GNU Linux-libre 6.8.9-gnu
[releases.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49                 blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51                 struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53                          struct io_comp_batch *iob, unsigned int flags);
54
55 /*
56  * Check if any of the ctx, dispatch list or elevator
57  * have pending work in this hardware queue.
58  */
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61         return !list_empty_careful(&hctx->dispatch) ||
62                 sbitmap_any_bit_set(&hctx->ctx_map) ||
63                         blk_mq_sched_has_work(hctx);
64 }
65
66 /*
67  * Mark this ctx as having pending work in this hardware queue
68  */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70                                      struct blk_mq_ctx *ctx)
71 {
72         const int bit = ctx->index_hw[hctx->type];
73
74         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75                 sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79                                       struct blk_mq_ctx *ctx)
80 {
81         const int bit = ctx->index_hw[hctx->type];
82
83         sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85
86 struct mq_inflight {
87         struct block_device *part;
88         unsigned int inflight[2];
89 };
90
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93         struct mq_inflight *mi = priv;
94
95         if (rq->part && blk_do_io_stat(rq) &&
96             (!mi->part->bd_partno || rq->part == mi->part) &&
97             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98                 mi->inflight[rq_data_dir(rq)]++;
99
100         return true;
101 }
102
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104                 struct block_device *part)
105 {
106         struct mq_inflight mi = { .part = part };
107
108         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109
110         return mi.inflight[0] + mi.inflight[1];
111 }
112
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114                 unsigned int inflight[2])
115 {
116         struct mq_inflight mi = { .part = part };
117
118         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119         inflight[0] = mi.inflight[0];
120         inflight[1] = mi.inflight[1];
121 }
122
123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125         mutex_lock(&q->mq_freeze_lock);
126         if (++q->mq_freeze_depth == 1) {
127                 percpu_ref_kill(&q->q_usage_counter);
128                 mutex_unlock(&q->mq_freeze_lock);
129                 if (queue_is_mq(q))
130                         blk_mq_run_hw_queues(q, false);
131         } else {
132                 mutex_unlock(&q->mq_freeze_lock);
133         }
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144                                      unsigned long timeout)
145 {
146         return wait_event_timeout(q->mq_freeze_wq,
147                                         percpu_ref_is_zero(&q->q_usage_counter),
148                                         timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151
152 /*
153  * Guarantee no request is in use, so we can change any data structure of
154  * the queue afterward.
155  */
156 void blk_freeze_queue(struct request_queue *q)
157 {
158         /*
159          * In the !blk_mq case we are only calling this to kill the
160          * q_usage_counter, otherwise this increases the freeze depth
161          * and waits for it to return to zero.  For this reason there is
162          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163          * exported to drivers as the only user for unfreeze is blk_mq.
164          */
165         blk_freeze_queue_start(q);
166         blk_mq_freeze_queue_wait(q);
167 }
168
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171         /*
172          * ...just an alias to keep freeze and unfreeze actions balanced
173          * in the blk_mq_* namespace
174          */
175         blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181         mutex_lock(&q->mq_freeze_lock);
182         if (force_atomic)
183                 q->q_usage_counter.data->force_atomic = true;
184         q->mq_freeze_depth--;
185         WARN_ON_ONCE(q->mq_freeze_depth < 0);
186         if (!q->mq_freeze_depth) {
187                 percpu_ref_resurrect(&q->q_usage_counter);
188                 wake_up_all(&q->mq_freeze_wq);
189         }
190         mutex_unlock(&q->mq_freeze_lock);
191 }
192
193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195         __blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205         unsigned long flags;
206
207         spin_lock_irqsave(&q->queue_lock, flags);
208         if (!q->quiesce_depth++)
209                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210         spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216  * @set: tag_set to wait on
217  *
218  * Note: it is driver's responsibility for making sure that quiesce has
219  * been started on or more of the request_queues of the tag_set.  This
220  * function only waits for the quiesce on those request_queues that had
221  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222  */
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225         if (set->flags & BLK_MQ_F_BLOCKING)
226                 synchronize_srcu(set->srcu);
227         else
228                 synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231
232 /**
233  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234  * @q: request queue.
235  *
236  * Note: this function does not prevent that the struct request end_io()
237  * callback function is invoked. Once this function is returned, we make
238  * sure no dispatch can happen until the queue is unquiesced via
239  * blk_mq_unquiesce_queue().
240  */
241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243         blk_mq_quiesce_queue_nowait(q);
244         /* nothing to wait for non-mq queues */
245         if (queue_is_mq(q))
246                 blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259         unsigned long flags;
260         bool run_queue = false;
261
262         spin_lock_irqsave(&q->queue_lock, flags);
263         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264                 ;
265         } else if (!--q->quiesce_depth) {
266                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267                 run_queue = true;
268         }
269         spin_unlock_irqrestore(&q->queue_lock, flags);
270
271         /* dispatch requests which are inserted during quiescing */
272         if (run_queue)
273                 blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279         struct request_queue *q;
280
281         mutex_lock(&set->tag_list_lock);
282         list_for_each_entry(q, &set->tag_list, tag_set_list) {
283                 if (!blk_queue_skip_tagset_quiesce(q))
284                         blk_mq_quiesce_queue_nowait(q);
285         }
286         blk_mq_wait_quiesce_done(set);
287         mutex_unlock(&set->tag_list_lock);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
290
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
292 {
293         struct request_queue *q;
294
295         mutex_lock(&set->tag_list_lock);
296         list_for_each_entry(q, &set->tag_list, tag_set_list) {
297                 if (!blk_queue_skip_tagset_quiesce(q))
298                         blk_mq_unquiesce_queue(q);
299         }
300         mutex_unlock(&set->tag_list_lock);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
303
304 void blk_mq_wake_waiters(struct request_queue *q)
305 {
306         struct blk_mq_hw_ctx *hctx;
307         unsigned long i;
308
309         queue_for_each_hw_ctx(q, hctx, i)
310                 if (blk_mq_hw_queue_mapped(hctx))
311                         blk_mq_tag_wakeup_all(hctx->tags, true);
312 }
313
314 void blk_rq_init(struct request_queue *q, struct request *rq)
315 {
316         memset(rq, 0, sizeof(*rq));
317
318         INIT_LIST_HEAD(&rq->queuelist);
319         rq->q = q;
320         rq->__sector = (sector_t) -1;
321         INIT_HLIST_NODE(&rq->hash);
322         RB_CLEAR_NODE(&rq->rb_node);
323         rq->tag = BLK_MQ_NO_TAG;
324         rq->internal_tag = BLK_MQ_NO_TAG;
325         rq->start_time_ns = ktime_get_ns();
326         rq->part = NULL;
327         blk_crypto_rq_set_defaults(rq);
328 }
329 EXPORT_SYMBOL(blk_rq_init);
330
331 /* Set start and alloc time when the allocated request is actually used */
332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
333 {
334         if (blk_mq_need_time_stamp(rq))
335                 rq->start_time_ns = ktime_get_ns();
336         else
337                 rq->start_time_ns = 0;
338
339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
340         if (blk_queue_rq_alloc_time(rq->q))
341                 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
342         else
343                 rq->alloc_time_ns = 0;
344 #endif
345 }
346
347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
348                 struct blk_mq_tags *tags, unsigned int tag)
349 {
350         struct blk_mq_ctx *ctx = data->ctx;
351         struct blk_mq_hw_ctx *hctx = data->hctx;
352         struct request_queue *q = data->q;
353         struct request *rq = tags->static_rqs[tag];
354
355         rq->q = q;
356         rq->mq_ctx = ctx;
357         rq->mq_hctx = hctx;
358         rq->cmd_flags = data->cmd_flags;
359
360         if (data->flags & BLK_MQ_REQ_PM)
361                 data->rq_flags |= RQF_PM;
362         if (blk_queue_io_stat(q))
363                 data->rq_flags |= RQF_IO_STAT;
364         rq->rq_flags = data->rq_flags;
365
366         if (data->rq_flags & RQF_SCHED_TAGS) {
367                 rq->tag = BLK_MQ_NO_TAG;
368                 rq->internal_tag = tag;
369         } else {
370                 rq->tag = tag;
371                 rq->internal_tag = BLK_MQ_NO_TAG;
372         }
373         rq->timeout = 0;
374
375         rq->part = NULL;
376         rq->io_start_time_ns = 0;
377         rq->stats_sectors = 0;
378         rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380         rq->nr_integrity_segments = 0;
381 #endif
382         rq->end_io = NULL;
383         rq->end_io_data = NULL;
384
385         blk_crypto_rq_set_defaults(rq);
386         INIT_LIST_HEAD(&rq->queuelist);
387         /* tag was already set */
388         WRITE_ONCE(rq->deadline, 0);
389         req_ref_set(rq, 1);
390
391         if (rq->rq_flags & RQF_USE_SCHED) {
392                 struct elevator_queue *e = data->q->elevator;
393
394                 INIT_HLIST_NODE(&rq->hash);
395                 RB_CLEAR_NODE(&rq->rb_node);
396
397                 if (e->type->ops.prepare_request)
398                         e->type->ops.prepare_request(rq);
399         }
400
401         return rq;
402 }
403
404 static inline struct request *
405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
406 {
407         unsigned int tag, tag_offset;
408         struct blk_mq_tags *tags;
409         struct request *rq;
410         unsigned long tag_mask;
411         int i, nr = 0;
412
413         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
414         if (unlikely(!tag_mask))
415                 return NULL;
416
417         tags = blk_mq_tags_from_data(data);
418         for (i = 0; tag_mask; i++) {
419                 if (!(tag_mask & (1UL << i)))
420                         continue;
421                 tag = tag_offset + i;
422                 prefetch(tags->static_rqs[tag]);
423                 tag_mask &= ~(1UL << i);
424                 rq = blk_mq_rq_ctx_init(data, tags, tag);
425                 rq_list_add(data->cached_rq, rq);
426                 nr++;
427         }
428         if (!(data->rq_flags & RQF_SCHED_TAGS))
429                 blk_mq_add_active_requests(data->hctx, nr);
430         /* caller already holds a reference, add for remainder */
431         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
432         data->nr_tags -= nr;
433
434         return rq_list_pop(data->cached_rq);
435 }
436
437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
438 {
439         struct request_queue *q = data->q;
440         u64 alloc_time_ns = 0;
441         struct request *rq;
442         unsigned int tag;
443
444         /* alloc_time includes depth and tag waits */
445         if (blk_queue_rq_alloc_time(q))
446                 alloc_time_ns = ktime_get_ns();
447
448         if (data->cmd_flags & REQ_NOWAIT)
449                 data->flags |= BLK_MQ_REQ_NOWAIT;
450
451         if (q->elevator) {
452                 /*
453                  * All requests use scheduler tags when an I/O scheduler is
454                  * enabled for the queue.
455                  */
456                 data->rq_flags |= RQF_SCHED_TAGS;
457
458                 /*
459                  * Flush/passthrough requests are special and go directly to the
460                  * dispatch list.
461                  */
462                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
463                     !blk_op_is_passthrough(data->cmd_flags)) {
464                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
465
466                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
467
468                         data->rq_flags |= RQF_USE_SCHED;
469                         if (ops->limit_depth)
470                                 ops->limit_depth(data->cmd_flags, data);
471                 }
472         }
473
474 retry:
475         data->ctx = blk_mq_get_ctx(q);
476         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
477         if (!(data->rq_flags & RQF_SCHED_TAGS))
478                 blk_mq_tag_busy(data->hctx);
479
480         if (data->flags & BLK_MQ_REQ_RESERVED)
481                 data->rq_flags |= RQF_RESV;
482
483         /*
484          * Try batched alloc if we want more than 1 tag.
485          */
486         if (data->nr_tags > 1) {
487                 rq = __blk_mq_alloc_requests_batch(data);
488                 if (rq) {
489                         blk_mq_rq_time_init(rq, alloc_time_ns);
490                         return rq;
491                 }
492                 data->nr_tags = 1;
493         }
494
495         /*
496          * Waiting allocations only fail because of an inactive hctx.  In that
497          * case just retry the hctx assignment and tag allocation as CPU hotplug
498          * should have migrated us to an online CPU by now.
499          */
500         tag = blk_mq_get_tag(data);
501         if (tag == BLK_MQ_NO_TAG) {
502                 if (data->flags & BLK_MQ_REQ_NOWAIT)
503                         return NULL;
504                 /*
505                  * Give up the CPU and sleep for a random short time to
506                  * ensure that thread using a realtime scheduling class
507                  * are migrated off the CPU, and thus off the hctx that
508                  * is going away.
509                  */
510                 msleep(3);
511                 goto retry;
512         }
513
514         if (!(data->rq_flags & RQF_SCHED_TAGS))
515                 blk_mq_inc_active_requests(data->hctx);
516         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
517         blk_mq_rq_time_init(rq, alloc_time_ns);
518         return rq;
519 }
520
521 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
522                                             struct blk_plug *plug,
523                                             blk_opf_t opf,
524                                             blk_mq_req_flags_t flags)
525 {
526         struct blk_mq_alloc_data data = {
527                 .q              = q,
528                 .flags          = flags,
529                 .cmd_flags      = opf,
530                 .nr_tags        = plug->nr_ios,
531                 .cached_rq      = &plug->cached_rq,
532         };
533         struct request *rq;
534
535         if (blk_queue_enter(q, flags))
536                 return NULL;
537
538         plug->nr_ios = 1;
539
540         rq = __blk_mq_alloc_requests(&data);
541         if (unlikely(!rq))
542                 blk_queue_exit(q);
543         return rq;
544 }
545
546 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
547                                                    blk_opf_t opf,
548                                                    blk_mq_req_flags_t flags)
549 {
550         struct blk_plug *plug = current->plug;
551         struct request *rq;
552
553         if (!plug)
554                 return NULL;
555
556         if (rq_list_empty(plug->cached_rq)) {
557                 if (plug->nr_ios == 1)
558                         return NULL;
559                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
560                 if (!rq)
561                         return NULL;
562         } else {
563                 rq = rq_list_peek(&plug->cached_rq);
564                 if (!rq || rq->q != q)
565                         return NULL;
566
567                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
568                         return NULL;
569                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
570                         return NULL;
571
572                 plug->cached_rq = rq_list_next(rq);
573                 blk_mq_rq_time_init(rq, 0);
574         }
575
576         rq->cmd_flags = opf;
577         INIT_LIST_HEAD(&rq->queuelist);
578         return rq;
579 }
580
581 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
582                 blk_mq_req_flags_t flags)
583 {
584         struct request *rq;
585
586         rq = blk_mq_alloc_cached_request(q, opf, flags);
587         if (!rq) {
588                 struct blk_mq_alloc_data data = {
589                         .q              = q,
590                         .flags          = flags,
591                         .cmd_flags      = opf,
592                         .nr_tags        = 1,
593                 };
594                 int ret;
595
596                 ret = blk_queue_enter(q, flags);
597                 if (ret)
598                         return ERR_PTR(ret);
599
600                 rq = __blk_mq_alloc_requests(&data);
601                 if (!rq)
602                         goto out_queue_exit;
603         }
604         rq->__data_len = 0;
605         rq->__sector = (sector_t) -1;
606         rq->bio = rq->biotail = NULL;
607         return rq;
608 out_queue_exit:
609         blk_queue_exit(q);
610         return ERR_PTR(-EWOULDBLOCK);
611 }
612 EXPORT_SYMBOL(blk_mq_alloc_request);
613
614 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
615         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
616 {
617         struct blk_mq_alloc_data data = {
618                 .q              = q,
619                 .flags          = flags,
620                 .cmd_flags      = opf,
621                 .nr_tags        = 1,
622         };
623         u64 alloc_time_ns = 0;
624         struct request *rq;
625         unsigned int cpu;
626         unsigned int tag;
627         int ret;
628
629         /* alloc_time includes depth and tag waits */
630         if (blk_queue_rq_alloc_time(q))
631                 alloc_time_ns = ktime_get_ns();
632
633         /*
634          * If the tag allocator sleeps we could get an allocation for a
635          * different hardware context.  No need to complicate the low level
636          * allocator for this for the rare use case of a command tied to
637          * a specific queue.
638          */
639         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
640             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
641                 return ERR_PTR(-EINVAL);
642
643         if (hctx_idx >= q->nr_hw_queues)
644                 return ERR_PTR(-EIO);
645
646         ret = blk_queue_enter(q, flags);
647         if (ret)
648                 return ERR_PTR(ret);
649
650         /*
651          * Check if the hardware context is actually mapped to anything.
652          * If not tell the caller that it should skip this queue.
653          */
654         ret = -EXDEV;
655         data.hctx = xa_load(&q->hctx_table, hctx_idx);
656         if (!blk_mq_hw_queue_mapped(data.hctx))
657                 goto out_queue_exit;
658         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
659         if (cpu >= nr_cpu_ids)
660                 goto out_queue_exit;
661         data.ctx = __blk_mq_get_ctx(q, cpu);
662
663         if (q->elevator)
664                 data.rq_flags |= RQF_SCHED_TAGS;
665         else
666                 blk_mq_tag_busy(data.hctx);
667
668         if (flags & BLK_MQ_REQ_RESERVED)
669                 data.rq_flags |= RQF_RESV;
670
671         ret = -EWOULDBLOCK;
672         tag = blk_mq_get_tag(&data);
673         if (tag == BLK_MQ_NO_TAG)
674                 goto out_queue_exit;
675         if (!(data.rq_flags & RQF_SCHED_TAGS))
676                 blk_mq_inc_active_requests(data.hctx);
677         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
678         blk_mq_rq_time_init(rq, alloc_time_ns);
679         rq->__data_len = 0;
680         rq->__sector = (sector_t) -1;
681         rq->bio = rq->biotail = NULL;
682         return rq;
683
684 out_queue_exit:
685         blk_queue_exit(q);
686         return ERR_PTR(ret);
687 }
688 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
689
690 static void blk_mq_finish_request(struct request *rq)
691 {
692         struct request_queue *q = rq->q;
693
694         if (rq->rq_flags & RQF_USE_SCHED) {
695                 q->elevator->type->ops.finish_request(rq);
696                 /*
697                  * For postflush request that may need to be
698                  * completed twice, we should clear this flag
699                  * to avoid double finish_request() on the rq.
