GNU Linux-libre 6.0.15-gnu
[releases.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54         int ddir, sectors, bucket;
55
56         ddir = rq_data_dir(rq);
57         sectors = blk_rq_stats_sectors(rq);
58
59         bucket = ddir + 2 * ilog2(sectors);
60
61         if (bucket < 0)
62                 return -1;
63         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65
66         return bucket;
67 }
68
69 #define BLK_QC_T_SHIFT          16
70 #define BLK_QC_T_INTERNAL       (1U << 31)
71
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73                 blk_qc_t qc)
74 {
75         return xa_load(&q->hctx_table,
76                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80                 blk_qc_t qc)
81 {
82         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83
84         if (qc & BLK_QC_T_INTERNAL)
85                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86         return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92                 (rq->tag != -1 ?
93                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102         return !list_empty_careful(&hctx->dispatch) ||
103                 sbitmap_any_bit_set(&hctx->ctx_map) ||
104                         blk_mq_sched_has_work(hctx);
105 }
106
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111                                      struct blk_mq_ctx *ctx)
112 {
113         const int bit = ctx->index_hw[hctx->type];
114
115         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116                 sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120                                       struct blk_mq_ctx *ctx)
121 {
122         const int bit = ctx->index_hw[hctx->type];
123
124         sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126
127 struct mq_inflight {
128         struct block_device *part;
129         unsigned int inflight[2];
130 };
131
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264         if (blk_queue_has_srcu(q))
265                 synchronize_srcu(q->srcu);
266         else
267                 synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282         blk_mq_quiesce_queue_nowait(q);
283         blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296         unsigned long flags;
297         bool run_queue = false;
298
299         spin_lock_irqsave(&q->queue_lock, flags);
300         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301                 ;
302         } else if (!--q->quiesce_depth) {
303                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304                 run_queue = true;
305         }
306         spin_unlock_irqrestore(&q->queue_lock, flags);
307
308         /* dispatch requests which are inserted during quiescing */
309         if (run_queue)
310                 blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316         struct blk_mq_hw_ctx *hctx;
317         unsigned long i;
318
319         queue_for_each_hw_ctx(q, hctx, i)
320                 if (blk_mq_hw_queue_mapped(hctx))
321                         blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326         memset(rq, 0, sizeof(*rq));
327
328         INIT_LIST_HEAD(&rq->queuelist);
329         rq->q = q;
330         rq->__sector = (sector_t) -1;
331         INIT_HLIST_NODE(&rq->hash);
332         RB_CLEAR_NODE(&rq->rb_node);
333         rq->tag = BLK_MQ_NO_TAG;
334         rq->internal_tag = BLK_MQ_NO_TAG;
335         rq->start_time_ns = ktime_get_ns();
336         rq->part = NULL;
337         blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344         struct blk_mq_ctx *ctx = data->ctx;
345         struct blk_mq_hw_ctx *hctx = data->hctx;
346         struct request_queue *q = data->q;
347         struct request *rq = tags->static_rqs[tag];
348
349         rq->q = q;
350         rq->mq_ctx = ctx;
351         rq->mq_hctx = hctx;
352         rq->cmd_flags = data->cmd_flags;
353
354         if (data->flags & BLK_MQ_REQ_PM)
355                 data->rq_flags |= RQF_PM;
356         if (blk_queue_io_stat(q))
357                 data->rq_flags |= RQF_IO_STAT;
358         rq->rq_flags = data->rq_flags;
359
360         if (!(data->rq_flags & RQF_ELV)) {
361                 rq->tag = tag;
362                 rq->internal_tag = BLK_MQ_NO_TAG;
363         } else {
364                 rq->tag = BLK_MQ_NO_TAG;
365                 rq->internal_tag = tag;
366         }
367         rq->timeout = 0;
368
369         if (blk_mq_need_time_stamp(rq))
370                 rq->start_time_ns = ktime_get_ns();
371         else
372                 rq->start_time_ns = 0;
373         rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375         rq->alloc_time_ns = alloc_time_ns;
376 #endif
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_ELV) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (!op_is_flush(data->cmd_flags) &&
399                     e->type->ops.prepare_request) {
400                         e->type->ops.prepare_request(rq);
401                         rq->rq_flags |= RQF_ELVPRIV;
402                 }
403         }
404
405         return rq;
406 }
407
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410                 u64 alloc_time_ns)
411 {
412         unsigned int tag, tag_offset;
413         struct blk_mq_tags *tags;
414         struct request *rq;
415         unsigned long tag_mask;
416         int i, nr = 0;
417
418         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419         if (unlikely(!tag_mask))
420                 return NULL;
421
422         tags = blk_mq_tags_from_data(data);
423         for (i = 0; tag_mask; i++) {
424                 if (!(tag_mask & (1UL << i)))
425                         continue;
426                 tag = tag_offset + i;
427                 prefetch(tags->static_rqs[tag]);
428                 tag_mask &= ~(1UL << i);
429                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430                 rq_list_add(data->cached_rq, rq);
431                 nr++;
432         }
433         /* caller already holds a reference, add for remainder */
434         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435         data->nr_tags -= nr;
436
437         return rq_list_pop(data->cached_rq);
438 }
439
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442         struct request_queue *q = data->q;
443         u64 alloc_time_ns = 0;
444         struct request *rq;
445         unsigned int tag;
446
447         /* alloc_time includes depth and tag waits */
448         if (blk_queue_rq_alloc_time(q))
449                 alloc_time_ns = ktime_get_ns();
450
451         if (data->cmd_flags & REQ_NOWAIT)
452                 data->flags |= BLK_MQ_REQ_NOWAIT;
453
454         if (q->elevator) {
455                 struct elevator_queue *e = q->elevator;
456
457                 data->rq_flags |= RQF_ELV;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list. Don't include reserved tags in the
462                  * limiting, as it isn't useful.
463                  */
464                 if (!op_is_flush(data->cmd_flags) &&
465                     !blk_op_is_passthrough(data->cmd_flags) &&
466                     e->type->ops.limit_depth &&
467                     !(data->flags & BLK_MQ_REQ_RESERVED))
468                         e->type->ops.limit_depth(data->cmd_flags, data);
469         }
470
471 retry:
472         data->ctx = blk_mq_get_ctx(q);
473         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474         if (!(data->rq_flags & RQF_ELV))
475                 blk_mq_tag_busy(data->hctx);
476
477         if (data->flags & BLK_MQ_REQ_RESERVED)
478                 data->rq_flags |= RQF_RESV;
479
480         /*
481          * Try batched alloc if we want more than 1 tag.
482          */
483         if (data->nr_tags > 1) {
484                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
485                 if (rq)
486                         return rq;
487                 data->nr_tags = 1;
488         }
489
490         /*
491          * Waiting allocations only fail because of an inactive hctx.  In that
492          * case just retry the hctx assignment and tag allocation as CPU hotplug
493          * should have migrated us to an online CPU by now.
494          */
495         tag = blk_mq_get_tag(data);
496         if (tag == BLK_MQ_NO_TAG) {
497                 if (data->flags & BLK_MQ_REQ_NOWAIT)
498                         return NULL;
499                 /*
500                  * Give up the CPU and sleep for a random short time to
501                  * ensure that thread using a realtime scheduling class
502                  * are migrated off the CPU, and thus off the hctx that
503                  * is going away.
504                  */
505                 msleep(3);
506                 goto retry;
507         }
508
509         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
510                                         alloc_time_ns);
511 }
512
513 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
514                 blk_mq_req_flags_t flags)
515 {
516         struct blk_mq_alloc_data data = {
517                 .q              = q,
518                 .flags          = flags,
519                 .cmd_flags      = opf,
520                 .nr_tags        = 1,
521         };
522         struct request *rq;
523         int ret;
524
525         ret = blk_queue_enter(q, flags);
526         if (ret)
527                 return ERR_PTR(ret);
528
529         rq = __blk_mq_alloc_requests(&data);
530         if (!rq)
531                 goto out_queue_exit;
532         rq->__data_len = 0;
533         rq->__sector = (sector_t) -1;
534         rq->bio = rq->biotail = NULL;
535         return rq;
536 out_queue_exit:
537         blk_queue_exit(q);
538         return ERR_PTR(-EWOULDBLOCK);
539 }
540 EXPORT_SYMBOL(blk_mq_alloc_request);
541
542 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
543         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
544 {
545         struct blk_mq_alloc_data data = {
546                 .q              = q,
547                 .flags          = flags,
548                 .cmd_flags      = opf,
549                 .nr_tags        = 1,
550         };
551         u64 alloc_time_ns = 0;
552         unsigned int cpu;
553         unsigned int tag;
554         int ret;
555
556         /* alloc_time includes depth and tag waits */
557         if (blk_queue_rq_alloc_time(q))
558                 alloc_time_ns = ktime_get_ns();
559
560         /*
561          * If the tag allocator sleeps we could get an allocation for a
562          * different hardware context.  No need to complicate the low level
563          * allocator for this for the rare use case of a command tied to
564          * a specific queue.
565          */
566         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
567                 return ERR_PTR(-EINVAL);
568
569         if (hctx_idx >= q->nr_hw_queues)
570                 return ERR_PTR(-EIO);
571
572         ret = blk_queue_enter(q, flags);
573         if (ret)
574                 return ERR_PTR(ret);
575
576         /*
577          * Check if the hardware context is actually mapped to anything.
578          * If not tell the caller that it should skip this queue.
579          */
580         ret = -EXDEV;
581         data.hctx = xa_load(&q->hctx_table, hctx_idx);
582         if (!blk_mq_hw_queue_mapped(data.hctx))
583                 goto out_queue_exit;
584         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
585         if (cpu >= nr_cpu_ids)
586                 goto out_queue_exit;
587         data.ctx = __blk_mq_get_ctx(q, cpu);
588
589         if (!q->elevator)
590                 blk_mq_tag_busy(data.hctx);
591         else
592                 data.rq_flags |= RQF_ELV;
593
594         if (flags & BLK_MQ_REQ_RESERVED)
595                 data.rq_flags |= RQF_RESV;
596
597         ret = -EWOULDBLOCK;
598         tag = blk_mq_get_tag(&data);
599         if (tag == BLK_MQ_NO_TAG)
600                 goto out_queue_exit;
601         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
602                                         alloc_time_ns);
603
604 out_queue_exit:
605         blk_queue_exit(q);
606         return ERR_PTR(ret);
607 }
608 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
609
610 static void __blk_mq_free_request(struct request *rq)
611 {
612         struct request_queue *q = rq->q;
613         struct blk_mq_ctx *ctx = rq->mq_ctx;
614         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
615         const int sched_tag = rq->internal_tag;
616
617         blk_crypto_free_request(rq);
618         blk_pm_mark_last_busy(rq);
619         rq->mq_hctx = NULL;
620         if (rq->tag != BLK_MQ_NO_TAG)
621                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
622         if (sched_tag != BLK_MQ_NO_TAG)
623                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
624         blk_mq_sched_restart(hctx);
625         blk_queue_exit(q);
626 }
627
628 void blk_mq_free_request(struct request *rq)
629 {
630         struct request_queue *q = rq->q;
631         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
632
633         if ((rq->rq_flags & RQF_ELVPRIV) &&
634             q->elevator->type->ops.finish_request)
635                 q->elevator->type->ops.finish_request(rq);
636
637         if (rq->rq_flags & RQF_MQ_INFLIGHT)
638                 __blk_mq_dec_active_requests(hctx);
639
640         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
641                 laptop_io_completion(q->disk->bdi);
642
643         rq_qos_done(q, rq);
644
645         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
646         if (req_ref_put_and_test(rq))
647                 __blk_mq_free_request(rq);
648 }
649 EXPORT_SYMBOL_GPL(blk_mq_free_request);
650
651 void blk_mq_free_plug_rqs(struct blk_plug *plug)
652 {
653         struct request *rq;
654
655         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
656                 blk_mq_free_request(rq);
657 }
658
659 void blk_dump_rq_flags(struct request *rq, char *msg)
660 {
661         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
662                 rq->q->disk ? rq->q->disk->disk_name : "?",
663                 (__force unsigned long long) rq->cmd_flags);
664
665         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
666                (unsigned long long)blk_rq_pos(rq),
667                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
668         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
669                rq->bio, rq->biotail, blk_rq_bytes(rq));
670 }
671 EXPORT_SYMBOL(blk_dump_rq_flags);
672
673 static void req_bio_endio(struct request *rq, struct bio *bio,
674                           unsigned int nbytes, blk_status_t error)
675 {
676         if (unlikely(error)) {
677                 bio->bi_status = error;
678         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
679                 /*
680                  * Partial zone append completions cannot be supported as the
681                  * BIO fragments may end up not being written sequentially.
682                  */
683                 if (bio->bi_iter.bi_size != nbytes)
684                         bio->bi_status = BLK_STS_IOERR;
685                 else
686                         bio->bi_iter.bi_sector = rq->__sector;
687         }
688
689         bio_advance(bio, nbytes);
690
691         if (unlikely(rq->rq_flags & RQF_QUIET))
692                 bio_set_flag(bio, BIO_QUIET);
693         /* don't actually finish bio if it's part of flush sequence */
694         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
695                 bio_endio(bio);
696 }
697
698 static void blk_account_io_completion(struct request *req, unsigned int bytes)
699 {
700         if (req->part && blk_do_io_stat(req)) {
701                 const int sgrp = op_stat_group(req_op(req));
702
703                 part_stat_lock();
704                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
705                 part_stat_unlock();
706         }
707 }
708
709 static void blk_print_req_error(struct request *req, blk_status_t status)
710 {
711         printk_ratelimited(KERN_ERR
712                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
713                 "phys_seg %u prio class %u\n",
714                 blk_status_to_str(status),
715                 req->q->disk ? req->q->disk->disk_name : "?",
716                 blk_rq_pos(req), (__force u32)req_op(req),
717                 blk_op_str(req_op(req)),
718                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
719                 req->nr_phys_segments,
720                 IOPRIO_PRIO_CLASS(req->ioprio));
721 }
722
723 /*
724  * Fully end IO on a request. Does not support partial completions, or
725  * errors.
726  */
727 static void blk_complete_request(struct request *req)
728 {
729         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
730         int total_bytes = blk_rq_bytes(req);
731         struct bio *bio = req->bio;
732
733         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
734
735         if (!bio)
736                 return;
737
738 #ifdef CONFIG_BLK_DEV_INTEGRITY
739         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
740                 req->q->integrity.profile->complete_fn(req, total_bytes);
741 #endif
742
743         blk_account_io_completion(req, total_bytes);
744
745         do {
746                 struct bio *next = bio->bi_next;
747
748                 /* Completion has already been traced */
749                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
750
751                 if (req_op(req) == REQ_OP_ZONE_APPEND)
752                         bio->bi_iter.bi_sector = req->__sector;
753
754                 if (!is_flush)
755                         bio_endio(bio);
756                 bio = next;
757         } while (bio);
758
759         /*
760          * Reset counters so that the request stacking driver
761          * can find how many bytes remain in the request
762          * later.
763          */
764         req->bio = NULL;
765         req->__data_len = 0;
766 }
767
768 /**
769  * blk_update_request - Complete multiple bytes without completing the request
770  * @req:      the request being processed
771  * @error:    block status code
772  * @nr_bytes: number of bytes to complete for @req
773  *
774  * Description:
775  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
776  *     the request structure even if @req doesn't have leftover.
777  *     If @req has leftover, sets it up for the next range of segments.
778  *
779  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
780  *     %false return from this function.
781  *
782  * Note:
783  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
784  *      except in the consistency check at the end of this function.
785  *
786  * Return:
787  *     %false - this request doesn't have any more data
788  *     %true  - this request has more data
789  **/
790 bool blk_update_request(struct request *req, blk_status_t error,
791                 unsigned int nr_bytes)
792 {
793         int total_bytes;
794
795         trace_block_rq_complete(req, error, nr_bytes);
796
797         if (!req->bio)
798                 return false;
799
800 #ifdef CONFIG_BLK_DEV_INTEGRITY
801         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
802             error == BLK_STS_OK)
803                 req->q->integrity.profile->complete_fn(req, nr_bytes);
804 #endif
805
806         if (unlikely(error && !blk_rq_is_passthrough(req) &&
807                      !(req->rq_flags & RQF_QUIET)) &&
808                      !test_bit(GD_DEAD, &req->q->disk->state)) {
809                 blk_print_req_error(req, error);
810                 trace_block_rq_error(req, error, nr_bytes);
811         }
812
813         blk_account_io_completion(req, nr_bytes);
814
815         total_bytes = 0;
816         while (req->bio) {
817                 struct bio *bio = req->bio;
818                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
819
820                 if (bio_bytes == bio->bi_iter.bi_size)
821                         req->bio = bio->bi_next;
822
823                 /* Completion has already been traced */
824                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
825                 req_bio_endio(req, bio, bio_bytes, error);
826
827                 total_bytes += bio_bytes;
828                 nr_bytes -= bio_bytes;
829
830                 if (!nr_bytes)
831                         break;
832         }
833
834         /*
835          * completely done
836          */
837         if (!req->bio) {
838                 /*
839                  * Reset counters so that the request stacking driver
840                  * can find how many bytes remain in the request
841                  * later.
