3992                 hctx->poll_invoked++;
3993
3994                 ret = q->mq_ops->poll(hctx);
3995                 if (ret > 0) {
3996                         hctx->poll_success++;
3997                         __set_current_state(TASK_RUNNING);
3998                         return ret;
3999                 }
4000
4001                 if (signal_pending_state(state, current))
4002                         __set_current_state(TASK_RUNNING);
4003
4004                 if (task_is_running(current))
4005                         return 1;
4006                 if (ret < 0 || !spin)
4007                         break;
4008                 cpu_relax();
4009         } while (!need_resched());
4010
4011         __set_current_state(TASK_RUNNING);
4012         return 0;
4013 }
4014 EXPORT_SYMBOL_GPL(blk_poll);
4015
4016 unsigned int blk_mq_rq_cpu(struct request *rq)
4017 {
4018         return rq->mq_ctx->cpu;
4019 }
4020 EXPORT_SYMBOL(blk_mq_rq_cpu);
4021
4022 void blk_mq_cancel_work_sync(struct request_queue *q)
4023 {
4024         if (queue_is_mq(q)) {
4025                 struct blk_mq_hw_ctx *hctx;
4026                 int i;
4027
4028                 cancel_delayed_work_sync(&q->requeue_work);
4029
4030                 queue_for_each_hw_ctx(q, hctx, i)
4031                         cancel_delayed_work_sync(&hctx->run_work);
4032         }
4033 }
4034
4035 static int __init blk_mq_init(void)
4036 {
4037         int i;
4038
4039         for_each_possible_cpu(i)
4040                 init_llist_head(&per_cpu(blk_cpu_done, i));
4041         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4042
4043         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4044                                   "block/softirq:dead", NULL,
4045                                   blk_softirq_cpu_dead);
4046         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4047                                 blk_mq_hctx_notify_dead);
4048         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4049                                 blk_mq_hctx_notify_online,
4050                                 blk_mq_hctx_notify_offline);
4051         return 0;
4052 }
4053 subsys_initcall(blk_mq_init);