700                  */
701                 rq->rq_flags &= ~RQF_USE_SCHED;
702         }
703 }
704
705 static void __blk_mq_free_request(struct request *rq)
706 {
707         struct request_queue *q = rq->q;
708         struct blk_mq_ctx *ctx = rq->mq_ctx;
709         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
710         const int sched_tag = rq->internal_tag;
711
712         blk_crypto_free_request(rq);
713         blk_pm_mark_last_busy(rq);
714         rq->mq_hctx = NULL;
715
716         if (rq->tag != BLK_MQ_NO_TAG) {
717                 blk_mq_dec_active_requests(hctx);
718                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
719         }
720         if (sched_tag != BLK_MQ_NO_TAG)
721                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
722         blk_mq_sched_restart(hctx);
723         blk_queue_exit(q);
724 }
725
726 void blk_mq_free_request(struct request *rq)
727 {
728         struct request_queue *q = rq->q;
729
730         blk_mq_finish_request(rq);
731
732         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
733                 laptop_io_completion(q->disk->bdi);
734
735         rq_qos_done(q, rq);
736
737         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
738         if (req_ref_put_and_test(rq))
739                 __blk_mq_free_request(rq);
740 }
741 EXPORT_SYMBOL_GPL(blk_mq_free_request);
742
743 void blk_mq_free_plug_rqs(struct blk_plug *plug)
744 {
745         struct request *rq;
746
747         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
748                 blk_mq_free_request(rq);
749 }
750
751 void blk_dump_rq_flags(struct request *rq, char *msg)
752 {
753         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
754                 rq->q->disk ? rq->q->disk->disk_name : "?",
755                 (__force unsigned long long) rq->cmd_flags);
756
757         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
758                (unsigned long long)blk_rq_pos(rq),
759                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
760         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
761                rq->bio, rq->biotail, blk_rq_bytes(rq));
762 }
763 EXPORT_SYMBOL(blk_dump_rq_flags);
764
765 static void req_bio_endio(struct request *rq, struct bio *bio,
766                           unsigned int nbytes, blk_status_t error)
767 {
768         if (unlikely(error)) {
769                 bio->bi_status = error;
770         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
771                 /*
772                  * Partial zone append completions cannot be supported as the
773                  * BIO fragments may end up not being written sequentially.
774                  */
775                 if (bio->bi_iter.bi_size != nbytes)
776                         bio->bi_status = BLK_STS_IOERR;
777                 else
778                         bio->bi_iter.bi_sector = rq->__sector;
779         }
780
781         bio_advance(bio, nbytes);
782
783         if (unlikely(rq->rq_flags & RQF_QUIET))
784                 bio_set_flag(bio, BIO_QUIET);
785         /* don't actually finish bio if it's part of flush sequence */
786         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
787                 bio_endio(bio);
788 }
789
790 static void blk_account_io_completion(struct request *req, unsigned int bytes)
791 {
792         if (req->part && blk_do_io_stat(req)) {
793                 const int sgrp = op_stat_group(req_op(req));
794
795                 part_stat_lock();
796                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
797                 part_stat_unlock();
798         }
799 }
800
801 static void blk_print_req_error(struct request *req, blk_status_t status)
802 {
803         printk_ratelimited(KERN_ERR
804                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
805                 "phys_seg %u prio class %u\n",
806                 blk_status_to_str(status),
807                 req->q->disk ? req->q->disk->disk_name : "?",
808                 blk_rq_pos(req), (__force u32)req_op(req),
809                 blk_op_str(req_op(req)),
810                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
811                 req->nr_phys_segments,
812                 IOPRIO_PRIO_CLASS(req->ioprio));
813 }
814
815 /*
816  * Fully end IO on a request. Does not support partial completions, or
817  * errors.
818  */
819 static void blk_complete_request(struct request *req)
820 {
821         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
822         int total_bytes = blk_rq_bytes(req);
823         struct bio *bio = req->bio;
824
825         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
826
827         if (!bio)
828                 return;
829
830 #ifdef CONFIG_BLK_DEV_INTEGRITY
831         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
832                 req->q->integrity.profile->complete_fn(req, total_bytes);
833 #endif
834
835         /*
836          * Upper layers may call blk_crypto_evict_key() anytime after the last
837          * bio_endio().  Therefore, the keyslot must be released before that.
838          */
839         blk_crypto_rq_put_keyslot(req);
840
841         blk_account_io_completion(req, total_bytes);
842
843         do {
844                 struct bio *next = bio->bi_next;
845
846                 /* Completion has already been traced */
847                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
848
849                 if (req_op(req) == REQ_OP_ZONE_APPEND)
850                         bio->bi_iter.bi_sector = req->__sector;
851
852                 if (!is_flush)
853                         bio_endio(bio);
854                 bio = next;
855         } while (bio);
856
857         /*
858          * Reset counters so that the request stacking driver
859          * can find how many bytes remain in the request
860          * later.
861          */
862         if (!req->end_io) {
863                 req->bio = NULL;
864                 req->__data_len = 0;
865         }
866 }
867
868 /**
869  * blk_update_request - Complete multiple bytes without completing the request
870  * @req:      the request being processed
871  * @error:    block status code
872  * @nr_bytes: number of bytes to complete for @req
873  *
874  * Description:
875  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
876  *     the request structure even if @req doesn't have leftover.
877  *     If @req has leftover, sets it up for the next range of segments.
878  *
879  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
880  *     %false return from this function.
881  *
882  * Note:
883  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
884  *      except in the consistency check at the end of this function.
885  *
886  * Return:
887  *     %false - this request doesn't have any more data
888  *     %true  - this request has more data
889  **/
890 bool blk_update_request(struct request *req, blk_status_t error,
891                 unsigned int nr_bytes)
892 {
893         int total_bytes;
894
895         trace_block_rq_complete(req, error, nr_bytes);
896
897         if (!req->bio)
898                 return false;
899
900 #ifdef CONFIG_BLK_DEV_INTEGRITY
901         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
902             error == BLK_STS_OK)
903                 req->q->integrity.profile->complete_fn(req, nr_bytes);
904 #endif
905
906         /*
907          * Upper layers may call blk_crypto_evict_key() anytime after the last
908          * bio_endio().  Therefore, the keyslot must be released before that.
909          */
910         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
911                 __blk_crypto_rq_put_keyslot(req);
912
913         if (unlikely(error && !blk_rq_is_passthrough(req) &&
914                      !(req->rq_flags & RQF_QUIET)) &&
915                      !test_bit(GD_DEAD, &req->q->disk->state)) {
916                 blk_print_req_error(req, error);
917                 trace_block_rq_error(req, error, nr_bytes);
918         }
919
920         blk_account_io_completion(req, nr_bytes);
921
922         total_bytes = 0;
923         while (req->bio) {
924                 struct bio *bio = req->bio;
925                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
926
927                 if (bio_bytes == bio->bi_iter.bi_size)
928                         req->bio = bio->bi_next;
929
930                 /* Completion has already been traced */
931                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
932                 req_bio_endio(req, bio, bio_bytes, error);
933
934                 total_bytes += bio_bytes;
935                 nr_bytes -= bio_bytes;
936
937                 if (!nr_bytes)
938                         break;
939         }
940
941         /*
942          * completely done
943          */
944         if (!req->bio) {
945                 /*
946                  * Reset counters so that the request stacking driver
947                  * can find how many bytes remain in the request
948                  * later.
949                  */
950                 req->__data_len = 0;
951                 return false;
952         }
953
954         req->__data_len -= total_bytes;
955
956         /* update sector only for requests with clear definition of sector */
957         if (!blk_rq_is_passthrough(req))
958                 req->__sector += total_bytes >> 9;
959
960         /* mixed attributes always follow the first bio */
961         if (req->rq_flags & RQF_MIXED_MERGE) {
962                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
963                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
964         }
965
966         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
967                 /*
968                  * If total number of sectors is less than the first segment
969                  * size, something has gone terribly wrong.
970                  */
971                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
972                         blk_dump_rq_flags(req, "request botched");
973                         req->__data_len = blk_rq_cur_bytes(req);
974                 }
975
976                 /* recalculate the number of segments */
977                 req->nr_phys_segments = blk_recalc_rq_segments(req);
978         }
979
980         return true;
981 }
982 EXPORT_SYMBOL_GPL(blk_update_request);
983
984 static inline void blk_account_io_done(struct request *req, u64 now)
985 {
986         trace_block_io_done(req);
987
988         /*
989          * Account IO completion.  flush_rq isn't accounted as a
990          * normal IO on queueing nor completion.  Accounting the
991          * containing request is enough.
992          */
993         if (blk_do_io_stat(req) && req->part &&
994             !(req->rq_flags & RQF_FLUSH_SEQ)) {
995                 const int sgrp = op_stat_group(req_op(req));
996
997                 part_stat_lock();
998                 update_io_ticks(req->part, jiffies, true);
999                 part_stat_inc(req->part, ios[sgrp]);
1000                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1001                 part_stat_unlock();
1002         }
1003 }
1004
1005 static inline void blk_account_io_start(struct request *req)
1006 {
1007         trace_block_io_start(req);
1008
1009         if (blk_do_io_stat(req)) {
1010                 /*
1011                  * All non-passthrough requests are created from a bio with one
1012                  * exception: when a flush command that is part of a flush sequence
1013                  * generated by the state machine in blk-flush.c is cloned onto the
1014                  * lower device by dm-multipath we can get here without a bio.
1015                  */
1016                 if (req->bio)
1017                         req->part = req->bio->bi_bdev;
1018                 else
1019                         req->part = req->q->disk->part0;
1020
1021                 part_stat_lock();
1022                 update_io_ticks(req->part, jiffies, false);
1023                 part_stat_unlock();
1024         }
1025 }
1026
1027 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1028 {
1029         if (rq->rq_flags & RQF_STATS)
1030                 blk_stat_add(rq, now);
1031
1032         blk_mq_sched_completed_request(rq, now);
1033         blk_account_io_done(rq, now);
1034 }
1035
1036 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1037 {
1038         if (blk_mq_need_time_stamp(rq))
1039                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1040
1041         blk_mq_finish_request(rq);
1042
1043         if (rq->end_io) {
1044                 rq_qos_done(rq->q, rq);
1045                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1046                         blk_mq_free_request(rq);
1047         } else {
1048                 blk_mq_free_request(rq);
1049         }
1050 }
1051 EXPORT_SYMBOL(__blk_mq_end_request);
1052
1053 void blk_mq_end_request(struct request *rq, blk_status_t error)
1054 {
1055         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1056                 BUG();
1057         __blk_mq_end_request(rq, error);
1058 }
1059 EXPORT_SYMBOL(blk_mq_end_request);
1060
1061 #define TAG_COMP_BATCH          32
1062
1063 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1064                                           int *tag_array, int nr_tags)
1065 {
1066         struct request_queue *q = hctx->queue;
1067
1068         blk_mq_sub_active_requests(hctx, nr_tags);
1069
1070         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1071         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1072 }
1073
1074 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1075 {
1076         int tags[TAG_COMP_BATCH], nr_tags = 0;
1077         struct blk_mq_hw_ctx *cur_hctx = NULL;
1078         struct request *rq;
1079         u64 now = 0;
1080
1081         if (iob->need_ts)
1082                 now = ktime_get_ns();
1083
1084         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1085                 prefetch(rq->bio);
1086                 prefetch(rq->rq_next);
1087
1088                 blk_complete_request(rq);
1089                 if (iob->need_ts)
1090                         __blk_mq_end_request_acct(rq, now);
1091
1092                 blk_mq_finish_request(rq);
1093
1094                 rq_qos_done(rq->q, rq);
1095
1096                 /*
1097                  * If end_io handler returns NONE, then it still has
1098                  * ownership of the request.
1099                  */
1100                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1101                         continue;
1102
1103                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1104                 if (!req_ref_put_and_test(rq))
1105                         continue;
1106
1107                 blk_crypto_free_request(rq);
1108                 blk_pm_mark_last_busy(rq);
1109
1110                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1111                         if (cur_hctx)
1112                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1113                         nr_tags = 0;
1114                         cur_hctx = rq->mq_hctx;
1115                 }
1116                 tags[nr_tags++] = rq->tag;
1117         }
1118
1119         if (nr_tags)
1120                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1121 }
1122 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1123
1124 static void blk_complete_reqs(struct llist_head *list)
1125 {
1126         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1127         struct request *rq, *next;
1128
1129         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1130                 rq->q->mq_ops->complete(rq);
1131 }
1132
1133 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1134 {
1135         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1136 }
1137
1138 static int blk_softirq_cpu_dead(unsigned int cpu)
1139 {
1140         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1141         return 0;
1142 }
1143
1144 static void __blk_mq_complete_request_remote(void *data)
1145 {
1146         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1147 }
1148
1149 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1150 {
1151         int cpu = raw_smp_processor_id();
1152
1153         if (!IS_ENABLED(CONFIG_SMP) ||
1154             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1155                 return false;
1156         /*
1157          * With force threaded interrupts enabled, raising softirq from an SMP
1158          * function call will always result in waking the ksoftirqd thread.
1159          * This is probably worse than completing the request on a different
1160          * cache domain.
1161          */
1162         if (force_irqthreads())
1163                 return false;
1164
1165         /* same CPU or cache domain?  Complete locally */
1166         if (cpu == rq->mq_ctx->cpu ||
1167             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1168              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1169                 return false;
1170
1171         /* don't try to IPI to an offline CPU */
1172         return cpu_online(rq->mq_ctx->cpu);
1173 }
1174
1175 static void blk_mq_complete_send_ipi(struct request *rq)
1176 {
1177         unsigned int cpu;
1178
1179         cpu = rq->mq_ctx->cpu;
1180         if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1181                 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1182 }
1183
1184 static void blk_mq_raise_softirq(struct request *rq)
1185 {
1186         struct llist_head *list;
1187
1188         preempt_disable();
1189         list = this_cpu_ptr(&blk_cpu_done);
1190         if (llist_add(&rq->ipi_list, list))
1191                 raise_softirq(BLOCK_SOFTIRQ);
1192         preempt_enable();
1193 }
1194
1195 bool blk_mq_complete_request_remote(struct request *rq)
1196 {
1197         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1198
1199         /*
1200          * For request which hctx has only one ctx mapping,
1201          * or a polled request, always complete locally,
1202          * it's pointless to redirect the completion.
1203          */
1204         if ((rq->mq_hctx->nr_ctx == 1 &&
1205              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1206              rq->cmd_flags & REQ_POLLED)
1207                 return false;
1208
1209         if (blk_mq_complete_need_ipi(rq)) {
1210                 blk_mq_complete_send_ipi(rq);
1211                 return true;
1212         }
1213
1214         if (rq->q->nr_hw_queues == 1) {
1215                 blk_mq_raise_softirq(rq);
1216                 return true;
1217         }
1218         return false;
1219 }
1220 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1221
1222 /**
1223  * blk_mq_complete_request - end I/O on a request
1224  * @rq:         the request being processed
1225  *
1226  * Description:
1227  *      Complete a request by scheduling the ->complete_rq operation.
1228  **/
1229 void blk_mq_complete_request(struct request *rq)
1230 {
1231         if (!blk_mq_complete_request_remote(rq))
1232                 rq->q->mq_ops->complete(rq);
1233 }
1234 EXPORT_SYMBOL(blk_mq_complete_request);
1235
1236 /**
1237  * blk_mq_start_request - Start processing a request
1238  * @rq: Pointer to request to be started
1239  *
1240  * Function used by device drivers to notify the block layer that a request
1241  * is going to be processed now, so blk layer can do proper initializations
1242  * such as starting the timeout timer.
1243  */
1244 void blk_mq_start_request(struct request *rq)
1245 {
1246         struct request_queue *q = rq->q;
1247
1248         trace_block_rq_issue(rq);
1249
1250         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1251             !blk_rq_is_passthrough(rq)) {
1252                 rq->io_start_time_ns = ktime_get_ns();
1253                 rq->stats_sectors = blk_rq_sectors(rq);
1254                 rq->rq_flags |= RQF_STATS;
1255                 rq_qos_issue(q, rq);
1256         }
1257
1258         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1259
1260         blk_add_timer(rq);
1261         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1262         rq->mq_hctx->tags->rqs[rq->tag] = rq;
1263
1264 #ifdef CONFIG_BLK_DEV_INTEGRITY
1265         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1266                 q->integrity.profile->prepare_fn(rq);
1267 #endif
1268         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1269                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1270 }
1271 EXPORT_SYMBOL(blk_mq_start_request);
1272
1273 /*
1274  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1275  * queues. This is important for md arrays to benefit from merging
1276  * requests.
1277  */
1278 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1279 {
1280         if (plug->multiple_queues)
1281                 return BLK_MAX_REQUEST_COUNT * 2;
1282         return BLK_MAX_REQUEST_COUNT;
1283 }
1284
1285 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1286 {
1287         struct request *last = rq_list_peek(&plug->mq_list);
1288
1289         if (!plug->rq_count) {
1290                 trace_block_plug(rq->q);
1291         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1292                    (!blk_queue_nomerges(rq->q) &&
1293                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1294                 blk_mq_flush_plug_list(plug, false);
1295                 last = NULL;
1296                 trace_block_plug(rq->q);
1297         }
1298
1299         if (!plug->multiple_queues && last && last->q != rq->q)
1300                 plug->multiple_queues = true;
1301         /*
1302          * Any request allocated from sched tags can't be issued to
1303          * ->queue_rqs() directly
1304          */
1305         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1306                 plug->has_elevator = true;
1307         rq->rq_next = NULL;
1308         rq_list_add(&plug->mq_list, rq);
1309         plug->rq_count++;
1310 }
1311
1312 /**
1313  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1314  * @rq:         request to insert
1315  * @at_head:    insert request at head or tail of queue
1316  *
1317  * Description:
1318  *    Insert a fully prepared request at the back of the I/O scheduler queue
1319  *    for execution.  Don't wait for completion.