842                  */
843                 req->__data_len = 0;
844                 return false;
845         }
846
847         req->__data_len -= total_bytes;
848
849         /* update sector only for requests with clear definition of sector */
850         if (!blk_rq_is_passthrough(req))
851                 req->__sector += total_bytes >> 9;
852
853         /* mixed attributes always follow the first bio */
854         if (req->rq_flags & RQF_MIXED_MERGE) {
855                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
856                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
857         }
858
859         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
860                 /*
861                  * If total number of sectors is less than the first segment
862                  * size, something has gone terribly wrong.
863                  */
864                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
865                         blk_dump_rq_flags(req, "request botched");
866                         req->__data_len = blk_rq_cur_bytes(req);
867                 }
868
869                 /* recalculate the number of segments */
870                 req->nr_phys_segments = blk_recalc_rq_segments(req);
871         }
872
873         return true;
874 }
875 EXPORT_SYMBOL_GPL(blk_update_request);
876
877 static void __blk_account_io_done(struct request *req, u64 now)
878 {
879         const int sgrp = op_stat_group(req_op(req));
880
881         part_stat_lock();
882         update_io_ticks(req->part, jiffies, true);
883         part_stat_inc(req->part, ios[sgrp]);
884         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
885         part_stat_unlock();
886 }
887
888 static inline void blk_account_io_done(struct request *req, u64 now)
889 {
890         /*
891          * Account IO completion.  flush_rq isn't accounted as a
892          * normal IO on queueing nor completion.  Accounting the
893          * containing request is enough.
894          */
895         if (blk_do_io_stat(req) && req->part &&
896             !(req->rq_flags & RQF_FLUSH_SEQ))
897                 __blk_account_io_done(req, now);
898 }
899
900 static void __blk_account_io_start(struct request *rq)
901 {
902         /*
903          * All non-passthrough requests are created from a bio with one
904          * exception: when a flush command that is part of a flush sequence
905          * generated by the state machine in blk-flush.c is cloned onto the
906          * lower device by dm-multipath we can get here without a bio.
907          */
908         if (rq->bio)
909                 rq->part = rq->bio->bi_bdev;
910         else
911                 rq->part = rq->q->disk->part0;
912
913         part_stat_lock();
914         update_io_ticks(rq->part, jiffies, false);
915         part_stat_unlock();
916 }
917
918 static inline void blk_account_io_start(struct request *req)
919 {
920         if (blk_do_io_stat(req))
921                 __blk_account_io_start(req);
922 }
923
924 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
925 {
926         if (rq->rq_flags & RQF_STATS) {
927                 blk_mq_poll_stats_start(rq->q);
928                 blk_stat_add(rq, now);
929         }
930
931         blk_mq_sched_completed_request(rq, now);
932         blk_account_io_done(rq, now);
933 }
934
935 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
936 {
937         if (blk_mq_need_time_stamp(rq))
938                 __blk_mq_end_request_acct(rq, ktime_get_ns());
939
940         if (rq->end_io) {
941                 rq_qos_done(rq->q, rq);
942                 rq->end_io(rq, error);
943         } else {
944                 blk_mq_free_request(rq);
945         }
946 }
947 EXPORT_SYMBOL(__blk_mq_end_request);
948
949 void blk_mq_end_request(struct request *rq, blk_status_t error)
950 {
951         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
952                 BUG();
953         __blk_mq_end_request(rq, error);
954 }
955 EXPORT_SYMBOL(blk_mq_end_request);
956
957 #define TAG_COMP_BATCH          32
958
959 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
960                                           int *tag_array, int nr_tags)
961 {
962         struct request_queue *q = hctx->queue;
963
964         /*
965          * All requests should have been marked as RQF_MQ_INFLIGHT, so
966          * update hctx->nr_active in batch
967          */
968         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
969                 __blk_mq_sub_active_requests(hctx, nr_tags);
970
971         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
972         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
973 }
974
975 void blk_mq_end_request_batch(struct io_comp_batch *iob)
976 {
977         int tags[TAG_COMP_BATCH], nr_tags = 0;
978         struct blk_mq_hw_ctx *cur_hctx = NULL;
979         struct request *rq;
980         u64 now = 0;
981
982         if (iob->need_ts)
983                 now = ktime_get_ns();
984
985         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
986                 prefetch(rq->bio);
987                 prefetch(rq->rq_next);
988
989                 blk_complete_request(rq);
990                 if (iob->need_ts)
991                         __blk_mq_end_request_acct(rq, now);
992
993                 rq_qos_done(rq->q, rq);
994
995                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
996                 if (!req_ref_put_and_test(rq))
997                         continue;
998
999                 blk_crypto_free_request(rq);
1000                 blk_pm_mark_last_busy(rq);
1001
1002                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1003                         if (cur_hctx)
1004                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1005                         nr_tags = 0;
1006                         cur_hctx = rq->mq_hctx;
1007                 }
1008                 tags[nr_tags++] = rq->tag;
1009         }
1010
1011         if (nr_tags)
1012                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1013 }
1014 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1015
1016 static void blk_complete_reqs(struct llist_head *list)
1017 {
1018         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1019         struct request *rq, *next;
1020
1021         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1022                 rq->q->mq_ops->complete(rq);
1023 }
1024
1025 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1026 {
1027         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1028 }
1029
1030 static int blk_softirq_cpu_dead(unsigned int cpu)
1031 {
1032         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1033         return 0;
1034 }
1035
1036 static void __blk_mq_complete_request_remote(void *data)
1037 {
1038         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1039 }
1040
1041 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1042 {
1043         int cpu = raw_smp_processor_id();
1044
1045         if (!IS_ENABLED(CONFIG_SMP) ||
1046             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1047                 return false;
1048         /*
1049          * With force threaded interrupts enabled, raising softirq from an SMP
1050          * function call will always result in waking the ksoftirqd thread.
1051          * This is probably worse than completing the request on a different
1052          * cache domain.
1053          */
1054         if (force_irqthreads())
1055                 return false;
1056
1057         /* same CPU or cache domain?  Complete locally */
1058         if (cpu == rq->mq_ctx->cpu ||
1059             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1060              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1061                 return false;
1062
1063         /* don't try to IPI to an offline CPU */
1064         return cpu_online(rq->mq_ctx->cpu);
1065 }
1066
1067 static void blk_mq_complete_send_ipi(struct request *rq)
1068 {
1069         struct llist_head *list;
1070         unsigned int cpu;
1071
1072         cpu = rq->mq_ctx->cpu;
1073         list = &per_cpu(blk_cpu_done, cpu);
1074         if (llist_add(&rq->ipi_list, list)) {
1075                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1076                 smp_call_function_single_async(cpu, &rq->csd);
1077         }
1078 }
1079
1080 static void blk_mq_raise_softirq(struct request *rq)
1081 {
1082         struct llist_head *list;
1083
1084         preempt_disable();
1085         list = this_cpu_ptr(&blk_cpu_done);
1086         if (llist_add(&rq->ipi_list, list))
1087                 raise_softirq(BLOCK_SOFTIRQ);
1088         preempt_enable();
1089 }
1090
1091 bool blk_mq_complete_request_remote(struct request *rq)
1092 {
1093         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1094
1095         /*
1096          * For a polled request, always complete locally, it's pointless
1097          * to redirect the completion.
1098          */
1099         if (rq->cmd_flags & REQ_POLLED)
1100                 return false;
1101
1102         if (blk_mq_complete_need_ipi(rq)) {
1103                 blk_mq_complete_send_ipi(rq);
1104                 return true;
1105         }
1106
1107         if (rq->q->nr_hw_queues == 1) {
1108                 blk_mq_raise_softirq(rq);
1109                 return true;
1110         }
1111         return false;
1112 }
1113 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1114
1115 /**
1116  * blk_mq_complete_request - end I/O on a request
1117  * @rq:         the request being processed
1118  *
1119  * Description:
1120  *      Complete a request by scheduling the ->complete_rq operation.
1121  **/
1122 void blk_mq_complete_request(struct request *rq)
1123 {
1124         if (!blk_mq_complete_request_remote(rq))
1125                 rq->q->mq_ops->complete(rq);
1126 }
1127 EXPORT_SYMBOL(blk_mq_complete_request);
1128
1129 /**
1130  * blk_mq_start_request - Start processing a request
1131  * @rq: Pointer to request to be started
1132  *
1133  * Function used by device drivers to notify the block layer that a request
1134  * is going to be processed now, so blk layer can do proper initializations
1135  * such as starting the timeout timer.
1136  */
1137 void blk_mq_start_request(struct request *rq)
1138 {
1139         struct request_queue *q = rq->q;
1140
1141         trace_block_rq_issue(rq);
1142
1143         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1144                 rq->io_start_time_ns = ktime_get_ns();
1145                 rq->stats_sectors = blk_rq_sectors(rq);
1146                 rq->rq_flags |= RQF_STATS;
1147                 rq_qos_issue(q, rq);
1148         }
1149
1150         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1151
1152         blk_add_timer(rq);
1153         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1154
1155 #ifdef CONFIG_BLK_DEV_INTEGRITY
1156         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1157                 q->integrity.profile->prepare_fn(rq);
1158 #endif
1159         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1160                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1161 }
1162 EXPORT_SYMBOL(blk_mq_start_request);
1163
1164 /*
1165  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1166  * queues. This is important for md arrays to benefit from merging
1167  * requests.
1168  */
1169 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1170 {
1171         if (plug->multiple_queues)
1172                 return BLK_MAX_REQUEST_COUNT * 2;
1173         return BLK_MAX_REQUEST_COUNT;
1174 }
1175
1176 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1177 {
1178         struct request *last = rq_list_peek(&plug->mq_list);
1179
1180         if (!plug->rq_count) {
1181                 trace_block_plug(rq->q);
1182         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1183                    (!blk_queue_nomerges(rq->q) &&
1184                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1185                 blk_mq_flush_plug_list(plug, false);
1186                 last = NULL;
1187                 trace_block_plug(rq->q);
1188         }
1189
1190         if (!plug->multiple_queues && last && last->q != rq->q)
1191                 plug->multiple_queues = true;
1192         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1193                 plug->has_elevator = true;
1194         rq->rq_next = NULL;
1195         rq_list_add(&plug->mq_list, rq);
1196         plug->rq_count++;
1197 }
1198
1199 /**
1200  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1201  * @rq:         request to insert
1202  * @at_head:    insert request at head or tail of queue
1203  *
1204  * Description:
1205  *    Insert a fully prepared request at the back of the I/O scheduler queue
1206  *    for execution.  Don't wait for completion.
1207  *
1208  * Note:
1209  *    This function will invoke @done directly if the queue is dead.
1210  */
1211 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1212 {
1213         WARN_ON(irqs_disabled());
1214         WARN_ON(!blk_rq_is_passthrough(rq));
1215
1216         blk_account_io_start(rq);
1217         if (current->plug)
1218                 blk_add_rq_to_plug(current->plug, rq);
1219         else
1220                 blk_mq_sched_insert_request(rq, at_head, true, false);
1221 }
1222 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1223
1224 struct blk_rq_wait {
1225         struct completion done;
1226         blk_status_t ret;
1227 };
1228
1229 static void blk_end_sync_rq(struct request *rq, blk_status_t ret)
1230 {
1231         struct blk_rq_wait *wait = rq->end_io_data;
1232
1233         wait->ret = ret;
1234         complete(&wait->done);
1235 }
1236
1237 static bool blk_rq_is_poll(struct request *rq)
1238 {
1239         if (!rq->mq_hctx)
1240                 return false;
1241         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1242                 return false;
1243         if (WARN_ON_ONCE(!rq->bio))
1244                 return false;
1245         return true;
1246 }
1247
1248 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1249 {
1250         do {
1251                 bio_poll(rq->bio, NULL, 0);
1252                 cond_resched();
1253         } while (!completion_done(wait));
1254 }
1255
1256 /**
1257  * blk_execute_rq - insert a request into queue for execution
1258  * @rq:         request to insert
1259  * @at_head:    insert request at head or tail of queue
1260  *
1261  * Description:
1262  *    Insert a fully prepared request at the back of the I/O scheduler queue
1263  *    for execution and wait for completion.
1264  * Return: The blk_status_t result provided to blk_mq_end_request().
1265  */
1266 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1267 {
1268         struct blk_rq_wait wait = {
1269                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1270         };
1271
1272         WARN_ON(irqs_disabled());
1273         WARN_ON(!blk_rq_is_passthrough(rq));
1274
1275         rq->end_io_data = &wait;
1276         rq->end_io = blk_end_sync_rq;
1277
1278         blk_account_io_start(rq);
1279         blk_mq_sched_insert_request(rq, at_head, true, false);
1280
1281         if (blk_rq_is_poll(rq)) {
1282                 blk_rq_poll_completion(rq, &wait.done);
1283         } else {
1284                 /*
1285                  * Prevent hang_check timer from firing at us during very long
1286                  * I/O
1287                  */
1288                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1289
1290                 if (hang_check)
1291                         while (!wait_for_completion_io_timeout(&wait.done,
1292                                         hang_check * (HZ/2)))
1293                                 ;
1294                 else
1295                         wait_for_completion_io(&wait.done);
1296         }
1297
1298         return wait.ret;
1299 }
1300 EXPORT_SYMBOL(blk_execute_rq);
1301
1302 static void __blk_mq_requeue_request(struct request *rq)
1303 {
1304         struct request_queue *q = rq->q;
1305
1306         blk_mq_put_driver_tag(rq);
1307
1308         trace_block_rq_requeue(rq);
1309         rq_qos_requeue(q, rq);
1310
1311         if (blk_mq_request_started(rq)) {
1312                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1313                 rq->rq_flags &= ~RQF_TIMED_OUT;
1314         }
1315 }
1316
1317 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1318 {
1319         __blk_mq_requeue_request(rq);
1320
1321         /* this request will be re-inserted to io scheduler queue */
1322         blk_mq_sched_requeue_request(rq);
1323
1324         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1325 }
1326 EXPORT_SYMBOL(blk_mq_requeue_request);
1327
1328 static void blk_mq_requeue_work(struct work_struct *work)
1329 {
1330         struct request_queue *q =
1331                 container_of(work, struct request_queue, requeue_work.work);
1332         LIST_HEAD(rq_list);
1333         struct request *rq, *next;
1334
1335         spin_lock_irq(&q->requeue_lock);
1336         list_splice_init(&q->requeue_list, &rq_list);
1337         spin_unlock_irq(&q->requeue_lock);
1338
1339         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1340                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1341                         continue;
1342
1343                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1344                 list_del_init(&rq->queuelist);
1345                 /*
1346                  * If RQF_DONTPREP, rq has contained some driver specific
1347                  * data, so insert it to hctx dispatch list to avoid any
1348                  * merge.
1349                  */
1350                 if (rq->rq_flags & RQF_DONTPREP)
1351                         blk_mq_request_bypass_insert(rq, false, false);
1352                 else
1353                         blk_mq_sched_insert_request(rq, true, false, false);
1354         }
1355
1356         while (!list_empty(&rq_list)) {
1357                 rq = list_entry(rq_list.next, struct request, queuelist);
1358                 list_del_init(&rq->queuelist);
1359                 blk_mq_sched_insert_request(rq, false, false, false);
1360         }
1361
1362         blk_mq_run_hw_queues(q, false);
1363 }
1364
1365 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1366                                 bool kick_requeue_list)
1367 {
1368         struct request_queue *q = rq->q;
1369         unsigned long flags;
1370
1371         /*
1372          * We abuse this flag that is otherwise used by the I/O scheduler to
1373          * request head insertion from the workqueue.
1374          */
1375         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1376
1377         spin_lock_irqsave(&q->requeue_lock, flags);
1378         if (at_head) {
1379                 rq->rq_flags |= RQF_SOFTBARRIER;
1380                 list_add(&rq->queuelist, &q->requeue_list);
1381         } else {
1382                 list_add_tail(&rq->queuelist, &q->requeue_list);
1383         }
1384         spin_unlock_irqrestore(&q->requeue_lock, flags);
1385
1386         if (kick_requeue_list)
1387                 blk_mq_kick_requeue_list(q);
1388 }
1389
1390 void blk_mq_kick_requeue_list(struct request_queue *q)
1391 {
1392         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1393 }
1394 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1395
1396 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1397                                     unsigned long msecs)
1398 {
1399         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1400                                     msecs_to_jiffies(msecs));
1401 }
1402 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1403
1404 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1405 {
1406         /*
1407          * If we find a request that isn't idle we know the queue is busy
1408          * as it's checked in the iter.