1320  *
1321  * Note:
1322  *    This function will invoke @done directly if the queue is dead.
1323  */
1324 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1325 {
1326         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1327
1328         WARN_ON(irqs_disabled());
1329         WARN_ON(!blk_rq_is_passthrough(rq));
1330
1331         blk_account_io_start(rq);
1332
1333         /*
1334          * As plugging can be enabled for passthrough requests on a zoned
1335          * device, directly accessing the plug instead of using blk_mq_plug()
1336          * should not have any consequences.
1337          */
1338         if (current->plug && !at_head) {
1339                 blk_add_rq_to_plug(current->plug, rq);
1340                 return;
1341         }
1342
1343         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1344         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1345 }
1346 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1347
1348 struct blk_rq_wait {
1349         struct completion done;
1350         blk_status_t ret;
1351 };
1352
1353 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1354 {
1355         struct blk_rq_wait *wait = rq->end_io_data;
1356
1357         wait->ret = ret;
1358         complete(&wait->done);
1359         return RQ_END_IO_NONE;
1360 }
1361
1362 bool blk_rq_is_poll(struct request *rq)
1363 {
1364         if (!rq->mq_hctx)
1365                 return false;
1366         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1367                 return false;
1368         return true;
1369 }
1370 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1371
1372 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1373 {
1374         do {
1375                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1376                 cond_resched();
1377         } while (!completion_done(wait));
1378 }
1379
1380 /**
1381  * blk_execute_rq - insert a request into queue for execution
1382  * @rq:         request to insert
1383  * @at_head:    insert request at head or tail of queue
1384  *
1385  * Description:
1386  *    Insert a fully prepared request at the back of the I/O scheduler queue
1387  *    for execution and wait for completion.
1388  * Return: The blk_status_t result provided to blk_mq_end_request().
1389  */
1390 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1391 {
1392         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1393         struct blk_rq_wait wait = {
1394                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1395         };
1396
1397         WARN_ON(irqs_disabled());
1398         WARN_ON(!blk_rq_is_passthrough(rq));
1399
1400         rq->end_io_data = &wait;
1401         rq->end_io = blk_end_sync_rq;
1402
1403         blk_account_io_start(rq);
1404         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1405         blk_mq_run_hw_queue(hctx, false);
1406
1407         if (blk_rq_is_poll(rq)) {
1408                 blk_rq_poll_completion(rq, &wait.done);
1409         } else {
1410                 /*
1411                  * Prevent hang_check timer from firing at us during very long
1412                  * I/O
1413                  */
1414                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1415
1416                 if (hang_check)
1417                         while (!wait_for_completion_io_timeout(&wait.done,
1418                                         hang_check * (HZ/2)))
1419                                 ;
1420                 else
1421                         wait_for_completion_io(&wait.done);
1422         }
1423
1424         return wait.ret;
1425 }
1426 EXPORT_SYMBOL(blk_execute_rq);
1427
1428 static void __blk_mq_requeue_request(struct request *rq)
1429 {
1430         struct request_queue *q = rq->q;
1431
1432         blk_mq_put_driver_tag(rq);
1433
1434         trace_block_rq_requeue(rq);
1435         rq_qos_requeue(q, rq);
1436
1437         if (blk_mq_request_started(rq)) {
1438                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1439                 rq->rq_flags &= ~RQF_TIMED_OUT;
1440         }
1441 }
1442
1443 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1444 {
1445         struct request_queue *q = rq->q;
1446         unsigned long flags;
1447
1448         __blk_mq_requeue_request(rq);
1449
1450         /* this request will be re-inserted to io scheduler queue */
1451         blk_mq_sched_requeue_request(rq);
1452
1453         spin_lock_irqsave(&q->requeue_lock, flags);
1454         list_add_tail(&rq->queuelist, &q->requeue_list);
1455         spin_unlock_irqrestore(&q->requeue_lock, flags);
1456
1457         if (kick_requeue_list)
1458                 blk_mq_kick_requeue_list(q);
1459 }
1460 EXPORT_SYMBOL(blk_mq_requeue_request);
1461
1462 static void blk_mq_requeue_work(struct work_struct *work)
1463 {
1464         struct request_queue *q =
1465                 container_of(work, struct request_queue, requeue_work.work);
1466         LIST_HEAD(rq_list);
1467         LIST_HEAD(flush_list);
1468         struct request *rq;
1469
1470         spin_lock_irq(&q->requeue_lock);
1471         list_splice_init(&q->requeue_list, &rq_list);
1472         list_splice_init(&q->flush_list, &flush_list);
1473         spin_unlock_irq(&q->requeue_lock);
1474
1475         while (!list_empty(&rq_list)) {
1476                 rq = list_entry(rq_list.next, struct request, queuelist);
1477                 /*
1478                  * If RQF_DONTPREP ist set, the request has been started by the
1479                  * driver already and might have driver-specific data allocated
1480                  * already.  Insert it into the hctx dispatch list to avoid
1481                  * block layer merges for the request.
1482                  */
1483                 if (rq->rq_flags & RQF_DONTPREP) {
1484                         list_del_init(&rq->queuelist);
1485                         blk_mq_request_bypass_insert(rq, 0);
1486                 } else {
1487                         list_del_init(&rq->queuelist);
1488                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1489                 }
1490         }
1491
1492         while (!list_empty(&flush_list)) {
1493                 rq = list_entry(flush_list.next, struct request, queuelist);
1494                 list_del_init(&rq->queuelist);
1495                 blk_mq_insert_request(rq, 0);
1496         }
1497
1498         blk_mq_run_hw_queues(q, false);
1499 }
1500
1501 void blk_mq_kick_requeue_list(struct request_queue *q)
1502 {
1503         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1504 }
1505 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1506
1507 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1508                                     unsigned long msecs)
1509 {
1510         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1511                                     msecs_to_jiffies(msecs));
1512 }
1513 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1514
1515 static bool blk_is_flush_data_rq(struct request *rq)
1516 {
1517         return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1518 }
1519
1520 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1521 {
1522         /*
1523          * If we find a request that isn't idle we know the queue is busy
1524          * as it's checked in the iter.
1525          * Return false to stop the iteration.
1526          *
1527          * In case of queue quiesce, if one flush data request is completed,
1528          * don't count it as inflight given the flush sequence is suspended,
1529          * and the original flush data request is invisible to driver, just
1530          * like other pending requests because of quiesce
1531          */
1532         if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1533                                 blk_is_flush_data_rq(rq) &&
1534                                 blk_mq_request_completed(rq))) {
1535                 bool *busy = priv;
1536
1537                 *busy = true;
1538                 return false;
1539         }
1540
1541         return true;
1542 }
1543
1544 bool blk_mq_queue_inflight(struct request_queue *q)
1545 {
1546         bool busy = false;
1547
1548         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1549         return busy;
1550 }
1551 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1552
1553 static void blk_mq_rq_timed_out(struct request *req)
1554 {
1555         req->rq_flags |= RQF_TIMED_OUT;
1556         if (req->q->mq_ops->timeout) {
1557                 enum blk_eh_timer_return ret;
1558
1559                 ret = req->q->mq_ops->timeout(req);
1560                 if (ret == BLK_EH_DONE)
1561                         return;
1562                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1563         }
1564
1565         blk_add_timer(req);
1566 }
1567
1568 struct blk_expired_data {
1569         bool has_timedout_rq;
1570         unsigned long next;
1571         unsigned long timeout_start;
1572 };
1573
1574 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1575 {
1576         unsigned long deadline;
1577
1578         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1579                 return false;
1580         if (rq->rq_flags & RQF_TIMED_OUT)
1581                 return false;
1582
1583         deadline = READ_ONCE(rq->deadline);
1584         if (time_after_eq(expired->timeout_start, deadline))
1585                 return true;
1586
1587         if (expired->next == 0)
1588                 expired->next = deadline;
1589         else if (time_after(expired->next, deadline))
1590                 expired->next = deadline;
1591         return false;
1592 }
1593
1594 void blk_mq_put_rq_ref(struct request *rq)
1595 {
1596         if (is_flush_rq(rq)) {
1597                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1598                         blk_mq_free_request(rq);
1599         } else if (req_ref_put_and_test(rq)) {
1600                 __blk_mq_free_request(rq);
1601         }
1602 }
1603
1604 static bool blk_mq_check_expired(struct request *rq, void *priv)
1605 {
1606         struct blk_expired_data *expired = priv;
1607
1608         /*
1609          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1610          * be reallocated underneath the timeout handler's processing, then
1611          * the expire check is reliable. If the request is not expired, then
1612          * it was completed and reallocated as a new request after returning
1613          * from blk_mq_check_expired().
1614          */
1615         if (blk_mq_req_expired(rq, expired)) {
1616                 expired->has_timedout_rq = true;
1617                 return false;
1618         }
1619         return true;
1620 }
1621
1622 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1623 {
1624         struct blk_expired_data *expired = priv;
1625
1626         if (blk_mq_req_expired(rq, expired))
1627                 blk_mq_rq_timed_out(rq);
1628         return true;
1629 }
1630
1631 static void blk_mq_timeout_work(struct work_struct *work)
1632 {
1633         struct request_queue *q =
1634                 container_of(work, struct request_queue, timeout_work);
1635         struct blk_expired_data expired = {
1636                 .timeout_start = jiffies,
1637         };
1638         struct blk_mq_hw_ctx *hctx;
1639         unsigned long i;
1640
1641         /* A deadlock might occur if a request is stuck requiring a
1642          * timeout at the same time a queue freeze is waiting
1643          * completion, since the timeout code would not be able to
1644          * acquire the queue reference here.
1645          *
1646          * That's why we don't use blk_queue_enter here; instead, we use
1647          * percpu_ref_tryget directly, because we need to be able to
1648          * obtain a reference even in the short window between the queue
1649          * starting to freeze, by dropping the first reference in
1650          * blk_freeze_queue_start, and the moment the last request is
1651          * consumed, marked by the instant q_usage_counter reaches
1652          * zero.
1653          */
1654         if (!percpu_ref_tryget(&q->q_usage_counter))
1655                 return;
1656
1657         /* check if there is any timed-out request */
1658         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1659         if (expired.has_timedout_rq) {
1660                 /*
1661                  * Before walking tags, we must ensure any submit started
1662                  * before the current time has finished. Since the submit
1663                  * uses srcu or rcu, wait for a synchronization point to
1664                  * ensure all running submits have finished
1665                  */
1666                 blk_mq_wait_quiesce_done(q->tag_set);
1667
1668                 expired.next = 0;
1669                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1670         }
1671
1672         if (expired.next != 0) {
1673                 mod_timer(&q->timeout, expired.next);
1674         } else {
1675                 /*
1676                  * Request timeouts are handled as a forward rolling timer. If
1677                  * we end up here it means that no requests are pending and
1678                  * also that no request has been pending for a while. Mark
1679                  * each hctx as idle.
1680                  */
1681                 queue_for_each_hw_ctx(q, hctx, i) {
1682                         /* the hctx may be unmapped, so check it here */
1683                         if (blk_mq_hw_queue_mapped(hctx))
1684                                 blk_mq_tag_idle(hctx);
1685                 }
1686         }
1687         blk_queue_exit(q);
1688 }
1689
1690 struct flush_busy_ctx_data {
1691         struct blk_mq_hw_ctx *hctx;
1692         struct list_head *list;
1693 };
1694
1695 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1696 {
1697         struct flush_busy_ctx_data *flush_data = data;
1698         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1699         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1700         enum hctx_type type = hctx->type;
1701
1702         spin_lock(&ctx->lock);
1703         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1704         sbitmap_clear_bit(sb, bitnr);
1705         spin_unlock(&ctx->lock);
1706         return true;
1707 }
1708
1709 /*
1710  * Process software queues that have been marked busy, splicing them
1711  * to the for-dispatch
1712  */
1713 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1714 {
1715         struct flush_busy_ctx_data data = {
1716                 .hctx = hctx,
1717                 .list = list,
1718         };
1719
1720         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1721 }
1722 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1723
1724 struct dispatch_rq_data {
1725         struct blk_mq_hw_ctx *hctx;
1726         struct request *rq;
1727 };
1728
1729 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1730                 void *data)
1731 {
1732         struct dispatch_rq_data *dispatch_data = data;
1733         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1734         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1735         enum hctx_type type = hctx->type;
1736
1737         spin_lock(&ctx->lock);
1738         if (!list_empty(&ctx->rq_lists[type])) {
1739                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1740                 list_del_init(&dispatch_data->rq->queuelist);
1741                 if (list_empty(&ctx->rq_lists[type]))
1742                         sbitmap_clear_bit(sb, bitnr);
1743         }
1744         spin_unlock(&ctx->lock);
1745
1746         return !dispatch_data->rq;
1747 }
1748
1749 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1750                                         struct blk_mq_ctx *start)
1751 {
1752         unsigned off = start ? start->index_hw[hctx->type] : 0;
1753         struct dispatch_rq_data data = {
1754                 .hctx = hctx,
1755                 .rq   = NULL,
1756         };
1757
1758         __sbitmap_for_each_set(&hctx->ctx_map, off,
1759                                dispatch_rq_from_ctx, &data);
1760
1761         return data.rq;
1762 }
1763
1764 bool __blk_mq_alloc_driver_tag(struct request *rq)
1765 {
1766         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1767         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1768         int tag;
1769
1770         blk_mq_tag_busy(rq->mq_hctx);
1771
1772         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1773                 bt = &rq->mq_hctx->tags->breserved_tags;
1774                 tag_offset = 0;
1775         } else {
1776                 if (!hctx_may_queue(rq->mq_hctx, bt))
1777                         return false;
1778         }
1779
1780         tag = __sbitmap_queue_get(bt);
1781         if (tag == BLK_MQ_NO_TAG)
1782                 return false;
1783
1784         rq->tag = tag + tag_offset;
1785         blk_mq_inc_active_requests(rq->mq_hctx);
1786         return true;
1787 }
1788
1789 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1790                                 int flags, void *key)
1791 {
1792         struct blk_mq_hw_ctx *hctx;
1793
1794         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1795
1796         spin_lock(&hctx->dispatch_wait_lock);
1797         if (!list_empty(&wait->entry)) {
1798                 struct sbitmap_queue *sbq;
1799
1800                 list_del_init(&wait->entry);
1801                 sbq = &hctx->tags->bitmap_tags;
1802                 atomic_dec(&sbq->ws_active);
1803         }
1804         spin_unlock(&hctx->dispatch_wait_lock);
1805
1806         blk_mq_run_hw_queue(hctx, true);
1807         return 1;
1808 }
1809
1810 /*
1811  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1812  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1813  * restart. For both cases, take care to check the condition again after
1814  * marking us as waiting.
1815  */
1816 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1817                                  struct request *rq)
1818 {
1819         struct sbitmap_queue *sbq;
1820         struct wait_queue_head *wq;
1821         wait_queue_entry_t *wait;
1822         bool ret;
1823
1824         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1825             !(blk_mq_is_shared_tags(hctx->flags))) {
1826                 blk_mq_sched_mark_restart_hctx(hctx);
1827
1828                 /*
1829                  * It's possible that a tag was freed in the window between the
1830                  * allocation failure and adding the hardware queue to the wait
1831                  * queue.
1832                  *
1833                  * Don't clear RESTART here, someone else could have set it.
1834                  * At most this will cost an extra queue run.
1835                  */
1836                 return blk_mq_get_driver_tag(rq);
1837         }
1838
1839         wait = &hctx->dispatch_wait;
1840         if (!list_empty_careful(&wait->entry))
1841                 return false;
1842
1843         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1844                 sbq = &hctx->tags->breserved_tags;
1845         else
1846                 sbq = &hctx->tags->bitmap_tags;
1847         wq = &bt_wait_ptr(sbq, hctx)->wait;
1848
1849         spin_lock_irq(&wq->lock);
1850         spin_lock(&hctx->dispatch_wait_lock);
1851         if (!list_empty(&wait->entry)) {
1852                 spin_unlock(&hctx->dispatch_wait_lock);
1853                 spin_unlock_irq(&wq->lock);
1854                 return false;
1855         }
1856
1857         atomic_inc(&sbq->ws_active);
1858         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1859         __add_wait_queue(wq, wait);
1860
1861         /*
1862          * Add one explicit barrier since blk_mq_get_driver_tag() may
1863          * not imply barrier in case of failure.
1864          *
1865          * Order adding us to wait queue and allocating driver tag.
1866          *
1867          * The pair is the one implied in sbitmap_queue_wake_up() which
1868          * orders clearing sbitmap tag bits and waitqueue_active() in
1869          * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1870          *
1871          * Otherwise, re-order of adding wait queue and getting driver tag
1872          * may cause __sbitmap_queue_wake_up() to wake up nothing because
1873          * the waitqueue_active() may not observe us in wait queue.
1874          */
1875         smp_mb();
1876
1877         /*
1878          * It's possible that a tag was freed in the window between the
1879          * allocation failure and adding the hardware queue to the wait
1880          * queue.
1881          */
1882         ret = blk_mq_get_driver_tag(rq);
1883         if (!ret) {
1884                 spin_unlock(&hctx->dispatch_wait_lock);
1885                 spin_unlock_irq(&wq->lock);
1886                 return false;
1887         }
1888
1889         /*
1890          * We got a tag, remove ourselves from the wait queue to ensure
1891          * someone else gets the wakeup.
1892          */
1893         list_del_init(&wait->entry);
1894         atomic_dec(&sbq->ws_active);
1895         spin_unlock(&hctx->dispatch_wait_lock);
1896         spin_unlock_irq(&wq->lock);
1897
1898         return true;
1899 }
1900
1901 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1902 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1903 /*
1904  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1905  * - EWMA is one simple way to compute running average value
1906  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1907  * - take 4 as factor for avoiding to get too small(0) result, and this
1908  *   factor doesn't matter because EWMA decreases exponentially
1909  */
1910 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1911 {
1912         unsigned int ewma;
1913
1914         ewma = hctx->dispatch_busy;
1915
1916         if (!ewma && !busy)
1917                 return;
1918
1919         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1920         if (busy)
1921                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1922         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1923
1924         hctx->dispatch_busy = ewma;
1925 }
1926
1927 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1928
1929 static void blk_mq_handle_dev_resource(struct request *rq,
1930                                        struct list_head *list)
1931 {
1932         list_add(&rq->queuelist, list);
1933         __blk_mq_requeue_request(rq);
1934 }
1935
1936 static void blk_mq_handle_zone_resource(struct request *rq,
1937                                         struct list_head *zone_list)
1938 {
1939         /*
1940          * If we end up here it is because we cannot dispatch a request to a
1941          * specific zone due to LLD level zone-write locking or other zone
1942          * related resource not being available. In this case, set the request
1943          * aside in zone_list for retrying it later.
1944          */
1945         list_add(&rq->queuelist, zone_list);
1946         __blk_mq_requeue_request(rq);
1947 }
1948
1949 enum prep_dispatch {
1950         PREP_DISPATCH_OK,
1951         PREP_DISPATCH_NO_TAG,
1952         PREP_DISPATCH_NO_BUDGET,
1953 };
1954
1955 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1956                                                   bool need_budget)
1957 {
1958         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1959         int budget_token = -1;
1960
1961         if (need_budget) {
1962                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1963                 if (budget_token < 0) {
1964                         blk_mq_put_driver_tag(rq);
1965                         return PREP_DISPATCH_NO_BUDGET;
1966                 }
1967                 blk_mq_set_rq_budget_token(rq, budget_token);
1968         }
1969
1970         if (!blk_mq_get_driver_tag(rq)) {
1971                 /*
1972                  * The initial allocation attempt failed, so we need to
1973                  * rerun the hardware queue when a tag is freed. The
1974                  * waitqueue takes care of that. If the queue is run
1975                  * before we add this entry back on the dispatch list,
1976                  * we'll re-run it below.
1977                  */
1978                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1979                         /*
1980                          * All budgets not got from this function will be put
1981                          * together during handling partial dispatch
1982                          */
1983                         if (need_budget)
1984                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1985                         return PREP_DISPATCH_NO_TAG;
1986                 }
1987         }
1988
1989         return PREP_DISPATCH_OK;
1990 }
1991
1992 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1993 static void blk_mq_release_budgets(struct request_queue *q,
1994                 struct list_head *list)
1995 {
1996         struct request *rq;
1997
1998         list_for_each_entry(rq, list, queuelist) {
1999                 int budget_token = blk_mq_get_rq_budget_token(rq);
2000
2001                 if (budget_token >= 0)
2002                         blk_mq_put_dispatch_budget(q, budget_token);
2003         }
2004 }
2005
2006 /*
2007  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2008  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2009  * details)
2010  * Attention, we should explicitly call this in unusual cases:
2011  *  1) did not queue everything initially scheduled to queue
2012  *  2) the last attempt to queue a request failed
2013  */
2014 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2015                               bool from_schedule)
2016 {
2017         if (hctx->queue->mq_ops->commit_rqs && queued) {
2018                 trace_block_unplug(hctx->queue, queued, !from_schedule);
2019                 hctx->queue->mq_ops->commit_rqs(hctx);
2020         }
2021 }
2022
2023 /*
2024  * Returns true if we did some work AND can potentially do more.
2025  */
2026 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2027                              unsigned int nr_budgets)
2028 {
2029         enum prep_dispatch prep;
2030         struct request_queue *q = hctx->queue;
2031         struct request *rq;
2032         int queued;
2033         blk_status_t ret = BLK_STS_OK;
2034         LIST_HEAD(zone_list);
2035         bool needs_resource = false;
2036
2037         if (list_empty(list))
2038                 return false;
2039
2040         /*
2041          * Now process all the entries, sending them to the driver.
2042          */
2043         queued = 0;
2044         do {
2045                 struct blk_mq_queue_data bd;
2046
2047                 rq = list_first_entry(list, struct request, queuelist);
2048
2049                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2050                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2051                 if (prep != PREP_DISPATCH_OK)
2052                         break;
2053
2054                 list_del_init(&rq->queuelist);
2055
2056                 bd.rq = rq;
2057                 bd.last = list_empty(list);
2058
2059                 /*
2060                  * once the request is queued to lld, no need to cover the
2061                  * budget any more
2062                  */
2063                 if (nr_budgets)
2064                         nr_budgets--;
2065                 ret = q->mq_ops->queue_rq(hctx, &bd);
2066                 switch (ret) {
2067                 case BLK_STS_OK:
2068                         queued++;
2069                         break;
2070                 case BLK_STS_RESOURCE:
2071                         needs_resource = true;
2072                         fallthrough;
2073                 case BLK_STS_DEV_RESOURCE:
2074                         blk_mq_handle_dev_resource(rq, list);
2075                         goto out;
2076                 case BLK_STS_ZONE_RESOURCE:
2077                         /*
2078                          * Move the request to zone_list and keep going through
2079                          * the dispatch list to find more requests the drive can
2080                          * accept.
2081                          */
2082                         blk_mq_handle_zone_resource(rq, &zone_list);
2083                         needs_resource = true;
2084                         break;
2085                 default:
2086                         blk_mq_end_request(rq, ret);
2087                 }
2088         } while (!list_empty(list));
2089 out:
2090         if (!list_empty(&zone_list))
2091                 list_splice_tail_init(&zone_list, list);
2092
2093         /* If we didn't flush the entire list, we could have told the driver
2094          * there was more coming, but that turned out to be a lie.
2095          */
2096         if (!list_empty(list) || ret != BLK_STS_OK)
2097                 blk_mq_commit_rqs(hctx, queued, false);
2098
2099         /*
2100          * Any items that need requeuing? Stuff them into hctx->dispatch,
2101          * that is where we will continue on next queue run.
2102          */
2103         if (!list_empty(list)) {
2104                 bool needs_restart;
2105                 /* For non-shared tags, the RESTART check will suffice */
2106                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2107                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2108                         blk_mq_is_shared_tags(hctx->flags));
2109
2110                 if (nr_budgets)
2111                         blk_mq_release_budgets(q, list);
2112
2113                 spin_lock(&hctx->lock);
2114                 list_splice_tail_init(list, &hctx->dispatch);
2115                 spin_unlock(&hctx->lock);
2116
2117                 /*
2118                  * Order adding requests to hctx->dispatch and checking
2119                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2120                  * in blk_mq_sched_restart(). Avoid restart code path to
2121                  * miss the new added requests to hctx->dispatch, meantime
2122                  * SCHED_RESTART is observed here.
2123                  */
2124                 smp_mb();
2125
2126                 /*
2127                  * If SCHED_RESTART was set by the caller of this function and
2128                  * it is no longer set that means that it was cleared by another
2129                  * thread and hence that a queue rerun is needed.
2130                  *
2131                  * If 'no_tag' is set, that means that we failed getting
2132                  * a driver tag with an I/O scheduler attached. If our dispatch
2133                  * waitqueue is no longer active, ensure that we run the queue
2134                  * AFTER adding our entries back to the list.
2135                  *
2136                  * If no I/O scheduler has been configured it is possible that
2137                  * the hardware queue got stopped and restarted before requests
2138                  * were pushed back onto the dispatch list. Rerun the queue to
2139                  * avoid starvation. Notes:
2140                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2141                  *   been stopped before rerunning a queue.
2142                  * - Some but not all block drivers stop a queue before
2143                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2144                  *   and dm-rq.
2145                  *
2146                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2147                  * bit is set, run queue after a delay to avoid IO stalls
2148                  * that could otherwise occur if the queue is idle.  We'll do
2149                  * similar if we couldn't get budget or couldn't lock a zone
2150                  * and SCHED_RESTART is set.
2151                  */
2152                 needs_restart = blk_mq_sched_needs_restart(hctx);
2153                 if (prep == PREP_DISPATCH_NO_BUDGET)
2154                         needs_resource = true;
2155                 if (!needs_restart ||
2156                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2157                         blk_mq_run_hw_queue(hctx, true);
2158                 else if (needs_resource)
2159                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2160
2161                 blk_mq_update_dispatch_busy(hctx, true);
2162                 return false;
2163         }
2164
2165         blk_mq_update_dispatch_busy(hctx, false);
2166         return true;
2167 }
2168
2169 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2170 {
2171         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2172
2173         if (cpu >= nr_cpu_ids)
2174                 cpu = cpumask_first(hctx->cpumask);
2175         return cpu;
2176 }
2177
2178 /*
2179  * It'd be great if the workqueue API had a way to pass
2180  * in a mask and had some smarts for more clever placement.
2181  * For now we just round-robin here, switching for every
2182  * BLK_MQ_CPU_WORK_BATCH queued items.
2183  */
2184 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2185 {
2186         bool tried = false;
2187         int next_cpu = hctx->next_cpu;
2188
2189         if (hctx->queue->nr_hw_queues == 1)
2190                 return WORK_CPU_UNBOUND;
2191
2192         if (--hctx->next_cpu_batch <= 0) {
2193 select_cpu:
2194                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2195                                 cpu_online_mask);
2196                 if (next_cpu >= nr_cpu_ids)
2197                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2198                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2199         }
2200
2201         /*
2202          * Do unbound schedule if we can't find a online CPU for this hctx,
2203          * and it should only happen in the path of handling CPU DEAD.
2204          */
2205         if (!cpu_online(next_cpu)) {
2206                 if (!tried) {
2207                         tried = true;
2208                         goto select_cpu;
2209                 }
2210
2211                 /*
2212                  * Make sure to re-select CPU next time once after CPUs
2213                  * in hctx->cpumask become online again.
2214                  */
2215                 hctx->next_cpu = next_cpu;
2216                 hctx->next_cpu_batch = 1;
2217                 return WORK_CPU_UNBOUND;
2218         }
2219
2220         hctx->next_cpu = next_cpu;
2221         return next_cpu;
2222 }
2223
2224 /**
2225  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2226  * @hctx: Pointer to the hardware queue to run.
2227  * @msecs: Milliseconds of delay to wait before running the queue.
2228  *
2229  * Run a hardware queue asynchronously with a delay of @msecs.
2230  */
2231 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2232 {
2233         if (unlikely(blk_mq_hctx_stopped(hctx)))
2234                 return;
2235         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2236                                     msecs_to_jiffies(msecs));
2237 }
2238 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2239
2240 /**
2241  * blk_mq_run_hw_queue - Start to run a hardware queue.
2242  * @hctx: Pointer to the hardware queue to run.
2243  * @async: If we want to run the queue asynchronously.
2244  *
2245  * Check if the request queue is not in a quiesced state and if there are
2246  * pending requests to be sent. If this is true, run the queue to send requests
2247  * to hardware.
2248  */
2249 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2250 {
2251         bool need_run;
2252
2253         /*
2254          * We can't run the queue inline with interrupts disabled.
2255          */
2256         WARN_ON_ONCE(!async && in_interrupt());
2257
2258         might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2259
2260         /*
2261          * When queue is quiesced, we may be switching io scheduler, or
2262          * updating nr_hw_queues, or other things, and we can't run queue
2263          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2264          *
2265          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2266          * quiesced.
2267          */
2268         __blk_mq_run_dispatch_ops(hctx->queue, false,
2269                 need_run = !blk_queue_quiesced(hctx->queue) &&
2270                 blk_mq_hctx_has_pending(hctx));
2271
2272         if (!need_run)
2273                 return;
2274
2275         if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2276                 blk_mq_delay_run_hw_queue(hctx, 0);
2277                 return;
2278         }
2279
2280         blk_mq_run_dispatch_ops(hctx->queue,
2281                                 blk_mq_sched_dispatch_requests(hctx));
2282 }
2283 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2284
2285 /*
2286  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2287  * scheduler.
2288  */
2289 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2290 {
2291         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2292         /*
2293          * If the IO scheduler does not respect hardware queues when
2294          * dispatching, we just don't bother with multiple HW queues and
2295          * dispatch from hctx for the current CPU since running multiple queues
2296          * just causes lock contention inside the scheduler and pointless cache
2297          * bouncing.
2298          */
2299         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2300
2301         if (!blk_mq_hctx_stopped(hctx))
2302                 return hctx;
2303         return NULL;
2304 }
2305
2306 /**
2307  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2308  * @q: Pointer to the request queue to run.
2309  * @async: If we want to run the queue asynchronously.
2310  */
2311 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2312 {
2313         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2314         unsigned long i;
2315
2316         sq_hctx = NULL;
2317         if (blk_queue_sq_sched(q))
2318                 sq_hctx = blk_mq_get_sq_hctx(q);
2319         queue_for_each_hw_ctx(q, hctx, i) {
2320                 if (blk_mq_hctx_stopped(hctx))
2321                         continue;
2322                 /*
2323                  * Dispatch from this hctx either if there's no hctx preferred
2324                  * by IO scheduler or if it has requests that bypass the
2325                  * scheduler.
2326                  */
2327                 if (!sq_hctx || sq_hctx == hctx ||
2328                     !list_empty_careful(&hctx->dispatch))
2329                         blk_mq_run_hw_queue(hctx, async);
2330         }
2331 }
2332 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2333
2334 /**
2335  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2336  * @q: Pointer to the request queue to run.
2337  * @msecs: Milliseconds of delay to wait before running the queues.
2338  */
2339 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2340 {
2341         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2342         unsigned long i;
2343
2344         sq_hctx = NULL;
2345         if (blk_queue_sq_sched(q))
2346                 sq_hctx = blk_mq_get_sq_hctx(q);
2347         queue_for_each_hw_ctx(q, hctx, i) {
2348                 if (blk_mq_hctx_stopped(hctx))
2349                         continue;
2350                 /*
2351                  * If there is already a run_work pending, leave the
2352                  * pending delay untouched. Otherwise, a hctx can stall
2353                  * if another hctx is re-delaying the other's work
2354                  * before the work executes.
2355                  */
2356                 if (delayed_work_pending(&hctx->run_work))
2357                         continue;
2358                 /*
2359                  * Dispatch from this hctx either if there's no hctx preferred
2360                  * by IO scheduler or if it has requests that bypass the
2361                  * scheduler.
2362                  */
2363                 if (!sq_hctx || sq_hctx == hctx ||
2364                     !list_empty_careful(&hctx->dispatch))
2365                         blk_mq_delay_run_hw_queue(hctx, msecs);
2366         }
2367 }
2368 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2369
2370 /*
2371  * This function is often used for pausing .queue_rq() by driver when
2372  * there isn't enough resource or some conditions aren't satisfied, and
2373  * BLK_STS_RESOURCE is usually returned.
2374  *
2375  * We do not guarantee that dispatch can be drained or blocked
2376  * after blk_mq_stop_hw_queue() returns. Please use
2377  * blk_mq_quiesce_queue() for that requirement.
2378  */
2379 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2380 {
2381         cancel_delayed_work(&hctx->run_work);
2382
2383         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2384 }
2385 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2386
2387 /*
2388  * This function is often used for pausing .queue_rq() by driver when
2389  * there isn't enough resource or some conditions aren't satisfied, and
2390  * BLK_STS_RESOURCE is usually returned.
2391  *
2392  * We do not guarantee that dispatch can be drained or blocked
2393  * after blk_mq_stop_hw_queues() returns. Please use
2394  * blk_mq_quiesce_queue() for that requirement.
2395  */
2396 void blk_mq_stop_hw_queues(struct request_queue *q)
2397 {
2398         struct blk_mq_hw_ctx *hctx;
2399         unsigned long i;
2400
2401         queue_for_each_hw_ctx(q, hctx, i)
2402                 blk_mq_stop_hw_queue(hctx);
2403 }
2404 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2405
2406 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2407 {
2408         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2409
2410         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2411 }
2412 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2413
2414 void blk_mq_start_hw_queues(struct request_queue *q)
2415 {
2416         struct blk_mq_hw_ctx *hctx;
2417         unsigned long i;
2418
2419         queue_for_each_hw_ctx(q, hctx, i)
2420                 blk_mq_start_hw_queue(hctx);
2421 }
2422 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2423
2424 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2425 {
2426         if (!blk_mq_hctx_stopped(hctx))
2427                 return;
2428
2429         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2430         blk_mq_run_hw_queue(hctx, async);
2431 }
2432 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2433
2434 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2435 {
2436         struct blk_mq_hw_ctx *hctx;
2437         unsigned long i;
2438
2439         queue_for_each_hw_ctx(q, hctx, i)
2440                 blk_mq_start_stopped_hw_queue(hctx, async ||
2441                                         (hctx->flags & BLK_MQ_F_BLOCKING));
2442 }
2443 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2444
2445 static void blk_mq_run_work_fn(struct work_struct *work)
2446 {
2447         struct blk_mq_hw_ctx *hctx =
2448                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2449
2450         blk_mq_run_dispatch_ops(hctx->queue,
2451                                 blk_mq_sched_dispatch_requests(hctx));
2452 }
2453
2454 /**
2455  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2456  * @rq: Pointer to request to be inserted.
2457  * @flags: BLK_MQ_INSERT_*
2458  *
2459  * Should only be used carefully, when the caller knows we want to
2460  * bypass a potential IO scheduler on the target device.
2461  */
2462 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2463 {
2464         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2465
2466         spin_lock(&hctx->lock);
2467         if (flags & BLK_MQ_INSERT_AT_HEAD)
2468                 list_add(&rq->queuelist, &hctx->dispatch);
2469         else
2470                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2471         spin_unlock(&hctx->lock);
2472 }
2473
2474 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2475                 struct blk_mq_ctx *ctx, struct list_head *list,
2476                 bool run_queue_async)
2477 {
2478         struct request *rq;
2479         enum hctx_type type = hctx->type;
2480
2481         /*
2482          * Try to issue requests directly if the hw queue isn't busy to save an
2483          * extra enqueue & dequeue to the sw queue.