1409          * Return false to stop the iteration.
1410          */
1411         if (blk_mq_request_started(rq)) {
1412                 bool *busy = priv;
1413
1414                 *busy = true;
1415                 return false;
1416         }
1417
1418         return true;
1419 }
1420
1421 bool blk_mq_queue_inflight(struct request_queue *q)
1422 {
1423         bool busy = false;
1424
1425         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1426         return busy;
1427 }
1428 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1429
1430 static void blk_mq_rq_timed_out(struct request *req)
1431 {
1432         req->rq_flags |= RQF_TIMED_OUT;
1433         if (req->q->mq_ops->timeout) {
1434                 enum blk_eh_timer_return ret;
1435
1436                 ret = req->q->mq_ops->timeout(req);
1437                 if (ret == BLK_EH_DONE)
1438                         return;
1439                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1440         }
1441
1442         blk_add_timer(req);
1443 }
1444
1445 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1446 {
1447         unsigned long deadline;
1448
1449         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1450                 return false;
1451         if (rq->rq_flags & RQF_TIMED_OUT)
1452                 return false;
1453
1454         deadline = READ_ONCE(rq->deadline);
1455         if (time_after_eq(jiffies, deadline))
1456                 return true;
1457
1458         if (*next == 0)
1459                 *next = deadline;
1460         else if (time_after(*next, deadline))
1461                 *next = deadline;
1462         return false;
1463 }
1464
1465 void blk_mq_put_rq_ref(struct request *rq)
1466 {
1467         if (is_flush_rq(rq))
1468                 rq->end_io(rq, 0);
1469         else if (req_ref_put_and_test(rq))
1470                 __blk_mq_free_request(rq);
1471 }
1472
1473 static bool blk_mq_check_expired(struct request *rq, void *priv)
1474 {
1475         unsigned long *next = priv;
1476
1477         /*
1478          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1479          * be reallocated underneath the timeout handler's processing, then
1480          * the expire check is reliable. If the request is not expired, then
1481          * it was completed and reallocated as a new request after returning
1482          * from blk_mq_check_expired().
1483          */
1484         if (blk_mq_req_expired(rq, next))
1485                 blk_mq_rq_timed_out(rq);
1486         return true;
1487 }
1488
1489 static void blk_mq_timeout_work(struct work_struct *work)
1490 {
1491         struct request_queue *q =
1492                 container_of(work, struct request_queue, timeout_work);
1493         unsigned long next = 0;
1494         struct blk_mq_hw_ctx *hctx;
1495         unsigned long i;
1496
1497         /* A deadlock might occur if a request is stuck requiring a
1498          * timeout at the same time a queue freeze is waiting
1499          * completion, since the timeout code would not be able to
1500          * acquire the queue reference here.
1501          *
1502          * That's why we don't use blk_queue_enter here; instead, we use
1503          * percpu_ref_tryget directly, because we need to be able to
1504          * obtain a reference even in the short window between the queue
1505          * starting to freeze, by dropping the first reference in
1506          * blk_freeze_queue_start, and the moment the last request is
1507          * consumed, marked by the instant q_usage_counter reaches
1508          * zero.
1509          */
1510         if (!percpu_ref_tryget(&q->q_usage_counter))
1511                 return;
1512
1513         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1514
1515         if (next != 0) {
1516                 mod_timer(&q->timeout, next);
1517         } else {
1518                 /*
1519                  * Request timeouts are handled as a forward rolling timer. If
1520                  * we end up here it means that no requests are pending and
1521                  * also that no request has been pending for a while. Mark
1522                  * each hctx as idle.
1523                  */
1524                 queue_for_each_hw_ctx(q, hctx, i) {
1525                         /* the hctx may be unmapped, so check it here */
1526                         if (blk_mq_hw_queue_mapped(hctx))
1527                                 blk_mq_tag_idle(hctx);
1528                 }
1529         }
1530         blk_queue_exit(q);
1531 }
1532
1533 struct flush_busy_ctx_data {
1534         struct blk_mq_hw_ctx *hctx;
1535         struct list_head *list;
1536 };
1537
1538 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1539 {
1540         struct flush_busy_ctx_data *flush_data = data;
1541         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1542         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1543         enum hctx_type type = hctx->type;
1544
1545         spin_lock(&ctx->lock);
1546         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1547         sbitmap_clear_bit(sb, bitnr);
1548         spin_unlock(&ctx->lock);
1549         return true;
1550 }
1551
1552 /*
1553  * Process software queues that have been marked busy, splicing them
1554  * to the for-dispatch
1555  */
1556 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1557 {
1558         struct flush_busy_ctx_data data = {
1559                 .hctx = hctx,
1560                 .list = list,
1561         };
1562
1563         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1564 }
1565 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1566
1567 struct dispatch_rq_data {
1568         struct blk_mq_hw_ctx *hctx;
1569         struct request *rq;
1570 };
1571
1572 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1573                 void *data)
1574 {
1575         struct dispatch_rq_data *dispatch_data = data;
1576         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1577         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1578         enum hctx_type type = hctx->type;
1579
1580         spin_lock(&ctx->lock);
1581         if (!list_empty(&ctx->rq_lists[type])) {
1582                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1583                 list_del_init(&dispatch_data->rq->queuelist);
1584                 if (list_empty(&ctx->rq_lists[type]))
1585                         sbitmap_clear_bit(sb, bitnr);
1586         }
1587         spin_unlock(&ctx->lock);
1588
1589         return !dispatch_data->rq;
1590 }
1591
1592 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1593                                         struct blk_mq_ctx *start)
1594 {
1595         unsigned off = start ? start->index_hw[hctx->type] : 0;
1596         struct dispatch_rq_data data = {
1597                 .hctx = hctx,
1598                 .rq   = NULL,
1599         };
1600
1601         __sbitmap_for_each_set(&hctx->ctx_map, off,
1602                                dispatch_rq_from_ctx, &data);
1603
1604         return data.rq;
1605 }
1606
1607 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1608 {
1609         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1610         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1611         int tag;
1612
1613         blk_mq_tag_busy(rq->mq_hctx);
1614
1615         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1616                 bt = &rq->mq_hctx->tags->breserved_tags;
1617                 tag_offset = 0;
1618         } else {
1619                 if (!hctx_may_queue(rq->mq_hctx, bt))
1620                         return false;
1621         }
1622
1623         tag = __sbitmap_queue_get(bt);
1624         if (tag == BLK_MQ_NO_TAG)
1625                 return false;
1626
1627         rq->tag = tag + tag_offset;
1628         return true;
1629 }
1630
1631 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1632 {
1633         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1634                 return false;
1635
1636         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1637                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1638                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1639                 __blk_mq_inc_active_requests(hctx);
1640         }
1641         hctx->tags->rqs[rq->tag] = rq;
1642         return true;
1643 }
1644
1645 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1646                                 int flags, void *key)
1647 {
1648         struct blk_mq_hw_ctx *hctx;
1649
1650         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1651
1652         spin_lock(&hctx->dispatch_wait_lock);
1653         if (!list_empty(&wait->entry)) {
1654                 struct sbitmap_queue *sbq;
1655
1656                 list_del_init(&wait->entry);
1657                 sbq = &hctx->tags->bitmap_tags;
1658                 atomic_dec(&sbq->ws_active);
1659         }
1660         spin_unlock(&hctx->dispatch_wait_lock);
1661
1662         blk_mq_run_hw_queue(hctx, true);
1663         return 1;
1664 }
1665
1666 /*
1667  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1668  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1669  * restart. For both cases, take care to check the condition again after
1670  * marking us as waiting.
1671  */
1672 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1673                                  struct request *rq)
1674 {
1675         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1676         struct wait_queue_head *wq;
1677         wait_queue_entry_t *wait;
1678         bool ret;
1679
1680         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1681                 blk_mq_sched_mark_restart_hctx(hctx);
1682
1683                 /*
1684                  * It's possible that a tag was freed in the window between the
1685                  * allocation failure and adding the hardware queue to the wait
1686                  * queue.
1687                  *
1688                  * Don't clear RESTART here, someone else could have set it.
1689                  * At most this will cost an extra queue run.
1690                  */
1691                 return blk_mq_get_driver_tag(rq);
1692         }
1693
1694         wait = &hctx->dispatch_wait;
1695         if (!list_empty_careful(&wait->entry))
1696                 return false;
1697
1698         wq = &bt_wait_ptr(sbq, hctx)->wait;
1699
1700         spin_lock_irq(&wq->lock);
1701         spin_lock(&hctx->dispatch_wait_lock);
1702         if (!list_empty(&wait->entry)) {
1703                 spin_unlock(&hctx->dispatch_wait_lock);
1704                 spin_unlock_irq(&wq->lock);
1705                 return false;
1706         }
1707
1708         atomic_inc(&sbq->ws_active);
1709         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1710         __add_wait_queue(wq, wait);
1711
1712         /*
1713          * It's possible that a tag was freed in the window between the
1714          * allocation failure and adding the hardware queue to the wait
1715          * queue.
1716          */
1717         ret = blk_mq_get_driver_tag(rq);
1718         if (!ret) {
1719                 spin_unlock(&hctx->dispatch_wait_lock);
1720                 spin_unlock_irq(&wq->lock);
1721                 return false;
1722         }
1723
1724         /*
1725          * We got a tag, remove ourselves from the wait queue to ensure
1726          * someone else gets the wakeup.
1727          */
1728         list_del_init(&wait->entry);
1729         atomic_dec(&sbq->ws_active);
1730         spin_unlock(&hctx->dispatch_wait_lock);
1731         spin_unlock_irq(&wq->lock);
1732
1733         return true;
1734 }
1735
1736 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1737 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1738 /*
1739  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1740  * - EWMA is one simple way to compute running average value
1741  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1742  * - take 4 as factor for avoiding to get too small(0) result, and this
1743  *   factor doesn't matter because EWMA decreases exponentially
1744  */
1745 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1746 {
1747         unsigned int ewma;
1748
1749         ewma = hctx->dispatch_busy;
1750
1751         if (!ewma && !busy)
1752                 return;
1753
1754         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1755         if (busy)
1756                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1757         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1758
1759         hctx->dispatch_busy = ewma;
1760 }
1761
1762 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1763
1764 static void blk_mq_handle_dev_resource(struct request *rq,
1765                                        struct list_head *list)
1766 {
1767         struct request *next =
1768                 list_first_entry_or_null(list, struct request, queuelist);
1769
1770         /*
1771          * If an I/O scheduler has been configured and we got a driver tag for
1772          * the next request already, free it.
1773          */
1774         if (next)
1775                 blk_mq_put_driver_tag(next);
1776
1777         list_add(&rq->queuelist, list);
1778         __blk_mq_requeue_request(rq);
1779 }
1780
1781 static void blk_mq_handle_zone_resource(struct request *rq,
1782                                         struct list_head *zone_list)
1783 {
1784         /*
1785          * If we end up here it is because we cannot dispatch a request to a
1786          * specific zone due to LLD level zone-write locking or other zone
1787          * related resource not being available. In this case, set the request
1788          * aside in zone_list for retrying it later.
1789          */
1790         list_add(&rq->queuelist, zone_list);
1791         __blk_mq_requeue_request(rq);
1792 }
1793
1794 enum prep_dispatch {
1795         PREP_DISPATCH_OK,
1796         PREP_DISPATCH_NO_TAG,
1797         PREP_DISPATCH_NO_BUDGET,
1798 };
1799
1800 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1801                                                   bool need_budget)
1802 {
1803         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1804         int budget_token = -1;
1805
1806         if (need_budget) {
1807                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1808                 if (budget_token < 0) {
1809                         blk_mq_put_driver_tag(rq);
1810                         return PREP_DISPATCH_NO_BUDGET;
1811                 }
1812                 blk_mq_set_rq_budget_token(rq, budget_token);
1813         }
1814
1815         if (!blk_mq_get_driver_tag(rq)) {
1816                 /*
1817                  * The initial allocation attempt failed, so we need to
1818                  * rerun the hardware queue when a tag is freed. The
1819                  * waitqueue takes care of that. If the queue is run
1820                  * before we add this entry back on the dispatch list,
1821                  * we'll re-run it below.
1822                  */
1823                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1824                         /*
1825                          * All budgets not got from this function will be put
1826                          * together during handling partial dispatch
1827                          */
1828                         if (need_budget)
1829                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1830                         return PREP_DISPATCH_NO_TAG;
1831                 }
1832         }
1833
1834         return PREP_DISPATCH_OK;
1835 }
1836
1837 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1838 static void blk_mq_release_budgets(struct request_queue *q,
1839                 struct list_head *list)
1840 {
1841         struct request *rq;
1842
1843         list_for_each_entry(rq, list, queuelist) {
1844                 int budget_token = blk_mq_get_rq_budget_token(rq);
1845
1846                 if (budget_token >= 0)
1847                         blk_mq_put_dispatch_budget(q, budget_token);
1848         }
1849 }
1850
1851 /*
1852  * Returns true if we did some work AND can potentially do more.
1853  */
1854 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1855                              unsigned int nr_budgets)
1856 {
1857         enum prep_dispatch prep;
1858         struct request_queue *q = hctx->queue;
1859         struct request *rq, *nxt;
1860         int errors, queued;
1861         blk_status_t ret = BLK_STS_OK;
1862         LIST_HEAD(zone_list);
1863         bool needs_resource = false;
1864
1865         if (list_empty(list))
1866                 return false;
1867
1868         /*
1869          * Now process all the entries, sending them to the driver.
1870          */
1871         errors = queued = 0;
1872         do {
1873                 struct blk_mq_queue_data bd;
1874
1875                 rq = list_first_entry(list, struct request, queuelist);
1876
1877                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1878                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1879                 if (prep != PREP_DISPATCH_OK)
1880                         break;
1881
1882                 list_del_init(&rq->queuelist);
1883
1884                 bd.rq = rq;
1885
1886                 /*
1887                  * Flag last if we have no more requests, or if we have more
1888                  * but can't assign a driver tag to it.
1889                  */
1890                 if (list_empty(list))
1891                         bd.last = true;
1892                 else {
1893                         nxt = list_first_entry(list, struct request, queuelist);
1894                         bd.last = !blk_mq_get_driver_tag(nxt);
1895                 }
1896
1897                 /*
1898                  * once the request is queued to lld, no need to cover the
1899                  * budget any more
1900                  */
1901                 if (nr_budgets)
1902                         nr_budgets--;
1903                 ret = q->mq_ops->queue_rq(hctx, &bd);
1904                 switch (ret) {
1905                 case BLK_STS_OK:
1906                         queued++;
1907                         break;
1908                 case BLK_STS_RESOURCE:
1909                         needs_resource = true;
1910                         fallthrough;
1911                 case BLK_STS_DEV_RESOURCE:
1912                         blk_mq_handle_dev_resource(rq, list);
1913                         goto out;
1914                 case BLK_STS_ZONE_RESOURCE:
1915                         /*
1916                          * Move the request to zone_list and keep going through
1917                          * the dispatch list to find more requests the drive can
1918                          * accept.
1919                          */
1920                         blk_mq_handle_zone_resource(rq, &zone_list);
1921                         needs_resource = true;
1922                         break;
1923                 default:
1924                         errors++;
1925                         blk_mq_end_request(rq, ret);
1926                 }
1927         } while (!list_empty(list));
1928 out:
1929         if (!list_empty(&zone_list))
1930                 list_splice_tail_init(&zone_list, list);
1931
1932         /* If we didn't flush the entire list, we could have told the driver
1933          * there was more coming, but that turned out to be a lie.
1934          */
1935         if ((!list_empty(list) || errors || needs_resource ||
1936              ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
1937                 q->mq_ops->commit_rqs(hctx);
1938         /*
1939          * Any items that need requeuing? Stuff them into hctx->dispatch,
1940          * that is where we will continue on next queue run.
1941          */
1942         if (!list_empty(list)) {
1943                 bool needs_restart;
1944                 /* For non-shared tags, the RESTART check will suffice */
1945                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1946                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1947
1948                 if (nr_budgets)
1949                         blk_mq_release_budgets(q, list);
1950
1951                 spin_lock(&hctx->lock);
1952                 list_splice_tail_init(list, &hctx->dispatch);
1953                 spin_unlock(&hctx->lock);
1954
1955                 /*
1956                  * Order adding requests to hctx->dispatch and checking
1957                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1958                  * in blk_mq_sched_restart(). Avoid restart code path to
1959                  * miss the new added requests to hctx->dispatch, meantime
1960                  * SCHED_RESTART is observed here.
1961                  */
1962                 smp_mb();
1963
1964                 /*
1965                  * If SCHED_RESTART was set by the caller of this function and
1966                  * it is no longer set that means that it was cleared by another
1967                  * thread and hence that a queue rerun is needed.
1968                  *
1969                  * If 'no_tag' is set, that means that we failed getting
1970                  * a driver tag with an I/O scheduler attached. If our dispatch
1971                  * waitqueue is no longer active, ensure that we run the queue
1972                  * AFTER adding our entries back to the list.
1973                  *
1974                  * If no I/O scheduler has been configured it is possible that
1975                  * the hardware queue got stopped and restarted before requests
1976                  * were pushed back onto the dispatch list. Rerun the queue to
1977                  * avoid starvation. Notes:
1978                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1979                  *   been stopped before rerunning a queue.
1980                  * - Some but not all block drivers stop a queue before
1981                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1982                  *   and dm-rq.
1983                  *
1984                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1985                  * bit is set, run queue after a delay to avoid IO stalls
1986                  * that could otherwise occur if the queue is idle.  We'll do
1987                  * similar if we couldn't get budget or couldn't lock a zone
1988                  * and SCHED_RESTART is set.
1989                  */
1990                 needs_restart = blk_mq_sched_needs_restart(hctx);
1991                 if (prep == PREP_DISPATCH_NO_BUDGET)
1992                         needs_resource = true;
1993                 if (!needs_restart ||
1994                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1995                         blk_mq_run_hw_queue(hctx, true);
1996                 else if (needs_restart && needs_resource)
1997                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1998
1999                 blk_mq_update_dispatch_busy(hctx, true);
2000                 return false;
2001         } else
2002                 blk_mq_update_dispatch_busy(hctx, false);
2003
2004         return (queued + errors) != 0;
2005 }
2006
2007 /**
2008  * __blk_mq_run_hw_queue - Run a hardware queue.
2009  * @hctx: Pointer to the hardware queue to run.
2010  *
2011  * Send pending requests to the hardware.
2012  */
2013 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2014 {
2015         /*
2016          * We can't run the queue inline with ints disabled. Ensure that
2017          * we catch bad users of this early.
2018          */
2019         WARN_ON_ONCE(in_interrupt());
2020
2021         blk_mq_run_dispatch_ops(hctx->queue,
2022                         blk_mq_sched_dispatch_requests(hctx));
2023 }
2024
2025 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2026 {
2027         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2028
2029         if (cpu >= nr_cpu_ids)
2030                 cpu = cpumask_first(hctx->cpumask);
2031         return cpu;
2032 }
2033
2034 /*
2035  * It'd be great if the workqueue API had a way to pass
2036  * in a mask and had some smarts for more clever placement.
2037  * For now we just round-robin here, switching for every
2038  * BLK_MQ_CPU_WORK_BATCH queued items.
2039  */
2040 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2041 {
2042         bool tried = false;
2043         int next_cpu = hctx->next_cpu;
2044
2045         if (hctx->queue->nr_hw_queues == 1)
2046                 return WORK_CPU_UNBOUND;
2047
2048         if (--hctx->next_cpu_batch <= 0) {
2049 select_cpu:
2050                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2051                                 cpu_online_mask);
2052                 if (next_cpu >= nr_cpu_ids)
2053                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2054                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2055         }
2056
2057         /*
2058          * Do unbound schedule if we can't find a online CPU for this hctx,
2059          * and it should only happen in the path of handling CPU DEAD.
2060          */
2061         if (!cpu_online(next_cpu)) {
2062                 if (!tried) {
2063                         tried = true;
2064                         goto select_cpu;
2065                 }
2066
2067                 /*
2068                  * Make sure to re-select CPU next time once after CPUs
2069                  * in hctx->cpumask become online again.
2070                  */
2071                 hctx->next_cpu = next_cpu;
2072                 hctx->next_cpu_batch = 1;
2073                 return WORK_CPU_UNBOUND;
2074         }
2075
2076         hctx->next_cpu = next_cpu;
2077         return next_cpu;
2078 }
2079
2080 /**
2081  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2082  * @hctx: Pointer to the hardware queue to run.
2083  * @async: If we want to run the queue asynchronously.
2084  * @msecs: Milliseconds of delay to wait before running the queue.
2085  *
2086  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2087  * with a delay of @msecs.
2088  */
2089 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2090                                         unsigned long msecs)
2091 {
2092         if (unlikely(blk_mq_hctx_stopped(hctx)))
2093                 return;
2094
2095         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2096                 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2097                         __blk_mq_run_hw_queue(hctx);
2098                         return;
2099                 }
2100         }
2101
2102         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2103                                     msecs_to_jiffies(msecs));
2104 }
2105
2106 /**
2107  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2108  * @hctx: Pointer to the hardware queue to run.
2109  * @msecs: Milliseconds of delay to wait before running the queue.
2110  *
2111  * Run a hardware queue asynchronously with a delay of @msecs.
2112  */
2113 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2114 {
2115         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2116 }
2117 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2118
2119 /**
2120  * blk_mq_run_hw_queue - Start to run a hardware queue.
2121  * @hctx: Pointer to the hardware queue to run.
2122  * @async: If we want to run the queue asynchronously.
2123  *
2124  * Check if the request queue is not in a quiesced state and if there are
2125  * pending requests to be sent. If this is true, run the queue to send requests
2126  * to hardware.
2127  */
2128 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2129 {
2130         bool need_run;
2131
2132         /*
2133          * When queue is quiesced, we may be switching io scheduler, or
2134          * updating nr_hw_queues, or other things, and we can't run queue
2135          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2136          *
2137          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2138          * quiesced.
2139          */
2140         __blk_mq_run_dispatch_ops(hctx->queue, false,
2141                 need_run = !blk_queue_quiesced(hctx->queue) &&
2142                 blk_mq_hctx_has_pending(hctx));
2143
2144         if (need_run)
2145                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2146 }
2147 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2148
2149 /*
2150  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2151  * scheduler.
2152  */
2153 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2154 {
2155         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2156         /*
2157          * If the IO scheduler does not respect hardware queues when
2158          * dispatching, we just don't bother with multiple HW queues and
2159          * dispatch from hctx for the current CPU since running multiple queues
2160          * just causes lock contention inside the scheduler and pointless cache
2161          * bouncing.
2162          */
2163         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2164
2165         if (!blk_mq_hctx_stopped(hctx))
2166                 return hctx;
2167         return NULL;
2168 }
2169
2170 /**
2171  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2172  * @q: Pointer to the request queue to run.
2173  * @async: If we want to run the queue asynchronously.
2174  */
2175 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2176 {
2177         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2178         unsigned long i;
2179
2180         sq_hctx = NULL;
2181         if (blk_queue_sq_sched(q))
2182                 sq_hctx = blk_mq_get_sq_hctx(q);
2183         queue_for_each_hw_ctx(q, hctx, i) {
2184                 if (blk_mq_hctx_stopped(hctx))
2185                         continue;
2186                 /*
2187                  * Dispatch from this hctx either if there's no hctx preferred
2188                  * by IO scheduler or if it has requests that bypass the
2189                  * scheduler.
2190                  */
2191                 if (!sq_hctx || sq_hctx == hctx ||
2192                     !list_empty_careful(&hctx->dispatch))
2193                         blk_mq_run_hw_queue(hctx, async);
2194         }
2195 }
2196 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2197
2198 /**
2199  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2200  * @q: Pointer to the request queue to run.
2201  * @msecs: Milliseconds of delay to wait before running the queues.
2202  */
2203 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2204 {
2205         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2206         unsigned long i;
2207
2208         sq_hctx = NULL;
2209         if (blk_queue_sq_sched(q))
2210                 sq_hctx = blk_mq_get_sq_hctx(q);
2211         queue_for_each_hw_ctx(q, hctx, i) {
2212                 if (blk_mq_hctx_stopped(hctx))
2213                         continue;
2214                 /*
2215                  * If there is already a run_work pending, leave the
2216                  * pending delay untouched. Otherwise, a hctx can stall
2217                  * if another hctx is re-delaying the other's work
2218                  * before the work executes.
2219                  */
2220                 if (delayed_work_pending(&hctx->run_work))
2221                         continue;
2222                 /*
2223                  * Dispatch from this hctx either if there's no hctx preferred
2224                  * by IO scheduler or if it has requests that bypass the
2225                  * scheduler.
2226                  */
2227                 if (!sq_hctx || sq_hctx == hctx ||
2228                     !list_empty_careful(&hctx->dispatch))
2229                         blk_mq_delay_run_hw_queue(hctx, msecs);
2230         }
2231 }
2232 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2233
2234 /*
2235  * This function is often used for pausing .queue_rq() by driver when
2236  * there isn't enough resource or some conditions aren't satisfied, and
2237  * BLK_STS_RESOURCE is usually returned.
2238  *
2239  * We do not guarantee that dispatch can be drained or blocked
2240  * after blk_mq_stop_hw_queue() returns. Please use
2241  * blk_mq_quiesce_queue() for that requirement.
2242  */
2243 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2244 {
2245         cancel_delayed_work(&hctx->run_work);
2246
2247         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2248 }
2249 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2250
2251 /*
2252  * This function is often used for pausing .queue_rq() by driver when
2253  * there isn't enough resource or some conditions aren't satisfied, and
2254  * BLK_STS_RESOURCE is usually returned.
2255  *
2256  * We do not guarantee that dispatch can be drained or blocked
2257  * after blk_mq_stop_hw_queues() returns. Please use
2258  * blk_mq_quiesce_queue() for that requirement.
2259  */
2260 void blk_mq_stop_hw_queues(struct request_queue *q)
2261 {
2262         struct blk_mq_hw_ctx *hctx;
2263         unsigned long i;
2264
2265         queue_for_each_hw_ctx(q, hctx, i)
2266                 blk_mq_stop_hw_queue(hctx);
2267 }
2268 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2269
2270 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2271 {
2272         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2273
2274         blk_mq_run_hw_queue(hctx, false);
2275 }
2276 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2277
2278 void blk_mq_start_hw_queues(struct request_queue *q)
2279 {
2280         struct blk_mq_hw_ctx *hctx;
2281         unsigned long i;
2282
2283         queue_for_each_hw_ctx(q, hctx, i)
2284                 blk_mq_start_hw_queue(hctx);
2285 }
2286 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2287
2288 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2289 {
2290         if (!blk_mq_hctx_stopped(hctx))
2291                 return;
2292
2293         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2294         blk_mq_run_hw_queue(hctx, async);
2295 }
2296 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2297
2298 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2299 {
2300         struct blk_mq_hw_ctx *hctx;
2301         unsigned long i;
2302
2303         queue_for_each_hw_ctx(q, hctx, i)
2304                 blk_mq_start_stopped_hw_queue(hctx, async);
2305 }
2306 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2307
2308 static void blk_mq_run_work_fn(struct work_struct *work)
2309 {
2310         struct blk_mq_hw_ctx *hctx;
2311
2312         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2313
2314         /*
2315          * If we are stopped, don't run the queue.
2316          */
2317         if (blk_mq_hctx_stopped(hctx))
2318                 return;
2319
2320         __blk_mq_run_hw_queue(hctx);
2321 }
2322
2323 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2324                                             struct request *rq,
2325                                             bool at_head)
2326 {
2327         struct blk_mq_ctx *ctx = rq->mq_ctx;
2328         enum hctx_type type = hctx->type;
2329
2330         lockdep_assert_held(&ctx->lock);
2331
2332         trace_block_rq_insert(rq);
2333
2334         if (at_head)
2335                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2336         else
2337                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2338 }
2339
2340 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2341                              bool at_head)
2342 {
2343         struct blk_mq_ctx *ctx = rq->mq_ctx;
2344
2345         lockdep_assert_held(&ctx->lock);
2346
2347         __blk_mq_insert_req_list(hctx, rq, at_head);
2348         blk_mq_hctx_mark_pending(hctx, ctx);
2349 }
2350
2351 /**
2352  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2353  * @rq: Pointer to request to be inserted.
2354  * @at_head: true if the request should be inserted at the head of the list.
2355  * @run_queue: If we should run the hardware queue after inserting the request.
2356  *
2357  * Should only be used carefully, when the caller knows we want to
2358  * bypass a potential IO scheduler on the target device.
2359  */
2360 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2361                                   bool run_queue)
2362 {
2363         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2364
2365         spin_lock(&hctx->lock);
2366         if (at_head)
2367                 list_add(&rq->queuelist, &hctx->dispatch);
2368         else
2369                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2370         spin_unlock(&hctx->lock);
2371
2372         if (run_queue)
2373                 blk_mq_run_hw_queue(hctx, false);
2374 }
2375
2376 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2377                             struct list_head *list)
2378
2379 {
2380         struct request *rq;
2381         enum hctx_type type = hctx->type;
2382
2383         /*
2384          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2385          * offline now
2386          */
2387         list_for_each_entry(rq, list, queuelist) {
2388                 BUG_ON(rq->mq_ctx != ctx);
2389                 trace_block_rq_insert(rq);
2390         }
2391
2392         spin_lock(&ctx->lock);
2393         list_splice_tail_init(list, &ctx->rq_lists[type]);
2394         blk_mq_hctx_mark_pending(hctx, ctx);
2395         spin_unlock(&ctx->lock);
2396 }
2397
2398 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2399                               bool from_schedule)
2400 {
2401         if (hctx->queue->mq_ops->commit_rqs) {
2402                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2403                 hctx->queue->mq_ops->commit_rqs(hctx);
2404         }
2405         *queued = 0;
2406 }
2407
2408 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2409                 unsigned int nr_segs)
2410 {
2411         int err;
2412
2413         if (bio->bi_opf & REQ_RAHEAD)
2414                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2415
2416         rq->__sector = bio->bi_iter.bi_sector;
2417         blk_rq_bio_prep(rq, bio, nr_segs);
2418
2419         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2420         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2421         WARN_ON_ONCE(err);
2422
2423         blk_account_io_start(rq);
2424 }
2425
2426 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2427                                             struct request *rq, bool last)
2428 {
2429         struct request_queue *q = rq->q;
2430         struct blk_mq_queue_data bd = {
2431                 .rq = rq,
2432                 .last = last,
2433         };
2434         blk_status_t ret;
2435
2436         /*
2437          * For OK queue, we are done. For error, caller may kill it.
2438          * Any other error (busy), just add it to our list as we
2439          * previously would have done.
2440          */
2441         ret = q->mq_ops->queue_rq(hctx, &bd);
2442         switch (ret) {
2443         case BLK_STS_OK:
2444                 blk_mq_update_dispatch_busy(hctx, false);
2445                 break;
2446         case BLK_STS_RESOURCE:
2447         case BLK_STS_DEV_RESOURCE:
2448                 blk_mq_update_dispatch_busy(hctx, true);
2449                 __blk_mq_requeue_request(rq);
2450                 break;
2451         default:
2452                 blk_mq_update_dispatch_busy(hctx, false);
2453                 break;
2454         }
2455
2456         return ret;
2457 }
2458
2459 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2460                                                 struct request *rq,
2461                                                 bool bypass_insert, bool last)
2462 {
2463         struct request_queue *q = rq->q;
2464         bool run_queue = true;
2465         int budget_token;
2466
2467         /*
2468          * RCU or SRCU read lock is needed before checking quiesced flag.
2469          *
2470          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2471          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2472          * and avoid driver to try to dispatch again.
2473          */
2474         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2475                 run_queue = false;
2476                 bypass_insert = false;
2477                 goto insert;
2478         }
2479
2480         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2481                 goto insert;
2482
2483         budget_token = blk_mq_get_dispatch_budget(q);
2484         if (budget_token < 0)
2485                 goto insert;
2486
2487         blk_mq_set_rq_budget_token(rq, budget_token);
2488
2489         if (!blk_mq_get_driver_tag(rq)) {
2490                 blk_mq_put_dispatch_budget(q, budget_token);
2491                 goto insert;
2492         }
2493
2494         return __blk_mq_issue_directly(hctx, rq, last);
2495 insert:
2496         if (bypass_insert)
2497                 return BLK_STS_RESOURCE;
2498
2499         blk_mq_sched_insert_request(rq, false, run_queue, false);
2500
2501         return BLK_STS_OK;
2502 }
2503
2504 /**
2505  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2506  * @hctx: Pointer of the associated hardware queue.
2507  * @rq: Pointer to request to be sent.
2508  *
2509  * If the device has enough resources to accept a new request now, send the
2510  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2511  * we can try send it another time in the future. Requests inserted at this
2512  * queue have higher priority.