2484          */
2485         if (!hctx->dispatch_busy && !run_queue_async) {
2486                 blk_mq_run_dispatch_ops(hctx->queue,
2487                         blk_mq_try_issue_list_directly(hctx, list));
2488                 if (list_empty(list))
2489                         goto out;
2490         }
2491
2492         /*
2493          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2494          * offline now
2495          */
2496         list_for_each_entry(rq, list, queuelist) {
2497                 BUG_ON(rq->mq_ctx != ctx);
2498                 trace_block_rq_insert(rq);
2499                 if (rq->cmd_flags & REQ_NOWAIT)
2500                         run_queue_async = true;
2501         }
2502
2503         spin_lock(&ctx->lock);
2504         list_splice_tail_init(list, &ctx->rq_lists[type]);
2505         blk_mq_hctx_mark_pending(hctx, ctx);
2506         spin_unlock(&ctx->lock);
2507 out:
2508         blk_mq_run_hw_queue(hctx, run_queue_async);
2509 }
2510
2511 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2512 {
2513         struct request_queue *q = rq->q;
2514         struct blk_mq_ctx *ctx = rq->mq_ctx;
2515         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2516
2517         if (blk_rq_is_passthrough(rq)) {
2518                 /*
2519                  * Passthrough request have to be added to hctx->dispatch
2520                  * directly.  The device may be in a situation where it can't
2521                  * handle FS request, and always returns BLK_STS_RESOURCE for
2522                  * them, which gets them added to hctx->dispatch.
2523                  *
2524                  * If a passthrough request is required to unblock the queues,
2525                  * and it is added to the scheduler queue, there is no chance to
2526                  * dispatch it given we prioritize requests in hctx->dispatch.
2527                  */
2528                 blk_mq_request_bypass_insert(rq, flags);
2529         } else if (req_op(rq) == REQ_OP_FLUSH) {
2530                 /*
2531                  * Firstly normal IO request is inserted to scheduler queue or
2532                  * sw queue, meantime we add flush request to dispatch queue(
2533                  * hctx->dispatch) directly and there is at most one in-flight
2534                  * flush request for each hw queue, so it doesn't matter to add
2535                  * flush request to tail or front of the dispatch queue.
2536                  *
2537                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2538                  * command, and queueing it will fail when there is any
2539                  * in-flight normal IO request(NCQ command). When adding flush
2540                  * rq to the front of hctx->dispatch, it is easier to introduce
2541                  * extra time to flush rq's latency because of S_SCHED_RESTART
2542                  * compared with adding to the tail of dispatch queue, then
2543                  * chance of flush merge is increased, and less flush requests
2544                  * will be issued to controller. It is observed that ~10% time
2545                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2546                  * drive when adding flush rq to the front of hctx->dispatch.
2547                  *
2548                  * Simply queue flush rq to the front of hctx->dispatch so that
2549                  * intensive flush workloads can benefit in case of NCQ HW.
2550                  */
2551                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2552         } else if (q->elevator) {
2553                 LIST_HEAD(list);
2554
2555                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2556
2557                 list_add(&rq->queuelist, &list);
2558                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2559         } else {
2560                 trace_block_rq_insert(rq);
2561
2562                 spin_lock(&ctx->lock);
2563                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2564                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2565                 else
2566                         list_add_tail(&rq->queuelist,
2567                                       &ctx->rq_lists[hctx->type]);
2568                 blk_mq_hctx_mark_pending(hctx, ctx);
2569                 spin_unlock(&ctx->lock);
2570         }
2571 }
2572
2573 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2574                 unsigned int nr_segs)
2575 {
2576         int err;
2577
2578         if (bio->bi_opf & REQ_RAHEAD)
2579                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2580
2581         rq->__sector = bio->bi_iter.bi_sector;
2582         blk_rq_bio_prep(rq, bio, nr_segs);
2583
2584         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2585         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2586         WARN_ON_ONCE(err);
2587
2588         blk_account_io_start(rq);
2589 }
2590
2591 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2592                                             struct request *rq, bool last)
2593 {
2594         struct request_queue *q = rq->q;
2595         struct blk_mq_queue_data bd = {
2596                 .rq = rq,
2597                 .last = last,
2598         };
2599         blk_status_t ret;
2600
2601         /*
2602          * For OK queue, we are done. For error, caller may kill it.
2603          * Any other error (busy), just add it to our list as we
2604          * previously would have done.
2605          */
2606         ret = q->mq_ops->queue_rq(hctx, &bd);
2607         switch (ret) {
2608         case BLK_STS_OK:
2609                 blk_mq_update_dispatch_busy(hctx, false);
2610                 break;
2611         case BLK_STS_RESOURCE:
2612         case BLK_STS_DEV_RESOURCE:
2613                 blk_mq_update_dispatch_busy(hctx, true);
2614                 __blk_mq_requeue_request(rq);
2615                 break;
2616         default:
2617                 blk_mq_update_dispatch_busy(hctx, false);
2618                 break;
2619         }
2620
2621         return ret;
2622 }
2623
2624 static bool blk_mq_get_budget_and_tag(struct request *rq)
2625 {
2626         int budget_token;
2627
2628         budget_token = blk_mq_get_dispatch_budget(rq->q);
2629         if (budget_token < 0)
2630                 return false;
2631         blk_mq_set_rq_budget_token(rq, budget_token);
2632         if (!blk_mq_get_driver_tag(rq)) {
2633                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2634                 return false;
2635         }
2636         return true;
2637 }
2638
2639 /**
2640  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2641  * @hctx: Pointer of the associated hardware queue.
2642  * @rq: Pointer to request to be sent.
2643  *
2644  * If the device has enough resources to accept a new request now, send the
2645  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2646  * we can try send it another time in the future. Requests inserted at this
2647  * queue have higher priority.
2648  */
2649 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2650                 struct request *rq)
2651 {
2652         blk_status_t ret;
2653
2654         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2655                 blk_mq_insert_request(rq, 0);
2656                 return;
2657         }
2658
2659         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2660                 blk_mq_insert_request(rq, 0);
2661                 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2662                 return;
2663         }
2664
2665         ret = __blk_mq_issue_directly(hctx, rq, true);
2666         switch (ret) {
2667         case BLK_STS_OK:
2668                 break;
2669         case BLK_STS_RESOURCE:
2670         case BLK_STS_DEV_RESOURCE:
2671                 blk_mq_request_bypass_insert(rq, 0);
2672                 blk_mq_run_hw_queue(hctx, false);
2673                 break;
2674         default:
2675                 blk_mq_end_request(rq, ret);
2676                 break;
2677         }
2678 }
2679
2680 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2681 {
2682         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2683
2684         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2685                 blk_mq_insert_request(rq, 0);
2686                 return BLK_STS_OK;
2687         }
2688
2689         if (!blk_mq_get_budget_and_tag(rq))
2690                 return BLK_STS_RESOURCE;
2691         return __blk_mq_issue_directly(hctx, rq, last);
2692 }
2693
2694 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2695 {
2696         struct blk_mq_hw_ctx *hctx = NULL;
2697         struct request *rq;
2698         int queued = 0;
2699         blk_status_t ret = BLK_STS_OK;
2700
2701         while ((rq = rq_list_pop(&plug->mq_list))) {
2702                 bool last = rq_list_empty(plug->mq_list);
2703
2704                 if (hctx != rq->mq_hctx) {
2705                         if (hctx) {
2706                                 blk_mq_commit_rqs(hctx, queued, false);
2707                                 queued = 0;
2708                         }
2709                         hctx = rq->mq_hctx;
2710                 }
2711
2712                 ret = blk_mq_request_issue_directly(rq, last);
2713                 switch (ret) {
2714                 case BLK_STS_OK:
2715                         queued++;
2716                         break;
2717                 case BLK_STS_RESOURCE:
2718                 case BLK_STS_DEV_RESOURCE:
2719                         blk_mq_request_bypass_insert(rq, 0);
2720                         blk_mq_run_hw_queue(hctx, false);
2721                         goto out;
2722                 default:
2723                         blk_mq_end_request(rq, ret);
2724                         break;
2725                 }
2726         }
2727
2728 out:
2729         if (ret != BLK_STS_OK)
2730                 blk_mq_commit_rqs(hctx, queued, false);
2731 }
2732
2733 static void __blk_mq_flush_plug_list(struct request_queue *q,
2734                                      struct blk_plug *plug)
2735 {
2736         if (blk_queue_quiesced(q))
2737                 return;
2738         q->mq_ops->queue_rqs(&plug->mq_list);
2739 }
2740
2741 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2742 {
2743         struct blk_mq_hw_ctx *this_hctx = NULL;
2744         struct blk_mq_ctx *this_ctx = NULL;
2745         struct request *requeue_list = NULL;
2746         struct request **requeue_lastp = &requeue_list;
2747         unsigned int depth = 0;
2748         bool is_passthrough = false;
2749         LIST_HEAD(list);
2750
2751         do {
2752                 struct request *rq = rq_list_pop(&plug->mq_list);
2753
2754                 if (!this_hctx) {
2755                         this_hctx = rq->mq_hctx;
2756                         this_ctx = rq->mq_ctx;
2757                         is_passthrough = blk_rq_is_passthrough(rq);
2758                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2759                            is_passthrough != blk_rq_is_passthrough(rq)) {
2760                         rq_list_add_tail(&requeue_lastp, rq);
2761                         continue;
2762                 }
2763                 list_add(&rq->queuelist, &list);
2764                 depth++;
2765         } while (!rq_list_empty(plug->mq_list));
2766
2767         plug->mq_list = requeue_list;
2768         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2769
2770         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2771         /* passthrough requests should never be issued to the I/O scheduler */
2772         if (is_passthrough) {
2773                 spin_lock(&this_hctx->lock);
2774                 list_splice_tail_init(&list, &this_hctx->dispatch);
2775                 spin_unlock(&this_hctx->lock);
2776                 blk_mq_run_hw_queue(this_hctx, from_sched);
2777         } else if (this_hctx->queue->elevator) {
2778                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2779                                 &list, 0);
2780                 blk_mq_run_hw_queue(this_hctx, from_sched);
2781         } else {
2782                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2783         }
2784         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2785 }
2786
2787 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2788 {
2789         struct request *rq;
2790
2791         /*
2792          * We may have been called recursively midway through handling
2793          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2794          * To avoid mq_list changing under our feet, clear rq_count early and
2795          * bail out specifically if rq_count is 0 rather than checking
2796          * whether the mq_list is empty.
2797          */
2798         if (plug->rq_count == 0)
2799                 return;
2800         plug->rq_count = 0;
2801
2802         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2803                 struct request_queue *q;
2804
2805                 rq = rq_list_peek(&plug->mq_list);
2806                 q = rq->q;
2807
2808                 /*
2809                  * Peek first request and see if we have a ->queue_rqs() hook.
2810                  * If we do, we can dispatch the whole plug list in one go. We
2811                  * already know at this point that all requests belong to the
2812                  * same queue, caller must ensure that's the case.
2813                  */
2814                 if (q->mq_ops->queue_rqs) {
2815                         blk_mq_run_dispatch_ops(q,
2816                                 __blk_mq_flush_plug_list(q, plug));
2817                         if (rq_list_empty(plug->mq_list))
2818                                 return;
2819                 }
2820
2821                 blk_mq_run_dispatch_ops(q,
2822                                 blk_mq_plug_issue_direct(plug));
2823                 if (rq_list_empty(plug->mq_list))
2824                         return;
2825         }
2826
2827         do {
2828                 blk_mq_dispatch_plug_list(plug, from_schedule);
2829         } while (!rq_list_empty(plug->mq_list));
2830 }
2831
2832 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2833                 struct list_head *list)
2834 {
2835         int queued = 0;
2836         blk_status_t ret = BLK_STS_OK;
2837
2838         while (!list_empty(list)) {
2839                 struct request *rq = list_first_entry(list, struct request,
2840                                 queuelist);
2841
2842                 list_del_init(&rq->queuelist);
2843                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2844                 switch (ret) {
2845                 case BLK_STS_OK:
2846                         queued++;
2847                         break;
2848                 case BLK_STS_RESOURCE:
2849                 case BLK_STS_DEV_RESOURCE:
2850                         blk_mq_request_bypass_insert(rq, 0);
2851                         if (list_empty(list))
2852                                 blk_mq_run_hw_queue(hctx, false);
2853                         goto out;
2854                 default:
2855                         blk_mq_end_request(rq, ret);
2856                         break;
2857                 }
2858         }
2859
2860 out:
2861         if (ret != BLK_STS_OK)
2862                 blk_mq_commit_rqs(hctx, queued, false);
2863 }
2864
2865 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2866                                      struct bio *bio, unsigned int nr_segs)
2867 {
2868         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2869                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2870                         return true;
2871                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2872                         return true;
2873         }
2874         return false;
2875 }
2876
2877 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2878                                                struct blk_plug *plug,
2879                                                struct bio *bio,
2880                                                unsigned int nsegs)
2881 {
2882         struct blk_mq_alloc_data data = {
2883                 .q              = q,
2884                 .nr_tags        = 1,
2885                 .cmd_flags      = bio->bi_opf,
2886         };
2887         struct request *rq;
2888
2889         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2890                 return NULL;
2891
2892         rq_qos_throttle(q, bio);
2893
2894         if (plug) {
2895                 data.nr_tags = plug->nr_ios;
2896                 plug->nr_ios = 1;
2897                 data.cached_rq = &plug->cached_rq;
2898         }
2899
2900         rq = __blk_mq_alloc_requests(&data);
2901         if (rq)
2902                 return rq;
2903         rq_qos_cleanup(q, bio);
2904         if (bio->bi_opf & REQ_NOWAIT)
2905                 bio_wouldblock_error(bio);
2906         return NULL;
2907 }
2908
2909 /*
2910  * Check if we can use the passed on request for submitting the passed in bio,
2911  * and remove it from the request list if it can be used.
2912  */
2913 static bool blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2914                 struct bio *bio)
2915 {
2916         enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2917         enum hctx_type hctx_type = rq->mq_hctx->type;
2918
2919         WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2920
2921         if (type != hctx_type &&
2922             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2923                 return false;
2924         if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2925                 return false;
2926
2927         /*
2928          * If any qos ->throttle() end up blocking, we will have flushed the
2929          * plug and hence killed the cached_rq list as well. Pop this entry
2930          * before we throttle.
2931          */
2932         plug->cached_rq = rq_list_next(rq);
2933         rq_qos_throttle(rq->q, bio);
2934
2935         blk_mq_rq_time_init(rq, 0);
2936         rq->cmd_flags = bio->bi_opf;
2937         INIT_LIST_HEAD(&rq->queuelist);
2938         return true;
2939 }
2940
2941 /**
2942  * blk_mq_submit_bio - Create and send a request to block device.
2943  * @bio: Bio pointer.
2944  *
2945  * Builds up a request structure from @q and @bio and send to the device. The
2946  * request may not be queued directly to hardware if:
2947  * * This request can be merged with another one
2948  * * We want to place request at plug queue for possible future merging
2949  * * There is an IO scheduler active at this queue
2950  *
2951  * It will not queue the request if there is an error with the bio, or at the
2952  * request creation.
2953  */
2954 void blk_mq_submit_bio(struct bio *bio)
2955 {
2956         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2957         struct blk_plug *plug = blk_mq_plug(bio);
2958         const int is_sync = op_is_sync(bio->bi_opf);
2959         struct blk_mq_hw_ctx *hctx;
2960         struct request *rq = NULL;
2961         unsigned int nr_segs = 1;
2962         blk_status_t ret;
2963
2964         bio = blk_queue_bounce(bio, q);
2965
2966         if (plug) {
2967                 rq = rq_list_peek(&plug->cached_rq);
2968                 if (rq && rq->q != q)
2969                         rq = NULL;
2970         }
2971         if (rq) {
2972                 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2973                         bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2974                         if (!bio)
2975                                 return;
2976                 }
2977                 if (!bio_integrity_prep(bio))
2978                         return;
2979                 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2980                         return;
2981                 if (blk_mq_use_cached_rq(rq, plug, bio))
2982                         goto done;
2983                 percpu_ref_get(&q->q_usage_counter);
2984         } else {
2985                 if (unlikely(bio_queue_enter(bio)))
2986                         return;
2987                 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2988                         bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2989                         if (!bio)
2990                                 goto fail;
2991                 }
2992                 if (!bio_integrity_prep(bio))
2993                         goto fail;
2994         }
2995
2996         rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2997         if (unlikely(!rq)) {
2998 fail:
2999                 blk_queue_exit(q);
3000                 return;
3001         }
3002
3003 done:
3004         trace_block_getrq(bio);
3005
3006         rq_qos_track(q, rq, bio);
3007
3008         blk_mq_bio_to_request(rq, bio, nr_segs);
3009
3010         ret = blk_crypto_rq_get_keyslot(rq);
3011         if (ret != BLK_STS_OK) {
3012                 bio->bi_status = ret;
3013                 bio_endio(bio);
3014                 blk_mq_free_request(rq);
3015                 return;
3016         }
3017
3018         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3019                 return;
3020
3021         if (plug) {
3022                 blk_add_rq_to_plug(plug, rq);
3023                 return;
3024         }
3025
3026         hctx = rq->mq_hctx;
3027         if ((rq->rq_flags & RQF_USE_SCHED) ||
3028             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3029                 blk_mq_insert_request(rq, 0);
3030                 blk_mq_run_hw_queue(hctx, true);
3031         } else {
3032                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3033         }
3034 }
3035
3036 #ifdef CONFIG_BLK_MQ_STACKING
3037 /**
3038  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3039  * @rq: the request being queued
3040  */
3041 blk_status_t blk_insert_cloned_request(struct request *rq)
3042 {
3043         struct request_queue *q = rq->q;
3044         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3045         unsigned int max_segments = blk_rq_get_max_segments(rq);
3046         blk_status_t ret;
3047
3048         if (blk_rq_sectors(rq) > max_sectors) {
3049                 /*
3050                  * SCSI device does not have a good way to return if
3051                  * Write Same/Zero is actually supported. If a device rejects
3052                  * a non-read/write command (discard, write same,etc.) the
3053                  * low-level device driver will set the relevant queue limit to
3054                  * 0 to prevent blk-lib from issuing more of the offending
3055                  * operations. Commands queued prior to the queue limit being
3056                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3057                  * errors being propagated to upper layers.