2513  */
2514 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2515                 struct request *rq)
2516 {
2517         blk_status_t ret =
2518                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2519
2520         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2521                 blk_mq_request_bypass_insert(rq, false, true);
2522         else if (ret != BLK_STS_OK)
2523                 blk_mq_end_request(rq, ret);
2524 }
2525
2526 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2527 {
2528         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2529 }
2530
2531 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2532 {
2533         struct blk_mq_hw_ctx *hctx = NULL;
2534         struct request *rq;
2535         int queued = 0;
2536         int errors = 0;
2537
2538         while ((rq = rq_list_pop(&plug->mq_list))) {
2539                 bool last = rq_list_empty(plug->mq_list);
2540                 blk_status_t ret;
2541
2542                 if (hctx != rq->mq_hctx) {
2543                         if (hctx)
2544                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2545                         hctx = rq->mq_hctx;
2546                 }
2547
2548                 ret = blk_mq_request_issue_directly(rq, last);
2549                 switch (ret) {
2550                 case BLK_STS_OK:
2551                         queued++;
2552                         break;
2553                 case BLK_STS_RESOURCE:
2554                 case BLK_STS_DEV_RESOURCE:
2555                         blk_mq_request_bypass_insert(rq, false, true);
2556                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2557                         return;
2558                 default:
2559                         blk_mq_end_request(rq, ret);
2560                         errors++;
2561                         break;
2562                 }
2563         }
2564
2565         /*
2566          * If we didn't flush the entire list, we could have told the driver
2567          * there was more coming, but that turned out to be a lie.
2568          */
2569         if (errors)
2570                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2571 }
2572
2573 static void __blk_mq_flush_plug_list(struct request_queue *q,
2574                                      struct blk_plug *plug)
2575 {
2576         if (blk_queue_quiesced(q))
2577                 return;
2578         q->mq_ops->queue_rqs(&plug->mq_list);
2579 }
2580
2581 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2582 {
2583         struct blk_mq_hw_ctx *this_hctx = NULL;
2584         struct blk_mq_ctx *this_ctx = NULL;
2585         struct request *requeue_list = NULL;
2586         unsigned int depth = 0;
2587         LIST_HEAD(list);
2588
2589         do {
2590                 struct request *rq = rq_list_pop(&plug->mq_list);
2591
2592                 if (!this_hctx) {
2593                         this_hctx = rq->mq_hctx;
2594                         this_ctx = rq->mq_ctx;
2595                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2596                         rq_list_add(&requeue_list, rq);
2597                         continue;
2598                 }
2599                 list_add_tail(&rq->queuelist, &list);
2600                 depth++;
2601         } while (!rq_list_empty(plug->mq_list));
2602
2603         plug->mq_list = requeue_list;
2604         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2605         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2606 }
2607
2608 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2609 {
2610         struct request *rq;
2611
2612         if (rq_list_empty(plug->mq_list))
2613                 return;
2614         plug->rq_count = 0;
2615
2616         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2617                 struct request_queue *q;
2618
2619                 rq = rq_list_peek(&plug->mq_list);
2620                 q = rq->q;
2621
2622                 /*
2623                  * Peek first request and see if we have a ->queue_rqs() hook.
2624                  * If we do, we can dispatch the whole plug list in one go. We
2625                  * already know at this point that all requests belong to the
2626                  * same queue, caller must ensure that's the case.
2627                  *
2628                  * Since we pass off the full list to the driver at this point,
2629                  * we do not increment the active request count for the queue.
2630                  * Bypass shared tags for now because of that.
2631                  */
2632                 if (q->mq_ops->queue_rqs &&
2633                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2634                         blk_mq_run_dispatch_ops(q,
2635                                 __blk_mq_flush_plug_list(q, plug));
2636                         if (rq_list_empty(plug->mq_list))
2637                                 return;
2638                 }
2639
2640                 blk_mq_run_dispatch_ops(q,
2641                                 blk_mq_plug_issue_direct(plug, false));
2642                 if (rq_list_empty(plug->mq_list))
2643                         return;
2644         }
2645
2646         do {
2647                 blk_mq_dispatch_plug_list(plug, from_schedule);
2648         } while (!rq_list_empty(plug->mq_list));
2649 }
2650
2651 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2652                 struct list_head *list)
2653 {
2654         int queued = 0;
2655         int errors = 0;
2656
2657         while (!list_empty(list)) {
2658                 blk_status_t ret;
2659                 struct request *rq = list_first_entry(list, struct request,
2660                                 queuelist);
2661
2662                 list_del_init(&rq->queuelist);
2663                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2664                 if (ret != BLK_STS_OK) {
2665                         errors++;
2666                         if (ret == BLK_STS_RESOURCE ||
2667                                         ret == BLK_STS_DEV_RESOURCE) {
2668                                 blk_mq_request_bypass_insert(rq, false,
2669                                                         list_empty(list));
2670                                 break;
2671                         }
2672                         blk_mq_end_request(rq, ret);
2673                 } else
2674                         queued++;
2675         }
2676
2677         /*
2678          * If we didn't flush the entire list, we could have told
2679          * the driver there was more coming, but that turned out to
2680          * be a lie.
2681          */
2682         if ((!list_empty(list) || errors) &&
2683              hctx->queue->mq_ops->commit_rqs && queued)
2684                 hctx->queue->mq_ops->commit_rqs(hctx);
2685 }
2686
2687 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2688                                      struct bio *bio, unsigned int nr_segs)
2689 {
2690         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2691                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2692                         return true;
2693                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2694                         return true;
2695         }
2696         return false;
2697 }
2698
2699 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2700                                                struct blk_plug *plug,
2701                                                struct bio *bio,
2702                                                unsigned int nsegs)
2703 {
2704         struct blk_mq_alloc_data data = {
2705                 .q              = q,
2706                 .nr_tags        = 1,
2707                 .cmd_flags      = bio->bi_opf,
2708         };
2709         struct request *rq;
2710
2711         if (unlikely(bio_queue_enter(bio)))
2712                 return NULL;
2713
2714         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2715                 goto queue_exit;
2716
2717         rq_qos_throttle(q, bio);
2718
2719         if (plug) {
2720                 data.nr_tags = plug->nr_ios;
2721                 plug->nr_ios = 1;
2722                 data.cached_rq = &plug->cached_rq;
2723         }
2724
2725         rq = __blk_mq_alloc_requests(&data);
2726         if (rq)
2727                 return rq;
2728         rq_qos_cleanup(q, bio);
2729         if (bio->bi_opf & REQ_NOWAIT)
2730                 bio_wouldblock_error(bio);
2731 queue_exit:
2732         blk_queue_exit(q);
2733         return NULL;
2734 }
2735
2736 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2737                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2738 {
2739         struct request *rq;
2740
2741         if (!plug)
2742                 return NULL;
2743         rq = rq_list_peek(&plug->cached_rq);
2744         if (!rq || rq->q != q)
2745                 return NULL;
2746
2747         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2748                 *bio = NULL;
2749                 return NULL;
2750         }
2751
2752         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2753                 return NULL;
2754         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2755                 return NULL;
2756
2757         /*
2758          * If any qos ->throttle() end up blocking, we will have flushed the
2759          * plug and hence killed the cached_rq list as well. Pop this entry
2760          * before we throttle.
2761          */
2762         plug->cached_rq = rq_list_next(rq);
2763         rq_qos_throttle(q, *bio);
2764
2765         rq->cmd_flags = (*bio)->bi_opf;
2766         INIT_LIST_HEAD(&rq->queuelist);
2767         return rq;
2768 }
2769
2770 static void bio_set_ioprio(struct bio *bio)
2771 {
2772         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2773         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2774                 bio->bi_ioprio = get_current_ioprio();
2775         blkcg_set_ioprio(bio);
2776 }
2777
2778 /**
2779  * blk_mq_submit_bio - Create and send a request to block device.
2780  * @bio: Bio pointer.
2781  *
2782  * Builds up a request structure from @q and @bio and send to the device. The
2783  * request may not be queued directly to hardware if:
2784  * * This request can be merged with another one
2785  * * We want to place request at plug queue for possible future merging
2786  * * There is an IO scheduler active at this queue
2787  *
2788  * It will not queue the request if there is an error with the bio, or at the
2789  * request creation.
2790  */
2791 void blk_mq_submit_bio(struct bio *bio)
2792 {
2793         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2794         struct blk_plug *plug = blk_mq_plug(bio);
2795         const int is_sync = op_is_sync(bio->bi_opf);
2796         struct request *rq;
2797         unsigned int nr_segs = 1;
2798         blk_status_t ret;
2799
2800         bio = blk_queue_bounce(bio, q);
2801         if (bio_may_exceed_limits(bio, &q->limits))
2802                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2803
2804         if (!bio_integrity_prep(bio))
2805                 return;
2806
2807         bio_set_ioprio(bio);
2808
2809         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2810         if (!rq) {
2811                 if (!bio)
2812                         return;
2813                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2814                 if (unlikely(!rq))
2815                         return;
2816         }
2817
2818         trace_block_getrq(bio);
2819
2820         rq_qos_track(q, rq, bio);
2821
2822         blk_mq_bio_to_request(rq, bio, nr_segs);
2823
2824         ret = blk_crypto_init_request(rq);
2825         if (ret != BLK_STS_OK) {
2826                 bio->bi_status = ret;
2827                 bio_endio(bio);
2828                 blk_mq_free_request(rq);
2829                 return;
2830         }
2831
2832         if (op_is_flush(bio->bi_opf)) {
2833                 blk_insert_flush(rq);
2834                 return;
2835         }
2836
2837         if (plug)
2838                 blk_add_rq_to_plug(plug, rq);
2839         else if ((rq->rq_flags & RQF_ELV) ||
2840                  (rq->mq_hctx->dispatch_busy &&
2841                   (q->nr_hw_queues == 1 || !is_sync)))
2842                 blk_mq_sched_insert_request(rq, false, true, true);
2843         else
2844                 blk_mq_run_dispatch_ops(rq->q,
2845                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2846 }
2847
2848 #ifdef CONFIG_BLK_MQ_STACKING
2849 /**
2850  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2851  * @rq: the request being queued
2852  */
2853 blk_status_t blk_insert_cloned_request(struct request *rq)
2854 {
2855         struct request_queue *q = rq->q;
2856         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2857         blk_status_t ret;
2858
2859         if (blk_rq_sectors(rq) > max_sectors) {
2860                 /*
2861                  * SCSI device does not have a good way to return if
2862                  * Write Same/Zero is actually supported. If a device rejects
2863                  * a non-read/write command (discard, write same,etc.) the
2864                  * low-level device driver will set the relevant queue limit to
2865                  * 0 to prevent blk-lib from issuing more of the offending
2866                  * operations. Commands queued prior to the queue limit being
2867                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2868                  * errors being propagated to upper layers.
2869                  */
2870                 if (max_sectors == 0)
2871                         return BLK_STS_NOTSUPP;
2872
2873                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2874                         __func__, blk_rq_sectors(rq), max_sectors);
2875                 return BLK_STS_IOERR;
2876         }
2877
2878         /*
2879          * The queue settings related to segment counting may differ from the
2880          * original queue.
2881          */
2882         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2883         if (rq->nr_phys_segments > queue_max_segments(q)) {
2884                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2885                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2886                 return BLK_STS_IOERR;
2887         }
2888
2889         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2890                 return BLK_STS_IOERR;
2891
2892         if (blk_crypto_insert_cloned_request(rq))
2893                 return BLK_STS_IOERR;
2894
2895         blk_account_io_start(rq);
2896
2897         /*
2898          * Since we have a scheduler attached on the top device,
2899          * bypass a potential scheduler on the bottom device for
2900          * insert.
2901          */
2902         blk_mq_run_dispatch_ops(q,
2903                         ret = blk_mq_request_issue_directly(rq, true));
2904         if (ret)
2905                 blk_account_io_done(rq, ktime_get_ns());
2906         return ret;
2907 }
2908 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2909
2910 /**
2911  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2912  * @rq: the clone request to be cleaned up
2913  *
2914  * Description:
2915  *     Free all bios in @rq for a cloned request.
2916  */
2917 void blk_rq_unprep_clone(struct request *rq)
2918 {
2919         struct bio *bio;
2920
2921         while ((bio = rq->bio) != NULL) {
2922                 rq->bio = bio->bi_next;
2923
2924                 bio_put(bio);
2925         }
2926 }
2927 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2928
2929 /**
2930  * blk_rq_prep_clone - Helper function to setup clone request
2931  * @rq: the request to be setup
2932  * @rq_src: original request to be cloned
2933  * @bs: bio_set that bios for clone are allocated from
2934  * @gfp_mask: memory allocation mask for bio
2935  * @bio_ctr: setup function to be called for each clone bio.
2936  *           Returns %0 for success, non %0 for failure.
2937  * @data: private data to be passed to @bio_ctr
2938  *
2939  * Description:
2940  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2941  *     Also, pages which the original bios are pointing to are not copied
2942  *     and the cloned bios just point same pages.
2943  *     So cloned bios must be completed before original bios, which means
2944  *     the caller must complete @rq before @rq_src.
2945  */
2946 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2947                       struct bio_set *bs, gfp_t gfp_mask,
2948                       int (*bio_ctr)(struct bio *, struct bio *, void *),
2949                       void *data)
2950 {
2951         struct bio *bio, *bio_src;
2952
2953         if (!bs)
2954                 bs = &fs_bio_set;
2955
2956         __rq_for_each_bio(bio_src, rq_src) {
2957                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2958                                       bs);
2959                 if (!bio)
2960                         goto free_and_out;
2961
2962                 if (bio_ctr && bio_ctr(bio, bio_src, data))
2963                         goto free_and_out;
2964
2965                 if (rq->bio) {
2966                         rq->biotail->bi_next = bio;
2967                         rq->biotail = bio;
2968                 } else {
2969                         rq->bio = rq->biotail = bio;
2970                 }
2971                 bio = NULL;
2972         }
2973
2974         /* Copy attributes of the original request to the clone request. */
2975         rq->__sector = blk_rq_pos(rq_src);
2976         rq->__data_len = blk_rq_bytes(rq_src);
2977         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2978                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2979                 rq->special_vec = rq_src->special_vec;
2980         }
2981         rq->nr_phys_segments = rq_src->nr_phys_segments;
2982         rq->ioprio = rq_src->ioprio;
2983
2984         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
2985                 goto free_and_out;
2986
2987         return 0;
2988
2989 free_and_out:
2990         if (bio)
2991                 bio_put(bio);
2992         blk_rq_unprep_clone(rq);
2993
2994         return -ENOMEM;
2995 }
2996 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2997 #endif /* CONFIG_BLK_MQ_STACKING */
2998
2999 /*
3000  * Steal bios from a request and add them to a bio list.
3001  * The request must not have been partially completed before.
3002  */
3003 void blk_steal_bios(struct bio_list *list, struct request *rq)
3004 {
3005         if (rq->bio) {
3006                 if (list->tail)
3007                         list->tail->bi_next = rq->bio;
3008                 else
3009                         list->head = rq->bio;
3010                 list->tail = rq->biotail;
3011
3012                 rq->bio = NULL;
3013                 rq->biotail = NULL;
3014         }
3015
3016         rq->__data_len = 0;
3017 }
3018 EXPORT_SYMBOL_GPL(blk_steal_bios);
3019
3020 static size_t order_to_size(unsigned int order)
3021 {
3022         return (size_t)PAGE_SIZE << order;
3023 }
3024
3025 /* called before freeing request pool in @tags */
3026 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3027                                     struct blk_mq_tags *tags)
3028 {
3029         struct page *page;
3030         unsigned long flags;
3031
3032         /*
3033          * There is no need to clear mapping if driver tags is not initialized
3034          * or the mapping belongs to the driver tags.
3035          */
3036         if (!drv_tags || drv_tags == tags)
3037                 return;
3038
3039         list_for_each_entry(page, &tags->page_list, lru) {
3040                 unsigned long start = (unsigned long)page_address(page);
3041                 unsigned long end = start + order_to_size(page->private);
3042                 int i;
3043
3044                 for (i = 0; i < drv_tags->nr_tags; i++) {
3045                         struct request *rq = drv_tags->rqs[i];
3046                         unsigned long rq_addr = (unsigned long)rq;
3047
3048                         if (rq_addr >= start && rq_addr < end) {
3049                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3050                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3051                         }
3052                 }
3053         }
3054
3055         /*
3056          * Wait until all pending iteration is done.
3057          *
3058          * Request reference is cleared and it is guaranteed to be observed
3059          * after the ->lock is released.
3060          */
3061         spin_lock_irqsave(&drv_tags->lock, flags);
3062         spin_unlock_irqrestore(&drv_tags->lock, flags);
3063 }
3064
3065 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3066                      unsigned int hctx_idx)
3067 {
3068         struct blk_mq_tags *drv_tags;
3069         struct page *page;
3070
3071         if (list_empty(&tags->page_list))
3072                 return;
3073
3074         if (blk_mq_is_shared_tags(set->flags))
3075                 drv_tags = set->shared_tags;
3076         else
3077                 drv_tags = set->tags[hctx_idx];
3078
3079         if (tags->static_rqs && set->ops->exit_request) {
3080                 int i;
3081
3082                 for (i = 0; i < tags->nr_tags; i++) {
3083                         struct request *rq = tags->static_rqs[i];
3084
3085                         if (!rq)
3086                                 continue;
3087                         set->ops->exit_request(set, rq, hctx_idx);
3088                         tags->static_rqs[i] = NULL;
3089                 }
3090         }
3091
3092         blk_mq_clear_rq_mapping(drv_tags, tags);
3093
3094         while (!list_empty(&tags->page_list)) {
3095                 page = list_first_entry(&tags->page_list, struct page, lru);
3096                 list_del_init(&page->lru);
3097                 /*
3098                  * Remove kmemleak object previously allocated in
3099                  * blk_mq_alloc_rqs().
3100                  */
3101                 kmemleak_free(page_address(page));
3102                 __free_pages(page, page->private);
3103         }
3104 }
3105
3106 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3107 {
3108         kfree(tags->rqs);
3109         tags->rqs = NULL;
3110         kfree(tags->static_rqs);
3111         tags->static_rqs = NULL;
3112
3113         blk_mq_free_tags(tags);
3114 }
3115
3116 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3117                 unsigned int hctx_idx)
3118 {
3119         int i;
3120
3121         for (i = 0; i < set->nr_maps; i++) {
3122                 unsigned int start = set->map[i].queue_offset;
3123                 unsigned int end = start + set->map[i].nr_queues;
3124
3125                 if (hctx_idx >= start && hctx_idx < end)
3126                         break;
3127         }
3128
3129         if (i >= set->nr_maps)
3130                 i = HCTX_TYPE_DEFAULT;
3131
3132         return i;
3133 }
3134
3135 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3136                 unsigned int hctx_idx)
3137 {
3138         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3139
3140         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3141 }
3142
3143 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3144                                                unsigned int hctx_idx,
3145                                                unsigned int nr_tags,
3146                                                unsigned int reserved_tags)
3147 {
3148         int node = blk_mq_get_hctx_node(set, hctx_idx);
3149         struct blk_mq_tags *tags;
3150
3151         if (node == NUMA_NO_NODE)
3152                 node = set->numa_node;
3153
3154         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3155                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3156         if (!tags)
3157                 return NULL;
3158
3159         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3160                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3161                                  node);
3162         if (!tags->rqs) {
3163                 blk_mq_free_tags(tags);
3164                 return NULL;
3165         }
3166
3167         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3168                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3169                                         node);
3170         if (!tags->static_rqs) {
3171                 kfree(tags->rqs);
3172                 blk_mq_free_tags(tags);
3173                 return NULL;
3174         }
3175
3176         return tags;
3177 }
3178
3179 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3180                                unsigned int hctx_idx, int node)
3181 {
3182         int ret;
3183
3184         if (set->ops->init_request) {
3185                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3186                 if (ret)
3187                         return ret;
3188         }
3189
3190         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3191         return 0;
3192 }
3193
3194 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3195                             struct blk_mq_tags *tags,
3196                             unsigned int hctx_idx, unsigned int depth)
3197 {
3198         unsigned int i, j, entries_per_page, max_order = 4;
3199         int node = blk_mq_get_hctx_node(set, hctx_idx);
3200         size_t rq_size, left;
3201
3202         if (node == NUMA_NO_NODE)
3203                 node = set->numa_node;
3204
3205         INIT_LIST_HEAD(&tags->page_list);
3206
3207         /*
3208          * rq_size is the size of the request plus driver payload, rounded
3209          * to the cacheline size
3210          */
3211         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3212                                 cache_line_size());
3213         left = rq_size * depth;
3214
3215         for (i = 0; i < depth; ) {
3216                 int this_order = max_order;
3217                 struct page *page;
3218                 int to_do;
3219                 void *p;
3220
3221                 while (this_order && left < order_to_size(this_order - 1))
3222                         this_order--;
3223
3224                 do {
3225                         page = alloc_pages_node(node,
3226                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3227                                 this_order);
3228                         if (page)
3229                                 break;
3230                         if (!this_order--)
3231                                 break;
3232                         if (order_to_size(this_order) < rq_size)
3233                                 break;
3234                 } while (1);
3235
3236                 if (!page)
3237                         goto fail;
3238
3239                 page->private = this_order;
3240                 list_add_tail(&page->lru, &tags->page_list);
3241
3242                 p = page_address(page);
3243                 /*
3244                  * Allow kmemleak to scan these pages as they contain pointers
3245                  * to additional allocations like via ops->init_request().
3246                  */
3247                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3248                 entries_per_page = order_to_size(this_order) / rq_size;
3249                 to_do = min(entries_per_page, depth - i);
3250                 left -= to_do * rq_size;
3251                 for (j = 0; j < to_do; j++) {
3252                         struct request *rq = p;
3253
3254                         tags->static_rqs[i] = rq;
3255                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3256                                 tags->static_rqs[i] = NULL;
3257                                 goto fail;
3258                         }
3259
3260                         p += rq_size;
3261                         i++;
3262                 }
3263         }
3264         return 0;
3265
3266 fail:
3267         blk_mq_free_rqs(set, tags, hctx_idx);
3268         return -ENOMEM;
3269 }
3270
3271 struct rq_iter_data {
3272         struct blk_mq_hw_ctx *hctx;
3273         bool has_rq;
3274 };
3275
3276 static bool blk_mq_has_request(struct request *rq, void *data)
3277 {
3278         struct rq_iter_data *iter_data = data;
3279
3280         if (rq->mq_hctx != iter_data->hctx)
3281                 return true;
3282         iter_data->has_rq = true;
3283         return false;
3284 }
3285
3286 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3287 {
3288         struct blk_mq_tags *tags = hctx->sched_tags ?
3289                         hctx->sched_tags : hctx->tags;
3290         struct rq_iter_data data = {
3291                 .hctx   = hctx,
3292         };
3293
3294         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3295         return data.has_rq;
3296 }
3297
3298 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3299                 struct blk_mq_hw_ctx *hctx)
3300 {
3301         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3302                 return false;
3303         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3304                 return false;
3305         return true;
3306 }
3307
3308 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3309 {
3310         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3311                         struct blk_mq_hw_ctx, cpuhp_online);
3312
3313         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3314             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3315                 return 0;
3316
3317         /*
3318          * Prevent new request from being allocated on the current hctx.
3319          *
3320          * The smp_mb__after_atomic() Pairs with the implied barrier in
3321          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3322          * seen once we return from the tag allocator.
3323          */
3324         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3325         smp_mb__after_atomic();
3326
3327         /*
3328          * Try to grab a reference to the queue and wait for any outstanding
3329          * requests.  If we could not grab a reference the queue has been
3330          * frozen and there are no requests.
3331          */
3332         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3333                 while (blk_mq_hctx_has_requests(hctx))
3334                         msleep(5);
3335                 percpu_ref_put(&hctx->queue->q_usage_counter);
3336         }
3337
3338         return 0;
3339 }
3340
3341 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3342 {
3343         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3344                         struct blk_mq_hw_ctx, cpuhp_online);
3345
3346         if (cpumask_test_cpu(cpu, hctx->cpumask))
3347                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3348         return 0;
3349 }
3350
3351 /*
3352  * 'cpu' is going away. splice any existing rq_list entries from this
3353  * software queue to the hw queue dispatch list, and ensure that it
3354  * gets run.
3355  */
3356 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3357 {
3358         struct blk_mq_hw_ctx *hctx;
3359         struct blk_mq_ctx *ctx;
3360         LIST_HEAD(tmp);
3361         enum hctx_type type;
3362
3363         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3364         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3365                 return 0;
3366
3367         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3368         type = hctx->type;
3369
3370         spin_lock(&ctx->lock);
3371         if (!list_empty(&ctx->rq_lists[type])) {
3372                 list_splice_init(&ctx->rq_lists[type], &tmp);
3373                 blk_mq_hctx_clear_pending(hctx, ctx);
3374         }
3375         spin_unlock(&ctx->lock);
3376
3377         if (list_empty(&tmp))
3378                 return 0;
3379
3380         spin_lock(&hctx->lock);
3381         list_splice_tail_init(&tmp, &hctx->dispatch);
3382         spin_unlock(&hctx->lock);
3383
3384         blk_mq_run_hw_queue(hctx, true);
3385         return 0;
3386 }
3387
3388 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3389 {
3390         if (!(hctx->flags & BLK_MQ_F_STACKING))
3391                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3392                                                     &hctx->cpuhp_online);
3393         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3394                                             &hctx->cpuhp_dead);
3395 }
3396
3397 /*
3398  * Before freeing hw queue, clearing the flush request reference in
3399  * tags->rqs[] for avoiding potential UAF.
3400  */
3401 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3402                 unsigned int queue_depth, struct request *flush_rq)
3403 {
3404         int i;
3405         unsigned long flags;
3406
3407         /* The hw queue may not be mapped yet */
3408         if (!tags)
3409                 return;
3410
3411         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3412
3413         for (i = 0; i < queue_depth; i++)
3414                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3415
3416         /*
3417          * Wait until all pending iteration is done.
3418          *
3419          * Request reference is cleared and it is guaranteed to be observed
3420          * after the ->lock is released.
3421          */
3422         spin_lock_irqsave(&tags->lock, flags);
3423         spin_unlock_irqrestore(&tags->lock, flags);
3424 }
3425
3426 /* hctx->ctxs will be freed in queue's release handler */
3427 static void blk_mq_exit_hctx(struct request_queue *q,
3428                 struct blk_mq_tag_set *set,
3429                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3430 {
3431         struct request *flush_rq = hctx->fq->flush_rq;
3432
3433         if (blk_mq_hw_queue_mapped(hctx))
3434                 blk_mq_tag_idle(hctx);
3435
3436         if (blk_queue_init_done(q))
3437                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3438                                 set->queue_depth, flush_rq);
3439         if (set->ops->exit_request)
3440                 set->ops->exit_request(set, flush_rq, hctx_idx);
3441
3442         if (set->ops->exit_hctx)
3443                 set->ops->exit_hctx(hctx, hctx_idx);
3444
3445         blk_mq_remove_cpuhp(hctx);
3446
3447         xa_erase(&q->hctx_table, hctx_idx);
3448
3449         spin_lock(&q->unused_hctx_lock);
3450         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3451         spin_unlock(&q->unused_hctx_lock);
3452 }
3453
3454 static void blk_mq_exit_hw_queues(struct request_queue *q,
3455                 struct blk_mq_tag_set *set, int nr_queue)
3456 {
3457         struct blk_mq_hw_ctx *hctx;
3458         unsigned long i;
3459
3460         queue_for_each_hw_ctx(q, hctx, i) {
3461                 if (i == nr_queue)
3462                         break;
3463                 blk_mq_exit_hctx(q, set, hctx, i);
3464         }
3465 }
3466
3467 static int blk_mq_init_hctx(struct request_queue *q,
3468                 struct blk_mq_tag_set *set,
3469                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3470 {
3471         hctx->queue_num = hctx_idx;
3472
3473         if (!(hctx->flags & BLK_MQ_F_STACKING))
3474                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3475                                 &hctx->cpuhp_online);
3476         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3477
3478         hctx->tags = set->tags[hctx_idx];
3479
3480         if (set->ops->init_hctx &&
3481             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3482                 goto unregister_cpu_notifier;
3483
3484         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3485                                 hctx->numa_node))
3486                 goto exit_hctx;
3487
3488         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3489                 goto exit_flush_rq;
3490
3491         return 0;
3492
3493  exit_flush_rq:
3494         if (set->ops->exit_request)
3495                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3496  exit_hctx:
3497         if (set->ops->exit_hctx)
3498                 set->ops->exit_hctx(hctx, hctx_idx);
3499  unregister_cpu_notifier:
3500         blk_mq_remove_cpuhp(hctx);
3501         return -1;
3502 }
3503
3504 static struct blk_mq_hw_ctx *
3505 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3506                 int node)
3507 {
3508         struct blk_mq_hw_ctx *hctx;
3509         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3510
3511         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3512         if (!hctx)
3513                 goto fail_alloc_hctx;
3514
3515         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3516                 goto free_hctx;
3517
3518         atomic_set(&hctx->nr_active, 0);
3519         if (node == NUMA_NO_NODE)
3520                 node = set->numa_node;
3521         hctx->numa_node = node;
3522
3523         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3524         spin_lock_init(&hctx->lock);
3525         INIT_LIST_HEAD(&hctx->dispatch);
3526         hctx->queue = q;
3527         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3528
3529         INIT_LIST_HEAD(&hctx->hctx_list);
3530
3531         /*
3532          * Allocate space for all possible cpus to avoid allocation at
3533          * runtime
3534          */
3535         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3536                         gfp, node);
3537         if (!hctx->ctxs)
3538                 goto free_cpumask;
3539
3540         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3541                                 gfp, node, false, false))
3542                 goto free_ctxs;
3543         hctx->nr_ctx = 0;
3544
3545         spin_lock_init(&hctx->dispatch_wait_lock);
3546         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3547         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3548
3549         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3550         if (!hctx->fq)
3551                 goto free_bitmap;
3552
3553         blk_mq_hctx_kobj_init(hctx);
3554
3555         return hctx;
3556
3557  free_bitmap:
3558         sbitmap_free(&hctx->ctx_map);
3559  free_ctxs:
3560         kfree(hctx->ctxs);
3561  free_cpumask:
3562         free_cpumask_var(hctx->cpumask);
3563  free_hctx:
3564         kfree(hctx);
3565  fail_alloc_hctx:
3566         return NULL;
3567 }
3568
3569 static void blk_mq_init_cpu_queues(struct request_queue *q,
3570                                    unsigned int nr_hw_queues)
3571 {
3572         struct blk_mq_tag_set *set = q->tag_set;
3573         unsigned int i, j;
3574
3575         for_each_possible_cpu(i) {
3576                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3577                 struct blk_mq_hw_ctx *hctx;
3578                 int k;
3579
3580                 __ctx->cpu = i;
3581                 spin_lock_init(&__ctx->lock);
3582                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3583                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3584
3585                 __ctx->queue = q;
3586
3587                 /*
3588                  * Set local node, IFF we have more than one hw queue. If
3589                  * not, we remain on the home node of the device
3590                  */
3591                 for (j = 0; j < set->nr_maps; j++) {
3592                         hctx = blk_mq_map_queue_type(q, j, i);
3593                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3594                                 hctx->numa_node = cpu_to_node(i);
3595                 }
3596         }
3597 }
3598
3599 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3600                                              unsigned int hctx_idx,
3601                                              unsigned int depth)
3602 {
3603         struct blk_mq_tags *tags;
3604         int ret;
3605
3606         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3607         if (!tags)
3608                 return NULL;
3609
3610         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3611         if (ret) {
3612                 blk_mq_free_rq_map(tags);
3613                 return NULL;
3614         }
3615
3616         return tags;
3617 }
3618
3619 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3620                                        int hctx_idx)
3621 {
3622         if (blk_mq_is_shared_tags(set->flags)) {
3623                 set->tags[hctx_idx] = set->shared_tags;
3624
3625                 return true;
3626         }
3627
3628         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3629                                                        set->queue_depth);
3630
3631         return set->tags[hctx_idx];
3632 }
3633
3634 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3635                              struct blk_mq_tags *tags,
3636                              unsigned int hctx_idx)
3637 {
3638         if (tags) {
3639                 blk_mq_free_rqs(set, tags, hctx_idx);
3640                 blk_mq_free_rq_map(tags);
3641         }
3642 }
3643
3644 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3645                                       unsigned int hctx_idx)
3646 {
3647         if (!blk_mq_is_shared_tags(set->flags))
3648                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3649
3650         set->tags[hctx_idx] = NULL;
3651 }
3652
3653 static void blk_mq_map_swqueue(struct request_queue *q)
3654 {
3655         unsigned int j, hctx_idx;
3656         unsigned long i;
3657         struct blk_mq_hw_ctx *hctx;
3658         struct blk_mq_ctx *ctx;
3659         struct blk_mq_tag_set *set = q->tag_set;
3660
3661         queue_for_each_hw_ctx(q, hctx, i) {
3662                 cpumask_clear(hctx->cpumask);
3663                 hctx->nr_ctx = 0;
3664                 hctx->dispatch_from = NULL;
3665         }
3666
3667         /*
3668          * Map software to hardware queues.
3669          *
3670          * If the cpu isn't present, the cpu is mapped to first hctx.