3058                  */
3059                 if (max_sectors == 0)
3060                         return BLK_STS_NOTSUPP;
3061
3062                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3063                         __func__, blk_rq_sectors(rq), max_sectors);
3064                 return BLK_STS_IOERR;
3065         }
3066
3067         /*
3068          * The queue settings related to segment counting may differ from the
3069          * original queue.
3070          */
3071         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3072         if (rq->nr_phys_segments > max_segments) {
3073                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3074                         __func__, rq->nr_phys_segments, max_segments);
3075                 return BLK_STS_IOERR;
3076         }
3077
3078         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3079                 return BLK_STS_IOERR;
3080
3081         ret = blk_crypto_rq_get_keyslot(rq);
3082         if (ret != BLK_STS_OK)
3083                 return ret;
3084
3085         blk_account_io_start(rq);
3086
3087         /*
3088          * Since we have a scheduler attached on the top device,
3089          * bypass a potential scheduler on the bottom device for
3090          * insert.
3091          */
3092         blk_mq_run_dispatch_ops(q,
3093                         ret = blk_mq_request_issue_directly(rq, true));
3094         if (ret)
3095                 blk_account_io_done(rq, ktime_get_ns());
3096         return ret;
3097 }
3098 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3099
3100 /**
3101  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3102  * @rq: the clone request to be cleaned up
3103  *
3104  * Description:
3105  *     Free all bios in @rq for a cloned request.
3106  */
3107 void blk_rq_unprep_clone(struct request *rq)
3108 {
3109         struct bio *bio;
3110
3111         while ((bio = rq->bio) != NULL) {
3112                 rq->bio = bio->bi_next;
3113
3114                 bio_put(bio);
3115         }
3116 }
3117 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3118
3119 /**
3120  * blk_rq_prep_clone - Helper function to setup clone request
3121  * @rq: the request to be setup
3122  * @rq_src: original request to be cloned
3123  * @bs: bio_set that bios for clone are allocated from
3124  * @gfp_mask: memory allocation mask for bio
3125  * @bio_ctr: setup function to be called for each clone bio.
3126  *           Returns %0 for success, non %0 for failure.
3127  * @data: private data to be passed to @bio_ctr
3128  *
3129  * Description:
3130  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3131  *     Also, pages which the original bios are pointing to are not copied
3132  *     and the cloned bios just point same pages.
3133  *     So cloned bios must be completed before original bios, which means
3134  *     the caller must complete @rq before @rq_src.
3135  */
3136 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3137                       struct bio_set *bs, gfp_t gfp_mask,
3138                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3139                       void *data)
3140 {
3141         struct bio *bio, *bio_src;
3142
3143         if (!bs)
3144                 bs = &fs_bio_set;
3145
3146         __rq_for_each_bio(bio_src, rq_src) {
3147                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3148                                       bs);
3149                 if (!bio)
3150                         goto free_and_out;
3151
3152                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3153                         goto free_and_out;
3154
3155                 if (rq->bio) {
3156                         rq->biotail->bi_next = bio;
3157                         rq->biotail = bio;
3158                 } else {
3159                         rq->bio = rq->biotail = bio;
3160                 }
3161                 bio = NULL;
3162         }
3163
3164         /* Copy attributes of the original request to the clone request. */
3165         rq->__sector = blk_rq_pos(rq_src);
3166         rq->__data_len = blk_rq_bytes(rq_src);
3167         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3168                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3169                 rq->special_vec = rq_src->special_vec;
3170         }
3171         rq->nr_phys_segments = rq_src->nr_phys_segments;
3172         rq->ioprio = rq_src->ioprio;
3173
3174         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3175                 goto free_and_out;
3176
3177         return 0;
3178
3179 free_and_out:
3180         if (bio)
3181                 bio_put(bio);
3182         blk_rq_unprep_clone(rq);
3183
3184         return -ENOMEM;
3185 }
3186 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3187 #endif /* CONFIG_BLK_MQ_STACKING */
3188
3189 /*
3190  * Steal bios from a request and add them to a bio list.
3191  * The request must not have been partially completed before.
3192  */
3193 void blk_steal_bios(struct bio_list *list, struct request *rq)
3194 {
3195         if (rq->bio) {
3196                 if (list->tail)
3197                         list->tail->bi_next = rq->bio;
3198                 else
3199                         list->head = rq->bio;
3200                 list->tail = rq->biotail;
3201
3202                 rq->bio = NULL;
3203                 rq->biotail = NULL;
3204         }
3205
3206         rq->__data_len = 0;
3207 }
3208 EXPORT_SYMBOL_GPL(blk_steal_bios);
3209
3210 static size_t order_to_size(unsigned int order)
3211 {
3212         return (size_t)PAGE_SIZE << order;
3213 }
3214
3215 /* called before freeing request pool in @tags */
3216 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3217                                     struct blk_mq_tags *tags)
3218 {
3219         struct page *page;
3220         unsigned long flags;
3221
3222         /*
3223          * There is no need to clear mapping if driver tags is not initialized
3224          * or the mapping belongs to the driver tags.
3225          */
3226         if (!drv_tags || drv_tags == tags)
3227                 return;
3228
3229         list_for_each_entry(page, &tags->page_list, lru) {
3230                 unsigned long start = (unsigned long)page_address(page);
3231                 unsigned long end = start + order_to_size(page->private);
3232                 int i;
3233
3234                 for (i = 0; i < drv_tags->nr_tags; i++) {
3235                         struct request *rq = drv_tags->rqs[i];
3236                         unsigned long rq_addr = (unsigned long)rq;
3237
3238                         if (rq_addr >= start && rq_addr < end) {
3239                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3240                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3241                         }
3242                 }
3243         }
3244
3245         /*
3246          * Wait until all pending iteration is done.
3247          *
3248          * Request reference is cleared and it is guaranteed to be observed
3249          * after the ->lock is released.
3250          */
3251         spin_lock_irqsave(&drv_tags->lock, flags);
3252         spin_unlock_irqrestore(&drv_tags->lock, flags);
3253 }
3254
3255 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3256                      unsigned int hctx_idx)
3257 {
3258         struct blk_mq_tags *drv_tags;
3259         struct page *page;
3260
3261         if (list_empty(&tags->page_list))
3262                 return;
3263
3264         if (blk_mq_is_shared_tags(set->flags))
3265                 drv_tags = set->shared_tags;
3266         else
3267                 drv_tags = set->tags[hctx_idx];
3268
3269         if (tags->static_rqs && set->ops->exit_request) {
3270                 int i;
3271
3272                 for (i = 0; i < tags->nr_tags; i++) {
3273                         struct request *rq = tags->static_rqs[i];
3274
3275                         if (!rq)
3276                                 continue;
3277                         set->ops->exit_request(set, rq, hctx_idx);
3278                         tags->static_rqs[i] = NULL;
3279                 }
3280         }
3281
3282         blk_mq_clear_rq_mapping(drv_tags, tags);
3283
3284         while (!list_empty(&tags->page_list)) {
3285                 page = list_first_entry(&tags->page_list, struct page, lru);
3286                 list_del_init(&page->lru);
3287                 /*
3288                  * Remove kmemleak object previously allocated in
3289                  * blk_mq_alloc_rqs().
3290                  */
3291                 kmemleak_free(page_address(page));
3292                 __free_pages(page, page->private);
3293         }
3294 }
3295
3296 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3297 {
3298         kfree(tags->rqs);
3299         tags->rqs = NULL;
3300         kfree(tags->static_rqs);
3301         tags->static_rqs = NULL;
3302
3303         blk_mq_free_tags(tags);
3304 }
3305
3306 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3307                 unsigned int hctx_idx)
3308 {
3309         int i;
3310
3311         for (i = 0; i < set->nr_maps; i++) {
3312                 unsigned int start = set->map[i].queue_offset;
3313                 unsigned int end = start + set->map[i].nr_queues;
3314
3315                 if (hctx_idx >= start && hctx_idx < end)
3316                         break;
3317         }
3318
3319         if (i >= set->nr_maps)
3320                 i = HCTX_TYPE_DEFAULT;
3321
3322         return i;
3323 }
3324
3325 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3326                 unsigned int hctx_idx)
3327 {
3328         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3329
3330         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3331 }
3332
3333 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3334                                                unsigned int hctx_idx,
3335                                                unsigned int nr_tags,
3336                                                unsigned int reserved_tags)
3337 {
3338         int node = blk_mq_get_hctx_node(set, hctx_idx);
3339         struct blk_mq_tags *tags;
3340
3341         if (node == NUMA_NO_NODE)
3342                 node = set->numa_node;
3343
3344         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3345                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3346         if (!tags)
3347                 return NULL;
3348
3349         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3350                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3351                                  node);
3352         if (!tags->rqs)
3353                 goto err_free_tags;
3354
3355         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3356                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3357                                         node);
3358         if (!tags->static_rqs)
3359                 goto err_free_rqs;
3360
3361         return tags;
3362
3363 err_free_rqs:
3364         kfree(tags->rqs);
3365 err_free_tags:
3366         blk_mq_free_tags(tags);
3367         return NULL;
3368 }
3369
3370 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3371                                unsigned int hctx_idx, int node)
3372 {
3373         int ret;
3374
3375         if (set->ops->init_request) {
3376                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3377                 if (ret)
3378                         return ret;
3379         }
3380
3381         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3382         return 0;
3383 }
3384
3385 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3386                             struct blk_mq_tags *tags,
3387                             unsigned int hctx_idx, unsigned int depth)
3388 {
3389         unsigned int i, j, entries_per_page, max_order = 4;
3390         int node = blk_mq_get_hctx_node(set, hctx_idx);
3391         size_t rq_size, left;
3392
3393         if (node == NUMA_NO_NODE)
3394                 node = set->numa_node;
3395
3396         INIT_LIST_HEAD(&tags->page_list);
3397
3398         /*
3399          * rq_size is the size of the request plus driver payload, rounded
3400          * to the cacheline size
3401          */
3402         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3403                                 cache_line_size());
3404         left = rq_size * depth;
3405
3406         for (i = 0; i < depth; ) {
3407                 int this_order = max_order;
3408                 struct page *page;
3409                 int to_do;
3410                 void *p;
3411
3412                 while (this_order && left < order_to_size(this_order - 1))
3413                         this_order--;
3414
3415                 do {
3416                         page = alloc_pages_node(node,
3417                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3418                                 this_order);
3419                         if (page)
3420                                 break;
3421                         if (!this_order--)
3422                                 break;
3423                         if (order_to_size(this_order) < rq_size)
3424                                 break;
3425                 } while (1);
3426
3427                 if (!page)
3428                         goto fail;
3429
3430                 page->private = this_order;
3431                 list_add_tail(&page->lru, &tags->page_list);
3432
3433                 p = page_address(page);
3434                 /*
3435                  * Allow kmemleak to scan these pages as they contain pointers
3436                  * to additional allocations like via ops->init_request().
3437                  */
3438                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3439                 entries_per_page = order_to_size(this_order) / rq_size;
3440                 to_do = min(entries_per_page, depth - i);
3441                 left -= to_do * rq_size;
3442                 for (j = 0; j < to_do; j++) {
3443                         struct request *rq = p;
3444
3445                         tags->static_rqs[i] = rq;
3446                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3447                                 tags->static_rqs[i] = NULL;
3448                                 goto fail;
3449                         }
3450
3451                         p += rq_size;
3452                         i++;
3453                 }
3454         }
3455         return 0;
3456
3457 fail:
3458         blk_mq_free_rqs(set, tags, hctx_idx);
3459         return -ENOMEM;
3460 }
3461
3462 struct rq_iter_data {
3463         struct blk_mq_hw_ctx *hctx;
3464         bool has_rq;
3465 };
3466
3467 static bool blk_mq_has_request(struct request *rq, void *data)
3468 {
3469         struct rq_iter_data *iter_data = data;
3470
3471         if (rq->mq_hctx != iter_data->hctx)
3472                 return true;
3473         iter_data->has_rq = true;
3474         return false;
3475 }
3476
3477 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3478 {
3479         struct blk_mq_tags *tags = hctx->sched_tags ?
3480                         hctx->sched_tags : hctx->tags;
3481         struct rq_iter_data data = {
3482                 .hctx   = hctx,
3483         };
3484
3485         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3486         return data.has_rq;
3487 }
3488
3489 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3490                 struct blk_mq_hw_ctx *hctx)
3491 {
3492         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3493                 return false;
3494         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3495                 return false;
3496         return true;
3497 }
3498
3499 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3500 {
3501         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3502                         struct blk_mq_hw_ctx, cpuhp_online);
3503
3504         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3505             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3506                 return 0;
3507
3508         /*
3509          * Prevent new request from being allocated on the current hctx.
3510          *
3511          * The smp_mb__after_atomic() Pairs with the implied barrier in
3512          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3513          * seen once we return from the tag allocator.
3514          */
3515         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3516         smp_mb__after_atomic();
3517
3518         /*
3519          * Try to grab a reference to the queue and wait for any outstanding
3520          * requests.  If we could not grab a reference the queue has been
3521          * frozen and there are no requests.
3522          */
3523         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3524                 while (blk_mq_hctx_has_requests(hctx))
3525                         msleep(5);
3526                 percpu_ref_put(&hctx->queue->q_usage_counter);
3527         }
3528
3529         return 0;
3530 }
3531
3532 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3533 {
3534         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3535                         struct blk_mq_hw_ctx, cpuhp_online);
3536
3537         if (cpumask_test_cpu(cpu, hctx->cpumask))
3538                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3539         return 0;
3540 }
3541
3542 /*
3543  * 'cpu' is going away. splice any existing rq_list entries from this
3544  * software queue to the hw queue dispatch list, and ensure that it
3545  * gets run.
3546  */
3547 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3548 {
3549         struct blk_mq_hw_ctx *hctx;
3550         struct blk_mq_ctx *ctx;
3551         LIST_HEAD(tmp);
3552         enum hctx_type type;
3553
3554         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3555         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3556                 return 0;
3557
3558         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3559         type = hctx->type;
3560
3561         spin_lock(&ctx->lock);
3562         if (!list_empty(&ctx->rq_lists[type])) {
3563                 list_splice_init(&ctx->rq_lists[type], &tmp);
3564                 blk_mq_hctx_clear_pending(hctx, ctx);
3565         }
3566         spin_unlock(&ctx->lock);
3567
3568         if (list_empty(&tmp))
3569                 return 0;
3570
3571         spin_lock(&hctx->lock);
3572         list_splice_tail_init(&tmp, &hctx->dispatch);
3573         spin_unlock(&hctx->lock);
3574
3575         blk_mq_run_hw_queue(hctx, true);
3576         return 0;
3577 }
3578
3579 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3580 {
3581         if (!(hctx->flags & BLK_MQ_F_STACKING))
3582                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3583                                                     &hctx->cpuhp_online);
3584         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3585                                             &hctx->cpuhp_dead);
3586 }
3587
3588 /*
3589  * Before freeing hw queue, clearing the flush request reference in
3590  * tags->rqs[] for avoiding potential UAF.
3591  */
3592 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3593                 unsigned int queue_depth, struct request *flush_rq)
3594 {
3595         int i;
3596         unsigned long flags;
3597
3598         /* The hw queue may not be mapped yet */
3599         if (!tags)
3600                 return;
3601
3602         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3603
3604         for (i = 0; i < queue_depth; i++)
3605                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3606
3607         /*
3608          * Wait until all pending iteration is done.
3609          *
3610          * Request reference is cleared and it is guaranteed to be observed
3611          * after the ->lock is released.