3671          */
3672         for_each_possible_cpu(i) {
3673
3674                 ctx = per_cpu_ptr(q->queue_ctx, i);
3675                 for (j = 0; j < set->nr_maps; j++) {
3676                         if (!set->map[j].nr_queues) {
3677                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3678                                                 HCTX_TYPE_DEFAULT, i);
3679                                 continue;
3680                         }
3681                         hctx_idx = set->map[j].mq_map[i];
3682                         /* unmapped hw queue can be remapped after CPU topo changed */
3683                         if (!set->tags[hctx_idx] &&
3684                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3685                                 /*
3686                                  * If tags initialization fail for some hctx,
3687                                  * that hctx won't be brought online.  In this
3688                                  * case, remap the current ctx to hctx[0] which
3689                                  * is guaranteed to always have tags allocated
3690                                  */
3691                                 set->map[j].mq_map[i] = 0;
3692                         }
3693
3694                         hctx = blk_mq_map_queue_type(q, j, i);
3695                         ctx->hctxs[j] = hctx;
3696                         /*
3697                          * If the CPU is already set in the mask, then we've
3698                          * mapped this one already. This can happen if
3699                          * devices share queues across queue maps.
3700                          */
3701                         if (cpumask_test_cpu(i, hctx->cpumask))
3702                                 continue;
3703
3704                         cpumask_set_cpu(i, hctx->cpumask);
3705                         hctx->type = j;
3706                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3707                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3708
3709                         /*
3710                          * If the nr_ctx type overflows, we have exceeded the
3711                          * amount of sw queues we can support.
3712                          */
3713                         BUG_ON(!hctx->nr_ctx);
3714                 }
3715
3716                 for (; j < HCTX_MAX_TYPES; j++)
3717                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3718                                         HCTX_TYPE_DEFAULT, i);
3719         }
3720
3721         queue_for_each_hw_ctx(q, hctx, i) {
3722                 /*
3723                  * If no software queues are mapped to this hardware queue,
3724                  * disable it and free the request entries.
3725                  */
3726                 if (!hctx->nr_ctx) {
3727                         /* Never unmap queue 0.  We need it as a
3728                          * fallback in case of a new remap fails
3729                          * allocation
3730                          */
3731                         if (i)
3732                                 __blk_mq_free_map_and_rqs(set, i);
3733
3734                         hctx->tags = NULL;
3735                         continue;
3736                 }
3737
3738                 hctx->tags = set->tags[i];
3739                 WARN_ON(!hctx->tags);
3740
3741                 /*
3742                  * Set the map size to the number of mapped software queues.
3743                  * This is more accurate and more efficient than looping
3744                  * over all possibly mapped software queues.
3745                  */
3746                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3747
3748                 /*
3749                  * Initialize batch roundrobin counts
3750                  */
3751                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3752                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3753         }
3754 }
3755
3756 /*
3757  * Caller needs to ensure that we're either frozen/quiesced, or that
3758  * the queue isn't live yet.
3759  */
3760 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3761 {
3762         struct blk_mq_hw_ctx *hctx;
3763         unsigned long i;
3764
3765         queue_for_each_hw_ctx(q, hctx, i) {
3766                 if (shared) {
3767                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3768                 } else {
3769                         blk_mq_tag_idle(hctx);
3770                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3771                 }
3772         }
3773 }
3774
3775 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3776                                          bool shared)
3777 {
3778         struct request_queue *q;
3779
3780         lockdep_assert_held(&set->tag_list_lock);
3781
3782         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3783                 blk_mq_freeze_queue(q);
3784                 queue_set_hctx_shared(q, shared);
3785                 blk_mq_unfreeze_queue(q);
3786         }
3787 }
3788
3789 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3790 {
3791         struct blk_mq_tag_set *set = q->tag_set;
3792
3793         mutex_lock(&set->tag_list_lock);
3794         list_del(&q->tag_set_list);
3795         if (list_is_singular(&set->tag_list)) {
3796                 /* just transitioned to unshared */
3797                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3798                 /* update existing queue */
3799                 blk_mq_update_tag_set_shared(set, false);
3800         }
3801         mutex_unlock(&set->tag_list_lock);
3802         INIT_LIST_HEAD(&q->tag_set_list);
3803 }
3804
3805 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3806                                      struct request_queue *q)
3807 {
3808         mutex_lock(&set->tag_list_lock);
3809
3810         /*
3811          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3812          */
3813         if (!list_empty(&set->tag_list) &&
3814             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3815                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3816                 /* update existing queue */
3817                 blk_mq_update_tag_set_shared(set, true);
3818         }
3819         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3820                 queue_set_hctx_shared(q, true);
3821         list_add_tail(&q->tag_set_list, &set->tag_list);
3822
3823         mutex_unlock(&set->tag_list_lock);
3824 }
3825
3826 /* All allocations will be freed in release handler of q->mq_kobj */
3827 static int blk_mq_alloc_ctxs(struct request_queue *q)
3828 {
3829         struct blk_mq_ctxs *ctxs;
3830         int cpu;
3831
3832         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3833         if (!ctxs)
3834                 return -ENOMEM;
3835
3836         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3837         if (!ctxs->queue_ctx)
3838                 goto fail;
3839
3840         for_each_possible_cpu(cpu) {
3841                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3842                 ctx->ctxs = ctxs;
3843         }
3844
3845         q->mq_kobj = &ctxs->kobj;
3846         q->queue_ctx = ctxs->queue_ctx;
3847
3848         return 0;
3849  fail:
3850         kfree(ctxs);
3851         return -ENOMEM;
3852 }
3853
3854 /*
3855  * It is the actual release handler for mq, but we do it from
3856  * request queue's release handler for avoiding use-after-free
3857  * and headache because q->mq_kobj shouldn't have been introduced,
3858  * but we can't group ctx/kctx kobj without it.
3859  */
3860 void blk_mq_release(struct request_queue *q)
3861 {
3862         struct blk_mq_hw_ctx *hctx, *next;
3863         unsigned long i;
3864
3865         queue_for_each_hw_ctx(q, hctx, i)
3866                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3867
3868         /* all hctx are in .unused_hctx_list now */
3869         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3870                 list_del_init(&hctx->hctx_list);
3871                 kobject_put(&hctx->kobj);
3872         }
3873
3874         xa_destroy(&q->hctx_table);
3875
3876         /*
3877          * release .mq_kobj and sw queue's kobject now because
3878          * both share lifetime with request queue.
3879          */
3880         blk_mq_sysfs_deinit(q);
3881 }
3882
3883 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3884                 void *queuedata)
3885 {
3886         struct request_queue *q;
3887         int ret;
3888
3889         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3890         if (!q)
3891                 return ERR_PTR(-ENOMEM);
3892         q->queuedata = queuedata;
3893         ret = blk_mq_init_allocated_queue(set, q);
3894         if (ret) {
3895                 blk_put_queue(q);
3896                 return ERR_PTR(ret);
3897         }
3898         return q;
3899 }
3900
3901 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3902 {
3903         return blk_mq_init_queue_data(set, NULL);
3904 }
3905 EXPORT_SYMBOL(blk_mq_init_queue);
3906
3907 /**
3908  * blk_mq_destroy_queue - shutdown a request queue
3909  * @q: request queue to shutdown
3910  *
3911  * This shuts down a request queue allocated by blk_mq_init_queue() and drops
3912  * the initial reference.  All future requests will failed with -ENODEV.
3913  *
3914  * Context: can sleep
3915  */
3916 void blk_mq_destroy_queue(struct request_queue *q)
3917 {
3918         WARN_ON_ONCE(!queue_is_mq(q));
3919         WARN_ON_ONCE(blk_queue_registered(q));
3920
3921         might_sleep();
3922
3923         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
3924         blk_queue_start_drain(q);
3925         blk_freeze_queue(q);
3926
3927         blk_sync_queue(q);
3928         blk_mq_cancel_work_sync(q);
3929         blk_mq_exit_queue(q);
3930
3931         /* @q is and will stay empty, shutdown and put */
3932         blk_put_queue(q);
3933 }
3934 EXPORT_SYMBOL(blk_mq_destroy_queue);
3935
3936 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3937                 struct lock_class_key *lkclass)
3938 {
3939         struct request_queue *q;
3940         struct gendisk *disk;
3941
3942         q = blk_mq_init_queue_data(set, queuedata);
3943         if (IS_ERR(q))
3944                 return ERR_CAST(q);
3945
3946         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3947         if (!disk) {
3948                 blk_mq_destroy_queue(q);
3949                 return ERR_PTR(-ENOMEM);
3950         }
3951         set_bit(GD_OWNS_QUEUE, &disk->state);
3952         return disk;
3953 }
3954 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3955
3956 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
3957                 struct lock_class_key *lkclass)
3958 {
3959         struct gendisk *disk;
3960
3961         if (!blk_get_queue(q))
3962                 return NULL;
3963         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
3964         if (!disk)
3965                 blk_put_queue(q);
3966         return disk;
3967 }
3968 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
3969
3970 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3971                 struct blk_mq_tag_set *set, struct request_queue *q,
3972                 int hctx_idx, int node)
3973 {
3974         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3975
3976         /* reuse dead hctx first */
3977         spin_lock(&q->unused_hctx_lock);
3978         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3979                 if (tmp->numa_node == node) {
3980                         hctx = tmp;
3981                         break;
3982                 }
3983         }
3984         if (hctx)
3985                 list_del_init(&hctx->hctx_list);
3986         spin_unlock(&q->unused_hctx_lock);
3987
3988         if (!hctx)
3989                 hctx = blk_mq_alloc_hctx(q, set, node);
3990         if (!hctx)
3991                 goto fail;
3992
3993         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3994                 goto free_hctx;
3995
3996         return hctx;
3997
3998  free_hctx:
3999         kobject_put(&hctx->kobj);
4000  fail:
4001         return NULL;
4002 }
4003
4004 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4005                                                 struct request_queue *q)
4006 {
4007         struct blk_mq_hw_ctx *hctx;
4008         unsigned long i, j;
4009
4010         /* protect against switching io scheduler  */
4011         mutex_lock(&q->sysfs_lock);
4012         for (i = 0; i < set->nr_hw_queues; i++) {
4013                 int old_node;
4014                 int node = blk_mq_get_hctx_node(set, i);
4015                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4016
4017                 if (old_hctx) {
4018                         old_node = old_hctx->numa_node;
4019                         blk_mq_exit_hctx(q, set, old_hctx, i);
4020                 }
4021
4022                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4023                         if (!old_hctx)
4024                                 break;
4025                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4026                                         node, old_node);
4027                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4028                         WARN_ON_ONCE(!hctx);
4029                 }
4030         }
4031         /*
4032          * Increasing nr_hw_queues fails. Free the newly allocated
4033          * hctxs and keep the previous q->nr_hw_queues.
4034          */
4035         if (i != set->nr_hw_queues) {
4036                 j = q->nr_hw_queues;
4037         } else {
4038                 j = i;
4039                 q->nr_hw_queues = set->nr_hw_queues;
4040         }
4041
4042         xa_for_each_start(&q->hctx_table, j, hctx, j)
4043                 blk_mq_exit_hctx(q, set, hctx, j);
4044         mutex_unlock(&q->sysfs_lock);
4045 }
4046
4047 static void blk_mq_update_poll_flag(struct request_queue *q)
4048 {
4049         struct blk_mq_tag_set *set = q->tag_set;
4050
4051         if (set->nr_maps > HCTX_TYPE_POLL &&
4052             set->map[HCTX_TYPE_POLL].nr_queues)
4053                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4054         else
4055                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4056 }
4057
4058 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4059                 struct request_queue *q)
4060 {
4061         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4062                         !!(set->flags & BLK_MQ_F_BLOCKING));
4063
4064         /* mark the queue as mq asap */
4065         q->mq_ops = set->ops;
4066
4067         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4068                                              blk_mq_poll_stats_bkt,
4069                                              BLK_MQ_POLL_STATS_BKTS, q);
4070         if (!q->poll_cb)
4071                 goto err_exit;
4072
4073         if (blk_mq_alloc_ctxs(q))
4074                 goto err_poll;
4075
4076         /* init q->mq_kobj and sw queues' kobjects */
4077         blk_mq_sysfs_init(q);
4078
4079         INIT_LIST_HEAD(&q->unused_hctx_list);
4080         spin_lock_init(&q->unused_hctx_lock);
4081
4082         xa_init(&q->hctx_table);
4083
4084         blk_mq_realloc_hw_ctxs(set, q);
4085         if (!q->nr_hw_queues)
4086                 goto err_hctxs;
4087
4088         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4089         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4090
4091         q->tag_set = set;
4092
4093         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4094         blk_mq_update_poll_flag(q);
4095
4096         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4097         INIT_LIST_HEAD(&q->requeue_list);
4098         spin_lock_init(&q->requeue_lock);
4099
4100         q->nr_requests = set->queue_depth;
4101
4102         /*
4103          * Default to classic polling
4104          */
4105         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4106
4107         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4108         blk_mq_add_queue_tag_set(set, q);
4109         blk_mq_map_swqueue(q);
4110         return 0;
4111
4112 err_hctxs:
4113         blk_mq_release(q);
4114 err_poll:
4115         blk_stat_free_callback(q->poll_cb);
4116         q->poll_cb = NULL;
4117 err_exit:
4118         q->mq_ops = NULL;
4119         return -ENOMEM;
4120 }
4121 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4122
4123 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4124 void blk_mq_exit_queue(struct request_queue *q)
4125 {
4126         struct blk_mq_tag_set *set = q->tag_set;
4127
4128         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4129         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4130         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4131         blk_mq_del_queue_tag_set(q);
4132 }
4133
4134 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4135 {
4136         int i;
4137
4138         if (blk_mq_is_shared_tags(set->flags)) {
4139                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4140                                                 BLK_MQ_NO_HCTX_IDX,
4141                                                 set->queue_depth);
4142                 if (!set->shared_tags)
4143                         return -ENOMEM;
4144         }
4145
4146         for (i = 0; i < set->nr_hw_queues; i++) {
4147                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4148                         goto out_unwind;
4149                 cond_resched();
4150         }
4151
4152         return 0;
4153
4154 out_unwind:
4155         while (--i >= 0)
4156                 __blk_mq_free_map_and_rqs(set, i);
4157
4158         if (blk_mq_is_shared_tags(set->flags)) {
4159                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4160                                         BLK_MQ_NO_HCTX_IDX);
4161         }
4162
4163         return -ENOMEM;
4164 }
4165
4166 /*
4167  * Allocate the request maps associated with this tag_set. Note that this
4168  * may reduce the depth asked for, if memory is tight. set->queue_depth
4169  * will be updated to reflect the allocated depth.
4170  */
4171 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4172 {
4173         unsigned int depth;
4174         int err;
4175
4176         depth = set->queue_depth;
4177         do {
4178                 err = __blk_mq_alloc_rq_maps(set);
4179                 if (!err)
4180                         break;
4181
4182                 set->queue_depth >>= 1;
4183                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4184                         err = -ENOMEM;
4185                         break;
4186                 }
4187         } while (set->queue_depth);
4188
4189         if (!set->queue_depth || err) {
4190                 pr_err("blk-mq: failed to allocate request map\n");
4191                 return -ENOMEM;
4192         }
4193
4194         if (depth != set->queue_depth)
4195                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4196                                                 depth, set->queue_depth);
4197
4198         return 0;
4199 }
4200
4201 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4202 {
4203         /*
4204          * blk_mq_map_queues() and multiple .map_queues() implementations
4205          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4206          * number of hardware queues.
4207          */
4208         if (set->nr_maps == 1)
4209                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4210
4211         if (set->ops->map_queues && !is_kdump_kernel()) {
4212                 int i;
4213
4214                 /*
4215                  * transport .map_queues is usually done in the following
4216                  * way:
4217                  *
4218                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4219                  *      mask = get_cpu_mask(queue)
4220                  *      for_each_cpu(cpu, mask)
4221                  *              set->map[x].mq_map[cpu] = queue;
4222                  * }
4223                  *
4224                  * When we need to remap, the table has to be cleared for
4225                  * killing stale mapping since one CPU may not be mapped
4226                  * to any hw queue.
4227                  */
4228                 for (i = 0; i < set->nr_maps; i++)
4229                         blk_mq_clear_mq_map(&set->map[i]);
4230
4231                 return set->ops->map_queues(set);
4232         } else {
4233                 BUG_ON(set->nr_maps > 1);
4234                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4235         }
4236 }
4237
4238 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4239                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4240 {
4241         struct blk_mq_tags **new_tags;
4242
4243         if (cur_nr_hw_queues >= new_nr_hw_queues)
4244                 return 0;
4245
4246         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4247                                 GFP_KERNEL, set->numa_node);
4248         if (!new_tags)
4249                 return -ENOMEM;
4250
4251         if (set->tags)
4252                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4253                        sizeof(*set->tags));
4254         kfree(set->tags);
4255         set->tags = new_tags;
4256         set->nr_hw_queues = new_nr_hw_queues;
4257
4258         return 0;
4259 }
4260
4261 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4262                                 int new_nr_hw_queues)
4263 {
4264         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4265 }
4266
4267 /*
4268  * Alloc a tag set to be associated with one or more request queues.