3612          */
3613         spin_lock_irqsave(&tags->lock, flags);
3614         spin_unlock_irqrestore(&tags->lock, flags);
3615 }
3616
3617 /* hctx->ctxs will be freed in queue's release handler */
3618 static void blk_mq_exit_hctx(struct request_queue *q,
3619                 struct blk_mq_tag_set *set,
3620                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3621 {
3622         struct request *flush_rq = hctx->fq->flush_rq;
3623
3624         if (blk_mq_hw_queue_mapped(hctx))
3625                 blk_mq_tag_idle(hctx);
3626
3627         if (blk_queue_init_done(q))
3628                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3629                                 set->queue_depth, flush_rq);
3630         if (set->ops->exit_request)
3631                 set->ops->exit_request(set, flush_rq, hctx_idx);
3632
3633         if (set->ops->exit_hctx)
3634                 set->ops->exit_hctx(hctx, hctx_idx);
3635
3636         blk_mq_remove_cpuhp(hctx);
3637
3638         xa_erase(&q->hctx_table, hctx_idx);
3639
3640         spin_lock(&q->unused_hctx_lock);
3641         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3642         spin_unlock(&q->unused_hctx_lock);
3643 }
3644
3645 static void blk_mq_exit_hw_queues(struct request_queue *q,
3646                 struct blk_mq_tag_set *set, int nr_queue)
3647 {
3648         struct blk_mq_hw_ctx *hctx;
3649         unsigned long i;
3650
3651         queue_for_each_hw_ctx(q, hctx, i) {
3652                 if (i == nr_queue)
3653                         break;
3654                 blk_mq_exit_hctx(q, set, hctx, i);
3655         }
3656 }
3657
3658 static int blk_mq_init_hctx(struct request_queue *q,
3659                 struct blk_mq_tag_set *set,
3660                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3661 {
3662         hctx->queue_num = hctx_idx;
3663
3664         if (!(hctx->flags & BLK_MQ_F_STACKING))
3665                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3666                                 &hctx->cpuhp_online);
3667         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3668
3669         hctx->tags = set->tags[hctx_idx];
3670
3671         if (set->ops->init_hctx &&
3672             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3673                 goto unregister_cpu_notifier;
3674
3675         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3676                                 hctx->numa_node))
3677                 goto exit_hctx;
3678
3679         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3680                 goto exit_flush_rq;
3681
3682         return 0;
3683
3684  exit_flush_rq:
3685         if (set->ops->exit_request)
3686                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3687  exit_hctx:
3688         if (set->ops->exit_hctx)
3689                 set->ops->exit_hctx(hctx, hctx_idx);
3690  unregister_cpu_notifier:
3691         blk_mq_remove_cpuhp(hctx);
3692         return -1;
3693 }
3694
3695 static struct blk_mq_hw_ctx *
3696 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3697                 int node)
3698 {
3699         struct blk_mq_hw_ctx *hctx;
3700         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3701
3702         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3703         if (!hctx)
3704                 goto fail_alloc_hctx;
3705
3706         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3707                 goto free_hctx;
3708
3709         atomic_set(&hctx->nr_active, 0);
3710         if (node == NUMA_NO_NODE)
3711                 node = set->numa_node;
3712         hctx->numa_node = node;
3713
3714         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3715         spin_lock_init(&hctx->lock);
3716         INIT_LIST_HEAD(&hctx->dispatch);
3717         hctx->queue = q;
3718         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3719
3720         INIT_LIST_HEAD(&hctx->hctx_list);
3721
3722         /*
3723          * Allocate space for all possible cpus to avoid allocation at
3724          * runtime
3725          */
3726         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3727                         gfp, node);
3728         if (!hctx->ctxs)
3729                 goto free_cpumask;
3730
3731         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3732                                 gfp, node, false, false))
3733                 goto free_ctxs;
3734         hctx->nr_ctx = 0;
3735
3736         spin_lock_init(&hctx->dispatch_wait_lock);
3737         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3738         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3739
3740         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3741         if (!hctx->fq)
3742                 goto free_bitmap;
3743
3744         blk_mq_hctx_kobj_init(hctx);
3745
3746         return hctx;
3747
3748  free_bitmap:
3749         sbitmap_free(&hctx->ctx_map);
3750  free_ctxs:
3751         kfree(hctx->ctxs);
3752  free_cpumask:
3753         free_cpumask_var(hctx->cpumask);
3754  free_hctx:
3755         kfree(hctx);
3756  fail_alloc_hctx:
3757         return NULL;
3758 }
3759
3760 static void blk_mq_init_cpu_queues(struct request_queue *q,
3761                                    unsigned int nr_hw_queues)
3762 {
3763         struct blk_mq_tag_set *set = q->tag_set;
3764         unsigned int i, j;
3765
3766         for_each_possible_cpu(i) {
3767                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3768                 struct blk_mq_hw_ctx *hctx;
3769                 int k;
3770
3771                 __ctx->cpu = i;
3772                 spin_lock_init(&__ctx->lock);
3773                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3774                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3775
3776                 __ctx->queue = q;
3777
3778                 /*
3779                  * Set local node, IFF we have more than one hw queue. If
3780                  * not, we remain on the home node of the device
3781                  */
3782                 for (j = 0; j < set->nr_maps; j++) {
3783                         hctx = blk_mq_map_queue_type(q, j, i);
3784                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3785                                 hctx->numa_node = cpu_to_node(i);
3786                 }
3787         }
3788 }
3789
3790 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3791                                              unsigned int hctx_idx,
3792                                              unsigned int depth)
3793 {
3794         struct blk_mq_tags *tags;
3795         int ret;
3796
3797         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3798         if (!tags)
3799                 return NULL;
3800
3801         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3802         if (ret) {
3803                 blk_mq_free_rq_map(tags);
3804                 return NULL;
3805         }
3806
3807         return tags;
3808 }
3809
3810 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3811                                        int hctx_idx)
3812 {
3813         if (blk_mq_is_shared_tags(set->flags)) {
3814                 set->tags[hctx_idx] = set->shared_tags;
3815
3816                 return true;
3817         }
3818
3819         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3820                                                        set->queue_depth);
3821
3822         return set->tags[hctx_idx];
3823 }
3824
3825 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3826                              struct blk_mq_tags *tags,
3827                              unsigned int hctx_idx)
3828 {
3829         if (tags) {
3830                 blk_mq_free_rqs(set, tags, hctx_idx);
3831                 blk_mq_free_rq_map(tags);
3832         }
3833 }
3834
3835 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3836                                       unsigned int hctx_idx)
3837 {
3838         if (!blk_mq_is_shared_tags(set->flags))
3839                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3840
3841         set->tags[hctx_idx] = NULL;
3842 }
3843
3844 static void blk_mq_map_swqueue(struct request_queue *q)
3845 {
3846         unsigned int j, hctx_idx;
3847         unsigned long i;
3848         struct blk_mq_hw_ctx *hctx;
3849         struct blk_mq_ctx *ctx;
3850         struct blk_mq_tag_set *set = q->tag_set;
3851
3852         queue_for_each_hw_ctx(q, hctx, i) {
3853                 cpumask_clear(hctx->cpumask);
3854                 hctx->nr_ctx = 0;
3855                 hctx->dispatch_from = NULL;
3856         }
3857
3858         /*
3859          * Map software to hardware queues.
3860          *
3861          * If the cpu isn't present, the cpu is mapped to first hctx.
3862          */
3863         for_each_possible_cpu(i) {
3864
3865                 ctx = per_cpu_ptr(q->queue_ctx, i);
3866                 for (j = 0; j < set->nr_maps; j++) {
3867                         if (!set->map[j].nr_queues) {
3868                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3869                                                 HCTX_TYPE_DEFAULT, i);
3870                                 continue;
3871                         }
3872                         hctx_idx = set->map[j].mq_map[i];
3873                         /* unmapped hw queue can be remapped after CPU topo changed */
3874                         if (!set->tags[hctx_idx] &&
3875                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3876                                 /*
3877                                  * If tags initialization fail for some hctx,
3878                                  * that hctx won't be brought online.  In this
3879                                  * case, remap the current ctx to hctx[0] which
3880                                  * is guaranteed to always have tags allocated
3881                                  */
3882                                 set->map[j].mq_map[i] = 0;
3883                         }
3884
3885                         hctx = blk_mq_map_queue_type(q, j, i);
3886                         ctx->hctxs[j] = hctx;
3887                         /*
3888                          * If the CPU is already set in the mask, then we've
3889                          * mapped this one already. This can happen if
3890                          * devices share queues across queue maps.
3891                          */
3892                         if (cpumask_test_cpu(i, hctx->cpumask))
3893                                 continue;
3894
3895                         cpumask_set_cpu(i, hctx->cpumask);
3896                         hctx->type = j;
3897                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3898                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3899
3900                         /*
3901                          * If the nr_ctx type overflows, we have exceeded the
3902                          * amount of sw queues we can support.
3903                          */
3904                         BUG_ON(!hctx->nr_ctx);
3905                 }
3906
3907                 for (; j < HCTX_MAX_TYPES; j++)
3908                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3909                                         HCTX_TYPE_DEFAULT, i);
3910         }
3911
3912         queue_for_each_hw_ctx(q, hctx, i) {
3913                 /*
3914                  * If no software queues are mapped to this hardware queue,
3915                  * disable it and free the request entries.
3916                  */
3917                 if (!hctx->nr_ctx) {
3918                         /* Never unmap queue 0.  We need it as a
3919                          * fallback in case of a new remap fails
3920                          * allocation
3921                          */
3922                         if (i)
3923                                 __blk_mq_free_map_and_rqs(set, i);
3924
3925                         hctx->tags = NULL;
3926                         continue;
3927                 }
3928
3929                 hctx->tags = set->tags[i];
3930                 WARN_ON(!hctx->tags);
3931
3932                 /*
3933                  * Set the map size to the number of mapped software queues.
3934                  * This is more accurate and more efficient than looping
3935                  * over all possibly mapped software queues.
3936                  */
3937                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3938
3939                 /*
3940                  * Initialize batch roundrobin counts
3941                  */
3942                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3943                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3944         }
3945 }
3946
3947 /*
3948  * Caller needs to ensure that we're either frozen/quiesced, or that
3949  * the queue isn't live yet.
3950  */
3951 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3952 {
3953         struct blk_mq_hw_ctx *hctx;
3954         unsigned long i;
3955
3956         queue_for_each_hw_ctx(q, hctx, i) {
3957                 if (shared) {
3958                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3959                 } else {
3960                         blk_mq_tag_idle(hctx);
3961                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3962                 }
3963         }
3964 }
3965
3966 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3967                                          bool shared)
3968 {
3969         struct request_queue *q;
3970
3971         lockdep_assert_held(&set->tag_list_lock);
3972
3973         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3974                 blk_mq_freeze_queue(q);
3975                 queue_set_hctx_shared(q, shared);
3976                 blk_mq_unfreeze_queue(q);
3977         }
3978 }
3979
3980 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3981 {
3982         struct blk_mq_tag_set *set = q->tag_set;
3983
3984         mutex_lock(&set->tag_list_lock);
3985         list_del(&q->tag_set_list);
3986         if (list_is_singular(&set->tag_list)) {
3987                 /* just transitioned to unshared */
3988                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3989                 /* update existing queue */
3990                 blk_mq_update_tag_set_shared(set, false);
3991         }
3992         mutex_unlock(&set->tag_list_lock);
3993         INIT_LIST_HEAD(&q->tag_set_list);
3994 }
3995
3996 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3997                                      struct request_queue *q)
3998 {
3999         mutex_lock(&set->tag_list_lock);
4000
4001         /*
4002          * Check to see if we're transitioning to shared (from 1 to 2 queues).
4003          */
4004         if (!list_empty(&set->tag_list) &&
4005             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4006                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4007                 /* update existing queue */
4008                 blk_mq_update_tag_set_shared(set, true);
4009         }
4010         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4011                 queue_set_hctx_shared(q, true);
4012         list_add_tail(&q->tag_set_list, &set->tag_list);
4013
4014         mutex_unlock(&set->tag_list_lock);
4015 }
4016
4017 /* All allocations will be freed in release handler of q->mq_kobj */
4018 static int blk_mq_alloc_ctxs(struct request_queue *q)
4019 {
4020         struct blk_mq_ctxs *ctxs;
4021         int cpu;
4022
4023         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4024         if (!ctxs)
4025                 return -ENOMEM;
4026
4027         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4028         if (!ctxs->queue_ctx)
4029                 goto fail;
4030
4031         for_each_possible_cpu(cpu) {
4032                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4033                 ctx->ctxs = ctxs;
4034         }
4035
4036         q->mq_kobj = &ctxs->kobj;
4037         q->queue_ctx = ctxs->queue_ctx;
4038
4039         return 0;
4040  fail:
4041         kfree(ctxs);
4042         return -ENOMEM;
4043 }
4044
4045 /*
4046  * It is the actual release handler for mq, but we do it from
4047  * request queue's release handler for avoiding use-after-free
4048  * and headache because q->mq_kobj shouldn't have been introduced,
4049  * but we can't group ctx/kctx kobj without it.
4050  */
4051 void blk_mq_release(struct request_queue *q)
4052 {
4053         struct blk_mq_hw_ctx *hctx, *next;
4054         unsigned long i;
4055
4056         queue_for_each_hw_ctx(q, hctx, i)
4057                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4058
4059         /* all hctx are in .unused_hctx_list now */
4060         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4061                 list_del_init(&hctx->hctx_list);
4062                 kobject_put(&hctx->kobj);
4063         }
4064
4065         xa_destroy(&q->hctx_table);
4066
4067         /*
4068          * release .mq_kobj and sw queue's kobject now because
4069          * both share lifetime with request queue.
4070          */
4071         blk_mq_sysfs_deinit(q);
4072 }
4073
4074 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4075                 void *queuedata)
4076 {
4077         struct request_queue *q;
4078         int ret;
4079
4080         q = blk_alloc_queue(set->numa_node);
4081         if (!q)
4082                 return ERR_PTR(-ENOMEM);
4083         q->queuedata = queuedata;
4084         ret = blk_mq_init_allocated_queue(set, q);
4085         if (ret) {
4086                 blk_put_queue(q);
4087                 return ERR_PTR(ret);
4088         }
4089         return q;
4090 }
4091
4092 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4093 {
4094         return blk_mq_init_queue_data(set, NULL);
4095 }
4096 EXPORT_SYMBOL(blk_mq_init_queue);
4097
4098 /**
4099  * blk_mq_destroy_queue - shutdown a request queue
4100  * @q: request queue to shutdown
4101  *
4102  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4103  * requests will be failed with -ENODEV. The caller is responsible for dropping
4104  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4105  *
4106  * Context: can sleep
4107  */
4108 void blk_mq_destroy_queue(struct request_queue *q)
4109 {
4110         WARN_ON_ONCE(!queue_is_mq(q));
4111         WARN_ON_ONCE(blk_queue_registered(q));
4112
4113         might_sleep();
4114
4115         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4116         blk_queue_start_drain(q);
4117         blk_mq_freeze_queue_wait(q);
4118
4119         blk_sync_queue(q);
4120         blk_mq_cancel_work_sync(q);
4121         blk_mq_exit_queue(q);
4122 }
4123 EXPORT_SYMBOL(blk_mq_destroy_queue);
4124
4125 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4126                 struct lock_class_key *lkclass)
4127 {
4128         struct request_queue *q;
4129         struct gendisk *disk;
4130
4131         q = blk_mq_init_queue_data(set, queuedata);
4132         if (IS_ERR(q))
4133                 return ERR_CAST(q);
4134
4135         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4136         if (!disk) {
4137                 blk_mq_destroy_queue(q);
4138                 blk_put_queue(q);
4139                 return ERR_PTR(-ENOMEM);
4140         }
4141         set_bit(GD_OWNS_QUEUE, &disk->state);
4142         return disk;
4143 }
4144 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4145
4146 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4147                 struct lock_class_key *lkclass)
4148 {
4149         struct gendisk *disk;
4150
4151         if (!blk_get_queue(q))
4152                 return NULL;
4153         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4154         if (!disk)
4155                 blk_put_queue(q);
4156         return disk;
4157 }
4158 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4159
4160 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4161                 struct blk_mq_tag_set *set, struct request_queue *q,
4162                 int hctx_idx, int node)
4163 {
4164         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4165
4166         /* reuse dead hctx first */
4167         spin_lock(&q->unused_hctx_lock);
4168         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4169                 if (tmp->numa_node == node) {
4170                         hctx = tmp;
4171                         break;
4172                 }
4173         }
4174         if (hctx)
4175                 list_del_init(&hctx->hctx_list);
4176         spin_unlock(&q->unused_hctx_lock);
4177
4178         if (!hctx)
4179                 hctx = blk_mq_alloc_hctx(q, set, node);
4180         if (!hctx)
4181                 goto fail;
4182
4183         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4184                 goto free_hctx;
4185
4186         return hctx;
4187
4188  free_hctx:
4189         kobject_put(&hctx->kobj);
4190  fail:
4191         return NULL;
4192 }
4193
4194 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4195                                                 struct request_queue *q)
4196 {
4197         struct blk_mq_hw_ctx *hctx;
4198         unsigned long i, j;
4199
4200         /* protect against switching io scheduler  */
4201         mutex_lock(&q->sysfs_lock);
4202         for (i = 0; i < set->nr_hw_queues; i++) {
4203                 int old_node;
4204                 int node = blk_mq_get_hctx_node(set, i);
4205                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4206
4207                 if (old_hctx) {
4208                         old_node = old_hctx->numa_node;
4209                         blk_mq_exit_hctx(q, set, old_hctx, i);
4210                 }
4211
4212                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4213                         if (!old_hctx)
4214                                 break;
4215                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4216                                         node, old_node);
4217                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4218                         WARN_ON_ONCE(!hctx);
4219                 }
4220         }
4221         /*
4222          * Increasing nr_hw_queues fails. Free the newly allocated
4223          * hctxs and keep the previous q->nr_hw_queues.
4224          */
4225         if (i != set->nr_hw_queues) {
4226                 j = q->nr_hw_queues;
4227         } else {
4228                 j = i;
4229                 q->nr_hw_queues = set->nr_hw_queues;
4230         }
4231
4232         xa_for_each_start(&q->hctx_table, j, hctx, j)
4233                 blk_mq_exit_hctx(q, set, hctx, j);
4234         mutex_unlock(&q->sysfs_lock);
4235 }
4236
4237 static void blk_mq_update_poll_flag(struct request_queue *q)
4238 {
4239         struct blk_mq_tag_set *set = q->tag_set;
4240
4241         if (set->nr_maps > HCTX_TYPE_POLL &&
4242             set->map[HCTX_TYPE_POLL].nr_queues)
4243                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4244         else
4245                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4246 }
4247
4248 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4249                 struct request_queue *q)
4250 {
4251         /* mark the queue as mq asap */
4252         q->mq_ops = set->ops;
4253
4254         if (blk_mq_alloc_ctxs(q))
4255                 goto err_exit;
4256
4257         /* init q->mq_kobj and sw queues' kobjects */
4258         blk_mq_sysfs_init(q);
4259
4260         INIT_LIST_HEAD(&q->unused_hctx_list);
4261         spin_lock_init(&q->unused_hctx_lock);
4262
4263         xa_init(&q->hctx_table);
4264
4265         blk_mq_realloc_hw_ctxs(set, q);
4266         if (!q->nr_hw_queues)
4267                 goto err_hctxs;
4268
4269         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4270         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4271
4272         q->tag_set = set;
4273
4274         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4275         blk_mq_update_poll_flag(q);
4276
4277         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4278         INIT_LIST_HEAD(&q->flush_list);
4279         INIT_LIST_HEAD(&q->requeue_list);
4280         spin_lock_init(&q->requeue_lock);
4281
4282         q->nr_requests = set->queue_depth;
4283
4284         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4285         blk_mq_add_queue_tag_set(set, q);
4286         blk_mq_map_swqueue(q);
4287         return 0;
4288
4289 err_hctxs:
4290         blk_mq_release(q);
4291 err_exit:
4292         q->mq_ops = NULL;
4293         return -ENOMEM;
4294 }
4295 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4296
4297 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4298 void blk_mq_exit_queue(struct request_queue *q)
4299 {
4300         struct blk_mq_tag_set *set = q->tag_set;
4301
4302         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4303         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4304         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4305         blk_mq_del_queue_tag_set(q);
4306 }
4307
4308 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4309 {
4310         int i;
4311
4312         if (blk_mq_is_shared_tags(set->flags)) {
4313                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4314                                                 BLK_MQ_NO_HCTX_IDX,
4315                                                 set->queue_depth);
4316                 if (!set->shared_tags)
4317                         return -ENOMEM;
4318         }
4319
4320         for (i = 0; i < set->nr_hw_queues; i++) {
4321                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4322                         goto out_unwind;
4323                 cond_resched();
4324         }
4325
4326         return 0;
4327
4328 out_unwind:
4329         while (--i >= 0)
4330                 __blk_mq_free_map_and_rqs(set, i);
4331
4332         if (blk_mq_is_shared_tags(set->flags)) {
4333                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4334                                         BLK_MQ_NO_HCTX_IDX);
4335         }
4336
4337         return -ENOMEM;
4338 }
4339
4340 /*
4341  * Allocate the request maps associated with this tag_set. Note that this
4342  * may reduce the depth asked for, if memory is tight. set->queue_depth
4343  * will be updated to reflect the allocated depth.
4344  */
4345 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4346 {
4347         unsigned int depth;
4348         int err;
4349
4350         depth = set->queue_depth;
4351         do {
4352                 err = __blk_mq_alloc_rq_maps(set);
4353                 if (!err)
4354                         break;
4355
4356                 set->queue_depth >>= 1;
4357                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4358                         err = -ENOMEM;
4359                         break;
4360                 }
4361         } while (set->queue_depth);
4362
4363         if (!set->queue_depth || err) {
4364                 pr_err("blk-mq: failed to allocate request map\n");
4365                 return -ENOMEM;
4366         }
4367
4368         if (depth != set->queue_depth)
4369                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4370                                                 depth, set->queue_depth);
4371
4372         return 0;
4373 }
4374
4375 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4376 {
4377         /*
4378          * blk_mq_map_queues() and multiple .map_queues() implementations
4379          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4380          * number of hardware queues.
4381          */
4382         if (set->nr_maps == 1)
4383                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4384
4385         if (set->ops->map_queues && !is_kdump_kernel()) {
4386                 int i;
4387
4388                 /*
4389                  * transport .map_queues is usually done in the following
4390                  * way:
4391                  *
4392                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4393                  *      mask = get_cpu_mask(queue)
4394                  *      for_each_cpu(cpu, mask)
4395                  *              set->map[x].mq_map[cpu] = queue;
4396                  * }
4397                  *
4398                  * When we need to remap, the table has to be cleared for
4399                  * killing stale mapping since one CPU may not be mapped
4400                  * to any hw queue.
4401                  */
4402                 for (i = 0; i < set->nr_maps; i++)
4403                         blk_mq_clear_mq_map(&set->map[i]);
4404
4405                 set->ops->map_queues(set);
4406         } else {
4407                 BUG_ON(set->nr_maps > 1);
4408                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4409         }
4410 }
4411
4412 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4413                                        int new_nr_hw_queues)
4414 {
4415         struct blk_mq_tags **new_tags;
4416         int i;
4417
4418         if (set->nr_hw_queues >= new_nr_hw_queues)
4419                 goto done;
4420
4421         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4422                                 GFP_KERNEL, set->numa_node);
4423         if (!new_tags)
4424                 return -ENOMEM;
4425
4426         if (set->tags)
4427                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4428                        sizeof(*set->tags));
4429         kfree(set->tags);
4430         set->tags = new_tags;
4431
4432         for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4433                 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4434                         while (--i >= set->nr_hw_queues)
4435                                 __blk_mq_free_map_and_rqs(set, i);
4436                         return -ENOMEM;
4437                 }
4438                 cond_resched();
4439         }
4440
4441 done:
4442         set->nr_hw_queues = new_nr_hw_queues;
4443         return 0;
4444 }
4445
4446 /*
4447  * Alloc a tag set to be associated with one or more request queues.
4448  * May fail with EINVAL for various error conditions. May adjust the
4449  * requested depth down, if it's too large. In that case, the set
4450  * value will be stored in set->queue_depth.
4451  */
4452 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4453 {
4454         int i, ret;
4455
4456         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4457
4458         if (!set->nr_hw_queues)
4459                 return -EINVAL;
4460         if (!set->queue_depth)
4461                 return -EINVAL;
4462         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4463                 return -EINVAL;
4464
4465         if (!set->ops->queue_rq)
4466                 return -EINVAL;
4467
4468         if (!set->ops->get_budget ^ !set->ops->put_budget)
4469                 return -EINVAL;
4470
4471         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4472                 pr_info("blk-mq: reduced tag depth to %u\n",
4473                         BLK_MQ_MAX_DEPTH);
4474                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4475         }
4476
4477         if (!set->nr_maps)
4478                 set->nr_maps = 1;
4479         else if (set->nr_maps > HCTX_MAX_TYPES)
4480                 return -EINVAL;
4481
4482         /*
4483          * If a crashdump is active, then we are potentially in a very
4484          * memory constrained environment. Limit us to 1 queue and
4485          * 64 tags to prevent using too much memory.
4486          */
4487         if (is_kdump_kernel()) {
4488                 set->nr_hw_queues = 1;
4489                 set->nr_maps = 1;
4490                 set->queue_depth = min(64U, set->queue_depth);
4491         }
4492         /*
4493          * There is no use for more h/w queues than cpus if we just have
4494          * a single map
4495          */
4496         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4497                 set->nr_hw_queues = nr_cpu_ids;
4498
4499         if (set->flags & BLK_MQ_F_BLOCKING) {
4500                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4501                 if (!set->srcu)
4502                         return -ENOMEM;
4503                 ret = init_srcu_struct(set->srcu);
4504                 if (ret)
4505                         goto out_free_srcu;
4506         }
4507
4508         ret = -ENOMEM;
4509         set->tags = kcalloc_node(set->nr_hw_queues,
4510                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4511                                  set->numa_node);
4512         if (!set->tags)
4513                 goto out_cleanup_srcu;
4514
4515         for (i = 0; i < set->nr_maps; i++) {
4516                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4517                                                   sizeof(set->map[i].mq_map[0]),
4518                                                   GFP_KERNEL, set->numa_node);
4519                 if (!set->map[i].mq_map)
4520                         goto out_free_mq_map;
4521                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4522         }
4523
4524         blk_mq_update_queue_map(set);
4525
4526         ret = blk_mq_alloc_set_map_and_rqs(set);
4527         if (ret)
4528                 goto out_free_mq_map;
4529
4530         mutex_init(&set->tag_list_lock);
4531         INIT_LIST_HEAD(&set->tag_list);
4532
4533         return 0;
4534
4535 out_free_mq_map:
4536         for (i = 0; i < set->nr_maps; i++) {
4537                 kfree(set->map[i].mq_map);
4538                 set->map[i].mq_map = NULL;
4539         }
4540         kfree(set->tags);
4541         set->tags = NULL;
4542 out_cleanup_srcu:
4543         if (set->flags & BLK_MQ_F_BLOCKING)
4544                 cleanup_srcu_struct(set->srcu);
4545 out_free_srcu:
4546         if (set->flags & BLK_MQ_F_BLOCKING)
4547                 kfree(set->srcu);
4548         return ret;
4549 }
4550 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4551
4552 /* allocate and initialize a tagset for a simple single-queue device */
4553 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4554                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4555                 unsigned int set_flags)
4556 {
4557         memset(set, 0, sizeof(*set));
4558         set->ops = ops;
4559         set->nr_hw_queues = 1;
4560         set->nr_maps = 1;
4561         set->queue_depth = queue_depth;
4562         set->numa_node = NUMA_NO_NODE;
4563         set->flags = set_flags;
4564         return blk_mq_alloc_tag_set(set);
4565 }
4566 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4567
4568 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4569 {
4570         int i, j;
4571
4572         for (i = 0; i < set->nr_hw_queues; i++)
4573                 __blk_mq_free_map_and_rqs(set, i);
4574
4575         if (blk_mq_is_shared_tags(set->flags)) {
4576                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4577                                         BLK_MQ_NO_HCTX_IDX);
4578         }
4579
4580         for (j = 0; j < set->nr_maps; j++) {
4581                 kfree(set->map[j].mq_map);
4582                 set->map[j].mq_map = NULL;
4583         }
4584
4585         kfree(set->tags);
4586         set->tags = NULL;
4587         if (set->flags & BLK_MQ_F_BLOCKING) {
4588                 cleanup_srcu_struct(set->srcu);
4589                 kfree(set->srcu);
4590         }
4591 }
4592 EXPORT_SYMBOL(blk_mq_free_tag_set);
4593
4594 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4595 {
4596         struct blk_mq_tag_set *set = q->tag_set;
4597         struct blk_mq_hw_ctx *hctx;
4598         int ret;
4599         unsigned long i;
4600
4601         if (!set)
4602                 return -EINVAL;
4603
4604         if (q->nr_requests == nr)
4605                 return 0;
4606
4607         blk_mq_freeze_queue(q);
4608         blk_mq_quiesce_queue(q);
4609
4610         ret = 0;
4611         queue_for_each_hw_ctx(q, hctx, i) {
4612                 if (!hctx->tags)
4613                         continue;
4614                 /*
4615                  * If we're using an MQ scheduler, just update the scheduler
4616                  * queue depth. This is similar to what the old code would do.
4617                  */
4618                 if (hctx->sched_tags) {
4619                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4620                                                       nr, true);
4621                 } else {
4622                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4623                                                       false);
4624                 }
4625                 if (ret)
4626                         break;
4627                 if (q->elevator && q->elevator->type->ops.depth_updated)
4628                         q->elevator->type->ops.depth_updated(hctx);
4629         }
4630         if (!ret) {
4631                 q->nr_requests = nr;
4632                 if (blk_mq_is_shared_tags(set->flags)) {
4633                         if (q->elevator)
4634                                 blk_mq_tag_update_sched_shared_tags(q);
4635                         else
4636                                 blk_mq_tag_resize_shared_tags(set, nr);
4637                 }
4638         }
4639
4640         blk_mq_unquiesce_queue(q);
4641         blk_mq_unfreeze_queue(q);
4642
4643         return ret;
4644 }
4645
4646 /*
4647  * request_queue and elevator_type pair.
4648  * It is just used by __blk_mq_update_nr_hw_queues to cache
4649  * the elevator_type associated with a request_queue.
4650  */
4651 struct blk_mq_qe_pair {
4652         struct list_head node;
4653         struct request_queue *q;
4654         struct elevator_type *type;
4655 };
4656
4657 /*
4658  * Cache the elevator_type in qe pair list and switch the
4659  * io scheduler to 'none'
4660  */
4661 static bool blk_mq_elv_switch_none(struct list_head *head,
4662                 struct request_queue *q)
4663 {
4664         struct blk_mq_qe_pair *qe;
4665
4666         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4667         if (!qe)
4668                 return false;
4669
4670         /* q->elevator needs protection from ->sysfs_lock */
4671         mutex_lock(&q->sysfs_lock);
4672
4673         /* the check has to be done with holding sysfs_lock */
4674         if (!q->elevator) {
4675                 kfree(qe);
4676                 goto unlock;
4677         }
4678
4679         INIT_LIST_HEAD(&qe->node);
4680         qe->q = q;
4681         qe->type = q->elevator->type;
4682         /* keep a reference to the elevator module as we'll switch back */
4683         __elevator_get(qe->type);
4684         list_add(&qe->node, head);
4685         elevator_disable(q);
4686 unlock:
4687         mutex_unlock(&q->sysfs_lock);
4688
4689         return true;
4690 }
4691
4692 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4693                                                 struct request_queue *q)
4694 {
4695         struct blk_mq_qe_pair *qe;
4696
4697         list_for_each_entry(qe, head, node)
4698                 if (qe->q == q)
4699                         return qe;
4700
4701         return NULL;
4702 }
4703
4704 static void blk_mq_elv_switch_back(struct list_head *head,
4705                                   struct request_queue *q)
4706 {
4707         struct blk_mq_qe_pair *qe;
4708         struct elevator_type *t;
4709
4710         qe = blk_lookup_qe_pair(head, q);
4711         if (!qe)
4712                 return;
4713         t = qe->type;
4714         list_del(&qe->node);
4715         kfree(qe);
4716
4717         mutex_lock(&q->sysfs_lock);
4718         elevator_switch(q, t);
4719         /* drop the reference acquired in blk_mq_elv_switch_none */
4720         elevator_put(t);
4721         mutex_unlock(&q->sysfs_lock);
4722 }
4723
4724 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4725                                                         int nr_hw_queues)
4726 {
4727         struct request_queue *q;
4728         LIST_HEAD(head);
4729         int prev_nr_hw_queues = set->nr_hw_queues;
4730         int i;
4731
4732         lockdep_assert_held(&set->tag_list_lock);
4733
4734         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4735                 nr_hw_queues = nr_cpu_ids;
4736         if (nr_hw_queues < 1)
4737                 return;
4738         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4739                 return;
4740
4741         list_for_each_entry(q, &set->tag_list, tag_set_list)
4742                 blk_mq_freeze_queue(q);
4743         /*
4744          * Switch IO scheduler to 'none', cleaning up the data associated
4745          * with the previous scheduler. We will switch back once we are done
4746          * updating the new sw to hw queue mappings.
4747          */
4748         list_for_each_entry(q, &set->tag_list, tag_set_list)
4749                 if (!blk_mq_elv_switch_none(&head, q))
4750                         goto switch_back;
4751
4752         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4753                 blk_mq_debugfs_unregister_hctxs(q);
4754                 blk_mq_sysfs_unregister_hctxs(q);
4755         }
4756
4757         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4758                 goto reregister;
4759
4760 fallback:
4761         blk_mq_update_queue_map(set);
4762         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4763                 blk_mq_realloc_hw_ctxs(set, q);
4764                 blk_mq_update_poll_flag(q);
4765                 if (q->nr_hw_queues != set->nr_hw_queues) {
4766                         int i = prev_nr_hw_queues;
4767
4768                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4769                                         nr_hw_queues, prev_nr_hw_queues);
4770                         for (; i < set->nr_hw_queues; i++)
4771                                 __blk_mq_free_map_and_rqs(set, i);
4772
4773                         set->nr_hw_queues = prev_nr_hw_queues;
4774                         goto fallback;
4775                 }
4776                 blk_mq_map_swqueue(q);
4777         }
4778
4779 reregister:
4780         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4781                 blk_mq_sysfs_register_hctxs(q);
4782                 blk_mq_debugfs_register_hctxs(q);
4783         }
4784
4785 switch_back:
4786         list_for_each_entry(q, &set->tag_list, tag_set_list)
4787                 blk_mq_elv_switch_back(&head, q);
4788
4789         list_for_each_entry(q, &set->tag_list, tag_set_list)
4790                 blk_mq_unfreeze_queue(q);
4791
4792         /* Free the excess tags when nr_hw_queues shrink. */
4793         for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4794                 __blk_mq_free_map_and_rqs(set, i);
4795 }
4796
4797 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4798 {
4799         mutex_lock(&set->tag_list_lock);
4800         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4801         mutex_unlock(&set->tag_list_lock);
4802 }
4803 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4804
4805 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4806                          struct io_comp_batch *iob, unsigned int flags)
4807 {
4808         long state = get_current_state();
4809         int ret;
4810
4811         do {
4812                 ret = q->mq_ops->poll(hctx, iob);
4813                 if (ret > 0) {
4814                         __set_current_state(TASK_RUNNING);
4815                         return ret;
4816                 }
4817
4818                 if (signal_pending_state(state, current))
4819                         __set_current_state(TASK_RUNNING);
4820                 if (task_is_running(current))
4821                         return 1;
4822
4823                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4824                         break;
4825                 cpu_relax();
4826         } while (!need_resched());
4827
4828         __set_current_state(TASK_RUNNING);
4829         return 0;
4830 }
4831
4832 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4833                 struct io_comp_batch *iob, unsigned int flags)
4834 {
4835         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4836
4837         return blk_hctx_poll(q, hctx, iob, flags);
4838 }
4839
4840 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4841                 unsigned int poll_flags)
4842 {
4843         struct request_queue *q = rq->q;
4844         int ret;
4845
4846         if (!blk_rq_is_poll(rq))
4847                 return 0;
4848         if (!percpu_ref_tryget(&q->q_usage_counter))
4849                 return 0;
4850
4851         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4852         blk_queue_exit(q);
4853
4854         return ret;
4855 }
4856 EXPORT_SYMBOL_GPL(blk_rq_poll);
4857
4858 unsigned int blk_mq_rq_cpu(struct request *rq)
4859 {
4860         return rq->mq_ctx->cpu;
4861 }
4862 EXPORT_SYMBOL(blk_mq_rq_cpu);
4863
4864 void blk_mq_cancel_work_sync(struct request_queue *q)
4865 {
4866         struct blk_mq_hw_ctx *hctx;
4867         unsigned long i;
4868
4869         cancel_delayed_work_sync(&q->requeue_work);
4870
4871         queue_for_each_hw_ctx(q, hctx, i)
4872                 cancel_delayed_work_sync(&hctx->run_work);
4873 }
4874
4875 static int __init blk_mq_init(void)
4876 {
4877         int i;
4878
4879         for_each_possible_cpu(i)
4880                 init_llist_head(&per_cpu(blk_cpu_done, i));
4881         for_each_possible_cpu(i)
4882                 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4883                          __blk_mq_complete_request_remote, NULL);
4884         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4885
4886         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4887                                   "block/softirq:dead", NULL,
4888                                   blk_softirq_cpu_dead);
4889         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4890                                 blk_mq_hctx_notify_dead);
4891         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4892                                 blk_mq_hctx_notify_online,
4893                                 blk_mq_hctx_notify_offline);
4894         return 0;
4895 }
4896 subsys_initcall(blk_mq_init);