4269  * May fail with EINVAL for various error conditions. May adjust the
4270  * requested depth down, if it's too large. In that case, the set
4271  * value will be stored in set->queue_depth.
4272  */
4273 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4274 {
4275         int i, ret;
4276
4277         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4278
4279         if (!set->nr_hw_queues)
4280                 return -EINVAL;
4281         if (!set->queue_depth)
4282                 return -EINVAL;
4283         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4284                 return -EINVAL;
4285
4286         if (!set->ops->queue_rq)
4287                 return -EINVAL;
4288
4289         if (!set->ops->get_budget ^ !set->ops->put_budget)
4290                 return -EINVAL;
4291
4292         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4293                 pr_info("blk-mq: reduced tag depth to %u\n",
4294                         BLK_MQ_MAX_DEPTH);
4295                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4296         }
4297
4298         if (!set->nr_maps)
4299                 set->nr_maps = 1;
4300         else if (set->nr_maps > HCTX_MAX_TYPES)
4301                 return -EINVAL;
4302
4303         /*
4304          * If a crashdump is active, then we are potentially in a very
4305          * memory constrained environment. Limit us to 1 queue and
4306          * 64 tags to prevent using too much memory.
4307          */
4308         if (is_kdump_kernel()) {
4309                 set->nr_hw_queues = 1;
4310                 set->nr_maps = 1;
4311                 set->queue_depth = min(64U, set->queue_depth);
4312         }
4313         /*
4314          * There is no use for more h/w queues than cpus if we just have
4315          * a single map
4316          */
4317         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4318                 set->nr_hw_queues = nr_cpu_ids;
4319
4320         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4321                 return -ENOMEM;
4322
4323         ret = -ENOMEM;
4324         for (i = 0; i < set->nr_maps; i++) {
4325                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4326                                                   sizeof(set->map[i].mq_map[0]),
4327                                                   GFP_KERNEL, set->numa_node);
4328                 if (!set->map[i].mq_map)
4329                         goto out_free_mq_map;
4330                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4331         }
4332
4333         ret = blk_mq_update_queue_map(set);
4334         if (ret)
4335                 goto out_free_mq_map;
4336
4337         ret = blk_mq_alloc_set_map_and_rqs(set);
4338         if (ret)
4339                 goto out_free_mq_map;
4340
4341         mutex_init(&set->tag_list_lock);
4342         INIT_LIST_HEAD(&set->tag_list);
4343
4344         return 0;
4345
4346 out_free_mq_map:
4347         for (i = 0; i < set->nr_maps; i++) {
4348                 kfree(set->map[i].mq_map);
4349                 set->map[i].mq_map = NULL;
4350         }
4351         kfree(set->tags);
4352         set->tags = NULL;
4353         return ret;
4354 }
4355 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4356
4357 /* allocate and initialize a tagset for a simple single-queue device */
4358 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4359                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4360                 unsigned int set_flags)
4361 {
4362         memset(set, 0, sizeof(*set));
4363         set->ops = ops;
4364         set->nr_hw_queues = 1;
4365         set->nr_maps = 1;
4366         set->queue_depth = queue_depth;
4367         set->numa_node = NUMA_NO_NODE;
4368         set->flags = set_flags;
4369         return blk_mq_alloc_tag_set(set);
4370 }
4371 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4372
4373 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4374 {
4375         int i, j;
4376
4377         for (i = 0; i < set->nr_hw_queues; i++)
4378                 __blk_mq_free_map_and_rqs(set, i);
4379
4380         if (blk_mq_is_shared_tags(set->flags)) {
4381                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4382                                         BLK_MQ_NO_HCTX_IDX);
4383         }
4384
4385         for (j = 0; j < set->nr_maps; j++) {
4386                 kfree(set->map[j].mq_map);
4387                 set->map[j].mq_map = NULL;
4388         }
4389
4390         kfree(set->tags);
4391         set->tags = NULL;
4392 }
4393 EXPORT_SYMBOL(blk_mq_free_tag_set);
4394
4395 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4396 {
4397         struct blk_mq_tag_set *set = q->tag_set;
4398         struct blk_mq_hw_ctx *hctx;
4399         int ret;
4400         unsigned long i;
4401
4402         if (!set)
4403                 return -EINVAL;
4404
4405         if (q->nr_requests == nr)
4406                 return 0;
4407
4408         blk_mq_freeze_queue(q);
4409         blk_mq_quiesce_queue(q);
4410
4411         ret = 0;
4412         queue_for_each_hw_ctx(q, hctx, i) {
4413                 if (!hctx->tags)
4414                         continue;
4415                 /*
4416                  * If we're using an MQ scheduler, just update the scheduler
4417                  * queue depth. This is similar to what the old code would do.
4418                  */
4419                 if (hctx->sched_tags) {
4420                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4421                                                       nr, true);
4422                 } else {
4423                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4424                                                       false);
4425                 }
4426                 if (ret)
4427                         break;
4428                 if (q->elevator && q->elevator->type->ops.depth_updated)
4429                         q->elevator->type->ops.depth_updated(hctx);
4430         }
4431         if (!ret) {
4432                 q->nr_requests = nr;
4433                 if (blk_mq_is_shared_tags(set->flags)) {
4434                         if (q->elevator)
4435                                 blk_mq_tag_update_sched_shared_tags(q);
4436                         else
4437                                 blk_mq_tag_resize_shared_tags(set, nr);
4438                 }
4439         }
4440
4441         blk_mq_unquiesce_queue(q);
4442         blk_mq_unfreeze_queue(q);
4443
4444         return ret;
4445 }
4446
4447 /*
4448  * request_queue and elevator_type pair.
4449  * It is just used by __blk_mq_update_nr_hw_queues to cache
4450  * the elevator_type associated with a request_queue.
4451  */
4452 struct blk_mq_qe_pair {
4453         struct list_head node;
4454         struct request_queue *q;
4455         struct elevator_type *type;
4456 };
4457
4458 /*
4459  * Cache the elevator_type in qe pair list and switch the
4460  * io scheduler to 'none'
4461  */
4462 static bool blk_mq_elv_switch_none(struct list_head *head,
4463                 struct request_queue *q)
4464 {
4465         struct blk_mq_qe_pair *qe;
4466
4467         if (!q->elevator)
4468                 return true;
4469
4470         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4471         if (!qe)
4472                 return false;
4473
4474         /* q->elevator needs protection from ->sysfs_lock */
4475         mutex_lock(&q->sysfs_lock);
4476
4477         INIT_LIST_HEAD(&qe->node);
4478         qe->q = q;
4479         qe->type = q->elevator->type;
4480         list_add(&qe->node, head);
4481
4482         /*
4483          * After elevator_switch, the previous elevator_queue will be
4484          * released by elevator_release. The reference of the io scheduler
4485          * module get by elevator_get will also be put. So we need to get
4486          * a reference of the io scheduler module here to prevent it to be
4487          * removed.
4488          */
4489         __module_get(qe->type->elevator_owner);
4490         elevator_switch(q, NULL);
4491         mutex_unlock(&q->sysfs_lock);
4492
4493         return true;
4494 }
4495
4496 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4497                                                 struct request_queue *q)
4498 {
4499         struct blk_mq_qe_pair *qe;
4500
4501         list_for_each_entry(qe, head, node)
4502                 if (qe->q == q)
4503                         return qe;
4504
4505         return NULL;
4506 }
4507
4508 static void blk_mq_elv_switch_back(struct list_head *head,
4509                                   struct request_queue *q)
4510 {
4511         struct blk_mq_qe_pair *qe;
4512         struct elevator_type *t;
4513
4514         qe = blk_lookup_qe_pair(head, q);
4515         if (!qe)
4516                 return;
4517         t = qe->type;
4518         list_del(&qe->node);
4519         kfree(qe);
4520
4521         mutex_lock(&q->sysfs_lock);
4522         elevator_switch(q, t);
4523         mutex_unlock(&q->sysfs_lock);
4524 }
4525
4526 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4527                                                         int nr_hw_queues)
4528 {
4529         struct request_queue *q;
4530         LIST_HEAD(head);
4531         int prev_nr_hw_queues;
4532
4533         lockdep_assert_held(&set->tag_list_lock);
4534
4535         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4536                 nr_hw_queues = nr_cpu_ids;
4537         if (nr_hw_queues < 1)
4538                 return;
4539         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4540                 return;
4541
4542         list_for_each_entry(q, &set->tag_list, tag_set_list)
4543                 blk_mq_freeze_queue(q);
4544         /*
4545          * Switch IO scheduler to 'none', cleaning up the data associated
4546          * with the previous scheduler. We will switch back once we are done
4547          * updating the new sw to hw queue mappings.
4548          */
4549         list_for_each_entry(q, &set->tag_list, tag_set_list)
4550                 if (!blk_mq_elv_switch_none(&head, q))
4551                         goto switch_back;
4552
4553         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4554                 blk_mq_debugfs_unregister_hctxs(q);
4555                 blk_mq_sysfs_unregister_hctxs(q);
4556         }
4557
4558         prev_nr_hw_queues = set->nr_hw_queues;
4559         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4560             0)
4561                 goto reregister;
4562
4563         set->nr_hw_queues = nr_hw_queues;
4564 fallback:
4565         blk_mq_update_queue_map(set);
4566         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4567                 blk_mq_realloc_hw_ctxs(set, q);
4568                 blk_mq_update_poll_flag(q);
4569                 if (q->nr_hw_queues != set->nr_hw_queues) {
4570                         int i = prev_nr_hw_queues;
4571
4572                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4573                                         nr_hw_queues, prev_nr_hw_queues);
4574                         for (; i < set->nr_hw_queues; i++)
4575                                 __blk_mq_free_map_and_rqs(set, i);
4576
4577                         set->nr_hw_queues = prev_nr_hw_queues;
4578                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4579                         goto fallback;
4580                 }
4581                 blk_mq_map_swqueue(q);
4582         }
4583
4584 reregister:
4585         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4586                 blk_mq_sysfs_register_hctxs(q);
4587                 blk_mq_debugfs_register_hctxs(q);
4588         }
4589
4590 switch_back:
4591         list_for_each_entry(q, &set->tag_list, tag_set_list)
4592                 blk_mq_elv_switch_back(&head, q);
4593
4594         list_for_each_entry(q, &set->tag_list, tag_set_list)
4595                 blk_mq_unfreeze_queue(q);
4596 }
4597
4598 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4599 {
4600         mutex_lock(&set->tag_list_lock);
4601         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4602         mutex_unlock(&set->tag_list_lock);
4603 }
4604 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4605
4606 /* Enable polling stats and return whether they were already enabled. */
4607 static bool blk_poll_stats_enable(struct request_queue *q)
4608 {
4609         if (q->poll_stat)
4610                 return true;
4611
4612         return blk_stats_alloc_enable(q);
4613 }
4614
4615 static void blk_mq_poll_stats_start(struct request_queue *q)
4616 {
4617         /*
4618          * We don't arm the callback if polling stats are not enabled or the
4619          * callback is already active.
4620          */
4621         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4622                 return;
4623
4624         blk_stat_activate_msecs(q->poll_cb, 100);
4625 }
4626
4627 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4628 {
4629         struct request_queue *q = cb->data;
4630         int bucket;
4631
4632         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4633                 if (cb->stat[bucket].nr_samples)
4634                         q->poll_stat[bucket] = cb->stat[bucket];
4635         }
4636 }
4637
4638 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4639                                        struct request *rq)
4640 {
4641         unsigned long ret = 0;
4642         int bucket;
4643
4644         /*
4645          * If stats collection isn't on, don't sleep but turn it on for
4646          * future users
4647          */
4648         if (!blk_poll_stats_enable(q))
4649                 return 0;
4650
4651         /*
4652          * As an optimistic guess, use half of the mean service time
4653          * for this type of request. We can (and should) make this smarter.
4654          * For instance, if the completion latencies are tight, we can
4655          * get closer than just half the mean. This is especially
4656          * important on devices where the completion latencies are longer
4657          * than ~10 usec. We do use the stats for the relevant IO size
4658          * if available which does lead to better estimates.
4659          */
4660         bucket = blk_mq_poll_stats_bkt(rq);
4661         if (bucket < 0)
4662                 return ret;
4663
4664         if (q->poll_stat[bucket].nr_samples)
4665                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4666
4667         return ret;
4668 }
4669
4670 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4671 {
4672         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4673         struct request *rq = blk_qc_to_rq(hctx, qc);
4674         struct hrtimer_sleeper hs;
4675         enum hrtimer_mode mode;
4676         unsigned int nsecs;
4677         ktime_t kt;
4678
4679         /*
4680          * If a request has completed on queue that uses an I/O scheduler, we
4681          * won't get back a request from blk_qc_to_rq.
4682          */
4683         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4684                 return false;
4685
4686         /*
4687          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4688          *
4689          *  0:  use half of prev avg
4690          * >0:  use this specific value
4691          */
4692         if (q->poll_nsec > 0)
4693                 nsecs = q->poll_nsec;
4694         else
4695                 nsecs = blk_mq_poll_nsecs(q, rq);
4696
4697         if (!nsecs)
4698                 return false;
4699
4700         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4701
4702         /*
4703          * This will be replaced with the stats tracking code, using
4704          * 'avg_completion_time / 2' as the pre-sleep target.
4705          */
4706         kt = nsecs;
4707
4708         mode = HRTIMER_MODE_REL;
4709         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4710         hrtimer_set_expires(&hs.timer, kt);
4711
4712         do {
4713                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4714                         break;
4715                 set_current_state(TASK_UNINTERRUPTIBLE);
4716                 hrtimer_sleeper_start_expires(&hs, mode);
4717                 if (hs.task)
4718                         io_schedule();
4719                 hrtimer_cancel(&hs.timer);
4720                 mode = HRTIMER_MODE_ABS;
4721         } while (hs.task && !signal_pending(current));
4722
4723         __set_current_state(TASK_RUNNING);
4724         destroy_hrtimer_on_stack(&hs.timer);
4725
4726         /*
4727          * If we sleep, have the caller restart the poll loop to reset the
4728          * state.  Like for the other success return cases, the caller is
4729          * responsible for checking if the IO completed.  If the IO isn't
4730          * complete, we'll get called again and will go straight to the busy
4731          * poll loop.
4732          */
4733         return true;
4734 }
4735
4736 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4737                                struct io_comp_batch *iob, unsigned int flags)
4738 {
4739         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4740         long state = get_current_state();
4741         int ret;
4742
4743         do {
4744                 ret = q->mq_ops->poll(hctx, iob);
4745                 if (ret > 0) {
4746                         __set_current_state(TASK_RUNNING);
4747                         return ret;
4748                 }
4749
4750                 if (signal_pending_state(state, current))
4751                         __set_current_state(TASK_RUNNING);
4752                 if (task_is_running(current))
4753                         return 1;
4754
4755                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4756                         break;
4757                 cpu_relax();
4758         } while (!need_resched());
4759
4760         __set_current_state(TASK_RUNNING);
4761         return 0;
4762 }
4763
4764 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4765                 unsigned int flags)
4766 {
4767         if (!(flags & BLK_POLL_NOSLEEP) &&
4768             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4769                 if (blk_mq_poll_hybrid(q, cookie))
4770                         return 1;
4771         }
4772         return blk_mq_poll_classic(q, cookie, iob, flags);
4773 }
4774
4775 unsigned int blk_mq_rq_cpu(struct request *rq)
4776 {
4777         return rq->mq_ctx->cpu;
4778 }
4779 EXPORT_SYMBOL(blk_mq_rq_cpu);
4780
4781 void blk_mq_cancel_work_sync(struct request_queue *q)
4782 {
4783         if (queue_is_mq(q)) {
4784                 struct blk_mq_hw_ctx *hctx;
4785                 unsigned long i;
4786
4787                 cancel_delayed_work_sync(&q->requeue_work);
4788
4789                 queue_for_each_hw_ctx(q, hctx, i)
4790                         cancel_delayed_work_sync(&hctx->run_work);
4791         }
4792 }
4793
4794 static int __init blk_mq_init(void)
4795 {
4796         int i;
4797
4798         for_each_possible_cpu(i)
4799                 init_llist_head(&per_cpu(blk_cpu_done, i));
4800         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4801
4802         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4803                                   "block/softirq:dead", NULL,
4804                                   blk_softirq_cpu_dead);
4805         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4806                                 blk_mq_hctx_notify_dead);
4807         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4808                                 blk_mq_hctx_notify_online,
4809                                 blk_mq_hctx_notify_offline);
4810         return 0;
4811 }
4812 subsys_initcall(blk_mq_init);